WorldWideScience

Sample records for exploring bio-hydrogen-producing performance

  1. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  2. Price determination for hydrogen produced from bio-ethanol in Argentina

    International Nuclear Information System (INIS)

    Gregorini, V.A.; Pasquevich, D.; Laborde, M.

    2010-01-01

    A massive penetration for hydrogen as a fuel vector requires a price reduction against fossil fuels (up to lower or at less equal to current prices). That is why it is important to calculate the current prices, so that we can determinate the gap between them and work in reducing them. In order to follow properly prices evolution it is necessary been able to compare data generated by Universities, Laboratories and Industries. So that, DOE creates in 2003 a tool (H2A) to determine prices for hydrogen, with some assumptions and pre defined values, to facilitate transparency and consistency of data. In this work we will use the H2A tool to calculate de price of hydrogen produced in a bio-ethanol semi-industrial Plant in Argentina, and we will compare it with the prices of USA studies. (author)

  3. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  4. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  5. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation

    Science.gov (United States)

    Nualsri, Chatchawin; Kongjan, Prawit; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased. PMID:28207755

  6. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  7. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  9. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  10. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  11. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  12. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    OpenAIRE

    Susmozas, Ana; Iribarren, Diego; Dufour, Javier

    2015-01-01

    Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydroge...

  13. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    Science.gov (United States)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  14. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  15. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  16. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil.

    Science.gov (United States)

    Yuan, Lixia; Chen, Yaqiong; Song, Chongfu; Ye, Tongqi; Guo, Qingxiang; Zhu, Qingshi; Torimoto, Youshifumi; Li, Quanxin

    2008-11-07

    A novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at Tcatalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.

  17. Solubility of hydrogen in bio-oil compounds

    International Nuclear Information System (INIS)

    Qureshi, Muhammad Saad; Touronen, Jouni; Uusi-Kyyny, Petri; Richon, Dominique; Alopaeus, Ville

    2016-01-01

    Highlights: • Solubility of Hydrogen was measured in bio-oil compounds in the at temperatures from 342 to 473 K and pressures up to 16 MPa. • Phase equilibrium data were acquired using a visualization enabled continuous flow synthetic apparatus. • The measured solubility is modeled with Peng-Robinson EoS. - Abstract: The knowledge of accurate hydrogen solubility values in bio-oil compounds is essential for the design and optimization of hydroprocesses relevant to biofuel industry. This work reports the solubility of hydrogen in three industrially relevant bio-oil compounds (allyl alcohol, furan, and eugenol) at temperatures from 342 to 473 K and pressures up to 16 MPa. Phase equilibrium data were acquired using a continuous flow synthetic method. The method is based on the visual observation of the bubble point using a high resolution camera. The measured solubility is modeled with Peng-Robinson EoS with classical van der Waals one fluid mixing rules.

  18. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  19. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  20. Bio-hydrogen production by dark fermentation from organic wastes and residues

    DEFF Research Database (Denmark)

    Liu, Dawei

    Der er stigende opmærksomhed omkring biohydrogen. Ved hydrogen fermentering kan kun en lille del af det organiske materiale eller COD i affald omdannes til hydrogen. Der findes endnu ingen full-skala bio-hydrogen anlæg, eftersom effektive rentable teknologier ikke er udviklet endnu. En to......-trins proces der kombinerer bio-hydrogen og bio-metan produktionen er en attraktiv mulighed til at øge det totale energi-udbytte af fermentering af organisk materiale. I en to-trins proces, med bio-hydrogen som første trin og bio-methan som andet trin, kunne der opnås 43mL-H2/gVSadded ved 37°C fra...... for en hurtig proces opstart og med højt brint effektivitet. Uden berigelseskulturer fejlede processen, på trods af gentagen genpodning. Optimale procesforhold for brint producerende processer blev bestemt. pH optimum af brintproducerende kulturer var 7.0 og acetat var hæmmende for brintproduktionen...

  1. Analysis of energy consumption and CO{sub 2} emissions of the life cycle of bio-hydrogen applied to the Portuguese road transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Filipa; Baptista, Patricia; Silva, Carla [IDMEC (Portugal). Dept. of Mechanical Engineering

    2010-07-01

    In this work the main objective is to analyze energy consumption and CO{sub 2} emissions of biohydrogen for use in the transportation sector in Portugal. A life cycle assessment will be performed in order to evaluate bio-hydrogen pathways, having biodiesel and conventional fossil diesel as reference. The pathways were production of feedstock, pre-treatment, treatment, compression, distribution and applications. For the well-to-tank analysis the SimaPro 7.1 software and excel tools are used. This study includes not only a well-to-tank analysis but also a tank-to-wheel analysis (using ADVISOR software) estimating hydrogen consumption and electricity consumption of a fuel cell hybrid and a plug-in hybrid. Several bio-hydrogen feedstocks to produce hydrogen through fermentation processes will be considered: potato peels. (orig.)

  2. Exploring bio-hydrogen-producing performance in three-phase fluidized bed bioreactors using different types of immobilized cells

    International Nuclear Information System (INIS)

    Shu-Yii Wu; Chi-Neng Lin; Yuan-Chang Shen; Shu-Yii Wu; Chiu-Yue Lin; Jo-Shu Chang

    2006-01-01

    In this study, the spherical activated carbon (AC) and silicone gel (SC) were used as the primary matrices to immobilize H 2 -producing activated sludge. The experiments were carried out in two different types of three-phase fluidized beds; namely, conventional fluidized bed reactor (FBR) and draft tube fluidized bed reactor (DTFBR). The solid volume of AC and SC immobilized cells was 10 vol.% for both FBR and DTFBR. Sucrose (at 20000 mg COD/l) was used as the carbon substrate for H 2 production. The H 2 -producing performance was examined at different hydraulic retention times (HRT = 8, 6, 4, 2, 1, and 0.5 h). The results show that the best volumetric H 2 production rate was 1.23 ± 0.08 l/h/l (HRT = 2 h) and 2.33 ± 0.22 l/h/l (HRT 0.5 h) for fluidized beds containing AC and SC immobilized cells, respectively. The highest H 2 yield was 3.37 mol H 2 /mol sucrose (HRT = 6 h) and 4.07 mol H 2 /mol sucrose (HRT = 4 h) for fluidized beds with AC and SC immobilized cells, respectively. The H 2 content in the biogas was stably maintained at 35% or higher for all the reactors, while the primary soluble metabolites in the cultures were acetic acid and butyric acid. (authors)

  3. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  4. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  5. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    Directory of Open Access Journals (Sweden)

    Ana Susmozas

    2015-06-01

    Full Text Available Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol.

  6. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    Silva Munoz, L. de

    2007-12-01

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  7. Positive aspects issued from bio-corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    De Silva Munoz, Leonardo

    2007-01-01

    Microbially influenced corrosion or bio-corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio-corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio films could play a major role in steel bio-corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild ph conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase / glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author) [fr

  8. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  9. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  10. Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process

    Directory of Open Access Journals (Sweden)

    Sri Kadarwati

    2015-02-01

    Full Text Available Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni at various reaction temperatures (400-500oC in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO32.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion

  11. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  12. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  13. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    Science.gov (United States)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  14. Performance of bio fuels in diesel engines

    International Nuclear Information System (INIS)

    Nunez I, Manuel L; Prada V, Laura P

    2007-01-01

    This paper shows the preliminary results of pilot plant tests developed in oil catalytic hydrotreating process, where the crude palm oil or a mixture of crude palm oil and mineral diesel is treated with an injection of 99% pure hydrogen flux, in a fixed bed reactor at high pressures and temperatures, in a presence of Nickel Molybdenum catalyst supported on alumina bed. The main product of this process is a fuel (bio diesel) which has the same or better properties than the diesel obtained by petroleum refining. It has been made some performance fuel tests in diesel engine? with good results in terms of power, torque and fuel consumption, without any changes in engine configuration. Considering the characteristics of the Catalytic hydrotreated bio diesel compare to conventional diesel, both fuels have similar distillation range? however, bio diesel has better flash point, cetane index and thermal stability. Gas fuels (methane, ethane, and propane) CO 2 and water are the secondary products of the process.

  15. History of adaptation determines short-term shifts in performance and community structure of hydrogen-producing microbial communities degrading wheat straw.

    Science.gov (United States)

    Valdez-Vazquez, Idania; Morales, Ana L; Escalante, Ana E

    2017-11-01

    This study addresses the question of ecological interest for the determination of structure and diversity of microbial communities that degrade lignocellulosic biomasses to produce biofuels. Two microbial consortia with different history, native of wheat straw (NWS) and from a methanogenic digester (MD) fed with cow manure, were contrasted in terms of hydrogen performance, substrate disintegration and microbial diversity. NWS outperformed the hydrogen production rate of MD. Microscopic images revealed that NWS acted on the cuticle and epidermis, generating cellulose strands with high crystallinity, while MD degraded deeper layers, equally affecting all polysaccharides. The bacterial composition markedly differed according to the inocula origin. NWS almost solely comprised hydrogen producers of the phyla Firmicutes and Proteobacteria, with 38% members of Enterococcus. After hydrogen fermentation, NWS comprised 8% Syntrophococcus, an acetogen that cleaves aryl ethers of constituent groups on the aromatic components of lignin. Conversely, MD comprised thirteen phyla, primarily including Firmicutes with H 2 -producing members, and Bacteroidetes with non-H 2 -producing members, which reduced the hydrogen performance. Overall, the results of this study provide clear evidence that the history of adaptation of NWS enhanced the hydrogen performance from untreated wheat straw. Further, native wheat straw communities have the potential to refine cellulose fibers and produce biofuels simultaneously. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene

    Science.gov (United States)

    Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.

    2017-11-01

    In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.

  17. Appraisal of bio-hydrogen production schemes

    International Nuclear Information System (INIS)

    Bent Sorensen

    2006-01-01

    Work is ongoing on several schemes of biological hydrogen production. At one end is the genetic modification of biological systems (such as algae or cyanobacteria) to produce hydrogen from photosynthesis, instead of the energy-rich compounds (such as NADPH 2 ) normally constituting the endpoint of the transformations through the photo-systems. A second route is to collect and use the biomass produced by normal plant growth processes in a separate step that produces hydrogen. This may be done similar to biogas production by fermentation, where the endpoint is methane (plus CO 2 and minor constituents). Hydrogen could be the outcome of a secondary process starting from methane, involving any of the conventional methods of hydrogen production from natural gas. An alternative to fermentation is gasification of the biomass, followed by a shift-reaction leading to hydrogen. I compare advantages and disadvantages of these three routes, notably factors such as system efficiency, cost and environmental impacts, and also compare them to liquid biofuels. (author)

  18. Looking for practical tools to achieve next-future applicability of dark fermentation to produce bio-hydrogen from organic materials in Continuously Stirred Tank Reactors.

    Science.gov (United States)

    Tenca, A; Schievano, A; Lonati, S; Malagutti, L; Oberti, R; Adani, F

    2011-09-01

    This study aimed at finding applicable tools for favouring dark fermentation application in full-scale biogas plants in the next future. Firstly, the focus was obtaining mixed microbial cultures from natural sources (soil-inocula and anaerobically digested materials), able to efficiently produce bio-hydrogen by dark fermentation. Batch reactors with proper substrate (1 gL(glucose)(-1)) and metabolites concentrations, allowed high H(2) yields (2.8 ± 0.66 mol H(2)mol(glucose)(-1)), comparable to pure microbial cultures achievements. The application of this methodology to four organic substrates, of possible interest for full-scale plants, showed promising and repeatable bio-H(2) potential (BHP=202 ± 3 NL(H2)kg(VS)(-1)) from organic fraction of municipal source-separated waste (OFMSW). Nevertheless, the fermentation in a lab-scale CSTR (nowadays the most diffused typology of biogas-plant) of a concentrated organic mixture of OFMSW (126 g(TS)L(-1)) resulted in only 30% of its BHP, showing that further improvements are still needed for future full-scale applications of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Bio-Prospecting for Improved Hydrogen-Producing Organisms

    Science.gov (United States)

    2011-06-01

    including soil, sediment, seawater, thermophilic compost, and geothermal sites. Cyanobacterial production of hydrogen and oxygen in natural habitats...Berelson and Corsetti at USC-, experiments were conducted to analyze the hydrogenase enzymes and microbial community of a novel cyanobacterially...another. Future work should involve rate and flux experiments, further investigation of the hydrogenase enzymes involved and follow up work with D:H ratio

  20. Plasma thermal conversion of bio-oil for hydrogen production

    International Nuclear Information System (INIS)

    Guenadou, David; Lorcet, Helene; Peybernes, Jean; Catoire, Laurent; Osmont, Antoine; Gokalp, Iskender

    2012-01-01

    Numerous processes exist or are proposed for the energetic conversion of biomass. The use of thermal plasma is proposed in the frame of the GALACSY project for the conversion of bio-oil to hydrogen and carbon monoxide. For this purpose, an experimental apparatus has been built. The feasibility of this conversion at very high temperature, as encountered in thermal plasma, is examined both experimentally and numerically. This zero dimensional study tends to show that a high temperature (around 2500 K or above) is needed to ensure a high yield of hydrogen (about 50 mol%) and about 95 mol% of CO+H 2 . Predicted CO+H 2 yield and CO/H 2 ratio are consistent with measurements. It is also expected that the formation of particles and tars is hampered. Thermodynamic data of selected bio-oil components are provided in the CHEMKINNASA format. (authors)

  1. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  2. Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis

    International Nuclear Information System (INIS)

    Kim, Tae-Seung; Oh, Shinyoung; Kim, Jae-Young; Choi, In-Gyu; Choi, Joon Weon

    2014-01-01

    Crude bio-oil produced from fast pyrolysis of yellow poplar wood was subjected to HDO (hydrodeoxygenation) for the purpose of reducing water content as well as increasing heating value. HDO was performed in an autoclave reactor at three different reaction factors: temperature (250–370 °C), reaction time (40–120 min), and Pd/C catalyst loading (0–6 wt%) under hydrogen atmosphere. After completion of HDO, gas, char, and two immiscible liquid products (light oil and heavy oil) were obtained. Liquid products were less acidic and contained less water than crude bio-oil. Water content of heavy oil was ranged between 0.4 wt% and 1.9 wt%. Heating values of heavy oil were estimated between 28.7 and 37.4 MJ/kg, which was about twice higher than that of crude bio-oil. Elemental analysis revealed that heavy oil had a lower O/C ratio (0.17–0.36) than crude bio-oil (0.71). H/C ratio of heavy oil decreased from 1.50 to 1.32 with an increase of temperature from 250 °C to 350 °C, respectively. - Highlights: • Bio-oil was subjected to hydrodeoxygenation with Pd/C catalyst in supercritical ethanol. • Gas, char and two immiscible liquids (light/heavy oil) were obtained as final products. • Ethanol addition reduced the char formation during hydrodeoxygenation. • The heavy oil was characteristic to less acidic and less water content than bio-oil. • Higher heating value of the heavy oil was measured to 28.7–37.4 MJ/kg

  3. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  4. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl{sub 2}(PPh{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Li, W.; Lu, Q.; Zhu, X. [Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei (China)

    2010-12-15

    A homogeneous RuCl{sub 2}(PPh{sub 3}){sub 3} catalyst was prepared for the hydrogenation of bio-oil to improve its stability and fuel quality. Experiments were first performed on three model aldehydes of acetaldehyde, furfural and vanillin selected to represent the linear aldehydes, oxygen heterocyclic aldehydes and aromatic aldehydes in bio-oil. The results demonstrated the high hydrogenation capability of this homogeneous catalyst under mild conditions (55-90 C, 1.3-3.3 MPa). The highest conversion of the three model aldehydes was over 90 %. Furfural and acetaldehyde were singly converted to furfuryl alcohol and ethanol after hydrogenation, while vanillin was mainly converted to vanillin alcohol, together with a small amount of 2-methoxy-4-methylphenol and 2-methoxyphenol. Further experiments were conducted on a bio-oil fraction extracted by ethyl acetate and on the whole bio-oil at 70 C and 3.3 MPa. Most of the aldehydes were transformed to the corresponding alcohols, and some ketones and compounds with C-C double bond were converted to more stable compounds. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. The economic feasibility of producing hydrogen from sunlight and wind

    International Nuclear Information System (INIS)

    Mann, M. K.; Spath, P. L.; Watt, A. S.

    1999-01-01

    The feasibility of utilizing photoelectrochemical and electrolytical technologies to convert energy from the sun and wind into hydrogen was studied. In exploring opportunities to reduce the cost of hydrogen production through interaction with the electric utility grid, it was found that direct photoelectrochemical (PEC) conversion of sunlight has the economic potential to compete with direct photovoltaic/electrolysis, notwithstanding the significant stability and efficiency issues that are still awaiting solution. Interaction with the grid, while maximizing electrolizer use, makes a significant impact on the economics of producing hydrogen by photovoltaic/electrolysis, making wind-based systems also more economical. Electrolysis was found to be the optimal solution only with electricity from renewable sources or with less expensive non-peak electricity. On the other hand, the delivered cost of hydrogen was found to the lowest when electricity production was decoupled from the hydrogen production operation. Decoupled hydrogen production also has an additional benefit, i.e. it produces the hydrogen where it is needed, therefore it mitigates the need for various storage and distribution costs. 6 refs., 4 tabs., 2 figs

  6. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells; Des aspects positifs issus des recherches en biocorrosion: de la production d'hydrogene aux biopiles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Silva Munoz, L. de

    2007-12-15

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  7. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  8. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    Science.gov (United States)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  9. Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell.

    Science.gov (United States)

    Orozco, R L; Redwood, M D; Yong, P; Caldelari, I; Sargent, F; Macaskie, L E

    2010-12-01

    Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.

  10. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  11. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  12. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    Science.gov (United States)

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  13. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  14. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Science.gov (United States)

    Hernández, Liliana; Kafarov, Viatcheslav

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 °C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction.

  15. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Liliana; Kafarov, Viatcheslav [Universidad Industrial de Santander, Escuela de Ingenieria Quimica, Bucaramanga 678 (Colombia)

    2009-07-01

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction. (author)

  16. Past, Present, and Future Production of Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers

  17. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.

    Science.gov (United States)

    Ren, Xueyong; Meng, Jiajia; Moore, Andrew M; Chang, Jianmin; Gou, Jinsheng; Park, Sunkyu

    2014-01-01

    The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  19. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    Science.gov (United States)

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cost estimation of hydrogen and DME produced by nuclear heat utilization system II

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2004-09-01

    Utilization and production of hydrogen has been studied in order to spread utilization of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in the world. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-ether (DME). has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced from natural gas by steam reforming. Therefore, the system would become one of the candidates of future system of nuclear heat utilization. Following the study in 2002, we performed economic evaluation of the hydrogen and DME production by nuclear heat utilization plant where heat generated by HTGR is completely consumed for the production. The results show that hydrogen price produced by nuclear was about 17% cheaper than the commercial price by increase in recovery rate of high purity hydrogen with increased in PSA process. Price of DME in indirect method produced by nuclear heat was also about 17% cheaper than the commercial price by producing high purity hydrogen in the DME producing process. As for the DME, since price of DME produced near oil land in petroleum exporting countries is cheaper than production in Japan, production of DME by nuclear heat in Japan has disadvantage economically in this time. Trial study to estimate DME price produced by direct method was performed. From the present estimation, utilization of nuclear heat for the production of hydrogen would be more effective with coupled consideration of reduction effect of CO 2 release. (author)

  1. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  2. Refining Bio-Gas Produced from Biomass: An Alternative to Cooking Gas

    Directory of Open Access Journals (Sweden)

    A. S. ABDULKAREEM

    2005-06-01

    Full Text Available Our life is completely dependent on a reliable and adequate supply of energy. In other to reduce dependence on fossil fuels, the use of animal dung in producing a renewable alternative source of energy has been proved using cow dung. This work is aimed at produced and refined bio - gas from animal dung by reduces the H2S and CO2 content of bio - gas in other to improved the quality of the bio - gas to be used as an alternative to the petroleum based produces in use now. The sample of gas produced was passed through the gas chromatography to determine the percentage composition (mol % dry basis of the bio - gas contents. The results of the bio - gas before refinement were 54.09% mole dry CH4, 40.02mole % dry CO2 and 0.80mole % dry H2S which conformed with the literature values of 50 - 65 % mole dry CH4, 35 - 50 % mole dry CO2 and 0.1 - 1.0 % mole dry H2S. After refining, the composition of bio - gas on dry basis were 54.09% mole dry CH4, 4.01% mole dry CO2, 0.02% mole dry O2, 0.05% mole dry NH3, 0.01% mole dry H2S, 0.5% mole dry H2 and 2.54% mole dry N2. Analysis of the remnant indicated that it could be used for plant nutrient.

  3. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2} g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2}/g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge

  4. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/ g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2}/ g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2} / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/ g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from

  5. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 /g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 /g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 /g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  6. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 / g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 / g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 / g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  7. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    A. Sattar; C. Arslan; C. Ji; S. Sattar; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen productio...

  8. Bio-methane & Bio-hydrogen. Status and perspectives of biological methane and hydrogen production

    NARCIS (Netherlands)

    Wijffels, R.H.; Janssen, M.G.J.

    2003-01-01

    Eerst wordt het kader geschetst voor de potentiële rol van bio-methaan en bio-waterstof in de energiehuishouding en de invloeden daarop van de ontwikkeling van eindgebruikstechnologie en infrastructuur, en het energiebeleid. Daarna wordt uitvoerig ingegaan op de technieken voor bio-methaan en

  9. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste...

  10. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  11. Bio-Engineering High Performance Microbial Strains for MEOR

    Energy Technology Data Exchange (ETDEWEB)

    Xiangdong Fang; Qinghong Wang; Patrick Shuler

    2007-12-30

    substrates gave different performance. Those rhamnolipids with plant oil as substrate showed as low an IFT as 0.05mN/m in the buffer solution with pH5.0 and 2% NaCl. Core flooding tests showed that rhamnolipids produced by our engineered bacteria are effective agents for EOR. At 250ppm rhamnolipid concentration from P. aeruginosa PEER02, 42% of the remaining oil after waterflood was recovered. These results were therefore significant towards considering the exploration of the studied rhamnolipids as EOR agents.

  12. Project in fiscal 1988 for research and development of basic technologies in next generation industries. Achievement report on research and development of bio-reactors; 1988 nendo bio reactor no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    Research and development has been performed on bio-reactors to substitute the oxidizing reaction process, and on reduction reacting bio-reactors to fix the coenzyme regeneration system. This paper summarizes the achievements in fiscal 1988. In the research of a bio-reactor using bacteria that produce muconic acid from benzoic acid, stable productivity of 60 g/L/day or more was obtained. In the research of a multi-phase based bio-reactor composed of air, oil, water and biomass, discussions were given on the phase inverting film permeation type reactor. In the research of a bio-reactor to produce acetic acid from carbon dioxide and hydrogen, productivity of 149 g/L/day as maximum was achieved by enhancing the production speed by means of pressurization. In the research of a bio-reactor to produce hydroquinone from phenol, up-keeping the duration for 100 hours or longer has become possible at the hydroquinone production speed of 3 g/L/h. In the research of a reduction-based bio-reactor incorporating the regeneration system of coenzyme NAD(P)H, discussions were given on optimizing the continuous enzymatic reaction in the production of sorbitol. (NEDO)

  13. Detection of the clostridial hydrogenase gene activity as a bio-index in a molasses wastewater bio-hydrogen producing system by real time PCR and FISH/ flow cytometry

    International Nuclear Information System (INIS)

    Jui-Jen Chang; Ping-Chi Hsu; Chi-Wa Choi; Sian-Jhong Yu; Cheng-Yu Ho; Wei-En Chen; Jiunn-Jyi Lay; Chieh-Chen Huang; Fu-Shyan Wen

    2006-01-01

    Hydrogenase is a key enzyme that is used by obligate, anaerobic clostridial to produce hydrogen. In this study a fermentative system with molasses wastewater as nutrient was used to produce hydrogen. For establishing the relationship between the vicissitude of clostridial hydrogenase gene activity and the hydrogen production of this system during the culturing period, total cellular RNA isolated at different growing stages were subjected to real time PCR using primer pair, which were designed according to the conserved sequence of clostridial hydrogenase genes. Cell samples at corresponding growing stages were subjected to in situ reverse transcriptase polymerase chain reaction (in situ RT-PCR) using the same primers and then to fluorescence in situ hybridization (FISH) using clostridial hydrogenase gene-specific DNA probe. Those clostridial cells expressed hydrogenase gene activity could be detected by fluorescence microscopy. This is the first time hydrogen-producing activity in a mixed culture could be successfully studied by means of FISH of hydrogenase mRNA. Besides, 16S rDNA was amplified from total cellular DNA analyzed by denaturing gradient gel electrophoresis (DGGE) to reveal the bacterial diversity in the fermentative system; FISH and flow cytometry aiming at 16S rRNA were also carried out to calculate the population of clostridia and total eubacteria in the system. (authors)

  14. Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: reduction of p-cresol and furfural over bimetallic Ni-Cu catalysts using isopropanol

    Science.gov (United States)

    Transfer hydrogenation and hydrodeoxygenation of model bio-oil compounds (p-cresol and furfural) and bio-oils derived from biomass via traditional pyrolysis and tail-gas reactive pyrolysis (TGRP) were conducted. Mild batch reaction conditions were employed, using isopropanol as a hydrogen donor over...

  15. Optimization of palm kernel shell torrefaction to produce energy densified bio-coal

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Adi, Ag Mohammad; Suhada, Nurul; Malek, Nur Hanina; Saringat, Muhammad Ilmam; Azdarpour, Amin

    2014-01-01

    Highlights: • Around 70% of bio-coal yield was achieved from PKS torrefaction at 300 °C. • The higher heating value of optimized bio-coal was 24.5 MJ/kg. • Around 94% of thermal yield was achieved with 70% mass yield. • The grindability of optimized bio-coal was comparable with coal. - Abstract: Biomass torrefaction is a thermal process, which is similar to a mild form of pyrolysis at temperatures ranging from 200 to 320 °C to produce energy densified solid fuel. The torrefied biomass is almost equivalent to coal and is termed as bio-coal. During torrefaction, highly volatile fraction of biomass including moisture and hemicellulose are released as vapors, providing energy enriched solid fuel, which is hydrophobic and brittle. In this study, bio-coal is produced from palm kernel shell (PKS) in a batch feeding reactor. The operating variables such as temperature, residence time and swiping gas flow rate are optimized. Around 73% yield of bio-coal with calorific value of 24.5 MJ/kg was achieved at optimum temperature 300 °C with residence time of 20 min and nitrogen gas flow rate of 300 mL/min. The thermal yield was calculated to be maximum of 94% for the bio-coal produced at 300 °C. The temperature and residence time of torrefaction are found to be the most sensitive parameters in terms of product yield, calorific value and thermal yield of bio-coal

  16. Performance requirements of an inertial-fusion-energy source for hydrogen production

    International Nuclear Information System (INIS)

    Hovingh, J.

    1983-01-01

    Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances

  17. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and

  18. From marine bio-corrosion to new bio-processes

    International Nuclear Information System (INIS)

    Bergel, A.; Dasilva, S.; Basseguy, R.; Feron, D.; Mollica, A.

    2004-01-01

    Full text of publication follows: From the middle of the last century it has been observed that the development of marine bio-films on the surface of stainless steels and different metallic materials induces the ennoblement of their free corrosion potential. A main step in deciphering the mechanisms of aerobic marine bio-corrosion has been achieved around 1976 with the demonstration that the potential ennoblement was due to the modification of the cathodic process. Since this date, the catalysis of oxygen reduction by marine bio-films has been the topic of numerous controversies, but it is now commonly agreed as a basic phenomena in aerobic corrosion. Several hypotheses have been proposed to explain the fine mechanisms of the bio-film-catalysed reduction of oxygen: intermediate formation of hydrogen peroxide, modification of the oxide layer on the stainless steel surface, involvement of manganese species and manganese oxidising bacteria, catalysis by proteins produced by the micro-organisms... Recent results may confirm the possible involvement of hemic enzymes or proteins. Whatever the mechanisms, very promising results have been obtained with the possible application of bio-film-catalysed oxygen reduction to conceive innovative biofuel cells with stainless steel electrodes. Actually, the catalysis of oxygen reduction is a key step that still drastically hinders the development of economically efficient hydrogen/oxygen fuel cells. The current technology requires high amounts of platinum or platinum-based materials to catalyze oxygen reduction on the cathode of these cells. The prohibitive cost of platinum is a main obstacle to the commercialization of low-cost fuel cells. Unpublished results recently showed that adapting the enzyme-catalysed reaction that was assumed for bio-corrosion on the cathode of hydrogen/oxygen fuel cells may lead to a significant decrease in the charge of platinum. Moreover, it was demonstrated on a laboratory-scale fuel cell pilot that

  19. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  20. Comparative costs of hydrogen produced from photovoltaic electrolysis and from photoelectrochemical processes

    International Nuclear Information System (INIS)

    Block, D.L.

    1998-01-01

    The need for hydrogen produced from renewable energy sources is the key element to the world's large-scale usage of hydrogen and to the hydrogen economy envisioned by the World Hydrogen Energy Association. Renewables-produced hydrogen is also the most technically difficult problem to be solved. Hydrogen will never achieve large-scale usage until it can be competitively produced from renewable energy. One of the important questions that has to be addressed is: What are the economics of present and expected future technologies that will be used to produce hydrogen from renewables? The objective of this study is to give an answer to this question by determining the cost of hydrogen (in U.S.$/MBtu) from competing renewable production technologies. It should be noted that the costs and efficiencies assumed in this paper are assumptions of the author, and that the values are expected to be achieved after additional research on photoelectrochemical process technologies. The cost analysis performed is for three types of hydrogen (H 2 ) produced from five different types of renewable processes: photovoltaic (PV) electrolysis, three photoelectrochemical (PEC) processes and higher temperature electrolysis (HTE). The costs and efficiencies for PV, PEC and HTE processes are established for present day, and for expected costs and efficiencies 10 years into the future. A second objective of this analysis is to set base case costs of PV electrolysis. For any other renewable process, the costs for PV electrolysis, which is existing technology, sets the numbers which the other processes must better. (author)

  1. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    Science.gov (United States)

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hydrogen producing method and device therefor

    International Nuclear Information System (INIS)

    Iwamura, Yasuhiro; Ito, Takehiko; Goto, Nobuo; Toyota, Ichiro; Tonegawa, Hiroshi.

    1997-01-01

    The present invention concerns a process for producing hydrogen from water by utilizing a γ · X ray radiation source such as spent nuclear fuels. Hydrogen is formed from water by combining a scintillator which uses a γ · X ray radiation source as an energy source to emit UV light and an optical catalyst or an optical catalyst electrode which undergoes UV light to decompose water into hydrogen and oxygen. The present invention provides a method of effectively using spent fuel assemblies which have not been used at present and capable of converting them into hydrogen as storable chemical energy. (N.H.)

  3. [Isolation of an excellent bio-flocculant-producing strain and its application in the treatment of cold-rolling waste oily water].

    Science.gov (United States)

    Lei, Guo-Yuan; Ding, Cui-Ping; Yang, Jia-Xuan

    2011-09-01

    An excellent strain (designated as T-3) which produces bio-flocculants was isolated from soil samples, and identified as Klebsiella sp. species based on the analysis of morphology, physiology and biochemistry and 16S rDNA sequences measurement. The effects of culture conditions such as pH values, temperature, carbon sources and nitrogen sources on bio-flocculants production by T-3 strain were studied. The experiment results show that T-3 strain has better adaptability to carbon sources and nitrogen sources, and higher capacity of bio-flocculants was obtained when the initial pH value of culture and temperature were 9 and 25 degrees C respectively. Based on the colorimetric reactions of proteins and polysaccharide substance, ultraviolet scanning analysis and Fourier Transform Infrared Spectroscopy analysis, it is found that the bio-flocculants produced by T-3 strain contains -OH and -COO(-) groups and belongs to anionic type flocculant. Moreover, the main component is polysaccharides. The treatment of oily cold-rolling wastewater by the bio-flocculant was investigated and the better result was obtained. When the dosages of CaCl2, bio-flocculants and poly aluminium chloride were 4 g x L(-1), 10% (volume fraction) and 1 g x L(-1) respectively, and the pH value was 7.0, the oil concentration, COD and turbidity were decreased to 10 mg x L(-1), 218.4 mg x L(-1) and 1.36 from 4 819 mg x L(-1), 28 456.8 mg x L(-1) and 3 950 with the removal efficiencies of 99.79%, 92.32% and 99.97% respectively. The interaction between flocculant and oily droplets is achieved by the interaction of Van der Waals force, hydrogen bond and the bridged coordination of Ca2+, in which the bridged coordination of Ca2+ is the dominant.

  4. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  5. Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling

    Directory of Open Access Journals (Sweden)

    Lifita N. Tande

    2016-01-01

    Full Text Available This work focuses on thermodynamic analysis of the autothermal reforming of palm empty fruit bunch (PEFB bio-oil for the production of hydrogen and syngas. PEFB bio-oil composition was simulated using bio-oil surrogates generated from a mixture of acetic acid, phenol, levoglucosan, palmitic acid and furfural. A sensitivity analysis revealed that the hydrogen and syngas yields were not sensitive to actual bio-oil composition, but were determined by a good match of molar elemental composition between real bio-oil and surrogate mixture. The maximum hydrogen yield obtained under constant reaction enthalpy and pressure was about 12 wt% at S/C = 1 and increased to about 18 wt% at S/C = 4; both yields occurring at equivalence ratio Φ of 0.31. The possibility of generating syngas with varying H2 and CO content using autothermal reforming was analysed and application of this process to fuel cells and Fischer-Tropsch synthesis is discussed. Using a novel simple modelling methodology, reaction mechanisms were proposed which were able to account for equilibrium product distribution. It was evident that different combinations of reactions could be used to obtain the same equilibrium product concentrations. One proposed reaction mechanism, referred to as the ‘partial oxidation based mechanism’ involved the partial oxidation reaction of the bio-oil to produce hydrogen, with the extent of steam reforming and water gas shift reactions varying depending on the amount of oxygen used. Another proposed mechanism, referred to as the ‘complete oxidation based mechanism’ was represented by thermal decomposition of about 30% of bio-oil and hydrogen production obtained by decomposition, steam reforming, water gas shift and carbon gasification reactions. The importance of these mechanisms in assisting in the eventual choice of catalyst to be used in a real ATR of PEFB bio-oil process was discussed.

  6. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    Science.gov (United States)

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  7. Hydroprocessing Microalgae Derived Hydrothermal Liquefaction Bio ...

    African Journals Online (AJOL)

    The review illustrates that the same fuels (of almost the same properties) can be produced from the bio-crude as from petroleum crude; the process conditions depend on the required product distribution (maximum diesel or kerosene/jet range fuels); and the process is characterized by much higher hydrogen consumption ...

  8. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  9. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  10. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Science.gov (United States)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  11. Toward a systematic exploration of nano-bio interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue; Liu, Fang; Liu, Yin; Li, Cong; Wang, Shenqing [School of Chemistry and Chemical Engineering, Shandong University, Jinan (China); Zhou, Hongyu [School of Environmental Science and Technology, Shandong University, Jinan (China); Wang, Wenyi; Zhu, Hao [Department of Chemistry, Rutgers University, Camden, NJ (United States); The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Winkler, David A., E-mail: d.winkler@latrobe.edu.au [CSIRO Manufacturing, Bag 10, Clayton South MDC 3169 (Australia); Monash Institute of Pharmaceutical Sciences, 392 Royal Parade, Parkville 3052 (Australia); Latrobe Institute for Molecular Science, Bundoora 3083 (Australia); School of Chemical and Physical Sciences, Flinders University, Bedford Park 5042 (Australia); Yan, Bing, E-mail: drbingyan@yahoo.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan (China); School of Environmental Science and Technology, Shandong University, Jinan (China)

    2017-05-15

    Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven and efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability. - Highlights: • Nanomaterials studies make non-systematic alterations to nanoparticle properties. • Vast nanomaterials property spaces require systematic studies of nano-bio interactions. • Experimental design and modelling are efficient ways of exploring materials spaces. • We advocate systematic modification and computational analysis to probe nano-bio interactions.

  12. Toward a systematic exploration of nano-bio interactions

    International Nuclear Information System (INIS)

    Bai, Xue; Liu, Fang; Liu, Yin; Li, Cong; Wang, Shenqing; Zhou, Hongyu; Wang, Wenyi; Zhu, Hao; Winkler, David A.; Yan, Bing

    2017-01-01

    Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven and efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability. - Highlights: • Nanomaterials studies make non-systematic alterations to nanoparticle properties. • Vast nanomaterials property spaces require systematic studies of nano-bio interactions. • Experimental design and modelling are efficient ways of exploring materials spaces. • We advocate systematic modification and computational analysis to probe nano-bio interactions.

  13. Preliminary detection of native lipase producing microorganisms for bio diesel production

    International Nuclear Information System (INIS)

    Ciudad, G.; Jorquera, M.; Briones, R.; Azocar, L.; Leal, J.; Navia, R.

    2009-01-01

    Lipase producing microorganisms (LPM) may catalyze the hydrolysis or transesterification of triacylglycerols to alkyl esters of fatty acids (bio diesel). The main objective of this work was to detect LPM in oil and grease contaminated environments for future applications in bio diesel production from rapeseed oil. Samples from contaminated soil (with rapeseed oil) from an industrial facility and contaminated soil (with salmon grease) near to a fish wastewater treatment plant were collected. (Author)

  14. Preliminary detection of native lipase producing microorganisms for bio diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Ciudad, G.; Jorquera, M.; Briones, R.; Azocar, L.; Leal, J.; Navia, R.

    2009-07-01

    Lipase producing microorganisms (LPM) may catalyze the hydrolysis or transesterification of triacylglycerols to alkyl esters of fatty acids (bio diesel). The main objective of this work was to detect LPM in oil and grease contaminated environments for future applications in bio diesel production from rapeseed oil. Samples from contaminated soil (with rapeseed oil) from an industrial facility and contaminated soil (with salmon grease) near to a fish wastewater treatment plant were collected. (Author)

  15. Development of a low-cost oxy-hydrogen bio-fuel cell for generation of electricity using Nostoc as a source of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sangeeta Dawar; Behera, B.K. [Maharshi Dayanand University, Rohtak (India). Dept. of Biosciences; Prasanna Mohanty [Jawaharlal Nehru University, New Delhi (India). School of Life Sciences

    1998-10-10

    An oxy-hydrogen bio-fuel cell, based on a carbon-carbon electrode has been fabricated. The electrode pellets were prepared by taking carbon powder mixed with polyvinylalcohol as a binder. The anode was charged with Co-Al spinel mixed oxide at 700{sup o}C, 30% KOH acted as an electrolyte. For the cyanobacterial bioreactor, a potential heterocystous blue green alga of Nostoc spp. has been used for hydrogen production and electrical energy generation. Various nutrient enrichment techniques are employed to increase the hydrogen generation efficiency of the algae. One litre free cell algal reactor attached to the fuel cell, at the anode end for hydrogen gas input, generated about 300 mV of voltage and 100 mA of current. Our present findings on the development of a low cost fuel cell with high efficiency of current output may be helpful in commercializing this technology. (author)

  16. Comparison of bio-hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures.

    Science.gov (United States)

    Li, Yameng; Zhang, Zhiping; Zhu, Shengnan; Zhang, Huan; Zhang, Yang; Zhang, Tian; Zhang, Quanguo

    2018-01-01

    Taken common agricultural residues as substrate, dark fermentation bio-hydrogen yield capacity from asynchronous saccharification and fermentation (ASF) and simultaneous saccharification and fermentation (SSF) was investigated. The highest hydrogen yield of 472.75mL was achieved with corncob using ASF. Hydrogen yield from corn straw, rice straw, corncob and sorghum stalk by SSF were 20.54%,10.31%,13.99% and 5.92% higher than ASF, respectively. The experimental data fitted well to the modified Gompertz model. SSF offered a distinct advantage over ASF with respect to reducing overall process time (60h of SSF, 108h of ASF). Meanwhile, SSF performed better than SSF with respect to shortening the lag-stage. The major metabolites of anaerobic fermentation hydrogen production by ASF and SSF were butyric acid and acetic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Two-phase anaerobic digestion of mixed waste streams to separate generation of bio-hydrogen and bio-methane

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Z.; Horam, N.J. [Leeds Univ. (United Kingdom). School of Civil Engineering

    2010-07-01

    The purpose of this study was to investigate the net energy potential of single stage mesophilic reactor and two phase mesophilic reactor (hydrogeniser followed by methaniser) using the mix of process industrial food waste (IFW) and sewage sludge (SS). Two-phase reactor efficiency was analysed based on individual optimum influent/environmental (C:N and pH) and reactor/engineering (HRT and OLR) conditions achieved using the batch and continuous reactor study for the hydrogen and methane. Optimum C:N 20 and pH 5.5{+-}0.5 was observed using the Bio-H{sub 2} potential (BHP) and C:N 15 and pH 6.5{+-}0.3 for the biochemical methane potential (BMP) test. The maximum hydrogen content of 47% (v/v) was achieved using OLR 6 g VS/L/d and HRT of 5 days. Increase in hydrogen yield was noticed with consistent decrease in OLR. The volatile solids (VS) removal and hydrogen yield was observed in range 41.3 to 47% and 112.3 to 146.7 mL/ gVS{sub removed}. The specific hydrogen production rate improved at low OLR, 0.2 to 0.4 L/(L.d) using OLR 7.1 and 6 g VS/L/d respectively was well corroborated comparable to previous reported results at OLR 6 gVS/L/d using the enriched carbohydrate waste stream in particular to food wastes. A significant increase in VFA concentrations were noticed shifting OLR higher from 6 g VS/L/d thereby unbalancing the reactor pH and the biogas yield respectively. In similar, maximum methane content of 70% (v/v) was achieved using OLR of 3.3 gVS/L/d and HRT of 10 days. Slight decrease in methane content was noticed thereby increasing HRT to 12 and 15 days respectively. The volatile solids (VS) removal and specific methane production rate was observed in range 57.6 to 68.7 and 0.22 to 1.19 L/(L.d). The specific methane production potential improved thereby reducing the HRT and optimum yield was recorded as 476.6 mL/gVS{sub removed} using OLR 3.3 gVS/L/d. The energy potential of optimum condition in single stage hydorgeniser is 2.27 MW/tonne VS{sub fed}. Using the

  18. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    Science.gov (United States)

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of a bio-chip dedicated to planetary exploration. First step: resistance studies to space conditions

    International Nuclear Information System (INIS)

    Le Postollec, A.; Dobrijevic, M.; Incerti, S.; Moretto, Ph.; Seznec, H.; Desorgher, L.; Santin, G.; Nieminen, P.; Dartnell, L.; Vandenabeele-Trambouze, O.; Coussot, G.

    2008-02-01

    For upcoming exploration missions, space agencies advocate the development of a new promising technique to search for traces of extent or extinct life: the bio-chip use. A bio-chip is a miniaturized device composed of biological sensitive systems fixed on a solid substrate. As space is a hazardous environment, a main concern relies on the resistance of a bio-chip to a panel of harsh constraints among which the resistance to radiations. Within the framework of the BiOMAS (Bio-chip for Organic Matter Analysis in Space) project, our team is currently developing a bio-chip especially designed for planetary exploration. We present here the methodology adopted and the beginning experiments to select the best constituents, to determine resistance levels and to define well-adapted protection for the bio-chip

  20. Nuclear-produced hydrogen by a thermochemical Cu-Cl plant for passenger hydrogen trains

    International Nuclear Information System (INIS)

    Marin, G.; Naterer, G.; Gabriel, K.

    2010-01-01

    This paper compares the technical and economic aspects of electrification of a passenger-train operation in Ontario Canada, versus operation with hydrogen trains using nuclear-produced hydrogen. A local GO Transit diesel operation in Ontario has considered electrification as an alternative to reduce greenhouse gas emissions of passenger trains in the Toronto area. Hydrogen production from nuclear energy via a thermo-chemical Copper-Chlorine (Cu-Cl) cycle for train operation is shown to have lower emissions than direct electrification. It significantly reduces the greenhouse gas emissions compared to diesel operation. A bench-mark reference case used for the nuclear thermo-chemical Cu-Cl cycle is the Sulfur-Iodine (S-I) cycle, under investigation in the USA, Japan, and France, among others. The comparative study in this paper considers a base case of diesel operated passenger trains, within the context of a benefits case analysis for train electrification, for GO Transit operations in Toronto, and the impact of each cost component is discussed. The cost analysis includes projected prices of fuel cell trains, with reference to studies performed by train operators. (author)

  1. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  2. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    Zhang, Yanan; Brown, Tristan R.; Hu, Guiping; Brown, Robert C.

    2013-01-01

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus ® for a 2000 t d −1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d −1 for the bio-oil gasification pathway and 160 t d −1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  3. Cost estimation of hydrogen and DME produced by nuclear heat utilization system. Joint research

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2003-09-01

    Research of hydrogen energy has been performed in order to spread use of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in all of countries. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-either (DME) has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced by steam reforming hydrogen generation system by the use of nuclear heat. Therefore, the system would be one of the candidates of future system of nuclear heat utilization. In the present study, we focused on the production of hydrogen and DME. Economic evaluation was estimated for hydrogen and DME production in commercial and nuclear heat utilization plant. At first, heat and mass balance of each process in commercial plant of hydrogen production was estimated and commercial prices of each process were derived. Then, price was estimated when nuclear heat was used instead of required heat of commercial plant. Results showed that the production prices produced by nuclear heat were cheaper by 10% for hydrogen and 3% for DME. With the consideration of reduction effect of CO 2 release, utilization of nuclear heat would be more effective. (author)

  4. Catalytic Steam Reforming of Bio-Oil to Hydrogen Rich Gas

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus

    heating value and high content of oxygen, which makes it unsuited for direct utilization in engines. One prospective technology for upgrading of bio-oil is steam reforming (SR), which can be used to produce H2 for upgrading of bio-oil through hydrodeoxygenation or synthesis gas for processes like......-oil. There are two main pathways to minimize carbon deposition in steam reforming; either through optimization of catalyst formulation or through changes to the process parameters, like changes in temperature, steam to carbon ratio (S/C), or adding O2 or H2 to the feed. In this thesis both pathways have been...

  5. Hydrogen Production from Gasification of Palm Kernel Shell in the Presence of Fe/ CeO_2 Catalysts

    International Nuclear Information System (INIS)

    Anita Ramli; Mas Fatiha Mohamad; Suzana Yusup; Taufiq, Y.Y.H.

    2016-01-01

    Bio hydrogen is a renewable source of clean fuel and energy which can be derived from biomass. One of the suitable candidate as a source of biomass is palm kernel shell (PKS). Our initial work shows that bio hydrogen may be produced from PKS in the presence of zeolite supported catalysts. The potential of using cerium oxide (CeO_2) supported catalysts for the production of bio hydrogen from PKS is explored in this work using 2.5 - 10 % Fe loading. The catalysts were prepared by incipient wetness impregnation method and calcined at 500 degree Celsius for 16 h. The physicochemical properties of these catalysts were characterized using BET and XRD. The catalysts were tested in dry and steam gasification of PKS at 700 degree Celsius using PKS feeding rate of 2 g h"-"1 under N_2 atmosphere with biomass to catalyst ratio of 3:1 (wt/ wt). Steam to biomass ratio of 3.5:1 (wt/ wt) was used in steam gasification reaction. The gaseous products were analyzed using an on-line gas chromatography equipped with thermal conductivity detectors (TCD) and fitted with Molsieve 5A and Hayesep Q columns. Result shows that 2.5 % Fe/ CeO_2 gave the highest hydrogen production in both the dry and steam gasification of PKS. (author)

  6. The molecular hydrogen explorer H2EX

    NARCIS (Netherlands)

    Boulanger, F.; Maillard, J. P.; Appleton, P.; Falgarone, E.; Lagache, G.; Schulz, B.; Wakker, B. P.; Bressan, A.; Cernicharo, J.; Charmandaris, V.; Drissen, L.; Helou, G.; Henning, T.; Lim, T. L.; Valentjin, E. A.; Abergel, A.; Bourlot, J. Le; Bouzit, M.; Cabrit, S.; Combes, F.; Deharveng, J. M.; Desmet, P.; Dole, H.; Dumesnil, C.; Dutrey, A.; Fourmond, J. J.; Gavila, E.; Grangé, R.; Gry, C.; Guillard, P.; Guilloteau, S.; Habart, E.; Huet, B.; Joblin, C.; Langer, M.; Longval, Y.; Madden, S. C.; Martin, C.; Miville-Deschênes, M. A.; Pineau Des Forêts, G.; Pointecouteau, E.; Roussel, H.; Tresse, L.; Verstraete, L.; Viallefond, F.; Bertoldi, F.; Jorgensen, J.; Bouwman, J.; Carmona, A.; Krause, O.; Baruffolo, A.; Bonoli, C.; Bortoletto, F.; Danese, L.; Granato, G. L.; Pernechele, C.; Rampazzo, R.; Silva, L.; Zotti, G. De; Pardo, J.; Spaans, M.; van der Tak, F. F. S.; Wild, W.; Ferlet, M. J.; Ramsay Howat, S. K.; Smith, M. D.; Swinyard, B.; Wright, G. S.; Joncas, G.; Martin, P. G.; Davis, C. J.; Draine, B. T.; Goldsmith, P. F.; Mainzer, A. K.; Ogle, P.; Rinehart, S. A.; Stacey, G. J.; Tielens, A. G. G. M.

    The Molecular Hydrogen Explorer, H2 EX, was proposed in response to the ESA 2015 - 2025 Cosmic Vision Call as a medium class space mission with NASA and CSA participations. The mission, conceived to understand the formation of galaxies, stars and planets from molecular hydrogen, is designed to

  7. Attrition-free pyrolysis to produce bio-oil and char.

    Science.gov (United States)

    Mauviel, Guillain; Guillain, Mauviel; Kies, Fairouz; Fairouz, Kies; René, Mar Sans; Mar, Sans Rene; Ferrer, Monique; Monique, Ferrer; Lédé, Jacques; Jacques, Lédé

    2009-12-01

    Experiments are performed on a laboratory scale setup where beech wood chips are heated by gas convection and walls radiation. This study shows that it is possible to obtain high bio-oil and char yields with relatively low external heat transfer coefficients. The main advantage of this convection/radiation heat transfer mode compared to solid-solid collisions, applied in fluidized bed or twin screw reactors, is the reduction of solid attrition (char and sand). Thus tricky gas-solid separation through hot cyclones and/or hot filters could be avoided or reduced. It should be possible to recover directly bio-oil with less char particles and char free of sand dust. These qualities would allow easier use of these bio-products in different applications.

  8. Bioreactor design studies for a hydrogen-producing bacterium.

    Science.gov (United States)

    Wolfrum, Edward J; Watt, Andrew S

    2002-01-01

    Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.

  9. High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge

    International Nuclear Information System (INIS)

    Wong, Y.M.; Juan, J.C.; Ting, Adeline; Wu, T.Y.

    2014-01-01

    Bio-hydrogen is a promising sustainable energy to replace fossil fuels. This study investigated bio-H 2 production from the inoculum of heat-pretreated landfill leachate sludge using glucose as model substrate. The seed sludge pretreated at 65 °C showed the highest amount of H 2 at the optimum condition of pH 6 and 37 °C. The maximum H 2 yield estimated by the modified Gompertz model was 6.43 mol H 2 /mol glucose. The high efficient of H 2 production is thermodynamically feasible with the Gibbs free energy of −34 kJ/mol. This study reveals that pretreated landfill leachate sludge has considerable potential for H 2 production. - Highlights: • Heat retreated landfill leachate sludge revealed high efficient H 2 production. • High efficient H 2 yield, 6.4 mol H 2 /mol glucose. • The synergisms between H 2 -producing bacteria may responsible for the high H 2 yield. • High H 2 yield is thermodynamically feasible with Gibbs free energy of −34 kJ/mol

  10. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  11. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  12. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter.

    Science.gov (United States)

    Jiang, Lijing; Xu, Hongxiu; Zeng, Xiang; Wu, Xiaobing; Long, Minnan; Shao, Zongze

    2015-11-01

    Hydrogen is an important energy source for deep-sea hydrothermal vent ecosystems. However, little is known about microbes and their role in hydrogen turnover in the environment. In this study, the diversity and physiological characteristics of fermentative hydrogen-producing microbes from deep-sea hydrothermal vent fields were described for the first time. Seven enrichments were obtained from hydrothermal vent sulfides collected from the Southwest Indian Ocean, East Pacific and South Atlantic. 16S rRNA gene analysis revealed that members of the Caloranaerobacter genus were the dominant component in these enrichments. Subsequently, three thermophilic hydrogen producers, strains H363, H53214 and DY22619, were isolated. They were phylogenetically related to species of the genus Caloranaerobacter. The H2 yields of strains H363, H53214, DY22619 and MV107, which was the type species of genus Caloranaerobacter, were 0.11, 1.21, 3.13 and 2.85 mol H2/mol glucose, respectively. Determination of the main soluble metabolites revealed that strains H363, H53214 and MV107 performed heterolactic fermentations, while strain DY22619 performed butyric acid fermentation, indicating distinct fermentation patterns among members of the genus. Finally, a diversity of forms of [FeFe]-hydrogenase with different modular structures was revealed based on draft genomic data of Caloranaerobacter strains. This highlights the complexity of hydrogen metabolism in Caloranaerobacter, reflecting adaptations to environmental conditions in hydrothermal vent systems. Collectively, results suggested that Caloranaerobacter species might be ubiquitous and play a role in biological hydrogen generation in deep-sea hydrothermal vent fields. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Performance Evaluation of Moving Bed Bio Film Reactor in Saline Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2013-06-01

    Full Text Available Background and purpose:Moving Bed Biofilm Reactor is an aerobic attached growth with better biofilm thickness control, lack of plugging and lower head loss. Consequently, this system is greatly used by different wastewater treatment plants. High TDS wastewater produced petrochemical, leather tanning, sea food processing, cannery, pickling and dairy industries. The aim of this study was to evaluate the performance of MBBR in saline wastewater treatment. Materials and methods: In this study, 50 percent of a cylindrical reactor with 9.5 liter occupied media with 650 m2.m-3. In the first step, hydraulic regime was evaluated and startup reactor was done by sanitary sludge. Bio film was generated with glucose as the sole carbon source in synthetic wastewater. MBBR performance evaluation was performed in 6:30 and 8:45 with saline wastewater after bio film produced on media. Results: After 83 days of passing MBBR operation with saline wastewater containing 3000-12000 mg.L-1 TDS, organic loading rate of 2.2-3.5 kg/m3.d COD removal efficiency reached 80-92%. Conclusion: Moving bed biofilm reactor is effective in organic load elimination from saline wastewater.

  14. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    Science.gov (United States)

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  15. Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yohei; Harada, Hideki [Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Lee, Dong-Yeol [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Chi, Yong-Zhi [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Li, Yu-You [Department of Environmental and Municipal Engineering, Tianjin Institute of Urban Construction, Jinjinggonglu 26, Tianjin 300384 (China); Department of Environmental Science, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980-8579 (Japan); Yu, Han-Qing [School of Chemistry, University of Science and Technology of China, Hefei 230026 (China)

    2009-06-15

    In this study, the effects of the hydraulic retention time (HRT), pH and substrate concentration on the thermophilic hydrogen production of starch with an upflow anaerobic sludge bed (UASB) reactor were investigated. Starch was used as a sole substrate. Continuous hydrogen production was stably attained with a maximum H{sub 2} yield of 1.7 mol H{sub 2}/mol glucose. A H{sub 2}-producing thermophilic granule was successfully formed with diameter in the range of 0.5-4.0 mm with thermally pretreated methanogenic granules as the nuclei. The metabolic pathway of the granules was drastically changed at each operational parameter. The production of formic or lactic acids is an indication of the deterioration of hydrogen production for H{sub 2}-producing thermophilic granular sludge. (author)

  16. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  17. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  18. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  20. Bio-assisted synthesis and characterization of nanostructured bismuth (III) sulphide using Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Kamaraj, Sathish Kumar; Venkatachalam, Ganesh; Arumugam, Palaniappan; Berchmans, Sheela

    2014-01-01

    Nanostructured bismuth (III) sulphide is synthesized at room temperature using a hydrogen sulphide producing microorganism namely Clostridium acetobutylicum. On contrary to chemical routes involving both the high and room temperature methods, the present experimental procedure involves a bio-assisted approach. This method is free from the usage of toxic and hazardous chemicals making it an environment friendly route. The synthesized bismuth sulphide is characterized using transmission electron microscope (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). From our experiments we find that bismuth sulphide produced using this bio-assisted approach exhibits a hexagonal shaped plate-like structures and is stabilized by the extracellular proteins present in the culture medium. - Graphical abstract: A green chemistry approach towards the synthesis of bismuth (III) sulphide nanostructures at room temperature using a hydrogen sulphide producing microorganism namely, Clostridium acetobutylicum is demonstrated. - Highlights: • Environmentally benign (greener) route towards synthesis of Bi 2 S 3 nanostructures. • Bio-assisted synthesis of Bi 2 S 3 at room temperature using Clostridium acetobutylicum. • Extracellular proteins in H 2 S producing microorganism as stabilizer for Bi 2 S 3 NPs. • Hexagonal platelets of Bi 2 S 3 possessing an orthorhombic crystalline structure

  1. Feasibility and comparative studies of thermochemical liquefaction of Camellia oleifera cake in different supercritical organic solvents for producing bio-oil

    International Nuclear Information System (INIS)

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Li, Ping; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    Highlights: • Thermochemical liquefaction of COC was a prominent process for producing bio-oil. • Type of solvent affected the yield and composition of bio-oil considerably. • Liquefaction of COC in SCEL at 300 °C was preferred for producing bio-oil. - Abstract: Thermochemical liquefaction of Camellia oleifera cake (COC) for producing bio-oil was conducted in supercritical methanol (SCML), ethanol (SCEL) and acetone (SCAL), respectively. GC–MS, elemental analysis and ICP-OES were used to characterize properties of bio-oil. Results showed that thermochemical liquefaction of COC was a prominent process for generating bio-oil. Increase of temperature was beneficial to the increase of bio-oil yield, and yield of bio-oil followed the sequence of SCAL > SCEL > SCML. In spite of the highest bio-oil yield, the lowest calorific value and highest contents of Zn, Pb, Cd, Ni, Fe, Mn, and Cr were found in bio-oil from SCAL. Though SCML has very similar bio-oil composition and calorific value with SCEL, higher bio-oil yield and lower contents of heavy metals could be obtained with SCEL, especially in bio-oil from SCEL at 300 °C. Moreover, the origin of ethanol could make the bio-oil product totally renewable. Therefore, liquefaction of COC in SCEL at 300 °C could have great potential in generating bio-oil

  2. Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akihiro; Bando, Yukiko; Fujimoto, Naoshi; Suzuki, Masaharu [Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1 Sakuragaoka 1-chome, Setagaya-ku, Tokyo 156-8502 (Japan)

    2010-08-15

    In order to ensure efficient functioning of hydrogen fermentation systems that use Clostridium as the dominant hydrogen producer, energy-intensive process such as heat pretreatment of inoculum and/or substrate, continuous injection, and control of anaerobic conditions are required. Here, we describe a simple hydrogen fermentation system designed using microflora from leaf-litter cattle-waste compost. Hydrogen and volatile fatty acid production was measured at various hydraulic retention times, and bacterial genera were determined by PCR amplification and sequencing. Although hydrogen fermentation yield was approximately one-third of values reported in previous studies, this system requires no additional treatment and thus may be advantageous in terms of cost and operational control. Interestingly, Clostridium was absent from this system. Instead, Megasphaera elsdenii was the dominant hydrogen-producing bacterium, and lactic acid-producing bacteria (LAB) were prevalent. This study is the first to characterize M. elsdenii as a useful hydrogen producer in hydrogen fermentation systems. These results demonstrate that pretreatment is not necessary for stable hydrogen fermentation using food waste. (author)

  3. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  4. Design and optimization of a fixed - bed reactor for hydrogen production via bio-ethanol steam reforming

    International Nuclear Information System (INIS)

    Maria A Goula; Olga A Bereketidou; Costas G Economopoulos; Olga A Bereketidou; Costas G Economopoulos

    2006-01-01

    Global climate changes caused by CO 2 emissions are currently debated around the world. Renewable sources of energy are being sought as alternatives to replace fossil fuels. Hydrogen is theoretically the best fuel, environmentally friendly and its combustion reaction leads only to the production of water. Bio-ethanol has been proven to be effective in the production of hydrogen via steam reforming reaction. In this research the steam reforming reaction of bio-ethanol is studied at low temperatures over 15,3 % Ni/La 2 O 3 catalyst. The reaction and kinetic analysis takes place in a fixed - bed reactor in 130 - 250 C in atmospheric pressure. This study lays emphasis on the design and the optimization of the fixed - bed reactor, including the total volume of the reactor, the number and length of the tubes and the degree of ethanol conversion. Finally, it is represented an approach of the total cost of the reactor, according to the design characteristics and the materials that can be used for its construction. (authors)

  5. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gentil, Solène [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Lalaoui, Noémie [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Dutta, Arnab [Pacific Northwest National Laboratory, Richland WA 99532 USA; Current address: Chemistry Department, IIT Gandhinagar, Gujarat 382355 India; Nedellec, Yannig [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Cosnier, Serge [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Shaw, Wendy J. [Pacific Northwest National Laboratory, Richland WA 99532 USA; Artero, Vincent [Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Le Goff, Alan [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France

    2017-01-12

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with a multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.

  6. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    Science.gov (United States)

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to 12.5 B$ to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at 8 $/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway

  8. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    Science.gov (United States)

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Production of Plant Phthalate and its Hydrogenated Derivative from Bio-Based Platform Chemicals.

    Science.gov (United States)

    Lu, Rui; Lu, Fang; Si, Xiaoqin; Jiang, Huifang; Huang, Qianqian; Yu, Weiqiang; Kong, Xiangtao; Xu, Jie

    2018-04-06

    Direct transformation of bio-based platform chemicals into aromatic dicarboxylic acids and their derivatives, which are widely used for the manufacture of polymers, is of significant importance for the sustainable development of the plastics industry. However, limited successful chemical processes have been reported. This study concerns a sustainable route for the production of phthalate and its hydrogenated derivative from bio-based malic acid and erythritol. The key Diels-Alder reaction is applied to build a substituted cyclohexene structure. The dehydration reaction of malic acid affords fumaric acid with 96.6 % yield, which could be used as the dienophile, and 1,3-butadiene generated in situ through erythritol deoxydehydration serves as the diene. Starting from erythritol and dibutyl fumarate, a 74.3 % yield of dibutyl trans-4-cyclohexene-1,2-dicarboxylate is obtained. The palladium-catalyzed dehydrogenation of the cycloadduct gives a 77.8 % yield of dibutyl phthalate. Dibutyl trans-cyclohexane-1,2-dicarboxylate could be formed in nearly 100 % yield under mild conditions by hydrogenation of the cycloadduct. Furthermore, fumaric acid and fumarate, with trans configurations, were found to be better dienophiles for this Diels-Alder reaction than maleic acid and maleate, with cis configuration, based on the experimental and computational results. This new route will pave the way for the production of environmental friendly plastic materials from plants. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  11. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  12. Exploring Psychological and Aesthetic Approaches of Bio-Retention Facilities in the Urban Open Space

    Directory of Open Access Journals (Sweden)

    Suyeon Kim

    2017-11-01

    Full Text Available Over the last decades, a number of bio-retention facilities have been installed in urban areas for flood control and green amenity purposes. As urban amenity facilities for citizens, bio-retentions have a lot potential; however, the literature on bio-retentions focused mostly on physiochemical aspects like water quality and runoffs. Hence, this paper aims to explore psychological aspects of bio-retentions such as perceptions and landscape aesthetic value for visitors. In order to achieve this purpose, the study employed on-site interviews and questionnaires in the chosen three case studies as research methodology. For the 3 different locations of bio-retention facilities, interviews and questionnaires were carried out. The surveys of 100 bio-retention users were conducted, investigating their general perceptions and landscape aesthetics of the bio-retention facilities. The paper found that only 34% of the interviewees recognised bio-detention facilities, illustrating that most visitors were not aware of such facilities and were unable to distinguish the differences between bio-retention and conventional gardens. On the other hand, the majority of interviewees strongly supported the concept and function of bio-retentions, especially those who recognised the differences in planting species with conventional urban open spaces. Such main findings also encourage further studies of seeking quantitative values by conducting a correlation analysis between the functions and aesthetics of bio-retention facilities.

  13. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi

    2013-01-01

    The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... amended anazrobic seguencs batch reactor (ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH. Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs, with 65%, 63%, 54%, 56% enhancement...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  14. Liquid Hydrogen Sensor Considerations for Space Exploration

    Science.gov (United States)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  15. Steam Reforming of Bio-oil Model Compounds

    DEFF Research Database (Denmark)

    Trane, Rasmus; Jensen, Anker Degn; Dahl, Søren

    The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst.......The steam reforming of bio-oil is a sustainable and renewable route to synthesis gas and hydrogen, where one of the main hurdles is carbon formation on the catalyst....

  16. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination

    Science.gov (United States)

    Mu, Yang; Yang, Hou-Yun; Wang, Ya-Zhou; He, Chuan-Shu; Zhao, Quan-Bao; Wang, Yi; Yu, Han-Qing

    2014-06-01

    Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system.

  17. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination.

    Science.gov (United States)

    Mu, Yang; Yang, Hou-Yun; Wang, Ya-Zhou; He, Chuan-Shu; Zhao, Quan-Bao; Wang, Yi; Yu, Han-Qing

    2014-06-10

    Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system.

  18. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Cebolla, Rafael O. [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands; Moretto, Pietro [Joint Research Centre, Petten, the Netherlands

    2017-11-15

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, including the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and identify

  19. The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent

    Directory of Open Access Journals (Sweden)

    Zulkania Ariany

    2018-01-01

    Full Text Available Activated carbon from bio-char waste of bio oil pyrolysis of mixed sugarcane bagasse and Rambutan twigs was investigated. Bio-char as by-product of bio-oil pyrolysis has potential to be good adsorbed by activating process. Bio-chars waste was activated in fixed bed reactor inside furnace without presenting oxygen. Gas N2 and CO2 were employed to drive out oxygen from the reactor and as activator, respectively. One of the best activation treatments is achieved by performing activation in different temperature and time to produce standard activated carbon. The experiment was performed at different temperatures and activation time, i.e. 800, 850, and 900° C and 80 and 120 minutes, respectively, to determine the optimal operating condition. Activated carbon was characterized by analysis of moisture content, ash content pH, and methylene blue test. The results showed that optimum activation was at 850°C and 80 minute, where activated carbon produced indicated the best adsorption capacity. The ash content and pH had significant role in resulting good activated carbon.

  20. Bio-Oil Deployment in the Home Heating Market

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mante, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Celebi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huber, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-01

    Distillate fuel oil is used in many stationary heating applications, predominantly in the Northeastern part of the United States. Total estimated non-transportation distillate use in 2014 was estimated to be 10.9 billion gallons. This study has focused on potentially displacing part of this petroleum use with biofuel derived from woody biomass. The fuel production route considered is pyrolysis which creates a liquid fuel high in oxygen, organic acids, and water. While this fuel can be used in stationary applications without significant further processing, to do so would require significant upgrades in current heating equipment. Alternatively this raw pyrolysis oil can be upgraded through catalytic hydrogenation to produce a bio-oil with near-negligible oxygen, water, and acidity. The focus of this work has been exploration of such upgraded fuels. The quality of upgraded fuels is affected by process conditions and there is a cost /quality tradeoff.

  1. Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Jian; Zhang, Bo

    2011-01-01

    This paper compared the effects of hydrogen and hydrogen-oxygen blends (hydroxygen) additions on the performance of a gasoline engine at 1400 rpm and a manifolds absolute pressure of 61.5 kPa. The tests were carried out on a 1.6 L gasoline engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was applied to adjust the hydrogen and hydroxygen volume fractions in the intake increasing from 0% to about 3% and keep the hydrogen-to-oxygen mole ratio at 2:1 in hydroxygen tests. For each testing condition, the gasoline flow rate was adjusted to maintain the mixture global excess air ratio at 1.00. The test results confirmed that engine fuel energy flow rate was decreased after hydrogen addition but increased with hydroxygen blending. When hydrogen or hydroxygen volume fraction in the intake was lower than 2%, the hydroxygen-blended gasoline engine produced a higher thermal efficiency than the hydrogen-blended gasoline engine. Both the additions of hydrogen and hydroxygen help reduce flame development and propagation periods of the gasoline engine. HC emissions were reduced whereas NOx emissions were raised with the increase of hydrogen and hydroxygen addition levels. CO was slightly increased after hydrogen blending, but reduced with hydroxygen addition. -- Highlights: → We compared the effects of hydrogen and hydroxygen additions on the gasoline engine performance. → The hydroxygen should be added into the engine only at low blending levels. → CO is decreased with hydroxygen addition whereas increased with hydrogen blending.

  2. Evaluation and simultaneous optimization of bio-hydrogen production using 3 2 factorial design and the desirability function

    Science.gov (United States)

    Cuetos, M. J.; Gómez, X.; Escapa, A.; Morán, A.

    Various mixtures incorporating a simulated organic fraction of municipal solid wastes and blood from a poultry slaughterhouse were used as substrate in a dark fermentation process for the production of hydrogen. The individual and interactive effects of hydraulic retention time (HRT), solid content in the feed (%TS) and proportion of residues (%Blood) on bio-hydrogen production were studied in this work. A central composite design and response surface methodology were employed to determine the optimum conditions for the hydrogen production process. Experimental results were approximated to a second-order model with the principal effects of the three factors considered being statistically significant (P < 0.05). The production of hydrogen obtained from the experimental point at conditions close to best operability was 0.97 L Lr -1 day -1. Moreover, a desirability function was employed in order to optimize the process when a second, methanogenic, phase is coupled with it. In this last case, the optimum conditions lead to a reduction in the production of hydrogen when the optimization process involves the maximization of intermediary products.

  3. Neutron protein crystallography hydrogen protons and hydration in bio-macromolecules

    CERN Document Server

    Niimura, Nobuo

    2011-01-01

    This text is dedicated to the emerging field of neutron protein crystallography (NPC). It covers all of the practical aspects of NPC and demonstrates how NPC can explore protein features such as hydrogen bonds, protonation and deprotonation of amino acid residues, and hydration structures.

  4. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, George [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-06-01

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles.

  5. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Second generation biofuels, an accelerator of the transition toward an economy driven by energy drawn from hydrogen

    International Nuclear Information System (INIS)

    Delabroy, O.

    2013-01-01

    The growth of the bio economy, especially in transportation, involves developing a bio-fuel industry. First generation bio-fuels were produced from plant sugars like starch or from plant oils. Second generation bio fuels use as raw materials the whole plant and especially agricultural and forestry wastes which extend the resource considerably and limit the competition between food use and fuel use. Second generation bio-fuels can be made with not only biological methods but also biomass-to-liquid processes borrowed from thermochemistry. Players in this field, including 'Air Liquide' company, are drawing up a technical and economic road-map for competitiveness in this emerging branch of industry. Since the thermochemical approach for gasifying a biomass also yields large quantities of hydrogen, the industrialization of this branch and concomitant production of bio-hydrogen at competitive prices provide leverage for accelerating the transition toward using H 2 for transportation

  7. Upgrading of syngas hydrotreated fractionated oxidized bio-oil to transportation grade hydrocarbons

    International Nuclear Information System (INIS)

    Luo, Yan; Hassan, El Barbary; Guda, Vamshi; Wijayapala, Rangana; Steele, Philip H.

    2016-01-01

    Highlights: • Hydrotreating of fractionated oxidized bio-oil with syngas was feasible. • Hydrocarbon properties were similar with all syngas H_2/CO molar ratios except viscosity. • Syngas with H_2/CO molar ratio of (4:6) produced the highest hydrocarbon yield. • The produced hydrocarbons were in the range of gasoline, jet fuel and diesel boiling points. - Abstract: Fast pyrolysis bio-oils have the potential to replace a part of transportation fuels obtained from fossil. Bio-oil can be successfully upgraded into stable hydrocarbons (gasoline, jet fuel and diesel) through a two-stage hydrodeoxygenation process. Consumption large amount of expensive hydrogen during this process is the major hurdle for commercialization of this technology. Applying syngas in the hydrotreating step can significantly reduce the cost of the whole process and make it competitive. In this study, four different models of syngas with different H_2 concentrations (H_2/CO molar ratios = 2:8, 4:6, 6:4 and 8:2) were used for the 1st-stage hydrotreating step of oxidized fractionated bio-oil (OFB). The 2nd-stage hydrocracking step was performed on the produced organic liquid products (OLPs) by using pure H_2 gas. The effect of syngas H_2 concentrations on the yields and properties of OLPs and the 2nd-stage hydrocarbons (HCs) was investigated. Physical and chemical properties of the 2nd-stage hydrocarbons were similar regardless syngas H_2 content, with the exception of the viscosity. Syngas with H_2/CO molar ratio of 4:6 gave significantly highest HCs yield (24.8 wt.%) based on the OFB. Simulated distillation analysis proved that all 2nd-stage hydrocarbons were mixture from a wide range boiling point fuels. These results also indicated that the successful 1st-stage syngas hydrotreating step was having the potential to produce different hydrocarbons.

  8. Economics of producing hydrogen as transportation fuel using offshore wind energy systems

    International Nuclear Information System (INIS)

    Mathur, Jyotirmay; Agarwal, Nalin; Swaroop, Rakesh; Shah, Nikhar

    2008-01-01

    Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods-using wind energy for producing hydrogen through electrolysis of seawater-with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology

  9. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  10. Synthetic Natural Gas/ Biogas (Bio-SNG) from Wood as Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Biollaz, S.; Stucki, S.

    2004-03-01

    Biofuel production from wood is an interesting option for the energetic use of wood. Various bio fuels could be produced from woody biomass, such as methanol, Fischer-Tropsch (FT) fuels, methane or hydrogen. FT liquids and bio-SNG can be distributed and used via existing infrastructures and therefore fit best today's fossil infrastructure. On an assessment basis from primary to mechanical energy both fuels have pros and cons. For the consolidation of crucial information, i.e. production cost, demonstration plants of transportation fuels are needed. Based on such plants, a detailed evaluation of both fuel chains will be possible. (author)

  11. Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW)

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhenhong, Yuan; Yongming, Sun; Longlong, Ma [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-08-15

    In order to harvest high-efficient hydrogen producing seeds, five pretreatment methods (including acid, heat, sonication, aeration and freeze/thawing) were performed on anaerobic digested sludge (AS) which was collected from a batch anaerobic reactor for treating organic fraction of municipal solid waste. The hydrogen production tests were conducted in serum bottles containing 20 gVS/L (24.8 g COD/L) mixture of rice and lettuce powder at 37 C. The experimental results showed that the heat and acid pretreatment completely repressed the methanogenic activity of AS, but acid pretreatment also partially repressed hydrogen production. Sonication, freeze/thawing and aeration did not completely suppress the methanogen activity. The highest hydrogen yields were 119.7, 42.2, 26.0, 23.0, 22.7 and 22.1 mL/gVS for heated, acidified, freeze/thawed, aerated, sonicated and control AS respectively. A pH of about 4.9 was detected at the end of hydrogen producing fermentation for all tests. The selection of an initial pH can markedly affect the hydrogen producing ability for heated and acidified AS. The higher initial pH generated higher hydrogen yield and the highest hydrogen yield was obtained with initial pH 8.9 for heated AS. (author)

  12. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria.

    Science.gov (United States)

    Wagner, Jonathan; Bransgrove, Rachel; Beacham, Tracey A; Allen, Michael J; Meixner, Katharina; Drosg, Bernhard; Ting, Valeska P; Chuck, Christopher J

    2016-05-01

    A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  14. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  15. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  16. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.

    Science.gov (United States)

    Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping

    2016-01-01

    Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Exploring Artificial Intelligence Utilizing BioArt

    OpenAIRE

    Simou , Panagiota; Tiligadis , Konstantinos; Alexiou , Athanasios

    2013-01-01

    Part 15: First Workshop on Ethics and Philosophy in Artificial Intelligence (EPAI 2013); International audience; While artificial intelligence combined with Bioinformatics and Nanotechnology offers a variety of improvements and a technological and healthcare revolution, Bioartists attempt to replace the traditional artistic medium with biological materials, bio-imaging techniques, bioreactors and several times to treat their own body as an alive canvas. BioArt seems to play the role of a new ...

  18. Bioaugmentation of Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5.

    Science.gov (United States)

    Laocharoen, Sucheera; Reungsang, Alissara; Plangklang, Pensri

    2015-01-01

    Bioaugmentation or an addition of the desired microorganisms or specialized microbial strains into the anaerobic digesters can enhance the performance of microbial community in the hydrogen production process. Most of the studies focused on a bioaugmentation of native microorganisms capable of producing hydrogen with the dark-fermentative hydrogen producers while information on bioaugmentation of purple non-sulfur photosynthetic bacteria (PNSB) with lactic acid-producing bacteria (LAB) is still limited. In our study, bioaugmentation of Rhodobacter sphaeroides KKU-PS5 with Lactobacillus delbrueckii ssp. bulgaricus TISTR 895 was conducted as a method to produce hydrogen. Unfortunately, even though well-characterized microorganisms were used in the fermentation system, a cultivation of two different organisms in the same bioreactor was still difficult because of the differences in their metabolic types, optimal conditions, and nutritional requirements. Therefore, evaluation of the physical and chemical factors affecting hydrogen production of PNSB augmented with LAB was conducted using a full factorial design followed by response surface methodology (RSM) with central composite design (CCD). A suitable LAB/PNSB ratio and initial cell concentration were found to be 1/12 (w/w) and 0.15 g/L, respectively. The optimal initial pH, light intensity, and Mo concentration obtained from RSM with CCD were 7.92, 8.37 klux and 0.44 mg/L, respectively. Under these optimal conditions, a cumulative hydrogen production of 3396 ± 66 mL H2/L, a hydrogen production rate (HPR) of 9.1 ± 0.2 mL H2/L h, and a hydrogen yield (HY) of 9.65 ± 0.23 mol H2/mol glucose were obtained. KKU-PS5 augmented with TISTR 895 produced hydrogen from glucose at a relatively high HY, 9.65 ± 0.23 mol H2/mol glucose, i.e., 80 % of the theoretical yield. The ratio of the strains TISTR 895/KKU-PS5 and their initial cell concentrations affected the rate of lactic acid production and its

  19. The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)

    Science.gov (United States)

    Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.

    2012-01-01

    The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.

  20. Characteristics of sustainable bio-solid fuel produced from sewage sludge as a conventional fuel substitute

    International Nuclear Information System (INIS)

    Jung, Bongjin; Nam, Wonjun; Lee, Na-Yeon; Kim, Kyung-Hoon

    2010-01-01

    Safely final disposal of sewage sludge which is being increased every year has already become serious problems. As one of the promising technologies to solve this problem, thermal drying method has been attracting wide attention due to energy recovery from sewage sludge. This paper describes several characteristics of sustainable bio-solid fuel, as a conventional fuel substitute, produced from sewage sludge drying and granulation plant having the treatment capacity of 10 ton/ day. This plant has been successfully operated many times and is now designing for scale-up. Average moisture content of twelve kinds of bio-solid fuels produced from the plant normally less than 10 wt% and average shape of them is mainly composed of granular type having a diameter of 2-8 mm for easy handling and transportation to the final market destinations. Average higher heating value, which is one of the important properties to estimate the possibility of available energy, of bio-solid fuels is about 3800 kcal/ kg as dry basis. So they can be utilized to supply energy in the coal power plant and cement kiln etc. as a conventional fuel substitute for a beneficial reuse. Characteristics including proximate analysis, ultimate analysis, contents of heavy metals, wettability etc. of bio-solid fuels have been also analyzed for the environmentally safe re utilization. (author)

  1. Heat pump cycle by hydrogen-absorbing alloys to assist high-temperature gas-cooled reactor in producing hydrogen

    International Nuclear Information System (INIS)

    Satoshi, Fukada; Nobutaka, Hayashi

    2010-01-01

    A chemical heat pump system using two hydrogen-absorbing alloys is proposed to utilise heat exhausted from a high-temperature source such as a high-temperature gas-cooled reactor (HTGR), more efficiently. The heat pump system is designed to produce H 2 based on the S-I cycle more efficiently. The overall system proposed here consists of HTGR, He gas turbines, chemical heat pumps and reaction vessels corresponding to the three-step decomposition reactions comprised in the S-I process. A fundamental research is experimentally performed on heat generation in a single bed packed with a hydrogen-absorbing alloy that may work at the H 2 production temperature. The hydrogen-absorbing alloy of Zr(V 1-x Fe x ) 2 is selected as a material that has a proper plateau pressure for the heat pump system operated between the input and output temperatures of HTGR and reaction vessels of the S-I cycle. Temperature jump due to heat generated when the alloy absorbs H 2 proves that the alloy-H 2 system can heat up the exhaust gas even at 600 deg. C without any external mechanical force. (authors)

  2. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  3. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  4. A critical review on factors influencing fermentative hydrogen production.

    Science.gov (United States)

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  5. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    International Nuclear Information System (INIS)

    Mann, M.K.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus trademark to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product

  6. Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Muthukumarappan, Kasiviswanathan; Kharel, Parashu Ram

    2017-01-01

    Highlights: • Integration of Co-Zn/HZSM-5 and supercritical methanol was used for bio-oil hydrodeoxygenation. • Co-Zn/HZSM-5 exhibited higher effectiveness than Co/HZSM-5 or Zn/HZSM-5. • 15%Co5%Zn/HZSM-5 produced biofuel with the highest hydrocarbons content at 35.33%. • Loading of Co and/or Zn did not change crystalline structure of HZSM-5. • Hydrogenation and esterification are main reactions in bio-oil hydrodeoxygenation. - Abstract: The role of catalyst is essential in processes of upgrading biomass pyrolysis bio-oil into hydrocarbon biofuel. While the majority of heterogeneous catalytic processes are conducted in the presence of gas (nearly ideal) or liquid phase, a growing number of processes are utilizing supercritical fluids (SCFs) as reaction media. Although hydrodeoxygenation (HDO) is proven a promising process for pyrolysis bio-oil upgrading to hydrocarbon biofuel, catalyst efficiency remains a challenge. Integrating heterogeneous catalysts with SCFs in a bio-oil HDO process was investigated in this study. Bifunctional Co-Zn/HZSM-5 catalysts were firstly used to upgrade bio-oil to biofuel in supercritical methanol. The loading of Co and Zn did not change HZSM-5 crystalline structure. Physicochemical properties of biofuel produced by Co and/or Zn loaded HZSM-5 catalysts such as water content, total acid number, viscosity and higher heating value improved. Bimetallic Co-Zn/HZSM-5 catalysts showed enhanced reactions of decarboxylation and decarbonylation that resulted in higher yields of CO and CO 2 . Bimetallic Co-Zn/HZSM-5 catalysts were more effective for bio-oil HDO than monometallic Co/HZSM-5 or Zn/HZSM-5 catalyst , which was attributed to the synergistic effect of Co and Zn on HZSM-5 support. Bimetallic Co-Zn/HZSM-5 catalysts increased biofuel yields and hydrocarbons contents in biofuels in comparison with monometallic Co/HZSM-5 and Zn/HZSM-5 catalysts. 5%Co15%Zn/HZSM-5 catalyst generated the highest biofuel yield at 22.13 wt.%, and 15%Co5

  7. The organellar genome and metabolic potential of the hydrogen- producing mitochondrion of Nyctotherus ovalis

    NARCIS (Netherlands)

    J.H.P. Hackstein (Johannes); C. Burgtorf; B.E. Dutilh (Bas); I. Duarte (Isabel); G.W.M. van der Staay (Georg); R.M. de Graaf (Rob); J.W.P. Kuiper (Jan); M. Huynen (Martijn); T.A. van Alen (Theo); G. Ricard (Guenola); A.G.M. Tielens (Aloysius)

    2011-01-01

    textabstractAbstract It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing

  8. Exploring the Importance of Employing Bio and Nano-Materials for Energy Efficient Buildings Construction

    Directory of Open Access Journals (Sweden)

    Mona Naguib

    2017-03-01

    Full Text Available The continued and increasing use of ordinary building materials to house the ever-growing world population ensures growing contributions of carbon (C to the active carbon cycle through carbon dioxide (C02 emissions from combustion and chemical reactions in the raw material to the atmosphere. To minimize this, materials should be conserved, reduce their unnecessary use, produce them more benignly and make them last longer, recycle and reuse materials. Thus, paper will focus on exploring alternative building materials and systems that can be developed in order to balance atmospheric carbon dioxide.  It also presents the Bio-inspired architecture approach that embraces the eco-friendly practices of using Biomaterials and Nano-materials for sustainable dwelling construction through a number of examples that shows how a building can be strongly related to its site.

  9. Bio-fuels for the gas turbine: A review

    International Nuclear Information System (INIS)

    Gupta, K.K.; Rehman, A.; Sarviya, R.M.

    2010-01-01

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  10. Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    The production of fuels directly or indirectly from sunlight represents one of the major challenges to the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and while platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen...... at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by DFT calculations of the Mo3S4 cluster adsorbed on the hydrogen-terminated silicon surface providing insights...... deposited on various supports. It will be demonstrated how this overpotential can be eliminated by depositing the same type of hydrogen evolution catalyst on p-type Si which can harvest the red part of the solar spectrum. Such a system could constitute the cathode part of a tandem dream device where the red...

  11. Medium power hydrogen arcjet performance

    Science.gov (United States)

    Curran, Francis M.; Bullock, S. R.; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.

    1991-01-01

    An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difficult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.

  12. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    Science.gov (United States)

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  13. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  14. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    requirements and inhibitory effects differed depending on the strain and the feedstock applied. Fermentations on a larger scale under controlled conditions allowed accurate determinations of hydrogen yields and hydrogen production rates for these extreme thermophilic microorganisms. The first results of a new FP 6 Integrated Project 'Hyvolution' (start date 01/01/2006; co-ordinated by Agro-technology and Food Innovations) will be presented. This IP is aimed at the development of a blue-print for an industrial bio-process for decentralized hydrogen production from locally produced biomass. (authors)

  15. Well-To-Wheel Analysis of Solar Produced Hydrogen for Future Transportation Systems

    International Nuclear Information System (INIS)

    Remo Felder; Anton Meier

    2006-01-01

    Hydrogen production, transport, and usage in future passenger car transportation systems is compared for selected solar and conventional hydrogen production technologies using a comprehensive life cycle assessment (LCA) approach. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar produced hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced gasoline vehicles and by more than 90% if car and road infrastructure are not considered. Utilization of solar produced hydrogen has the potential of reducing fossil energy requirements by a factor of up to 10 compared to conventional technologies. Environmental impacts are associated with the construction of the steel-intensive infrastructure for concentrating solar power plants due to mineral and fossil resource consumption as well as discharge of pollutants related to today's non-sustainable steel production technology. (authors)

  16. Well-To-Wheel Analysis of Solar Produced Hydrogen for Future Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Remo Felder; Anton Meier [Solar Technology Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, (Switzerland)

    2006-07-01

    Hydrogen production, transport, and usage in future passenger car transportation systems is compared for selected solar and conventional hydrogen production technologies using a comprehensive life cycle assessment (LCA) approach. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar produced hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced gasoline vehicles and by more than 90% if car and road infrastructure are not considered. Utilization of solar produced hydrogen has the potential of reducing fossil energy requirements by a factor of up to 10 compared to conventional technologies. Environmental impacts are associated with the construction of the steel-intensive infrastructure for concentrating solar power plants due to mineral and fossil resource consumption as well as discharge of pollutants related to today's non-sustainable steel production technology. (authors)

  17. Physico-Chemical Characterizations of Sawdust-Derived Bio char as Potential Solid Fuels

    International Nuclear Information System (INIS)

    Wan Azlina Wan Ab Karim Ghani

    2014-01-01

    Characterization Malaysian rubber-wood sawdust derived bio char (MRWSB) produced in the fixed bed pyrolysis under different temperatures (450 to 850 degree Celsius) were studied for its applicability as a solid fuel. A range of analyses were carried out, including bio char oxidation reactivity , inorganic species, oxygen and hydrogen contents in the bio chars, release of heteroatoms in bio char as the gaseous product, and bio char structural evolution during pyrolysis process. The results show that the optimum temperature for carbonization to obtain a char having moderately high yield was found as 450 degree Celsius. Thermogravimetric analyses (TG) shows that temperatures induces a progressively more ordered carbonaceous structure and leads to a significant changes in the bio char reactivity. The process is coupled with the loss of heteroatoms, released as dominantly carbon dioxide (C0 2 ) and carbon dioxide (CO). In addition, the elemental study of wood-derived bio char shows the higher carbon content but with low H/C and 0/C ratio suggested this material was dominated by highly aromatic structures and this were revealed in the Fourier transform infra-red (FTIR). More importantly, insignificant amount of inorganic species is evidenced in the samples. (author)

  18. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function.

    Science.gov (United States)

    Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric

    2017-03-01

    One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  20. Bio-fuels are not so green

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2007-01-01

    Today there is an unrelenting trend for bio-fuels but some scientists question their utility. Some surveys show that the environmental balance sheet for bio-fuels is strongly positive for instance it is assessed that the production of 1 MJ of ethanol from beet roots of wheat requires only 0.49 MJ of fossil energy, interesting figure when compared to the 1.14 MJ of fossil energy needed to produce 1 MJ of gasoline. Other studies are less optimistic, all depends strongly on the basic data used and on the approach followed. Some scientists wonder whether all the pollutants generated in the transformation processes are well taken into account. In fact the environment benefit of the first generation of bio-fuels is mild because scientists do not know how to use efficiently the wood-cellulose by-products of plants. There is a notably exception to that, it is the sugar cane in Brazil, this plant has a good energy conversion rate and its by-products are completely and efficiently used in industry. A way to valorize cellulose by-products is to transform them in ethanol and hydrogen through the use of mushroom enzymes. (A.C.)

  1. Renewable Bio-Solar Hydrogen Production: The Second Generation (Part B)

    Science.gov (United States)

    2015-03-20

    SUBJECT TERMS Biohydrogen, biofuels, cyanobacteria, photosynthesis, fermentation , transcription profiling, metabolic engineering, TCA cycle...transcription regulators, including RbcR, Fur, and ChlR, were identified and characterized, and a global model of the transcription network was...enhance hydrogen production. These data have recently been analyzed to produce a global transcription network model for this cyanobacterium [17]. At

  2. Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Wang, Guangce [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Zhu, Daling; Pan, Guanghua [College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China)

    2009-12-15

    To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 {+-} 0.07 mol H{sub 2}/mol glucose (mean {+-} S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 {+-} 0.03 mol H{sub 2}/mol glucose, 0.17 {+-} 0.01 mol H{sub 2}/mol glucose, 0.11 {+-} 0.01 mol H{sub 2}/mol glucose and 0.20 {+-} 0.04 mol H{sub 2}/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp. However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (author)

  3. Overview of the Modified SI Cycle to Produce Nuclear Hydrogen Coupled to VHTR

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    The steam reforming of methane is one of hydrogen production processes that rely on cheap fossil feedstocks. An overview of the VHTR-based nuclear hydrogen production process with the modified SI cycle has been carried out to establish whether it can be adopted as a feasible technology to produce nuclear hydrogen

  4. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  5. Size control and catalytic activity of bio-supported palladium nanoparticles.

    Science.gov (United States)

    Søbjerg, Lina Sveidal; Lindhardt, Anders T; Skrydstrup, Troels; Finster, Kai; Meyer, Rikke Louise

    2011-07-01

    The development of nanoparticles has greatly improved the catalytic properties of metals due to the higher surface to volume ratio of smaller particles. The production of nanoparticles is most commonly based on abiotic processes, but in the search for alternative protocols, bacterial cells have been identified as excellent scaffolds of nanoparticle nucleation, and bacteria have been successfully employed to recover and regenerate platinum group metals from industrial waste. We report on the formation of bio-supported palladium (Pd) nanoparticles on the surface of two bacterial species with distinctly different surfaces: the gram positive Staphylococcus sciuri and the gram negative Cupriavidus necator. We investigated how the type of bacterium and the amount of biomass affected the size and catalytic properties of the nanoparticles formed. By increasing the biomass:Pd ratio, we could produce bio-supported Pd nanoparticles smaller than 10nm in diameter, whereas lower biomass:Pd ratios resulted in particles ranging from few to hundreds of nm. The bio-supported Pd nanoparticle catalytic properties were investigated towards the Suzuki-Miyaura cross coupling reaction and hydrogenation reactions. Surprisingly, the smallest nanoparticles obtained at the highest biomass:Pd ratio showed no reactivity towards the test reactions. The lack of reactivity appears to be caused by thiol groups, which poison the catalyst by binding strongly to Pd. Different treatments intended to liberate particles from the biomass, such as burning or rinsing in acetone, did not re-establish their catalytic activity. Sulphur-free biomaterials should therefore be explored as more suitable scaffolds for Pd(0) nanoparticle formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  7. Hydrogen generation from water using Mg nanopowder produced by arc plasma method

    Directory of Open Access Journals (Sweden)

    Masahiro Uda, Hideo Okuyama, Tohru S Suzuki and Yoshio Sakka

    2012-01-01

    Full Text Available We report that hydrogen gas can be easily produced from water at room temperature using a Mg nanopowder (30–1000 nm particles, average diameter 265 nm. The Mg nanopowder was produced by dc arc melting of a Mg ingot in a chamber with mixed-gas atmosphere (20% N2–80% Ar at 0.1 MPa using custom-built nanopowder production equipment. The Mg nanopowder was passivated with a gas mixture of 1% O2 in Ar for 12 h in the final step of the synthesis, after which the nanopowder could be safely handled in ambient air. The nanopowder vigorously reacted with water at room temperature, producing 110 ml of hydrogen gas per 1 g of powder in 600 s. This amount corresponds to 11% of the hydrogen that could be generated by the stoichiometric reaction between Mg and water. Mg(OH2 flakes formed on the surface of the Mg particles as a result of this reaction. They easily peeled off, and the generation of hydrogen continued until all the Mg was consumed.

  8. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  9. Genomics and transcriptomics of the hydrogen producing extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Verhaart, M.R.A.

    2010-01-01

    As fossil fuels are depleting, there is a clear need for alternative sustainable fuel sources. One of the interesting alternatives is hydrogen, which can be produced from biomass by bacteria and archaea. To make the application feasible, organisms are needed which have high hydrogen productivities

  10. A novel method for producing magnesium based hydrogen storage alloys

    International Nuclear Information System (INIS)

    Walton, A.; Matthews, J.; Barlow, R.; Almamouri, M.M.; Speight, J.D.; Harris, I.R.

    2003-01-01

    Conventional melt casting techniques for producing Mg 2 Ni often result in no stoichiometric compositions due to the excess Mg which is added to the melt in order to counterbalance sublimation during processing. In this work a vapour phase process known as Low Pressure Pack Sublimation (LPPS) has been used to coat Ni substrates with Mg at 460-600 o C producing layers of single phase Mg 2 Ni. Ni substrates coated to date include powder, foils and wire. Using Ni-Fe substrates it has also been demonstrated that Fe can be distributed through the Mg 2 Ni alloy layer which could have a beneficial effect on the hydrogen storage characteristics. The alloy layers formed have been characterised by XRD and SEM equipped with EDX analysis. Hydrogen storage properties have been evaluated using an Intelligent Gravimetric Analyser (IGA). LPPS avoids most of the sintering of powder particles during processing which is observed in other vapour phase techniques while producing a stoichiometric composition of Mg 2 Ni. It is also a simple, low cost technique for producing these alloys. (author)

  11. Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-02-01

    Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).

  12. Bio-Security Proficiencies Project for Beginning Producers in 4-H

    Science.gov (United States)

    Smith, Martin H.; Meehan, Cheryl L.; Borba, John A.

    2014-01-01

    Improving bio-security practices among 4-H members who raise and show project animals is important. Bio-security measures can reduce the risk of disease spread and mitigate potential health and economic risks of disease outbreaks involving animal and zoonotic pathogens. Survey data provided statistical evidence that the Bio-Security Proficiencies…

  13. Production of Bio-Hydrogenated Diesel by Hydrotreatment of High-Acid-Value Waste Cooking Oil over Ruthenium Catalyst Supported on Al-Polyoxocation-Pillared Montmorillonite

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-02-01

    Full Text Available Waste cooking oil with a high-acid-value (28.7 mg-KOH/g-oil was converted to bio-hydrogenated diesel by a hydrotreatment process over supported Ru catalysts. The standard reaction temperature, H2 pressure, liquid hourly space velocity (LHSV, and H2/oil ratio were 350 °C, 2 MPa, 15.2 h–1, and 400 mL/mL, respectively. Both the free fatty acids and the triglycerides in the waste cooking oil were deoxygenated at the same time to form hydrocarbons in the hydrotreatment process. The predominant liquid hydrocarbon products (98.9 wt% were n-C18H38, n-C17H36, n-C16H34, and n-C15H32 when a Ru/SiO2 catalyst was used. These long chain normal hydrocarbons had high melting points and gave the liquid hydrocarbon product over Ru/SiO2 a high pour point of 20 °C. Ru/H-Y was not suitable for producing diesel from waste cooking oil because it formed a large amount of C5–C10 gasoline-ranged paraffins on the strong acid sites of HY. When Al-polyoxocation-pillared montmorillonite (Al13-Mont was used as a support for the Ru catalyst, the pour point of the liquid hydrocarbon product decreased to −15 °C with the conversion of a significant amount of C15–C18 n-paraffins to iso-paraffins and light paraffins on the weak acid sites of Al13-Mont. The liquid product over Ru/Al13-Mont can be expected to give a green diesel for current diesel engines because its chemical composition and physical properties are similar to those of commercial petro-diesel. A relatively large amount of H2 was consumed in the hydrogenation of unsaturated C=C bonds and the deoxygenation of C=O bonds in the hydrotreatment process. A sulfided Ni-Mo/Al13-Mont catalyst also produced bio-hydrogenated diesel by the hydrotreatment process but it showed slow deactivation during the reaction due to loss of sulfur. In contrast, Ru/Al13-Mont did not show catalyst deactivation in the hydrotreatment of waste cooking oil after 72 h on-stream because the waste cooking oil was not found to contain sulfur

  14. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  15. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  16. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    Science.gov (United States)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  17. Cellulose Nanocrystal Templated Graphene Nanoscrolls for High Performance Supercapacitors and Hydrogen Storage: An Experimental and Molecular Simulation Study.

    Science.gov (United States)

    Dhar, Prodyut; Gaur, Surendra Singh; Kumar, Amit; Katiyar, Vimal

    2018-03-01

    Graphene nanoscrolls (GNS), due to their remarkably interesting properties, have attracted significant interest with applications in various engineering sectors. However, uncontrolled morphologies, poor yield and low quality GNS produced through traditional routes are major challenges associated. We demonstrate sustainable approach of utilizing bio-derived cellulose nanocrystals (CNCs) as template for fabrication of GNS with tunable morphological dimensions ranging from micron-to-nanoscale(controlled length 1 μm), alongwith encapsulation of catalytically active metallic-species in scroll interlayers. The surface-modified magnetic CNCs acts as structural-directing agents which provides enough momentum to initiate self-scrolling phenomenon of graphene through van der Waals forces and π-π interactions, mechanism of which is demonstrated through experimental and molecular simulation studies. The proposed approach of GNS fabrication provides flexibility to tune physico-chemical properties of GNS by simply varying interlayer spacing, scrolling density and fraction of encapsulated metallic nanoparticles. The hybrid GNS with confined palladium or platinum nanoparticles (at lower loading ~1 wt.%) shows enhanced hydrogen storage capacity (~0.2 wt.% at~20 bar and ~273 K) and excellent supercapacitance behavior (~223-357 F/g) for prolonged cycles (retention ~93.5-96.4% at ~10000 cycles). The current strategy of utilizing bio-based templates can be further extended to incorporate complex architectures or nanomaterials in GNS core or inter-layers, which will potentially broaden its applications in fabrication of high-performance devices.

  18. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    Science.gov (United States)

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  19. Conversion of Claus plants of Kirkuk-Iraq to produce hydrogen and sulfur

    International Nuclear Information System (INIS)

    Naman, S.A.; Veziroglu, A.

    2009-01-01

    'Full text': Hydrogen production from rich sub-quality natural gas (SQNG) is visible technically with assessment of cost, safety and environmental toxicology analysis of hydrogen sulfide, is summarized. There are two Claus plants in Kirkuk-Iraq, converting hydrogen sulfide to elemental sulfur capacity of 2200 ton/day. One of these plants is working with only 400 ton/day and it is an old Claus process. The other is a modified Claus sulfur recovery process with a capacity of 1800 ton/day. Both of these plants operate with low efficiency due to lack of maintenance and the present situation in Iraq. Therefore, the agricultural area around Kirkuk is very polluted by this gas. Two pilot plants have been constructed inside the modified Claus plant in Kirkuk The first one is based on the flow system tube furnace reactor containing mixed Titanium oxide/sulfide with a cold trap for sulfur separation and a bath of 30% dithanolamine to separate and recycle H 2 S from hydrogen. The second pilot plant consists of a thermal diffusion ceramic rod inside a silica column containing Zeolit 5A as a catalyst. This pilot plant also consists of a trap for continuous separation of sulfur and a system for separation of hydrogen from unreacted H 2 S to recycle. The efficiency of conversion of H 2 S to hydrogen and sulfur has been optimized as a function of catalyst type and mixture, temperature of furnace, flow rate of gas and reactor materials until the efficiency reaches more than 97%. The Kirkuk natural gas consists of a mixture of CO 2 10% and H 2 S 12%. We found that these pilot plants were suitable with Cadmium chalcogens catalysts to produce hydrogen, methane, ethane and sulphur, but with lower efficiency than H 2 S decomposition only. Our aim in the second pilot plant, which consists of a silica column, was to supply the heat by solar energy concentrator instead of electricity as our catalyst needs 450 o C. and the solar intensity is about 1000 w/m 2 during the summer. The idea of

  20. Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Alex J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Education; Campa, Maria F. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Education; Univ. of Tennessee, Knoxville, TN (United States). Inst. for Secure and Sustainable Environments; Hazen, Terry C. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Education; Univ. of Tennessee, Knoxville, TN (United States). Inst. for Secure and Sustainable Environments; Borole, Abhijeet P. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Education; Univ. of Tennessee, Knoxville, TN (United States). Inst. for Secure and Sustainable Environments

    2017-07-11

    Nature recruits various types of microbes to transform its waste products into reusable building blocks. In order to develop engineered systems to enable humans to generate useful products from complex sources such as biomass, a better understanding of the synergy between microbial species is necessary. Here we investigate a bioelectrochemical system for conversion of a complex biomass-derived pyrolysis stream into hydrogen via microbial electrolysis. Interaction between the exoelectrogens and fermentative organisms is key in this process. Comparing bioelectroconversion of a switchgrass-derived bio-oil aqueous phase (BOAP) with a model exoelectrogenic substrate, acetic acid, we demonstrate that fermentative breakdown of BOAP to acetate is the limiting step in the syntophic conversion process. The anode microbial community displayed simultaneous conversion of sugar derivatives, phenolic compounds, carboxylic acids, etc. present in BOAP, but at differing rates through division of labor and syntrophic exchange. Maximum removal for BOAP reached 43 mg COD/h vs. 59 mg COD/h for pure acetic acid. Furthermore, maximum hydrogen production for BOAP reached 11 L/L-d vs. 35 L/L-day for pure acetic acid. Coulombic efficiency for both substrates was >80%. Unpoising of the anode haulted exoelectrogenesis and allowed fermentative processes to proceed resulting in acetic acid accumulation at the rate of 8.4 mg/h. Coupled to the simultaneous conversion of compounds present within BOAP, these results support the division of labor and syntrophic interactions suggested here. The hydrogen productivity is the highest achieved to date for a biomass-derived stream. The exoelectrogenic rates achieved signify that commercial feasibility can be achieved if fermentative rates can be improved.

  1. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  2. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  4. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The

  5. A Series of Supramolecular Complexes for Solar Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II,Rh(III,Ru(II Photoinitiated Electron Collectors

    Directory of Open Access Journals (Sweden)

    Shamindri M. Arachchige

    2011-12-01

    Full Text Available Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL2Ru(dpp}2RhX2](PF65 with TL = bpy, phen or Ph2phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the 3MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the 3MLCT state and not the 3MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.

  6. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  7. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  8. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  9. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  10. A rationale for large inertial fusion plants producing hydrogen for powering low emission vehicles

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-01-01

    Inertial Fusion Energy (IFE) has been identified in the 1991 National Energy Strategy, along with Magnetic Fusion Energy (MFE), as one of only three inexhaustible energy sources for long term energy supply (past 2025), the other alternatives being fission and solar energy. Fusion plants, using electrolysis, could also produce hydrogen to power low emission vehicles in a potentially huge future US market: > 500 GWe would be needed for example, to replace all foreign oil imports with equal-energy hydrogen, assuming 70%-efficient electrolysis. Any inexhaustible source of electricity, including IFE and MFE reactors, can thus provide a long term renewable source of hydrogen as well as solar, wind and biomass sources. Hydrogen production by both high temperature thermochemical cycles and by electrolysis has been studied for MFE, but avoiding trace tritium contamination of the hydrogen product would best be assured using electrolysis cells well separated from any fusion coolant loops. The motivations to consider IFE or MFE producing renewable hydrogen are: (1) reducing US dependence on foreign oil imports and the associated trade deficient; (2) a hydrogen-based transportation system could greatly mitigate future air pollution and greenhouse gases; (3) investments in hydrogen pipelines, storage, and distribution systems could be used for a variety of hydrogen sources; (4) a hydrogen pipeline system could access and buffer sufficiently large markets that temporary outages of large (>> 1 GWe size) fusion hydrogen units could be tolerated

  11. Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk

    OpenAIRE

    Shimouchi, Akito; Nose, Kazutoshi; Yamaguchi, Makoto; Ishiguro, Hiroshi; Kondo, Takaharu

    2009-01-01

    Objective: To compare how and to what extent ingestion of hydrogen water and milk increase breath hydrogen in adults.Methods: Five subjects without specific diseases, ingested distilled or hydrogen water and milk as a reference material that could increase breath hydrogen. Their end-alveolar breath hydrogen was measured.Results: Ingestion of hydrogen water rapidly increased breath hydrogen to the maximal level of approximately 40 ppm 10–15 min after ingestion and thereafter rapidly decrease...

  12. Exploration of the hydrogen producing potential of Rhodobacter capsulatus chemostat cultures: The application of deceleration-stat and gradient-stat methodology

    NARCIS (Netherlands)

    Hoekema, S.; Breukelen, van F.R.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.

    2009-01-01

    In this work, the dependency of the volumetric hydrogen production rate of ammonium-limited Rhodobacter capsulatus chemostat cultures on their imposed biomass concentration and dilution rate was investigated. A deceleration-stat experiment was performed by lowering the dilution rate from 1.0 d-1 to

  13. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  14. Fiscal 1997 survey report on a feasibility of international collaboration on bio-hydrogen R and D; 1997 nendo chosa hokokusho (bio suiso seizo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the production technology of biohydrogen is an option effective for the world energy supply technology and the world environmental preservation technology in the 21st century. At present, a project named `R and D of the environment harmony type hydrogen production technology` tackles the R and D of the hydrogen production technology using photosynthetic microorganisms, and promotes the R and D in this field from both aspects of a basis and application as seen in a workshop held including interchanges with researchers and research institutes overseas. With the recently increasing interest in bio-hydrogen production technology also overseas, search and bleeding/improvement of microorganisms related to the hydrogen production and utilization technology of biomass have been advancing. For development in this field, it is necessary to construct a widespread research network and promote the comprehensive research and development. In this survey, most of the research institutes visited recognized an importance of international cooperation in this field and agreed to make future research interchanges in a wide range. Based on the survey, a feasibility of concrete international collaboration is searched. 146 refs., 2 figs., 11 tabs.

  15. Hydrogen-Induced Phase Transformation and Microstructure Evolution for Ti-6Al-4V Parts Produced by Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Natalia Pushilina

    2018-04-01

    Full Text Available In this paper, phase transitions and microstructure evolution in titanium Ti-6Al-4V alloy parts produced by electron beam melting (EBM under hydrogenation was investigated. Hydrogenation was carried out at the temperature of 650 °C to the absolute hydrogen concentrations in the samples of 0.29, 0.58, and 0.90 wt. %. Comparative analysis of microstructure changes in Ti-6Al-4V alloy parts was performed using scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Furthermore, in-situ XRD was used to investigate the phase transitions in the samples during hydrogenation. The structure of Ti-6Al-4V parts produced by EBM is represented by the α phase plates with the transverse length of 0.2 μm, the β phase both in the form of plates and globular grains, and metastable α″ and ω phases. Hydrogenation to the concentration of 0.29 wt. % leads to the formation of intermetallic Ti3Al phase. The dimensions of intermetallic Ti3Al plates and their volume fraction increase significantly with hydrogen concentration up to 0.58 wt. % along with precipitation of nano-sized crystals of titanium δ hydrides. Individual Ti3Al plates decay into nanocrystals with increasing hydrogen concentration up to 0.9 wt. % accompanied by the increase of proportion and size of hydride plates. Hardness of EBM Ti-6Al-4V alloy decreases with hydrogen content.

  16. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor

    International Nuclear Information System (INIS)

    Jiang, Hongyu; Gadow, Samir I.; Tanaka, Yasumitsu; Cheng, Jun; Li, Yu-You

    2015-01-01

    Thermophilic hydrogen fermentation of cellulose was evaluated by a long term continuous experiment and batch experiments. The continuous experiment was conducted under 55 °C using a continuously stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 10 day. A stable hydrogen yield of 15.4 ± 0.23 mol kg −1 of cellulose consumed was maintained for 190 days with acetate and butyrate as the main soluble byproducts. An analysis of the 16S rRNA sequences showed that the hydrogen-producing thermophilic cellulolytic microorganisms (HPTCM) were close to Thermoanaerobacterium thermosaccharolyticum, Clostridium sp. and Enterobacter cloacae. Batch experiment demonstrated that the highest H 2 producing activity was obtained at 55 °C and the ultimate hydrogen yield and the metabolic by-products were influenced greatly by temperatures. The effect of temperature variation showed that the activation energy for cellulose and glucose were estimated at 103 and 98.8 kJ mol −1 , respectively. - Highlights: • Continuous cellulosic-hydrogen fermentation was conducted at 55 °C. • Hydrogen yield was improved to 15.4 mol kg −1 of consumed-cellulose. • The cellulosic hydrogen bacteria were close to Clostridia and Enterobacter genus. • The mixed microflora produced H 2 within a wide range of temperatures (35 °C–65 °C). • Activation energy of cellulose and glucose were 103 and 98.8 kJ mol −1 , respectively

  17. A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides.

    Science.gov (United States)

    Bramono, Sandhi Eko; Lam, Yuen Sean; Ong, Say Leong; He, Jianzhong

    2011-10-01

    A unique mesophilic Clostridium species strain BOH3 is obtained in this study, which is capable of fermenting monosaccharides to produce butanol and hydrolyzing polysaccharides to produce hydrogen (H(2)) and volatile fatty acids (VFAs). From 30 g/L of glucose and xylose each, batch culture BOH3 was able to produce 4.67 and 4.63 g/L of butanol. Enhancement treatments by increasing the inoculated cells improved butanol production to 7.05 and 7.41 g/L, respectively. Hydrogen production (2.47 and 1.93 mmol) was observed when cellulose and xylan (10 g/L each) were used, suggesting that strain BOH3 possesses xylanolytic and cellulolytic capabilities. These unique features reveal the strain's novelty as most wild-type solventogenic strains have not been reported to have such properties. Therefore, culture BOH3 is promising in generating butanol and hydrogen from renewable feedstock. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  18. Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton's 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ''conventional'' indirect drive target gains versus ''advanced, e.g. Fast Ignitor'' direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ''conventional'' and ''advanced'' IFE assumptions, respectively

  19. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  20. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  1. Study of bio-oil and bio-char production from algae by slow pyrolysis

    International Nuclear Information System (INIS)

    Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C.

    2013-01-01

    This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49. -- Highlights: •Bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. •Suitable temperature to obtained bio-oil and bio-char were at about 550 and 500 °C. •Saturated functional carbon of bio-oil was heavy naphtha, kerosene, diesel oil. •ECR had an average value of 0.49

  2. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell.

    Science.gov (United States)

    Shin, Jong-Hwan; Yoon, Jong Hyun; Lee, Seung Hoon; Park, Tai Hyun

    2010-01-01

    Enterobacter asburiae SNU-1 harvested after cultivation was used as a whole cell biocatalyst, for the production of hydrogen. Formic acid was efficiently converted to hydrogen using the harvested cells with an initial hydrogen production rate and total hydrogen production of 491 ml/l/h and 6668 ml/l, respectively, when 1 g/l of whole cell enzyme was used. Moreover, new pH-stat fed-batch operation was conducted, and total hydrogen production was 1.4 times higher than that of batch operation. For practical application, bio-hydrogen produced from formic acid using harvested cells was directly applied to PEMFC for power generation.

  3. Effect of temperature and hydraulic retention time on hydrogen producing granules: Homoacetogenesis and morphological characteristics

    International Nuclear Information System (INIS)

    Abreu, A. A.; Danko, A. S.; Alves, M. M.

    2009-01-01

    The effect of temperature and hydraulic retention time (HRT) on the homoacetogenesisi and on the morphological characteristics of hydrogen producing granules was investigated. Hydrogen was produced using an expanded granular sludge blanket (EGSB) reactor, fed with glucose and L-arabinose, under mesophilic (37 degree centigrade), thermophilic (55 degree centigrade), and hyper thermophilic (70 degree centigrade) conditions. (Author)

  4. Engineering BioBrick vectors from BioBrick parts

    Directory of Open Access Journals (Sweden)

    Knight Thomas F

    2008-04-01

    Full Text Available Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1 use the process to make and share new BioBrick vectors; (2 expand the current collection of BioBrick vector parts; and (3 characterize and improve the available collection of BioBrick vector parts.

  5. CO{sub 2} reduction cost for bio-diesel, Danish produced bio-diesel based on rape seed; CO{sub 2} reduktionsomkostninger ved biodiesel. Dansk produceret biodiesel pae raps

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Kirsten; Kjellingbro, M; Mogensen, Martin Frank; Kohl, M

    2006-12-15

    Bio-diesel based on rape seed (RME, Rape Methyl Esther), often referred to as first generation bio-diesel, is a renewable fuel with CO{sub 2} reduction potential. Mixed with conventional diesel it can be used directly in existing diesel engines. The EU target for the use of bio-fuels in the transport sector was 2 % by 2005 and is 5.75 % by 2010. In Denmark, the use of bio-fuels in the transport sector is not viewed as a cost-effective CO{sub 2} reduction measure. This conclusion concerning the cost-effectiveness of bio-fuels was partly based on calculations of the CO2 reduction cost for Danish-produced RME made by the Danish Energy Authority in 2003. At that time the cost was estimated at 360 DKK/tonne CO{sub 2}. Since then some of the assumptions behind the calculations have changed. The overall objective of this report is to update the Danish Energy Authority's study from 2003, taking into account revised assumptions. The report also attempts to examine the uncertainties associated with the calculations by including extended sensitivity analyses. The report draws the following conclusions: 1) The CO{sub 2} reduction cost for Danish produced RME is estimated at 860 DKK/tonne CO{sub 2}, which is significantly higher than the result obtained by the Danish Energy Authority in 2003. 2) The difference from the Danish Energy Authority's original calculations is principally due to a higher rape seed price based on the market price on rape seed. 3) The uncertainty in both estimates is substantial, and there is about 15 % probability of the reduction costs being lower than the target of 180 DKK/tonne CO2 set by the government. (au)

  6. CO{sub 2} reduction cost for bio-diesel, Danish produced bio-diesel based on rape seed; CO{sub 2} reduktionsomkostninger ved biodiesel. Dansk produceret biodiesel pae raps

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Kirsten; Kjellingbro, M.; Mogensen, Martin Frank; Kohl, M.

    2006-12-15

    Bio-diesel based on rape seed (RME, Rape Methyl Esther), often referred to as first generation bio-diesel, is a renewable fuel with CO{sub 2} reduction potential. Mixed with conventional diesel it can be used directly in existing diesel engines. The EU target for the use of bio-fuels in the transport sector was 2 % by 2005 and is 5.75 % by 2010. In Denmark, the use of bio-fuels in the transport sector is not viewed as a cost-effective CO{sub 2} reduction measure. This conclusion concerning the cost-effectiveness of bio-fuels was partly based on calculations of the CO2 reduction cost for Danish-produced RME made by the Danish Energy Authority in 2003. At that time the cost was estimated at 360 DKK/tonne CO{sub 2}. Since then some of the assumptions behind the calculations have changed. The overall objective of this report is to update the Danish Energy Authority's study from 2003, taking into account revised assumptions. The report also attempts to examine the uncertainties associated with the calculations by including extended sensitivity analyses. The report draws the following conclusions: 1) The CO{sub 2} reduction cost for Danish produced RME is estimated at 860 DKK/tonne CO{sub 2}, which is significantly higher than the result obtained by the Danish Energy Authority in 2003. 2) The difference from the Danish Energy Authority's original calculations is principally due to a higher rape seed price based on the market price on rape seed. 3) The uncertainty in both estimates is substantial, and there is about 15 % probability of the reduction costs being lower than the target of 180 DKK/tonne CO2 set by the government. (au)

  7. Method to upgrade bio-oils to fuel and bio-crude

    Science.gov (United States)

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  8. Studies on dual fuel operation of rubber seed oil and its bio-diesel with hydrogen as the inducted fuel

    Energy Technology Data Exchange (ETDEWEB)

    Edwin Geo, V.; Nagalingam, B. [Department of Mechanical Engineering, KCG College of Technology, Chennai, Tamil Nadu 600097 (India); Nagarajan, G. [Department of Mechanical Engineering, IC Engineering Division, Anna University, Chennai, Tamil Nadu 600025 (India)

    2008-11-15

    The main problems with the use of neat vegetable oils in diesel engines are higher smoke levels and lower thermal efficiency as compared to diesel. The problem can be tackled by inducting a gaseous fuel in the intake manifold along with air. In this investigation, hydrogen is used as the inducted fuel and rubber seed oil (RSO), rubber seed oil methyl ester (RSOME) and diesel are used as main fuels in a dual fuel engine. A single cylinder diesel engine with rated output of 4.4 kW at 1500 rpm was converted to operate in the dual fuel mode. Dual fuel operation of varying hydrogen quantity with RSO and RSOME results in higher brake thermal efficiency and significant reduction in smoke levels at high outputs. The maximum brake thermal efficiency is 28.12%, 29.26% and 31.62% with RSO, RSOME and diesel at hydrogen energy share of 8.39%, 8.73% and 10.1%, respectively. Smoke is reduced from 5.5 to 3.5 BSU with RSOME and for RSO it is from 6.1 to 3.8 BSU at the maximum efficiency point. The peak pressure and maximum rate of pressure rise increase with hydrogen induction. Heat release rate indicates an increase in the combustion rate with hydrogen induction. On the whole it is concluded that hydrogen can be inducted along with air in order to reduce smoke levels and improve thermal efficiency of RSO and its bio-diesel fuelled diesel engines. (author)

  9. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  10. Fixed-bed hydrogen pyrolysis of rapeseed: product yields and compositions

    International Nuclear Information System (INIS)

    Onay, O.; Kockar, O.M.; Gaines, A.F.; Snape, C.E.

    2006-01-01

    The fixed-bed hydro pyrolysis tests have been conducted on a sample of rapeseed to investigate the effect of hydro pyrolysis on the yields and chemical structures of bio-oils, with a view to improving overall product quality. A ammonium dioxydithiomolybdenate catalyst has been used in some tests to further increase conversion. The maximum bio-oil yield of 84% was obtained in hydrogen atmosphere (with catalyst) at hydrogen pressure of 15 MPa, hydrogen flow rate of 10 dm 3 min -1 , hydro pyrolysis temperature of 520 degree C, and heating rate of 5 o Cmin -1 . Then this bio-oil was characterized by elemental analysis and some spectroscopic and chromatographic techniques. And finally, this bio-oil yield and chemical composition compared with oil obtained from fast pyrolysis condition

  11. Hydrotreatment of bio-oil distillates produced from pyrolysis and hydrothermal liquefaction of duckweed: A comparison study.

    Science.gov (United States)

    Wang, Feng; Tian, Ye; Zhang, Cai-Cai; Xu, Yu-Ping; Duan, Pei-Gao

    2018-09-15

    A comprehensive comparison of hydrothermal liquefaction (HTL) to the pyrolysis of duckweed was conducted to determine the yields and components of the crude bio-oils and their distillates. The upgrading behaviors of the distillates were thoroughly investigated with the use of used engine oil as a solvent. With all other variables fixed, HTL produced crude bio-oil with a lower H/C ratio (1.28 ± 0.03) than pyrolysis did (1.45 ± 0.04). However, its distillates had a higher H/C ratio (1.60 ± 0.05) and total yield (66.1 ± 2.0 wt%) than pyrolysis (1.46 ± 0.04 and 47.2 ± 1.4 wt%, respectively). Phenolics and nitrogenous heterocycles constituted relatively major proportions of the two crude bio-oils and most of their distillates. Obvious differences in molecular composition between the two crude bio-oils and their distillates were ascribed to the distinct impacts of HTL and pyrolysis and were affected by the distillate temperature. Co-hydrotreating with used engine oil (UEO) provided the upgraded bio-oils much higher H/C ratios (~1.78 ± 0.05) and higher heating values (~45.5 ± 1.4 MJ·kg -1 ), as well as much lower contents of N, O and S compared to their initial distillates. Aromatics and alkanes constituted a large proportion in most of upgraded bio-oils. N removal from the pyrolysis distillates was easier than from the HTL distillates. Distinct differences in yields and molecular compositions for the upgraded bio-oils were also attributed to the different influences associated with the two conversion routes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Relative Importance of Various Sources of Defect-Producing Hydrogen Introduced into Steel During Application of Vitreous Coatings

    Science.gov (United States)

    Moore, Dwight G; Mason, Mary A; Harrison, William N

    1953-01-01

    When porcelain enamels or vitreous-type ceramic coatings are applied to ferrous metals, there is believed to be an evolution of hydrogen gas both during and after the firing operation. At elevated temperatures rapid evolution may result in blistering while if hydrogen becomes trapped in the steel during the rapid cooling following the firing operation gas pressures may be generated at the coating-metal interface and flakes of the coating literally blown off the metal. To determine experimentally the relative importance of the principal sources of the hydrogen causing the defects, a procedure was devised in which heavy hydrogen (deuterium) was substituted in turn for regular hydrogen in each of five possible hydrogen-producing operations in the coating process. The findings of the study were as follows: (1) the principal source of the defect-producing hydrogen was the dissolved water present in the enamel frit that was incorporated into the coating. (2) the acid pickling, the milling water, the chemically combined water in the clay, and the quenching water were all minor sources of defect-producing hydrogen under the test conditions used. Confirming experiments showed that fishscaling could be eliminated by using a water-free coating.

  13. The potential of using organic side-streams produced in Ghana for generation of bio-fuel

    International Nuclear Information System (INIS)

    Laryea, G. N; Abdul-Samii, R.; Tottimeh, G.

    2014-01-01

    Bio-fuel can be generated from organic side-streams of maize, rice, millet, sorghum and groundnut by using fast pyrolysis technology. Data on side-streams of these crops were obtained from the Ministry of Food and Agriculture (MoFA) in 2010 for the study. The study shows that the estimated total crop side-streams generated was 3,475,413 t of which 2,345,903.5 of bio-fuel can be produced, given a potential energy equivalent of 42,226 PJ/y. The result shows a growth rate of 12.9 per cent in energy equivalent potential for synthetic fuel production as compared to the estimated production in 2009. Northern Region had the highest energy potential of 9,676 PJ/y (22.91%) of the total energy equivalent of bio-fuel, whereas, Greater Accra Region had the lowest with 183 PJ/y (0.43%). It is recommended that the available energy potential at the three northern regions of Ghana be utilised effectively when renewable energy policy is improved for a wider applications of side-streams from crops.(au)

  14. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    Science.gov (United States)

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Flora Robotica – Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids

    DEFF Research Database (Denmark)

    Hamann, Heiko; Wahby, Mostafa; Schmickl, Thomas

    2015-01-01

    robotica. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce architectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow...

  18. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K. [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2009-03-15

    Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H{sub 2} g{sup -1} starch and a specific hydrogen production rate of 32.1 ml H{sub 2} g{sup -1} h{sup -1}. (author)

  19. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  20. Development mechanisms of microorganisms oxidizing the hydrogen: role and consequences in the industry; Mecanismes de developpement de microorganismes oxydant l'hydrogene: role et consequences dans l'industrie

    Energy Technology Data Exchange (ETDEWEB)

    Gales, G

    2004-10-15

    It is possible to observe a bacterial development in a ultra-pure water basin containing irradiating wastes. This ecosystem has the particularity to contain dissolved molecular hydrogen produced by radiolysis as well as oxygen in non negligible quantities. After having studied the physico-chemical properties of this ecosystem, bio-film and water have been sampled in different parts of the basin. The aim of this work was to identify the different populations of bacteria which are present, to know their origin and to understand their development mechanisms. The water and bio-film samples have been cultivated in order to isolate the chemo-litho-trophic bacteria which oxidize the hydrogen, and on nutritive agar-agar. These bacteria have been identified by partial determination of the DNAr 16S sequences. The DNA has also been extracted of the bio-films in order to carry out a study of the molecular diversity of the bacterial populations (determination of the sequences of the DNAr 16S). Surprisingly, at the surface of the basin, the DNAr 16S sequences of the autotrophic strains are the same as the sequences detected by the method of sequences determination. Most of bacteria of this medium have then been isolated. The comparison between the bacteria isolated from different parts of the basin allows to say that the make-up waters of the basin are the main source of contamination and to propose a scenario for this contamination. The hydrogen metabolism of most of the bacteria has been studied by gaseous exchange mass spectrometry: those isolated make the 'knallgas reaction' (H{sub 2} + 1/2O{sub 2} {yields} H{sub 2}O) and fix carbon dioxide in these conditions. In the studied basin are then a bacterial community based on hydrogen and whose primary producers make the 'knallgas' reaction. Most of the bacteria, mainly a (Ralstonia sp. GGLH002) tolerate the oxidizing stress generated by radiolysis. (O.M.)

  1. Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C. [Iowa State Univ., Ames, IA (United States); Smith, Ryan [Iowa State Univ., Ames, IA (United States); Wright, Mark [Iowa State Univ., Ames, IA (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resasco, Daniel [Univ. of Oklahoma, Norman, OK (United States); Crossley, Steven [Univ. of Oklahoma, Norman, OK (United States)

    2014-09-28

    This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of a series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.

  2. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  3. Exploring the bio-psychosocial effects of renal replacement therapy ...

    African Journals Online (AJOL)

    Governmental support for holistic kidney disease treatment and careful teaming of key role players to reduce the severity and far-reaching bio-psychosocial effects of HD and CAPD treatment are recommended. Hierdie artikel beskryf 'n kwalitatiewe studie wat die bio-psigososiale effekte van niervervangingsterapie op ...

  4. BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID.

    Science.gov (United States)

    Kim, Sun; Islamaj Doğan, Rezarta; Chatr-Aryamontri, Andrew; Chang, Christie S; Oughtred, Rose; Rust, Jennifer; Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia; Matos, Sérgio; Santos, André; Campos, David; Oliveira, José Luís; Singh, Onkar; Jonnagaddala, Jitendra; Dai, Hong-Jie; Su, Emily Chia-Yu; Chang, Yung-Chun; Su, Yu-Chen; Chu, Chun-Han; Chen, Chien Chin; Hsu, Wen-Lian; Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K; Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan; Shin, Soo-Yong; Kwon, Dongseop; Dolinski, Kara; Tyers, Mike; Wilbur, W John; Comeau, Donald C

    2016-01-01

    BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  5. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  6. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, R., E-mail: barrav@post.bgu.ac.il [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Eliezer, D. [Department of Material Science and Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Glam, B.; Eliezer, S.; Moreno, D. [Soreq Nuclear Research Center, Yavne, 81800 (Israel)

    2015-11-05

    Hydrogen trapping behavior in a lean duplex stainless steel (LDS) is studied by means of thermal desorption spectrometry (TDS). The susceptibility of a metal to hydrogen embrittlement is directly related to the trap characteristics: source or sink (reversible or irreversible, respectively). Since trapping affects the metal's diffusivity, it has a major influence on the hydrogen assisted cracking (HAC) phenomenon. It is known from previously published works that the susceptibility will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's initial state in the steel. In this research the trapping mechanism of LDS, exposed to different hydrogen charging environments, is analyzed by means of TDS. The TDS analysis was supported and confirmed by means of X-ray diffraction (XRD), hydrogen quantitative measurements and microstructural observations. It was found that gaseous charging (which produces lower hydrogen fugacity) creates ∼22% higher activation energy for hydrogen trapping compared with cathodic charging (which produces higher hydrogen fugacity). These results are due to the different effects on the hydrogen behavior in LDS which causes a major difference in the hydrogen contents and different hydrogen assisted phase transitions. The highest activation energy value in the cathodic charged sample was ascribed to the dominant phase transformation of γ → γ{sup ∗}, whereas in the gaseous charged sample it was ascribed to the dominant formation of intermetallic compound, sigma (σ). The relation between hydrogen distribution in LDS and hydrogen trapping mechanism is discussed in details. - Highlights: • The relation between hydrogen distribution and trapping in LDS is discussed. • Hydrogen's initial state in LDS causes different microstructural changes. • Gaseous charged LDS creates higher trapping energy compared to cathodic charged LDS. • The dominant phase transformation in

  7. Effects of methanogenic effluent recycle on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J.T.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    Most research on fermentative hydrogen production has focused on optimizing the process and not on the practicalities of pH control although active pH control in a hydrogen reactor is necessary for stable and efficient performance. Batch experiments have shown that hydrogen ceases to be produced when there is no pH control. This study determined if recycle effluent from the methane reactor of a two-phase hydrogen-producing system would reduce the external alkali needed for pH control in a hydrogen reactor. It also determined if recycle affected the performance of the hydrogen reactor and the overall two-phase system. This paper describes the experimental laboratory-scale, two-phase hydrogen producing system which was operated alternately with and without effluent recycle from a methane reactor to the hydrogen reactor. The two-phase hydrogen producing system yielded 5.7 times more energy recovery than that obtained by the fermentative hydrogen producing reactor alone. The use of effluent from the methane reactor can reduce the operational cost of external alkali for pH control. 6 refs., 5 figs.

  8. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    Science.gov (United States)

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.

    Science.gov (United States)

    Milton, Ross D; Giroud, Fabien; Thumser, Alfred E; Minteer, Shelley D; Slade, Robert C T

    2013-11-28

    Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 μW cm(-2) were observed for FAD-GDH/laccase biofuel cells.

  10. Immediate catalytic upgrading of soybean shell bio-oil

    International Nuclear Information System (INIS)

    Bertero, Melisa; Sedran, Ulises

    2016-01-01

    The pyrolysis of soybean shell and the immediate catalytic upgrading of the bio-oil over an equilibrium FCC catalyst was studied in order to define its potential as a source for fuels and chemicals. The experiments of pyrolysis and immediate catalytic upgrading were performed at 550 °C during 7 min with different catalysts to oil relationships in an integrated fixed bed pyrolysis-conversion reactor. The results were compared under the same conditions against those from pine sawdust, which is a biomass source commonly used for the production of bio-oil. In the pyrolysis the pine sawdust produced more liquids (61.4%wt.) than the soybean shell (54.7%wt.). When the catalyst was presented, the yield of hydrocarbons increased, particularly in the case of soybean shell, which was four time higher than in the pyrolysis. The bio-oil from soybean shell produced less coke (between 3.1 and 4.3%wt.) in its immediate catalytic upgrading than that from pine sawdust (between 5 and 5.8%wt.), due to its lower content of phenolic and other high molecular weight compounds (three and five times less, respectively). Moreover, soybean shell showed a higher selectivity to hydrocarbons in the gasoline range, with more olefins and less aromatic than pine sawdust. - Highlights: • Soybean shell is a possible source of fuels with benefits as compared to pine sawdust. • Bio-oils upgraded over FCC catalyst in an integrated pyrolysis-conversion reactor. • Pine sawdust bio-oil had more phenols than soybean shell bio-oil. • Soybean shell bio-oil produced more hydrocarbons in gasoline range and less coke.

  11. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  12. Performance/price estimates for cortex-scale hardware: a design space exploration.

    Science.gov (United States)

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  14. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    International Nuclear Information System (INIS)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-01

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy

  15. Briquetting mechanism and waterproof performance of bio-briquette

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G.; Chen, L.; Cao, J. [Henen Polytechnic University, Jiaozuo (China)

    2008-07-15

    Maize stalk and bio-briquette binder made from it were studied comparatively by FTIR and the microstructure of bio-briquette was observed and analyzed by microscopy. It was found that a large amount of unreacted biomass fibers exist in the binder. These form a multi-level network structure inside the bio-briquette and could make fine coal particles connect together. The multi-level network structure would be still present after the bio-briquettes are immersed in water for 24 hours. On the other hand, stalk materials could be partly degraded after treatment and, with other liquid ingredients in the binder, the degradation products could form a viscous fluid which would work as a bonding ingredient inside the bio-briquette and could improve the waterproofing ability of the binder after solidification. Therefore, the multi-level network structure of the biomaterial and the presence of viscous fluid are very important to the shaping and the improvement of the waterproofing ability of bio-briquettes. 11 refs., 3 figs.

  16. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  17. Development mechanisms of microorganisms oxidizing the hydrogen: role and consequences in the industry; Mecanismes de developpement de microorganismes oxydant l'hydrogene: role et consequences dans l'industrie

    Energy Technology Data Exchange (ETDEWEB)

    Gales, G

    2004-10-15

    It is possible to observe a bacterial development in a ultra-pure water basin containing irradiating wastes. This ecosystem has the particularity to contain dissolved molecular hydrogen produced by radiolysis as well as oxygen in non negligible quantities. After having studied the physico-chemical properties of this ecosystem, bio-film and water have been sampled in different parts of the basin. The aim of this work was to identify the different populations of bacteria which are present, to know their origin and to understand their development mechanisms. The water and bio-film samples have been cultivated in order to isolate the chemo-litho-trophic bacteria which oxidize the hydrogen, and on nutritive agar-agar. These bacteria have been identified by partial determination of the DNAr 16S sequences. The DNA has also been extracted of the bio-films in order to carry out a study of the molecular diversity of the bacterial populations (determination of the sequences of the DNAr 16S). Surprisingly, at the surface of the basin, the DNAr 16S sequences of the autotrophic strains are the same as the sequences detected by the method of sequences determination. Most of bacteria of this medium have then been isolated. The comparison between the bacteria isolated from different parts of the basin allows to say that the make-up waters of the basin are the main source of contamination and to propose a scenario for this contamination. The hydrogen metabolism of most of the bacteria has been studied by gaseous exchange mass spectrometry: those isolated make the 'knallgas reaction' (H{sub 2} + 1/2O{sub 2} {yields} H{sub 2}O) and fix carbon dioxide in these conditions. In the studied basin are then a bacterial community based on hydrogen and whose primary producers make the 'knallgas' reaction. Most of the bacteria, mainly a (Ralstonia sp. GGLH002) tolerate the oxidizing stress generated by radiolysis. (O.M.)

  18. Removal of Hydrogen Sulfide from Septic Tank by Vermicomposting Bio Filter

    Directory of Open Access Journals (Sweden)

    Abdol Kazem Neisi

    2016-09-01

    Full Text Available Background & Aims of the Study: Hydrogen sulfide (H2S is a colorless and highly toxic, easily dissolved in water, flammable and explosive gas. Hydrogen sulfide gas is the main cause of odor emissions from municipal sewage plants. One method for removal of hydrogen sulfide gas is the use of biological systems, biofilter. The aim of this study was to survey removal hydrogen sulfide provide in septic tank by vermicomposting biofilter. Materials and Methods: In this study pilot-scale biofilter has been made of bed vermicompost and wood trash. To survey biofilter performance under real condition, the pilot installed in one wastewater pumping station of Ahwaz city, Iran. The study was carried out over 80 days. Inlet and outlet H2S concentration were measured on regular basis. To provide an optimal condition for bacterial growth, moisture was adjusted between 40% and 60% throughout the experiment. Results: Results showed that H2S concentration emitted from the pumping station during the study varied greatly between 33 and 54ppm .The maximum adsorption capacity of the biological bedding was recorded at 22.4 g/m3.hr and the mean efficiency of H2S removal account the startup time was 89.31% .The mean performance efficiency during the biological activity after the startup was recorded at 96.88%. Conclusion: use up biofilter with vermicompost bed and woodchip is an economic method for H2S removal of septic tanks. Removal efficiency of more than 96% is expected with this method.

  19. Bifurcation behavior during the hydrogen production in two compatible configurations of a novel circulating fluidized bed membrane reformer

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.

    2004-01-01

    'Full text:' Multiplicity of steady states (Static Bifurcation Behavior, SBB) in a novel Circulating Fluidized Bed (CFB) membrane reformer for the efficient production of hydrogen by steam reforming of heptane (model component of heavy hydrocarbons and renewable bio-oils) is investigated. The present paper highlights the practical implications of this phenomenon on the behavior of this novel reformer with special focusing on hydrogen production. Two configurations are considered and compared. One is with the catalyst regeneration before the gas-solid separation and the other one is with the catalyst regeneration after the gas-solid separation. Multiplicity of the steady states prevails over a number of design and operating parameters with important impact on the reformer performance. The basis of process evaluation is focused on the net hydrogen production. The dependence of the behavior of this autothermal CFB is shown to be quite complex and defy the simple logic of non-autothermal processes. The unit can be a very efficient hydrogen producer provided its bifurcation behavior is well understood and correctly exploited. (author)

  20. Recent approaches in food bio-preservation - a review.

    Science.gov (United States)

    Singh, Veer Pal

    2018-01-01

    Bio-preservation is a technique of extending the shelf life of food by using natural or controlled microbiota or antimicrobials. The fermentation products as well as beneficial bacteria are generally selected in this process to control spoilage and render pathogen inactive. The special interest organism or central organism used for this purpose is lactic acid bacteria (LAB) and their metabolites. They are capable to exhibit antimicrobial properties and helpful in imparting unique flavour and texture to the food products. The major compounds produced by LAB are bacteriocin, organic acids and hydrogen peroxide. Bacteriocin is peptides or proteins with antimicrobial activity. On the basis of size, structure and post-translational modification, bacteriocin is divided into four different classes. Due to non-toxic, non-immunogenic, thermo-resistance characteristics and broad bactericidal activity, LAB bacteriocins are considered good bio-preservative agents. The most common LAB bactriocin is nisin which has wider applications in food industry and has been Food and Drug Administration (FDA) approved. Nisin and other bacteriocin are being used in vegetables products, dairy and meat industries. Apart from LAB metabolites, bacteriophages and endolysins has promising role in food processing, preservation and safety. Bacteriocins and endolysins are more suitable for DNA shuffling and protein engineering to generate highly potent variants with expanded activity spectrum. Genetically modified bacteriophages may also be helpful in bio-preservation, however; their safety issues must be addressed properly before selection as bio-preservative agent.

  1. Recent approaches in food bio-preservation - a review

    Directory of Open Access Journals (Sweden)

    Veer Pal Singh

    2018-03-01

    Full Text Available Bio-preservation is a technique of extending the shelf life of food by using natural or controlled microbiota or antimicrobials. The fermentation products as well as beneficial bacteria are generally selected in this process to control spoilage and render pathogen inactive. The special interest organism or central organism used for this purpose is lactic acid bacteria (LAB and their metabolites. They are capable to exhibit antimicrobial properties and helpful in imparting unique flavour and texture to the food products. The major compounds produced by LAB are bacteriocin, organic acids and hydrogen peroxide. Bacteriocin is peptides or proteins with antimicrobial activity. On the basis of size, structure and post-translational modification, bacteriocin is divided into four different classes. Due to non-toxic, non-immunogenic, thermo-resistance characteristics and broad bactericidal activity, LAB bacteriocins are considered good bio-preservative agents. The most common LAB bactriocin is nisin which has wider applications in food industry and has been Food and Drug Administration (FDA approved. Nisin and other bacteriocin are being used in vegetables products, dairy and meat industries. Apart from LAB metabolites, bacteriophages and endolysins has promising role in food processing, preservation and safety. Bacteriocins and endolysins are more suitable for DNA shuffling and protein engineering to generate highly potent variants with expanded activity spectrum. Genetically modified bacteriophages may also be helpful in bio-preservation, however; their safety issues must be addressed properly before selection as bio-preservative agent.

  2. Co-processing potential of HTL bio-crude at petroleum refineries

    DEFF Research Database (Denmark)

    Jensen, Claus Uhrenholt; Hoffmann, Jessica; Rosendahl, Lasse Aistrup

    2016-01-01

    An experimental study on hydrotreatment of ligno-cellulosic hydrothermal liquefaction (HTL) bio-crude to achieve a bio-feed compatible for co-processing at a refinery was made to investigate the effect of operating temperature, pressure and hydrogen to oil ratio. Using a conventional NiMo/Al2O3 h...

  3. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wu, Tianwei; Yang, Fan; Qin, Qin

    2016-01-01

    Highlights: • New method for producing HRG by gasification using BFS as heat carrier was proposed. • The continuous experiment of steam gasification in molten BFS was conducted. • The hydrogen-enriched syngas was produced by this method. • The molten BFS waste heat was utilized effectively by steam gasification. • This method could be widely used in steam gasification of different types of coal. - Abstract: The new method for producing hydrogen-enriched syngas (HRG) by steam gasification of coal using molten blast furnace slag (BFS) as heat carrier was established. In order to achieve the HRG production, a gasification system using this method was proposed and constructed. The carbon gasification efficiency (CE), hydrogen yield (YH_2) and cold gasification efficiency (CGE) in the molten slag reactor were measured, and the effects of temperature, S/C (steam to coal) ratio and coal type on the reaction performance were accessed. The results indicated that the preferred temperature was 1350 °C, which ensured the miscibility of coal–steam–slag, the diffusion of reactant in molten BFS as well as recovering waste heat. The optimal S/C ratio was 1.5–2.0 for producing HRG. Under these conditions, the hydrogen fraction was higher than 63% and the gas yield reached to 1.89 Nm"3/kg. The CE and CGE were higher than 96% and 102%, respectively. The YH_2 also reached to 1.20 Nm"3/kg. Meanwhile, different types of coal were successfully gasified in molten BFS reactor for producing HRG. The proposed method enhanced the gasification efficiency of different types of coal, recovered the BFS waste heat effectively, and had important guidance for industrial manufacture.

  4. The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2016-10-01

    Full Text Available This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition, yield and thermal demand were validated and showed conformity with reported experimental results, and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput, supercritical water refining temperature, nature of desirable coproducts, downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 °C conversion temperature allowed higher gross syngas and CHP production. However, mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case, at 450 °C reactor temperature, 18 wt. % solid content and presence of downstream indirect production recorded 66.5%, 66.2% and 57.2% energetic, fuel-equivalent and exergetic efficiencies respectively.

  5. Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ze-Kun; Li, Shiue-Lin; Kuo, Pei-Chen; Chen, I.-Chieh; Tien, Yu-Min; Huang, Yu-Jung; Chuang, Chung-Po; Wong, Son-Chi; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng Kung University No. 1, University Road, Tainan 701, ROC (China)

    2010-12-15

    An intermittent-continuous stirred tank reactor (I-CSTR) was evaluated for thermophilic anaerobic hydrogen fermentation with vegetable kitchen waste (VKW). The seeding sludge was enriched from kitchen waste compost. Because of different seasonal dietary habits, the quality of vegetable kitchen waste was unstable, and all variations of composition were in the range from 20 to 40%. The I-CSTR process was conducted under different volumetric loading rates (VLR) with different VKW-diluted concentrations. The hydrogen production rate and yield in Run 2 (VLR as 28 g-COD L{sup -1} day{sup -1}) were 1.0 L-H{sub 2} L{sup -1} day{sup -1} and 1.7 mmol-H{sub 2} g-COD{sup -1}, which were higher than those in Run1 (VLR as 19 g-COD/L-day). The hydrolysis efficiency of organic solids (VSS) was about 45% in Run 1 better than the 32% in Run 2. The carbohydrate component of VKW was clearly degraded with the accumulation of butyrate, while the organic nitrogen component was converted to ammonia. The vegetable cellulose was degraded from 3.2 g L{sup -1} and 3.6-1.8 and 3.2 g L{sup -1} in Runs 1 and 2, respectively. In addition, the high concentration of lactate from the acidified VKW could be degraded completely both in Runs 1 and 2. According to the results of the time series profile in day 59, oil and grease were not degraded significantly. The removal of oil and grease was superficially caused by stacking on the wall, pipe, and propeller of the reactor, or by floating on the liquid surface. The 16S rDNA cloning library and sequence were applied for analyzing microbial communities. The dominant OTU was closely affiliated to Thermoanaerobacterium thermosaccharolyticum, which is considered as the predominant hydrogen-producing bacteria. The OTUs closely related to Moorella thermoacetica and Clostridiaceae bacterium FH052 were considered as acetogenic bacterium and hydrogen-producing bacteria in the I-CSTR system. (author)

  6. Hydrogen engine performance analysis. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1978-08-01

    Many problems associated with the design and development of hydrogen-air breathing internal combustion engines for automotive applications have been identified by various domestic and foreign researchers. This project addresses the problems identified in the literature, seeks to evaluate potential solutions to these problems, and will obtain and document a design data-base convering the performance, operational and emissions characteristics essential for making rational decisions regarding the selection and design of prototype hydrogen-fueled, airbreathing engines suitable for manufacture for general automotive use. Information is included on the operation, safety, emission, and cost characteristics of hydrogen engines, the selection of a test engine and testing facilities, and experimental results. Baseline data for throttled and unthrottled, carburetted, hydrogen engine configurations with and without exhaust gas recirculation and water injection are presented. In addition to basic data gathering concerning performance and emissions, the test program conducted was formulated to address in detail the two major problems that must be overcome if hydrogen-fueled engines are to become viable: flashback and comparatively high NO/sub x/ emissions at high loads. In addition, the results of other hydrogen engine investigators were adjusted, using accepted methods, in order to make comparisons with the results of the present study. The comparisons revealed no major conflicts. In fact, with a few exceptions, there was found to be very good agreement between the results of the various studies.

  7. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  8. Development mechanisms of microorganisms oxidizing the hydrogen: role and consequences in the industry

    International Nuclear Information System (INIS)

    Gales, G.

    2004-10-01

    It is possible to observe a bacterial development in a ultra-pure water basin containing irradiating wastes. This ecosystem has the particularity to contain dissolved molecular hydrogen produced by radiolysis as well as oxygen in non negligible quantities. After having studied the physico-chemical properties of this ecosystem, bio-film and water have been sampled in different parts of the basin. The aim of this work was to identify the different populations of bacteria which are present, to know their origin and to understand their development mechanisms. The water and bio-film samples have been cultivated in order to isolate the chemo-litho-trophic bacteria which oxidize the hydrogen, and on nutritive agar-agar. These bacteria have been identified by partial determination of the DNAr 16S sequences. The DNA has also been extracted of the bio-films in order to carry out a study of the molecular diversity of the bacterial populations (determination of the sequences of the DNAr 16S). Surprisingly, at the surface of the basin, the DNAr 16S sequences of the autotrophic strains are the same as the sequences detected by the method of sequences determination. Most of bacteria of this medium have then been isolated. The comparison between the bacteria isolated from different parts of the basin allows to say that the make-up waters of the basin are the main source of contamination and to propose a scenario for this contamination. The hydrogen metabolism of most of the bacteria has been studied by gaseous exchange mass spectrometry: those isolated make the 'knallgas reaction' (H 2 + 1/2O 2 → H 2 O) and fix carbon dioxide in these conditions. In the studied basin are then a bacterial community based on hydrogen and whose primary producers make the 'knallgas' reaction. Most of the bacteria, mainly a (Ralstonia sp. GGLH002) tolerate the oxidizing stress generated by radiolysis. (O.M.)

  9. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  10. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    Science.gov (United States)

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nitrifying bio-cord reactor: performance optimization and effects of substratum and air scouring.

    Science.gov (United States)

    Tian, Xin; Ahmed, Warsama; Delatolla, Robert

    2017-11-20

    Ammonia removal kinetics and solids' production performance of the bio-cord technology are studied in this research. Three nitrifying reactors housing different bio-cord substratum were operated at five different ammonia loading rates. All of the bio-cord substrata demonstrated stable and high ammonia-nitrogen removal efficiencies of 96.8 ± 0.9%, 97.0 ± 0.6% and 92.0 ± 0.4% at loading rates of 0.8, 1.6 and 1.8 g [Formula: see text]-N/m 2  d, respectively. At these same loading rates, the bio-cord reactors housing the three substrata also showed low solids' production rates of 0.19 ± 0.03, 0.23 ± 0.02, 0.25 ± 0.03 g total suspended solids/d. A reduction of system stability, identified via fluctuating ammonia removal rates, was however observed for all substrata at loading rates of 2.1 and 2.4 g [Formula: see text]-N/m 2  d. Further, the solids' production rates at these higher loading conditions were also observed to fluctuate for all substrata, likely indicating intermediate sloughing events. The effects of enhancing the air scouring of the bio-cord on the ammonia removal rate was shown to be dependent upon the substratum, while enhanced air scouring of the bio-cord was shown to stabilize the production of solids for all substrata. This study represents the first performance and optimization study of the bio-cord technology for low-carbon nitrification and shows that air scouring of the substratum reduces sloughing events at elevated loading and that the bio-cord technology achieves stable kinetics above conventional rates of 1 g [Formula: see text]-N/m 2  d to values of 1.8 g [Formula: see text]-N/m 2  d.

  12. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    Directory of Open Access Journals (Sweden)

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  13. BioSentinel

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems' (AES) BioSentinel project will develop, prototype, integrate, test, and prepare for the first spaceflight mission of a broadly...

  14. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  15. Bio-Organic Reaction Animations (BioORA): Student Performance, Student Perceptions, and Instructor Feedback

    Science.gov (United States)

    Gunersel, Adalet Baris; Fleming, Steven

    2014-01-01

    Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…

  16. BioIMAX: A Web 2.0 approach for easy exploratory and collaborative access to multivariate bioimage data

    Directory of Open Access Journals (Sweden)

    Khan Michael

    2011-07-01

    Full Text Available Abstract Background Innovations in biological and biomedical imaging produce complex high-content and multivariate image data. For decision-making and generation of hypotheses, scientists need novel information technology tools that enable them to visually explore and analyze the data and to discuss and communicate results or findings with collaborating experts from various places. Results In this paper, we present a novel Web2.0 approach, BioIMAX, for the collaborative exploration and analysis of multivariate image data by combining the webs collaboration and distribution architecture with the interface interactivity and computation power of desktop applications, recently called rich internet application. Conclusions BioIMAX allows scientists to discuss and share data or results with collaborating experts and to visualize, annotate, and explore multivariate image data within one web-based platform from any location via a standard web browser requiring only a username and a password. BioIMAX can be accessed at http://ani.cebitec.uni-bielefeld.de/BioIMAX with the username "test" and the password "test1" for testing purposes.

  17. Hydrogen storage in porous carbons: modelling and performance improvements

    International Nuclear Information System (INIS)

    Pellenq, R.J.M.; Maresca, O.; Marinelli, F.; Duclaux, L.; Azais, P.; Conard, J.

    2006-01-01

    In this work, we aim at exploring using ab initio calculations, the various ways allowing for an efficient hydrogen docking in carbon porous materials. Firstly, the influence of surface curvature on the chemisorption of atomic hydrogen is considered. Then it is shown that electro-donor elements such as lithium or potassium used as dopant of the carbon substrate induce a strong physi-sorption for H 2 , allowing its storage at ambient temperature under moderate pressure. (authors)

  18. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  19. PERCEPTION OF BIO-FOOD LABELING BY CONSUMERS IN SLOVAKIA

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2011-02-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 The paper presents an overview of the present perception of bio-food labeling by consumers in Slovakia. Analyses were realized by the questionnaire survey organized in the period December 2009 to January 2010. In the survey, 388 respondents were interviewed. From the methodological aspect, basic approaches of descriptive statistics have been used, as well as methods of association measurement. The test of robustness tested Chi-Square statistic. The robustness have been judged based on the p-values. Correlations have been tested through the Contingency coefficient and Cramer´s V coefficient. The survey showed that dependency knowledge of logos was confirmed in terms of knowledge of bio-food, education, type of employment, study at FBP faculty and in terms of choice of organic foods by manufacturers. Students of FBP  knows more bio-food logos than other respondents. The second highest dependency was confirmed within selection of bio-food produced individual manufacturers.doi:10.5219/107 

  20. Bio-threat microparticle simulants

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N

    2012-10-23

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  1. Bio-threat microparticle simulants

    Energy Technology Data Exchange (ETDEWEB)

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  2. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    Science.gov (United States)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  3. A techno-economic evaluation of two non-edible vegetable oil based bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Ali, M.

    2010-01-01

    Technical evaluation of Bio diesel, produced from various non-edible oils, was carried out on the basis of emission profile, torque, engine brake power and exhaust temperatures at 10% blend ratio (by volume) with mineral diesel. The performance of engine parameters showed that the castor oil based bio diesel gave the best results. Economic feasibility for bio diesel production was carried out based on available data on cultivation of necessary plants on marginal lands. This economic analysis also included the value of by-products which would be available during the chemical process for the production of bio diesel. It was found that jatropha bio diesel could be produced at a comparable cost to mineral diesel, however, castor bio diesel required substantial subsidies or mass cultivation of plants on marginal lands to enable it to compete economically with mineral diesel. (author)

  4. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiue-Lin; Chao, Yu-Chieh; Wang, Yu-Hsuan; Hsiao, Chia-Jung; Bai, Ming-Der [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Whang, Liang-Ming; Wang, Yung-Fu; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Tseng, I.-Cheng [Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Department of Life Science, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China)

    2010-01-15

    This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose-peptone (GP) and starch-peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412 mmol-H{sub 2}/L/d at HRT of 2 and 3 h, respectively. At HRT > 8 h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that Clostridium sporogenes and Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor, Lactobacillus plantarum, Propionispira arboris, and Clostridium butyricum were found to be dominant populations, but the presence of P. arboris at HRT > 3 h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors. (author)

  5. Enzymatic effect of a bio-film on corrosion of stainless steels immersed in natural seawater

    International Nuclear Information System (INIS)

    L'Hostis, V.

    2002-09-01

    Immersion of stainless steels in natural seawater leads to an ennoblement of their free corrosion potential (Ecor) with time. This evolution is linked to colonization of surface by bacteria, forming a bio-film. Literature synthesis has showed common points between proposed mechanisms, like a modification of cathodic reactions, and importance of hydrogen peroxide, but also differences, as acidity inside bio-films, or chemical composition of the passive layer, or enzymes present inside bio-films. The aim of the study was to precise these hypothesis, and finally mechanisms which leads to increase of Ecor. Experiments with addition of enzymes (glucose oxidase) have been performed and have lead to reproduce the electrochemical behaviour of stainless steels in natural seawater, including the cathodic behaviour. Study of composition of passive film and its semi-conducting properties, analysed respectively by XPS and Mott-Schottky plots, has lead to precise roles of hydrogen peroxide and oxidases. Moreover, study of donor densities of passive film has pointed out the effect of gluconic acid for evolution of cathodic reaction. This enzymatic mechanism has been applied and verified on crevice corrosion, and has been extended to other metallic materials, and other enzymes. (author)

  6. Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural).

    Science.gov (United States)

    Bizkarra, K; Barrio, V L; Arias, P L; Cambra, J F

    2016-09-01

    In the present work m-xylene and an equimolecular mixture of m-xylene, 1-butanol and furfural, all of them bio-oil model compounds, were studied in steam reforming (SR) conditions. Three different nickel catalysts, which showed to be active in 1-butanol SR (Ni/Al2O3, Ni/CeO2-Al2O3 and Ni/La2O3-Al2O3), were tested and compared with thermodynamic equilibrium values. Tests were carried out at temperatures from 800 to 600°C at atmospheric pressure with a steam to carbon ratio (S/C) of 5.0. Despite the different bio-oils fed, the amount of moles going through the catalytic bed was kept constant in order to obtain comparable results. After their use, catalysts were characterized by different techniques and those values were correlated with the activity results. All catalysts were deactivated during the SR of the mixture, mainly by coking. The highest hydrogen yields were obtained with Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts in the SR of m-xylene and SR of the mixture, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    Science.gov (United States)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  8. Investigation on the lean combustion performance of a hydrogen-enriched n-butanol engine

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng

    2017-01-01

    Highlights: • H_2 addition avails improving thermal efficiency of n-butanol engines. • Lean burn limit of n-butanol engine is extended by H_2 addition. • H_2 addition shortens the n-butanol engine combustion duration. • HC and CO from the n-butanol engine are decreased by H_2 addition. - Abstract: n-Butanol is a feasible fuel candidate for spark-ignition engines. The current paper carried out an experiment to explore effects of hydrogen addition on further improving the performance of a n-butanol engine under the part load and lean conditions. Within the test, the engine intake pressure and speed were respectively kept at 61.5 kPa and 1400 rpm. The volumetric fractions of hydrogen in the total intake gas (hydrogen + air) were constrained at 0 and 3%, respectively. Under a certain hydrogen blending level, the global excess air ratio of in-cylinder charge which was changed from the stoichiometric to near the lean burn limit was adjusted by varying the n-butanol injection duration. The experimental results confirmed that the brake thermal efficiency was heightened and the lean burn limit was extended after the hydrogen addition. Besides, compared with the pure n-butanol combustion, the hydrogen enrichment enables the engine to gain dropped ignition delay and rapid combustion duration. Moreover, CO and HC from the pure n-butanol engine were reduced by the hydrogen addition. NOx were generally reduced when the excess air ratio was raised. This suggested that NOx from the hydrogen-enriched butanol engine could also be controlled by lean combustion.

  9. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  10. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH 4 + H 2 O → 3H 2 O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m 3 N /h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  11. The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries

    Science.gov (United States)

    Zhao, Shijia; Fan, Yunxia; Zhu, Kai; Zhang, Dong; Zhang, Weiwei; Chen, Shuanglong; Liu, Ran; Yao, Mingguang; Liu, Bingbing

    2015-01-01

    Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced nanomaterials have rarely been studied. Here we report the synthesis of hydrogenated carbon nanospheres (HCNSs) with different degrees of hydrogenation by a facile solvothermal method, in which C2H3Cl3/C2H4Cl2 was used as the carbon precursor and potassium as the reductant. The hydrogenation level of the obtained nanospheres depends on the reaction temperature and higher temperature leads to lower hydrogenation due to the fact that the breaking of C-H bonds requires more external energy. The reaction temperature also affects the diameter of the HCNSs and larger spheres are produced at higher temperatures. More importantly, the size and the degree of hydrogenation are both critical factors for determining the electrochemical properties of the HCNSs. The nanospheres synthesized at 100 °C have a smaller size and a higher hydrogenation degree and show a capacity of 821 mA h g-1 after 50 cycles, which is significantly higher than that of the HCNSs produced at 150 °C (450 mA h g-1). Our study opens a possible way for obtaining high-performance anode materials for rechargeable lithium-ion batteries.

  12. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    Science.gov (United States)

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.

  13. Green energy and hydrogen research at University of Waterloo

    International Nuclear Information System (INIS)

    Fowler, M.

    2006-01-01

    This paper summarises Green Energy and Hydrogen Research at the University of Waterloo in Canada. Green energy includes solar, wind, bio fuels, hydrogen economy and conventional energy sources with carbon dioxide sequestration

  14. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion.

    Science.gov (United States)

    Wang, Peng; Chang, Angela Y; Novosad, Valentyn; Chupin, Vladimir V; Schaller, Richard D; Rozhkova, Elena A

    2017-07-25

    We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO 2 semiconductor nanoparticles as an efficient nanophotocatalyst for H 2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H 2 (μmol protein) -1 h -1 and 17.74 mmol of H 2 (μmol protein) -1 h -1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.

  15. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1982-01-01

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study

  16. Novel Electrolyzer Applications: Providing More Than Just Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, J.; Harrison, K.; Peters, M.

    2014-09-01

    Hydrogen can be used for many different applications and can be integrated into many different system architectures. One of the methods for producing the hydrogen is to use an electrolyzer. This work explores the flexibility of electrolyzers to behave as responsive loads. Experimental tests were performed for a proton exchange membrane (PEM) and an alkaline electrolyzer to assess the operational flexibility of electrolyzers to behave as responsive loads. The results are compared to the operational requirements to participate in end-user facility energy management, transmission and distribution system support, and wholesale electricity market services. Electrolyzers begin changing their electricity demand within milliseconds of a set-point change. The settling time after a set-point change is on the order of seconds. It took 6.5 minutes for the PEM unit to execute a cold start and 1 minute to turn off. In addition, a frequency disturbance correction test was performed and electrolyzers were able to accelerate the speed that the grid frequency can be restored. Electrolyzers acting as demand response devices can respond sufficiently fast and for a long enough duration to participate in all of the applications explored. Furthermore, electrolyzers can be operated to support a variety of applications while also providing hydrogen for industrial processes, transportation fuel, or heating fuel. Additionally, favorable operating properties and a variety of potential system architectures showcase the flexibility of electrolyzer systems.

  17. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Science.gov (United States)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue

    2017-11-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  18. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  19. Air-stable hydrogen generation materials and enhanced hydrolysis performance of MgH2-LiNH2 composites

    Science.gov (United States)

    Ma, Miaolian; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Shao, Huaiyu; Zhu, Min

    2017-08-01

    Hydrolysis of materials in water can be a promising solution of onsite hydrogen generation for realization of hydrogen economy. In this work, it was the first time that the MgH2-LiNH2 composites were explored as air-stable hydrolysis system for hydrogen generation. The MgH2-LiNH2 composites with different composition ratios were synthesized by ball milling with various durations and the hydrogen generation performances of the composite samples were investigated and compared. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy techniques were adopted to elucidate the performance improvement mechanisms. The hydrolysis properties of MgH2 were found to be significantly enhanced by the introduction of LiNH2. The 4MgH2-LiNH2 composite ball milled for 5 h can generate 887.2 mL g-1 hydrogen in 1 min and 1016 mL g-1 in 50 min, one of the best results so far for Mg based hydrolysis materials. The LiOH·H2O and NH4OH phases of hydrolysis products from LiNH2 may prevent formation of Mg(OH)2 passivation layer on the surface and supply enough channels for hydrolysis of MgH2. The MgH2-LiNH2 composites appeared to be very stable in air and no obvious negative effect on kinetics and hydrogen generation yield was observed. These good performances demonstrate that the studied MgH2-LiNH2 composites can be a promising and practicable hydrogen generation system.

  20. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  1. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.

    Science.gov (United States)

    Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin

    2018-09-01

    The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.

  2. Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials.

    Science.gov (United States)

    Lee, In-Gu; Lee, Heejin; Kang, Bo Sung; Kim, Young-Min; Kim, Sang Chai; Jung, Sang-Chul; Ko, Chang Hyun; Park, Young-Kwon

    2018-02-01

    The catalytic hydrodeoxygenation (HDO) of bio-oil over Ni-supported mesoporous materials was performed using a high pressure autoclave reactor. The actual pyrolysis oil of cork oak wood was used as a sample, and Ni/Al-SBA-15 and Ni/Al-MSU-F were used as catalysts. In addition, supercritical ethanol was added as solvent. Both Ni-supported mesoporous catalysts showed efficient HDO reaction ability. A higher heating value and pH of bio-oil were achieved by the HDO reaction over both catalysts and upgraded bio-oil had a lower viscosity. Compared to Ni/Al-MSU-F, Ni/Al- SBA-15 produced more upgraded bio-oil with a lower oxygen content and higher heating value via a catalytic HDO process.

  3. Producing light hydrocarbons by destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Fohlen, J H

    1928-06-20

    A method of obtaining light hydrocarbons from fuels and natural or industrial carbonaceous materials by cracking under pressure from 5 to 200 atmospheres and within a temperature range of 200 to 1,000/sup 0/C, the cracking operation being assisted by the presence of catalysts such as metallic halides, simultaneously, with hydrogenation by means of nascent hydrogen in the reaction chamber.

  4. Exploring the Reaction Pathways of Bioglycerol Hydrodeoxygenation to Propene over Molybdena-Based Catalysts.

    Science.gov (United States)

    Zacharopoulou, Vasiliki; Vasiliadou, Efterpi S; Lemonidou, Angeliki A

    2018-01-10

    The one-step reaction of glycerol with hydrogen to form propene selectively is a particularly challenging catalytic pathway that has not yet been explored thoroughly. Molybdena-based catalysts are active and selective to C-O bond scission; propene is the only product in the gas phase under the standard reaction conditions, and further hydrogenation to propane is impeded. Within this context, this work focuses on the exploration of the reaction pathways and the investigation of various parameters that affect the catalytic performance, such as the role of hydrogen on the product distribution and the effect of the catalyst pretreatment step. Under a hydrogen atmosphere, propene is produced primarily via 2-propenol, whereas under an inert atmosphere propanal and glycerol dissociation products are formed mainly. The reaction most likely proceeds through a reverse Mars-van Krevelen mechanism as partially reduced Mo species drive the reaction to the formation of the desired product. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. BIOS Security Analysis and a Kind of Trusted BIOS

    Science.gov (United States)

    Zhou, Zhenliu; Xu, Rongsheng

    The BIOS's security threats to computer system are analyzed and security requirements for firmware BIOS are summarized in this paper. Through discussion about TCG's trust transitivity, a new approach about CRTM implementation based on BIOS is developed. In this paper, we also put forward a new trusted BIOS architecture-UTBIOS which is built on Intel Framework for EFI/UEFI. The trustworthiness of UTBIOS is based on trusted hardware TPM. In UTBIOS, trust encapsulation and trust measurement are used to construct pre-OS trust chain. Performance of trust measurement is also analyzed in the end.

  6. Hydrogen evolution in enzymatic photoelectrochemical cell using modified seawater electrolytes produced by membrane desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyunku; Yoon, Jaekyung [Hydrogen Energy Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Bae, Sanghyun [Department of Environmental Engineering, Yonsei University, 234 Maeji-ri, Hungub-myun, Wonju, Gangwon-do 220-710 (Korea); Kim, Chunghwan; Kim, Suhan [Korea Institute of Water and Environment, K-Water, 462-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-730 (Korea)

    2009-09-15

    In the near future, potential water shortages are expected to occur all over the world and this problem will have a significant influence on the availability of water for water-splitting processes, such as photocatalysis and electrolysis, as well as for drinking water. For this reason, it has been suggested that seawater could be used as an alternative for the various water industries including hydrogen production. Seawater contains a large amount of dissolved ion components, thus allowing it to be used as an electrolyte in photoelectrochemical (PEC) systems for producing hydrogen. Especially, the concentrate (retentate) stream shows higher salinity than the seawater fed to the membrane desalination process, because purified water (fresh water) is produced as the permeate stream and the waste brine is more concentrated than the original seawater. In this study, we investigated the hydrogen evolution rate in a photoelectrochemical system, including the preparation and characterization of an anodized tubular TiO{sub 2} electrode (ATTE) as both the photoanode and the cathode with the assistance of an immobilized hydrogenase enzyme and an external bias (solar cell), and the use of various qualities of seawater produced by membrane desalination processes as the electrolyte. The results showed that the rate of hydrogen evolution obtained using the nanofiltration (NF) retentate in the PEC system is ca. 105 {mu}mol/cm{sup 2} h, showing that this is an effective seawater electrolyte for hydrogen production, the optimum amount of enzyme immobilized on the cathode is ca. 3.66 units per geometrical unit area (1 cm x 1 cm), and the optimum external external bias supplied by the solar cell is 2.0 V. (author)

  7. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Rabnawaz, Muhammad

    2017-01-01

    Highlights: • Fe-Co/SiO 2 catalyst with medium acidity was more effective for bio-oil upgrading. • Co-loading of Fe and Co on SiO 2 support improved catalyst performance. • Catalyst showing the best catalytic activity had a Fe/Co mole ratio of 1. • Biofuel produced by Fe-Co(1)/SiO 2 had the higher hydrocarbons content at 22.44%. • The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed. - Abstract: Hydrodeoxygenation (HDO) is an effective route to upgrade bio-oil to hydrocarbon bio-oil, but the development of efficient catalysts for bio-oil HDO still remains a challenge. In this study, non-sulfided Fe-Co/SiO 2 catalysts were used to upgrade bio-oil using HDO. A series of Fe-Co/SiO 2 catalysts with different Fe/Co mole ratios were prepared, characterized and evaluated. The Fe and/or Co loading did not change SiO 2 crystalline structure. The Fe and/or Co metals increased the amount and strength of Fe-Co/SiO 2 catalyst acidity. Physicochemical properties of upgraded bio-oils produced using Fe-Co/SiO 2 catalysts such as water content, total acid number, viscosity and higher heating values improved in comparison to raw bio-oil. Bimetallic Fe-Co/SiO 2 catalysts resulted in better HDO performance than monometallic Fe/SiO 2 or Co/SiO 2 catalysts. This was due to the synergistic effect of Fe and Co occurring on the SiO 2 support. Fe-Co/SiO 2 catalyst having medium amount of acidity was more effective for bio-oil upgrading. The highest hydrocarbons content produced using Fe-Co(1)/SiO 2 catalyst was 22.44%. The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed.

  8. Laboratory Measurements Of Charge-exchange Produced X-ray Emission From K-shell Transitions In Hydrogenic And Helium-like Fe

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, P.; Boyce, K. R.; Chen, H.; Gu, M. F.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Thorn, D.; Wargelin, B.

    2006-09-01

    We have used a microcalorimeter and solid state detectors to measure x-ray emission produced by charge exchange reactions between bare and hydrogenic Fe colliding with neutral helium, hydrogen, and nitrogen gas. We show the measured spectral signature produced by different neutral donors and compare our results to theory where available. We also compare our results to measurements of the Fe K line emission from the Galactic Center measured by the XIS on the Suzaku x-ray observatory. This comparison shows that charge exchange recombination between highly charged ions (either cosmic rays or thermal ions) and neutral gas is probably not the dominant source of diffuse line emission in the Galactic Center. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and is also supported by NASA APRA grants to LLNL, GSFC, Harvard-Smithsonian CfA, and Stanford University.

  9. BioHack*Kolding

    DEFF Research Database (Denmark)

    Wilde, Danielle

    Short Abstract BioHack*Kolding explores the potential of do-it-together biology to support community building in a town that lacks strong science representation, assisting participants to reflect on the bio-potential of their personal, social and political ecologies and to translate their ideas...... into action. Long Abstract Organisations that support lay people to practice bioscience alongside experts are proliferating. They enable interested people to join the global discussion on Bio Engineering by supporting them to gain the necessary knowledge and skills to do it themselves. Such organisations play...... an important role in facilitating informed debate around the biological sciences. Yet they cannot reach everyone. BioHack*Kolding asks how community-focused biology initiatives can reach people in smaller towns that lack science representation, so that they too can join the debate and ensure that its...

  10. Hydrogen: A real alternative to fossil fuels and bio fuels in the Spanish vehicle industry; El Hidrogeno: Una alternativa real a los combustible fosiles y a los biocombustible para automoacion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sobrino, F.; Rodriguez-Monroy, C.; Hernandez-Perez, J. L.

    2010-07-01

    For several years, UE has been trying to increase the use of bio fuels to replace petrol or diesel in the transports with the aim of fulfilling a commitment about climate change, supplying environmentally friendly conditions, promoting renewable energy sources. To achieve this, the 2003/30/EC Directive states that in all the European countries, before 31st December 2010, at least 5.75% of all petrol and diesel fuels used for transport are bio fuels. In previous papers, the authors evaluated this possibility. Analyzing hydrogen as replacement of fossil fuels and bio fuels nowadays in spain and a technical,economic and environmental point of view is the aim of this paper. (Author)

  11. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949-2015).

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-02-19

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  12. Study on radiation degradation of hydroxylamine derivatives. Pt.3: Qualitative and quantitative analyses of hydrogen and carbon monoxide produced by radiation degradation of N,N-diethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian

    2004-01-01

    The qualitative and quantitative analysis of hydrogen and carbon monoxide produced by radiation degradation of N,N-diethyl hydroxylamine is performed on a 2 m column packed with 5 Angstrom molecular sieve and equipped with a thermal conductivity detector. The analysis of hydrogen employs argon as a carrier gas, the column temperature is 85 degree C and the detector temperature is 110 degree C; the analysis of carbon monoxide employs hydrogen as a carrier gas, the column temperature is 50 degree C and the detector temperature is 80 degree C. The results show that the volume fraction of hydrogen is increased with the increase of dose, but has little relationship with the concentration of N,N-diethyl hydroxylamine. Carbon monoxide is only produced when the absorption dose is very high and the volume fraction is very low

  13. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge.

    Science.gov (United States)

    Yuan, Xingzhong; Leng, Lijian; Huang, Huajun; Chen, Xiaohong; Wang, Hou; Xiao, Zhihua; Zhai, Yunbo; Chen, Hongmei; Zeng, Guangming

    2015-02-01

    Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bio-slurry as fertilizer : is bio-slurry from household digesters a better fertilizer than manure? : a literature review

    NARCIS (Netherlands)

    Bonten, L.T.C.; Zwart, K.B.; Rietra, R.P.J.J.; Postma, R.; Haas, de M.J.G.; Nysingh, S.L.

    2014-01-01

    In many developing countries manure is anaerobically digested to produce biogas. The residue of manure digestion, bio-slurry, can be used as fertilizer for crop production and aquaculture. This study compared bio-slurry and manure as fertilizers. Nutrients in bio-slurry, especially nitrogen, are

  15. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

    International Nuclear Information System (INIS)

    Ng, Kok Siew; Sadhukhan, Jhuma

    2011-01-01

    The techno-economic potential of the UK poplar wood and imported oil palm empty fruit bunch derived bio-oil integrated gasification and Fischer-Tropsch (BOIG-FT) systems for the generation of transportation fuels and combined heat and power (CHP) was investigated. The bio-oil was represented in terms of main chemical constituents, i.e. acetic acid, acetol and guaiacol. The compositional model of bio-oil was validated based on its performance through a gasification process. Given the availability of large scale gasification and FT technologies and logistic constraints in transporting biomass in large quantities, distributed bio-oil generations using biomass pyrolysis and centralised bio-oil processing in BOIG-FT system are technically more feasible. Heat integration heuristics and composite curve analysis were employed for once-through and full conversion configurations, and for a range of economies of scale, 1 MW, 675 MW and 1350 MW LHV of bio-oil. The economic competitiveness increases with increasing scale. A cost of production of FT liquids of 78.7 Euro/MWh was obtained based on 80.12 Euro/MWh of electricity, 75 Euro/t of bio-oil and 116.3 million Euro/y of annualised capital cost. -- Highlights: → Biomass to liquid process and gas to liquid process synthesis. → Biorefinery economic analysis. → Pyrolysis oil to biofuel. → Gasification and Fischer-Tropsch. → Process integration, pinch analysis and energy efficiency.

  16. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    Science.gov (United States)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  17. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Huber, George W.; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the

  18. Bio gasification of industrial bio waste and sewage sludge-management of biogas quality

    Energy Technology Data Exchange (ETDEWEB)

    Kymalainen, M.; Lahde, K.; Kaarnakoski, M.; Pirttijarvi, T.; Arnold, M.; Kurola, J.; Kautola, H.

    2009-07-01

    Bio gasification, i. e. anaerobic digestion, is a well known sustainable option for the management of organic solid wastes and sludges. the produced biogas is a valuable bio fuel to replace fossil fuels in different technical applications (like heating, electricity, transport fuel generation) which in turn determine its quality requirements. (Author)

  19. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.

    Science.gov (United States)

    Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C

    2012-12-01

    Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    Science.gov (United States)

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hydrogen-bromine fuel cell advance component development

    Science.gov (United States)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  2. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  3. A preliminary exploration of Advanced Molecular Bio-Sciences Research Center

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Yanai, Takanori; Onodera, Jun'ichi; Yamagami, Mutsumi; Sakata, Hiroshi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2000-01-01

    Low-dose and low-dose-rate radiation effects on life-span, pathological changes, hemopoiesis and cytokine production in experimental animals have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology, which was composed of two task groups, was organized. The purposes of the committee were to assess of previous studies and plan future research for Advanced Molecular Bio-Sciences Research Center (AMBIC). In its report, the committee emphasized the necessity of molecular research in radiation biology and ecology, and proposed six subjects for the research: 1) Molecular carcinogenesis of low-dose radiation; 2) Radiation effects on the immune system and hemopoietic system; 3) Molecular mechanisms of hereditary effect; 4) Non cancer effect of low-dose radiation; 5) Gene targeting for ion transport system in plants; 6) Bioremediation with transgenic plant and bacteria. Exploration of the AMBIC project will continue under the committee's direction. (author)

  4. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Gaojin [Key Lab of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Jinan (China); State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou (China); Wu, Shubin, E-mail: shubinwu@scut.edu.cn; Zhang, Hongdan [State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou (China)

    2015-06-15

    In the case of development and utilization of bio-oils, a quantitative chemical characterization is necessary to evaluate its actual desired characteristics for downstream production. This paper describes an analytical approach for the determination of families of lightweight chemicals from bio-oils by using GC-MS techniques. And on this basis, new explorations in the field of influence factors, such as feedstocks, pyrolysis temperatures, and low-temperature pretreatment, on the composition and products yields of bio-oil were further investigated. Up to 40% (wt.%) of the bio-oil is successfully quantified by the current method. Chemical functionalities in the bio-oil correlate strongly with the original feedstocks because of their different chemical compositions and structure. Pyrolysis temperature plays a vital role in the yields of value-added compounds, both overall and individually. Higher temperature favored the generation of small aldehydes and acids, accompanied by a reduction of phenols. The optimal temperatures for maximum furans and ketones yields were 520 and 550°C, respectively. The low-temperature pretreatment of biomass has a good enrichment for the lightweight components of the bio-oils. In this case, much higher amounts of compounds, such as furans, ketones, and phenols were produced. Such a determination would contribute greatly to a deeper understanding of the chemical efficiency of the pyrolysis reaction and how the bio-oils could be more properly utilized.

  5. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions

    International Nuclear Information System (INIS)

    Lyu, Gaojin; Wu, Shubin; Zhang, Hongdan

    2015-01-01

    In the case of development and utilization of bio-oils, a quantitative chemical characterization is necessary to evaluate its actual desired characteristics for downstream production. This paper describes an analytical approach for the determination of families of lightweight chemicals from bio-oils by using GC-MS techniques. And on this basis, new explorations in the field of influence factors, such as feedstocks, pyrolysis temperatures, and low-temperature pretreatment, on the composition and products yields of bio-oil were further investigated. Up to 40% (wt.%) of the bio-oil is successfully quantified by the current method. Chemical functionalities in the bio-oil correlate strongly with the original feedstocks because of their different chemical compositions and structure. Pyrolysis temperature plays a vital role in the yields of value-added compounds, both overall and individually. Higher temperature favored the generation of small aldehydes and acids, accompanied by a reduction of phenols. The optimal temperatures for maximum furans and ketones yields were 520 and 550°C, respectively. The low-temperature pretreatment of biomass has a good enrichment for the lightweight components of the bio-oils. In this case, much higher amounts of compounds, such as furans, ketones, and phenols were produced. Such a determination would contribute greatly to a deeper understanding of the chemical efficiency of the pyrolysis reaction and how the bio-oils could be more properly utilized.

  6. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    Directory of Open Access Journals (Sweden)

    Guangming Cheng

    2012-12-01

    Full Text Available A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  7. Gasification of bio char from empty fruit bunch in a fluidized bed

    International Nuclear Information System (INIS)

    Nsamba Hussein Kisiki; Amran Mohammad Salleh; Wan Azlina; Hamdan Yusof

    2010-01-01

    Full text: Bio char from empty fruit bunch was gasified in a fluidized bed reactor using compressed air as a gasifying agent. The experiment was conducted in the temperature ranges of 500-850 degree Celsius and the equivalence ratio, temperature and size of the feedstock was varied. A series of parameters such as gas yield, overall carbon conversion, gas quality, and composition, were measured as a function of temperature, equivalence ratio and temperature. Results obtained were compared to the actual values of coal and other gasification feedstock reveal that, bio char has the potential to replace coal as a gasification agent in power plants .Hydrogen gas from bio char was also optimized during the experiment. There is great potential of making Hydrogen from Bio char through thermo chemical gasification It was observed that it has a very great potential of being upgraded to Fischer Tropsh fuels. There is a great opportunity of using this char from empty fruit bunch as an alternative fuel in power plants and all the adverse effects of coal gasification can be counteracted. (author)

  8. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  9. Optimizing a High-Temperature Hydrogen Co-generation Reactor for Both Economic and Environmental Performance

    International Nuclear Information System (INIS)

    Weimar, Mark R.; Wood, Thomas W.; Reichmuth, Barbara A.; Johnson, Wayne L.

    2003-01-01

    This paper analyzes outcomes for a 3000 MWt High Temperature Gas Reaction nuclear power plant, given price and cost assumptions, and determined what level of hydrogen and electricity production would optimize the plant economically and environmentally (carbon reduction). The tradeoff between producing hydrogen through steam methane reformation and producing electricity is so disproportionate, that advanced reactors will likely be used only as peaking plants for electricity unless policymakers intervene with incentives to change the mix of electricity and hydrogen. The magnitude of the increase in electric prices or decrease in hydrogen prices required to allow electricity production indicate that substantial error in cost estimates would be required to change our analysis.

  10. Bio digester : anaerobic methanogenesis

    NARCIS (Netherlands)

    Bullema, Marten; Hulzen, Hans; Keizer, Melvin; Pruisscher, Gerlof; Smint, Martin; Vincent, Helene

    2014-01-01

    As part of the theme 13 and 14, our group have to realize a project in the field of the renewable energy. This project consist of the design of a bio-digester for the canteen of Zernikeplein. Gert Hofstede is our client. To produce energy, a bio-digester uses the anaerobic digestion, which is made

  11. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  12. Potential for producing bio-fuel in the Amazon deforested areas

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ricardo Cunha da [Banco Nacional de Desenvolvimento Economico e Social (BNDES), Rio de Janeiro, RJ (Brazil)

    2004-05-01

    This paper analyzes the possibility of producing bio-fuel in the Amazon degraded lands. The aim here is to combine environmental concerns with an improvement of local people well-being. Firstly, a historical analysis is conducted in order to figure out the major deforestation driving forces in Amazon and to help to arrive at a feasible energy choice. Secondly, the geographical area is chosen. It is the spatial boundaries of Carajas Iron Ore Program in the southeastern Amazon where most of the deforestation has taken place in the last few decades. For this specific context, palm oil is chosen as a technological energy alternative due to its social production structure, its environmental benefits and its productivity . A quantified analysis is realized in terms of income generation (2000-3000 US dollars/family/yr), job creation (200,000-300,000 families settled), land required and restored (2-3.2 million ha), and carbon emission from fossil fuel avoided (13.1 Mt C). Some recommendations related to institutional and economic barriers are proposed in order to encourage the technology penetration in the market. (Author)

  13. Prospects for a bio-based succinate industry.

    Science.gov (United States)

    McKinlay, James B; Vieille, C; Zeikus, J Gregory

    2007-09-01

    Bio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives. High succinate concentrations must be produced at high rates, with little or no by-products to most efficiently use substrates and to simplify purification procedures. Herein are described the current prospects for a bio-based succinate industry, with emphasis on specific bacteria that show the greatest promise for industrial succinate production. The succinate-producing characteristics and the metabolic pathway used by each bacterial species are described, and the advantages and disadvantages of each bacterial system are discussed.

  14. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  15. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    Science.gov (United States)

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  16. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  17. Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xun [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-07-15

    Biomass is carbon-neutral and utilization of biomass as hydrogen resource shows no impact on atmospheric CO{sub 2} level. Nevertheless, a significant amount of CO{sub 2} is always produced in biomass gasification processes. If the CO{sub 2} produced can further react with biomass, then the biomass gasification coupled with CO{sub 2} reforming of biomass will result in a net decrease of CO{sub 2} level in atmosphere and produce the chemical raw material, syngas. To achieve this concept, a ''Y'' type reactor is developed and applied in bio-oil steam reforming, partial oxidation, or oxidative steam reforming coupled with CO{sub 2} reforming of bio-oil to eliminate the emission of CO{sub 2}. The experimental results show that the reaction systems can efficiently suppress the emission of CO{sub 2} from various reforming processes. The different coupled reaction systems generate the syngas with different molar ratio of CO/H{sub 2}. In addition, coke deposition is encountered in the different reforming processes. Both catalysts and experimental parameters significantly affect the coke deposition. Ni/La{sub 2}O{sub 3} catalyst shows much higher resistivity toward coke deposition than Ni/Al{sub 2}O{sub 3} catalyst, while employing high reaction temperature is vital for elimination of coke deposition. Although the different coupled reaction systems show different characteristic in terms of product distribution and coke deposition, which all can serve as methods for storage of the carbon from fossil fuels or air. (author)

  18. Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading

    International Nuclear Information System (INIS)

    Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz

    2016-01-01

    Highlights: • GHG emissions from the upgrading of pyrolysis-derived bio-oil is quantified.. • Soil organic carbon sequestration rate had a significant effect on GHG emission. • Increasing plant scale could improve the environmental performance of the system. • Nitrogen to the pyrolysis reactor had significant impact on GHG emissions. - Abstract: This study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.

  19. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication

    Science.gov (United States)

    Mousavi Ehteshami, Seyyed Mohsen; Asadnia, Mohsen; Tan, Swee Ngin; Chan, Siew Hwa

    2016-01-01

    A paper-based membraneless single-compartment hydrogen peroxide power source prepared by micro-electromechanical systems (MEMS) technology is reported. The cell utilizes hydrogen peroxide as both fuel and oxidant in a low volume cell fabricated on paper. The fabrication method used is a simple method where precise, small-sized patterns are produced which include the hydrophilic paper bounded by hydrophobic resin. Open circuit potentials of 0.61 V and 0.32 V are achieved for the cells fabricated with Prussian Blue as the cathode and aluminium/nickel as the anode materials, respectively. The power produced by the cells is 0.81 mW cm-2 at 0.26 V and 0.38 mW cm-2 at 0.14 V, respectively, even after the cell is bent or distorted. Such a fuel cell provides an easily fabricated, environmentally friendly, flexible and cost saving power source. The cell may be integrated within a self-sustained diagnostic system to provide the on-demand power for future bio-sensing applications.

  20. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015)

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-01-01

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish. PMID:26907306

  1. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015

    Directory of Open Access Journals (Sweden)

    Chao-Chen Chung

    2016-02-01

    Full Text Available This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS. Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1 fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2 comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  2. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode.

    Science.gov (United States)

    Sarma, Pranab Jyoti; Mohanty, Kaustubha

    2018-04-13

    In this study, two different unexploited indoor plants, Epipremnum aureum and Dracaena braunii were used to produce clean and sustainable bio-electricity in a plant microbial fuel cell (PMFC). Acid modified carbon fiber brush electrodes as well as bare electrodes were used in both the PMFCs. A bentonite based clay membrane was successfully integrated in the PMFCs. Maximum performance of E. aureum was 620 mV which was 188 mV higher potential than D. braunii. The bio-electricity generation using modified electrode was 154 mV higher than the bare carbon fiber, probably due to the effective bacterial attachment to the carbon fiber owing to hydrogen bonding. Maximum power output of 15.38 mW/m 2 was obtained by E. aureum with an internal resistance of 200 Ω. Higher biomass yield was also obtained in case of E. aureum during 60 days of experiment, which may correlate with the higher bio-electricity generation than D. braunii. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    Science.gov (United States)

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  4. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Daud, W.M.A. Wan; Husin, W.N.W.; Sahu, J.N.

    2011-01-01

    Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 o C with N 2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N 2 , particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 o C) and 2 L/min of N 2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques. -- Highlights: → This study reports the results of experimental investing of conversion palm shell into bio-oil by using pyrolysis and to find the optimum condition to produce the highest yield of bio-oil. → Several parameters which have effect to the process such as temperature, N 2 flow rate, reaction time and particle size is will be investigated in this study. → The outcome of this result will be important for abatement and control of increasingly waste palm shell storage problems any energy source to the world.

  5. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  6. Performance of the BioPlex 2200 HIV Ag-Ab assay for identifying acute HIV infection.

    Science.gov (United States)

    Eshleman, Susan H; Piwowar-Manning, Estelle; Sivay, Mariya V; Debevec, Barbara; Veater, Stephanie; McKinstry, Laura; Bekker, Linda-Gail; Mannheimer, Sharon; Grant, Robert M; Chesney, Margaret A; Coates, Thomas J; Koblin, Beryl A; Fogel, Jessica M

    Assays that detect HIV antigen (Ag) and antibody (Ab) can be used to screen for HIV infection. To compare the performance of the BioPlex 2200 HIV Ag-Ab assay and two other Ag/Ab combination assays for detection of acute HIV infection. Samples were obtained from 24 individuals (18 from the US, 6 from South Africa); these individuals were classified as having acute infection based on the following criteria: positive qualitative RNA assay; two negative rapid tests; negative discriminatory test. The samples were tested with the BioPlex assay, the ARCHITECT HIV Ag/Ab Combo test, the Bio-Rad GS HIV Combo Ag-Ab EIA test, and a viral load assay. Twelve (50.0%) of 24 samples had RNA detected only ( > 40 to 13,476 copies/mL). Ten (43.5%) samples had reactive results with all three Ag/Ab assays, one sample was reactive with the ARCHITECT and Bio-Rad assays, and one sample was reactive with the Bio-Rad and BioPlex assays. The 11 samples that were reactive with the BioPlex assay had viral loads from 83,010 to >750,000 copies/mL; 9/11 samples were classified as Ag positive/Ab negative by the BioPlex assay. Detection of acute HIV infection was similar for the BioPlex assay and two other Ag/Ab assays. All three tests were less sensitive than a qualitative RNA assay and only detected HIV Ag when the viral load was high. The BioPlex assay detected acute infection in about half of the cases, and identified most of those infections as Ag positive/Ab negative. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  8. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    International Nuclear Information System (INIS)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Lima, Isabel M.; Laird, David A.; Hicks, Kevin B.

    2010-01-01

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ∼20 MJ kg -1 , and densities >1.0 Mg m -3 ) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, ∼20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed 'farm scale' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields.

  9. Overview of the interactive task in BioCreative V.

    Science.gov (United States)

    Wang, Qinghua; S Abdul, Shabbir; Almeida, Lara; Ananiadou, Sophia; Balderas-Martínez, Yalbi I; Batista-Navarro, Riza; Campos, David; Chilton, Lucy; Chou, Hui-Jou; Contreras, Gabriela; Cooper, Laurel; Dai, Hong-Jie; Ferrell, Barbra; Fluck, Juliane; Gama-Castro, Socorro; George, Nancy; Gkoutos, Georgios; Irin, Afroza K; Jensen, Lars J; Jimenez, Silvia; Jue, Toni R; Keseler, Ingrid; Madan, Sumit; Matos, Sérgio; McQuilton, Peter; Milacic, Marija; Mort, Matthew; Natarajan, Jeyakumar; Pafilis, Evangelos; Pereira, Emiliano; Rao, Shruti; Rinaldi, Fabio; Rothfels, Karen; Salgado, David; Silva, Raquel M; Singh, Onkar; Stefancsik, Raymund; Su, Chu-Hsien; Subramani, Suresh; Tadepally, Hamsa D; Tsaprouni, Loukia; Vasilevsky, Nicole; Wang, Xiaodong; Chatr-Aryamontri, Andrew; Laulederkind, Stanley J F; Matis-Mitchell, Sherri; McEntyre, Johanna; Orchard, Sandra; Pundir, Sangya; Rodriguez-Esteban, Raul; Van Auken, Kimberly; Lu, Zhiyong; Schaeffer, Mary; Wu, Cathy H; Hirschman, Lynette; Arighi, Cecilia N

    2016-01-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  10. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  11. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  12. One step hydrogenation–esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts

    International Nuclear Information System (INIS)

    Xu, Ying; Zhang, Limin; Chang, Jiamin; Zhang, Xinghua; Ma, Longlong; Wang, Tiejun; Zhang, Qi

    2016-01-01

    Highlights: • Fe–RN and Mo–RN showed excellent inhibition of alkylation and hydrogenation activity of phenol respectively. • The esterification activity of alcohols with acetic acid was followed as methanol > THFA > ethanediol. • After OHE of bio-oil, the total content of alcohols and esters reached to 87.27% in the product. - Abstract: Acids, aldehydes, ketones and phenols, which are the main components of bio-oil, have negative effects on the properties. In this paper, the mixture of acetic acid, furfural, hydroxyacetone, ethanediol, phenol and water were chosen as hybrid model compounds of bio-oil (MCB). To convert these compounds into stable and combustible oxygenated organics (alcohols and esters), one step hydrogenation–esterification (OHE) was carried out over Raney Ni catalyst (RN) and Mo, Sn, Fe, Cu modified Raney Ni catalysts (RNs) in the presence of methanol. 100% conversions of furfural and hydroxyacetone were achieved over RNs with high selectivity to desired products. The acetic acid conversion was only 35.1% with no methanol addition, while within 6 g/8 g methanol/MCB addition, the conversion of acetic acid increased to 81.1%. The esterification activity of alcohols was followed by methanol > tetrahydrofurfuryl alcohol (THFA), the hydrogenation product of furfural > ethanediol. Among the RNs, the addition of Fe catalyst restrained the aqueous-phase reforming of methanol and promoted the esterification of methanol and acetic acid. The Mo–RN showed the most favorable performance in the hydrogenation of phenol among the RNs. But the RN modified by both Fe and Mo did not give a good performance. After the OHE of light fraction of raw bio-oil over Mo–RN, there was no ketone & aldehyde detected and the contents of acids and phenols decreased from 49.04% and 7.35% to 8.21% and 3.84%. The conversion of acids could reach to 85.01% which was nearly to the conversion of acetic acid in MCB. The contents of alcohols and esters increased from 5

  13. Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage

    Science.gov (United States)

    Guarnieri, Massimo; Alotto, Piergiorgio; Moro, Federico

    2015-11-01

    Thanks to the independent sizing of power and energy, hydrogen-based energy storage is one of the very few technologies capable of providing long operational times in addition to the other advantages offered by electrochemical energy storage, for example scalability, site versatility, and mobile service. The typical design consists of an electrolyzer in charge mode and a separate fuel cell in discharge mode. Instead, a unitized regenerative fuel cell (URFC) is a single device performing both energy conversions, achieving a higher compactness and power-to-weight ratio. This paper presents a performance model of a URFC based on a proton exchange membrane (PEM) electrolyte and working on hydrogen and oxygen, which can provide high energy and power densities (>0.7 W cm-2). It provides voltage, power, and efficiency at varying load conditions as functions of the controlling physical quantities: temperature, pressure, concentration, and humidification. The model constitutes a tool for designing the interface and control sub-system as well as for exploring optimized cell/stack designs and operational conditions. To date, only a few of such analyses have been carried out and more research is needed in order to explore the true potential of URFCs.

  14. Bio-inspired networking

    CERN Document Server

    Câmara, Daniel

    2015-01-01

    Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks. Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view. Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions Delivers examples of techniques both in theoretical concepts and practical applications Helps you apply nature's dynamic resource and task management to your co...

  15. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    DEFF Research Database (Denmark)

    De Vries, J.W.; Vinken, T.M.W.J; Hamelin, Lorie

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for an...... (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Codigestion with wastes or residues like roadside grass gave the best environmental performance.......-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage...

  16. Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water

    International Nuclear Information System (INIS)

    Park, Hyunwoong; Bak, Ayoung; Ahn, Yong Yoon; Choi, Jina; Hoffmannn, Michael R.

    2012-01-01

    Highlights: ► We demonstrated that the electrocatalytic performance of BiO x –TiO 2 anodes for the degradation of aqueous phenol could be highly boosted by light irradiation. ► Although BiO x –TiO 2 anodes have been originally developed as the electrocatalytic anodes that operate in the absence of light by degeneratively doping Bi in TiO 2 , the presence of TiO 2 made them retain photoelectrocatalytic activity as well. ► Such dual functionality of BiO x –TiO 2 electrodes with high synergy effects may be directly used for water treatment with simultaneous hydrogen production from water. - Abstract: Multi-layered BiO x –TiO 2 electrodes were used for the oxidation of chemical contaminants coupled with the production of H 2 characterized by a synergistic enhancement. The BiO x –TiO 2 electrodes were composed of a mixed-metal oxide array involving an under layer of TaO x –IrO x , a middle layer of BiO x –SnO 2 , and a top layer of BiO x –TiO 2 deposited in a series on both sides of Ti foil. Cyclic voltammograms showed that the BiO x –TiO 2 electrodes had an electrocatalytic activity for oxidation of phenol that was enhanced by 70% under illumination with AM 1.5 light. When the BiO x –TiO 2 anode was coupled with a stainless steel cathode in a Na 2 SO 4 electrolyte with phenol and irradiated with UV light at an applied DC voltage, the anodic phenol oxidation rate and the cathodic H 2 production rates were enhanced by factors of four and three, respectively, as compared to the sum of each light irradiation and direct DC electrolysis. These synergistic effects depend on the specific electrode composition and decrease on TaO x –IrO x and BiO x –SnO 2 anodes in the absence of a top layer of BiO x –TiO 2 . These results indicate that the BiO x –TiO 2 layer functions as the key photo-electrocatalyst. The heavy doping level of Bi (25 mol%) in TiO 2 increases the electric conductivity of the parent TiO 2 .

  17. Influence of hydrogen environment on the tribological performance of polymer composites

    International Nuclear Information System (INIS)

    Geraldine Theiler; Thomas Gradt

    2006-01-01

    In the past few years several projects dealing with the influence of hydrogen on the tribological properties of friction couples were conducted at the Federal Institute for Materials Research and Testing. This paper reports some investigations carried out with polymer composites. The results of tribological experiments with PTFE and PEEK composites against steel are presented here. Friction and wear were measured for continuous sliding and analyses of the worn surfaces were performed after the experiments. Tests were performed at room temperature in hydrogen as well as in LH 2 . The influence of hydrogen on the material properties was also evaluated by means of heat treatment in hydrogen before the tribological tests. Results indicate a good performance of the selected composites regarding friction and wear resistance. (authors)

  18. Experimental study of surface pattern effects on the propulsive performance and wake of a bio-inspired pitching panel

    Science.gov (United States)

    King, Justin; Kumar, Rajeev; Green, Melissa

    2016-11-01

    Force measurements and stereoscopic particle image velocimetry (PIV) were used to characterize the propulsive performance and wake structure of rigid, bio-inspired trapezoidal pitching panels. In the literature, it has been demonstrated that quantities such as thrust coefficient and propulsive efficiency are affected by changes in the surface characteristics of a pitching panel or foil. More specifically, the variation of surface pattern produces significant changes in wake structure and dynamics, especially in the distribution of vorticity in the wake. Force measurements and PIV data were collected for multiple surface patterns chosen to mimic fish surface morphology over a Strouhal number range of 0.17 to 0.56. Performance quantities are compared with the three-dimensional vortex wake structure for both the patterned and smooth panels to determine the nature and magnitude of surface pattern effects in terms of thrust produced, drag reduced, and wake vortices reshaped and reorganized. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  19. Recovering hydrogen production performance of upflow anaerobic sludge blanket reactor (UASBR) fed with galactose via repeated heat treatment strategy.

    Science.gov (United States)

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Park, Jong-Hun; Kim, Sang-Hyoun

    2017-09-01

    This study evaluated the effect of repeated heat treatment towards the enhancement of hydrogen fermentation from galactose in an upflow anaerobic sludge blanket reactor with the hydraulic retention time of 6h and the operation temperature of 37°C. The hydrogen production rate (HPR) and hydrogen yield (HY) gradually increased up to 9.1L/L/d and 1.1mol/mol galactose, respectively, until the 33rd day of operation. When heat treatment at 80°C for 30min was applied, hydrogen production performance was enhanced by 37% with the enrichment of hydrogen producing bacteria population. The HPR and HY were achieved at 12.5L/L/d and 1.5mol/mol hexose, respectively, during further 30 cycles of reactor operation. The repeated heat treatment would be a viable strategy to warrant reliable continuous hydrogen production using mixed culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae

    International Nuclear Information System (INIS)

    Fortier, Marie-Odile P.; Roberts, Griffin W.; Stagg-Williams, Susan M.; Sturm, Belinda S.M.

    2014-01-01

    Highlights: • A life cycle assessment of bio-jet fuel from wastewater algae was performed. • We used experimental data from algae cultivation through hydrothermal liquefaction. • We performed Monte Carlo and sensitivity analyses with ranges of parameter values. • Transport of moderately dewatered algae increased life cycle climate change impacts. • Collocation and heat integration reduce life cycle greenhouse gas emissions by 76%. - Abstract: Bio-jet fuel is increasingly being produced from feedstocks such as algae and tested in flight. As the industry adopts bio-jet fuels from various feedstocks and conversion processes, life cycle assessment (LCA) is necessary to determine whether these renewable fuels result in lower life cycle greenhouse gas (LC-GHG) emissions than conventional jet fuel. An LCA was performed for a functional unit of 1 GJ of bio-jet fuel produced through thermochemical conversion (hydrothermal liquefaction (HTL)) of microalgae cultivated in wastewater effluent. Two pathways were analyzed to compare the impacts of siting HTL at a wastewater treatment plant (WWTP) to those of siting HTL at a refinery. Base cases for each pathway were developed in part using primary data from algae production in wastewater effluent and HTL experiments of this algae at the University of Kansas. The LC-GHG emissions of these cases were compared to those of conventional jet fuel, and a sensitivity analysis and Monte Carlo analyses were performed. When algal conversion using HTL was modeled at a refinery versus at the WWTP site, the transportation steps of biomass and waste nutrients were major contributors to the LC-GHG emissions of algal bio-jet fuel. The LC-GHG emissions were lower for the algal bio-jet fuel pathway that performs HTL at a WWTP (35.2 kg CO 2eq /GJ for the base case) than for the pathway for HTL at a refinery (86.5 kg CO 2eq /GJ for the base case). The LCA results were particularly sensitive to the extent of heat integration, the source of

  1. Preparation of Bio-beads and Their Atrazine Degradation Characteristics

    Institute of Scientific and Technical Information of China (English)

    BI Hai-tao; ZHANG Lan-ying; LIU Na; ZHU Bo-lin

    2011-01-01

    Screened atrazine-mineralizing bacterium-Pseudomonas W4 was embedded inside an improved PVAH3BO3 embedment matrix to make bio-beads to degrade atrazine. The atrazine degradation characteristics were studied. The preparation procedure of bio-beads was as follows: (1) preparing a mixture of 100, 12.5, 10, 1.5 and 1 g/L PVA, bentonite(Ca), activated carbon powder, sodium alginate and centrifuged Pseudomonas W4 bacterium, respectively; (2) the mixture was dropped into a gently stirred cross linker solution(pH=6.7) and cured at 10 ℃ for 24 h.The optimal atrazine degradation conditions by bio-beads were as follows: pH=7, the auxiliary carbon source was glucose, and the concentration of glucose was greater than 325 mg/L. The bio-beads demonstrated stronger tolerance ability than the free microorganism to the increase of PCBs, hydrogen ion and hydroxide ion. SEM images show the uniform distribution of the microorganism inside bio-beads and the porous cross-linked structure of bio-beads which provides excellent mass transfer capacity.

  2. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    Science.gov (United States)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  3. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    Science.gov (United States)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  4. Direct synthesis of hydrogen peroxide in a microreactor

    NARCIS (Netherlands)

    Paunovic, V.; Schouten, J.C.; Nijhuis, T.A.

    2014-01-01

    The direct synthesis of hydrogen peroxide in a microreactor is a safe and efficient process. Conventionally, hydrogen peroxide is produced using the anthraquinone autooxidation process, which is rather complex and can only be performed cost-effectively on a large scale. As a result, hydrogen

  5. An estimation of the capacity to produce hydrogen by wasted hydroelectric energy for the three largest Brazilian hydroelectric

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Trindade, Leticia G. da; Souza, Roberto F. de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. of Chemistry], Email: janine@iq.ufrgs.br; Miguel, Marcelo [Itaipu Binacional, Foz do Iguacu, PR (Brazil)

    2010-07-01

    The use of water wasted in hydroelectric plants as normalization dam excess, which constitute a hydrodynamic potential useful to generate electric energy which can be subsequently used to produce hydrogen and its subsequent consumption in fuel cells has been considered as an alternative for hydraulic energy-rich countries like Brazil. The case is examined in which all the water wasted in the hydroelectric plants, spilled by dam gates to maintain acceptable water levels, from the 3 largest Brazilian hydroelectric plants was used to produce hydrogen. During the year of 2008, the electric energy produced from this utilization would have been equivalent to 52.8 TWh, an amount that corresponds to an increase of ca. 15% of the total electric energy produced in the country. Furthermore, if this amount of hydrogen was used in the replacement of internal combustion vehicles by fuel cells, this would have prevented the production of 2.26 x 10{sup 7} ton of Co{sub 2} per year. This plan would also significantly decrease production and release of greenhouse gases. (author)

  6. Microbial decomposition and bio-remediation of chemical substances. Kagaku busshitsu no biseibutsu bunkai to bio remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M [Osaka University, Osaka (Japan). Faculty of Engineering

    1993-08-01

    This paper summarizes studies on evaluation of breeding and bio-degradability of decomposition bacteria in bio-remediation, and births and deaths of microorganisms. Structural genes in a phenol decomposition path were separated by means of shotgun cloning. The phe B genes having been taken out were inserted into parent stocks to produce combined stocks for use in phenol decomposition. With 100 mg/l of phenol, the combined stocks showed better performance in both decomposition and multiplication than the parent stocks. When the phenol concentration increases, the rate controlling process changes and loses its effect. Decomposition of trichloroethylene progressed quickly with combined stocks derived from phe A, a phenol decomposed gene. Separated polyvinyl alcohol (PVA) decomposing bacteria were used for PVA decomposition. As a result, it was found that microorganisms are required that utilize intermediately produced low-molecular compounds for multiplication. Combined stocks with E. coli C600 stocks inserted with phe B were prepared to discuss births and deaths of microorganisms in activated sludge. A number of findings was obtained. 6 refs., 10 figs.

  7. Deactivation of iron oxide used in the steam-iron process to produce hydrogen

    NARCIS (Netherlands)

    Bleeker, M.F.; Veringa, H.J.; Kersten, Sascha R.A.

    2009-01-01

    In the steam-iron process pure hydrogen can be produced from any hydrocarbon feedstock by using a redox cycle of iron oxide. One of the main problems connected to the use of the iron oxide is the inherent structural changes that take place during oxygen loading and unloading leading to severe

  8. Exploring the Applications of Bio-Eco Architecture for Sustainable Design and Construction process

    OpenAIRE

    M. M. Naguib; M. A. M. Hanafi

    2013-01-01

    It has been commonly noted that the main perception of nature influenced forms isbasically aesthetic while little concern is given to the importance of inspiring from naturein the construction and structural performance of buildings as well as in the naturalecological architectural solutions, thus, this paper will focus on bio-inspired architectureapproach which embraces the eco-friendly practices of sustainable construction, the useof natural materials and the energy conservation by mimickin...

  9. Exploring Creativity in the Bio-Inspired Design Process

    DEFF Research Database (Denmark)

    Anggakara, K.; Aksdal, T.; Onarheim, Balder

    2015-01-01

    The growing interest in the of field bio-inspired design has been driven by the acknowledgement that inspiration from nature can serve as a valuable source of innovation. As an emerging approach, there has been a focus on building a principled methodology to address the challenges that arise...

  10. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    Science.gov (United States)

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  12. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  13. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  14. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  15. Bio-Chemicals Derived from Waste: Building on the Concept of a Bio-Refinery

    International Nuclear Information System (INIS)

    Habib, M.; Habib, U.; Khan, A.U.; Rehman, Z.U.; Zeb, A.; Moeed, A.; Pasha, M.K.; Memon, A.R.

    2013-01-01

    The work presented here has looked into the thermal-conversion of wheat and barley spent grains (SG). Wheat fermentation was carried in the laboratory to get a mashed product while barley grain residues were sourced from a local brewing company. Pyrolysis carried at 460, 520 and 540 Degree C at ambient conditions of pressure in a bench scale fluidized bed reactor resulted in producing bio-oil, charcoal and non-condensable gases. These products were characterized by using the Gas Chromatography Mass Spectrometry (GC-MS), Differential Thermo-glavemetric Analysis (DTG), Elemental Analyzer (E.A) and a Bomb Calorimeter. The final pyrolysis product analysis revealed that the bio-oil production yields and Higher Heating Value (HHV) largely depended on the pyrolysis temperature and the sample type. In comparison with original raw grain samples, the analysis of thermally treated (pyrolysis) spent grains revealed the presence of high carbon and low oxygen contents. Results gathered in this work have shown that high bio-crude-oil production yields can be obtained at 520 Degree C (53 and 37wt percentage bio-oil from wheat and barley SG). Pyrolysis of wheat and barley SG resulted in giving a Higher Heating Value (HHV) of 21.80 and 21.86 MJ/kg at 540 and 460 Degree C, which is considerably more in comparison to their virgin counterparts. This suggested route thus has a potential for further up-gradation of waste bio-mass for use as an intermediate fuel or as a raw material source for producing other bio-chemicals. (author)

  16. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products

    International Nuclear Information System (INIS)

    Reckamp, Joseph M.; Garrido, Rene A.; Satrio, Justinus A.

    2014-01-01

    Paper mill sludge (PMS) is a residual biomass that is generated at paper mills in large quantities. Currently, PMS is commonly disposed in landfills, which causes environmental issues through chemical leaching and greenhouse gas production. In this research, we are exploring the potential of fast pyrolysis process for converting PMS into useful bio-oil and biochar products. We demonstrate that by subjecting PMS to a combination of acid hydrolysis and torrefaction pre-treatment processes it is possible to alter the physicochemical properties and composition of the feedstock material. Fast pyrolysis of pretreated PMS produced bio-oil with significantly higher selectivity to levoglucosenone and significantly reduced the amount of ketone, aldehyde, and organic acid components. Pretreatment of PMS with combined 4% mass fraction phosphoric acid hydrolysis and 220 °C torrefaction processed prior to fast pyrolysis resulted in a 17 times increase of relative selectivity towards levoglucosenone in bio-oil product along with a reduction of acids, ketones, and aldehydes combined from 21 % to 11 %. Biochar, produced in higher yield, has characteristics that potentially make the solid byproduct ideal for soil amendment agent or sorbent material. This work reveals a promising process system to convert PMS waste into useful bio-based products. More in-depth research is required to gather more data information for assessing the economic and sustainability aspects of the process. - Highlights: • Acid hydrolysis and torrefaction reduce bio-oil yield, but improve quality. • Dilute acid conditions provide optimal treatment for bio-oil quality and yield. • Pyrolysis of treated PMS produces high selectivity to levoglucosenone formation. • Treated PMS produces bio-oil with reduced acid, ketone, and aldehyde content. • Pyrolysis of treated PMS produces biochar with low volatile matter in high yield

  18. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Hicks, Kevin B. [Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038 (United States); Lima, Isabel M. [Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124 (United States); Laird, David A. [National Soil Tilth Laboratory, U.S. Agricultural Research Service, U.S. Department of Agriculture, 2110 University Blvd., Ames, IA 50011 (United States)

    2010-01-15

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are {proportional_to}20 MJ kg{sup -1}, and densities >1.0 Mg m{sup -3}) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, {proportional_to}20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed ''farm scale'' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields. (author)

  19. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Long-term developments in the transport sector -- comparing biofuel and hydrogen roadmaps

    Energy Technology Data Exchange (ETDEWEB)

    Uyterlinde, M.A.; Londo, M.; Godfroij, P.; Jeeninga, H.

    2007-07-01

    In view of climate change and declining oil reserves, alternative fuels for transport receive increasing attention. Two promising options are biofuels, of which the market penetration has already started, and hydrogen, which, when used in fuel cell cars, could lead to zero-emission vehicles. This paper draws on the results of two ongoing EU projects in which roadmaps are being developed for respectively biofuels and hydrogen . The most important potential conflict lies in competition for biomass as a feedstock. In this context, the hydrogen-fuel cell route has the advantage of a higher efficiency (in terms of km driven per ha or tonne biomass) than biofuels. Furthermore, hydrogen is more flexible in feedstock, since it can also be produced in a climate-friendly way from fossil resources such as coal. Synergy between biofuels and hydrogen is in gasification technology. This technology is required both for biomass-to-liquids, one of the more promising biofuels, and for hydrogen production from biomass and/or coal. Our analysis indicates that the transportation sector will need both options in the long term: while hydrogen may become dominant for passenger cars, greening of long-distance heavy duty transport will become dependent on a bio-based diesel substitute. (auth)

  1. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    International Nuclear Information System (INIS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    2011-01-01

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2 , NO 3- , Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, bio-corrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions. (authors)

  2. Solar Hydrogen Fuel Cell Projects at Brooklyn Tech

    Science.gov (United States)

    Fedotov, Alex; Farah, Shadia; Farley, Daithi; Ghani, Naureen; Kuo, Emmy; Aponte, Cecielo; Abrescia, Leo; Kwan, Laiyee; Khan, Ussamah; Khizner, Felix; Yam, Anthony; Sakeeb, Khan; Grey, Daniel; Anika, Zarin; Issa, Fouad; Boussayoud, Chayama; Abdeldayem, Mahmoud; Zhang, Alvin; Chen, Kelin; Chan, Kameron Chuen; Roytman, Viktor; Yee, Michael

    2010-01-01

    This article describes the projects on solar hydrogen powered vehicles using water as fuel conducted by teams at Brooklyn Technical High School. Their investigations into the pure and applied chemical thermodynamics of hydrogen fuel cells and bio-inspired devices have been consolidated in a new and emerging sub-discipline that they define as solar…

  3. New Raman-peak at 1850 cm(-1) observed in multiwalled carbon nanotubes produced by hydrogen arc discharge.

    Science.gov (United States)

    Chen, B; Kadowaki, Y; Inoue, S; Ohkohchi, M; Zhao, X; Ando, Y

    2010-06-01

    The new peak (near 1850 cm(-1)) assigned to carbon linear chain included in the centre of very thin innermost multiwalled carbon nanotubes (MWNTs) has been verified by Raman spectroscopy. These MWNTs were produced by dc arc discharge of pure graphite rods in pure hydrogen gas and existed in the cathode deposit. In this paper, we clarified that the new Raman-peaks could also be observed in the cathode deposit including MWNTs produced by hydrogen dc arc discharge using graphite electrode with added Y or La. By changing the quantity of addition (Y or La), dc arc current and pressure of ambient hydrogen gas, the optimum condition to get maximum intensity of the new Raman-peaks was obtained. For the case of 1 wt% La, dc 50 A, H2 pressure of 50 Torr was found to be optimum, and the intensity of new Raman-peak was even higher than the G-band peak. For the case of 1 wt% Y, dc 50 A, H2 pressure of 50 Torr was optimum, but the intensity of new Raman-peak was weaker than the G-band peak. Transmission electron microscopy observation revealed that the crystallinity of MWNTs produced with pure graphite rod was better than those produced with added Y or La.

  4. Exploring Hydrogen Evolution and the Overpotential

    Science.gov (United States)

    Lyon, Yana A.; Roberts, Adrienne A.; McMillin, David R.

    2015-01-01

    The laboratory experiment described provides insight into the energetics of hydrogen evolution at an electrode as well as the intrinsic barrier that typically impedes reaction. In the course of the exercise, students find that Sn(s) is thermodynamically capable of combining with protons to form hydrogen, but that the direct reaction occurs at a…

  5. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment

    Science.gov (United States)

    Kim, Yong Sook; Jeong, Hye-yun; Kim, Ah Ra; Kim, Woong-Hee; Cho, Haaglim; Um, JungIn; Seo, Youngha; Kang, Wan Seok; Jin, Suk-Won; Kim, Min Chul; Kim, Yong-Chul; Jung, Da-Woon; Williams, Darren R.; Ahn, Youngkeun

    2016-01-01

    The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2′Z,3′E)-6-Bromoindirubin-3′-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI. PMID:27510556

  6. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Xiang, Jing

    2014-01-01

    Highlights: • Two microgrids with different structure are simulated. • Their performance are comprehensively evaluated and compared. • The one with DES and a FC stack has high environmental and quality indexes. - Abstract: In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance

  7. Performative Research in Art Education: Scenes from the Seminar "Exploring Performative Rituals in City Space"

    Directory of Open Access Journals (Sweden)

    Ulrike Stutz

    2008-05-01

    Full Text Available In my contribution, I lay the foundations for a performative approach to art education research and then apply it to three examples from a performance seminar conducted with university students. In the process, I subject video documentaries produced during performative exploration of everyday rituals in public space, to a fresh performative analysis using media techniques. My research interest targets the reactions of passers-by as an expanded audience, i.e., it targets the qualitative changes of social space brought about by these actions of site specific art. The contribution is presented as a multimedia document with videos and animations. The parallel presentation of different media formats produces differentiating and activating readings. URN: urn:nbn:de:0114-fqs0802514

  8. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    Science.gov (United States)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bio-fuels production and the environmental indicators

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Mechanical Engineering Department/Pontifical Catholic University of Rio de Janeiro - PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, CEP 22453-900, Rio de Janeiro, RJ (Brazil); Muylaert de Araujo, Maria Silvia [Energy and Environment Planning Program/Federal University of Rio de Janeiro - COPPE/UFRJ, Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP: 21945-970, Caixa Postal: 68501, Rio de Janeiro, RJ (Brazil)

    2009-10-15

    The paper evaluates the role of the bio-fuels production in the transportation sector in the world, for programs of greenhouse gases emissions reductions and sustainable environmental performance. Depending on the methodology used to account for the local pollutant emissions and the global greenhouse gases emissions during the production and consumption of both the fossil and bio-fuels, the results can show huge differences. If it is taken into account a life cycle inventory approach to compare the different fuel sources, these results can present controversies. A comparison study involving the American oil diesel and soybean diesel developed by the National Renewable Energy Laboratory presents CO{sub 2} emissions for the bio-diesel which are almost 20% of the emissions for the oil diesel: 136 g CO{sub 2}/bhp-h for the bio-diesel from soybean and 633 g CO{sub 2}/bhp-h for the oil diesel [National Renewable Energy Laboratory - NREL/SR-580-24089]. Besides that, important local environmental impacts can also make a big difference. The water consumption in the soybean production is much larger in comparison with the water consumption for the diesel production [National Renewable Energy Laboratory - NREL/SR-580-24089]. Brazil has an important role to play in this scenario because of its large experience in bio-fuels production since the seventies, and the country has conditions to produce bio-fuels for attending great part of the world demand in a sustainable pathway. (author)

  10. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    NARCIS (Netherlands)

    Vries, de J.W.; Vinken, T.M.W.J.; Hamelin, L.; Boer, de I.J.M.

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for

  11. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.

    Science.gov (United States)

    Zhao, Bing; Xu, Xinyang; Zeng, Fanqiang; Li, Haibo; Chen, Xi

    2018-05-04

    The co-pyrolysis technology was applied to municipal sewage sludge (MSS) and hazelnut shell with alkaline activating agent K 2 CO 3 under N 2 atmosphere. The innovative bio-char produced by co-pyrolysis had significant physical and chemical characteristics. The specific surface area reached 1990.23 m 2 /g, and the iodine absorption number was 1068.22 mg/g after co-pyrolysis at 850 °C. Although hazelnut shell was a kind of solid waste, it also had abundant cellulose resource, which could contribute to porous structure of bio-char during co-pyrolysis with MSS and decrease total heavy metals contents of raw material to increase security of bio-chars. Meanwhile, the residual fractions of heavy metals in bio-char were above 92.95% after co-pyrolysis at 900 °C except Cd to prevent heavy metals digestion, and the bio-char presented significant immobilization behavior from co-pyrolysis technology. Moreover, the yield and the iodine absorption number of bio-chars under different process variables were analyzed, and it was confirmed that appropriate process variables could contribute the yield and the iodine absorption number of bio-char and prevent to etch pore structure excessively to collapse. The changes of surface functional groups and crystallographic structure before and after co-pyrolysis were analyzed by FTIR and XRD, respectively. The hierarchical porous structure of bio-char was presented by SEM and N 2 adsorption-desorption isotherm. The Cu(II) adsorption capacity of the bio-char was 42.28 mg/g after 24 h, and surface functional groups acted as active binding sites for Cu(II) adsorption. Langmuir model and pseudo-second-order model can describe process of Cu(II) adsorption well.

  12. Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.

    2016-08-01

    Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate by fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of

  13. Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Su-ping, Z. [ECUST, Shanghai (China). Dept. of Chemical Engineering for Energy Resources

    2003-01-01

    The bio-oil obtained from the fast pyrolysis of biomass has a high oxygen content. Ketones and aldehydes, carboxylic acids and esters, aliphatic and aromatic alcohols, and ethers have been detected in significant quantities. Because of the reactivity of oxygenated groups, the main problems of the oil are instability. Therefore study of the deoxygenation of bio-oil is needed. In the present work the mechanism of hydrodeoxygenation (HDO) of bio-oil in the presence of a cobalt molybdate catalyst was studied. Particularly, the effects of reaction time, temperature, and hydrogen pressure on the HDO activity were examined. On the experimental results, a kinetic model for HDO of bio-oil was proposed. (author)

  14. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  15. Improved performance in GaInNAs solar cells by hydrogen passivation

    International Nuclear Information System (INIS)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-01-01

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells

  16. Fuel and food: the competition of bio fuels

    International Nuclear Information System (INIS)

    Tonelli, C.; Soave, C.

    2008-01-01

    In order to achieve the target of 5.75% of bio fuels by 2010 (as indicated bu EU), we must produce in Italy 1 million tons of bio ethanol/year. Using cereals as a feedstock will severely complete with their use as food. We need new crops (lignocellulose crops) specifically selected and bred to fit specific energy needs. Main properties of these crops are indicated as well as the breeding strategies to be used to improve the existing species towards the target of producing higher amount of bio ethanol [it

  17. Co pyrolysis of biomass and PP

    International Nuclear Information System (INIS)

    Heo, Hyeon Su; Kim, Jung Hwan; Cho, Hye Jung; Ko, Jeong Huy; Park, Hye Jin; Bae, Yoon Ju; Park, Young Kwon

    2010-01-01

    Full text: While bio-oil has received considerable attention both as a source of energy and as an organic feedstock, its stability as fuel is very low due to high oxygen content. Therefore, there are many efforts to upgrade it. Among them, co pyrolysis with polyolefin can be a method to obtain stable bio-oil. Because polyolefins contain higher hydrogen and carbon content than biomass and no oxygen, plastic/ biomass co pyrolysis may upgrade the bio-oil properties by increasing the carbon and hydrogen contents while reducing oxygen content. In this study, wood biomass was mixed with PP and then co pyrolysis was carried out in a batch reactor. The produced oil and gas was analyzed using GC and GC-MS. Also elemental analysis was performed to know the hydrogen, carbon and oxygen content of bio-oil. The effect of various reaction conditions on bio-oil properties were presented in detail. (author)

  18. Effect of hydrogenation pressure on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio; Galdino, Gabriel Souza; Bressiani, Ana Helena; Faria Junior, Rubens Nunes de; Takiishi, Hidetoshi

    2009-01-01

    The effects of the hydrogenation stage on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy have been studied. Powder alloys have been produced by hydrogenation with 250 MPa or 1 GPa and via high energy planetary ball milling. Samples were isostatically pressed at 200 MPa and sintered at 1150 deg C for 7, 10 and 13 hours. Elastic modulus and microhardness were determined using a dynamic mechanical analyzer (DMA) and a Vickers microhardness tester. Density of the samples was measured using a liquid displacement system. Microstructure and phases presents were analyzed employing scanning electron microscopy (SEM). Elastic modulus were 81.3 ± 0.8 and 62.6 ± 0.6 GPa for samples produced by 250 MPa and 1 GPa hydrogenation, respectively when sintered for 7h. (author)

  19. Hydrogen production from wastes. State-of-the-art and development potential. Final report

    International Nuclear Information System (INIS)

    Megret, O.; Hubert, L.; Calbry, M.; Trably, E.; Carrere, H.; Garcia-Bernet, D.; Bernet, N.

    2015-09-01

    Within the framework of the search for a virtuous energy system, the energy production known as 'clean' presents major stakes as well environmental as economic and societal. Among the potentially usable energy vectors, the dihydrogen gas proves to be a serious alternative to fossil energies. The 'traditional' production processes rest on extraction of hydrocarbon fossil resources and are strongly disparaged for their environmental impacts and the dependences with international access to fossil resources. To date, in addition to hydrogen production by water electrolysis based on renewable resources, the promising sectors of hydrogen production are those of the bio-refinery applied to layers of rough biomass, waste organic, sludges, etc. They involve both thermochemical and biological conversion processes. The objective of this study is to carry out a detailed state of the art of these alternative processes allowing the conversion of biomass-type wastes and by-products, on the scale of France, Europe and World. The study thus makes it possible to identify, describe and characterize the thermal and biological processes. The operating conditions to increase hydrogen production as well as the limits of the systems are presented: temperature, pressure, pH, quality of the layers, undesirable, gear robustness, etc. A brief study of the potential layers is proposed, making it possible to outline the potential of hydrogen production; however identification of the layers known as 'of implementation' (corresponding to the layers really expected taking into account the technical and economic context and of the competition of other valorization sectors) was not performed. For the thermal processes, theoretical examples of integrated processes are presented and an economic estimate of the hydrogen resulting cost is introduced. Regarding biological processes, the study identifies and analyses projects (on a pilot-scale for the most succeeded) which

  20. Global status of hydrogen research

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, J.B.; Browning, D.J.

    2001-07-01

    This report surveys the global status of hydrogen research and identifies technological barriers to the implementation of a global hydrogen economy. It is concluded that there will be a 30 year transition phase to the full implementation of the hydrogen economy. In this period, hydrogen will be largely produced by the reformation of hydrocarbons, particularly methane. It will be necessary to ensure that any carbonaceous oxides (and other unwanted species) formed as by-products will be trapped and not released into the atmosphere. Following the transition phase, hydrogen should be largely produced from renewable energy sources using some form of water cracking, largely electrolysis. Target performances and costs are identified for key technologies. The status of hydrogen research in the UK is reviews and it is concluded that the UK does not have a strategy for the adoption of the hydrogen economy, nor does it have a coherent and co-ordinated research and development strategy addressing barriers to the hydrogen economy. Despite this fact, because of the long transition phase, it is still possible for the UK to formulate a coherent strategy and make a significant contribution to the global implementation of the hydrogen economy, as there are still unresolved technology issues. The report concludes with a number of recommendations. (Author)

  1. Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion.

    Science.gov (United States)

    Díaz, I; Lopes, A C; Pérez, S I; Fdz-Polanco, M

    2010-10-01

    The removal performance of hydrogen sulphide in severely polluted biogas produced during the anaerobic digestion of sludge was studied by employing pure oxygen, air and nitrate as oxidant reactives supplied to the biodigester. Research was performed in a 200-L digester with an hydraulic retention time (HRT) of ∼20 days under mesophilic conditions. The oxygen supply (0.25 N m³/m³ feed) to the bioreactor successfully reduced the hydrogen sulphide content from 15,811 mg/N m³ to less than 400 mg/N m³. The introduction of air (1.27 N m³/m³ feed) removed more than 99% of the hydrogen sulphide content, with a final concentration of ∼55 mg/N m³. COD removal, VS reduction and methane yield were not affected under microaerobic conditions; however, methane concentration in the biogas decreased when air was employed as a result of nitrogen dilution. The nitrate addition was not effective for hydrogen sulphide removal in the biogas. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    Science.gov (United States)

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants.

  3. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  4. Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria

    International Nuclear Information System (INIS)

    Pesarrodona, Mireia; Conchillo-Solé, Oscar; Unzueta, Ugutz; Xu, Zhikun; Ferrer-Miralles, Neus; Daura, Xavier; Vázquez, Esther; Villaverde, Antonio; Fernández, Yolanda; Foradada, Laia; Schwartz, Simó Jr; Abasolo, Ibane; Sánchez-Chardi, Alejandro; Roldán, Mónica; Villegas, Sandra; Rinas, Ursula

    2016-01-01

    Biofabrication is attracting interest as a means to produce nanostructured functional materials because of its operational versatility and full scalability. Materials based on proteins are especially appealing, as the structure and functionality of proteins can be adapted by genetic engineering. Furthermore, strategies and tools for protein production have been developed and refined steadily for more than 30 years. However, protein conformation and therefore activity might be sensitive to production conditions. Here, we have explored whether the downstream strategy influences the structure and biological activities, in vitro and in vivo, of a self-assembling, CD44-targeted protein-only nanoparticle produced in Escherichia coli. This has been performed through the comparative analysis of particles built from soluble protein species or protein versions obtained by in vitro protein extraction from inclusion bodies, through mild, non-denaturing procedures. These methods have been developed recently as a convenient alternative to the use of toxic chaotropic agents for protein resolubilization from protein aggregates. The results indicate that the resulting material shows substantial differences in its physicochemical properties and its biological performance at the systems level, and that its building blocks are sensitive to the particular protein source. (paper)

  5. BioBlend.objects: metacomputing with Galaxy.

    Science.gov (United States)

    Leo, Simone; Pireddu, Luca; Cuccuru, Gianmauro; Lianas, Luca; Soranzo, Nicola; Afgan, Enis; Zanetti, Gianluigi

    2014-10-01

    BioBlend.objects is a new component of the BioBlend package, adding an object-oriented interface for the Galaxy REST-based application programming interface. It improves support for metacomputing on Galaxy entities by providing higher-level functionality and allowing users to more easily create programs to explore, query and create Galaxy datasets and workflows. BioBlend.objects is available online at https://github.com/afgane/bioblend. The new object-oriented API is implemented by the galaxy/objects subpackage. © The Author 2014. Published by Oxford University Press.

  6. Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: Understanding alcohol participation, chemical composition, and energy efficiency

    International Nuclear Information System (INIS)

    Jo, Heuntae; Prajitno, Hermawan; Zeb, Hassan; Kim, Jaehoon

    2017-01-01

    Highlights: • Non-catalytic and non-hydrogen based bio-oil upgrading was conducted using scMeOH. • 16–40 wt% alcohols were consumed during the upgrading. • High bio-oil yield of 78.4 wt% and low TAN of 4.0 mg KOH/g were achieved. • Effect of supercritical alcohols, reaction times, temperature and bio-oil concentration was conducted. • scMeOH upgrading has good energy recovery (ER) and energy efficiency (EE) compared with scEtOH and scIPA. - Abstract: Herein, a supercritical methanol (scMeOH) route for efficient upgrading of the low-boiling fraction of fast pyrolysis bio-oil containing a large amount of low-molecular-weight acids and water was investigated. The effects of various reaction parameters, including the temperature, concentration, and time, were explored. The yield of bio-oil and the energy efficiency of the scMeOH upgrading process were determined based on the amount of methanol that participated in the reaction during upgrading and fractionation of the upgraded heavy-fraction bio-oils (UHBOs) and upgraded light-fraction bio-oils (ULBOs). Upgrading at 400 °C with 9.1 wt% bio-oil for 30 min generated a high bio-oil yield of 78.4 wt% with a low total acid number (TAN) of 4.0 mg-KOH/g-oil and a higher heating value of 29.9 MJ kg −1 . The energy recovery (ER) was 94–131% and the energy efficiency (EE) was in the range of 79–109% depending on the calorific values of the ULBOs. Compared with upgrading in supercritical ethanol and supercritical isopropanol, less alcohol participation, a lower TAN, and higher ER and EE were achieved with scMeOH upgrading. Plausible pathways for bio-oil upgrading in supercritical alcohols based on detailed compositional analysis of the UHBO, ULBO, and gaseous products were discussed.

  7. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  8. Pyrolysis kinetics of spent lark mushroom substrate and characterization of bio-oil obtained from the substrate

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Cheng, Zhiqiang; Zhao, Tianqi; Liu, Mengzhu; Zhang, Mingyue; Li, Jianing; Hu, Meijuan; Zhang, Li; Li, Junfeng

    2014-01-01

    Highlights: • Pyrolysis behavior of spent lark mushroom substrate is investigated. • Significant pyrolysis stage occurs at the range of 232–382 °C. • Kinetics reveals the influence of heating rate on pyrolysis process. • The maximum bio-oil yield is found at 470 °C. • The characterization shows obtained oil can be utilized as a potential resource. - Abstract: In our work, thermal behavior and kinetic characteristics of spent lark mushroom substrate were evaluated to elaborate the thermal decomposition mechanisms and explore the influence of heating rate by using thermogravimetric analyzer and Coats–Redfern method. The study of pyrolysis temperature of raw material was also operated at the range of 410–530 °C, under the feeding rate 0.36 g/min, and the nitrogen flow 16 L/h. The results showed that the maximum bio-oil yield was obtained at 470 °C with the yield of 14.4 wt.%. The analysis of Fourier transform infrared spectrometer and gas chromatography coupled with mass selective detector indicated that the target liquid production was consisted of phenols, hydrocarbons and other components. Simultaneously, the low oxygen and high hydrogen content in bio-oil was also determined by elemental analysis. Based on the above-mentioned results, we demonstrated that the bio-oil obtained from the substrate had high utilization value as a potential energy resource

  9. Exploring 'new' bioactivities of polymers at the nano-bio interface.

    Science.gov (United States)

    Wang, Chunming; Dong, Lei

    2015-01-01

    A biological system is essentially an elegant assembly of polymeric nanostructures. The polymers in the body, biomacromolecules, are both building blocks and versatile messengers. We propose that non-biologically derived polymers can be potential therapeutic candidates with unique advantages. Emerging findings about polycations, polysaccharides, immobilised multivalent ligands, and biomolecular coronas provide evidence that polymers are activated at the nano-bio interface, while emphasising the current theoretical and practical challenges. Our increasing understanding of the nano-bio interface and evolving approaches to establish the therapeutic potential of polymers enable the development of polymer drugs with high specificities for broad applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Electrochemistry study of the influence of local hydrogen generation in carbon steel bio-corrosion mechanisms in presence of iron reducing bacteria (Shewanella oneidensis)

    International Nuclear Information System (INIS)

    Moreira, R.; Libert, M.; Tribollet, B.; Vivier, V.

    2012-01-01

    Document available in extended abstract form only. The safe disposal of nuclear waste is a major concern for the nuclear energy industry. The high-level long-lived waste (HLNW) should be maintained for millions of years in clay formations at 500 metres depth in order to prevent the migration of radionuclides. Thence, different kinds of materials such as, carbon steel, stainless steel, concrete, clay, etc., are chosen aiming to last as long as possible and to preserve the radioactivity properties. In contrast, the anoxic corrosion of the different metallic envelopes is an expected phenomenon due to the changes on the environmental conditions (such as re-saturation) within HLNW repositories. In this context, corrosion products like iron oxides (i.e. magnetite, Fe 3 O 4 ), and hydrogen will be also expected. On the one hand, hydrogen poses a significant threat to the nuclear waste repository when it is accumulated for a long time in the surrounding clay - such hydrogen production may damage the barrier properties of the geological formation, affecting the safety of the repository. On the other hand, hydrogen production represents a new energy source for bacterial growth, especially in such environments with low content of biodegradable organic matter. Moreover, some hydrogeno-trophic bacteria can also use Fe 3+ as an electron acceptor for their development. Therefore, the biological activity and biofilm formation could interfere in the metal corrosion behaviour. This phenomenon is widely known by MIC (Microbiologically Influenced Corrosion), which can represent a huge problem when promoting local corrosion. The objective of this study is to better understand the influence of local hydrogen formation in the carbon steel bio-corrosion process in the presence of Shewanella oneidensis MR-1, a model of Iron Reducing Bacteria (IRB), in order to evaluate the impact of the bacterial activity in terms of long term behaviour of geological disposal materials. In this study

  11. Study of the oxygen reduction reaction on stainless steel materials in natural seawater. Influence of the bio-film on corrosion processes

    International Nuclear Information System (INIS)

    Le Bozec, N.

    2000-01-01

    Bio-film development on stainless steels immersed in natural seawater can have prejudicial consequences on the resistance of these materials to corrosion. The goal of the present study was to get more precise information on the corrosion processes, and especially on the oxygen reduction reaction. As the reaction is linked to the stainless steel surface state, the characterisation of the oxides films (composition, structure, thickness...) is essential to understand the mechanisms and the oxygen reduction kinetic. The first aim of the study has been to correlate the oxygen reduction processes with the characteristics of the oxides layer as a function of the alloy surface treatment (mechanical polishing, electrochemical passivation and pre-reduction, chemical treatment with some acids or with hydrogen peroxide). The second stage has consisted in following the evolution of the oxygen reduction processes and of the characteristics of the oxides layer with the aging of stainless steels in natural and artificial sea-waters. One major bio-film effect appears to be the production of hydrogen peroxide at a concentration level which induces modifications of the oxides layers and, consequently, of the evolution of the oxygen reduction kinetics as well as of the open circuit potential. Electrochemical techniques (voltammetric analysis at rotating disk and ring-disk electrodes, coulometry) combined with a surface analytical method by X-ray photoelectron spectroscopy have been used. The characterisation of the bio-film required the use of microscopy (scanning electronic microscopy, epi-fluorescence microscopy) and microbiological methods (cultures). The in-situ detection of hydrogen peroxide formed inside the bio-film has been performed with a micro-electrode and the results were confirmed with enzymatic methods. (author)

  12. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  13. Chitosan–Zinc(II Complexes as a Bio-Sorbent for the Adsorptive Abatement of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance

    Directory of Open Access Journals (Sweden)

    Maryam Roza Yazdani

    2017-12-01

    Full Text Available This study examines zinc(II–chitosan complexes as a bio-sorbent for phosphate removal from aqueous solutions. The bio-sorbent is prepared and is characterized via Fourier Transform Infrared Spectroscopy (FT-IR, Scanning Electron Microscopy (SEM, and Point of Zero Charge (pHPZC–drift method. The adsorption capacity of zinc(II–chitosan bio-sorbent is compared with those of chitosan and ZnO–chitosan and nano-ZnO–chitosan composites. The effect of operational parameters including pH, temperature, and competing ions are explored via adsorption batch mode. A rapid phosphate uptake is observed within the first three hours of contact time. Phosphate removal by zinc(II–chitosan is favored when the surface charge of bio-sorbent is positive/or neutral e.g., within the pH range inferior or around its pHPZC, 7. Phosphate abatement is enhanced with decreasing temperature. The study of background ions indicates a minor effect of chloride, whereas nitrate and sulfate show competing effect with phosphate for the adsorptive sites. The adsorption kinetics is best described with the pseudo-second-order model. Sips (R2 > 0.96 and Freundlich (R2 ≥ 0.95 models suit the adsorption isotherm. The phosphate reaction with zinc(II–chitosan is exothermic, favorable and spontaneous. The complexation of zinc(II and chitosan along with the corresponding mechanisms of phosphate removal are presented. This study indicates the introduction of zinc(II ions into chitosan improves its performance towards phosphate uptake from 1.45 to 6.55 mg/g and provides fundamental information for developing bio-based materials for water remediation.

  14. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  15. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  16. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  18. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    Science.gov (United States)

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  19. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis.

    Science.gov (United States)

    Mohan, Dinesh; Shi, Jenny; Nicholas, Darrel D; Pittman, Charles U; Steele, Philip H; Cooper, Jerome E

    2008-03-01

    Pine wood, pine bark, oak wood and oak bark were pyrolyzed in an auger reactor. A total of 16 bio-oils or pyrolytic oils were generated at different temperatures and residence times. Two additional pine bio-oils were produced at the National Renewable Energy Laboratory in a fluidized-bed reactor at different temperatures. All these bio-oils were fractionated to obtain lignin-rich fractions which consist mainly of phenols and neutrals. The pyrolytic lignin-rich fractions were obtained by liquid-liquid extraction. Whole bio-oils and their lignin-rich fractions were studied as potential environmentally benign wood preservatives to replace metal-based CCA and copper systems that have raised environmental concerns. Each bio-oil and several lignin-rich fractions were tested for antifungal properties. Soil block tests were conducted using one brown-rot fungus (Gloeophyllum trabeum) and one white-rot fungus (Trametes versicolor). The lignin-rich fractions showed greater fungal inhibition than whole bio-oils for a impregnation solution 10% concentration level. Water repellence tests were also performed to study wood wafer swelling behavior before and after bio-oil and lignin-rich fraction treatments. In this case, bio-oil fractions did not exhibit higher water repellency than whole bio-oils. Comparison of raw bio-oils in soil block tests, with unleached wafers, at 10% and 25% bio-oil impregnation solution concentration levels showed excellent wood preservation properties at the 25% level. The good performance of raw bio-oils at higher loading levels suggests that fractionation to generate lignin-rich fractions is unnecessary. At this more effective 25% loading level in general, the raw bio-oils performed similarly. Prevention of leaching is critically important for both raw bio-oils and their fractions to provide decay resistance. Initial tests of a polymerization chemical to prevent leaching showed some success.

  1. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    Science.gov (United States)

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H 2 /2 H + interconversion from pH 0 to 9, with catalytic preference for H 2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm -2 , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm -2 , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bio-objects’ political capacity: a research agenda

    Science.gov (United States)

    Maeseele, Pieter; Hendrickx, Kim; Pavone, Vincenzo; Van Hoyweghen, Ine

    2013-01-01

    This article explores the merits of foregrounding the dichotomy of politicization vs de-politicization for our understanding of bio-objects in order to study their production, circulation, and governance in European societies. By asking how bio-objects are configured in science, policy, public, and media discourses and practices, we focus on the role of socio-technical configurations in generating political relations. The bio-object thereby serves as an entry point to approach and conceptualize “the political” in an innovative way. PMID:23630150

  3. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    Science.gov (United States)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  4. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  5. COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    B. Lanning; J. Arps

    2005-08-31

    Efforts in this quarter were concentrated on developing vacuum processing procedures to produce thinner (<4 {micro}m-thick), defect-free films over larger areas (>100 cm{sup 2}). We continued to test three different types of rigid supporting substrates, thermally oxidized silicon (10 cm diameter), polished borosilicate glass (10 cm diameter), and soda-lime glass (>100 cm{sup 2} areas), each representing a different cost, surface roughness, and chemistry. Mechanical integrity, defect density, and release characteristics of the films, though similar for the oxidized silicon and borosilicate glass, were distinctly different for the inexpensive soda-lime (float) glass; i.e., more sensitive to surface impurities. In general, films less than 4 {micro}m-thick were shown to be very sensitive to surface condition of the supporting substrate, particularly in the case of the soda-lime glass, to the point where surface strain overrode and dominated the intrinsic bulk stresses that are produced during the growth process. Therefore, in the near term (over the next quarter), large area films (>100 cm{sup 2}) will be produced at a minimum thickness of 5 {micro}m while further development will be conducted in subsequent quarters to reduce membrane thickness in large area films. Continued hydrogen permeation experiments and characterization of 5 and 10 {micro}m-thick, Pd-Cu films, with compositions near the 60/40 (Pd/Cu phase boundary) in combination with air oxidation treatments to improve performance. Pure hydrogen permeability for an as-received, 5 {micro}m film at 400 C was determined to be 1.3 x 10{sup -4} cm{sup 3}(STP) {center_dot} cm/cm{sup 2} {center_dot} s {center_dot} cmHg{sup 0.5} at steady state. Even a membrane {approx} 10 {micro}m-thick, exhibited a steady state hydrogen flux of 32 cm{sup 3}(STP)/cm{sup 2}min after air exposure, which, when normalized for DOE's Office of Fossil Energy's specified hydrogen flux with a {Delta}P of 100 psi and a permeate

  6. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    Science.gov (United States)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  7. Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Suntana, Asep S. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Indonesian Ecolabeling Institute/Lembaga Ekolabel Indonesia (LEI), Taman Bogor Baru Blok BIV No. 12, Bogor 16152 (Indonesia); Vogt, Kristiina A. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Interforest LLC, Holderness, NH 03245 (United States); Renewol LLC, 63260 Overtree Road, Bend, OR 97701 (United States); Turnblom, Eric C. [Forest Biometrics Program, College of Forest Resources, University of Washington, Box 352100, WA 98195-2100 (United States); Upadhye, Ravi [ARU Associates, Pleasanton, CA 94566 (United States)

    2009-11-15

    Since Indonesia has significant land area in different forest types that could be used to produce biofuels, the potential to sustainably collect and convert forest materials to methanol for use in energy production was examined. Using the annually available aboveground forest biomass, from 40 to 168 billion l of bio-methanol could be produced for use as a transportation fuel and/or to supply fuel cells to produce electricity. When a lower forest biomass availability estimate was used to determine how much electricity (methanol fed into fuel cells) could be produced in Indonesia, more than 10 million households or about 12,000 villages (20% of the total rural villages in Indonesia) would be supplied annually with electricity. Collecting forest biomass at the higher end of the estimated available biomass and converting it to methanol to supply fuel cells could provide electricity to more than 42 million households annually. This would be approximately 52,000 villages, or 86% of the total rural villages in Indonesian. When electricity is produced with bio-methanol/fuel cells, it could potentially supply from half to all of the current electricity consumed in Indonesia. By generating electricity using bio-methanol/fuel cells instead of from fossil fuels, from 9 to 38% of the total carbon currently emitted each year in Indonesia could be avoided. In contrast, substituting this same amount of bio-methanol for gasoline could provide all of the annual gasoline needs of Indonesia and contribute towards reducing their carbon emissions by about 8-35%. (author)

  8. The environmentally friendly technology for bio fuel production

    International Nuclear Information System (INIS)

    Bekers, M.; Danilevics, A.; Guriniece, E.; Gulbis, V.

    2003-01-01

    Full text: Bio fuel production and use have been discussed this time in EC and in Latvia as alternative energy sources. The national resources allow producing liquid fuels - bio diesel and bi oethanol from rape seeds and grain correspondingly. Liquid bio fuels can be recommended especially for auto transport in big towns to reduce the pollution of air. A system for environmentally friendly production of bio fuel from agricultural raw materials has been developed, which permit a complex utilization of byproducts an wastes for obtaining of valuable food-stuffs and industrial products, providing the agricultural production requirements and supporting with local mineral fertilizers. Such a bio fuel production includes the agricultural and industrial productions in a united biotechnological system. Production objects of system interact: the products, by-products and wastes from one object are used as raw materials, auxiliary materials or heat carriers in other system's objects. This integrated agro-industrial production system would allow the production of feeds and chemical products, along with bio fuels. In this work, a model of a system for a conventional administrative rural region is presented, exemplified with the case of Latvia. The model is developed for three forms of bio fuel production, i.e. ethanol, bio diesel and biogas as local energy source. Bio diesel is produced using ethanol as transesterifying agent of rape-seed oil fatty acids. This bio diesel is a blend of rape-seed oil fatty acid ethyl esters (REE) and consists solely from renewable raw materials. The capacity of distillery of system is 40 million litters per year and bio diesel 35000 ton. Important for agriculture is protein reach press cakes the byproduct from bio diesel production (66000 t/y). This byproduct can be exported as well. Biogas reactors of system can be used for utilization of wastes from town if necessary. Recommended bio system occupates up to 150.000 ha of agriculture lands

  9. Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer

    International Nuclear Information System (INIS)

    Oh, Seung-Jin; Choi, Gyung-Goo; Kim, Joo-Sik

    2016-01-01

    Pyrolysis of palm kernel shell was performed using a two-stage pyrolyzer consisting of an auger reactor and a fluidized bed reactor within the auger reactor temperature range of ∼290–380 °C at the fluidized bed reactor temperature of ∼520 °C, and with a variable residence time of the feed material in the auger reactor. The highest bio-oil yield of the two-stage pyrolysis was ∼56 wt%. The bio-oil derived from the auger reactor contained degradation products of the hemicelluloses of PKS, such as acetic acid, and furfural, whereas the fluidized bed reactor produced a bio-oil with high concentrations of acetic acid and phenol. The auger reactor temperature and the residence time of PKS in the auger reactor had an influence on the acetic acid concentration in the bio-oil, while their changes did not induce an observable trend on the phenol concentration in the bio-oil derived from the fluidized bed reactor. The maximum concentrations of acetic acid and phenol in bio-oil were ∼78 and 12 wt% dry basis, respectively. As a result, it was possible for the two-stage pyrolyzer to separately produce two different bio-oils in one operation without any costly fractionation process of bio-oils. - Highlights: • The two-stage pyrolyzer is composed of an auger and a fluidized bed reactor. • The two-stage pyrolyzer produced two different bio-oils in a single operation. • The maximum bio-oil yield of the two-stage pyrolysis was ∼56 wt%. • The maximum concentration of acetic acid in bio-oil was ∼78 wt% dry basis. • The maximum concentration of phenol in bio-oil was ∼12 wt% dry basis.

  10. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  11. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  12. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Das, Nilanjana

    2013-11-28

    Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindanecontaminated environments.

  13. Computational Methods to Assess the Production Potential of Bio-Based Chemicals.

    Science.gov (United States)

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

  14. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  15. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters

    Science.gov (United States)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi

    2016-01-01

    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation-dehydrogenation ethylidyne-producing route are considered, uncovering that at the =10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.

  16. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Black liquor gasification (BLG) for bio-fuel or electricity production at the modern pulp mills is a field in continuous evolution and the efforts are considerably driven by the climate change, fuel security, and renewable energy. This paper evaluates and compares two BLG systems for methanol production: (i) oxygen blown pressurized thermal BLG; and (ii) dry BLG with direct causticization, which have been regarded as the most potential technology candidates for the future deployment. A key objective is to assess integration possibilities of BLG technologies with the reference Kraft pulp mill producing 1000 air dried tonnes (ADt) pulp/day replacing conventional recovery cycle. The study was performed to compare the systems’ performance in terms of potential methanol production, energy efficiency, and potential CO 2 reductions. The results indicate larger potential of black liquor conversion to methanol from the pressurized BLG system (about 77 million tonnes/year of methanol) than the dry BLG system (about 30 million tonnes/year of methanol) utilizing identical amount of black liquor available worldwide (220 million tDS/year). The potential CO 2 emissions reduction from the transport sector is substantially higher in pressurized BLG system (117 million tonnes/year CO 2 reductions) as compared to dry BLG system (45 million tonnes/year CO 2 reductions). However, the dry BLG system with direct causticization shows better results when considering consequences of additional biomass import. In addition, comparison of methanol production via BLG with other bio-refinery products, e.g. hydrogen, dimethyl ether (DME) and bio-methane, has also been discussed.

  17. Hydrogenation effects on the lithium ion battery performance of TiOF2

    Science.gov (United States)

    He, Min; Wang, Zhihui; Yan, Xiaodong; Tian, Lihong; Liu, Gao; Chen, Xiaobo

    2016-02-01

    Hydrogenated titanium oxyfluorides (TiOF2) nanoparticles were synthesized via one-pot hydrothermal method and subsequent hydrogenation treatment. As anode materials for lithium ion batteries, the hydrogenated TiOF2 showed a superior rate performance compared to the pristine TiOF2. A charge capacity of 118.4 mA h g-1 was achieved at the current density of 1053 mA g-1 upon 150 cycles, which was 4 times higher than that of the pristine TiOF2. The rate performance of the hydrogenated TiOF2 at different current densities of 42, 210, 1053, 2106, 5265, 10530, 21060 and 52650 mA g-1 was 2.8, 6.0, 13.2, 14.7, 21.5, 30.6, 67.9 and 483.3 times higher than those of the pristine TiOF2 electrode at the corresponding rates, respectively. The remarkable improvement of the electrochemical performance was likely related to the size breakdown in the (001) direction after hydrogenation, instead of oxygen vacancies induced better charge transfer properties.

  18. Diuretic Action of Exogenous Hydrogen Sulfide in Spontaneously ...

    African Journals Online (AJOL)

    HP

    Keywords: Spontaneously hypertensive rats, Diabetes, Hydrogen sulphide, Diuretic, Sodium excretion,. Urine output ... molecule H2S can be generated in many types of mammalian .... 96-well plate reader (Bio-Tek instruments, INC,. USA).

  19. Status and potential of bio-methane fuel

    International Nuclear Information System (INIS)

    2008-01-01

    This document first indicates and describes the various bio-methane production processes which can be implemented on a short term (use of organic wastes or effluents), on a medium term (from energetic crops) and on a longer term (gasification). It discusses and assesses the potential production of bio-methane fuel from different sources and processes. It describes the steps of the production of bio-methane fuel from biogas, with notably biogas refinement to produce bio-methane through three processes (de-carbonation, desulfurization, dehydration). Cost productions are assessed. Expected technology advances are evoked. Finally, the authors outline the contribution of bio-methane in the limitation of greenhouse gas emissions in the transport sector

  20. Density evaluation of remotely-supplied hydrogen radicals produced via tungsten filament method for SiCl4 reduction

    Science.gov (United States)

    Zohra Dahmani, Fatima; Okamoto, Yuji; Tsutsumi, Daiki; Ishigaki, Takamasa; Koinuma, Hideomi; Hamzaoui, Saad; Flazi, Samir; Sumiya, Masatomo

    2018-05-01

    Effect of the hydrogen radical on the reduction of a silicon tetrachloride (SiCl4) source was studied. The hydrogen radicals were generated using a tungsten (W) filament in a generation chamber, and were remotely supplied to another reaction chamber. The density of the hydrogen radical was estimated from the optical transmittance of 600-nm-wavelength light through phosphate glass doped with tungsten oxide (WO3). Lifetime of the hydrogen radical seemed sufficiently long, and its density as supplied to the reaction chamber was estimated to be on the order of 1012 cm‑3. Signal intensity of the peak corresponding to SiCl4 (m/z = 170) detected by quadrupole-mass measurement was confirmed to decrease owing to the reaction with the remotely-supplied hydrogen radical. This indicates the possibility that chemically-stable SiCl4, as one of the by-products of the Siemens process, can be reduced to produce silicon.

  1. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  2. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process

    International Nuclear Information System (INIS)

    Zhang, Xinghua; Chen, Lungang; Kong, Wei; Wang, Tiejun; Zhang, Qi; Long, Jinxing; Xu, Ying; Ma, Longlong

    2015-01-01

    Bio-oil can't be directly used as fuel due to its deteriorate properties. Here, an efficient catalytic upgrading process for the bio-oil, including esterification, hydrogenation, hydrodeoxygenation and depolymerization, is proposed with multifunctional catalyst Ni/SiO 2 –ZrO 2 and biomass-derived solvent ethanol. Results showed that esters, alcohols, phenolics, and cyclo-ketones were the main components in the upgraded bio-oil while aldehydes were removed completely via catalytic hydrogenation and acids were removed by catalytic esterification with supercritical ethanol. The pH value of upgraded bio-oil rose drastically from 2.38 to 5.24, and the high heating value increased to 24.4 MJ kg −1 . Comparison characterization on the upgraded and crude bio-oil using FT-IR, GPC (Gel permeation chromatography) and 13 C NMR (Nuclear Magnetic Resonance) demonstrated that lignin-derived oligomers contained in crude bio-oil were further depolymerized over Ni/SiO 2 –ZrO 2 catalyst. The improved properties suggest that the upgraded bio-oil is more suitable to be used as boiler fuel. Furthermore, the loss of carbon is negligible because formation of coke is suppressed during the upgrading process. - Highlights: • Acid can be converted via catalytic esterification in supercritical ethanol. • Aldehydes can be removed completely during the upgrading process. • Lignin-derived oligomers were further depolymerized during the upgrading process. • Formation of coke is effectively inhibited during the upgrading process

  3. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Exploring the bio-psychosocial effects of renal replacement therapy ...

    African Journals Online (AJOL)

    2011-05-25

    May 25, 2011 ... This article described a qualitative study that investigated the bio-psychosocial effects of renal replacement ... of the exodus of health professionals affecting the medical fraternity, as .... and interpret the meanings and effects of specific phenomena. ... as an early indicator of topic and location selection by.

  5. Bio-composites : opportunities for value-added biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Drzal, L.T. [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemical Engineering and Materials Science]|[Michigan State Univ., East Lansing, MI (United States). Composite Materials and Structures Center

    2003-07-01

    In order to reduce dependency on foreign oil, there is a growing need to develop and commercialize new bio-based green materials and technologies that can produce bio-based structural materials that are competitive with current synthetic products. The use of bio-based products would also improve the environment and create new opportunities for the agricultural economy. This paper described ongoing research into bio-based materials and products that replace petroleum-based products. In particular, it examined the use of biocomposites made by embedding natural/biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, corn stalk fibers and native Michigan grasses into petroleum-derived traditional plastics such as polypropylene, unsaturated polyesters and epoxies. It also examines the use of green biocomposites developed by embedding these bio-fibers into renewable resource-based bioplastics such as cellulosic plastics and soy-based plastics. New processing methods that combine biofibers with plastics were needed to produce the biocomposites with desirable mechanical properties. The study showed that biofiber reinforced petroleum-based plastic biocomposites can produce a structural material that offers a balance between ecology, economy and technology. The potential for using these materials for automotive and building materials was also presented. 1 tab., 28 figs.

  6. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  7. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  8. Accelerated formation of hydrogen-producing granules for the start-up of UASB reactors using vinasses

    Directory of Open Access Journals (Sweden)

    César González-Ugalde

    2014-02-01

    Full Text Available Hydrogen-producing granules formation was studied in a CSTR. The aim of this process is to later transfer the mixed liquor to a UASB reactor to reduce its start-up period. Vinasses from a national bioetha­nol-producing industry (from sugar cane were used as substrate and their anaerobic fermentation was carried out under mesophilic conditions. The seed sludge was collected from an UASB reactor oper­ated in an industrial wastewater treatment plant and it was heat treated to inactivate methanogenic bacteria. Total viable and non-viable material growth curves were generated and it was determined that the exponential growth phase of the thermally pre­treated mixed culture was between 20 and 120 h. Finally, the anaerobic fermentation of the vinasses in batch mode for 70 hours, and then in continuous CSTR mode for 7 days, showed to be an effective method for accelerating the formation of hydrogen-producing granules. Using this method, granules with an average size of 1.24 mm were achieved. The good efficiency of the process is attributed to high mass transfer in the CSTR reactor.

  9. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  10. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    A hydrogen based future energy scenario will use fuel cells for the conversion of chemically stored energy into electricity. Depending upon the type of fuel cell, different specifications will apply for the feedstock which is converted in the cell, ranging from very clean hydrogen for PEM-FC's to desulfurized methane for SOFC and MCFC technology. For the foreseeable future, hydrogen will be supplied by conventional reforming, however operated in compact and dynamic reformer designs. This requires that known catalyst formulations are offered in specific geometries, giving flexibility for novel reactor design options. These specific geometries can be special tablet shapes as well as monolith structures. Finally, also nonhydrocarbon feedstock might be used in special applications, e.g. bio-based methanol and ethanol. BASF offers catalysts for the full process chain starting from feedstock desulfurization via reforming, high temperature shift, low temperature shift to CO fine polishing either via selective oxidation or selective methanation. Depending upon the customer's design, most stages can be served either with precious metal based monolith solutions or base metal tablet solutions. For the former, we have taken the automobile catalyst monolith support and extended its application to the fuel cell hydrogen generation. Washcoats of precious metal supported catalysts can for example be deposited on ceramic monoliths and/or metal heat exchangers for efficient generation of hydrogen. Major advantages are high through puts due to more efficient heat transfer for catalysts on metal heat exchangers, lower pressure drop with greater catalyst mechanical and thermal stability compared to particulate catalysts. Base metal tablet catalysts on the other hand can have intrinsic cost advantages, larger fractions of the reactor can be filled with active mass, and if produced in unconventional shape, again novel reactor designs are made possible. Finally, if it comes to

  11. Adaptive bio-inspired navigation for planetary exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploration of planetary environments with current robotic technologies relies on human control and power-hungry active sensors to perform even the most elementary...

  12. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  13. VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB BIO-OIL

    Directory of Open Access Journals (Sweden)

    Z.S. Nazirah

    2013-12-01

    Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.

  14. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    Science.gov (United States)

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  15. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  16. Design and Dynamics Analysis of a Bio-Inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai

    2012-10-01

    Full Text Available A small, bio-inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined-geared six-bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro-power motor as the actuator. Since the robotic system has a closed-chain structure and employs underactuated redundant motion, the constrained multi-body dynamics are derived with time-varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro-power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi-body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  17. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  18. Alkaline phosphatase immobilization onto Bio-Gide(R) and Bio-Oss(R) for periodontal and bone regeneration.

    NARCIS (Netherlands)

    Oortgiesen, D.A.W.; Plachokova, A.S.; Geenen, C.; Meijer, G.J.; Walboomers, X.F.; Beucken, J.J.J.P van den; Jansen, J.B.M.J.

    2012-01-01

    AIM: To evaluate the effect of alkaline phosphatase (ALP) immobilization onto Bio-Gide((R)) in vitro, and to study the in vivo performance of ALP-enriched Bio-Gide((R)) and/or Bio-Oss((R)) with the purpose to enhance periodontal regeneration. MATERIALS AND METHODS: Alkaline phosphatase ALP was

  19. Bio fertilizer Application in a Fertigation System

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Hoe, P.C.K.

    2011-01-01

    Bio fertilizers contain live beneficial microorganisms that provide nutrients and other benefits to crops. At present, bio fertilizers can be found in solid and liquid forms. Liquid bio fertilizer can be one of the alternatives to chemical fertilizers and pesticides. Liquid bio fertilizer is produced through culturing of microorganisms that are known to have specific capabilities in helping plant growth. However, application of bio fertilizers in the form of solution is more tedious than that of solid bio fertilizers, which can be applied directly to plants, whereas the liquid form requires several stages of preparation before it can be applied to crops. In Malaysian Nuclear Agency, a study on the distribution of liquid bio fertilizers to crops through the fertigation system has been conducted. In Malaysia, this study has not been conducted in depth, since the present fertigation system is associated to delivery of solubilised mineral fertilizers. This paper discusses the application of liquid bio fertilizers through a fertigation system. Discussions cover technical aspects of bio fertilizer preparation and its application via the said system. Tomato plant was used as test crop to determine the capability and efficiency of bio fertilizer application through the fertigation system. (author)

  20. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  1. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  2. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Ab Rasid, Nurul Suhada; Kadir, Sharifah Aishah Syed A.; Azdarpour, Amin

    2013-01-01

    Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min −1 of gas and 10 g min −1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg −1 . As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil. -- Highlights: • Maximum 56 wt% yield of bio-oil was obtained at 550 °C from palm kernel shell. • Two layer of bio-oil was observed up to 500 °C, while it was one layer above 500 °C. • Bio-oil from palm kernel shell provides more than 40% area ratio of phenol in GC–MS analysis. • The calorific value of palm kernel shell bio-oil is higher than other bio-oil

  3. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  4. III-Nitride Membranes for Thermal Bio-Sensing and Solar Hydrogen Generation

    KAUST Repository

    Elafandy, Rami T.

    2017-01-01

    demonstrate the versatility of III-nitride membranes where we develop a thermal bio-sensor nanomembrane and solar energy photo-anode membrane. First, we present a novel preparation technique of nanomembranes with new characteristics; having no threading

  5. Characterization of bio char derived from tapioca skin

    Science.gov (United States)

    Hasnan, F. I.; Iamail, K. N.; Musa, M.; Jaapar, J.; Alwi, H.; Hamid, K. K. K.

    2018-03-01

    Pyrolysis of tapioca skin was conducted to produce bio chars in the range between 500°C–800°C. Surface modification treatment were performed on bio chars by using chemicals within 24 hours at 30°C and hot water within 1 hour to enhance the bio char’s adsorption properties according to surface area, pore volume, pore size, crystallinity structure and functional groups. The samples were characterized by using BET, XRD, FTIR and Methylene Blue adsorption. Based on BET result, it showed the surface area increased as the pyrolysis temperature increased followed by pore volume and pore size for S0. The optimum temperature for SNaOH, SHW and SMeOH was at 600°C, 700°C and 800°C with the surface area of 75.9874, 274.5066 and 351.5531 m2/g respectively compared to S0 while SP3HO4 has the worst result since it felt on macroporous structure. The percentage of MB adsorption was followed the size of bio chars surface area. Based on FTIR result, at temperature 500°C to 700°C, the bio chars still have functional groups while at 800°C, many functional groups were diminished due to high temperature struck on them. XRD result showed all the bio chars were amorphous. In conclusion, the best surface modification treatment was by Methanol followed by hot water and Sodium Hydroxide at temperature of 700°C and 800°C while Ortho-Phosphoric acid was the worst one and was not suitable for bio char’s surface modification for adsorption purpose.

  6. Studies on the effects of storage stability of bio-oil obtained from pyrolysis of Calophyllum inophyllum deoiled seed cake on the performance and emission characteristics of a direct-injection diesel engine.

    Science.gov (United States)

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-19

    The highly unbalanced nature of bio-oil composition poses a serious threat in terms of storage and utilization of bio-oil as a viable fuel in engines. So it becomes inevitable to study the variations in physicochemical properties of the bio-oil during storage to value its chemical instability, for designing stabilization methodologies. The present study aims to investigate the effects of storage stability of bio-oil extracted from pyrolyzing Calophyllum inophyllum (CI) deoiled seed cake on the engine operating characteristics. The bio-oil is produced in a fixed bed reactor at 500 °C under the constant heating rate of 30 °C/min. All the stability analysis methods involve an accelerated aging procedure based on standards established by ASTM (D5304 and E2009) and European standard (EN 14112). Gas chromatography-mass spectrometry was employed to analytically characterize the unaged and aged bio-oil samples. The results clearly depict that stabilizing Calophyllum inophyllum bio-oil with 10% (w/w) methanol improved its stability than that of the unstabilized sample thereby reducing the aging rate of bio-oil to 0.04 and 0.13 cst/h for thermal and oxidative aging respectively. Engine testing of the bio-oil sample revealed that aged bio-oil samples deteriorated engine performance and increased emission levels at the exhaust. The oxidatively aged sample showed the lowest BTE (24.41%), the highest BSEC (20.14 MJ/kWh), CO (1.51%), HC (132 ppm), NOx (1098 ppm) and smoke opacity (34.8%).

  7. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  8. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  9. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  10. Hydrogen absorption study of Ti-based alloys performed by melt-spinning

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.M.; Lemus, L.F.; Santos, D.S. dos, E-mail: rafaella@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    The hydrogen absorption and desorption of Ti{sub 53}Zr{sub 27}Ni{sub 20} icosahedral quasicrystal (ICQ) and Ti{sub 50}Ni{sub 50} shape memory alloy (SMA) melt-spun ribbons was studied. Samples were exposed to hydrogen gas at 623 K and 4 MPa for 1000 minutes. The total capacity of hydrogen obtained for Ti{sub 53}Zr{sub 27}Ni{sub 20} and Ti{sub 50}Ni{sub 50} was 3.2 and 2.4 wt. % respectively. The Thermal Desorption Spectrometry (TDS) of the hydrogenated alloys shows that both alloys start to desorb hydrogen around 750 K. X-ray diffraction (XRD) patterns, performed after hydrogenation, indicate a complete amorphization of the Ti{sub 53}Zr{sub 27}Ni{sub 20} i-phase alloy, while the Ti{sub 50}Ni{sub 50} alloy remained crystalline after hydride formation. (author)

  11. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Isolation and identification of hydrogen-oxidizing bacteria producing 1-aminocyclopropane-1-carboxylate deaminase and the determination of enzymatic activity].

    Science.gov (United States)

    Fu, Bo; Wang, Weiwei; Tang, Ming; Chen, Xingdu

    2009-03-01

    We used Medicago sativa rhizosphere in Shaanxi province of China to isolate and identify hydrogen-oxidizing bacteria that produced ACC (1-aminocyclopropane-1-carboxylate) deaminase, and then studied the mechanism why they can promote the growth of plants. Hydrogen-oxidizing bacteria were isolated by gas-cycle incubation system. We studied the morphological character, physiological characteristics, 16S rDNA sequence analysis and built the phylogenic tree. Thin layer chromatography was used to isolate the strain that produced ACC deaminase. Ninhydrin reaction was used to test the enzyme activity. In total 37 strains were isolated, 8 of which could oxidize H2 strongly and grow chemolithoautotrophically. We initially identified them as hydrogen-oxidizing bacteria. Only strain WMQ-7 produced ACC deaminase among these 8 strains. Morphological and physiological characteristics analysis showed that strain WMQ-7 was essentially consistent with Pseudomonas putida. The 16S rDNA sequence analysis (GenBank accession number EU807744) suggested that strain WMQ-7 was clustered together with Pseudomonas putida in phylogenetic tree, with the sequence identity of 99%. Based on all these results, strain WMQ-7 was identified as Pseudomonas putida. The enzyme activity of strain WMQ-7 was 0.671 U/microg. A strain producing ACC deaminase was identified and tested.

  13. Cyanobacteria: A precious bio-resource in agriculture, ecosystem and environmental sustainability

    Directory of Open Access Journals (Sweden)

    Jay Shankar eSingh

    2016-04-01

    Full Text Available Keeping in view the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters, generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, syngas and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  14. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    Science.gov (United States)

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  15. Re-fermentation os spent solids from dark fermentation allows for a substantial increase of hydrogen production from the organic fraction of municipal solid wastes

    International Nuclear Information System (INIS)

    Munoz-Paez, K. M.; Pareja-Camacho, J.; Rios-Leal, E.; Valdez-Vazquez, I.; Poggi Varaldo, H. M.

    2009-01-01

    In the last 10 years, interest on bio hydrogen has resurrected, particularly the research on dark fermentation of solid wastes. In effect, in a context of scarce and expensive fossil fuels, hydrogen can be considered the best energy alternative because it can be produced by biological means, it has the highest energy density, it is versatile since can be used both as a primary or secondary energy source, it is compatible with electrochemical and combustion-based energy conversion processes, and it is environmentally-friendly since water is its main combustion product and no aggressive pollutants are generated. (Author)

  16. Re-fermentation os spent solids from dark fermentation allows for a substantial increase of hydrogen production from the organic fraction of municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Paez, K. M.; Pareja-Camacho, J.; Rios-Leal, E.; Valdez-Vazquez, I.; Poggi Varaldo, H. M.

    2009-07-01

    In the last 10 years, interest on bio hydrogen has resurrected, particularly the research on dark fermentation of solid wastes. In effect, in a context of scarce and expensive fossil fuels, hydrogen can be considered the best energy alternative because it can be produced by biological means, it has the highest energy density, it is versatile since can be used both as a primary or secondary energy source, it is compatible with electrochemical and combustion-based energy conversion processes, and it is environmentally-friendly since water is its main combustion product and no aggressive pollutants are generated. (Author)

  17. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan

    International Nuclear Information System (INIS)

    Kang Xiaobin; Pang Guangchang; Liang Xinyi; Wang Meng; Liu Jing; Zhu Weiming

    2012-01-01

    Highlights: ► Glutaraldehyde was used as the bridge linking agent to covalently bonded thionine in chitosan, which is more stable and could effectively prevalent leakage of the electronic mediator. ► The effect of GNPs adsorbed HRP was first accurately characterized by bio-layer interferometry using the ForteBio Octer system. ► The application of self-assembly technology increases the biosensor stability. - Abstract: A novel hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan has been developed. Gold nanoparticles fixed with horseradish peroxidase were adsorbed on glassy carbon electrode by the chitosan which cross-linked with the electron mediator of horseradish peroxidase as the bridge linking agent. The assembly procedures were monitored by UV–visible spectral scanning, bio-layer interferometry, cyclic voltammetric and alternating current impedance. The chronoamperometry was used to measure hydrogen peroxide. The hydrogen peroxide biosensor linear range of detection is 1 × 10 −7 –1 × 10 −4 mol/L, detection limit up to 5.0 × 10 −8 mol/L. Moreover the stability, reproducibility and selectivity of the biosensor were also studied and the results confirmed that the biosensor exhibit fast response to hydrogen peroxide and possess high sensitivity, good reproducibility and long-term stability.

  18. Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste

    Science.gov (United States)

    Shin, Hang-Sik

    2008-02-01

    This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.

  19. Hydrogen Cyanide Produced by Pseudomonas chlororaphis O6 Exhibits Nematicidal Activity against Meloidogyne hapla

    Directory of Open Access Journals (Sweden)

    Beom Ryong Kang

    2018-02-01

    Full Text Available Root-knot nematodes (Meloidogyne spp. are parasites that attack many field crops and orchard trees, and affect both the quantity and quality of the products. A root-colonizing bacterium, Pseudomonas chlororaphis O6, possesses beneficial traits including strong nematicidal activity. To determine the molecular mechanisms involved in the nematicidal activity of P. chlororaphis O6, we constructed two mutants; one lacking hydrogen cyanide production, and a second lacking an insecticidal toxin, FitD. Root drenching with wild-type P. chlororaphis O6 cells caused juvenile mortality in vitro and in planta. Efficacy was not altered in the fitD mutant compared to the wild-type but was reduced in both bioassays for the mutant lacking hydrogen cyanide production. The reduced number of galls on tomato plants caused by the wild-type strain was comparable to that of a standard chemical nematicide. These findings suggest that hydrogen cyanide-producing root colonizers, such as P. chlororaphis O6, could be formulated as “green” nematicides that are compatible with many crops and offer agricultural sustainability.

  20. Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling

    Directory of Open Access Journals (Sweden)

    Daniel Rodrigo Leiva

    2012-10-01

    Full Text Available Severe plastic deformation routes (SPD have been shown to be attractive for short time preparation of magnesium alloys for hydrogen storage, generating refined microstructures and interesting hydrogen storage properties when compared to the same materials processed by high-energy ball milling (HEBM, but with the benefit of higher air resistance. In this study, we present results of a new processing route for Mg alloys for hydrogen storage: rapid solidification followed by cold work. A Mg97Ni3 alloy was processed by melt spinning (MS and by extensive cold rolling (CR. Submitting Mg97Ni3 ribbons between steel plates to cold rolling has shown to be a viable procedure, producing a thin cold welded foil, with little material waste. The as-processed material presents a high level of [002] fiber texture, a sub microcrystalline grain structure with a high density of defects, and also a fine dispersion of Mg2Ni nanoparticles. This refined microstructure allied to the developed texture resulted in enhanced activation and H-sorption kinetics properties.

  1. Bio-oil based biorefinery strategy for the production of succinic acid

    Science.gov (United States)

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  2. [Preface for special issue on bio-based materials (2016)].

    Science.gov (United States)

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  3. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  4. Evaluation of Environmental and Hydraulic Performance of Bio-Composite Revetment Blocks

    OpenAIRE

    Thamer A.  Ahmeed; Nor A.  Alias; Abdul H.  Ghazali; Mohd. S.  Jaafar

    2006-01-01

    It is necessary to develop a concrete revetment block which can cater for environment and at the same time it will be effective in protecting river banks (stabilize the slope of banks) from scouring during flood. In the present study, the environmental and hydraulic performance of the proposed revetment block was evaluated through laboratory and field tests. The tested revetment block is called bio-composite because it is composed of concrete, plastic mesh and biological material (coconut hus...

  5. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  6. Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Stummann, Magnus Zingler; Høj, Martin; Gabrielsen, Jostein

    2017-01-01

    due to coking of the catalyst is an inhibitive problem for this technology. The objective of the present work is to produce oxygen free gasoline and diesel from biomass by hydrogen assisted catalytic fast pyrolysis. Fast pyrolysis of beech wood has been performed in high-pressure hydrogen atmosphere...

  7. Isolation and characterization of Ethanologenbacterium HitB49 gen. nov. sp. nov., an anaerobic, high hydrogen-producing bacterium with a special ethanol-type-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering]|[Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering; Ren, N.Q.; Wang, A.J. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering; Liang, D.T.; Tay, J.H. [Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering

    2004-07-01

    Hydrogen, an important future energy source, can be produced by several fermentative microorganisms. The factor that prevents widespread biohydrogen production is the difficulty in isolating the ideal high hydrogen-producing bacterium (HPB). In this study, the Hungate technology was used to isolate and cultivate 210 strains of dominant fermentative bacteria. They were isolated from 6 sludges with ethanol-type fermentation (ETF) bioreactors. The study examined the production of hydrogen in pH 4, very low pH in ETF. The maximum rate in the biohydrogen-producing reactor was promising under continuous flow condition. The novel genus of HPB was Ethanologenbacterium Hit, of which strain B49 belonged to the ETF bacteria.

  8. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid

  9. Silicon based multilayer photoelectrodes for photoelectrolysis of water to produce hydrogen from the sun

    Science.gov (United States)

    Faruque, Faisal

    The main objective of this work is to study different materials for the direct photosynthesis of hydrogen from water. A variety of photocatalysts such as titanium dioxide, titanium oxy-nitride, silicon carbide, and gallium nitride are being investigated by others for the clean production of hydrogen for fuel cells and hydrogen economy. Our approach was to deposit suitable metallic regions on photocatalyst nanoparticles to direct the efficient synthesis of hydrogen to a particular site for convenient collection. We studied different electrode metals such as gold, platinum, titanium, palladium, and tungsten. We also studied different solar cell materials such as silicon (p- and n-types), silicon carbide and titanium dioxide semiconductors in order to efficiently generate electrons under illumination. We introduced a novel silicon-based multilayer photosynthesis device to take advantage of suitable properties of silicon and tungsten to efficiently produce hydrogen. The device consisted of a silicon (0.5mm) substrate, a deposited atomic layer of Al2O 3 (1nm), a doped polysilicon (0.1microm), and finally a tungsten nanoporous (5-10nm) layer acting as an interface electrode with water. The Al2O 3 layer was introduced to reduce leakage current and to prevent the spreading of the diffused p-n junction layer between the silicon and doped polysilicon layers. The surface of the photoelectrode was coated with nanotextured tungsten nanopores (TNP), which increased the surface area of the electrodes to the electrolyte, assisting in electron-hole mobility, and acting as a photocatalyst. The reported device exhibited a fill factor (%FF) of 27.22% and solar-to-hydrogen conversion efficiency of 0.03174%. This thesis describes the structures of the device, and offers a characterization and comparison between different photoelectrodes.

  10. Upgrading of bio-oil via acid-catalyzed reactions in alcohols : a mini review

    NARCIS (Netherlands)

    Hu, X.; Gunawan, R.; Mourant, D.; Mahmudul Hasan, M.D.; Wu, L.; Song, Y.; Lievens, C.; Li, C.Z.

    2017-01-01

    Bio-oil is a condensable liquid produced from the pyrolysis of biomass, which can be upgraded to biofuels. Bio-oil is corrosive as it contains significant amounts of carboxylic acids, creating difficulties in handling of bio-oil and applications of bio-oil. Acid-treatment of bio-oil in alcohols is

  11. Biological hydrogen formation by thermophilic bacteria

    NARCIS (Netherlands)

    Bielen, A.A.M.

    2014-01-01

    Hydrogen gas (H2) is an important chemical commodity. It is used in many industrial processes and is applicable as a fuel. However, present production processes are predominantly based on non-renewable resources. In a biological H2 (bioH2) production

  12. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  13. Good harvest. Performance of the photovoltaic systems of the solar hydrogen production plant at Neunburg vorm Wald. Gute Ernte. Versuchsergebnisse der Photovoltaik der Solar-Wasserstoff-Anlage in Neunburg vorm Wald

    Energy Technology Data Exchange (ETDEWEB)

    Dietsch, T. (Solar-Wasserstoff-Bayern GmbH (SWB), Muenchen (Germany))

    1993-12-01

    Two photovoltaic systems with a total rating of 227 kW produce electric power for the hydrogen electrolysis process in the solar hydrogen production plant at Neunburg vorm Wald. The report describes their performance since January 1990. It presents the state as of October 1993. (orig.)

  14. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  15. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    than possible with hydrogen storage; however, a systematic experimental hydrogenation study has not been reported. A combination of the two approaches may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT produced in our study will be characterized for hydrogen content and thermal stability in simulated space service environments. These new materials systems will be tested for their radiation shielding effectiveness against high energy protons and high energy heavy ions at the HIMAC facility in Japan, or a comparable facility. These high energy particles simulate exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their capability to shield against the secondary neutrons found inside structures and on lunar and planetary surfaces. The potential significance is to produce a radiation protection enabling technology for future exploration missions. Crew on deep space human exploration missions greater than approximately 90 days cannot remain below current crew Permissible Exposure Limits without shielding and/or biological countermeasures. The intent of this research is to bring the Agency closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We are advocating a systems solution with a structural materials component. Our intent is to develop the best materials system for that materials component. In this Phase I study, we have shown, computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically strong, thermally stable, structural materials with effective radiation shielding against GCR

  16. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.

  17. Isolation, screening and characterization of bio surfactant producing bacteria

    International Nuclear Information System (INIS)

    Kokub, D.; Shafeeq, M.; Khalid, Z.M.; Malik, K.A.

    1991-01-01

    Bio surfactant producing bacteria were enriched from oil, oil contaminated soil and formation water collected from some local oil wells; Balkassar, Joyamair, Dullian, Meyal and Khore, and oil-riched soils from Karachi coastal area and Petroleum Refinery Limited (PRL) Karachi, by rowing them on different growth media with various carbon sources. These enriched cultures were analysed qualitatively and quantitatively for various types of bacteria. Morphologically different colonies present in these enriched cultures were quantified and different bacterial strains were isolated by single colony isolation method. Sixty two isolates were screened out by growing them individually on Khaskheli crude oil and comparing for the above parameters. Two bacterial strains which did not fulfill this criteria were also used for comparison in further studies. The selected strains were grown on n-hexadecane/glucose and the spent culture broth were tested for reduction in surface tension (ST) and interfacial tension (IFT). The surface tension was checked after every 24 hours and the minimum time required for the reduction in surface tension 33 mN/m was noted. On the basis of these observation, six groups of bacteria were made. These cultures were also grown on blood agar plates to test for hemolysis. Sixty six percent of these selected cultures were found to reduce surface tension lesser than 33 mN/m and IFT lesser than 3 mN/m whereas 85% of them showed hemolytic activity. IFT of these culture broths was found to be positively correlated to surface tension. Among the isolates from different localities Pseudomonas spp. was found to be most prevalent while some Micrococcus and Acinetobacter were also found. (author)

  18. BioTiger{sup TM} : a natural microbial product for enhanced hydrocarbon recovery from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Berry, C.J.; Milliken, C.E.; Jones, W. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    This presentation discussed the feasibility of using BioTiger{sup TM} technology to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery processes was initially developed and used by the United States Department of Energy for bioremediation of soils contaminated with oil, but it may also be used to optimize bitumen separation. BioTiger was described as being a unique microbial consortia that has resulted from nearly a decade of extensive microbiology screening and characterization of samples collected from an old waste lagoon. The technology offers rapid and complete degradation of aliphatic and aromatic hydrocarbons and produces new surfactants. It is tolerant of both chemical and metal toxicity and has good activity at high temperatures at extreme pH levels. A flotation test protocol with oil sands from Fort McMurray, Alberta was used for the BioTiger evaluation. A comparison of hot water extraction/flotation test of the oil sands performed with BioTiger showed a 50 per cent improvement in separation as measured by gravimetric analysis. BioTiger is well suited for enhanced hydrocarbon recovery from oil sands because it performs well at high temperatures. 8 figs.

  19. Steam reforming of bio-oil from coconut shell pyrolysis over Fe/olivine catalyst

    International Nuclear Information System (INIS)

    Quan, Cui; Xu, Shaoping; Zhou, Congcong

    2017-01-01

    Highlights: • Steam reforming of the actual bio-oil was investigated with Fe/olivine catalyst. • Most of phenols in bio-oil were converted into gas products. • A carbon conversion of 97.2% was obtained under optimized conditions. - Abstract: Catalytic steam reforming of coconut shell pyrolysis bio-oil over Fe/olivine catalyst was conducted in a fixed-bed quartz reactor. The effects of calcination temperature, iron loading, reaction temperature, steam to carbon ratio (S/C), bio-oil weight hourly space velocity (W b HSV) on gas composition and carbon conversion were investigated. The results indicate that Fe/olivine has good activity for steam reforming of bio-oil, the couple Fe 2+/3+ /Fe 2+ may be sufficiently efficient for C–C, C–O and C–H breaking. After steam reforming, most of the phenolics in pyrolysis oil are converted into light molecular compounds such as H 2 , CO, CO 2 , and CH 4 . The H 2 concentration and carbon conversion were enhanced by increasing reaction temperature from 750 to 800 °C and the S/C from 1.5 to 2, but decreased with increasing calcination temperature. In the W b HSV range of 0.5–0.6, the hydrogen concentration decreased obviously, whereas it decreased slightly by further increasing W b HSV. The highest hydrogen concentration of 47.6 vol% was obtained among the catalysts tested, and the best carbon conversion was 97.2% over 10% Fe/olivine catalyst under the reforming conditions of temperature = 800 °C, W b HSV = 0.5, S/C = 2.

  20. Exploration of graphene oxide as an intelligent platform for cancer vaccines

    Science.gov (United States)

    Yue, Hua; Wei, Wei; Gu, Zonglin; Ni, Dezhi; Luo, Nana; Yang, Zaixing; Zhao, Lin; Garate, Jose Antonio; Zhou, Ruhong; Su, Zhiguo; Ma, Guanghui

    2015-11-01

    We explored an intelligent vaccine system via facile approaches using both experimental and theoretical techniques based on the two-dimensional graphene oxide (GO). Without extra addition of bio/chemical stimulators, the microsized GO imparted various immune activation tactics to improve the antigen immunogenicity. A high antigen adsorption was acquired, and the mechanism was revealed to be a combination of electrostatic, hydrophobic, and π-π stacking interactions. The ``folding GO'' acted as a cytokine self-producer and antigen reservoir and showed a particular autophagy, which efficiently promoted the activation of antigen presenting cells (APCs) and subsequent antigen cross-presentation. Such a ``One but All'' modality thus induced a high level of anti-tumor responses in a programmable way and resulted in efficient tumor regression in vivo. This work may shed light on the potential use of a new dimensional nano-platform in the development of high-performance cancer vaccines.We explored an intelligent vaccine system via facile approaches using both experimental and theoretical techniques based on the two-dimensional graphene oxide (GO). Without extra addition of bio/chemical stimulators, the microsized GO imparted various immune activation tactics to improve the antigen immunogenicity. A high antigen adsorption was acquired, and the mechanism was revealed to be a combination of electrostatic, hydrophobic, and π-π stacking interactions. The ``folding GO'' acted as a cytokine self-producer and antigen reservoir and showed a particular autophagy, which efficiently promoted the activation of antigen presenting cells (APCs) and subsequent antigen cross-presentation. Such a ``One but All'' modality thus induced a high level of anti-tumor responses in a programmable way and resulted in efficient tumor regression in vivo. This work may shed light on the potential use of a new dimensional nano-platform in the development of high-performance cancer vaccines. Electronic