WorldWideScience

Sample records for explicit runge-kutta method

  1. Extrapolated stabilized explicit Runge-Kutta methods

    Science.gov (United States)

    Martín-Vaquero, J.; Kleefeld, B.

    2016-12-01

    Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.

  2. Strong Stability Preserving Explicit Runge--Kutta Methods of Maximal Effective Order

    KAUST Repository

    Hadjimichael, Yiannis

    2013-07-23

    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge--Kutta methods. Relative to classical Runge--Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order conditions but yield higher order accuracy when composed with special starting and stopping methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods---like classical order five methods---require the use of nonpositive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge--Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice.

  3. Strong Stability Preserving Explicit Runge--Kutta Methods of Maximal Effective Order

    KAUST Repository

    Hadjimichael, Yiannis; Macdonald, Colin B.; Ketcheson, David I.; Verner, James H.

    2013-01-01

    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge--Kutta methods. Relative to classical Runge--Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order conditions but yield higher order accuracy when composed with special starting and stopping methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods---like classical order five methods---require the use of nonpositive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge--Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice.

  4. Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

    KAUST Repository

    Parsani, Matteo

    2013-04-10

    Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

  5. Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

    KAUST Repository

    Parsani, Matteo; Ketcheson, David I.; Deconinck, W.

    2013-01-01

    Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

  6. Explicit strong stability preserving multistep Runge–Kutta methods

    KAUST Repository

    Bresten, Christopher; Gottlieb, Sigal; Grant, Zachary; Higgs, Daniel; Ketcheson, David I.; Né meth, Adrian

    2015-01-01

    High-order spatial discretizations of hyperbolic PDEs are often designed to have strong stability properties, such as monotonicity. We study explicit multistep Runge-Kutta strong stability preserving (SSP) time integration methods for use with such discretizations. We prove an upper bound on the SSP coefficient of explicit multistep Runge-Kutta methods of order two and above. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the linear advection and nonlinear Buckley-Leverett equations, and the results for the observed total variation diminishing and/or positivity preserving time-step are presented.

  7. Explicit strong stability preserving multistep Runge–Kutta methods

    KAUST Repository

    Bresten, Christopher

    2015-10-15

    High-order spatial discretizations of hyperbolic PDEs are often designed to have strong stability properties, such as monotonicity. We study explicit multistep Runge-Kutta strong stability preserving (SSP) time integration methods for use with such discretizations. We prove an upper bound on the SSP coefficient of explicit multistep Runge-Kutta methods of order two and above. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the linear advection and nonlinear Buckley-Leverett equations, and the results for the observed total variation diminishing and/or positivity preserving time-step are presented.

  8. Optimized low-order explicit Runge-Kutta schemes for high- order spectral difference method

    KAUST Repository

    Parsani, Matteo

    2012-01-01

    Optimal explicit Runge-Kutta (ERK) schemes with large stable step sizes are developed for method-of-lines discretizations based on the spectral difference (SD) spatial discretization on quadrilateral grids. These methods involve many stages and provide the optimal linearly stable time step for a prescribed SD spectrum and the minimum leading truncation error coefficient, while admitting a low-storage implementation. Using a large number of stages, the new ERK schemes lead to efficiency improvements larger than 60% over standard ERK schemes for 4th- and 5th-order spatial discretization.

  9. Runge-Kutta Methods for Linear Ordinary Differential Equations

    Science.gov (United States)

    Zingg, David W.; Chisholm, Todd T.

    1997-01-01

    Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.

  10. OSIRIS: a runge kutta solver of systems of ordinary differential equations

    International Nuclear Information System (INIS)

    Collin, M.; Schett, A.

    1983-12-01

    The Code OSIRIS (Order and Step Idently Adjusting Runge-Kutta Integrator of Systems) has been developed on the basis of both explicit as well as implicit Runge-Kutta processes of various orders: 4(5), 7(8), 8(9), 10 for explicit processes and 4 and 6 for implicit processes of the Rosenbrock type. This permits an optimization of the integration procedure by choosing the appropriate type of Runge-Kutta methods (explicit or implicit) and by adjusting dynamically the order of the process as well as the step-size. The performance of the Code OSIRIS is demonstrated by some representative examples and is compared with the Code GEAR which is applying multistep methods

  11. Internal Error Propagation in Explicit Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2014-09-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  12. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    Science.gov (United States)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  13. Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes

    KAUST Repository

    Hundsdorfer, Willem; Mozartova, Anna; Savcenco, Valeriu

    2013-01-01

    of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods.

  14. Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems

    Science.gov (United States)

    Cavaglieri, Daniele; Bewley, Thomas

    2015-04-01

    Implicit/explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) computational hardware, in which memory management is often the most significant computational bottleneck. In this paper, we develop and characterize eight new low-storage implicit/explicit RK schemes which have higher accuracy and better stability properties than the only low-storage implicit/explicit RK scheme available previously, the venerable second-order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or four registers of length N) and comparable floating-point operations per timestep.

  15. Simulation of 2-D Compressible Flows on a Moving Curvilinear Mesh with an Implicit-Explicit Runge-Kutta Method

    KAUST Repository

    AbuAlSaud, Moataz

    2012-07-01

    The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.

  16. Parallel Implicit Runge-Kutta Methods Applied to Coupled Orbit/Attitude Propagation

    Science.gov (United States)

    Hatten, Noble; Russell, Ryan P.

    2017-12-01

    A variable-step Gauss-Legendre implicit Runge-Kutta (GLIRK) propagator is applied to coupled orbit/attitude propagation. Concepts previously shown to improve efficiency in 3DOF propagation are modified and extended to the 6DOF problem, including the use of variable-fidelity dynamics models. The impact of computing the stage dynamics of a single step in parallel is examined using up to 23 threads and 22 associated GLIRK stages; one thread is reserved for an extra dynamics function evaluation used in the estimation of the local truncation error. Efficiency is found to peak for typical examples when using approximately 8 to 12 stages for both serial and parallel implementations. Accuracy and efficiency compare favorably to explicit Runge-Kutta and linear-multistep solvers for representative scenarios. However, linear-multistep methods are found to be more efficient for some applications, particularly in a serial computing environment, or when parallelism can be applied across multiple trajectories.

  17. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  18. Composition between mecd and runge-Kutta algorithm method for large system of second order differential equations

    International Nuclear Information System (INIS)

    Supriyono; Miyoshi, T.

    1997-01-01

    NECD Method and runge-Kutta method for large system of second order ordinary differential equations in comparing algorithm. The paper introduce a extrapolation method used for solving the large system of second order ordinary differential equation. We call this method the modified extrapolated central difference (MECD) method. for the accuracy and efficiency MECD method. we compare the method with 4-th order runge-Kutta method. The comparison results show that, this method has almost the same accuracy as the 4-th order runge-Kutta method, but the computation time is about half of runge-Kutta. The MECD was declare by the author and Tetsuhiko Miyoshi of the Dept. Applied Science Yamaguchi University Japan

  19. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.

    Science.gov (United States)

    Gómez Pueyo, Adrián; Marques, Miguel A L; Rubio, Angel; Castro, Alberto

    2018-05-09

    We examine various integration schemes for the time-dependent Kohn-Sham equations. Contrary to the time-dependent Schrödinger's equation, this set of equations is nonlinear, due to the dependence of the Hamiltonian on the electronic density. We discuss some of their exact properties, and in particular their symplectic structure. Four different families of propagators are considered, specifically the linear multistep, Runge-Kutta, exponential Runge-Kutta, and the commutator-free Magnus schemes. These have been chosen because they have been largely ignored in the past for time-dependent electronic structure calculations. The performance is analyzed in terms of cost-versus-accuracy. The clear winner, in terms of robustness, simplicity, and efficiency is a simplified version of a fourth-order commutator-free Magnus integrator. However, in some specific cases, other propagators, such as some implicit versions of the multistep methods, may be useful.

  20. Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes

    KAUST Repository

    Hundsdorfer, Willem

    2013-01-01

    Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for one-dimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total variation diminishing (TVD) property. The study of these properties will be done within the framework of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods.

  1. Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method

    Directory of Open Access Journals (Sweden)

    Yu. I. Dimitrienko

    2015-01-01

    Full Text Available Thermo creep deformations for most heat-resistant alloys, as a rule, nonlinearly depend on stresses and are practically non- reversible. Therefore, to calculate the properties of these materials the theory of plastic flow is most widely used. Finite-element computations of a stress-strain state of structures with account of thermo creep deformations up to now are performed using main commercial software, including ANSYS package. However, in most cases to solve nonlinear creep equations, one should apply explicit or implicit methods based on the Euler method of approximation of time-derivatives. The Euler method is sufficiently efficient in terms of random access memory in computations, however this method is cumbersome in computation time and does not always provide a required accuracy for creep deformation computations.The paper offers a finite-element algorithm to solve a three-dimensional problem of thermo creep based on the Runge-Kutta finite-difference schemes of different orders with respect to time. It shows a numerical test example to solve the problem on the thermo creep of a beam under tensile loading. The computed results demonstrate that using the Runge-Kutta method with increasing accuracy order allows us to obtain a more accurate solution (with increasing accuracy order by 1 a relative error decreases, approximately, by an order too. The developed algorithm proves to be efficient enough and can be recommended for solving the more complicated problems of thermo creep of structures.

  2. Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics

    International Nuclear Information System (INIS)

    Tselios, Kostas; Simos, T.E.

    2007-01-01

    In this Letter a new explicit fourth-order seven-stage Runge-Kutta method with a combination of minimal dispersion and dissipation error and maximal accuracy and stability limit along the imaginary axes, is developed. This method was produced by a general function that was constructed to satisfy all the above requirements and, from which, all the existing fourth-order six-stage RK methods can be produced. The new method is more efficient than the other optimized methods, for acoustic computations

  3. Explicit Singly Diagonally Implicit Runge-Kutta Methods and Adaptive Stepsize Control for Reservoir Simulation

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2010-01-01

    The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete......-Kutta methods, ESDIRK, Newton-Raphson, convergence control, error control, stepsize selection....

  4. Numerical Solution of Fuzzy Differential Equations by Runge-Kutta Verner Method

    Directory of Open Access Journals (Sweden)

    T. Jayakumar

    2015-01-01

    Full Text Available In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.

  5. Nonlinear Stability and Convergence of Two-Step Runge-Kutta Methods for Volterra Delay Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Haiyan Yuan

    2013-01-01

    Full Text Available This paper introduces the stability and convergence of two-step Runge-Kutta methods with compound quadrature formula for solving nonlinear Volterra delay integro-differential equations. First, the definitions of (k,l-algebraically stable and asymptotically stable are introduced; then the asymptotical stability of a (k,l-algebraically stable two-step Runge-Kutta method with 0Runge-Kutta method is algebraically stable and diagonally stable and its generalized stage order is p, then the method with compound quadrature formula is D-convergent of order at least min{p,ν}, where ν depends on the compound quadrature formula.

  6. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    Science.gov (United States)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  7. A variable timestep generalized Runge-Kutta method for the numerical integration of the space-time diffusion equations

    International Nuclear Information System (INIS)

    Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.

    1991-09-01

    A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs

  8. Runge-Kutta methods with minimum storage implementations

    KAUST Repository

    Ketcheson, David I.

    2010-03-01

    Solution of partial differential equations by the method of lines requires the integration of large numbers of ordinary differential equations (ODEs). In such computations, storage requirements are typically one of the main considerations, especially if a high order ODE solver is required. We investigate Runge-Kutta methods that require only two storage locations per ODE. Existing methods of this type require additional memory if an error estimate or the ability to restart a step is required. We present a new, more general class of methods that provide error estimates and/or the ability to restart a step while still employing the minimum possible number of memory registers. Examples of such methods are found to have good properties. © 2009 Elsevier Inc. All rights reserved.

  9. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  10. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.; MacDonald, Colin B.; Ruuth, Steven J.

    2013-01-01

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  11. A Family of Trigonometrically-fitted Partitioned Runge-Kutta Symplectic Methods

    International Nuclear Information System (INIS)

    Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.

    2007-01-01

    We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one dimensional time independent Schroedinger equation is considered by trigonometrically fitted symplectic integrators. The Schroedinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential

  12. Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.

  13. A Generalized Runge-Kutta Method of order three

    DEFF Research Database (Denmark)

    Thomsen, Per Grove

    2002-01-01

    The report presents a numerical method for the solution of stiff systems of ODE's and index one DAE's. The type of method is a 4- stage Generalized Linear Method that is reformulated in a special Semi Implicit Runge Kutta Method of SDIRK type. Error estimation is by imbedding a method of order 4...... based on the same stages as the method and the coefficients are selected for ease of implementation. The method has 4 stages and the stage-order is 2. For purposes of generating dense output and for initializing the iteration in the internal stages a continuous extension is derived. The method is A......-stable and we present the region of absolute stability and the order star of the order 3 method that is used for computing the solution....

  14. A combined application of boundary-element and Runge-Kutta methods in three-dimensional elasticity and poroelasticity

    Directory of Open Access Journals (Sweden)

    Igumnov Leonid

    2015-01-01

    Full Text Available The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.

  15. Investigating the use of a rational Runge Kutta method for transport modelling

    Science.gov (United States)

    Dougherty, David E.

    An unconditionally stable explicit time integrator has recently been developed for parabolic systems of equations. This rational Runge Kutta (RRK) method, proposed by Wambecq 1 and Hairer 2, has been applied by Liu et al.3 to linear heat conduction problems in a time-partitioned solution context. An important practical question is whether the method has application for the solution of (nearly) hyperbolic equations as well. In this paper the RRK method is applied to a nonlinear heat conduction problem, the advection-diffusion equation, and the hyperbolic Buckley-Leverett problem. The method is, indeed, found to be unconditionally stable for the linear heat conduction problem and performs satisfactorily for the nonlinear heat flow case. A heuristic limitation on the utility of RRK for the advection-diffusion equation arises in the Courant number; for the second-order accurate one-step two-stage RRK method, a limiting Courant number of 2 applies. First order upwinding is not as effective when used with RRK as with Euler one-step methods. The method is found to perform poorly for the Buckley-Leverett problem.

  16. A New Formulation for Symmetric Implicit Runge-Kutta-Nystrom ...

    African Journals Online (AJOL)

    In this paper we derive symmetric stable Implicit Runge-Kutta –Nystrom Method for the Integration of General Second Order ODEs by using the collocation approach.The block hybrid method obtained by the evaluation of the continuous interpolant at different nodes of the polynomial is symmetric and suitable for stiff intial ...

  17. Comparison of second and third orders Runge-Kutta methods for ...

    African Journals Online (AJOL)

    This work is concerned with the analysis of second and third orders Runge- Kutta formulae capable of solving initial value problems in Ordinary Differential Equations of the form: y1 = f(x, y), y(x0) = y0, a £ x £ b. The intention is to find out which of these two orders can improve the performance of results when implemented ...

  18. Solutions of differential equations with regular coefficients by the methods of Richmond and Runge-Kutta

    Science.gov (United States)

    Cockrell, C. R.

    1989-01-01

    Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.

  19. Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes

    Science.gov (United States)

    Calvo, M.; González-Pinto, S.; Montijano, J. I.

    2008-09-01

    Modern codes for the numerical solution of Initial Value Problems (IVPs) in ODEs are based in adaptive methods that, for a user supplied tolerance [delta], attempt to advance the integration selecting the size of each step so that some measure of the local error is [similar, equals][delta]. Although this policy does not ensure that the global errors are under the prescribed tolerance, after the early studies of Stetter [Considerations concerning a theory for ODE-solvers, in: R. Burlisch, R.D. Grigorieff, J. Schröder (Eds.), Numerical Treatment of Differential Equations, Proceedings of Oberwolfach, 1976, Lecture Notes in Mathematics, vol. 631, Springer, Berlin, 1978, pp. 188-200; Tolerance proportionality in ODE codes, in: R. März (Ed.), Proceedings of the Second Conference on Numerical Treatment of Ordinary Differential Equations, Humbold University, Berlin, 1980, pp. 109-123] and the extensions of Higham [Global error versus tolerance for explicit Runge-Kutta methods, IMA J. Numer. Anal. 11 (1991) 457-480; The tolerance proportionality of adaptive ODE solvers, J. Comput. Appl. Math. 45 (1993) 227-236; The reliability of standard local error control algorithms for initial value ordinary differential equations, in: Proceedings: The Quality of Numerical Software: Assessment and Enhancement, IFIP Series, Springer, Berlin, 1997], it has been proved that in many existing explicit Runge-Kutta codes the global errors behave asymptotically as some rational power of [delta]. This step-size policy, for a given IVP, determines at each grid point tn a new step-size hn+1=h(tn;[delta]) so that h(t;[delta]) is a continuous function of t. In this paper a study of the tolerance proportionality property under a discontinuous step-size policy that does not allow to change the size of the step if the step-size ratio between two consecutive steps is close to unity is carried out. This theory is applied to obtain global error estimations in a few problems that have been solved with

  20. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations

    International Nuclear Information System (INIS)

    Hong Jialin; Li Chun

    2006-01-01

    In this paper, we consider the multi-symplectic Runge-Kutta (MSRK) methods applied to the nonlinear Dirac equation in relativistic quantum physics, based on a discovery of the multi-symplecticity of the equation. In particular, the conservation of energy, momentum and charge under MSRK discretizations is investigated by means of numerical experiments and numerical comparisons with non-MSRK methods. Numerical experiments presented reveal that MSRK methods applied to the nonlinear Dirac equation preserve exactly conservation laws of charge and momentum, and conserve the energy conservation in the corresponding numerical accuracy to the method utilized. It is verified numerically that MSRK methods are stable and convergent with respect to the conservation laws of energy, momentum and charge, and MSRK methods preserve not only the inner geometric structure of the equation, but also some crucial conservative properties in quantum physics. A remarkable advantage of MSRK methods applied to the nonlinear Dirac equation is the precise preservation of charge conservation law

  1. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation

    OpenAIRE

    Papadopoulos , D. F.; Anastassi , Z. A.; Simos , T. E.

    2010-01-01

    Abstract A new Runge-Kutta-Nystrom method, with phase-lag and amplification error of order infinity, for the numerical solution of the Schrodinger equation is developed in this paper. The new method is based on the Runge-Kutta-Nystrom method with fourth algebraic order, developed by Dormand, El-Mikkawy and Prince. Numerical illustrations indicate that the new method is much more efficient than other methods derived for the same purpose. phone: +30-210-9421510 (Simos, T. E.) ...

  2. Highly efficient strong stability preserving Runge-Kutta methods with Low-Storage Implementations

    KAUST Repository

    Ketcheson, David I.

    2008-01-01

    Strong stability-preserving (SSP) Runge–Kutta methods were developed for time integration of semidiscretizations of partial differential equations. SSP methods preserve stability properties satisfied by forward Euler time integration, under a modified time-step restriction. We consider the problem of finding explicit Runge–Kutta methods with optimal SSP time-step restrictions, first for the case of linear autonomous ordinary differential equations and then for nonlinear or nonautonomous equations. By using alternate formulations of the associated optimization problems and introducing a new, more general class of low-storage implementations of Runge–Kutta methods, new optimal low-storage methods and new low-storage implementations of known optimal methods are found. The results include families of low-storage second and third order methods that achieve the maximum theoretically achievable effective SSP coefficient (independent of stage number), as well as low-storage fourth order methods that are more efficient than current full-storage methods. The theoretical properties of these methods are confirmed by numerical experiment.

  3. Highly efficient strong stability preserving Runge-Kutta methods with Low-Storage Implementations

    KAUST Repository

    Ketcheson, David I.

    2008-01-01

    modified time-step restriction. We consider the problem of finding explicit Runge–Kutta methods with optimal SSP time-step restrictions, first for the case of linear autonomous ordinary differential equations and then for nonlinear or nonautonomous

  4. Mono-implicit Runge Kutta schemes for singularly perturbed delay differential equations

    Science.gov (United States)

    Rihan, Fathalla A.; Al-Salti, Nasser S.

    2017-09-01

    In this paper, we adapt Mono-Implicit Runge-Kutta schemes for numerical approximations of singularly perturbed delay differential equations. The schemes are developed to reduce the computational cost of the fully implicit method which combine the accuracy of implicit method and efficient implementation. Numerical stability properties of the schemes are investigated. Numerical simulations are provided to show the effectiveness of the method for both stiff and non-stiff initial value problems.

  5. Generalized Runge-Kutta method for two- and three-dimensional space-time diffusion equations with a variable time step

    International Nuclear Information System (INIS)

    Aboanber, A.E.; Hamada, Y.M.

    2008-01-01

    An extensive knowledge of the spatial power distribution is required for the design and analysis of different types of current-generation reactors, and that requires the development of more sophisticated theoretical methods. Therefore, the need to develop new methods for multidimensional transient reactor analysis still exists. The objective of this paper is to develop a computationally efficient numerical method for solving the multigroup, multidimensional, static and transient neutron diffusion kinetics equations. A generalized Runge-Kutta method has been developed for the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic time step control. In addition, the A(α)-stability properties of the method are investigated. The analyses of two- and three-dimensional benchmark problems as well as static and transient problems, demonstrate that very accurate solutions can be obtained with assembly-sized spatial meshes. Preliminary numerical evaluations using two- and three-dimensional finite difference codes showed that the presented generalized Runge-Kutta method is highly accurate and efficient when compared with other optimized iterative numerical and conventional finite difference methods

  6. Novel Exponentially Fitted Two-Derivative Runge-Kutta Methods with Equation-Dependent Coefficients for First-Order Differential Equations

    Directory of Open Access Journals (Sweden)

    Yanping Yang

    2016-01-01

    Full Text Available The construction of exponentially fitted two-derivative Runge-Kutta (EFTDRK methods for the numerical solution of first-order differential equations is investigated. The revised EFTDRK methods proposed, with equation-dependent coefficients, take into consideration the errors produced in the internal stages to the update. The local truncation errors and stability of the new methods are analyzed. The numerical results are reported to show the accuracy of the new methods.

  7. Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines

    Directory of Open Access Journals (Sweden)

    M. A. Banaja

    2015-01-01

    Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.

  8. Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Science.gov (United States)

    Kennedy, Christopher A.; Carpenter, Mark H.

    2016-01-01

    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.

  9. Algebraic dynamics algorithm: Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG ShunJin; ZHANG Hua

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  10. Algebraic dynamics algorithm:Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  11. Order Reduction in High-Order Runge-Kutta Methods for Initial Boundary Value Problems

    OpenAIRE

    Rosales, Rodolfo Ruben; Seibold, Benjamin; Shirokoff, David; Zhou, Dong

    2017-01-01

    This paper studies the order reduction phenomenon for initial-boundary-value problems that occurs with many Runge-Kutta time-stepping schemes. First, a geometric explanation of the mechanics of the phenomenon is provided: the approximation error develops boundary layers, induced by a mismatch between the approximation error in the interior and at the boundaries. Second, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers pers...

  12. Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations

    International Nuclear Information System (INIS)

    Wang Qiubao; Li Dongsong; Liu, M.Z.

    2009-01-01

    In this paper, we consider the discretization of parameter-dependent delay differential equation of the form y ' (t)=f(y(t),y(t-1),τ),τ≥0,y element of R d . It is shown that if the delay differential equation undergoes a Hopf bifurcation at τ=τ * , then the discrete scheme undergoes a Hopf bifurcation at τ(h)=τ * +O(h p ) for sufficiently small step size h, where p≥1 is the order of the Runge-Kutta method applied. The direction of numerical Hopf bifurcation and stability of bifurcating invariant curve are the same as that of delay differential equation.

  13. Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations

    International Nuclear Information System (INIS)

    Aboanber, A E

    2006-01-01

    A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback

  14. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge-Kutta schemes for incompressible flows with heat transfer

    Science.gov (United States)

    D'Alessandro, Valerio; Binci, Lorenzo; Montelpare, Sergio; Ricci, Renato

    2018-01-01

    Open-source CFD codes provide suitable environments for implementing and testing low-dissipative algorithms typically used to simulate turbulence. In this research work we developed CFD solvers for incompressible flows based on high-order explicit and diagonally implicit Runge-Kutta (RK) schemes for time integration. In particular, an iterated PISO-like procedure based on Rhie-Chow correction was used to handle pressure-velocity coupling within each implicit RK stage. For the explicit approach, a projected scheme was used to avoid the "checker-board" effect. The above-mentioned approaches were also extended to flow problems involving heat transfer. It is worth noting that the numerical technology available in the OpenFOAM library was used for space discretization. In this work, we additionally explore the reliability and effectiveness of the proposed implementations by computing several unsteady flow benchmarks; we also show that the numerical diffusion due to the time integration approach is completely canceled using the solution techniques proposed here.

  15. The Method of Lines Solution of the Regularized Long-Wave Equation Using Runge-Kutta Time Discretization Method

    Directory of Open Access Journals (Sweden)

    H. O. Bakodah

    2013-01-01

    Full Text Available A method of lines approach to the numerical solution of nonlinear wave equations typified by the regularized long wave (RLW is presented. The method developed uses a finite differences discretization to the space. Solution of the resulting system was obtained by applying fourth Runge-Kutta time discretization method. Using Von Neumann stability analysis, it is shown that the proposed method is marginally stable. To test the accuracy of the method some numerical experiments on test problems are presented. Test problems including solitary wave motion, two-solitary wave interaction, and the temporal evaluation of a Maxwellian initial pulse are studied. The accuracy of the present method is tested with and error norms and the conservation properties of mass, energy, and momentum under the RLW equation.

  16. Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation

    Science.gov (United States)

    Su, Bo; Tuo, Xianguo; Xu, Ling

    2017-08-01

    Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.

  17. An Optimally Stable and Accurate Second-Order SSP Runge-Kutta IMEX Scheme for Atmospheric Applications

    Science.gov (United States)

    Rokhzadi, Arman; Mohammadian, Abdolmajid; Charron, Martin

    2018-01-01

    The objective of this paper is to develop an optimized implicit-explicit (IMEX) Runge-Kutta scheme for atmospheric applications focusing on stability and accuracy. Following the common terminology, the proposed method is called IMEX-SSP2(2,3,2), as it has second-order accuracy and is composed of diagonally implicit two-stage and explicit three-stage parts. This scheme enjoys the Strong Stability Preserving (SSP) property for both parts. This new scheme is applied to nonhydrostatic compressible Boussinesq equations in two different arrangements, including (i) semiimplicit and (ii) Horizontally Explicit-Vertically Implicit (HEVI) forms. The new scheme preserves the SSP property for larger regions of absolute monotonicity compared to the well-studied scheme in the same class. In addition, numerical tests confirm that the IMEX-SSP2(2,3,2) improves the maximum stable time step as well as the level of accuracy and computational cost compared to other schemes in the same class. It is demonstrated that the A-stability property as well as satisfying "second-stage order" and stiffly accurate conditions lead the proposed scheme to better performance than existing schemes for the applications examined herein.

  18. SHOCK, Nonlinear Dynamic Structure Analysis, Spring and Mass Model, Runge-Kutta-Gill Method

    International Nuclear Information System (INIS)

    Gabrielson, V. K.

    1981-01-01

    1 - Description of problem or function: SHOCK calculates the dynamic response of a structure modeled as a spring-mass system having one or two degrees of freedom for each mass when subjected to specified environments. The code determines the behavior of each lumped mass (displacement, velocity, and acceleration for each degree of freedom) and the behavior of each spring or coupling (force, shear, moment, and displacement) as a function of time. Two types of models, axial, having one degree of freedom, and lateral, having two degrees of freedom at each mass can be processed. Damping can be included in all models and shock spectrums of responses can be obtained. 2 - Method of solution: Two methods of numerical integration of the second-order dynamic equations are provided: the Runge-Kutta-Gill method with variable step-size is recommended for highly nonlinear problems, and a variation of the Newmark-Beta method is available for use with large linear problems. 3 - Restrictions on the complexity of the problem: Maxima of: 100 masses, 200 springs or couplings. Complex arrangements of nonlinear options must be carefully checked by the user

  19. Numerical solution of newton´s cooling differential equation by the methods of euler and runge-kutta

    Directory of Open Access Journals (Sweden)

    Andresa Pescador

    2016-04-01

    Full Text Available This article presents the first-order differential equations, which are a very important branch of mathematics as they have a wide applicability, in mathematics, as in physics, biology and economy. The objective of this study was to analyze the resolution of the equation that defines the cooling Newton's law. Verify its behavior using some applications that can be used in the classroom as an auxiliary instrument to the teacher in addressing these contents bringing answers to the questions of the students and motivating them to build their knowledge. It attempted to its resolution through two numerical methods, Euler method and Runge -Kutta method. Finally, there was a comparison of the approach of the solution given by the numerical solution with the analytical resolution whose solution is accurate.

  20. Propagation of internal errors in explicit Runge–Kutta methods and internal stability of SSP and extrapolation methods

    KAUST Repository

    Ketcheson, David I.

    2014-04-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  1. Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

    Science.gov (United States)

    Zhu, Jun; Zhong, Xinghui; Shu, Chi-Wang; Qiu, Jianxian

    2013-09-01

    In this paper we generalize a new type of limiters based on the weighted essentially non-oscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [32] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the entire polynomials of the DG solutions from the troubled cell and its immediate neighboring cells, and then apply the classical WENO procedure to form a convex combination of these polynomials based on smoothness indicators and nonlinear weights, with suitable adjustments to guarantee conservation. The main advantage of this new limiter is its simplicity in implementation, especially for the unstructured meshes considered in this paper, as only information from immediate neighbors is needed and the usage of complicated geometric information of the meshes is largely avoided. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good performance of this procedure.

  2. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the step size reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta-Chebyshev (ROCK2) methods for deterministic problems. The convergence, meansquare, and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  3. Internal Error Propagation in Explicit Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Parsani, Matteo

    2014-01-01

    of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods

  4. Implicit–explicit (IMEX Runge–Kutta methods for non-hydrostatic atmospheric models

    Directory of Open Access Journals (Sweden)

    D. J. Gardner

    2018-04-01

    Full Text Available The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX additive Runge–Kutta (ARK methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  5. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    Gunawan, Indra; Sulistyo, Harry; Rochmad

    2001-01-01

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI 3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 o C. FeCl 3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  6. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    Science.gov (United States)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  7. Strong Stability Preserving Two-step Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Gottlieb, Sigal; Macdonald, Colin B.

    2011-01-01

    We investigate the strong stability preserving (SSP) property of two-step Runge–Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present explicit TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order weighted essentially non-oscillatory discretizations.

  8. Strong Stability Preserving Two-step Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2011-12-22

    We investigate the strong stability preserving (SSP) property of two-step Runge–Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present explicit TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order weighted essentially non-oscillatory discretizations.

  9. Runge-Kutta and Hermite Collocation for a biological invasion problem modeled by a generalized Fisher equation

    International Nuclear Information System (INIS)

    Athanasakis, I E; Papadopoulou, E P; Saridakis, Y G

    2014-01-01

    Fisher's equation has been widely used to model the biological invasion of single-species communities in homogeneous one dimensional habitats. In this study we develop high order numerical methods to accurately capture the spatiotemporal dynamics of the generalized Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent non-linear diffusion. Working towards this direction we consider strong stability preserving Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation (HC) spatial discretization method. We investigate their convergence and stability properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation. The Hadamard product is used to characterize the collocation discretized non linear equation terms as a first step for the treatment of generalized systems of relevant equations. Numerical experimentation is included to demonstrate the performance of the methods

  10. Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws

    KAUST Repository

    Hundsdorfer, Willem

    2014-08-27

    An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.

  11. Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws

    KAUST Repository

    Hundsdorfer, Willem; Ketcheson, David I.; Savostianov, Igor

    2014-01-01

    An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.

  12. Optimizing some 3-stage W-methods for the time integration of PDEs

    Science.gov (United States)

    Gonzalez-Pinto, S.; Hernandez-Abreu, D.; Perez-Rodriguez, S.

    2017-07-01

    The optimization of some W-methods for the time integration of time-dependent PDEs in several spatial variables is considered. In [2, Theorem 1] several three-parametric families of three-stage W-methods for the integration of IVPs in ODEs were studied. Besides, the optimization of several specific methods for PDEs when the Approximate Matrix Factorization Splitting (AMF) is used to define the approximate Jacobian matrix (W ≈ fy(yn)) was carried out. Also, some convergence and stability properties were presented [2]. The derived methods were optimized on the base that the underlying explicit Runge-Kutta method is the one having the largest Monotonicity interval among the thee-stage order three Runge-Kutta methods [1]. Here, we propose an optimization of the methods by imposing some additional order condition [7] to keep order three for parabolic PDE problems [6] but at the price of reducing substantially the length of the nonlinear Monotonicity interval of the underlying explicit Runge-Kutta method.

  13. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Jusoh Awang, Rahimah [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang (Malaysia); Bahar, Arifah; Yeak, S. H. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  14. Two new solutions to the third-order symplectic integration method

    International Nuclear Information System (INIS)

    Iwatsu, Reima

    2009-01-01

    Two new solutions are obtained for the symplecticity conditions of explicit third-order partitioned Runge-Kutta time integration method. One of them has larger stability limit and better dispersion property than the Ruth's method.

  15. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    Science.gov (United States)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  16. A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel

    KAUST Repository

    Ketcheson, David I.

    2014-06-13

    We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and deferred correction methods as fixed-order Runge–Kutta methods, providing a natural framework for the comparison. The stability and accuracy properties of the methods are analyzed by theoretical measures, and these are compared with the results of numerical tests. In serial, the eighth-order pair of Prince and Dormand (DOP8) is most efficient. But other high-order methods can be more efficient than DOP8 when implemented in parallel. This is demonstrated by comparing a parallelized version of the wellknown ODEX code with the (serial) DOP853 code. For an N-body problem with N = 400, the experimental extrapolation code is as fast as the tuned Runge–Kutta pair at loose tolerances, and is up to two times as fast at tight tolerances.

  17. Generalización a Rn de algunos métodos de interpolación conocidos en ecuaciones diferenciales

    Directory of Open Access Journals (Sweden)

    Vernor Arguedas Troyo

    2009-02-01

    Full Text Available We present the Runge-Kutta methods of several one-step levels in Rn , as well as algorithms in pseudo-code for the implicit and explicit methods. We study the problem of error control in Rn and we give numerical examples in tables or parameter schemata. Keywords: n-dimensional runge-Katta methods, explicit and implicit methods, interpolation, pseudo-algorithms, parametric schema.

  18. Similarity solution and Runge Kutta method to a thermal boundary layer model at the entrance region of a circular tube: The Lévêque Approximation

    Directory of Open Access Journals (Sweden)

    Ali Belhocine

    2018-01-01

    Full Text Available In the thermal entrance region, a thermal boundary layer develops and also reaches the circular tube center. The fully developed region is the zone in which the flow is both hydrodynamically and thermally developed. The heat flux will be higher near the inlet because the heat transfer coefficient is highest at the tube inlet where the thickness of the thermal boundary layer is zero and decreases gradually to the fully developed value. In this paper, the assumptions implicit in Leveque's approximation are re-examined, and the analytical solution of the problem with additional boundary conditions, for the temperature field and the boundary layer thickness through the long tube is presented. By defining a similarity variable, the governing equations are reduced to a dimensionless equation with an analytic solution in the entrance region. This report gives justification for the similarity variable via scaling analysis, details the process of converting to a similarity form, and presents a similarity solution. The analytical solutions are then checked against numerical solution programming by Fortran code obtained via using Runge-Kutta fourth order (RK4 method. Finally, others important thermal results obtained from this analysis, such as; approximate Nusselt number in the thermal entrance region was discussed in detail.

  19. Introducción a la integración numérica de ecuaciones diferenciales algebraicas de índice 2 con métodos de tipo Runge-Kutta.

    OpenAIRE

    Rojo García, Diego

    2015-01-01

    Tras introducir los conceptos y resultados básicos relacionados con las ecuaciones diferenciales algebraicas, en particular los distintos tipos de índice, se ha abordado la integración numérica de las ecuaciones semi-explícitas de índice 2 mediante métodos Runge-Kutta semi-explícitos. Se han estudiado con detalle las condiciones de orden para dichos métodos, obteniendo para ello los desarrollos de Taylor de la solución exacta y de la solución numérica con la ayuda de la teoría de árboles adec...

  20. Application of differential transformation method for solving dengue transmission mathematical model

    Science.gov (United States)

    Ndii, Meksianis Z.; Anggriani, Nursanti; Supriatna, Asep K.

    2018-03-01

    The differential transformation method (DTM) is a semi-analytical numerical technique which depends on Taylor series and has application in many areas including Biomathematics. The aim of this paper is to employ the differential transformation method (DTM) to solve system of non-linear differential equations for dengue transmission mathematical model. Analytical and numerical solutions are determined and the results are compared to that of Runge-Kutta method. We found a good agreement between DTM and Runge-Kutta method.

  1. Krylov subspace methods for the solution of large systems of ODE's

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Bjurstrøm, Nils Henrik

    1998-01-01

    In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified.......In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified....

  2. Optimal Monotonicity-Preserving Perturbations of a Given Runge–Kutta Method

    KAUST Repository

    Higueras, Inmaculada

    2018-02-14

    Perturbed Runge–Kutta methods (also referred to as downwind Runge–Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge–Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.

  3. Optimal Monotonicity-Preserving Perturbations of a Given Runge–Kutta Method

    KAUST Repository

    Higueras, Inmaculada; Ketcheson, David I.; Kocsis, Tihamé r A.

    2018-01-01

    Perturbed Runge–Kutta methods (also referred to as downwind Runge–Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge–Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.

  4. Runge-Kutta methods with minimum storage implementations

    KAUST Repository

    Ketcheson, David I.

    2010-01-01

    Solution of partial differential equations by the method of lines requires the integration of large numbers of ordinary differential equations (ODEs). In such computations, storage requirements are typically one of the main considerations

  5. NMPC for Oil Reservoir Production Optimization

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2011-01-01

    this problem numerically using a single shooting sequential quadratic programming (SQP) based optimization method. Explicit singly diagonally implicit Runge-Kutta (ESDIRK) methods are used for integration of the stiff system of differential equations describing the two-phase flow, and the adjoint method...

  6. A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation

    Science.gov (United States)

    Jones, Brandon A.; Anderson, Rodney L.

    2012-01-01

    Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation methods to astrodynamics. Both of these methods benefit from relatively recent theoretical developments, which improve their applicability to artificial satellite orbit propagation. This paper also details their implementation, with several tests demonstrating their advantages and disadvantages.

  7. Free terminal time optimal control problem for the treatment of HIV infection

    Directory of Open Access Journals (Sweden)

    Amine Hamdache

    2016-01-01

    to provide the explicit formulations of the optimal controls. The corresponding optimality system with the additional transversality condition for the terminal time is derived and solved numerically using an adapted iterative method with a Runge-Kutta fourth order scheme and a gradient method routine.

  8. Efficient integration of stiff kinetics with phase change detection for reactive reservoir processes

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    We propose the use of implicit one-step Explicit Singly Diagonal Implicit Runge-Kutta (ESDIRK) methods for integration of the stiff kinetics in reactive, compositional and thermal processes that are solved using operator-splitting type approaches. To facilitate the algorithmic development we...

  9. Iterative Runge–Kutta-type methods for nonlinear ill-posed problems

    International Nuclear Information System (INIS)

    Böckmann, C; Pornsawad, P

    2008-01-01

    We present a regularization method for solving nonlinear ill-posed problems by applying the family of Runge–Kutta methods to an initial value problem, in particular, to the asymptotical regularization method. We prove that the developed iterative regularization method converges to a solution under certain conditions and with a general stopping rule. Some particular iterative regularization methods are numerically implemented. Numerical results of the examples show that the developed Runge–Kutta-type regularization methods yield stable solutions and that particular implicit methods are very efficient in saving iteration steps

  10. Efficacy of variational iteration method for chaotic Genesio system - Classical and multistage approach

    International Nuclear Information System (INIS)

    Goh, S.M.; Noorani, M.S.M.; Hashim, I.

    2009-01-01

    This is a case study of solving the Genesio system by using the classical variational iteration method (VIM) and a newly modified version called the multistage VIM (MVIM). VIM is an analytical technique that grants us a continuous representation of the approximate solution, which allows better information of the solution over the time interval. Unlike its counterpart, numerical techniques, such as the Runge-Kutta method, provide solutions only at two ends of the time interval (with condition that the selected time interval is adequately small for convergence). Furthermore, it offers approximate solutions in a discretized form, making it complicated in achieving a continuous representation. The explicit solutions through VIM and MVIM are compared with the numerical analysis of the fourth-order Runge-Kutta method (RK4). VIM had been successfully applied to linear and nonlinear systems of non-chaotic in nature and this had been testified by numerous scientists lately. Our intention is to determine whether VIM is also a feasible method in solving a chaotic system like Genesio. At the same time, MVIM will be applied to gauge its accuracy compared to VIM and RK4. Since, for most situations, the validity domain of the solutions is often an issue, we will consider a reasonably large time frame in our work.

  11. 有理Runge-Kutta法を用いたSemi-Lagrangian海洋モデルの開発

    OpenAIRE

    上原, 克人; Uehara, Katsuto

    1997-01-01

    A new Semi-Lagrangian scheme using Rational Runge-Kutta method (RKSL scheme)is developed for reduced-gravity ocean model. It is superior to Semi-Implicit/Semi-Lagrangian (SISL) scheme in handling lateral boundaries, whereas it can take longer time-step than usual external Eulerian schemes. To evaluate this new scheme, experiments simulating the mid-depth circulation of the Mediterranean outflow region in the eastern North Atlantic were made by using the RKSL scheme, the SISL scheme, and cente...

  12. a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment

    Science.gov (United States)

    Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita

    A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.

  13. RKC time-stepping for advection-diffusion-reaction problems

    International Nuclear Information System (INIS)

    Verwer, J.G.; Sommeijer, B.P.; Hundsdorfer, W.

    2004-01-01

    The original explicit Runge-Kutta-Chebyshev (RKC) method is a stabilized second-order integration method for pure diffusion problems. Recently, it has been extended in an implicit-explicit manner to also incorporate highly stiff reaction terms. This implicit-explicit RKC method thus treats diffusion terms explicitly and the highly stiff reaction terms implicitly. The current paper deals with the incorporation of advection terms for the explicit method, thus aiming at the implicit-explicit RKC integration of advection-diffusion-reaction equations in a manner that advection and diffusion terms are treated simultaneously and explicitly and the highly stiff reaction terms implicitly

  14. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods

    Directory of Open Access Journals (Sweden)

    Domingues M. O.

    2013-12-01

    Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.

  15. High order spectral volume and spectral difference methods on unstructured grids

    Science.gov (United States)

    Kannan, Ravishekar

    The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed

  16. Comparison of boundedness and monotonicity properties of one-leg and linear multistep methods

    KAUST Repository

    Mozartova, A.; Savostianov, I.; Hundsdorfer, W.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. One-leg multistep methods have some advantage over linear multistep methods with respect to storage of the past results. In this paper boundedness and monotonicity properties with arbitrary (semi-)norms or convex functionals are analyzed for such multistep methods. The maximal stepsize coefficient for boundedness and monotonicity of a one-leg method is the same as for the associated linear multistep method when arbitrary starting values are considered. It will be shown, however, that combinations of one-leg methods and Runge-Kutta starting procedures may give very different stepsize coefficients for monotonicity than the linear multistep methods with the same starting procedures. Detailed results are presented for explicit two-step methods.

  17. Comparison of boundedness and monotonicity properties of one-leg and linear multistep methods

    KAUST Repository

    Mozartova, A.

    2015-05-01

    © 2014 Elsevier B.V. All rights reserved. One-leg multistep methods have some advantage over linear multistep methods with respect to storage of the past results. In this paper boundedness and monotonicity properties with arbitrary (semi-)norms or convex functionals are analyzed for such multistep methods. The maximal stepsize coefficient for boundedness and monotonicity of a one-leg method is the same as for the associated linear multistep method when arbitrary starting values are considered. It will be shown, however, that combinations of one-leg methods and Runge-Kutta starting procedures may give very different stepsize coefficients for monotonicity than the linear multistep methods with the same starting procedures. Detailed results are presented for explicit two-step methods.

  18. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Jangabylova, Aliya; Kusmanov, Adil

    2016-01-01

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step

  19. DRK methods for time-domain oscillator simulation

    NARCIS (Netherlands)

    Sevat, M.F.; Houben, S.H.M.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.

    2006-01-01

    This paper presents a new Runge-Kutta type integration method that is well-suited for time-domain simulation of oscillators. A unique property of the new method is that its damping characteristics can be controlled by a continuous parameter.

  20. Solving point reactor kinetic equations by time step-size adaptable numerical methods

    International Nuclear Information System (INIS)

    Liao Chaqing

    2007-01-01

    Based on the analysis of effects of time step-size on numerical solutions, this paper showed the necessity of step-size adaptation. Based on the relationship between error and step-size, two-step adaptation methods for solving initial value problems (IVPs) were introduced. They are Two-Step Method and Embedded Runge-Kutta Method. PRKEs were solved by implicit Euler method with step-sizes optimized by using Two-Step Method. It was observed that the control error has important influence on the step-size and the accuracy of solutions. With suitable control errors, the solutions of PRKEs computed by the above mentioned method are accurate reasonably. The accuracy and usage of MATLAB built-in ODE solvers ode23 and ode45, both of which adopt Runge-Kutta-Fehlberg method, were also studied and discussed. (authors)

  1. Static Behaviour of Natural Gas and its Flow in Pipes

    OpenAIRE

    Ohirhian, Peter

    2010-01-01

    1. 2. A general differential equation that governs static behavior of any fluid and its flow in horizontal, uphill and downhill pipes has been developed. classical fourth order Runge-Kutta numerical method is programmed in Fortran 77, to test the equation and results are accurate. The program shows that a length ncrement as large as 10,000 ft can be used in the Runge-Kutta method of solution to differential equation during uphill gas flow and up to 5700ft for downhill gas flow The Runge-Kutta...

  2. A Broyden numerical Kutta condition for an unsteady panel method

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2003-01-01

    In panel methods, numerical Kutta conditions are applied in order to ensure that pressure differences between the surfaces at the trailing edges of lifting surface elements are close to zero. Previous numerical Kutta conditions for 3-D panel methods have focused on use of the Newton-Raphson iterative procedure. For extreme unsteady motions, such as for oscillating hydrofoils or for a propeller behind a blockage, the Newton-Raphson procedure can have severe convergence difficulties. The Broyden iteration, a modified Newton-Raphson iteration procedure, is applied here to obtain improved convergence behavior. Using the Broyden iteration increases the reliability, robustness and in many cases computing efficiency for unsteady, multi-body interactive flows. This method was tested in a time domain code for an ice class propeller in both open water flow and during interaction with a nearby ice blockage. Predictions showed that the method was effective in these extreme flows. (author)

  3. KRYSI, Ordinary Differential Equations Solver with Sdirk Krylov Method

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Norsett, S.P.

    2001-01-01

    1 - Description of program or function: KRYSI is a set of FORTRAN subroutines for solving ordinary differential equations initial value problems. It is suitable for both stiff and non-stiff systems. When solving the implicit stage equations in the stiff case, KRYSI uses a Krylov subspace iteration method called the SPIGMR (Scaled Preconditioned Incomplete Generalized Minimum Residual) method. No explicit Jacobian storage is required, except where used in pre- conditioning. A demonstration problem is included with a description of two pre-conditioners that are natural for its solution by KRYSI. 2 - Method of solution: KRYSI uses a three-stage, third-order singly diagonally implicit Runge-Kutta (SDIRK) method. In the stiff case, a preconditioned Krylov subspace iteration within a (so-called) inexact Newton iteration is used to solve the system of nonlinear algebraic equations

  4. Waveform relaxation methods for implicit differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; W.A. van der Veen

    1996-01-01

    textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems

  5. On Error Estimation in Runge-Kutta Methods

    Directory of Open Access Journals (Sweden)

    Gbolahan BOLARIN

    2011-06-01

    Full Text Available The increase in PCs' capabilities and communication bandwidth over the last decade has made distributed computing a more practical idea for solving computational problems. We have developed a decentralized P2P system called ParCop (Parallel Cooperation. ParCop enables each peer in a P2P network to view the rest of the network as a supercomputer, by running ParCop system software on the machine as a daemon service. ParCop allows participants to execute different applications on shared resources owned by other participants. In this paper, we present the new capabilities of ParCop system: efficient resource discovery by using the Blackboard Resource Discovery Mechanism (BRDM, adaptation in dynamic networks, effective data caching, efficient scaling and the provision of a secure environment. We also present three scheduling policies that allow peers in ParCop environment to take scheduling decisions based on the information coming from the peers in the network. The use of these scheduling policies minimizes the processing time of applications in ParCop, improves the ability of dealing with peers which have different capabilities and requirements, and achieves efficient load balancing.

  6. On the Linear Stability of the Fifth-Order WENO Discretization

    KAUST Repository

    Motamed, Mohammad

    2010-10-03

    We study the linear stability of the fifth-order Weighted Essentially Non-Oscillatory spatial discretization (WENO5) combined with explicit time stepping applied to the one-dimensional advection equation. We show that it is not necessary for the stability domain of the time integrator to include a part of the imaginary axis. In particular, we show that the combination of WENO5 with either the forward Euler method or a two-stage, second-order Runge-Kutta method is linearly stable provided very small time step-sizes are taken. We also consider fifth-order multistep time discretizations whose stability domains do not include the imaginary axis. These are found to be linearly stable with moderate time steps when combined with WENO5. In particular, the fifth-order extrapolated BDF scheme gave superior results in practice to high-order Runge-Kutta methods whose stability domain includes the imaginary axis. Numerical tests are presented which confirm the analysis. © Springer Science+Business Media, LLC 2010.

  7. Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

    KAUST Repository

    Kubatko, Ethan J.; Yeager, Benjamin A.; Ketcheson, David I.

    2013-01-01

    Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.

  8. Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

    KAUST Repository

    Kubatko, Ethan J.

    2013-10-29

    Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.

  9. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    Science.gov (United States)

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  10. Runge–Kutta type methods with special properties for the numerical integration of ordinary differential equations

    International Nuclear Information System (INIS)

    Kalogiratou, Z.; Monovasilis, Th.; Psihoyios, G.; Simos, T.E.

    2014-01-01

    In this work we review single step methods of the Runge–Kutta type with special properties. Among them are methods specially tuned to integrate problems that exhibit a pronounced oscillatory character and such problems arise often in celestial mechanics and quantum mechanics. Symplectic methods, exponentially and trigonometrically fitted methods, minimum phase-lag and phase-fitted methods are presented. These are Runge–Kutta, Runge–Kutta–Nyström and Partitioned Runge–Kutta methods. The theory of constructing such methods is given as well as several specific methods. In order to present the performance of the methods we have tested 58 methods from all categories. We consider the two dimensional harmonic oscillator, the two body problem, the pendulum problem and the orbital problem studied by Stiefel and Bettis. Also we have tested the methods on the computation of the eigenvalues of the one dimensional time independent Schrödinger equation with the harmonic oscillator, the doubly anharmonic oscillator and the exponential potentials

  11. Application of homotopy-perturbation method to nonlinear population dynamics models

    International Nuclear Information System (INIS)

    Chowdhury, M.S.H.; Hashim, I.; Abdulaziz, O.

    2007-01-01

    In this Letter, the homotopy-perturbation method (HPM) is employed to derive approximate series solutions of nonlinear population dynamics models. The nonlinear models considered are the multispecies Lotka-Volterra equations. The accuracy of this method is examined by comparison with the available exact and the fourth-order Runge-Kutta method (RK4)

  12. Cheap arbitrary high order methods for single integrand SDEs

    DEFF Research Database (Denmark)

    Debrabant, Kristian; Kværnø, Anne

    2017-01-01

    For a particular class of Stratonovich SDE problems, here denoted as single integrand SDEs, we prove that by applying a deterministic Runge-Kutta method of order $p_d$ we obtain methods converging in the mean-square and weak sense with order $\\lfloor p_d/2\\rfloor$. The reason is that the B-series...

  13. A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids

    Energy Technology Data Exchange (ETDEWEB)

    McCorquodale, Peter; Colella, Phillip

    2011-01-28

    We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on Cartesian grids with multiple levels of refinement. The underlying method is a generalization of that in [5] to nonlinear systems, and is based on using fourth-order accurate quadratures for computing fluxes on faces, combined with fourth-order accurate Runge?Kutta discretization in time. To interpolate boundary conditions at refinement boundaries, we interpolate in time in a manner consistent with the individual stages of the Runge-Kutta method, and interpolate in space by solving a least-squares problem over a neighborhood of each target cell for the coefficients of a cubic polynomial. The method also uses a variation on the extremum-preserving limiter in [8], as well as slope flattening and a fourth-order accurate artificial viscosity for strong shocks. We show that the resulting method is fourth-order accurate for smooth solutions, and is robust in the presence of complex combinations of shocks and smooth flows.

  14. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Ibsen, Lars Bo

    2010-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...

  15. Differential Transform Method for Mathematical Modeling of Jamming Transition Problem in Traffic Congestion Flow

    DEFF Research Database (Denmark)

    Ganji, S.; Barari, Amin; Ibsen, Lars Bo

    2012-01-01

    . In current research the authors utilized the Differential Transformation Method (DTM) for solving the nonlinear problem and compared the analytical results with those ones obtained by the 4th order Runge-Kutta Method (RK4) as a numerical method. Further illustration embedded in this paper shows the ability...

  16. Stiff modes in spinvalve simulations with OOMMF

    Energy Technology Data Exchange (ETDEWEB)

    Mitropoulos, Spyridon [Department of Computer and Informatics Engineering, TEI of Eastern Macedonia and Thrace, Kavala (Greece); Tsiantos, Vassilis, E-mail: tsianto@teikav.edu.gr [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Ovaliadis, Kyriakos [Department of Electrical Engineering, TEI of Eastern Macedonia and Thrace, Kavala, 65404 Greece (Greece); Kechrakos, Dimitris [Department of Education, ASPETE, Heraklion, Athens (Greece); Donahue, Michael [Applied and Computational Mathematics Division, NIST, Gaithersburg, MD (United States)

    2016-04-01

    Micromagnetic simulations are an important tool for the investigation of magnetic materials. Micromagnetic software uses various techniques to solve differential equations, partial or ordinary, involved in the dynamic simulations. Euler, Runge-Kutta, Adams, and BDF (Backward Differentiation Formulae) are some of the methods used for this purpose. In this paper, spinvalve simulations are investigated. Evidence is presented showing that these systems have stiff modes, and that implicit methods such as BDF are more effective than explicit methods in such cases.

  17. Computational Method for Ice Crystal Trajectories in a Turbofan Compressor

    NARCIS (Netherlands)

    Grift, E.J.; Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    2015-01-01

    In this study the characteristics of ice crystals on their trajectory in a single stage of a turbofan engine compressor are determined. The particle trajectories are calculated with a Lagrangian method employing a classical fourth-order Runge-Kutta time integration scheme. The air flow field is

  18. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  19. Parallel Störmer-Cowell methods for high-precision orbit computations

    NARCIS (Netherlands)

    P.J. van der Houwen; E. Messina; J.J.B. de Swart (Jacques)

    1998-01-01

    textabstractMany orbit problems in celestial mechanics are described by (nonstiff) initial-value problems (IVPs) for second-order ordinary differential equations of the form $y' = {bf f (y)$. The most successful integration methods are based on high-order Runge-Kutta-Nyström formulas. However, these

  20. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    Science.gov (United States)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding

  1. Multi-scale and multi-physics simulations using the multi-fluid plasma model

    Science.gov (United States)

    2017-04-25

    small The simulation uses 512 second-order elements Bz = 1.0, Te = Ti = 0.01, ui = ue = 0 ne = ni = 1.0 + e−10(x−6) 2 Baboolal, Math . and Comp. Sim. 55...DISTRIBUTION Clearance No. 17211 23 / 31 SUMMARY The blended finite element method (BFEM) is presented DG spatial discretization with explicit Runge...Kutta (i+, n) CG spatial discretization with implicit Crank-Nicolson (e−, fileds) DG captures shocks and discontinuities CG is efficient and robust for

  2. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    Science.gov (United States)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  3. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  4. A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations

    KAUST Repository

    Wang, Zhiheng

    2014-12-10

    A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.

  5. Study of flow over object problems by a nodal discontinuous Galerkin-lattice Boltzmann method

    Science.gov (United States)

    Wu, Jie; Shen, Meng; Liu, Chen

    2018-04-01

    The flow over object problems are studied by a nodal discontinuous Galerkin-lattice Boltzmann method (NDG-LBM) in this work. Different from the standard lattice Boltzmann method, the current method applies the nodal discontinuous Galerkin method into the streaming process in LBM to solve the resultant pure convection equation, in which the spatial discretization is completed on unstructured grids and the low-storage explicit Runge-Kutta scheme is used for time marching. The present method then overcomes the disadvantage of standard LBM for depending on the uniform meshes. Moreover, the collision process in the LBM is completed by using the multiple-relaxation-time scheme. After the validation of the NDG-LBM by simulating the lid-driven cavity flow, the simulations of flows over a fixed circular cylinder, a stationary airfoil and rotating-stationary cylinders are performed. Good agreement of present results with previous results is achieved, which indicates that the current NDG-LBM is accurate and effective for flow over object problems.

  6. High Order A-stable Continuous General Linear Methods for Solution of Systems of Initial Value Problems in ODEs

    Directory of Open Access Journals (Sweden)

    Dauda GuliburYAKUBU

    2012-12-01

    Full Text Available Accurate solutions to initial value systems of ordinary differential equations may be approximated efficiently by Runge-Kutta methods or linear multistep methods. Each of these has limitations of one sort or another. In this paper we consider, as a middle ground, the derivation of continuous general linear methods for solution of stiff systems of initial value problems in ordinary differential equations. These methods are designed to combine the advantages of both Runge-Kutta and linear multistep methods. Particularly, methods possessing the property of A-stability are identified as promising methods within this large class of general linear methods. We show that the continuous general linear methods are self-starting and have more ability to solve the stiff systems of ordinary differential equations, than the discrete ones. The initial value systems of ordinary differential equations are solved, for instance, without looking for any other method to start the integration process. This desirable feature of the proposed approach leads to obtaining very high accuracy of the solution of the given problem. Illustrative examples are given to demonstrate the novelty and reliability of the methods.

  7. Application of the Generalized Differential Quadrature Method in Solving Burgers' Equations

    International Nuclear Information System (INIS)

    Mokhtari, R.; Toodar, A. Samadi; Chegini, N.G.

    2011-01-01

    The aim of this paper is to obtain numerical solutions of the one-dimensional, two-dimensional and coupled Burgers' equations through the generalized differential quadrature method (GDQM). The polynomial-based differential quadrature (PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta (TVD-RK) method. The numerical solutions are satisfactorily coincident with the exact solutions. The method can compete against the methods applied in the literature. (general)

  8. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    Science.gov (United States)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  9. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  10. Workshop on Numerical Methods for Ordinary Differential Equations

    CERN Document Server

    Gear, Charles; Russo, Elvira

    1989-01-01

    Developments in numerical initial value ode methods were the focal topic of the meeting at L'Aquila which explord the connections between the classical background and new research areas such as differental-algebraic equations, delay integral and integro-differential equations, stability properties, continuous extensions (interpolants for Runge-Kutta methods and their applications, effective stepsize control, parallel algorithms for small- and large-scale parallel architectures). The resulting proceedings address many of these topics in both research and survey papers.

  11. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY.

    Science.gov (United States)

    Rackauckas, Christopher; Nie, Qing

    2017-01-01

    Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs.

  12. Numerical solution of viscous and viscoelastic fluids flow through the branching channel by finite volume scheme

    Science.gov (United States)

    Keslerová, Radka; Trdlička, David

    2015-09-01

    This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.

  13. Solving the Bateman equations in CASMO5 using implicit ode numerical methods for stiff systems

    International Nuclear Information System (INIS)

    Hykes, J. M.; Ferrer, R. M.

    2013-01-01

    The Bateman equations, which describe the transmutation of nuclides over time as a result of radioactive decay, absorption, and fission, are often numerically stiff. This is especially true if short-lived nuclides are included in the system. This paper describes the use of implicit numerical methods for o D Es applied to the stiff Bateman equations, specifically employing the Backward Differentiation Formulas (BDF) form of the linear multistep method. As is true in other domains, using an implicit method removes or lessens the (sometimes severe) step-length constraints by which explicit methods must abide. To gauge its accuracy and speed, the BDF method is compared to a variety of other solution methods, including Runge-Kutta explicit methods and matrix exponential methods such as the Chebyshev Rational Approximation Method (CRAM). A preliminary test case was chosen as representative of a PWR lattice depletion step and was solved with numerical libraries called from a Python front-end. The Figure of Merit (a combined measure of accuracy and efficiency) for the BDF method was nearly identical to that for CRAM, while explicit methods and other matrix exponential approximations trailed behind. The test case includes 319 nuclides, in which the shortest-lived nuclide is 98 Nb with a half-life of 2.86 seconds. Finally, the BDF and CRAM methods were compared within CASMO5, where CRAM had a FOM about four times better than BDF, although the BDF implementation was not fully optimized. (authors)

  14. A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems

    Directory of Open Access Journals (Sweden)

    A. Karimi Dizicheh

    2013-01-01

    wavelet suitable for large intervals, and then the Legendre-Guass collocation points of the Legendre wavelet are derived. Using this strategy, the iterative spectral method converts the differential equation to a set of algebraic equations. Solving these algebraic equations yields an approximate solution for the differential equation. The proposed method is illustrated by some numerical examples, and the result is compared with the exponentially fitted Runge-Kutta method. Our proposed method is simple and highly accurate.

  15. Conservation properties of numerical integration methods for systems of ordinary differential equations

    Science.gov (United States)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  16. Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses

    Science.gov (United States)

    Rößler, Thomas; Stein, Olaf; Heng, Yi; Baumeister, Paul; Hoffmann, Lars

    2018-02-01

    The accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge-Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge-Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration

  17. Generalisierte Angststörung

    NARCIS (Netherlands)

    Becker, E.S.; Hoyer, J.

    2005-01-01

    Diagnostik und Behandlung der Generalisierten Angststörung gelten nach wie vor als schwierig, zudem ist die Wirksamkeit der Behandlung derzeit geringer als bei anderen Angststörungen. Umso wichtiger ist es, die neuen Modelle und die neuen Behandlungsmöglichkeiten bei dieser Störung kennen zu lernen.

  18. Multigrid time-accurate integration of Navier-Stokes equations

    Science.gov (United States)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1993-01-01

    Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

  19. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    KAUST Repository

    Liu, Meilin

    2011-07-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.

  20. Spectral Element Method for the Simulation of Unsteady Compressible Flows

    Science.gov (United States)

    Diosady, Laslo Tibor; Murman, Scott M.

    2013-01-01

    This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.

  1. Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods

    KAUST Repository

    Hundsdorfer, W.

    2011-04-29

    In this paper nonlinear monotonicity and boundedness properties are analyzed for linear multistep methods. We focus on methods which satisfy a weaker boundedness condition than strict monotonicity for arbitrary starting values. In this way, many linear multistep methods of practical interest are included in the theory. Moreover, it will be shown that for such methods monotonicity can still be valid with suitable Runge-Kutta starting procedures. Restrictions on the stepsizes are derived that are not only sufficient but also necessary for these boundedness and monotonicity properties. © 2011 Springer Science+Business Media, LLC.

  2. A generalization of the Runge-Lenz constant of classical motion in a central potential

    International Nuclear Information System (INIS)

    Holas, A.; March, N.H.

    1988-09-01

    A generalization of the Runge-Lenz vector, an integral of the motion for the Kepler problem, is proposed for an arbitrary central potential V(r). This transcends the earlier proposal of Peres (1979) in that explicit expressions are given for the generalized vector M-vector, in contrast to differential equations written earlier. While M-vector is quite generally a constant of motion, the more stringent requirement that M-vector is an integral of the motion, according to the definition of Landau and Lifshitz (1976), is shown to be obeyed for particular initial states. For potentials V(r) leading to motion along closed paths which contain n perihelions, an integral of motion in the form of an n-arm star represents the proper generalization of the Runge-Lenz vector. This new integral of the motion is written explicitly for an isotropic harmonic oscillator as a 2-arm star; in this case for arbitrary initial state. In general, however, the integral of the motion of this type exists only for some particular initial states. (author). 6 refs

  3. Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method

    Directory of Open Access Journals (Sweden)

    A. M. El-Naggar

    2015-11-01

    Full Text Available Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF and numerical solutions using Runge-Kutta method. The results show the presented method is potentially to solve high nonlinear oscillator equations.

  4. The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system

    International Nuclear Information System (INIS)

    Chowdhury, M.S.H.; Hashim, I.; Momani, S.

    2009-01-01

    In this paper, a new reliable algorithm based on an adaptation of the standard homotopy-perturbation method (HPM) is presented. The HPM is treated as an algorithm in a sequence of intervals (i.e. time step) for finding accurate approximate solutions to the famous Lorenz system. Numerical comparisons between the multistage homotopy-perturbation method (MHPM) and the classical fourth-order Runge-Kutta (RK4) method reveal that the new technique is a promising tool for the nonlinear systems of ODEs.

  5. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    International Nuclear Information System (INIS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s 2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful

  6. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2017-02-15

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the

  7. A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2016-01-01

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the

  8. Accuracy of the Adomian decomposition method applied to the Lorenz system

    International Nuclear Information System (INIS)

    Hashim, I.; Noorani, M.S.M.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M.

    2006-01-01

    In this paper, the Adomian decomposition method (ADM) is applied to the famous Lorenz system. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the fourth-order Runge-Kutta (RK4) numerical solutions are made for various time steps. In particular we look at the accuracy of the ADM as the Lorenz system changes from a non-chaotic system to a chaotic one

  9. Curved manifolds with conserved Runge-Lenz vectors

    International Nuclear Information System (INIS)

    Ngome, J.-P.

    2009-01-01

    van Holten's algorithm is used to construct Runge-Lenz-type conserved quantities, induced by Killing tensors, on curved manifolds. For the generalized Taub-Newman-Unti-Tamburino metric, the most general external potential such that the combined system admits a conserved Runge-Lenz-type vector is found. In the multicenter case, the subclass of two-center metric exhibits a conserved Runge-Lenz-type scalar.

  10. A positive and multi-element conserving time stepping scheme for biogeochemical processes in marine ecosystem models

    Science.gov (United States)

    Radtke, H.; Burchard, H.

    2015-01-01

    In this paper, an unconditionally positive and multi-element conserving time stepping scheme for systems of non-linearly coupled ODE's is presented. These systems of ODE's are used to describe biogeochemical transformation processes in marine ecosystem models. The numerical scheme is a positive-definite modification of the Runge-Kutta method, it can have arbitrarily high order of accuracy and does not require time step adaption. If the scheme is combined with a modified Patankar-Runge-Kutta method from Burchard et al. (2003), it also gets the ability to solve a certain class of stiff numerical problems, but the accuracy is restricted to second-order then. The performance of the new scheme on two test case problems is shown.

  11. A Galerkin Finite Element Method for Numerical Solutions of the Modified Regularized Long Wave Equation

    Directory of Open Access Journals (Sweden)

    Liquan Mei

    2014-01-01

    Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.

  12. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.

  13. A Fortran program for the numerical integration of the one-dimensional Schroedinger equation using exponential and Bessel fitting methods

    International Nuclear Information System (INIS)

    Cash, J.R.; Raptis, A.D.; Simos, T.E.

    1990-01-01

    An efficient algorithm is described for the accurate numerical integration of the one-dimensional Schroedinger equation. This algorithm uses a high-order, variable step Runge-Kutta like method in the region where the potential term dominates, and an exponential or Bessel fitted method in the asymptotic region. This approach can be used to compute scattering phase shifts in an efficient and reliable manner. A Fortran program which implements this algorithm is provided and some test results are given. (orig.)

  14. A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    OpenAIRE

    Ngwane, F. F.; Jator, S. N.

    2017-01-01

    In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one...

  15. On reinitializing level set functions

    Science.gov (United States)

    Min, Chohong

    2010-04-01

    In this paper, we consider reinitializing level functions through equation ϕt+sgn(ϕ0)(‖∇ϕ‖-1)=0[16]. The method of Russo and Smereka [11] is taken in the spatial discretization of the equation. The spatial discretization is, simply speaking, the second order ENO finite difference with subcell resolution near the interface. Our main interest is on the temporal discretization of the equation. We compare the three temporal discretizations: the second order Runge-Kutta method, the forward Euler method, and a Gauss-Seidel iteration of the forward Euler method. The fact that the time in the equation is fictitious makes a hypothesis that all the temporal discretizations result in the same result in their stationary states. The fact that the absolute stability region of the forward Euler method is not wide enough to include all the eigenvalues of the linearized semi-discrete system of the second order ENO spatial discretization makes another hypothesis that the forward Euler temporal discretization should invoke numerical instability. Our results in this paper contradict both the hypotheses. The Runge-Kutta and Gauss-Seidel methods obtain the second order accuracy, and the forward Euler method converges with order between one and two. Examining all their properties, we conclude that the Gauss-Seidel method is the best among the three. Compared to the Runge-Kutta, it is twice faster and requires memory two times less with the same accuracy.

  16. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  17. Asymptotic solution for heat convection-radiation equation

    Energy Technology Data Exchange (ETDEWEB)

    Mabood, Fazle; Ismail, Ahmad Izani Md [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Khan, Waqar A. [Department of Engineering Sciences, National University of Sciences and Technology, PN Engineering College, Karachi, 75350 (Pakistan)

    2014-07-10

    In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.

  18. Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Olvera

    2014-01-01

    Full Text Available We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM that is based on the homotopy perturbation method (HPM and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM. At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves.

  19. nonlinear kinetics and mechanism of nile blue reaction

    African Journals Online (AJOL)

    Prof. S.B. Jonnalagadda

    under varied oxidative and reducing media is pivotal in their applications as dyes ..... implicate Runge-Kutta method, which solves differential equations .... The authors acknowledge the financial support received from the University of Durban-.

  20. Faster Simulation Methods for the Nonstationary Random Vibrations of Non-linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüo, U.; Nielsen, Søren R.K.

    1996-01-01

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  1. A space-time lower-upper symmetric Gauss-Seidel scheme for the time-spectral method

    Science.gov (United States)

    Zhan, Lei; Xiong, Juntao; Liu, Feng

    2016-05-01

    The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge-Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower-upper symmetric Gauss-Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant-Friedrichs-Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.

  2. Nonlinear Model Predictive Control for Oil Reservoirs Management

    DEFF Research Database (Denmark)

    Capolei, Andrea

    expensive gradient computation by using high-order ESDIRK (Explicit Singly Diagonally Implicit Runge-Kutta) temporal integration methods and continuous adjoints. The high order integration scheme allows larger time steps and therefore faster solution times. We compare gradient computation by the continuous...... gradient-based optimization and the required gradients are computed by the adjoint method. We propose the use of efficient high order implicit time integration methods for the solution of the forward and the adjoint equations of the dynamical model. The Ensemble Kalman filter is used for data assimilation...... equivalent strategy is not justified for the particular case studied in this paper. The third contribution of this thesis is a mean-variance method for risk mitigation in production optimization of oil reservoirs. We introduce a return-risk bicriterion objective function for the profit-risk tradeoff...

  3. Faster Simulation Methods for the Non-Stationary Random Vibrations of Non-Linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüoglu, H. U.; Nielsen, Søren R. K.

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  4. Diablo 2.0: A modern DNS/LES code for the incompressible NSE leveraging new time-stepping and multigrid algorithms

    Science.gov (United States)

    Cavaglieri, Daniele; Bewley, Thomas; Mashayek, Ali

    2015-11-01

    We present a new code, Diablo 2.0, for the simulation of the incompressible NSE in channel and duct flows with strong grid stretching near walls. The code leverages the fractional step approach with a few twists. New low-storage IMEX (implicit-explicit) Runge-Kutta time-marching schemes are tested which are superior to the traditional and widely-used CN/RKW3 (Crank-Nicolson/Runge-Kutta-Wray) approach; the new schemes tested are L-stable in their implicit component, and offer improved overall order of accuracy and stability with, remarkably, similar computational cost and storage requirements. For duct flow simulations, our new code also introduces a new smoother for the multigrid solver for the pressure Poisson equation. The classic approach, involving alternating-direction zebra relaxation, is replaced by a new scheme, dubbed tweed relaxation, which achieves the same convergence rate with roughly half the computational cost. The code is then tested on the simulation of a shear flow instability in a duct, a classic problem in fluid mechanics which has been the object of extensive numerical modelling for its role as a canonical pathway to energetic turbulence in several fields of science and engineering.

  5. Subdomain Precise Integration Method for Periodic Structures

    Directory of Open Access Journals (Sweden)

    F. Wu

    2014-01-01

    Full Text Available A subdomain precise integration method is developed for the dynamical responses of periodic structures comprising many identical structural cells. The proposed method is based on the precise integration method, the subdomain scheme, and the repeatability of the periodic structures. In the proposed method, each structural cell is seen as a super element that is solved using the precise integration method, considering the repeatability of the structural cells. The computational efforts and the memory size of the proposed method are reduced, while high computational accuracy is achieved. Therefore, the proposed method is particularly suitable to solve the dynamical responses of periodic structures. Two numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method through comparison with the Newmark and Runge-Kutta methods.

  6. A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations

    International Nuclear Information System (INIS)

    Liu, Hongwei; Xu, Kun

    2007-01-01

    This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method

  7. Variational and symplectic integrators for satellite relative orbit propagation including drag

    Science.gov (United States)

    Palacios, Leonel; Gurfil, Pini

    2018-04-01

    Orbit propagation algorithms for satellite relative motion relying on Runge-Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge-Kutta-based integrators, even in the presence of atmospheric drag.

  8. A method for solving the KDV equation and some numerical experiments

    International Nuclear Information System (INIS)

    Chang Jinjiang.

    1993-01-01

    In this paper, by means of difference method for discretization of space partial derivatives of KDV equation, an initial value problem in ordinary differential equations of large dimensions is produced. By using this ordinary differential equations the existence and the uniqueness of the solution of the KDV equation and the conservation of scheme are proved. This ordinary differential equation can be solved by using implicit Runge-Kutta methods, so a new method for finding the numerical solution of the KDV equation is presented. Numerical experiments not only describe in detail the procedure of two solitons collision, soliton reflex and soliton produce, but also show that this method is very effective. (author). 7 refs, 3 figs

  9. Modified Differential Transform Method for Solving the Model of Pollution for a System of Lakes

    Directory of Open Access Journals (Sweden)

    Brahim Benhammouda

    2014-01-01

    present the posttreatment of the power series solutions with the Laplace-Padé resummation method as a useful strategy to extend the domain of convergence of the approximate solutions. The Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant (RKF45 numerical solution of the lakes system problem is used as a reference to compare with the analytical approximations showing the high accuracy of the results. The main advantage of the proposed technique is that it is based on a few straightforward steps and does not generate secular terms or depend of a perturbation parameter.

  10. On the Linear Stability of the Fifth-Order WENO Discretization

    KAUST Repository

    Motamed, Mohammad; Macdonald, Colin B.; Ruuth, Steven J.

    2010-01-01

    , the fifth-order extrapolated BDF scheme gave superior results in practice to high-order Runge-Kutta methods whose stability domain includes the imaginary axis. Numerical tests are presented which confirm the analysis. © Springer Science+Business Media, LLC

  11. Discrete singular convolution for the generalized variable-coefficient ...

    African Journals Online (AJOL)

    Numerical solutions of the generalized variable-coefficient Korteweg-de Vries equation are obtained using a discrete singular convolution and a fourth order singly diagonally implicit Runge-Kutta method for space and time discretisation, respectively. The theoretical convergence of the proposed method is rigorously ...

  12. Advanced differential quadrature methods

    CERN Document Server

    Zong, Zhi

    2009-01-01

    Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and engineering have developed a range of innovative DQ-based methods to overcome these shortcomings. Advanced Differential Quadrature Methods explores new DQ methods and uses these methods to solve problems beyond the capabilities of the direct DQ method.After a basic introduction to the direct DQ method, the book presents a number of DQ methods, including complex DQ, triangular DQ, multi-scale DQ, variable order DQ, multi-domain DQ, and localized DQ. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge-Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to q...

  13. Solution methods for large systems of linear equations in BACCHUS

    International Nuclear Information System (INIS)

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  14. Improved stochastic approximation methods for discretized parabolic partial differential equations

    Science.gov (United States)

    Guiaş, Flavius

    2016-12-01

    We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).

  15. Numerical analysis for Darcy-Forchheimer flow in presence of homogeneous-heterogeneous reactions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available A mathematical study is presented to investigate the influences of homogeneous and heterogeneous reactions in local similar flow caused by stretching sheet with a non-linear velocity and variable thickness. Porous medium effects are characterized by using Darcy-Forchheimer porous-media. A simple isothermal model of homogeneous-heterogeneous reactions is used. The multiphysical boundary value problem is dictated by ten thermophysical parameters: ratio of mass diffusion coefficients, Prandtl number, local inertia coefficient parameter, inverse Darcy number, shape parameter, surface thickness parameter, Hartman number, Homogeneous heat reaction, strength of homogeneous-heterogeneous reactions and Schmidt number. Resulting systems are computed by Runge-Kutta-Fehlberg method. Different shapes of velocity are noticed for n > 1 and n < 1. Keywords: Homogeneous-heterogeneous reactions, Non Darcy porous medium, Variable sheet thickness, Homogeneous heat reaction with stoichiometric coefficient, Runge-Kutta-Fehlberg method

  16. Method of solution for the determination of the velocity profiles in turbulent flow through annular tobes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M; Russo, Q [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Almeida, M S; Bozzo, S [Rio de Janeiro Univ. (Brazil). Instituto de Quimica

    1975-03-01

    A method of solutions is presented for the determination of the velocity profiles in turbulent flow through annular tubes, based on the Von Karman similarity theory developed by Quarmby. The parameters found by Quarmby appearing in the velocity profiles and determined experimentally by different authors were approximated by polynonial functions of variable degree, as function of the Reynolds numbers. The Runge-Kutta-Nystrom method was used in the integration of the differential equations and the systematic of solution is presented in a computer program. The calculated results were compared to the experimental date and presented a deviation of 10/sup -2/%.

  17. Application of Multistage Homotopy Perturbation Method to the Chaotic Genesio System

    Directory of Open Access Journals (Sweden)

    M. S. H. Chowdhury

    2012-01-01

    Full Text Available Finding accurate solution of chaotic system by using efficient existing numerical methods is very hard for its complex dynamical behaviors. In this paper, the multistage homotopy-perturbation method (MHPM is applied to the Chaotic Genesio system. The MHPM is a simple reliable modification based on an adaptation of the standard homotopy-perturbation method (HPM. The HPM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the Chaotic Genesio system. Numerical comparisons between the MHPM and the classical fourth-order Runge-Kutta (RK4 solutions are made. The results reveal that the new technique is a promising tool for the nonlinear chaotic systems of ordinary differential equations.

  18. Routes to chaos in continuous mechanical systems. Part 1: Mathematical models and solution methods

    International Nuclear Information System (INIS)

    Awrejcewicz, J.; Krysko, V.A.; Papkova, I.V.; Krysko, A.V.

    2012-01-01

    In this work chaotic dynamics of continuous mechanical systems such as flexible plates and shallow shells is studied. Namely, a wide class of the mentioned objects is analyzed including flexible plates and cylinder-like panels of infinite length, rectangular spherical and cylindrical shells, closed cylindrical shells, axially symmetric plates, as well as spherical and conical shells. The considered problems are solved by the Bubnov–Galerkin and higher approximation Ritz methods. Convergence and validation of those methods are studied. The Cauchy problems are solved mainly by the fourth Runge-Kutta method, although all variants of the Runge-Kutta methods are considered. New scenarios of transition from regular to chaotic orbits are detected, analyzed and discussed. First part of the paper is devoted to the validation of results obtained. This is why the same infinite length problem is reduced to that of a finite dimension through the FDM (Finite Difference Method) with the approximation order of O(c 2 ), BGM (Bubnov–Galerkin Method) or RM (Ritz Method) with higher approximations. We pay attention not only to convergence of the mentioned methods regarding the number of partitions of the interval [0, 1] in the FDM or regarding the number of terms in the series applied either in the BGM or RM methods, but we also compare the results obtained via the mentioned different approaches. Furthermore, a so called practical convergence of different Runge-Kutta type methods are tested starting from the second and ending with the eighth order. Second part of the work is devoted to a study of routes to chaos in the so far mentioned mechanical objects. For this purpose the so-called “dynamical charts” are constructed versus control parameters {q 0 , ω p }, where q 0 denotes the loading amplitude, and ω p is the loading frequency. The charts are constructed through analyses of frequency power spectra and the largest Lyapunov exponent (LE). Analysis of the mentioned charts

  19. A method of solution for the determination of the velocity profiles in turbulent flow through annular tobes

    International Nuclear Information System (INIS)

    Schmal, M.; Russo, Q.; Almeida, M.S.; Bozzo, S.

    1975-01-01

    A method of solutions is presented for the determination of the velocity profiles in turbulent flow through annular tubes, based on the Von Karman similarity theory developed by Quarmby. The parameters found by Quarmby appearing in the velocity profiles and determined experimentally by different authors were approximated by polynonial functions of variable degree, as function of the Reynolds numbers. The Runge-Kutta-Nystrom method was used in the integration of the differential equations and the systematic of solution is presented in a computer program. The calculated results were compared to the experimental date and presented a deviation of 10 -2 % [pt

  20. Long-range-corrected Rung 3.5 density functional approximations

    Science.gov (United States)

    Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.

    2018-03-01

    Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.

  1. Another higher order Langevin algorithm for QCD

    International Nuclear Information System (INIS)

    Kronfeld, A.S.

    1986-01-01

    This note provides an algorithm for integrating the Langevin equation which is second order. It introduces a term into the drift force which is a product of the Gaussian noise and a second derivative of the action. The specific application presented here is for nonabelian gauge theories interacting with fermions, e.g. QCD, for which it requires less memory than the Runge-Kutta algorithm of the same order. The memory and computational requirements of Euler, Runge-Kutta, and the present algorithm are compared. (orig.)

  2. A numeric-analytic method for approximating the chaotic Chen system

    International Nuclear Information System (INIS)

    Mossa Al-sawalha, M.; Noorani, M.S.M.

    2009-01-01

    The epitome of this paper centers on the application of the differential transformation method (DTM) the renowned Chen system which is described as a three-dimensional system of ODEs with quadratic nonlinearities. Numerical comparisons are made between the DTM and the classical fourth-order Runge-Kutta method (RK4). Our work showcases the precision of the DTM as the Chen system transforms from a non-chaotic system to a chaotic one. Since the Lyapunov exponent for this system is much higher compared to other chaotic systems, we shall highlight the difficulties of the simulations with respect to its accuracy. We wrap up our investigations to reveal that this direct symbolic-numeric scheme is effective and accurate.

  3. Application of modified homotopy perturbation method and amplitude frequency formulation to strongly nonlinear oscillators

    Directory of Open Access Journals (Sweden)

    seyd ghasem enayati

    2017-01-01

    Full Text Available In this paper, two powerful analytical methods known as modified homotopy perturbation method and Amplitude Frequency Formulation called respectively MHPM and AFF, are introduced to derive approximate solutions of a system of ordinary differential equations appear in mechanical applications. These methods convert a difficult problem into a simple one, which can be easily handled. The obtained solutions are compared with numerical fourth order runge-kutta method to show the applicability and accuracy of both MHPM and AFF in solving this sample problem. The results attained in this paper confirm the idea that MHPM and AFF are powerful mathematical tools and they can be applied to linear and nonlinear problems.

  4. Inverse operator method for solutions of nonlinear dynamical equations and some typical applications

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1993-01-01

    The inverse operator method (IOM) is described briefly. We have realized the IOM for the solutions of nonlinear dynamical equations by the mathematics-mechanization (MM) with computers. They can then offer a new and powerful method applicable to many areas of physics. We have applied them successfully to study the chaotic behaviors of some nonlinear dynamical equations. As typical examples, the well-known Lorentz equation, generalized Duffing equation and two coupled generalized Duffing equations are investigated by using the IOM and the MM. The results are in good agreement with those given by Runge-Kutta method. So the IOM realized by the MM is of potential application valuable in nonlinear physics and many other fields

  5. Analysis of multi lobe journal bearings with surface roughness using finite difference method

    Science.gov (United States)

    PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.

    2018-04-01

    Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.

  6. Comparing numerical methods for the solutions of the Chen system

    International Nuclear Information System (INIS)

    Noorani, M.S.M.; Hashim, I.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M.

    2007-01-01

    In this paper, the Adomian decomposition method (ADM) is applied to the Chen system which is a three-dimensional system of ODEs with quadratic nonlinearities. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the classical fourth-order Runge-Kutta (RK4) numerical solutions are made. In particular we look at the accuracy of the ADM as the Chen system changes from a non-chaotic system to a chaotic one. To highlight some computational difficulties due to a high Lyapunov exponent, a comparison with the Lorenz system is given

  7. Explicitly represented polygon wall boundary model for the explicit MPS method

    Science.gov (United States)

    Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

    2015-05-01

    This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

  8. Production Optimization for Two-Phase Flow in an Oil Reservoir

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2012-01-01

    framework to increase the production and economic value of an oil reservoir. Wether the objective is to maximize recovery or some financial measure like Net Present Value, the increased production is achieved by manipulation of the well rates and bottom-hole pressures of the injection and production wells....... The optimal water injection rates and production well bottom-hole pressures are computed by solution of a large-scale constrained optimal control problem. The objective is to maximize production by manipulating the well rates and bottom hole pressures of injection and production wells. Optimal control...... settings of injection and production wells are computed by solution of a large scale constrained optimal control problem. We describe a gradient based method to compute the optimal control strategy of the water flooding process. An explicit singly diagonally implicit Runge-Kutta (ESDIRK) method...

  9. Nodal DG-FEM solution of high-order Boussinesq-type equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Hesthaven, Jan S.; Bingham, Harry B.

    2006-01-01

    We present a discontinuous Galerkin finite element method (DG-FEM) solution to a set of high-order Boussinesq-type equations for modelling highly nonlinear and dispersive water waves in one and two horizontal dimensions. The continuous equations are discretized using nodal polynomial basis...... functions of arbitrary order in space on each element of an unstructured computational domain. A fourth order explicit Runge-Kutta scheme is used to advance the solution in time. Methods for introducing artificial damping to control mild nonlinear instabilities are also discussed. The accuracy...... and convergence of the model with both h (grid size) and p (order) refinement are verified for the linearized equations, and calculations are provided for two nonlinear test cases in one horizontal dimension: harmonic generation over a submerged bar; and reflection of a steep solitary wave from a vertical wall...

  10. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...... the switching of variables and equations required when the number of phases changes. We extend the method to handle full phase equilibrium described by an equation of state. Experiments show that the new algorithm improves the robustness of the integration process near phase boundaries by lowering the number...

  11. Finite volume model for two-dimensional shallow environmental flow

    Science.gov (United States)

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  12. Rational functions with maximal radius of absolute monotonicity

    KAUST Repository

    Loczi, Lajos

    2014-05-19

    We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage, order p Runge-Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with 2 or 3 parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge-Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.

  13. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  14. Runge-Lenz wave packet in multichannel Stark photoionization

    International Nuclear Information System (INIS)

    Texier, F.

    2005-01-01

    In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance with the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial

  15. Exact error estimation for solutions of nuclide chain equations

    International Nuclear Information System (INIS)

    Tachihara, Hidekazu; Sekimoto, Hiroshi

    1999-01-01

    The exact solution of nuclide chain equations within arbitrary figures is obtained for a linear chain by employing the Bateman method in the multiple-precision arithmetic. The exact error estimation of major calculation methods for a nuclide chain equation is done by using this exact solution as a standard. The Bateman, finite difference, Runge-Kutta and matrix exponential methods are investigated. The present study confirms the following. The original Bateman method has very low accuracy in some cases, because of large-scale cancellations. The revised Bateman method by Siewers reduces the occurrence of cancellations and thereby shows high accuracy. In the time difference method as the finite difference and Runge-Kutta methods, the solutions are mainly affected by the truncation errors in the early decay time, and afterward by the round-off errors. Even though the variable time mesh is employed to suppress the accumulation of round-off errors, it appears to be nonpractical. Judging from these estimations, the matrix exponential method is the best among all the methods except the Bateman method whose calculation process for a linear chain is not identical with that for a general one. (author)

  16. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2014-03-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  17. Numerical Solution of Compressible Steady Flows around the NACA 0012 Airfoil

    Directory of Open Access Journals (Sweden)

    Kozel K

    2013-04-01

    Full Text Available The article presents results of a numerical solution of subsonic and transonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the NACA 0012 airfoil. Authors used Runge-Kutta method to numerically solve the flows around the NACA 0012 airfoil.

  18. Numerical analysis of hydromagnetic micropolar fluid along a stretching sheet embedded in porous medium with non-uniform heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    R.S. Tripathy

    2016-09-01

    The governing equations of the flow have been transformed into ordinary differential equations by using similarity transformation technique and solved using the Runge-Kutta method associated with shooting technique. The numerical solutions are achieved showing the effects of pertinent parameters. For verification of the present findings the results of this study have been compared with the earlier works in particular cases; Darcian and non-Darcian fluids are discussed separately. It is worth reporting that effect of porosity of the medium combined with inertia gives rise to a transverse compression producing thinner boundary layer the solution by finite element method (FEM and Runge–Kutta method, do agree within a reasonable error limit.

  19. An embedded formula of the Chebyshev collocation method for stiff problems

    Science.gov (United States)

    Piao, Xiangfan; Bu, Sunyoung; Kim, Dojin; Kim, Philsu

    2017-12-01

    In this study, we have developed an embedded formula of the Chebyshev collocation method for stiff problems, based on the zeros of the generalized Chebyshev polynomials. A new strategy for the embedded formula, using a pair of methods to estimate the local truncation error, as performed in traditional embedded Runge-Kutta schemes, is proposed. The method is performed in such a way that not only the stability region of the embedded formula can be widened, but by allowing the usage of larger time step sizes, the total computational costs can also be reduced. In terms of concrete convergence and stability analysis, the constructed algorithm turns out to have an 8th order convergence and it exhibits A-stability. Through several numerical experimental results, we have demonstrated that the proposed method is numerically more efficient, compared to several existing implicit methods.

  20. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    Science.gov (United States)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  1. General approach to the testing of binary solubility systems for thermodynamic consistency. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Hamm, L.L.; Van Brunt, V.

    1982-08-01

    A comparison of implicit Runge-Kutta and orthogonal collocation methods is made for the numerical solution to the ordinary differential equation which describes the high-pressure vapor-liquid equilibria of a binary system. The systems of interest are limited to binary solubility systems where one of the components is supercritical and exists as a noncondensable gas in the pure state. Of the two methods - implicit Runge-Kuta and orthogonal collocation - this paper attempts to present some preliminary but not necessarily conclusive results that the implicit Runge-Kutta method is superior for the solution to the ordinary differential equation utilized in the thermodynamic consistency testing of binary solubility systems. Due to the extreme nonlinearity of thermodynamic properties in the region near the critical locus, an extended cubic spline fitting technique is devised for correlating the P-x data. The least-squares criterion is employed in smoothing the experimental data. Even though the derivation is presented specifically for the correlation of P-x data, the technique could easily be applied to any thermodynamic data by changing the endpoint requirements. The volumetric behavior of the systems must be given or predicted in order to perform thermodynamic consistency tests. A general procedure is developed for predicting the volumetric behavior required and some indication as to the expected limit of accuracy is given

  2. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Directory of Open Access Journals (Sweden)

    Kryštůfek P.

    2014-03-01

    Full Text Available The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  3. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    Science.gov (United States)

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  4. A simple model of the batch electrochemical reduction of nitrate/nitrite waste

    International Nuclear Information System (INIS)

    Wingard, D.A.; Weidner, J.W.; Van Zee, J.W.

    1994-01-01

    A model of a divided parallel plate electrochemical cell operated in a batch mode for the destruction of NO 3 - /NO 2 - in alkaline waste streams is presented. The model uses boundary layer approximations at each electrode and at the separator to minimize computation time. Five competing electrochemical reactions are included at the cathode. The model uses either an explicit Runge-Kutta routine with empirically determined current efficiencies or an implicit stepping routine for each electrode if the current efficiencies are to be predicted. Tim dependent changes of the concentration, temperature, and cell voltage are predicted for constant current operation. Model predictions are compared with experimental data

  5. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    Science.gov (United States)

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  6. Practical auxiliary basis implementation of Rung 3.5 functionals

    International Nuclear Information System (INIS)

    Janesko, Benjamin G.; Scalmani, Giovanni; Frisch, Michael J.

    2014-01-01

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r -vector ,r -vector ′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r -vector ,r -vector ′) onto a semilocal model density matrix γ SL (ρ(r -vector ),∇ρ(r -vector ),r -vector −r -vector ′). γ SL depends on the electron density ρ(r -vector ) at reference point r -vector , and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expanding the r -vector −r -vector ′ dependence of γ SL in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ SL yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms

  7. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...

  8. An appraisal of computational techniques for transient heat conduction equation

    International Nuclear Information System (INIS)

    Kant, T.

    1983-01-01

    A semi-discretization procedure in which the ''space'' dimension is discretized by the finite element method is emphasized for transient problems. This standard methodology transforms the space-time partial differential equation (PDE) system into a set of ordinary differential equations (ODE) in time. Existing methods for transient heat conduction calculations are then reviewed. Existence of two general classes of time integration schemes- implicit and explicit is noted. Numerical stability characteristics of these two methods are elucidated. Implicit methods are noted to be numerically stable, permitting large time steps, but the cost per step is high. On the otherhand, explicit schemes are noted to be inexpensive per step, but small step size is required. Low computational cost of the explicit schemes make it very attractive for nonlinear problems. However, numerical stability considerations requiring use of very small time steps come in the way of its general adoption. Effectiveness of the fourth-order Runge-Kutta-Gill explicit integrator is then numerically evaluated. Finally we discuss some very recent works on development of computational algorithms which not only achieve unconditional stability, high accuracy and convergence but involve computations on matrix equations of elements only. This development is considered to be very significant in the light of our experience gained for simple heat conduction calculations. We conclude that such algorithms have the potential for further developments leading to development of economical methods for general transient analysis of complex physical systems. (orig.)

  9. Computer modeling of oil spill trajectories with a high accuracy method

    International Nuclear Information System (INIS)

    Garcia-Martinez, Reinaldo; Flores-Tovar, Henry

    1999-01-01

    This paper proposes a high accuracy numerical method to model oil spill trajectories using a particle-tracking algorithm. The Euler method, used to calculate oil trajectories, can give adequate solutions in most open ocean applications. However, this method may not predict accurate particle trajectories in certain highly non-uniform velocity fields near coastal zones or in river problems. Simple numerical experiments show that the Euler method may also introduce artificial numerical dispersion that could lead to overestimation of spill areas. This article proposes a fourth-order Runge-Kutta method with fourth-order velocity interpolation to calculate oil trajectories that minimise these problems. The algorithm is implemented in the OilTrack model to predict oil trajectories following the 'Nissos Amorgos' oil spill accident that occurred in the Gulf of Venezuela in 1997. Despite lack of adequate field information, model results compare well with observations in the impacted area. (Author)

  10. Numerical integration subprogrammes in Fortran II-D

    Energy Technology Data Exchange (ETDEWEB)

    Fry, C. R.

    1966-12-15

    This note briefly describes some integration subprogrammes written in FORTRAN II-D for the IBM 1620-II at CARDE. These presented are two Newton-Cotes, Chebyshev polynomial summation, Filon's, Nordsieck's and optimum Runge-Kutta and predictor-corrector methods. A few miscellaneous numerical integration procedures are also mentioned covering statistical functions, oscillating integrands and functions occurring in electrical engineering.

  11. A Differential Equation for Downhill Compressible Flow in Pipes and ...

    African Journals Online (AJOL)

    The differential equation was first numerically solved by use of the classical fourth order Runge-Kutta method in the form of a FORTRAN program. A test of the accuracy of the solution was ... The formula was tested with a problem from the book “Fluid Mechanics and Hydraulics”. The test showed the formula to be accurate.

  12. BOKASUN: a fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

    OpenAIRE

    Caffo, Michele; Czyz, Henryk; Gunia, Michal; Remiddi, Ettore

    2008-01-01

    We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations.

  13. Analysis of the glow curve of SrB 4O 7:Dy compounds employing the GOT model

    Science.gov (United States)

    Ortega, F.; Molina, P.; Santiago, M.; Spano, F.; Lester, M.; Caselli, E.

    2006-02-01

    The glow curve of SrB 4O 7:Dy phosphors has been analysed with the general one trap model (GOT). To solve the differential equation describing the GOT model a novel algorithm has been employed, which reduces significantly the deconvolution time with respect to the time required by usual integration algorithms, such as the Runge-Kutta method.

  14. Analysis of the glow curve of SrB4O7:Dy compounds employing the GOT model

    International Nuclear Information System (INIS)

    Ortega, F.; Molina, P.; Santiago, M.; Spano, F.; Lester, M.; Caselli, E.

    2006-01-01

    The glow curve of SrB 4 O 7 :Dy phosphors has been analysed with the general one trap model (GOT). To solve the differential equation describing the GOT model a novel algorithm has been employed, which reduces significantly the deconvolution time with respect to the time required by usual integration algorithms, such as the Runge-Kutta method

  15. Verifying Real-Time Systems using Explicit-time Description Methods

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2009-12-01

    Full Text Available Timed model checking has been extensively researched in recent years. Many new formalisms with time extensions and tools based on them have been presented. On the other hand, Explicit-Time Description Methods aim to verify real-time systems with general untimed model checkers. Lamport presented an explicit-time description method using a clock-ticking process (Tick to simulate the passage of time together with a group of global variables for time requirements. This paper proposes a new explicit-time description method with no reliance on global variables. Instead, it uses rendezvous synchronization steps between the Tick process and each system process to simulate time. This new method achieves better modularity and facilitates usage of more complex timing constraints. The two explicit-time description methods are implemented in DIVINE, a well-known distributed-memory model checker. Preliminary experiment results show that our new method, with better modularity, is comparable to Lamport's method with respect to time and memory efficiency.

  16. Numerical investigations on contactless methods for measuring critical current density in HTS: application of modified constitutive-relation method

    International Nuclear Information System (INIS)

    Kamitani, A.; Takayama, T.; Itoh, T.; Ikuno, S.

    2011-01-01

    A fast method is proposed for calculating the shielding current density in an HTS. The J-E constitutive relation is modified so as not to change the solution. A numerical code is developed on the basis of the proposed method. The permanent magnet method is successfully simulated by means of the code. A fast method has been proposed for calculating the shielding current density in a high-temperature superconducting thin film. An initial-boundary-value problem of the shielding current density cannot be always solved by means of the Runge-Kutta method even when an adaptive step-size control algorithm is incorporated to the method. In order to suppress an overflow in the algorithm, the J-E constitutive relation is modified so that its solution may satisfy the original constitutive relation. A numerical code for analyzing the shielding current density has been developed on the basis of this method and, as an application of the code, the permanent magnet method for measuring the critical current density has been investigated numerically.

  17. Sparse grid spectral methods for the numerical solution of partial differential equations with periodic boundary conditions

    International Nuclear Information System (INIS)

    Kupka, F.

    1997-11-01

    This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)

  18. Research of time-domain equivalent circuit method in solving dispersion of coupled-cavity traveling-wave tube

    International Nuclear Information System (INIS)

    Li Wenjun; China Academy of Engineering Physics, Mianyang; Xu Zhou; Li Ming; Yang Xingfan; Chen Yanan; Liu Jie; Jin Xiao; Lin Yuzheng

    2008-01-01

    In this paper, a time-domain equivalent circuit method is applied to solve dispersion of coupled-cavity travelling-wave tube (CCTWT). First, the time-domain circuit equations of CCTWT coupled-cavity chain are deduced from the equivalent circuit model. Then, the equations are solved numerically by fourth-order Runge-Kutta method and a program CTTDCP is developed using MATLAB. Last, a L-band CCTWT is calculated using CTTDCP and the cavity pass-band of this tube is computed to be 1.08-1.48 GHz, which is consistent with the experimental results and the simulation results of electromagnetic code and demonstrates the validity of the time-domain equivalent circuit method. In addition, a new design method which uses the equivalent circuit method and electromagnetic simulation together to optimize the cold cavity characteristics of CCTWT is proposed. (authors)

  19. Propagation of internal errors in explicit Runge–Kutta methods and internal stability of SSP and extrapolation methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Parsani, Matteo

    2014-01-01

    of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods

  20. Non-linear punctual kinetics applied to PWR reactors simulation

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-11-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model for the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and CSMP using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (Author) [pt

  1. A modal method for transient thermal analysis of CANDU fuel channel

    International Nuclear Information System (INIS)

    Park, J-W.; Muzumdar, A.J.

    1996-01-01

    The classical modal expansion technique has been applied to predict transient fuel and coolant temperatures under on-power conditions in a CANDU fuel channel. The temperature profile across the fuel pellet is assumed to be parabolic and fuel and coolant temperatures are expanded with Fourier series. The coefficient derivatives are written in state space form and solved by the Runge-Kutta method of fifth order. To validate the present model, the calculated fuel temperatures for several sample cases were compared with HOTSPOT-II, which employs a more rigorous finite-difference model. The agreement was found to be reasonable for the operational transients simulated. The advantage of the modal method is the fast computation speed for application to the real-time system such as the CANDU simulator which is being currently developed at the Institute for Advanced Engineering (IAE). (author)

  2. BOKASUN: A fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

    Science.gov (United States)

    Caffo, Michele; Czyż, Henryk; Gunia, Michał; Remiddi, Ettore

    2009-03-01

    We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations. Program summaryProgram title: BOKASUN Catalogue identifier: AECG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9404 No. of bytes in distributed program, including test data, etc.: 104 123 Distribution format: tar.gz Programming language: FORTRAN77 Computer: Any computer with a Fortran compiler accepting FORTRAN77 standard. Tested on various PC's with LINUX Operating system: LINUX RAM: 120 kbytes Classification: 4.4 Nature of problem: Any integral arising in the evaluation of the two-loop sunrise Feynman diagram can be expressed in terms of a given set of Master Integrals, which should be calculated numerically. The program provides a fast and precise evaluation method of the Master Integrals for arbitrary (but not vanishing) masses and arbitrary value of the external momentum. Solution method: The integrals depend on three internal masses and the external momentum squared p. The method is a combination of an accelerated expansion in 1/p in its (pretty large!) region of fast convergence and of a Runge-Kutta numerical solution of a system of linear differential equations. Running time: To obtain 4 Master Integrals on PC with 2 GHz processor it takes 3 μs for series expansion with pre-calculated coefficients, 80 μs for series expansion without pre-calculated coefficients, from a few seconds up to a few minutes for Runge-Kutta method (depending

  3. Interactions of microwave with plasmas

    International Nuclear Information System (INIS)

    Zhang Haifeng; Shao Fuqiu; Wang Long

    2003-01-01

    When plasma size scale is comparable with the wavelength of electromagnetic waves, W.K.B. solution isn't applicable. In this paper a new numerical solution technique to investigate interactions of microwave with plasmas is presented by using Runge-Kutta method. The results of numerical solution coincide with that of analytical solution while the model is linear electron density profile in calculated accuracy

  4. Numerical Solution of Inviscid Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2015-05-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Euler equations in 2D compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil. The results are compared with the solution using the software Ansys Fluent 15.0.7.

  5. Study of the Nonlinear Dropping Shock Response of Expanded Foam Packaging System

    Directory of Open Access Journals (Sweden)

    Huan-xin Jiang

    2013-01-01

    Full Text Available The variational iteration method-2 (VIM-2 is applied to obtain approximate analytical solutions of EPS foam cushioning packaging system. The first-order frequency solution of the equation of motion was obtained and compared with the numerical simulation solution solved by the Runge-Kutta algorithm. The results showed the high accuracy of this VIM with convenient calculation.

  6. Mono- and Di-Alkylation Processes of DNA Bases by Nitrogen Mustard Mechlorethamine.

    Science.gov (United States)

    Larrañaga, Olatz; de Cózar, Abel; Cossío, Fernando P

    2017-12-06

    The reactivity of nitrogen mustard mechlorethamine (mec) with purine bases towards formation of mono- (G-mec and A-mec) and dialkylated (AA-mec, GG-mec and AG-mec) adducts has been studied using density functional theory (DFT). To gain a complete overview of DNA-alkylation processes, direct chloride substitution and formation through activated aziridinium species were considered as possible reaction paths for adduct formation. Our results confirm that DNA alkylation by mec occurs via aziridine intermediates instead of direct substitution. Consideration of explicit water molecules in conjunction with polarizable continuum model (PCM) was shown as an adequate computational method for a proper representation of the system. Moreover, Runge-Kutta numerical kinetic simulations including the possible bisadducts have been performed. These simulations predicted a product ratio of 83:17 of GG-mec and AG-mec diadducts, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Symplectic discretization for spectral element solution of Maxwell's equations

    International Nuclear Information System (INIS)

    Zhao Yanmin; Dai Guidong; Tang Yifa; Liu Qinghuo

    2009-01-01

    Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.

  8. Bernstein method for the MHD flow and heat transfer of a second grade fluid in a channel with porous wall

    Directory of Open Access Journals (Sweden)

    A. Sami Bataineh

    2016-09-01

    Full Text Available In this paper, we present an approximate solution method for the problem of magnetohydrodynamic (MHD flow and heat transfer of a second grade fluid in a channel with a porous wall. The method is based on the Bernstein polynomials with their operational matrices and collocation method. Under some regularity conditions, upper bounds of the absolute errors are given. We apply the residual correction procedure which may estimate the absolute error to the problem. We may estimate the absolute error by using a procedure depends on the sequence of the approximate solutions. For some certain cases, we apply the method to the problem in the numerical examples. Moreover, we test the impact of changing the flow parameters numerically. The results are consistent with the results of Runge-Kutta fourth order method and homotopy analysis method.

  9. Physical origin of the Runge-Lenz vector

    DEFF Research Database (Denmark)

    Dahl, Jens Peder

    1997-01-01

    The dynamical symmetry of the non-relativistic Kepler problem has attracted much attention in the scientific literature. In the present paper, we show that the Runge-Lenz vector, which accounts for the presence of this symmetry, has its physical origin in the generator of Lorentz transformations...

  10. Nonlinear punctual dynamic applied to simulation of PWR type reactors

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-01-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model to the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and C S M P using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (author)

  11. A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    F. F. Ngwane

    2017-01-01

    Full Text Available In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM, whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs, including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs. Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

  12. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  13. An Efficient Explicit-time Description Method for Timed Model Checking

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2009-12-01

    Full Text Available Timed model checking, the method to formally verify real-time systems, is attracting increasing attention from both the model checking community and the real-time community. Explicit-time description methods verify real-time systems using general model constructs found in standard un-timed model checkers. Lamport proposed an explicit-time description method using a clock-ticking process (Tick to simulate the passage of time together with a group of global variables to model time requirements. Two methods, the Sync-based Explicit-time Description Method using rendezvous synchronization steps and the Semaphore-based Explicit-time Description Method using only one global variable were proposed; they both achieve better modularity than Lamport's method in modeling the real-time systems. In contrast to timed automata based model checkers like UPPAAL, explicit-time description methods can access and store the current time instant for future calculations necessary for many real-time systems, especially those with pre-emptive scheduling. However, the Tick process in the above three methods increments the time by one unit in each tick; the state spaces therefore grow relatively fast as the time parameters increase, a problem when the system's time period is relatively long. In this paper, we propose a more efficient method which enables the Tick process to leap multiple time units in one tick. Preliminary experimental results in a high performance computing environment show that this new method significantly reduces the state space and improves both the time and memory efficiency.

  14. A first course in ordinary differential equations analytical and numerical methods

    CERN Document Server

    Hermann, Martin

    2014-01-01

    This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed t...

  15. Quasi One-Dimensional Model of Natural Draft Wet-Cooling Tower Flow, Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2015-01-01

    Full Text Available The article deals with the development of CFD (Computational Fluid Dynamics model of natural draft wet-cooling tower flow, heat and mass transfer. The moist air flow is described by the system of conservation laws along with additional equations. Moist air is assumed to be homogeneous mixture of dry air and water vapour. Liquid phase in the fill zone is described by the system of ordinary differential equations. Boundary value problem for the system of conservation laws is discretized in space using Kurganov-Tadmor central scheme and in time using strong stability preserving Runge-Kutta scheme. Initial value problems in the fill zone is solved by using standard fourth order Runge-Kutta scheme. The interaction between liquid water and moist air is done by source terms in governing equations.

  16. Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model

    Science.gov (United States)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-03-01

    As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.

  17. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods

    International Nuclear Information System (INIS)

    Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.

    2015-01-01

    In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.

  18. Numerical solution of stiff burnup equation with short half lived nuclides by the Krylov subspace method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro; Sugimura, Naoki

    2007-01-01

    The Krylov subspace method is applied to solve nuclide burnup equations used for lattice physics calculations. The Krylov method is an efficient approach for solving ordinary differential equations with stiff nature such as the nuclide burnup with short lived nuclides. Some mathematical fundamentals of the Krylov subspace method and its application to burnup equations are discussed. Verification calculations are carried out in a PWR pin-cell geometry with UO 2 fuel. A detailed burnup chain that includes 193 fission products and 28 heavy nuclides is used in the verification calculations. Shortest half life found in the present burnup chain is approximately 30 s ( 106 Rh). Therefore, conventional methods (e.g., the Taylor series expansion with scaling and squaring) tend to require longer computation time due to numerical stiffness. Comparison with other numerical methods (e.g., the 4-th order Runge-Kutta-Gill) reveals that the Krylov subspace method can provide accurate solution for a detailed burnup chain used in the present study with short computation time. (author)

  19. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-07-26

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.

  20. Development of a Three-Dimensional Unstructured Euler Solver for High-Speed Flows

    Directory of Open Access Journals (Sweden)

    Tudorel Petronel AFILIPOAE

    2015-12-01

    Full Text Available This paper addresses the solution of the compressible Euler equations on hexahedral meshes for supersonic and hypersonic flows. Spatial discretization is accomplished by a cell-centered finite-volume formulation which employs two different upwind schemes for the computation of convective fluxes. Second-order solutions are attained through a linear state reconstruction technique that yields highly resolved flows in smooth regions while providing a sharp and clean resolution of shocks. The solution gradients required for the higher-order spatial discretization are estimated by a least-square method while Venkatakrishnan limiter is employed to preserve monotonicity and avoid oscillations in the presence of shocks. Furthermore, solutions are advanced in time by an explicit third-order Runge-Kutta scheme and convergence to steady state is accelerated using implicit residual smoothing. Flow around a circular arc in a channel and flow past a circular cylinder are studied and results are presented for various Mach numbers together with comparisons to theoretical and experimental data where possible.

  1. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Science.gov (United States)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  2. Simulation of the accumulation kinetics for radiation point defects in a metals with impurity

    International Nuclear Information System (INIS)

    Iskakov, B.M.; Nurova, A.B.

    2001-01-01

    In the work a kinetics of vacancies (V) and interstitial atoms (IA) accumulation for cases when the V and IA are recombining with each other, absorbing by drain and capturing by impurity atoms has been simulated. The differential equations system numerical solution was carried out by the Runge-Kutta method. The dynamical equilibrium time achievement for the point radiation defects accumulation process in the metal with impurity is considered

  3. Numerical solution of kinetics equation for point defects accumulation in metals under irradiation

    International Nuclear Information System (INIS)

    Aldzhambekova, G.T.; Iskakov, B.M.

    1999-01-01

    In the report the mathematical model, describing processes of generation and accumulation of defects in solids under irradiation is considered. The equations of this model take into account the velocity of Frenkel pairs generation, the mutual recombination of vacancies and the interstitials, as well as velocity of defects absorption by discharge channeling of vacancies and interstitials. By Runge-Kutta method the numerical solution of the model was carried out

  4. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

    CERN Document Server

    Wu, Shen R

    2012-01-01

    A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master

  5. Simulation of natural convection in an inclined polar cavity using a finite-difference lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Yang, Haicheng; Guo, Xueyan; Ren Dai [University of Shanghai for Science and Technology, Shanghai (China); Yan, Yonghua [Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai (China); Liu, Chaoqun [University of Texas at Arlington, Arlington (United States)

    2017-06-15

    Natural convection heat transfer in an inclined polar cavity was studied using a Finite-difference lattice Boltzmann method (FDLBM) based on a double-population approach for body-fitted coordinates. A D2G9 model coupled with the simplest TD2Q4 lattice model was applied to determine the velocity field and temperature field. For both velocity and temperature fields, the discrete spatial derivatives were obtained by combining the upwind scheme with the central scheme, and the discrete temporal term is obtained using a fourth-order Runge-Kutta scheme. Studies were carried out for different Rayleigh numbers and different inclination angles. The results in terms of streamlines, isotherms, and Nusselt numbers explain the heat transfer mechanism of natural convection in an inclined polar cavity due to the change of Rayleigh number and inclination angle.

  6. An investigation of two-dimensional, two-phase flow of steam in a cascade of turbine blading by the time-marching method

    International Nuclear Information System (INIS)

    Teymourtash, A. R.; Mahpeykar, M. R.

    2003-01-01

    During the course of expansion in turbines, the steam at first super cools and then nucleated to become a two-phase mixture. This is an area where greater understanding can lead to improved design. This paper describes a numerical method for the solution of two-dimensional two-phase flow of steam in a cascade of turbine blading; the unsteady euler equations governing the overall behaviour of the fluid are combined with equations describing droplet behaviour and treated by Jasmine fourth order runge Kutta time marching scheme which modified to allow for two-phase effects. The theoretical surface pressure distributions, droplet radii and contours of constant wetness fraction are presented and results are discussed in the light of knowledge of actual surface pressure distributions

  7. Explicit integration of extremely stiff reaction networks: partial equilibrium methods

    International Nuclear Information System (INIS)

    Guidry, M W; Hix, W R; Billings, J J

    2013-01-01

    In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)

  8. Research on transient thermal process of a friction brake during repetitive cycles of operation

    Science.gov (United States)

    Slavchev, Yanko; Dimitrov, Lubomir; Dimitrov, Yavor

    2017-12-01

    Simplified models are used in the classical engineering analyses of the friction brake heating temperature during repetitive cycles of operation to determine basically the maximum and minimum brake temperatures. The objective of the present work is to broaden and complement the possibilities for research through a model that is based on the classical scheme of the Newton's law of cooling and improves the studies by adding a disturbance function for a corresponding braking process. A general case of braking in non-periodic repetitive mode is considered, for which a piecewise function is defined to apply pulse thermal loads to the system. Cases with rectangular and triangular waveforms are presented. Periodic repetitive braking process is also studied using a periodic rectangular waveform until a steady thermal state is achieved. Different numerical methods such as the Euler's method, the classical fourth order Runge-Kutta (RK4) and the Runge-Kutta-Fehlberg 4-5 (RKF45) are used to solve the non-linear differential equation of the model. The constructed model allows during pre-engineering calculations to be determined effectively the time for reaching the steady thermal state of the brake, to be simulated actual braking modes in vehicles and material handling machines, and to be accounted for the thermal impact when performing fatigue calculations.

  9. Symmetry Methods of Flow and Heat Transfer between Slowly Expanding or Contracting Walls

    Directory of Open Access Journals (Sweden)

    Gabriel Magalakwe

    2013-01-01

    Full Text Available An analysis has been carried out for the flow and heat transfer of an incompressible laminar and viscous fluid in a rectangular domain bounded by two moving porous walls which enable the fluid to enter or exit during successive expansions or contractions. The basic equations governing the flow are reduced to the ordinary differential equations using Lie-group analysis. Effects of the permeation Reynolds number , porosity , and the dimensionless wall dilation rate on the self-axial velocity are studied both analytically and numerically. The solutions are represented graphically. The analytical procedure is based on double perturbation in the permeation Reynolds number and the wall expansion ratio , whereas the numerical solution is obtained using Runge-Kutta method with shooting technique. Results are correlated and compared for some values of the physical parameters. Lastly, we look at the temperature distribution.

  10. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    Science.gov (United States)

    2014-06-19

    99 V. Design of Experiments Approach to Atmospheric Skip Entry Maneuver Optimization .....100 Chapter Overview...Transfer Diagram .................................................................................................11 3.1. Comparison of Geocentric ...Comparison of Geocentric /Geodetic Latitude for Apollo 10 (2-Gravity Model, Fourth-Order Runge-Kutta Solver

  11. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  12. Models and numerical methods for time- and energy-dependent particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Olbrant, Edgar

    2012-04-13

    Particles passing through a medium can be described by the Boltzmann transport equation. Therein, all physical interactions of particles with matter are given by cross sections. We compare different analytical models of cross sections for photons, electrons and protons to state-of-the-art databases. The large dimensionality of the transport equation and its integro-differential form make it analytically difficult and computationally costly to solve. In this work, we focus on the following approximative models to the linear Boltzmann equation: (i) the time-dependent simplified P{sub N} (SP{sub N}) equations, (ii) the M{sub 1} model derived from entropy-based closures and (iii) a new perturbed M{sub 1} model derived from a perturbative entropy closure. In particular, an asymptotic analysis for SP{sub N} equations is presented and confirmed by numerical computations in 2D. Moreover, we design an explicit Runge-Kutta discontinuous Galerkin (RKDG) method to the M{sub 1} model of radiative transfer in slab geometry and construct a scheme ensuring the realizability of the moment variables. Among other things, M{sub 1} numerical results are compared with an analytical solution in a Riemann problem and the Marshak wave problem is considered. Additionally, we rigorously derive a new hierarchy of kinetic moment models in the context of grey photon transport in one spatial dimension. For the perturbed M{sub 1} model, we present numerical results known as the two beam instability or the analytical benchmark due to Su and Olson and compare them to the standard M{sub 1} as well as transport solutions.

  13. Dynamical System Analysis of Thermal Convection in a Horizontal Layer of Nanofluids Heated from Below

    Directory of Open Access Journals (Sweden)

    J. M. Jawdat

    2012-01-01

    Full Text Available The effect of nanofluids on chaotic convection in a fluid layer heated from below was studied in this paper for low Prandtl number based on the theory of dynamical systems. A low-dimensional, Lorenz-like model was obtained using Galerkin-truncated approximations. The fourth-order Runge-Kutta method was employed to solve the nonlinear system. The results show that inhibition of chaotic convection can be observed when using nanofluids.

  14. Polarized seismic and solitary waves run-up at the sea bed

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C.C.; Zainal, A. A.; Faisal, S. Y. [Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2012-09-26

    The polarization effects in hydrodynamics are studied. Hydrodynamic equation for the nonlinear wave is used along with the polarized solitary waves and seismic waves act as initial waves. The model is then solved by Fourier spectral and Runge-Kutta 4 methods, and the surface plot is drawn. The output demonstrates the inundation behaviors. Consequently, the polarized seismic waves along with the polarized solitary waves tend to generate dissimilar inundation which is more disastrous.

  15. The human body metabolism process mathematical simulation based on Lotka-Volterra model

    Science.gov (United States)

    Oliynyk, Andriy; Oliynyk, Eugene; Pyptiuk, Olexandr; DzierŻak, RóŻa; Szatkowska, Małgorzata; Uvaysova, Svetlana; Kozbekova, Ainur

    2017-08-01

    The mathematical model of metabolism process in human organism based on Lotka-Volterra model has beeng proposed, considering healing regime, nutrition system, features of insulin and sugar fragmentation process in the organism. The numerical algorithm of the model using IV-order Runge-Kutta method has been realized. After the result of calculations the conclusions have been made, recommendations about using the modeling results have been showed, the vectors of the following researches are defined.

  16. Availability Evaluation of the serial processes in a Paper Production Industry-A Numerical Approach

    Directory of Open Access Journals (Sweden)

    Archana Sharma

    2010-12-01

    Full Text Available The purpose of this research is to compute availability of the process of a paper production industry consisting of four subsystems. Mathematical formulation of the problem is carried out using probability considerations and the governing differential equations are solved using Runge-Kutta method of order four. Availability of the serial process in the paper production industry have been computed for various choice of failure and repair rates of subsystems of this plant.

  17. Einstein gravity with torsion induced by the scalar field

    Science.gov (United States)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  18. Wachstumsstörung bei SHOX-Defizienz // SHOX Deficiency Disorders

    Directory of Open Access Journals (Sweden)

    Steichen-Gersdorf E

    2016-01-01

    Full Text Available SHOX haploinsufficiency has been reported in some individuals with idiopathic short stature. The clinical phenotype covers the spectrum from idiopathic short stature, mesomelic short stature to Leri-Weill syndrome. The skeletal dysproportion increases from early childhood to adulthood. The phenotype is variable even within families. Growth hormone treatment increases height in patients with SHOX deficiency. p bKurzfassung:/b Die SHOX-Defizienz ist eine wesentliche Ursache für Kleinwuchs. Der klinische Schweregrad reicht vom idiopathischen Kleinwuchs bis zum Leri-Weill-Syndrom mit mesomelem Kleinwuchs und Madelung-Deformität. Eine zunehmende Störung der Körperproportionen mit mesomeler Verkürzung der Gliedmaßen wird erst im Schulalter evident. Der Phänotyp einer SHOX-Defizienz ist sehr variabel, auch innerhalb von Familien. Diese Form der Wachstumsstörung stellt eine anerkannte Indikation für eine Wachstumshormontherapie dar.

  19. The effect of numerical techniques on differential equation based chaotic generators

    KAUST Repository

    Zidan, Mohammed A.; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    In this paper, we study the effect of the numerical solution accuracy on the digital implementation of differential chaos generators. Four systems are built on a Xilinx Virtex 4 FPGA using Euler, mid-point, and Runge-Kutta fourth order techniques

  20. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  1. Study of the acceleration of nuclide burnup calculation using GPU with CUDA

    International Nuclear Information System (INIS)

    Okui, S.; Ohoka, Y.; Tatsumi, M.

    2009-01-01

    The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)

  2. Implicit time accurate simulation of unsteady flow

    Science.gov (United States)

    van Buuren, René; Kuerten, Hans; Geurts, Bernard J.

    2001-03-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright

  3. The differential method for grating efficiencies implemented in mathematica

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, V.; McKinney, W. [Lawrence Berkeley Lab., CA (United States); Palmer, C. [Milton Co., Rochester, NY (United States). Roy Analytical Products Div.

    1993-08-01

    In order to facilitate the accurate calculation of diffraction grating efficiencies in the soft x-ray region, we have implemented the differential method of Neviere and Vincent in Mathematica [1]. This simplifies the programming to maximize the transparency of the theory for the user. We alleviate some of the overhead burden of the Mathematica program by coding the time-consuming numerical integration in C subprograms. We recall the differential method directly from Maxwell`s equations. The pseudo-periodicity of the grating profile and the electromagnetic fields allows us to use their Fourier series expansions to formulate an infinite set of coupled differential equations. A finite subset of the equations are then numerically integrated using the Numerov method for the transverse electric (TE) case and a fourth-order Runge-Kutta algorithm for the transverse magnetic (TM) case. We have tested our program by comparisons with the scalar theory and with published theoretical results for the blazed, sinusoidal and square wave profiles. The Reciprocity Theorem has also been used as a means to verify the method. We have found it to be verified for several cases to within the computational accuracy of the method.

  4. Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Yunpeng Ma

    2017-01-01

    Full Text Available A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method.

  5. Note on the Physical Basis of the Kutta Condition in Unsteady Two-Dimensional Panel Methods

    Directory of Open Access Journals (Sweden)

    M. La Mantia

    2015-01-01

    Full Text Available Force generation in avian and aquatic species is of considerable interest for possible engineering applications. The aim of this work is to highlight the theoretical and physical foundations of a new formulation of the unsteady Kutta condition, which postulates a finite pressure difference at the trailing edge of the foil. The condition, necessary to obtain a unique solution and derived from the unsteady Bernoulli equation, implies that the energy supplied for the wing motion generates trailing-edge vortices and their overall effect, which depends on the motion initial parameters, is a jet of fluid that propels the wing. The postulated pressure difference (the value of which should be experimentally obtained models the trailing-edge velocity difference that generates the thrust-producing jet. Although the average thrust values computed by the proposed method are comparable to those calculated by assuming null pressure difference at the trailing edge, the latter (commonly used approach is less physically meaningful than the present one, as there is a singularity at the foil trailing edge. Additionally, in biological applications, that is, for autonomous flapping, the differences ought to be more significant, as the corresponding energy requirements should be substantially altered, compared to the studied oscillatory motions.

  6. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  7. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  8. Methods of Investigation of Equations that Describe Waves in Tubes with Elastic Walls and Application of the Theory of Reversible and Weak Dissipative Shocks

    Science.gov (United States)

    Bakholdin, Igor

    2018-02-01

    Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.

  9. Group analysis for natural convection from a vertical plate

    Science.gov (United States)

    Rashed, A. S.; Kassem, M. M.

    2008-12-01

    The steady laminar natural convection of a fluid having chemical reaction of order n past a semi-infinite vertical plate is considered. The solution of the problem by means of one-parameter group method reduces the number of independent variables by one leading to a system of nonlinear ordinary differential equations. Two different similarity transformations are found. In each case the set of differential equations are solved numerically using Runge-Kutta and the shooting method. For each transformation different Schmidt numbers and chemical reaction orders are tested.

  10. Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method

    Science.gov (United States)

    A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.

    2017-06-01

    The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.

  11. Designing of a Quadrupole Paul Ion Trap

    Science.gov (United States)

    Kiyani, Abouzar; Abdollahzadeh, M.; Sadat Kiai, S. M.; Zirak, A. R.

    2011-08-01

    The ion motion equation in a Paul ion trap known as Mathieu differential equation has been solved for the first time by using Runge-Kutta methods with 4th, 6th, and 8th orders. The first stability regions in az - qz plane and the corresponding qmax values were determined and compared. Also, the first stability regions of , , , ions in the Vdc - Vac plane were drown, and the threshold voltages for the ion separation was investigated.

  12. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal; Grant, Zachary; Higgs, Daniel

    2015-01-01

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search

  13. Application of compact finite-difference schemes to simulations of stably stratified fluid flows

    Czech Academy of Sciences Publication Activity Database

    Bodnár, Tomáš; Beneš, L.; Fraunie, P.; Kozel, Karel

    2012-01-01

    Roč. 219, č. 7 (2012), s. 3336-3353 ISSN 0096-3003 Institutional support: RVO:61388998 Keywords : stratification * finite- difference * finite-volume * Runge-Kutta Subject RIV: BA - General Mathematics Impact factor: 1.349, year: 2012 http://www.sciencedirect.com/science/article/pii/S0096300311010988

  14. High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves

    DEFF Research Database (Denmark)

    Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    is discretized using arbitrary-order finite difference schemes on a staggered grid with one optional stretching in each coordinate direction. The momentum equations and kinematic free surface condition are integrated in time using the classic fourth-order Runge-Kutta scheme. Mass conservation is satisfied...

  15. TSOS and TSOS-FK hybrid methods for modelling the propagation of seismic waves

    Science.gov (United States)

    Ma, Jian; Yang, Dinghui; Tong, Ping; Ma, Xiao

    2018-05-01

    We develop a new time-space optimized symplectic (TSOS) method for numerically solving elastic wave equations in heterogeneous isotropic media. We use the phase-preserving symplectic partitioned Runge-Kutta method to evaluate the time derivatives and optimized explicit finite-difference (FD) schemes to discretize the space derivatives. We introduce the averaged medium scheme into the TSOS method to further increase its capability of dealing with heterogeneous media and match the boundary-modified scheme for implementing free-surface boundary conditions and the auxiliary differential equation complex frequency-shifted perfectly matched layer (ADE CFS-PML) non-reflecting boundaries with the TSOS method. A comparison of the TSOS method with analytical solutions and standard FD schemes indicates that the waveform generated by the TSOS method is more similar to the analytic solution and has a smaller error than other FD methods, which illustrates the efficiency and accuracy of the TSOS method. Subsequently, we focus on the calculation of synthetic seismograms for teleseismic P- or S-waves entering and propagating in the local heterogeneous region of interest. To improve the computational efficiency, we successfully combine the TSOS method with the frequency-wavenumber (FK) method and apply the ADE CFS-PML to absorb the scattered waves caused by the regional heterogeneity. The TSOS-FK hybrid method is benchmarked against semi-analytical solutions provided by the FK method for a 1-D layered model. Several numerical experiments, including a vertical cross-section of the Chinese capital area crustal model, illustrate that the TSOS-FK hybrid method works well for modelling waves propagating in complex heterogeneous media and remains stable for long-time computation. These numerical examples also show that the TSOS-FK method can tackle the converted and scattered waves of the teleseismic plane waves caused by local heterogeneity. Thus, the TSOS and TSOS-FK methods proposed in

  16. Rotor Cascade Shape Optimization with Unsteady Passing Wakes Using Implicit Dual-Time Stepping and a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Eun Seok Lee

    2003-01-01

    Full Text Available An axial turbine rotor cascade-shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using an unsteady flow, Reynolds-averaged Navier-Stokes equations solver that was based on explicit, finite difference; Runge-Kutta multistage time marching; and the diagonalized alternating direction implicit scheme. The code utilized Baldwin-Lomax algebraic and k-ε turbulence modeling. The full approximation storage multigrid method and preconditioning were implemented as iterative convergence-acceleration techniques. An implicit dual-time stepping method was incorporated in order to simulate the unsteady flow fields. The objective function was defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed during the optimization. The design variables were several geometric parameters characterizing airfoil leading edge, camber, stagger angle, and inter-row spacing. The genetic algorithm was used as an optimizer, and the penalty method was introduced for combining the constraints with the objective function. Each individual's objective function was computed simultaneously by using a 32-processor distributedmemory computer. The optimization results indicated that only minor improvements are possible in unsteady rotor/stator aerodynamics by varying these geometric parameters.

  17. Steady-State-Preserving Simulation of Genetic Regulatory Systems

    Directory of Open Access Journals (Sweden)

    Ruqiang Zhang

    2017-01-01

    Full Text Available A novel family of exponential Runge-Kutta (expRK methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature.

  18. Particle tracking in a small electron storage ring

    International Nuclear Information System (INIS)

    Tsumaki, K.

    1987-01-01

    A particle tracking method for a ring system in which a sextupole magnetic field is distributed along the beam axis has been developed. This method uses Jacobi's elliptic functions inside the bending magnet and the canonical integration method in the fringes. The calculation time for the new method is the same or faster than that of the canonical integration method, and it is ten times faster than the Runge-Kutta-Gill and thin lens approximation. A special characteristic of our method is that the calculation time is always constant, even if the magnet length is increased

  19. Hybrid finite element method for describing the electrical response of biological cells to applied fields.

    Science.gov (United States)

    Ying, Wenjun; Henriquez, Craig S

    2007-04-01

    A novel hybrid finite element method (FEM) for modeling the response of passive and active biological membranes to external stimuli is presented. The method is based on the differential equations that describe the conservation of electric flux and membrane currents. By introducing the electric flux through the cell membrane as an additional variable, the algorithm decouples the linear partial differential equation part from the nonlinear ordinary differential equation part that defines the membrane dynamics of interest. This conveniently results in two subproblems: a linear interface problem and a nonlinear initial value problem. The linear interface problem is solved with a hybrid FEM. The initial value problem is integrated by a standard ordinary differential equation solver such as the Euler and Runge-Kutta methods. During time integration, these two subproblems are solved alternatively. The algorithm can be used to model the interaction of stimuli with multiple cells of almost arbitrary geometries and complex ion-channel gating at the plasma membrane. Numerical experiments are presented demonstrating the uses of the method for modeling field stimulation and action potential propagation.

  20. Vacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery

    Science.gov (United States)

    Jain, Madhu; Meena, Rakesh Kumar

    2018-03-01

    Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (second) repairman turns on only when the work load of N1 (N2) failed machines is accumulated in the system. The both servers may go for vacation in case when all the machines are in good condition and there are no pending repair jobs for the repairmen. Runge-Kutta method is implemented to solve the set of governing equations used to formulate the Markov model. Various system metrics including the mean queue length, machine availability, throughput, etc., are derived to determine the performance of the machining system. To provide the computational tractability of the present investigation, a numerical illustration is provided. A cost function is also constructed to determine the optimal repair rate of the server by minimizing the expected cost incurred on the system. The hybrid soft computing method is considered to develop the adaptive neuro-fuzzy inference system (ANFIS). The validation of the numerical results obtained by Runge-Kutta approach is also facilitated by computational results generated by ANFIS.

  1. Neural network error correction for solving coupled ordinary differential equations

    Science.gov (United States)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  2. Unsteady hydromagnetic flow of dusty fluid and heat transfer over a vertical stretching sheet with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)

    2015-10-22

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  3. Second Law Analysis for a Variable Viscosity Reactive Couette Flow under Arrhenius Kinetics

    Directory of Open Access Journals (Sweden)

    N. S. Kobo

    2010-01-01

    Full Text Available This study investigates the inherent irreversibility associated with the Couette flow of a reacting variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations of momentum and energy governing the flow system are solved both analytically using a perturbation method and numerically using the standard Newton Raphson shooting method along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and temperature distributions which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.

  4. Numerical investigation of CO{sub 2} emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe of variable thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)

    2014-10-24

    In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.

  5. SHOCK-JR: a computer program to analyze impact response of shipping container

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Nakazato, Chikara; Shimoda, Osamu; Uchino, Mamoru.

    1983-02-01

    The report is provided for using a computer program, SHOCK-JR, which is used to analyze the impact response of shipping containers. Descriptions are the mathematical model, method of analysis, structures of the program and the input and output variables. The program solves the equations of motion for a one-dimensional, lumped mass and nonlinear spring model. The solution procedure uses Runge-Kutta-Gill and Newmark-β methods. SHOCK-JR is a revised version of SHOCK, which was developed by ORNL. In SHOCK-JR, SI dimension is used and graphical output is available. (author)

  6. A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2013-01-01

    Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.

  7. Accelerating finite-rate chemical kinetics with coprocessors: Comparing vectorization methods on GPUs, MICs, and CPUs

    Science.gov (United States)

    Stone, Christopher P.; Alferman, Andrew T.; Niemeyer, Kyle E.

    2018-05-01

    Accurate and efficient methods for solving stiff ordinary differential equations (ODEs) are a critical component of turbulent combustion simulations with finite-rate chemistry. The ODEs governing the chemical kinetics at each mesh point are decoupled by operator-splitting allowing each to be solved concurrently. An efficient ODE solver must then take into account the available thread and instruction-level parallelism of the underlying hardware, especially on many-core coprocessors, as well as the numerical efficiency. A stiff Rosenbrock and a nonstiff Runge-Kutta ODE solver are both implemented using the single instruction, multiple thread (SIMT) and single instruction, multiple data (SIMD) paradigms within OpenCL. Both methods solve multiple ODEs concurrently within the same instruction stream. The performance of these parallel implementations was measured on three chemical kinetic models of increasing size across several multicore and many-core platforms. Two separate benchmarks were conducted to clearly determine any performance advantage offered by either method. The first benchmark measured the run-time of evaluating the right-hand-side source terms in parallel and the second benchmark integrated a series of constant-pressure, homogeneous reactors using the Rosenbrock and Runge-Kutta solvers. The right-hand-side evaluations with SIMD parallelism on the host multicore Xeon CPU and many-core Xeon Phi co-processor performed approximately three times faster than the baseline multithreaded C++ code. The SIMT parallel model on the host and Phi was 13%-35% slower than the baseline while the SIMT model on the NVIDIA Kepler GPU provided approximately the same performance as the SIMD model on the Phi. The runtimes for both ODE solvers decreased significantly with the SIMD implementations on the host CPU (2.5-2.7 ×) and Xeon Phi coprocessor (4.7-4.9 ×) compared to the baseline parallel code. The SIMT implementations on the GPU ran 1.5-1.6 times faster than the baseline

  8. Method for Determining the Time Parameter

    Directory of Open Access Journals (Sweden)

    K. P. Baslyk

    2014-01-01

    values of multipliers and parameter of penalty. The solving problem of the optimization without constraints is one step of the optimization problem with constraints.The proposed method was realized as a computational Pascal-language program. There is the multiple call of Runge-Kutta method procedure for integration of motion equations. To reduce operation-use time, normalization of motion equations is used, and the 4-th order RungeKutta method time step accuracy control is also applied.The program test results were compared with the solution, which was obtained using the existing software for the one stage missile design.The general results obtained in this paper are following: numerical determination method of the attack angle time parameter and maximum allowed value of the attack angle amplitude as functions of the projected and ballistic parameters; software implementation of this method. Deviation of angle trajectory value at the end of active trajectory leg as a function of the error of the time parameter was obtained as well. This paper can be used in the courses of learning such as “Introduction to rocketry” and “Launch vehicle design”.

  9. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2016-08-15

    This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.

  10. Analytic Approximate Solutions for Unsteady Two-Dimensional and Axisymmetric Squeezing Flows between Parallel Plates

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rashidi

    2008-01-01

    Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.

  11. Development of efficient time-evolution method based on three-term recurrence relation

    International Nuclear Information System (INIS)

    Akama, Tomoko; Kobayashi, Osamu; Nanbu, Shinkoh

    2015-01-01

    The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function. Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost

  12. Numerical Integration of Stiff System of Ordinary Differential ...

    African Journals Online (AJOL)

    The goal of this work is to develop, analyse and implement a K-step Implicit Rational Runge-Kutta schemes for Integration of Stiff system of Ordinary differential Equations. Its development adopted Taylor and Binomial series expansion Techniques to generate its parameters. The analysis of its basic properties adopted ...

  13. Development of neutronics and thermal hydraulics coupled code – SAC-RIT for plate type fuel and its application to reactivity initiated transient analysis

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Mazumdar, Tanay; Raina, V.K.

    2013-01-01

    Highlights: • A point reactor kinetics code coupled with thermal hydraulics of plate type fuel is developed. • This code is applicable for two phase flow of coolant. • Safety analysis of IAEA benchmark reactor core is carried out. • Results agree well with the results available in literature. - Abstract: A point reactor kinetics code SAC-RIT, acronym of Safety Analysis Code for Reactivity Initiated Transient, coupled with thermal hydraulics of two phase coolant flow for plate type fuel, is developed to calculate reactivity initiated transient analysis of nuclear research and test reactors. Point kinetics equations are solved by fourth order Runge Kutta method. Reactivity feedback effect is included into the code. Solution of kinetics equations gives neutronic power and it is then fed into a thermal hydraulic code where mass, momentum and thermal energy conservation equations are solved by explicit finite difference method to find out fuel, clad and coolant temperatures during transients. In this code, all possible flow regimes including laminar flow, transient flow and turbulent flow have been covered. Various heat transfer coefficients suitable for single liquid, sub-cooled boiling, saturation boiling, film boiling and single vapor phases are incorporated in the thermal hydraulic code

  14. Validation of a simple dynamic thermal performance characterization model based on the piston flow concept for flat-plate solar collectors

    DEFF Research Database (Denmark)

    Deng, Jie; Yang, Ming; Ma, Rongjiang

    2016-01-01

    dynamic model based on the first-order difference method is compared to that of the numerical solution of the collector ordinary differential equation (ODE) model using the fourth-order Runge-Kutta method. The improved thermal inertia model (TIM) on the basis of closed-form solution presented by Deng et....... (2012) for the model turns out to be the collector static response time constant τC by analytical derivation. The nonlinear least squares method is applied to determine the characteristic parameters of a flat-plate solar air collector previously tested by the authors. Then the obtained parameters...

  15. Synthesis of the scientific activity. Resolution of compressible Navier-Stokes equations for steady supersonic and transonic regimes

    International Nuclear Information System (INIS)

    Angrand, F.

    1990-10-01

    In this HDR (Accreditation to Supervise Researches) report, the author gives an overview of his activities in the field of numerical methods, notably in the field of fluid mechanics and aeronautics. He more particularly addresses the resolution of Euler equations of gas dynamics in transonic and supersonic regimes (equations, centered and off-centered flow calculation, case of one-dimensional and non linear systems), the extension of this work to Navier-Stokes equations (equations, grid adaptation), the study of resolution methods and cost optimisation (Runge-Kutta method, implicit schemes, multi-grid approach). He also addresses the case of hypersonic flows behind a base

  16. Modification of the Ladder Rung Walking Task—New Options for Analysis of Skilled Movements

    Directory of Open Access Journals (Sweden)

    Iwa Antonow-Schlorke

    2013-01-01

    Full Text Available Method sensitivity is critical for evaluation of poststroke motor function. Skilled walking was assessed in horizontal, upward, and downward rung ladder walking to compare the demands of the tasks and test sensitivity. The complete step sequence of a walk was subjected to analysis aimed at demonstrating the walking pattern, step sequence, step cycle, limb coordination, and limb interaction to complement the foot fault scoring system. Rats (males, n=10 underwent unilateral photothrombotic lesion of the motor cortex of the forelimb and hind limb areas. Locomotion was video recorded before the insult and at postischemic days 7 and 28. Analysis of walking was performed frame-by-frame. Walking along the rung ladder revealed different results that were dependent on ladder inclination. Horizontal walking was found to discriminate lesion-related motor deficits in forelimb, whereas downward walking demonstrates hind limb use most sensitively. A more frequent use of the impaired forelimb that possibly supported poststroke motor learning in rats was shown. The present study provides a novel system for a detailed analysis of the complete walking sequence and will help to provide a better understanding of how rats deal with motor impairments.

  17. Discretization analysis of bifurcation based nonlinear amplifiers

    Science.gov (United States)

    Feldkord, Sven; Reit, Marco; Mathis, Wolfgang

    2017-09-01

    Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.

  18. Dynamics Modelling of Transmission Gear Rattle and Analysis on Influence Factors

    Science.gov (United States)

    He, Xiaona; Zhang, Honghui

    2018-02-01

    Based on the vibration dynamics modeling for the single stage gear of transmission system, this paper is to understand the mechanism of transmission rattle. The dynamic model response using MATLAB and Runge-Kutta algorithm is analyzed, and the ways for reducing the rattle noise of the automotive transmission is summarized.

  19. Estimation of coefficient of rolling friction by the evolvent pendulum method

    Science.gov (United States)

    Alaci, S.; Ciornei, F. C.; Ciogole, A.; Ciornei, M. C.

    2017-05-01

    The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model’s solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.

  20. Effect of tunneling injection on the modulation response of quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Y. Yekta kiya

    2014-03-01

    Full Text Available In this paper, modulation bandwidth characteristics of InGaAs/GaAs quantum dot (QD laser were theoretically investigated. Simulation was done by using the fourth order Runge-Kutta method. Effect of carrier relaxation life time, temperature and current density on characteristics of tunneling injection QD laser (TIL and conventional QD laser (CL were analyzed. Results showed that tunneling injection in QD laser increases the modulation bandwidth indicating that it is very useful for using in the fiber optic communication systems.

  1. Fermentation Process Modeling with Levenberg-Marquardt Algorithm and Runge-Kutta Method on Ethanol Production by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Dengfeng Liu

    2014-01-01

    Full Text Available The core of the Chinese rice wine making is a typical simultaneous saccharification and fermentation (SSF process. In order to control and optimize the SSF process of Chinese rice wine brewing, it is necessary to construct kinetic model and study the influence of temperature on the Chinese rice wine brewing process. An unstructured kinetic model containing 12 kinetics parameters was developed and used to describe the changing of kinetic parameters in Chinese rice wine fermentation at 22, 26, and 30°C. The effects of substrate and product inhibitions were included in the model, and four variable, including biomass, ethanol, sugar and substrate were considered. The R-square values for the model are all above 0.95 revealing that the model prediction values could match experimental data very well. Our model conceivably contributes significantly to the improvement of the industrial process for the production of Chinese rice wine.

  2. Symposium on Turbulent Shear Flows (8th) Held in Munich, Germany on 9-11 September 1991. Volume 2. Sessions 19-31, Poster Sessions

    Science.gov (United States)

    1991-09-01

    the sound intensit icceived ion (,iA-order Runge Kutta) ot the relation dr = (U - by point (x,0) from aii acoustic source at (0,xi). ’[lie sound acosO ...to this technique in was previously observed with the turbulent intensity(8). The unsteady flow despite the labor required. Furthermore, an common

  3. Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2009-01-01

    Roč. 5, - (2009), 085/1-085/21 ISSN 1815-0659 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : cryptohermitian observables * unitary scattering * Runge-Kutta discretization Subject RIV: BE - Theoretical Physics Impact factor: 0.789, year: 2009

  4. Doppler-Ultraschall in der Schilddrüsenabklärung: Eine Übersicht

    Directory of Open Access Journals (Sweden)

    Radl I

    2012-01-01

    Full Text Available Die farbkodierte Dopplersonographie ermöglicht in der Schilddrüsendiagnostik die Quantifizierung der Gewebevaskularisation. Die Diagnose eines Morbus Basedow kann mithilfe der Dopplersonographie aufgrund der eindeutigen Gewebehypervaskularisation praktisch allein getroffen werden und gibt Auskunft über den Therapieerfolg. Entzündliche Veränderungen der Schilddrüse zeigen im Vergleich zum M. Basedow praktisch immer einen geringeren Vaskularisationsgrad. Auch Schilddrüsentumoren zeigen eine vermehrte Vaskularisation. Während Adenome eine perinodale Durchblutung aufweisen, zeigen Karzinome eine Zunahme der zentralen Vaskularisation. Die Dopplersonographie kann zwar eine große Hilfestellung in der Abklärung von Schilddrüsenknoten bieten, eine Differenzierung zwischen benignen und malignen Gewebeveränderungen ist jedoch nicht möglich. Daher ist die ultraschallgezielte Feinnadelpunktion unerlässlich in der präoperativen Abklärung von Schilddrüsenknoten.

  5. A numerical study of flow about fixed and flexibly mounted circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Meling, Trond Stokka

    1998-12-31

    Motivated by the needs of the offshore oil industry, this thesis studies flow around a circular cylinder that is either fixed or flexibly mounted. The latter configuration is susceptible to vortex-induced vibrations. To predict the results numerically, a two-dimensional procedure was developed to handle the fluid domain, the structural problem and the non-linear interaction between the two media. The arbitrary Lagrangian-Eulerian approach was employed in order to handle moving boundaries. The fluid forces and the cylinder kinematics are solved in a staggered fashion. A velocity-correction method is employed to solve the incompressible Navier-Stokes equations where the Galerkin finite element method is used for the spatial discretization of the fluid domain. The second-order equation of motion of the cylinder is solved by a 4th order Rung-Kutta scheme. Various numerical schemes for solving the convection-diffusion equation involved are tested. All the schemes, except the rational Runge-Kutta, were found to smear the vortex street. To predict the flow field at high Reynolds number several turbulence models were tested. The modified 2-layer K-epsilon model with all elements in the boundary layer was found to predict results in remarkably good agreement with experimental results. Self-excited vibration tests of circular cylinders are also performed showing that the presented model is able to capture the lock-in phenomenon with reasonable accuracy, both in the laminar- and in the subcritical Reynolds number regime. 136 refs., 67 figs., 13 tabs.

  6. Manual for COMSYN: A orbit integration code for the study of beam dynamics in compact synchrotrons

    International Nuclear Information System (INIS)

    Huang, Y.

    1991-10-01

    COMSYN is a numerical integration code which is written for the study and design of the compact synchrotrons. An improved 4th-order Runge-Kutta method is used in COMSYN to integrate the exact equations of motion in a rectangular coordinate system. The magnetic field components of the dipole B x , B y and B z can be obtained from either measurement or directly computed data (MAGNUS, TOSCA). A spline interpolation method is then used to get the field value at the particle position. For standard quadrupole and sextupole, the analytical expression is employed to compute its field distribution

  7. Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM

    Directory of Open Access Journals (Sweden)

    Firat Evirgen

    2016-04-01

    Full Text Available In this paper, a class of Nonlinear Programming problem is modeled with gradient based system of fractional order differential equations in Caputo's sense. To see the overlap between the equilibrium point of the fractional order dynamic system and theoptimal solution of the NLP problem in a longer timespan the Multistage Variational İteration Method isapplied. The comparisons among the multistage variational iteration method, the variationaliteration method and the fourth order Runge-Kutta method in fractional and integer order showthat fractional order model and techniques can be seen as an effective and reliable tool for finding optimal solutions of Nonlinear Programming problems.

  8. A general approach to the testing of binary solubility systems for thermodynamic consistency. Consolidated Fuel Reprocessing Program

    Science.gov (United States)

    Hamm, L. L.; Vanbrunt, V.

    1982-08-01

    The numerical solution to the ordinary differential equation which describes the high-pressure vapor-liquid equilibria of a binary system where one of the components is supercritical and exists as a noncondensable gas in the pure state is considered with emphasis on the implicit Runge-Kuta and orthogonal collocation methods. Some preliminary results indicate that the implicit Runge-Kutta method is superior. Due to the extreme nonlinearity of thermodynamic properties in the region near the critical locus, and extended cubic spline fitting technique is devised for correlating the P-x data. The least-squares criterion is employed in smoothing the experimental data. The technique could easily be applied to any thermodynamic data by changing the endpoint requirements. The volumetric behavior of the systems must be given or predicted in order to perform thermodynamic consistency tests. A general procedure is developed for predicting the volumetric behavior required and some indication as to the expected limit of accuracy is given.

  9. A computational analysis on homogeneous-heterogeneous mechanism in Carreau fluid flow

    Science.gov (United States)

    Khan, Imad; Rehman, Khalil Ur; Malik, M. Y.; Shafquatullah

    2018-03-01

    In this article magnetohydrodynamic Carreau fluid flow towards stretching cylinder is considered in the presence of homogeneous-heterogeneous reactions effect. The flow model is structured by utilizing theoretical grounds. For the numerical solution a shooting method along with Runge-Kutta algorithm is executed. The outcomes are provided through graphs. It is observed that the Carreau fluid concentration shows decline values via positive iterations of homogeneous-heterogeneous reaction parameters towards both shear thinning and thickening case. The present work is certified through comparison with already existing literature in a limiting sense.

  10. Wind and the earth rotation effects on the trajectories and performance of tactical and strategic missiles

    International Nuclear Information System (INIS)

    Muslim, G.A.; Ali, A.; Tariq, G.F.

    1998-01-01

    This paper deals with a mathematical model developed for carrying out trajectories and performance analysis of aerodynamic bodies in flight. The model caters for external wind and the earth rotation effects, and simulates three dimensional motion of the powered or un powered vehicles in space,. The resulting system of ordinary differential equations is solved by fourth order Runge Kutta method. The trajectory and performance parameters are computed by a computer Code AERO. The sensitivity analysis of the burnout conditions has also been carried out for the strategic missiles. (author)

  11. Steady and transient states of a two-phase counter current flow

    International Nuclear Information System (INIS)

    Siebert, S.

    1984-06-01

    The aim of this work is to estimate the efficiency of the counter current exchange between a heavy dispersed phase and a continous light phase in a pulse perforated plate column. From an experimental point, hydraulic measurements (retention ratio, droplet size) and residence time measurements (radioactive tracers). The model will be so applied to the calculation of retention ratios in steady conditions then of tracer concentrations in transient conditions. From a numerical point of view a fixed point type iteration then a method Runge Kutta are then adapted [fr

  12. On the accuracy and efficiency of finite difference solutions for nonlinear waves

    DEFF Research Database (Denmark)

    Bingham, Harry B.

    2006-01-01

    -uniform grid. Time-integration is performed using a fourth-order Runge-Kutta scheme. The linear accuracy, stability and convergence properties of the method are analyzed in two-dimensions, and high-order schemes with a stretched vertical grid are found to be advantageous relative to second-order schemes...... on an even grid. Comparison with highly accurate periodic solutions shows that these conclusions carry over to nonlinear problems. The combination of non-uniform grid spacing in the vertical and fourth-order schemes is suggested as providing an optimal balance between accuracy and complexity for practical...

  13. Ordinary and partial differential equation routines in C, C++, Fortran, Java, Maple, and Matlab

    CERN Document Server

    Lee, HJ

    2003-01-01

    This book provides a set of ODE/PDE integration routines in the six most widely used computer languages, enabling scientists and engineers to apply ODE/PDE analysis toward solving complex problems. This text concisely reviews integration algorithms and then analyzes the widely used Runge-Kutta method. It first presents a complete code before discussing its components in detail, focusing on integration concepts such as error monitoring and control. The format allows readers to understand the basics of ODE/PDE integration, and then calculate sample numerical solutions within the targeted program

  14. Study of Penetration Technology

    Science.gov (United States)

    1976-11-01

    srecimens fabricated at the AFATL, AISI-01 oil quenched bar stock was used. Three of the projectiles used in the Eglin penetration experiments are shown...in the Mathema- tical Laboratory at Eglin AFB, is essencially a fourth order Runge-Kutta numerical method for solving simultaneous differential...C9G. VEL. X-COMPo (M4/5): d!10. I oil 140. 107. 82. RmCC~kr’ED TIME OF MAXIftjM/MINIM94U COIL VOLTAGE tSI MAX 0040 A 55 *.03J04A 0 0 05ji6 .000634 MIN

  15. Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields

    International Nuclear Information System (INIS)

    Qin Hong; Guan Xiaoyin

    2008-01-01

    A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods

  16. Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields

    International Nuclear Information System (INIS)

    Qin, H.; Guan, X.

    2008-01-01

    A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.

  17. Function of bunching segment in multi-cell RF gun

    International Nuclear Information System (INIS)

    Yang Xingfan; Xu Zhou Liu Xisan

    2001-01-01

    With a bunching segment and a shortened first cell, the 4 + 1/2 cell RF gun produced in CAEP has been proved experimentally to be effective in reducing electron back bombardment. The analysis of the electric field distribution and electron motion in bunching segment of multi-cell RF gun is presented. The electron capture efficiency and electron trajectory with different initial phase are calculated using Runge-Kutta method. The function of the bunching segment is discussed. The calculated parameters of the 4 + 1/2 cell RF gun agree well with the experimental results

  18. Dispersion relation and electron acceleration in the combined circular and elliptical metallic-dielectric waveguide filled by plasma

    Science.gov (United States)

    Abdoli-Arani, A.; Montazeri, M. M.

    2018-04-01

    Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.

  19. Bubble dynamics in a superheated liquid

    International Nuclear Information System (INIS)

    Sha, W.T.; Shah, V.L.

    1977-09-01

    The report presents an extensive literature survey on bubble dynamics. Growth of a single spherical bubble moving in a uniformly superheated liquid is considered. Equations of motion and energy are presented in the forms that take into consideration the interaction between the motion and the growth. The fourth-order Runge-Kutta method is used to obtain a simultaneous solution of equations of motion and growth rate, and the solution is compared with available experimental results. Results for liquid sodium are presented for a range of pressures and Jakob numbers

  20. SOLVING FRACTIONAL-ORDER COMPETITIVE LOTKA-VOLTERRA MODEL BY NSFD SCHEMES

    Directory of Open Access Journals (Sweden)

    S.ZIBAEI

    2016-12-01

    Full Text Available In this paper, we introduce fractional-order into a model competitive Lotka- Volterra prey-predator system. We will discuss the stability analysis of this fractional system. The non-standard nite difference (NSFD scheme is implemented to study the dynamic behaviors in the fractional-order Lotka-Volterra system. Proposed non-standard numerical scheme is compared with the forward Euler and fourth order Runge-Kutta methods. Numerical results show that the NSFD approach is easy and accurate for implementing when applied to fractional-order Lotka-Volterra model.

  1. Free versus constrained evolution of the 2+1 equivariant wave map

    International Nuclear Information System (INIS)

    Peter, Ralf; Frauendiener, Jörg

    2012-01-01

    We compare the numerical solutions of the 2+1 equivariant wave map problem computed with the symplectic, constraint respecting Rattle algorithm and the well known fourth order Runge–Kutta method. We show the advantages of the Rattle algorithm for the constrained system compared to the free evolution with the Runge–Kutta method. We also present an expression, which represents the energy loss due to constraint violation. Taking this expression into account we can achieve energy conservation for the Runge–Kutta scheme, which is better than with the Rattle method. Using the symplectic scheme with constraint enforcement, we can reproduce previous calculations of the equivariant case without imposing the symmetry explicitly, thereby confirming that the critical behaviour is stable. (paper)

  2. Application of State Quantization-Based Methods in HEP Particle Transport Simulation

    Science.gov (United States)

    Santi, Lucio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; Castro, Rodrigo

    2017-10-01

    Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.

  3. Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method

    International Nuclear Information System (INIS)

    Souza de Paula, Aline; Savi, Marcelo Amorim

    2009-01-01

    Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.

  4. Flux weighted method for solution of stiff neutron dynamic equations and its application

    International Nuclear Information System (INIS)

    Li Huiyun; Jiao Huixian

    1987-12-01

    To analyze reactivity event for nuclear power plants, it is necessary to solve the neutron dynamic equations, which is a group of typical stiff constant differential equations. Very small time steps could only be adopted when the group of equations is solved by common methods. However, a large time steps might be selected if the Flux Weighted Medthod introduced in this paper is used. Generally, weighted factor θ i1 is set as a constant. Naturally, this treatment method can decrease the accuracy of calculation for the increase of the steadiness of solving the equations. An accurate theoretical formula of 4 x 4 matrix of θ i1 is rigorously derived so that the accuracy of calculation is ensured, as well as the steadiness of solved equations is increased. This method have the advantage over classical Runge-kutta Method and other methods. The time steps could be increased by a factor of 1 ∼ 3 orders of magnitude so as to save a lot of computating time. The programe solving neutron dynamic equation, which is prepared by using Flux Weighted Method, could be sued for real time analog of training simulator, as well as for analysis and computation of reactivity event (including rod jumping out event)

  5. Numerical code to determine the particle trapping region in the LISA machine

    International Nuclear Information System (INIS)

    Azevedo, M.T. de; Raposo, C.C. de; Tomimura, A.

    1984-01-01

    A numerical code is constructed to determine the trapping region in machine like LISA. The variable magnetic field is two deimensional and is coupled to the Runge-Kutta through the Tchebichev polynomial. Various particle orbits including particle interactions were analysed. Beside this, a strong electric field is introduced to see the possible effects happening inside the plasma. (Author) [pt

  6. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer

  7. Methods for compressible fluid simulation on GPUs using high-order finite differences

    Science.gov (United States)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  8. Inverse operator theory method mathematics-mechanization for the solutions of nonlinear equations and some typical applications in nonlinear physics

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1992-12-01

    Inverse operator theory method (IOTM) has developed rapidly in the last few years. It is an effective and useful procedure for quantitative solution of nonlinear or stochastic continuous dynamical systems. Solutions are obtained in series form for deterministic equations, and in the case of stochastic equation it gives statistic measures of the solution process. A very important advantage of the IOTM is to eliminate a number of restrictive and assumption on the nature of stochastic processes. Therefore, it provides more realistic solutions. The IOTM and its mathematics-mechanization (MM) are briefly introduced. They are used successfully to study the chaotic behaviors of the nonlinear dynamical systems for the first time in the world. As typical examples, the Lorentz equation, generalized Duffing equation, two coupled generalized Duffing equations are investigated by the use of the IOTM and the MM. The results are in good agreement with ones by the Runge-Kutta method (RKM). It has higher accuracy and faster convergence. So the IOTM realized by the MM is of potential application valuable in nonlinear science

  9. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  10. Numerical study with experimental comparison of pressure waves in the air intake system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Carlos E.G.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: vielmoh@mecanica.ufrgs.br; Hanriot, Sergio M. [Pontifical Catholic University of Minas Gerais (PUC-Minas), Belo Horizonte, MG (Brazil). Mechanical Engineering Dept.], E-mail: hanriot@pucminas.br

    2010-07-01

    The work investigates the pressure waves behavior in the intake system of an internal combustion engine. For the purpose of examining this problem, it was chosen an experimental study in order to validate the results of the present simulation. At the literature there are several experimental studies, and some numerical simulations, but the most of the numerical studies treat the problem only in one dimension in practical problems, or two dimensions in specific problems. Using a CFD code it is possible to analyze more complex systems, including tridimensional effects. The pulsating phenomenon is originated from the periodic movement of the intake valve, and produces waves that propagate within the system. The intake system studied was composed by a straight pipe connected to a 1000 cc engine with a single operating cylinder. The experiments were carried out in a flow bench. In the present work, the governing equations was discretized by Finite Volumes Method with an explicit formulation, and the time integration was made using the multi-stage Runge-Kutta time stepping scheme. The solution is independent of mesh or time step. The numerical analysis presents a good agreement with the experimental results. (author)

  11. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    Science.gov (United States)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  12. A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media

    Science.gov (United States)

    Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.

    2018-06-01

    A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.

  13. Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet

    Directory of Open Access Journals (Sweden)

    Azeem Shahzad

    2017-03-01

    Full Text Available This article address the boundary layer flow and heat transfer of unsteady and incompressible viscous fluid over an unsteady stretching permeable surface. First of all modeled nonlinear partial differential equations are transformed to a system of ordinary differential equations by using similarity transformations. Analytic solution of the reduced problem is constructed by using homotopy analysis method (HAM. To validate the constructed series solution a numerical counterpart is developed using shooting algorithm based on Runge-Kutta method. Both schemes are in an excellent agreement. The effects of the pertinent parameters on the velocity and energy profile are shown graphically and examined in detail.

  14. Measurement of blowdown flow rates using load cells

    International Nuclear Information System (INIS)

    Dolas, P.K.; Venkat Raj, V.; Ghosh, A.K.; Murty, L.G.K.; Muralidhar Rao, S.

    1980-01-01

    To establish a reliable method for measuring two-phase flow, experiments were planned for measurement of transient single phase flow rates from vessels using load cells. Suitability of lead-zirconate-titanate piezoelectric ceramic discs was examined. Discharge time constant of the disc used was low, leading to large measurement errors. Subsequently, experiments were carried out using strain gauge load cells and these were found satisfactory. The unsteady flow equation has been derived for the system under investigation. The equation has been solved numerically using the fourth order Runge-Kutta method and also by integrating it analytically. The experimental results are compared with the theoretical results and presented in this report. (auth.)

  15. AIREK-PUL, Periodic Kinetics Problems of Pulsed Reactors

    International Nuclear Information System (INIS)

    Inzaghi, A.; Misenta, R.

    1984-01-01

    1 - Nature of physical problem solved: Solves periodic problems about the kinetics of pulsed reactors or problems where the reactivity has rapid variations. The program uses two constant steps for the integration of the system of differential equations, the first step during the first half-period and the second step during the second half-period. Available for either single or double precision. 2 - Method of solution: The differential equations are integrated using the fourth-order Runge-Kutta method as modified by E.R. Cohen (Geneva Conference, 1958). 3 - Restrictions on the complexity of the problem: The maximum number of differential equations that can be solved simultaneously is 50

  16. Development and acceleration of unstructured mesh-based cfd solver

    Science.gov (United States)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  17. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    Science.gov (United States)

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  18. The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics

    Science.gov (United States)

    Nark, Douglas M.

    1995-01-01

    Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.

  19. LAPLACE-RUNGE-LENZ VECTOR IN QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE

    Directory of Open Access Journals (Sweden)

    Peter Prešnajder

    2014-04-01

    Full Text Available The object under scrutiny is the dynamical symmetry connected with conservation of the Laplace-Runge-Lenz vector (LRL in the hydrogen atom problem solved by means of noncommutative quantum mechanics (NCQM. The considered noncommutative configuration space has such a “fuzzy”structure that the rotational invariance is not spoilt. An analogy with the LRL vector in the NCQM is brought to provide our results and also a comparison with the standard QM predictions.

  20. Erklärung der individuellen Existenzgründungsabsicht: Die 'theory of planned behavior' als sozialpsychologisches Modell im Gründungskontext

    OpenAIRE

    Tegtmeier, Silke

    2006-01-01

    Mittels einer empirischen Untersuchung (n=208) bei Lüneburger Studierenden wird Ajzens 'Theory of Planned Behavior' - eine einschlägige Theorie zur Erklärung spezifischen Verhaltens- auf die Erklärung der individuellen Gründungsabsicht angewendet. Im Anschluss an die Darlegung des Forschungsansatzes werden Ergebnisse der Untersuchung besprochen. Hierarchische Regressionsanalysen zeigen, dass Einstellung, sozialer Druck und wahrgenommene Verhaltenskontrolle maßgeblich zur Schätzung der Gründun...

  1. An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps

    Directory of Open Access Journals (Sweden)

    Xiaojun Tong

    2015-01-01

    Full Text Available This paper proposes a new four-dimensional hyperchaotic map based on the Rabinovich system to realize chaotic encryption in higher dimension and improve the security. The chaotic sequences generated by Runge-Kutta method are combined with the chaotic sequences generated by an exponential chaos map to generate key sequences. The key sequences are used for image encryption. The security test results indicate that the new hyperchaotic system has high security and complexity. The comparison between the new hyperchaotic system and the several low-dimensional chaotic systems shows that the proposed system performs more efficiently.

  2. Evaluation code for the dose due to the discharges of liquid effluents of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Lopez, Fabio O.; Boutet, Luis I.; Bruno, Hector A.; Gavini, Ricardo M.

    2004-01-01

    A new methodology is presented to assess the evaluation of the radiological impact to the population, due to the discharges to the environment of liquids effluents of Central Nuclear Embalse (CNE), located in the Province of Cordoba (Argentina). In order to carry out the dose evaluation, a code denominated EDDELIQ was developed, in this code the calculation of the radionuclides concentration in the water lake is made by means of a simple physical model of the type of complete mixture. The physical model is solved numerically by means of Runge Kutta method of second order. (author)

  3. Non-linear heat transfer computer code by finite element method

    International Nuclear Information System (INIS)

    Nagato, Kotaro; Takikawa, Noboru

    1977-01-01

    The computer code THETA-2D for the calculation of temperature distribution by the two-dimensional finite element method was made for the analysis of heat transfer in a high temperature structure. Numerical experiment was performed for the numerical integration of the differential equation of heat conduction. The Runge-Kutta method of the numerical experiment produced an unstable solution. A stable solution was obtained by the β method with the β value of 0.35. In high temperature structures, the radiative heat transfer can not be neglected. To introduce a term of the radiative heat transfer, a functional neglecting the radiative heat transfer was derived at first. Then, the radiative term was added after the discretion by variation method. Five model calculations were carried out by the computer code. Calculation of steady heat conduction was performed. When estimated initial temperature is 1,000 degree C, reasonable heat blance was obtained. In case of steady-unsteady temperature calculation, the time integral by THETA-2D turned out to be under-estimation for enthalpy change. With a one-dimensional model, the temperature distribution in a structure, in which heat conductivity is dependent on temperature, was calculated. Calculation with a model which has a void inside was performed. Finally, model calculation for a complex system was carried out. (Kato, T.)

  4. Contribution to the asymptotic estimation of the global error of single step numerical integration methods. Application to the simulation of electric power networks; Contribution a l'estimation asymptotique de l'erreur globale des methodes d'integration numerique a un pas. Application a la simulation des reseaux electriques

    Energy Technology Data Exchange (ETDEWEB)

    Aid, R.

    1998-01-07

    This work comes from an industrial problem of validating numerical solutions of ordinary differential equations modeling power systems. This problem is solved using asymptotic estimators of the global error. Four techniques are studied: Richardson estimator (RS), Zadunaisky's techniques (ZD), integration of the variational equation (EV), and Solving for the correction (SC). We give some precisions on the relative order of SC w.r.t. the order of the numerical method. A new variant of ZD is proposed that uses the Modified Equation. In the case of variable step-size, it is shown that under suitable restriction, on the hypothesis of the step-size selection, ZD and SC are still valid. Moreover, some Runge-Kutta methods are shown to need less hypothesis on the step-sizes to exhibit a valid order of convergence for ZD and SC. Numerical tests conclude this analysis. Industrial cases are given. Finally, an algorithm to avoid the a priori specification of the integration path for complex time differential equations is proposed. (author)

  5. Europlexus: a domain decomposition method in explicit dynamics

    International Nuclear Information System (INIS)

    Faucher, V.; Hariddh, Bung; Combescure, A.

    2003-01-01

    Explicit time integration methods are used in structural dynamics to simulate fast transient phenomena, such as impacts or explosions. A very fine analysis is required in the vicinity of the loading areas but extending the same method, and especially the same small time-step, to the whole structure frequently yields excessive calculation times. We thus perform a dual Schur domain decomposition, to divide the global problem into several independent ones, to which is added a reduced size interface problem, to ensure connections between sub-domains. Each sub-domain is given its own time-step and its own mesh fineness. Non-matching meshes at the interfaces are handled. An industrial example demonstrates the interest of our approach. (authors)

  6. COMPARAÇÃO ENTRE TÉCNICAS NUMÉRICAS PARA A RESOLUÇÃO DO PROBLEMA DE TRANSFERÊNCIA DE CALOR EM ALIMENTOS ENLATADOS

    Directory of Open Access Journals (Sweden)

    A.D. RODRIGUES

    1998-05-01

    Full Text Available Este trabalho apresenta a comparação das técnicas de resolução numérica de Diferenças Finitas e Runge-Kutta-Gill de 4a ordem com passo de integração variável para a simulação do modelo de transferência de calor em regime transiente bidimensional em coordenadas cilíndricas e unidimensional em coordenadas esféricas, aplicado a alimentos enlatados processados em autoclave, observando-se a rapidez e a precisão de integração comparados aos perfis reais de tempo/temperatura, incluindo desvios de processo. Além disso, uma análise de sensibilidade paramétrica na difusividade térmica foi realizada na tentativa de quantificar a influência que essa propriedade possui na resolução numérica. Para tanto, foram realizados ensaios de penetração de calor em autoclave a vapor, utilizando-se latas cilíndricas de 75x90 e 100x110 contendo simulantes de alimentos com características de aquecimento por condução e convecção.This work presents a comparison of the integration quickness and precision between the techniques of numerical resolution of Finite Differences and Runge-Kutta-Gill of fourth order with variable integration pass, to do simulation of the unsteady-state heat transfer model, two-dimensional in cylindrical coordinates and one-dimensional in spherical coordinates, applied to canned foods processed in retorts, showing advantages for the technique of Runge-Kutta-Gill. It was also accomplished a parametric sensitivity analysis in the thermal diffusivity indicating a great influence of this parameter in the numerical solution. The mathematical simulation were compared with results of real heat penetration tests done in steam retort, using cylindrical cans filled with bentonite suspensions simulating foods with heat characteristics resembling heat conduction and heat convection.

  7. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

    Science.gov (United States)

    Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

  8. NCS--a software for visual modeling and simulation of PWR nuclear power plant control system

    International Nuclear Information System (INIS)

    Cui Zhenhua

    1998-12-01

    The modeling and simulation of nuclear power plant control system has been investigated. Some mathematical models for rapid and accurate simulation are derived, including core models, pressurizer model, steam generator model, etc. Several numerical methods such as Runge-Kutta Method and Treanor Method are adopted to solve the above system models. In order to model the control system conveniently, a block diagram-oriented visual modeling platform is designed. And the Discrete Similarity Method is used to calculate the control system models. A corresponding simulating software, NCS, is developed for researching on the control systems of commercial nuclear power plant. And some satisfactory results are obtained. The research works will be of referential and applying value to design and analysis of nuclear power plant control system

  9. An algorithm for the calculation of heavy ion ranges in SiO2

    International Nuclear Information System (INIS)

    Kabadayi, Oe.; Guemues, H.

    2003-01-01

    The heavy ion ranges in amorphous SiO 2 have been calculated by using a technique based on solution of first order ODE's. Br, Au, Hg, Bi projectiles have been chosen as incident ions. Since the target is assumed to be amorphous, Bragg's rule can be used to calculate electronic and nuclear stopping powers in the compound. Numerical solutions have ben performed by using Fuhlberg fourth-fifth order Runge-Kutta method. The results are compared with experimental data, as well as with the result of Monte Carlo program SRIM and other standard procedures such as PRAL and WS. It is found that the agreement between our method and the experiment is good and within 10%. (author)

  10. Numerical simulation of the knotted nylon netting panel

    Directory of Open Access Journals (Sweden)

    Li Yuwei

    2016-01-01

    Full Text Available A piece of netting, consists of the 8 8 meshes, fixed on a square frame, was simulated and the tensions and their distribution, the positions of knots and netting shape were calculated by means of MATLAB in computer. The dynamic mathematic model was developed based on lumped mass method, the netting was treated as spring-mass system, the Runge-Kutta fifth-order and sixth-order method was used to solve the differential equations for every step, then the displacement and tension of each mass point were obtained. For verify this model, the tests have been carried out in a flume tank. The results of the numerical simulation fully agreed with the experiments.

  11. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  12. Temperature field conduction solution by incomplete boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Petrasinovic, Lj; Djuric, M [Tehnoloski fakultet, Novi Sad (Yugoslavia); Perovic, N [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1977-01-01

    The problem of determination of one part boundary conditions temperatures for Fourier partial differential equation when the other part of boundary condition and derivates (heat fluxes) are known is a practical interest as it enables one to determine and accessible temperature by measuring temperatures on other side, of the wall. Method developed and applied here consist of transforming the Fourier partial differential equation by time discretisation in sets of pairs of ordinary differential equations for temperature and heat flux. Such pair of differential equations of first order was solved by Runge-Kutta method. The integration proceeds along space interval simultaneosly for all time intervals. It is interesting to note that this procedure does not require the initial condition.

  13. Upwind scheme for acoustic disturbances generated by low-speed flows

    DEFF Research Database (Denmark)

    Ekaterinaris, J.A.

    1997-01-01

    , compressible how equations, A numerical method for the solution of the equations governing the acoustic field is presented. The primitive variable form of the governing equations is used for the numerical solution. Time integration is performed with a fourth-order, Runge-Kutta method, Discretization...... of the primitive variables space derivatives is obtained with a high-order, upwind-biased numerical scheme. Upwinding of these convective fluxes is performed according to the eigenvalue sign of the coefficient matrices. Nonreflecting boundary conditions are applied to properly convect outgoing waves away from...... the computational domain. Solutions are obtained for the acoustic field generated by a pair of corotating point vortices. Computed results are compared with the existing analytic solution for the sound field....

  14. Positivity for Convective Semi-discretizations

    KAUST Repository

    Fekete, Imre

    2017-04-19

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.

  15. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Mezzacappa, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Endeve, Eirik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauck, Cory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xing, Yulong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.

  16. Control of error and convergence in ODE solvers

    International Nuclear Information System (INIS)

    Gustafsson, K.

    1992-03-01

    Feedback is a general principle that can be used in many different contexts. In this thesis it is applied to numerical integration of ordinary differential equations. An advanced integration method includes parameters and variables that should be adjusted during the execution. In addition, the integration method should be able to automatically handle situations such as: initialization, restart after failures, etc. In this thesis we regard the algorithms for parameter adjustment and supervision as a controller. The controlled measures different variable that tell the current status of the integration, and based on this information it decides how to continue. The design of the controller is vital in order to accurately and efficiently solve a large class of ordinary differential equations. The application of feedback control may appear farfetched, but numerical integration methods are in fact dynamical systems. This is often overlooked in traditional numerical analysis. We derive dynamic models that describe the behavior of the integration method as well as the standard control algorithms in use today. Using these models it is possible to analyze properties of current algorithms, and also explain some generally observed misbehaviors. Further, we use the acquired insight to derive new and improved control algorithms, both for explicit and implicit Runge-Kutta methods. In the explicit case, the new controller gives good overall performance. In particular it overcomes the problem with oscillating stepsize sequence that is often experienced when the stepsize is restricted by numerical stability. The controller for implicit methods is designed so that it tracks changes in the differential equation better than current algorithms. In addition, it includes a new strategy for the equation solver, which allows the stepsize to vary more freely. This leads to smoother error control without excessive operations on the iteration matrix. (87 refs.) (au)

  17. Method for calculating wave resistance in a catamaran by using a simple panel method; Kanbenna panel ho ni yoru katamaran no zoha teiko keisanho

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    This paper describes a method for calculating wave resistance in a catamaran by using a simple panel method. Two Wigley models were put side by side to make a catamaran, speccular images were taken on a face symmetrical in the left and right sides, and only one side (the demi-hull) was used as a region to be calculated. Considering blow-out onto the demi-hull surface and still water surface, a model was constituted, in which discrete vortices were distributed on the demi-hull camber to flow the vortices out to an infinitely distance place from the stern. A free surface condition according to double model linearization by Dawson was derived for this model in terms of numerical analysis. The Kutta`s condition is incorporated when SQCM is used concurrently with the Rankine source method, but not incorporated when not used. Calculations were performed on both conditions. Wave resistance was derived by using pressure integral on the hull surface. It is better to consider the Kutta`s condition when the distance between the demi-hulls is small. However, if the distance is large, or speed is great for the boat length resulting in less interference between the demi-hulls, there is very little difference due to the Kutta`s condition. Difference in the wave shapes causes how waves are made to vary. 11 refs., 8 figs.

  18. Aufklärung and Eternal Peace: Problems of Kantian Philosophical Projects

    Directory of Open Access Journals (Sweden)

    Vladimir-Adrian Costea

    2018-03-01

    Full Text Available This paper aims to critically analyze the major projects of Kantian philosophy in relation to the ideal of Aufklärung and the establishment of Eternal Peace. The main objective of the research is to analyze the originality and boundaries of Kantian projects both at the level of the practical (moral rationale and at the level of the relations of power and interests of the state actors on the international political scene. We aim to identify the boundaries of the Kantian approach in order to establish Eternal Peace, applying the logic of the power relations existing on the international political scene. The secondary objective of the research is to identify how the individual and the state are projected into Kantian philosophy. The original aspect of this article is the decoding of Kantian critical thinking in relation to the project of Aufklärung and the establishment of Eternal Peace. The main result of the research is that the tension of reasoning applied by philosopher Immanuel Kant regarding the definition of human nature and the relationship of forces on the international political scene. Applying the practical (moral rationale used to define the individual’s inclination to get out of the minority state (by knowledge becomes problematic at the time of the Kantian approach to justify the (political necessity of Eternal Peace.

  19. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung [Tuskegee Univ., Tuskegee, AL (United States); Fan, Liang-Shih [The Ohio State Univ., Columbus, OH (United States); Zhou, Qiang [The Ohio State Univ., Columbus, OH (United States); Yang, Hui [The Ohio State Univ., Columbus, OH (United States)

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a

  20. Large-Eddy Simulation of Subsonic Jets

    International Nuclear Information System (INIS)

    Vuorinen, Ville; Wehrfritz, Armin; Yu Jingzhou; Kaario, Ossi; Larmi, Martti; Boersma, Bendiks Jan

    2011-01-01

    The present study deals with development and validation of a fully explicit, compressible Runge-Kutta-4 (RK4) Navier-Stokes solver in the opensource CFD programming environment OpenFOAM. The background motivation is to shift towards explicit density based solution strategy and thereby avoid using the pressure based algorithms which are currently proposed in the standard OpenFOAM release for Large-Eddy Simulation (LES). This shift is considered necessary in strongly compressible flows when Ma > 0.5. Our application of interest is related to the pre-mixing stage in direct injection gas engines where high injection pressures are typically utilized. First, the developed flow solver is discussed and validated. Then, the implementation of subsonic inflow conditions using a forcing region in combination with a simplified nozzle geometry is discussed and validated. After this, LES of mixing in compressible, round jets at Ma = 0.3, 0.5 and 0.65 are carried out. Respectively, the Reynolds numbers of the jets correspond to Re = 6000, 10000 and 13000. Results for two meshes are presented. The results imply that the present solver produces turbulent structures, resolves a range of turbulent eddy frequencies and gives also mesh independent results within satisfactory limits for mean flow and turbulence statistics.

  1. GENERAL: Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    Science.gov (United States)

    Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin

    2008-07-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.

  2. CLUB - a multigroup integral transport theory code for lattice calculations of PHWR cells

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    1992-01-01

    The computer code CLUB has been developed to calculate lattice parameters as a function of burnup for a pressurised heavy water reactor (PHWR) lattice cell containing fuel in the form of cluster. It solves the multigroup integral transport equation by the method based on combination of small scale collision probability (CP) method and large scale interface current technique. The calculations are performed by using WIMS 69 group cross section library or its condensed versions of 27 or 28 group libraries. It can also compute Keff from the given geometrical buckling in the input using multigroup diffusion theory in fundamental mode. The first order differential burnup equations can be solved by either Trapezoidal rule or Runge-Kutta method. (author). 17 refs., 2 figs

  3. Kinetic calculations for miniature neutron source reactor using analytical and numerical techniques

    International Nuclear Information System (INIS)

    Ampomah-Amoako, E.

    2008-06-01

    The analytical methods, step change in reactivity and ramp change in reactivity as well as numerical methods, fixed point iteration and Runge Kutta-gill were used to simulate the initial build up of neutrons in a miniature neutron source reactor with and without temperature feedback effect. The methods were modified to include photo neutron concentration. PARET 7.3 was used to simulate the transients behaviour of Ghana Research Reactor-1. The PARET code was capable of simulating the transients for 2.1 mk and 4 mk insertions of reactivity with peak powers of 49.87 kW and 92.34 kW, respectively. PARET code however failed to simulate 6.71 mk of reactivity which was predicted by Akaho et al through TEMPFED. (au)

  4. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor; Desarrollo de un simulador para diseno y prueba de controladores de potencia en un reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Perez M, C.; Benitez R, J.S.; Lopez C, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  5. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Perez M, C.; Benitez R, J.S.; Lopez C, R.

    2003-01-01

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  6. Analytical treatment of gas flows through multilayer insulation, project 1

    Science.gov (United States)

    Lin, J. T.

    1972-01-01

    A theoretical investigation of gas flow inside a multilayer insulation system was made for the case of the broadside pumping process. A set of simultaneous first-order differential equations for the temperature and pressure of the gas molecules through the perforations on the insulation layers. A modified Runge-Kutta method was used for numerical experiment. The numerical stability problem was also investigated. It was shown that when the relaxation time is less than the time period over which the gas properties change appreciably, the set of differential equations can be replaced by a set of algebraic equations for solution. Numerical examples were given and comparisons with experimental data were made.

  7. The exact effects of radiation and joule heating on magnetohydrodynamic Marangoni convection over a flat surface

    Directory of Open Access Journals (Sweden)

    Khaled S.M.

    2018-01-01

    Full Text Available In this paper, we re-investigate the problem describing effects of radiation, Joule heating, and viscous dissipation on magnetohydrodynamic Marangoni convection boundary layer over a flat surface with suction/injection. The analytical solution obtained for the reduced system of non-linear-coupled differential equations governing the problem. Laplace transform successfully implemented to get the exact expression for the temperature profile. Furthermore, comparing the current exact results with approximate numerical results obtained using Runge-Kutta-Fehlberg method is introduced. These comparisons declare that the published numerical results agree with the current exact results. In addition, the effects of various parameters on the temperature profile are discussed graphically.

  8. A neuro approach to solve fuzzy Riccati differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)

    2015-10-22

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  9. Regular and chaotic behaviors of plasma oscillations modeled by a modified Duffing equation

    International Nuclear Information System (INIS)

    Enjieu Kadji, H.G.; Chabi Orou, J.B.; Woafo, P.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2005-07-01

    The regular and chaotic behavior of plasma oscillations governed by a modified Duffing equation is studied. The plasma oscillations are described by a nonlinear differential equation of the form x + w 0 2 x + βx 2 + αx 3 = 0 which is similar to a Duffing equation. By focusing on the quadratic term, which is mainly the term modifying the Duffing equation, the harmonic balance method and the fourth order Runge-Kutta algorithm are used to derive regular and chaotic motions respectively. A strong chaotic behavior exhibited by the system in that event when the system is subjected to an external periodic forcing oscillation is reported as β varies. (author)

  10. Explicit time marching methods for the time-dependent Euler computations

    International Nuclear Information System (INIS)

    Tai, C.H.; Chiang, D.C.; Su, Y.P.

    1997-01-01

    Four explicit type time marching methods, including one proposed by the authors, are examined. The TVD conditions of this method are analyzed with the linear conservation law as the model equation. Performance of these methods when applied to the Euler equations are numerically tested. Seven examples are tested, the main concern is the performance of the methods when discontinuities with different strengths are encountered. When the discontinuity is getting stronger, spurious oscillation shows up for three existing methods, while the method proposed by the authors always gives the results with satisfaction. The effect of the limiter is also investigated. To put these methods in the same basis for the comparison the same spatial discretization is used. Roe's solver is used to evaluate the fluxes at the cell interface; spatially second-order accuracy is achieved by the MUSCL reconstruction. 19 refs., 8 figs

  11. Correlation of Experimental and Theoretical Steady-State Spinning Motion for a Current Fighter Airplane Using Rotation-Balance Aerodynamic Data

    Science.gov (United States)

    1978-07-01

    were input into the computer program. The program was numerically intergrated with time by using a fourth-order Runge-Kutta integration algorithm with...equations of motion are numerically intergrated to provide time histories of the aircraft spinning motion. A.2 EQUATIONS DEFINING THE FORCE AND MOMENT...by Cy or Cn. 50 AE DC-TR-77-126 A . 4 where EQUATIONS FOR TRANSFERRING AERODYNAMIC DATA INPUTS TO THE PROPER HORIZONTAL CENTER OF GRAVITY

  12. Convergence studies of deterministic methods for LWR explicit reflector methodology

    International Nuclear Information System (INIS)

    Canepa, S.; Hursin, M.; Ferroukhi, H.; Pautz, A.

    2013-01-01

    The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on very different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)

  13. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  14. Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations

    KAUST Repository

    Bonito, Andrea; Guermond, Jean-Luc; Popov, Bojan

    2013-01-01

    We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method

  15. Double diffusive magnetohydrodynamic heat and mass transfer of nanofluids over a nonlinear stretching/shrinking sheet with viscous-Ohmic dissipation and thermal radiation

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2017-03-01

    Full Text Available The study of magnetohydrodynamic (MHD convective heat and mass transfer near a stagnation-point flow over stretching/shrinking sheet of nanofluids is presented in this paper by considering thermal radiation, Ohmic heating, viscous dissipation and heat source/sink parameter effects. Non-similarity method is adopted for the governing basic equations before they are solved numerically using Runge-Kutta-Fehlberg method using shooting technique. The numerical results are validated by comparing the present results with previously published results. The focus of this paper is to study the effects of some selected governing parameters such as Richardson number, radiation parameter, Schimdt number, Eckert number and magnetic parameter on velocity, temperature and concentration profiles as well as on skin-friction coefficient, local Nusselt number and Sherwood number.

  16. Integration of eaves and shading devices for improving the thermal comfort in a multi-zone building

    Directory of Open Access Journals (Sweden)

    Haddam Muhammad Abdalkhalaq Chuayb

    2015-01-01

    Full Text Available This paper introduces a new approach to the description and modelling of multi-zone buildings in Saharan climate. Therefore, nodal method was used to apprehend thermo-aeraulic behavior of air subjected to varied solicitations. A coupling was made between equations proposed by P. Rumianowski and some equations of a building thermal energy model found in the TRNSYS user manual. Runge-Kutta fourth order numerical method was used to solve the obtained system of differential equations. Theses results show that proper design of passive houses in an arid region is based on the control of direct solar gains, temperatures and specific humidities. According to the compactness index, the insersion of solar shading and eaves can provide improved thermo-aeraulic comfort.

  17. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  18. Comparative analysis of solution methods of the punctual kinetic equations

    International Nuclear Information System (INIS)

    Hernandez S, A.

    2003-01-01

    The following one written it presents a comparative analysis among different analytical solutions for the punctual kinetics equation, which present two variables of interest: a) the temporary behavior of the neutronic population, and b) The temporary behavior of the different groups of precursors of delayed neutrons. The first solution is based on a method that solves the transfer function of the differential equation for the neutronic population, in which intends to obtain the different poles that give the stability of this transfer function. In this section it is demonstrated that the temporary variation of the reactivity of the system can be managed as it is required, since the integration time for this method doesn't affect the result. However, the second solution is based on an iterative method like that of Runge-Kutta or the Euler method where the algorithm was only used to solve first order differential equations giving this way solution to each differential equation that conforms the equations of punctual kinetics. In this section it is demonstrated that only it can obtain a correct temporary behavior of the neutronic population when it is integrated on an interval of very short time, forcing to the temporary variation of the reactivity to change very quick way without one has some control about the time. In both methods the same change is used so much in the reactivity of the system like in the integration times, giving validity to the results graph the one the temporary behavior of the neutronic population vs. time. (Author)

  19. SAHYB-2, Solution of Ordinary Differential Equation with User-Supplied Subroutine

    International Nuclear Information System (INIS)

    Hoop, H. d'; Monterosso, R.

    1967-01-01

    1 - Nature of physical problem solved: SAHYB-2 is a general purpose programme for the solution of ordinary differential equations. These are written in a user-supplied subroutine called DER, which uses notations very close to mathematical formulas. Special mathematical functions are included in the programme, as: Function generation, delay generation, steps, ramps and pulses, as well as a simplified standard output procedure - boundary value problems or parametric optimisation may be handled by iterations adding a subroutine called REPEAT. 2 - Method of solution: Integration is carried out by constant step fourth-order Runge-Kutta method, or by a fixed or variable step Adams-Moulton predictor corrector method. 3 - Restrictions on the complexity of the problem: Maximum 150 differential equations of the first order. Maximum 30 tables for function generator or delay lines

  20. Similar solutions for viscous hypersonic flow over a slender three-fourths-power body of revolution

    Science.gov (United States)

    Lin, Chin-Shun

    1987-01-01

    For hypersonic flow with a shock wave, there is a similar solution consistent throughout the viscous and inviscid layers along a very slender three-fourths-power body of revolution The strong pressure interaction problem can then be treated by the method of similarity. Numerical calculations are performed in the viscous region with the edge pressure distribution known from the inviscid similar solutions. The compressible laminar boundary-layer equations are transformed into a system of ordinary differential equations. The resulting two-point boundary value problem is then solved by the Runge-Kutta method with a modified Newton's method for the corresponding boundary conditions. The effects of wall temperature, mass bleeding, and body transverse curvature are investigated. The induced pressure, displacement thickness, skin friction, and heat transfer due to the previously mentioned parameters are estimated and analyzed.

  1. Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size

    KAUST Repository

    Hadjimichael, Yiannis

    2016-09-08

    Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order two and three) with variable step size, and prove their optimality, stability, and convergence. The choice of step size for multistep SSP methods is an interesting problem because the allowable step size depends on the SSP coefficient, which in turn depends on the chosen step sizes. The description of the methods includes an optimal step-size strategy. We prove sharp upper bounds on the allowable step size for explicit SSP linear multistep methods and show the existence of methods with arbitrarily high order of accuracy. The effectiveness of the methods is demonstrated through numerical examples.

  2. Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple

    Science.gov (United States)

    Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.

    2014-08-01

    We present a production implementation of reduced-scaling explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) method based on pair-natural orbitals (PNOs). A key feature is the reformulation of the explicitly correlated terms using geminal-spanning orbitals that greatly reduce the truncation errors of the F12 contribution. For the standard S66 benchmark of weak intermolecular interactions, the cc-pVDZ-F12 PNO CCSD F12 interaction energies reproduce the complete basis set CCSD limit with mean absolute error cost compared to the conventional CCSD F12.

  3. on the properties of solutions and some applications on the TOV differential equation with a model of nuclear equation of state

    International Nuclear Information System (INIS)

    Esmail, S.F.H.

    2006-01-01

    the mathematical formulation of numerous physical problems results in differential equations actually non-linear differential equations . in our study we are interested in solutions of differential equations which describe the structure of neutron star in non-relativistic and relativistic cases. the aim of this work is to determine the mass and the radius of a neutron star, by solving the tolmann-oppenheimer-volkoff (TOV) differential equation using different models of the nuclear equation of state (EOS). analytically solutions are obtained for a simple form of the nuclear equation of state of Clayton model and poly trope model. for a more realistic equation of state the TOV differential equation is solved numerically using rung -Kutta method

  4. Effect of variable viscosity on laminar convection flow of an electrically conducting fluid in uniform magnetic field

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2002-01-01

    Full Text Available The flow of a viscous incompressible electrically conducting fluid on a continuous moving flat plate in presence of uniform transverse magnetic field, is studied. The flat plate which is continuously moving in its own plane with a constant speed is considered to be isothermally heated. Assuming the fluid viscosity as an inverse linear function of temperature, the nature of fluid velocity and temperature in presence of uniform magnetic field are shown for changing viscosity parameter at different layers of the medium. Numerical solutions are obtained by using Runge-Kutta and Shooting method. The coefficient of skin friction and the rate of heat transfer are calculated at different viscosity parameter and Prandt l number. .

  5. Nanofluidic transport over a curved surface with viscous dissipation and convective mass flux

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E.N. [HITEC Univ., Taxila (Pakistan). Dept. of Mathematics

    2017-06-01

    This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.

  6. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    International Nuclear Information System (INIS)

    Gato, L.M.C.; Henriques, J.C.C.

    2005-01-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas

  7. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt

    2005-10-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  8. Motion of a suspended charged particle in a NON-Newtonian fluid. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The path lines of a solid spherical charged particle suspended in a non-newton electrical conducting viscous fluid through two infinite parallel plates in the presence of a constant magnetic field normal to the plane of particle motion were determined. The effect of some parameters such as particle volume, fluid density, fluid viscosity, and the use magnetic field strength on these path lines were determined. The present solution requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about width, maximum height and number of collisions with upper and lower plates were deduced. 4 figs.

  9. Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy

    Science.gov (United States)

    Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.

    2011-04-01

    A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.

  10. Hydromagnetic Rarefied Fluid Flow over a Wedge in the Presence of Surface Slip and Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Das K.

    2017-12-01

    Full Text Available An analysis is presented to investigate the effects of thermal radiation on a convective slip flow of an electrically conducting slightly rarefied fluid, having temperature dependent fluid properties, over a wedge with a thermal jump at the surface of the boundary in the presence of a transverse magnetic field. The reduced equations are solved numerically using the finite difference code that implements the 3-stage Lobatto IIIa formula for the partitioned Runge-Kutta method. Numerical results for the dimensionless velocity and temperature as well as for the skin friction coefficient and the Nusselt number are presented through graphs and tables for pertinent parameters to show interesting aspects of the solution.

  11. Mixed convective thermally radiative micro nanofluid flow in a stretchable channel with porous medium and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Shahzad, S. A.; Meraj, M. A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M. K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Raza, J. [School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah (Malaysia)

    2016-03-15

    A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.

  12. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet

    International Nuclear Information System (INIS)

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2010-01-01

    An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.

  13. Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  14. Entropy Generation in Magnetohydrodynamic Mixed Convection Flow over an Inclined Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Muhammad Idrees Afridi

    2016-12-01

    Full Text Available This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing boundary layer equations are transformed into ordinary differential equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary differential equations are then solved numerically by a shooting technique along with the Runge-Kutta method. Expressions for entropy generation (Ns and Bejan number (Be in the form of dimensionless variables are also obtained. Impact of various physical parameters on the quantities of interest is seen.

  15. Mathematical modeling and fuzzy availability analysis for serial processes in the crystallization system of a sugar plant

    Science.gov (United States)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram

    2017-03-01

    The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.

  16. Computation of transient 3-D eddy current in nonmagnetic conductor

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1978-01-01

    A numerical procedure was developed to solve transient three-dimensional (3-D) eddy current problems for nonmagnetic conductor. Integral equation formulation in terms of vector potential is used to simplify the matching of boundary conditions. The resulting equations and their numerical approximation were shown to be singular and to require special handling. Several types of symmetries were introduced. They not only reduce the number of algebraic equations to be solved, but also modify the nature of the equations and render them nonsingular. Temporal behavior was obtained with the Runge-Kutta method. The program is tested in several examples of eddy currents for its spatial and temporal profiles, shielding, boundary surface effects, and application of various symmetry options

  17. Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  18. MHD Jeffrey nanofluid past a stretching sheet with viscous dissipation effect

    Science.gov (United States)

    Zokri, S. M.; Arifin, N. S.; Salleh, M. Z.; Kasim, A. R. M.; Mohammad, N. F.; Yusoff, W. N. S. W.

    2017-09-01

    This study investigates the influence of viscous dissipation on magnetohydrodynamic (MHD) flow of Jeffrey nanofluid over a stretching sheet with convective boundary conditions. The nonlinear partial differential equations are reduced into the nonlinear ordinary differential equations by utilizing the similarity transformation variables. The Runge-Kutta Fehlberg method is used to solve the problem numerically. The numerical solutions obtained are presented graphically for several dimensionless parameters such as Brownian motion, Lewis number and Eckert number on the specified temperature and concentration profiles. It is noted that the temperature profile is accelerated due to increasing values of Brownian motion parameter and Eckert number. In contrast, both the Brownian motion parameter and Lewis number have caused the deceleration in the concentration profiles.

  19. Time-discrete higher order ALE formulations: a priori error analysis

    KAUST Repository

    Bonito, Andrea

    2013-03-16

    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.

  20. Solving the heat transfer in the cold rain of a cross flow cooling tower. N3S code - cooling tower release

    International Nuclear Information System (INIS)

    Grange, J.L.

    1996-09-01

    A simplified model for heat and mass transfer in the lower rainfall of a counter-flow cooling toward had to be implemented in the N3S code-cooling tower release It is built from an old code: ZOPLU. The air velocity field is calculated by N3S. The air and water temperature fields are solved by a Runge-Kutta method on a mesh in an adequate number of vertical plans. Heat exchange and drags correlations are given. And all the necessary parameters are specified. All the subroutines are described. They are taken from ZOPLU and modified in order to adapt their abilities to the N3S requirements. (author). 6 refs., 3 figs., 3 tabs., 3 appends

  1. Study of heat transfer and flow of nanofluid in permeable channel in the presence of magnetic field

    Directory of Open Access Journals (Sweden)

    M. Fakour

    2015-03-01

    Full Text Available In this paper, laminar fluid flow and heat transfer in channel with permeable walls in the presence of a transverse magnetic field is investigated. Least square method (LSM for computing approximate solutions of nonlinear differential equations governing the problem. We have tried to show reliability and performance of the present method compared with the numerical method (Runge-Kutta fourth-rate to solve this problem. The influence of the four dimensionless numbers: the Hartmann number, Reynolds number, Prandtl number and Eckert number on non-dimensional velocity and temperature profiles are considered. The results show analytical present method is very close to numerically method. In general, increasing the Reynolds and Hartman number is reduces the nanofluid flow velocity in the channel and the maximum amount of temperature increase and increasing the Prandtl and Eckert number will increase the maximum amount of theta.

  2. A Highly Accurate Approach for Aeroelastic System with Hysteresis Nonlinearity

    Directory of Open Access Journals (Sweden)

    C. C. Cui

    2017-01-01

    Full Text Available We propose an accurate approach, based on the precise integration method, to solve the aeroelastic system of an airfoil with a pitch hysteresis. A major procedure for achieving high precision is to design a predictor-corrector algorithm. This algorithm enables accurate determination of switching points resulting from the hysteresis. Numerical examples show that the results obtained by the presented method are in excellent agreement with exact solutions. In addition, the high accuracy can be maintained as the time step increases in a reasonable range. It is also found that the Runge-Kutta method may sometimes provide quite different and even fallacious results, though the step length is much less than that adopted in the presented method. With such high computational accuracy, the presented method could be applicable in dynamical systems with hysteresis nonlinearities.

  3. Multiresolution and Explicit Methods for Vector Field Analysis and Visualization

    Science.gov (United States)

    Nielson, Gregory M.

    1997-01-01

    This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.

  4. Estimates of Surface Drifter Trajectories in the Equatorial Atlantic: A Multi-model Ensemble Approach

    Science.gov (United States)

    2012-01-01

    Physique des Oceans UMR6523 (CNRS. I B(). IFREMER. IRD). Brest , France C. N. Barron E. Joseph Metzger Naval Research Laboratory, Stennis Space...AF447 flight from Rio to Paris . The airplane disappeared on June 1st 2009 near 3° N and 31° W, and a large international effort was organized to...to Runge-Kutta trajectory integration. The low- pass filter was accomplished by convolving the original (XiCM velocity fields at each time step and

  5. The feasibility of using explicit method for linear correction of the particle size variation using NIR Spectroscopy combined with PLS2regression method

    Science.gov (United States)

    Yulia, M.; Suhandy, D.

    2018-03-01

    NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.

  6. Explicit hydration of ammonium ion by correlated methods employing molecular tailoring approach

    Science.gov (United States)

    Singh, Gurmeet; Verma, Rahul; Wagle, Swapnil; Gadre, Shridhar R.

    2017-11-01

    Explicit hydration studies of ions require accurate estimation of interaction energies. This work explores the explicit hydration of the ammonium ion (NH4+) employing Møller-Plesset second order (MP2) perturbation theory, an accurate yet relatively less expensive correlated method. Several initial geometries of NH4+(H2O)n (n = 4 to 13) clusters are subjected to MP2 level geometry optimisation with correlation consistent aug-cc-pVDZ (aVDZ) basis set. For large clusters (viz. n > 8), molecular tailoring approach (MTA) is used for single point energy evaluation at MP2/aVTZ level for the estimation of MP2 level binding energies (BEs) at complete basis set (CBS) limit. The minimal nature of the clusters upto n ≤ 8 is confirmed by performing vibrational frequency calculations at MP2/aVDZ level of theory, whereas for larger clusters (9 ≤ n ≤ 13) such calculations are effected via grafted MTA (GMTA) method. The zero point energy (ZPE) corrections are done for all the isomers lying within 1 kcal/mol of the lowest energy one. The resulting frequencies in N-H region (2900-3500 cm-1) and in O-H stretching region (3300-3900 cm-1) are in found to be in excellent agreement with the available experimental findings for 4 ≤ n ≤ 13. Furthermore, GMTA is also applied for calculating the BEs of these clusters at coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory with aVDZ basis set. This work thus represents an art of the possible on contemporary multi-core computers for studying explicit molecular hydration at correlated level theories.

  7. Torsional vibration of crankshaft in an engine propeller nonlinear dynamical system

    Science.gov (United States)

    Zhang, X.; Yu, S. D.

    2009-01-01

    Theoretical and experimental studies on torsional vibration of an aircraft engine-propeller system are presented in this paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element method. The nonlinear autonomous equations of motion for the engine-propeller dynamical system are established using the augmented Lagrange equations, and solved using the Runge-Kutta method after a degrees of freedom reduction scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.

  8. Classical collisions of protons with hydrogen atoms

    International Nuclear Information System (INIS)

    Banks, D.; Hughes, P.E.; Percival, I.C.; Barnes, K.S.; Valentine, N.A.; Wilson, Mc.B.

    1977-01-01

    The program solves the equations of motion for the interaction of 3 charged particles, obtaining final states in terms of initial states, and energy transfers, angles of ejection, and final cartesian co-ordinates of relative motion. Using a Monte Carlo method on many orbits total ionization and charge transfer cross sections, integral energy transfer cross sections and moments of energy transfers are estimated. Facilities are provided for obtaining angular distributions, momentum transfer cross sections and for comparison with various approximate classical theories. The equations of motion are solved using stepwise fourth-order Runge-Kutta integration with automatic steplength change. Selection of initial conditions is determined by the user, usually as a statistical distribution determined by a pseudorandom number subroutine. Classical representation theory and transformation methods are extensively used. (Auth.)

  9. Influence of structural parameters of deep groove ball bearings on vibration

    Science.gov (United States)

    Yu, Guangwei; Wu, Rui; Xia, Wei

    2018-04-01

    Taking 6201 bearing as the research object, a dynamic model of 4 degrees of freedom is established to solve the vibration characteristics such as the displacement, velocity and acceleration of deep groove ball bearings by MATLAB and Runge-Kutta method. By calculating the theoretical value of the frequency of the rolling element passing through the outer ring and the simulation value of the model, it can be known that the theoretical calculation value and the simulation value have good consistency. By the experiments, the measured values and simulation values are consistent. Using the mathematical model, the effect of structural parameters on vibration is obtained. The method in the paper is testified to be feasible and the results can be used as references for the design, manufacturing and testing of deep groove ball bearings.

  10. Classical collisions of protons with hydrogen atoms. [Equations of motion, cross sections, C code, FORTRAN, moments of inertia

    Energy Technology Data Exchange (ETDEWEB)

    Banks, D; Hughes, P E; Percival, I C [Queen Mary Coll., London (UK); Barnes, K S [National Health Service Operational Research Group, Royal Institute of Public Administration, Reading, Berkshire, UK; Richards, D [Open Univ., Milton Keynes (UK); Valentine, N A [Digital Equipment Corporation, Bilton House, Uxbridge Road, Ealing, London, UK; Wilson, Mc B [Glasgow Univ. (UK). Dept. of Natural Philosophy

    1977-01-01

    The program solves the equations of motion for the interaction of 3 charged particles, obtaining final states in terms of initial states, and energy transfers, angles of ejection, and final cartesian co-ordinates of relative motion. Using a Monte Carlo method on many orbits total ionization and charge transfer cross sections, integral energy transfer cross sections and moments of energy transfers are estimated. Facilities are provided for obtaining angular distributions, momentum transfer cross sections and for comparison with various approximate classical theories. The equations of motion are solved using stepwise fourth-order Runge-Kutta integration with automatic steplength change. Selection of initial conditions is determined by the user, usually as a statistical distribution determined by a pseudorandom number subroutine. Classical representation theory and transformation methods are extensively used.

  11. Numerical simulation of the motion of charged suspended particle in multi-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    A method for computing numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  12. Numerical Simulation of the Motion of Charged Suspended Particle in Multi-Phase Flow

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    A method for computing Numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  13. Fluorescence and optical absorption in spodumene

    International Nuclear Information System (INIS)

    Antonini, R.

    1987-01-01

    This work studied the mechanism of the isothermal decay's kinetic of the 15.600 cm-1 optical absorption band (A.O.) of irradiated spodumene, and the phosphorescence of irradiated spodumene in low temperatures. The kinetic mechanisms applying the bimolecular model to liberation, capture and recombination reactions are analysed. The coupled differential equations, resultants of this model, numerically using the Runge-Kutta method is solved, and a computer programs that allowed determine the kinetics parameters by try and error methods is developped. This work showed that the electrons are untrapped according to Arrhernios kinetic and that the parameters of the trap and recombination are proportional to a factor (√T - √T o ), where T o is the cutting temperature, bfore which the reactions do not occur. (author) [pt

  14. Flow modelling of steel fibre reinforced self-compacting concrete

    DEFF Research Database (Denmark)

    Svec, Oldrich

    was done by means of the Immersed boundary method with direct forcing. Evolution of the immersed particles was described by Newton's differential equations of motion. The Newton's equations were solved by means of Runge-Kutta-Fehlberg iterative scheme. Several challenges had to be overcome during...... in concrete can efficiently substitute or supplement conventional steel reinforcement, such as reinforcement bars. Ordinary concrete composition further makes the material stiff and non-flowable. Self-compacting concrete is an alternative material of low yield stress and plastic viscosity that does flow...... of the fluid near formwork surface. A method to incorporate the apparent slip into the Lattice Boltzmann fluid dynamics solver was suggested. The proposed numerical framework was observed to correctly predict flow of fibre reinforced self-compacting concrete. The proposed numerical framework can therefore...

  15. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    Science.gov (United States)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with

  16. The architecture of PrPSc: Threading secondary structure elements into the 4-rung ß-solenoid scaffold

    Science.gov (United States)

    Aims: We propose to exploit the wealth of theoretical and experimental constraints to develop a structure of the infectious prion (hamster PrP27-30). Recent cryo-EM based evidence has determined that PrPSc is a 4-rung ß-solenoid (Vázquez-Fernández et al. 2016, PLoS Pathog. 12(9): e1005835). This ev...

  17. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    Science.gov (United States)

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  18. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    Science.gov (United States)

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  19. High-Order Wave Propagation Algorithms for Hyperbolic Systems

    KAUST Repository

    Ketcheson, David I.

    2013-01-22

    We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.

  20. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    Science.gov (United States)

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  1. Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations

    KAUST Repository

    Bonito, Andrea

    2013-10-03

    We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.

  2. Simulation methods with extended stability for stiff biochemical Kinetics

    Directory of Open Access Journals (Sweden)

    Rué Pau

    2010-08-01

    Full Text Available Abstract Background With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (biochemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA. The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes. Conclusions The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (biochemical systems.

  3. Optimal intervention strategies for cholera outbreak by education and chlorination

    Science.gov (United States)

    Bakhtiar, Toni

    2016-01-01

    This paper discusses the control of infectious diseases in the framework of optimal control approach. A case study on cholera control was studied by considering two control strategies, namely education and chlorination. We distinct the former control into one regarding person-to-person behaviour and another one concerning person-to-environment conduct. Model are divided into two interacted populations: human population which follows an SIR model and pathogen population. Pontryagin maximum principle was applied in deriving a set of differential equations which consists of dynamical and adjoin systems as optimality conditions. Then, the fourth order Runge-Kutta method was exploited to numerically solve the equation system. An illustrative example was provided to assess the effectiveness of the control strategies toward a set of control scenarios.

  4. Study of possible chaotic, quasi-periodic and periodic structures in quantum dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar

    2014-01-01

    Existence of chaotic, quasi-periodic, and periodic structures of dust-ion acoustic waves is studied in quantum dusty plasmas through dynamical system approach. A system of coupled differential equations is derived from the fluid model and subsequently, variational matrix is obtained. The characteristic equation is obtained at the equilibrium point, and the behavior of nonlinear waves is studied numerically using Runge-Kutta method. The behavior of the dynamical system changes significantly when any of plasma parameters, such as the dust concentration parameter, temperature ratio, or the quantum diffraction parameter, is varied. The change of the characteristic of solution of the system is extensively studied. It is found that the system changes its behavior from chaotic pattern to limit cycle behavior

  5. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    Directory of Open Access Journals (Sweden)

    M. S. Tshehla

    2013-01-01

    Full Text Available The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. The full solutions for the temperature and velocity profiles are derived using the Runge-Kutta numerical method. The flow controlling parameters such as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound effect on the resulting flow profiles.

  6. Magnetization Reversal through Soliton in a Site-Dependent Weak Ferromagnet

    International Nuclear Information System (INIS)

    Kavitha, L.; Sathishkumar, P.; Saravanan, M.; Gopi, D.

    2010-06-01

    Switching the magnetization of a magnetic bit through flipping of soliton offers the possibility of developing a new innovative approach for data storage technologies. The spin dynamics of a site-dependent ferromagnet with antisymmetric Dzyaloshinskii-Moriya interaction is governed by a generalized inhomogeneous higher order nonlinear Schroedinger equation. We demonstrate the magnetization reversal through flipping of soliton in the ferromagnetic medium by solving the two coupled evolution equations for the velocity and amplitude of the soliton using the fourth order Runge-Kutta method numerically. We propose a new approach to induce the flipping behaviour of soliton in the presence of inhomogeneity by tuning the parameter associated with Dzyaloshinskii-Moriya interaction which causes the soliton to move with constant velocity and amplitude along the spin lattice. (author)

  7. Simulation on Natural Convection of a Nanofluid along an Isothermal Inclined Plate

    Science.gov (United States)

    Mitra, Asish

    2017-08-01

    A numerical algorithm is presented for studying laminar natural convection flow of a nanofluid along an isothermal inclined plate. By means of similarity transformation, the original nonlinear partial differential equations of flow are transformed to a set of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical analysis in Matlab environment. Dimensionless velocity, temperature profiles and nanoparticle concentration for various angles of inclination are illustrated graphically. The effects of Prandtl number, Brownian motion parameter and thermophoresis parameter on Nusselt number are also discussed. The results of the present simulation are then compared with previous one available in literature with good agreement.

  8. Water-based squeezing flow in the presence of carbon nanotubes between two parallel disks

    Directory of Open Access Journals (Sweden)

    Haq Rizwan Ul

    2016-01-01

    Full Text Available Present study is dedicated to investigate the water functionalized carbon nanotubes squeezing flow between two parallel discs. Moreover, we have considered magnetohydrodynamics effects normal to the disks. In addition we have considered two kind of carbon nanotubes named: single wall carbon nanotubes (SWCNT and multiple wall carbon nanotubes (MWCNT with in the base fluid. Under this squeezing flow mechanism model has been constructed in the form of partial differential equation. Transformed ordinary differential equations are solved numerically with the help of Runge-Kutta-Fehlberg method. Results for velocity and temperature are constructed against all the emerging parameters. Comparison among the SWCNT and MWCNT are drawn for skin friction coefficient and local Nusselt number. Conclusion remarks are drawn under the observation of whole analysis.

  9. An application of the explicit method for analysing intersystem dependencies in the evaluation of event trees

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Frutuoso e Melo, P.F.F.; Lima, J.E.P.; Stal, I.L.

    1985-01-01

    A computacional application of the explicit method for analyzing event trees in the context of probabilistic risk assessments is discussed. A detailed analysis of the explicit method is presented, including the train level analysis (TLA) of safety systems and the impact vector method. It is shown that the penalty for not adopting TLA is that in some cases non-conservative results may be reached. The impact vector method can significantly reduce the number of sequences to be considered, and its use has inspired the definition of a dependency matrix, which enables the proper running of a computer code especially developed for analysing event trees. The code has been extensively used in the Angra 1 PRA currently underway. In its present version it gives as output the dominant sequences for each given initiator, properly classiying them in core-degradation classes as specified by the user. (Author) [pt

  10. Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration

    Science.gov (United States)

    Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.

    2017-12-01

    We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.

  11. The effect of numerical techniques on differential equation based chaotic generators

    KAUST Repository

    Zidan, Mohammed A.

    2012-07-29

    In this paper, we study the effect of the numerical solution accuracy on the digital implementation of differential chaos generators. Four systems are built on a Xilinx Virtex 4 FPGA using Euler, mid-point, and Runge-Kutta fourth order techniques. The twelve implementations are compared based on the FPGA used area, maximum throughput, maximum Lyapunov exponent, and autocorrelation confidence region. Based on circuit performance and the chaotic response of the different implementations, it was found that less complicated numerical solution has better chaotic response and higher throughput.

  12. Variational nature, integration, and properties of Newton reaction path.

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-21

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  13. Variational nature, integration, and properties of Newton reaction path

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-01

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  14. Power-limited low-thrust trajectory optimization with operation point detection

    Science.gov (United States)

    Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng

    2018-06-01

    The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.

  15. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    Science.gov (United States)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  16. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    Science.gov (United States)

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  17. On Cattaneo–Christov heat flux model for Carreau fluid flow over a slendering sheet

    Directory of Open Access Journals (Sweden)

    Hashim

    Full Text Available The underlying intentions of this article are to investigate the impact of non-Fourier heat flux model on the stagnation-point flow of non-Newtonian Carreau fluid. In this study, the innovative Cattaneo–Christov constitutive model is introduced to study the characteristics of thermal relaxation time. The flow is impelled by a slendering surface which is of the variable thickness. In the model, the physical mechanism responsible for homogeneous–heterogeneous reactions are further taken into account. Also, the diffusion coefficients of the reactant and auto catalyst are considered to be equal. The governing non-linear partial differential equations consisting of the momentum, energy and concentration equations are reduced to the coupled ordinary differential equations by means of local similarity transformations. The transformed ODEs are tackled numerically by employing an effective shooting algorithm along with the Runge–Kutta Fehlberg scheme. The physical characteristics of the fluid velocity, temperature and concentration profiles are illuminated with the variation of numerous governing factors and are presented graphically. For instance, our result indicates that the temperature and thermal boundary layer thickness are lower in case of Cattaneo–Christov heat flux model when compared to classical Fourier’s heat model. Meanwhile, the rate of heat transfer is significantly improved by a high wall thickness parameter and an opposite influence is found due to the thermal relaxation parameter. We further noticed that a higher value of homogeneous and heterogeneous reaction parameter corresponds to a deceleration in the concentration field and it shows an inverse relation for the Schmidt number. A correlation with accessible results for specific cases is found with fabulous consent. Keywords: Cattaneo–Christov model, Carreau fluid, Slendering sheet, Homogeneous–heterogeneous reactions, Runge–Kutta method

  18. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J

    2013-01-01

    This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. Many clear mathematical descriptions of important techniques in computational physics are given. The first part of the book discusses the basic numerical methods. A large number of exercises and computer experiments allows to study the properties of these methods. The second part concentrates on simulation of classical and quantum systems. It uses a rather general concept for the equation of motion which can be applied to ordinary and partial differential equations. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multistep methods and the class of Verlet methods which is introduced by studying the motion in Liouville space. Besides the classical methods, inverse interpolation is discussed, together with the p...

  19. Replica exchange with solute tempering: A method for sampling biological systems in explicit water

    Science.gov (United States)

    Liu, Pu; Kim, Byungchan; Friesner, Richard A.; Berne, B. J.

    2005-09-01

    An innovative replica exchange (parallel tempering) method called replica exchange with solute tempering (REST) for the efficient sampling of aqueous protein solutions is presented here. The method bypasses the poor scaling with system size of standard replica exchange and thus reduces the number of replicas (parallel processes) that must be used. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST is compared with standard replica exchange for an alanine dipeptide molecule in water. The comparisons confirm that REST greatly reduces the number of CPUs required by regular replica exchange and increases the sampling efficiency. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water. Author contributions: B.J.B. designed research; P.L. and B.K. performed research; P.L. and B.K. analyzed data; and P.L., B.K., R.A.F., and B.J.B. wrote the paper.Abbreviations: REST, replica exchange with solute tempering; REM, replica exchange method; MD, molecular dynamics.*P.L. and B.K. contributed equally to this work.

  20. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Directory of Open Access Journals (Sweden)

    Rachel R. Sleeter

    2015-06-01

    Full Text Available Spatially-explicit state-and-transition simulation models of land use and land cover (LULC increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS, a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age, spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest. Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  1. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Science.gov (United States)

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  2. The Combined Internal and Principal Parametric Resonances on Continuum Stator System of Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    Baizhou Li

    2014-01-01

    Full Text Available With the increasing requirement of quiet electrical machines in the civil and defense industry, it is very significant and necessary to predict the vibration and noise characteristics of stator and rotor in the early conceptual phase. Therefore, the combined internal and principal parametric resonances of a stator system excited by radial electromagnetic force are presented in this paper. The stator structure is modeled as a continuum double-shell system which is loaded by a varying distributed electromagnetic load. The nonlinear dynamic equations are derived and solved by the method of multiple scales. The influences of mechanical and electromagnetic parameters on resonance characteristics are illustrated by the frequency-response curves. Furthermore, the Runge-Kutta method is adopted to numerically analyze steady-state response for the further understanding of the resonance characteristics with different parameters.

  3. A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas

    International Nuclear Information System (INIS)

    Momeni, M; Kourakis, I; Moslehi-Fard, M; Shukla, P K

    2007-01-01

    The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol-Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge-Kutta method. The presence of chaotic limit cycles is pointed out. (fast track communication)

  4. Bifurcation of Safe Basins and Chaos in Nonlinear Vibroimpact Oscillator under Harmonic and Bounded Noise Excitations

    Directory of Open Access Journals (Sweden)

    Rong Haiwu

    2014-01-01

    Full Text Available The erosion of the safe basins and chaotic motions of a nonlinear vibroimpact oscillator under both harmonic and bounded random noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed. The sudden change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins, bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region, hence making the system become more unsafely and chaotic motions may occur more easily.

  5. Analysis on Dynamic Transmission Accuracy for RV Reducer

    Directory of Open Access Journals (Sweden)

    Zhang Fengshou

    2017-01-01

    Full Text Available By taking rotate vector (RV reducer as the research object, the factors affecting the transmission accuracy are studied, including the machining errors of the main parts, assembly errors, clearance, micro-displacement, gear mesh stiffness and damping, bearing stiffness. Based on Newton second law, the transmission error mathematical model of RV reducer is set up. Then, the RV reducer transmission error curve is achieved by solving the mathematical model using the Runge-Kutta methods under the combined action of various error factors. Through the analysis of RV reducer transmission test, it can be found that there are similar variation trend and frequency components compared the theoretical research and experimental result. The presented method is useful to the research on dynamic transmission accuracy of RV reducer, and also applies to research the transmission accuracy of other cycloid drive systems.

  6. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.

    Science.gov (United States)

    Sundnes, J; Lines, G T; Tveito, A

    2001-08-01

    The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.

  7. Mathematical Modeling of a Moving Planar Payload Pendulum on Flexible Portal Framework

    Directory of Open Access Journals (Sweden)

    Edwar Yazid

    2012-03-01

    Full Text Available Mathematical modeling of a moving planar payload pendulum on elastic portal framework is presented in this paper. The equations of motion of such a system are obtained by modeling the portal frame using finite element in conjunction with moving finite element method and moving planar payload pendulum by using Lagrange’s equations. The generated equations indicate the presence of nonlinear coupling between dynamics of portal framework and the payload pendulum. The combinational direct numerical integration technique, namely Newmarkand fourth-order Runge-Kutta method, is then proposed to solve the coupled equations of motion. Several numerical simulations are performed and the results are verified with several benchmarks. The results indicate that the amplitude and frequency of the payload pendulum swing angle are greatly affected by flexibility of structure and the cable in term of carriage speed. 

  8. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    Science.gov (United States)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  9. Theoretical model of two-phase drift flow on natural circulation

    International Nuclear Information System (INIS)

    Yang Xingtuan; Jiang Shengyao; Zhang Youjie

    2002-01-01

    Some expressions, such as sub-cooled boiling in the heating section, condensation near the riser inlet, flashing in the riser, and pressure balance in the steam-space, have been theoretically deduced from the physical model of 5 MW heating reactor test loop. The thermodynamics un-equilibrium etc have been considered too. A entire drift model with four equations has been formed, which can be applied to natural circulation system with low pressure and low steam quality. By means of introducing the concept of condensation layer, condensing of bubbles in the sub-cooled liquid has been formulated for the first time. The restrictive equations of the steam space pressure and liquid level have been offered. The equations can be solved by means of integral method, then by using Rung-Kutta-Verner method the final results is obtained

  10. Semi-exact solution of non-uniform thickness and density rotating disks. Part II: Elastic strain hardening solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2009-01-01

    Analytical solutions for the elastic-plastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption. The solution employs a technique called the homotopy perturbation method. A numerical solution of the governing differential equation is also presented based on the Runge-Kutta's method for both elastic and plastic regimes. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. The results of the two methods are compared and generally show good agreement. It is shown that, depending on the boundary conditions used, the plastic core may contain one, two or three different plastic regions governed by different mathematical forms of the yield criterion. Four different stages of elastic-plastic deformation occur. The expansion of these plastic regions with increasing angular velocity is obtained together with the distributions of stress and displacement

  11. Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Hinteregger, H.E.

    1980-01-01

    Measurements of the solar flux in the Schumann-Runge continuum (1350-1750 A) by the Atmosphere Explorer satellites reveal a strong dependence on solar activity. Solar intensities over the rising phase of cycle 21, increase by more than a factor of two at the shorter wavelengths (1350 A), with a smaller change (approx.10%) at 1750 A. A significant 27 day variability is found to exist superimposed on the solar cycle variation. Because radiation in this portion of the spectum is important to the lower thermosphere in the photodissociation of 0 2 and the production of 0( 1 D), we use the unattenuated Schumann-Runge continuum dissociation frequency as a parameter to illustrate the magnitude and temporal characteristics of this variation. The values of this parameter, J/sub infinity/(0 2 )/sub SR/, range from 1.5 x 10 -6 s -1 for April 23, 1974, to 2.8 x 10 -6 s -1 for February 19, 1979. In studies of oxygen in the lower thermosphere, it is therefore necessary to use solar spectral intensities representative of the actual conditions for which the calculations are made. Both the J/sub infinity/(0 2 )/sub SR/ parameter and the solar flux at various wavelengths over the 1350 to 1750 A range can be expressed in terms of the F10.7 index to a reasonable approximation

  12. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    Science.gov (United States)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  13. Characterization of blade throw from a 2.3MW horizontal axis wind turbine upon failure

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Sørensen, Jens Nørkær

    2015-01-01

    The present work concerns aerodynamics of thrown objects from a 2.3 MW Horizontal Axis Wind Turbine (HAWT), as a consequence of blade failure. The governing set of ordinary differential equations for the flying objects are derived and numerically solved using a 4th order Runge-Kutta time advancing...... on their size. Thereafter, throw distance picks up exponentially with the tip speed. By comparing the throw distance calculations with and without dynamic stall model being active, it is concluded that dynamic stall does not play a major role in throw distances....

  14. An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method

    International Nuclear Information System (INIS)

    Belendez, A.; Mendez, D.I.; Fernandez, E.; Marini, S.; Pascual, I.

    2009-01-01

    The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.

  15. Adjustment technique without explicit formation of normal equations /conjugate gradient method/

    Science.gov (United States)

    Saxena, N. K.

    1974-01-01

    For a simultaneous adjustment of a large geodetic triangulation system, a semiiterative technique is modified and used successfully. In this semiiterative technique, known as the conjugate gradient (CG) method, original observation equations are used, and thus the explicit formation of normal equations is avoided, 'huge' computer storage space being saved in the case of triangulation systems. This method is suitable even for very poorly conditioned systems where solution is obtained only after more iterations. A detailed study of the CG method for its application to large geodetic triangulation systems was done that also considered constraint equations with observation equations. It was programmed and tested on systems as small as two unknowns and three equations up to those as large as 804 unknowns and 1397 equations. When real data (573 unknowns, 965 equations) from a 1858-km-long triangulation system were used, a solution vector accurate to four decimal places was obtained in 2.96 min after 1171 iterations (i.e., 2.0 times the number of unknowns).

  16. Parallel Computation on Multicore Processors Using Explicit Form of the Finite Element Method and C++ Standard Libraries

    Directory of Open Access Journals (Sweden)

    Rek Václav

    2016-11-01

    Full Text Available In this paper, the form of modifications of the existing sequential code written in C or C++ programming language for the calculation of various kind of structures using the explicit form of the Finite Element Method (Dynamic Relaxation Method, Explicit Dynamics in the NEXX system is introduced. The NEXX system is the core of engineering software NEXIS, Scia Engineer, RFEM and RENEX. It has the possibilities of multithreaded running, which can now be supported at the level of native C++ programming language using standard libraries. Thanks to the high degree of abstraction that a contemporary C++ programming language provides, a respective library created in this way can be very generalized for other purposes of usage of parallelism in computational mechanics.

  17. A mathematical model for ethanol fermentation from oil palm trunk sap using Saccharomyces cerevisiae

    Science.gov (United States)

    Sultana, S.; Jamil, Norazaliza Mohd; Saleh, E. A. M.; Yousuf, A.; Faizal, Che Ku M.

    2017-09-01

    This paper presents a mathematical model and solution strategy of ethanol fermentation for oil palm trunk (OPT) sap by considering the effect of substrate limitation, substrate inhibition product inhibition and cell death. To investigate the effect of cell death rate on the fermentation process we extended and improved the current mathematical model. The kinetic parameters of the model were determined by nonlinear regression using maximum likelihood function. The temporal profiles of sugar, cell and ethanol concentrations were modelled by a set of ordinary differential equations, which were solved numerically by the 4th order Runge-Kutta method. The model was validated by the experimental data and the agreement between the model and experimental results demonstrates that the model is reasonable for prediction of the dynamic behaviour of the fermentation process.

  18. Thermo-diffusion effects on MHD stagnation point flow towards a stretching sheet in a nanofluid

    Directory of Open Access Journals (Sweden)

    Umar Khan

    2014-09-01

    Full Text Available Thermodiffusion effects on stagnation point flow of a nanofluid towards a stretching surface with applied magnetic field is presented. Similarity transforms are applied to reduce the equations that govern the flow to a system of nonlinear ordinary differential equations. Runge-Kutta-Fehlberg method is applied to solve the system. Results are compared with existing solutions that are special cases to our problem. Concrete graphical analysis is carried out to study the effects of different emerging parameters such as stretching ratio A, magnetic influence parameter M, Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, nanofluid Lewis number Ln, modified Dufour parameter Nd and Dufour solutal number Ld coupled with comprehensive discussions. Numerical effects of local Nusselt number, local Sherwood number and nanofluid Sherwood number are also discussed.

  19. Numerical simulation of 2 D laminar flow subjected to the Lorentz force effect in a channel with backward facing step

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, Iman; Paknejad, Amin; Ghassemi, Hassan [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of)

    2012-10-15

    This paper presents the numerical solutions of a two dimensional laminar flow over a backward facing step in the presence of the Lorentz body force. The Navier Stokes equations in a vorticity stream function formulation are numerically solved using a uniform grid mesh of 2001 {Chi} 51 points. A second order central difference approximation is used for spatial derivatives. The solutions progress in time with a fourth order Runge Kutta method. The unsteady backward facing step flow solution is computed for Reynolds numbers 100 to 800. The size and genesis of the recirculating regions are dramatically affected by applying the Lorentz force. The results demonstrate that using an appropriate configuration for applying the Lorentz force can make it an essential tool for controlling the flow in channels with a backward facing step.

  20. Unsteady Hydromagnetic Flow of Radiating Fluid Past a Convectively Heated Vertical Plate with the Navier Slip

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2014-01-01

    Full Text Available This paper investigates the unsteady hydromagnetic-free convection of an incompressible electrical conducting Boussinesq’s radiating fluid past a moving vertical plate in an optically thin environment with the Navier slip, viscous dissipation, and Ohmic and Newtonian heating. The nonlinear partial differential equations governing the transient problem are obtained and tackled numerically using a semidiscretization finite difference method coupled with Runge-Kutta Fehlberg integration technique. Numerical data for the local skin friction coefficient and the Nusselt number have been tabulated for various values of parametric conditions. Graphical results for the fluid velocity, temperature, skin friction, and the Nusselt number are presented and discussed. The results indicate that the skin friction coefficient decreases while the heat transfer rate at the plate surface increases as the slip parameter and Newtonian heating increase.

  1. The effect of ac-driven force on superlubricity in a two-dimensional Frenkel-Kontorova model

    International Nuclear Information System (INIS)

    Lin Maimai

    2010-01-01

    By using the molecular dynamic simulation method with a fourth-order Runge-Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel-Kontorova model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the static friction force have been studied in detail. It was found that not only the amplitude and frequency of the ac-driven force, but also the direction of dc- and ac-driven forces and the misfit angle between two layers have a strong influence on the static friction force. This indicated that the phenomenon of superlubricity appears easily with larger ac amplitude and smaller ac frequency for some special direction of the external driving force and misfit angle.

  2. Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

    Science.gov (United States)

    Zirak, H.; Jafari, S.

    2015-06-01

    In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

  3. Influence of Induced Magnetic Field on Free Convection of Nanofluid Considering Koo-Kleinstreuer-Li (KKL Correlation

    Directory of Open Access Journals (Sweden)

    M. Sheikholeslami

    2016-11-01

    Full Text Available In this paper, the influence of induced magnetic field on free convection of Al2O3-water nanofluid on permeable plate by means of Koo-Kleinstreuer-Li (KKL model is reported. Impact of Brownian motion, along with the properties of nanofluid, are also taken into account. The resulting equations are solved utilizing Runge-Kutta integration method. Obtained results are examined for innumerable energetic parameters, namely Al2O3 volume fraction, suction parameter, and Hartmann and magnetic Prandtl numbers. Results indicate that the velocity profile reduces with rise of the suction parameter and magnetic Prandtl and Hartmann numbers but it increases with addition of nanoparticles. Shear stress enhances with rise of suction parameter, magnetic Prandtl and Hartmann numbers. Temperature gradient improves with augment of suction parameter.

  4. Thermodynamics of bread baking: A two-state model

    Science.gov (United States)

    Zürcher, Ulrich

    2014-03-01

    Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.

  5. Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, Graphene and silver nanoparticles

    Science.gov (United States)

    Mamatha Upadhya, S.; Raju, C. S. K.; Saleem, S.; Alderremy, A. A.; Mahesha

    2018-06-01

    A Comprehensive study on laminar, magnetohydrodynamic (MHD) boundary layer flow of nanofluid (water + Silver, water + Graphene) embedded with conducting micrometer sized dust particles over a stretching cylinder with the incorporation of Cattaneo-Christov heat flux model is conducted. Appropriate similarity variables are employed to the flow governing equations and the resulting ordinary differential equations are solved by employing Runge-Kutta-Fehlberg method. The results for varied controlling parameters for both dusty nano fluid and dust phase are shown through graphs, table and discussed in detail. Authentication of the obtained results is provided by comparing with published results. Results indicate that Graphene + water dusty nanofluid shows better heat transfer performance compared with Silver + water dusty nanofluid. Improvement in thermal relaxation boosts temperature distribution in both fluid and dust phase.

  6. Heat and Mass Transfer on Squeezing Unsteady MHD Nano fluid Flow between Parallel Plates with Slip Velocity Effect

    International Nuclear Information System (INIS)

    Singh, K.; Rawat, S. K.; Kumar, M.

    2016-01-01

    Heat and mass transfer behavior of unsteady flow of squeezing between two parallel plates in the sight of uniform magnetic field with slip velocity effect is investigated. The governing equations representing fluid flow have been transformed into nonlinear ordinary differential equations using similarity transformation. The equations thus obtained have been solved numerically using Runge-Kutta-Fehlberg method with shooting technique. Effects on the behavior of velocity, temperature, and concentration for various values of relevant parameters are illustrated graphically. The skin-friction coefficient and heat and mass transfer rate are also tabulated for various governing parameters. The results indicate that, for nano fluid flow, the rates of heat and mass transfer are inversely proportional to nanoparticle volume fraction and magnetic parameter. The rate of mass transfer increases with increasing values of Schmidt number and squeeze number.

  7. Shape effects of nanoparticles on the squeezed flow between two Riga plates in the presence of thermal radiation

    Science.gov (United States)

    Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed; Waheed, Asif

    2017-07-01

    This paper aims to explore the flow of water saturated with copper nanoparticles of different shapes between parallel Riga plates. The plates are placed horizontally in the coordinate axis. Influence of the linear thermal radiation is also taken into account. The equations governing the flow have been transformed into a nondimensional form by employing a set of similarity transformations. The obtained system is solved analytically (variation-of-parameters method) and numerically (Runge-Kutta scheme). Under certain conditions, a special case of the model is also explored. Furthermore, influences of the physical quantities on velocity and thermal fields are discussed with the graphical aid over the domain of interest. The quantities of engineering and practical interest (skin friction coefficient and local rate of heat transfer) are also explored graphically.

  8. Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma

    Science.gov (United States)

    Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.

    2018-05-01

    In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.

  9. Acoustic radiation due to gust-airfoil and blade-vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.K. [Wichita State Univ., KS (United States). National Inst. for Aviation Research

    2001-07-01

    An accurate and efficient method for computing acoustic radiation due to gust-airfoil and blade-vortex interactions is developed. In these types of problems, sound is generated as a result of interaction between the unsteadiness in the flow and the body. The acoustic governing equations are derived by linearizing the compressible unsteady Euler equations about the steady mean flow. From these equations, the frequency domain acoustic equations are obtained assuming a single frequency disturbance. The equations are solved by employing a multi-stage Runge-Kutta finite-volume time-stepping scheme with a fourth-order compact spatial discretization. In the farfield, both the Giles' nonreflecting boundary condition and the perfectly matched layer (PML) absorbing boundary conditions are employed. This report describes the technical approach and shows the results calculated for the interactions. (orig.)

  10. Convergent Power Series of sech⁡(x and Solutions to Nonlinear Differential Equations

    Directory of Open Access Journals (Sweden)

    U. Al Khawaja

    2018-01-01

    Full Text Available It is known that power series expansion of certain functions such as sech⁡(x diverges beyond a finite radius of convergence. We present here an iterative power series expansion (IPS to obtain a power series representation of sech⁡(x that is convergent for all x. The convergent series is a sum of the Taylor series of sech⁡(x and a complementary series that cancels the divergence of the Taylor series for x≥π/2. The method is general and can be applied to other functions known to have finite radius of convergence, such as 1/(1+x2. A straightforward application of this method is to solve analytically nonlinear differential equations, which we also illustrate here. The method provides also a robust and very efficient numerical algorithm for solving nonlinear differential equations numerically. A detailed comparison with the fourth-order Runge-Kutta method and extensive analysis of the behavior of the error and CPU time are performed.

  11. Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine in Consideration of Randomness of Loadings and Parameters

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.

  12. Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm

    Science.gov (United States)

    Ara, Asmat; Khan, Najeeb Alam; Naz, Farah; Raja, Muhammad Asif Zahoor; Rubbab, Qammar

    2018-01-01

    This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs) are converted to nonlinear coupled ordinary differential equations (ODEs) with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE) algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.

  13. Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm

    Directory of Open Access Journals (Sweden)

    Asmat Ara

    2018-01-01

    Full Text Available This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs are converted to nonlinear coupled ordinary differential equations (ODEs with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.

  14. Explicit TE/TM scheme for particle beam simulations

    International Nuclear Information System (INIS)

    Dohlus, M.; Zagorodnov, I.

    2008-10-01

    In this paper we propose an explicit two-level conservative scheme based on a TE/TM like splitting of the field components in time. Its dispersion properties are adjusted to accelerator problems. It is simpler and faster than the implicit version. It does not have dispersion in the longitudinal direction and the dispersion properties in the transversal plane are improved. The explicit character of the new scheme allows a uniformly stable conformal method without iterations and the scheme can be parallelized easily. It assures energy and charge conservation. A version of this explicit scheme for rotationally symmetric structures is free from the progressive time step reducing for higher order azimuthal modes as it takes place for Yee's explicit method used in the most popular electrodynamics codes. (orig.)

  15. Numerical simulation of interface movement in gas-liquid two-phase flows with Level Set method

    International Nuclear Information System (INIS)

    Li Huixiong; Chinese Academy of Sciences, Beijing; Deng Sheng; Chen Tingkuan; Zhao Jianfu; Wang Fei

    2005-01-01

    Numerical simulation of gas-liquid two-phase flow and heat transfer has been an attractive work for a quite long time, but still remains as a knotty difficulty due to the inherent complexities of the gas-liquid two-phase flow resulted from the existence of moving interfaces with topology changes. This paper reports the effort and the latest advances that have been made by the authors, with special emphasis on the methods for computing solutions to the advection equation of the Level set function, which is utilized to capture the moving interfaces in gas-liquid two-phase flows. Three different schemes, i.e. the simple finite difference scheme, the Superbee-TVD scheme and the 5-order WENO scheme in combination with the Runge-Kutta method are respectively applied to solve the advection equation of the Level Set. A numerical procedure based on the well-verified SIMPLER method is employed to numerically calculate the momentum equations of the two-phase flow. The above-mentioned three schemes are employed to simulate the movement of four typical interfaces under 5 typical flowing conditions. Analysis of the numerical results shows that the 5-order WENO scheme and the Superbee-TVD scheme are much better than the simple finite difference scheme, and the 5-order WENO scheme is the best to compute solutions to the advection equation of the Level Set. The 5-order WENO scheme will be employed as the main scheme to get solutions to the advection equations of the Level Set when gas-liquid two-phase flows are numerically studied in the future. (authors)

  16. Step Sizes for Strong Stability Preservation with Downwind-Biased Operators

    KAUST Repository

    Ketcheson, David I.

    2011-08-04

    Strong stability preserving (SSP) integrators for initial value ODEs preserve temporal monotonicity solution properties in arbitrary norms. All existing SSP methods, including implicit methods, either require small step sizes or achieve only first order accuracy. It is possible to achieve more relaxed step size restrictions in the discretization of hyperbolic PDEs through the use of both upwind- and downwind-biased semidiscretizations. We investigate bounds on the maximum SSP step size for methods that include negative coefficients and downwind-biased semi-discretizations. We prove that the downwind SSP coefficient for linear multistep methods of order greater than one is at most equal to two, while the downwind SSP coefficient for explicit Runge–Kutta methods is at most equal to the number of stages of the method. In contrast, the maximal downwind SSP coefficient for second order Runge–Kutta methods is shown to be unbounded. We present a class of such methods with arbitrarily large SSP coefficient and demonstrate that they achieve second order accuracy for large CFL number.

  17. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens

    International Nuclear Information System (INIS)

    Yildirim, A.; Gökdoğan, A.; Merdan, M.; Lakshminarayanan, V.

    2012-01-01

    An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed, using the multi-step differential transform method based on the classical differential transformation method. Numerical results are compared to those obtained by the fourth-order Runge—Kutta method to illustrate the precision and effectiveness of the proposed method. Results are given in explicit and graphical forms. (fundamental areas of phenomenology(including applications))

  18. Numerical solution of one-dimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes

    Energy Technology Data Exchange (ETDEWEB)

    López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es

    2017-03-15

    Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.

  19. A finite difference method for off-fault plasticity throughout the earthquake cycle

    Science.gov (United States)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  20. 2.5-D poroelastic wave modelling in double porosity media

    Science.gov (United States)

    Liu, Xu; Greenhalgh, Stewart; Wang, Yanghua

    2011-09-01

    To approximate seismic wave propagation in double porosity media, the 2.5-D governing equations of poroelastic waves are developed and numerically solved. The equations are obtained by taking a Fourier transform in the strike or medium-invariant direction over all of the field quantities in the 3-D governing equations. The new memory variables from the Zener model are suggested as a way to represent the sum of the convolution integrals for both the solid particle velocity and the macroscopic fluid flux in the governing equations. By application of the memory equations, the field quantities at every time step need not be stored. However, this approximation allows just two Zener relaxation times to represent the very complex double porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The 2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much more computationally efficient than the full 3-D solution. As an illustrative example, we firstly show the computed 2.5-D wavefields in a homogeneous single porosity model for which we reformulated an analytic solution. Results for a two-layer, water-saturated double porosity model and a laterally heterogeneous double porosity structure are also presented.

  1. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    Science.gov (United States)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  2. Numerical study of homogeneous–heterogeneous reactions in Sisko fluid flow past a stretching cylinder

    Directory of Open Access Journals (Sweden)

    Rabia Malik

    2018-03-01

    Full Text Available The motivation behind the present study is to focus on the effects of stagnation-point flow and heat transfer to the Sisko fluid past an impermeable stretching cylinder involving convective boundary conditions with homogeneous–heterogeneous reactions. Diffusion coefficients of species A and B are assumed to be of the same size. Also, it is assumed that heat released during chemical reaction is negligible. A system of governing ordinary differential equations is obtained by using suitable transformations which are then solved numerically by means of the shooting method combined with Runge-Kutta method. The obtained numerical results are then presented in graphical and tabular form and are discussed at length. The results obtained reveal that the concentration profile decreases with increasing homogeneous and heterogeneous reactions parameters. Keywords: Homogeneous–heterogeneous reactions, Non-linearly stretching cylinder, Stagnation-point flow, Convective boundary conditions, Sisko fluid

  3. Numerical simulations of generalized Langevin equations with deeply asymptotic parameters

    International Nuclear Information System (INIS)

    Bao Jingdong; Li Rongwu; Wu Wei

    2004-01-01

    A unified algorithm for solving Langevin equations with deeply asymptotic parameters is proposed and tested. The method consists of identifying solvable linear friction and implementing the force evaluations by use of the Runge-Kutta method. We apply the present scheme to the periodic motion of an overdamped particle subjected to a multiplicative white noise. The accurate calculations for the temporal velocity of the particle and its correlation function can be realized by introducing an inertial term. It is shown that the fluctuation around the steady quantity increases with decreasing time step in the overdamped white-noise algorithm, however, a massive white-noise technique greatly reduces this spurious drift, and the result can converge to the correct value if the added inertia approaches zero. The other application is the simulation of generalized Langevin equation with an exponential memory friction, this allows us to treat a weak non-Markovian process

  4. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    International Nuclear Information System (INIS)

    Mueller, E.

    2007-01-01

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  5. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, E.

    2007-12-15

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  6. Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity

    Directory of Open Access Journals (Sweden)

    Moradi Amir

    2013-01-01

    Full Text Available In this article, the simultaneous convection-radiation heat transfer of a moving fin of variable thermal conductivity is studied. The differential transformation method (DTM is applied for an analytic solution for heat transfer in fin with two different profiles. Fin profiles are rectangular and exponential. The accuracy of analytic solution is validated by comparing it with the numerical solution that is obtained by fourth-order Runge-Kutta method. The analytical and numerical results are shown for different values of the embedding parameters. DTM results show that series converge rapidly with high accuracy. The results indicate that the fin tip temperature increases when ambient temperature increases. Conversely, the fin tip temperature decreases with an increase in the Peclet number, convection-conduction and radiation-conduction parameters. It is shown that the fin tip temperature of the exponential profile is higher than the rectangular one. The results indicate that the numerical data and analytical method are in a good agreement with each other.

  7. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    Science.gov (United States)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  8. GPU-accelerated algorithms for many-particle continuous-time quantum walks

    Science.gov (United States)

    Piccinini, Enrico; Benedetti, Claudia; Siloi, Ilaria; Paris, Matteo G. A.; Bordone, Paolo

    2017-06-01

    Many-particle continuous-time quantum walks (CTQWs) represent a resource for several tasks in quantum technology, including quantum search algorithms and universal quantum computation. In order to design and implement CTQWs in a realistic scenario, one needs effective simulation tools for Hamiltonians that take into account static noise and fluctuations in the lattice, i.e. Hamiltonians containing stochastic terms. To this aim, we suggest a parallel algorithm based on the Taylor series expansion of the evolution operator, and compare its performances with those of algorithms based on the exact diagonalization of the Hamiltonian or a 4th order Runge-Kutta integration. We prove that both Taylor-series expansion and Runge-Kutta algorithms are reliable and have a low computational cost, the Taylor-series expansion showing the additional advantage of a memory allocation not depending on the precision of calculation. Both algorithms are also highly parallelizable within the SIMT paradigm, and are thus suitable for GPGPU computing. In turn, we have benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for a 2-particle system over lattices of increasing dimension, showing that the speedup provided by GPU computing, with respect to the OPENMP parallelization, lies in the range between 8x and (more than) 20x, depending on the frequency of post-processing. GPU-accelerated codes thus allow one to overcome concerns about the execution time, and make it possible simulations with many interacting particles on large lattices, with the only limit of the memory available on the device.

  9. Comparative analysis of solution methods of the punctual kinetic equations; Analisis comparativo de metodos de solucion de las ecuaciones de cinetica puntual

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez S, A. [UNAM-LAIRN, Jiutepec, Morelos (Mexico)] e-mail: augusto_vib@yahoo.com.mx

    2003-07-01

    The following one written it presents a comparative analysis among different analytical solutions for the punctual kinetics equation, which present two variables of interest: a) the temporary behavior of the neutronic population, and b) The temporary behavior of the different groups of precursors of delayed neutrons. The first solution is based on a method that solves the transfer function of the differential equation for the neutronic population, in which intends to obtain the different poles that give the stability of this transfer function. In this section it is demonstrated that the temporary variation of the reactivity of the system can be managed as it is required, since the integration time for this method doesn't affect the result. However, the second solution is based on an iterative method like that of Runge-Kutta or the Euler method where the algorithm was only used to solve first order differential equations giving this way solution to each differential equation that conforms the equations of punctual kinetics. In this section it is demonstrated that only it can obtain a correct temporary behavior of the neutronic population when it is integrated on an interval of very short time, forcing to the temporary variation of the reactivity to change very quick way without one has some control about the time. In both methods the same change is used so much in the reactivity of the system like in the integration times, giving validity to the results graph the one the temporary behavior of the neutronic population vs. time. (Author)

  10. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  11. The shallow water equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Mead, J.L.

    2004-01-01

    Recent advances in the collection of Lagrangian data from the ocean and results about the well-posedness of the primitive equations have led to a renewed interest in solving flow equations in Lagrangian coordinates. We do not take the view that solving in Lagrangian coordinates equates to solving on a moving grid that can become twisted or distorted. Rather, the grid in Lagrangian coordinates represents the initial position of particles, and it does not change with time. We apply numerical methods traditionally used to solve differential equations in Eulerian coordinates, to solve the shallow water equations in Lagrangian coordinates. The difficulty with solving in Lagrangian coordinates is that the transformation from Eulerian coordinates results in solving a highly nonlinear partial differential equation. The non-linearity is mainly due to the Jacobian of the coordinate transformation, which is a precise record of how the particles are rotated and stretched. The inverse Jacobian must be calculated, thus Lagrangian coordinates cannot be used in instances where the Jacobian vanishes. For linear (spatial) flows we give an explicit formula for the Jacobian and describe the two situations where the Lagrangian shallow water equations cannot be used because either the Jacobian vanishes or the shallow water assumption is violated. We also prove that linear (in space) steady state solutions of the Lagrangian shallow water equations have Jacobian equal to one. In the situations where the shallow water equations can be solved in Lagrangian coordinates, accurate numerical solutions are found with finite differences, the Chebyshev pseudospectral method, and the fourth order Runge-Kutta method. The numerical results shown here emphasize the need for high order temporal approximations for long time integrations

  12. A mixed implicit/explicit procedure for soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1982-01-01

    This paper describes an efficient method for the solution of dynamic soil-structure interaction problems. The method which combines implicit and explicit time integration procedures is ideally suited to problems in which the structure is considered linear and the soil non-linear. The equations relating to the linear structures are integrated using an unconditionally stable implicit scheme while the non-linear soil is treated explicitly. The explicit method is ideally suited to non-linear calculations as there is no need for iterative techniques. The structural equations can also be integrated explicitly, but this generally requires a time step that is much smaller than that for the soil. By using an unconditionally stable implicit algorithm for the structure, the complete analysis can be performed using the time step for the soil. The proposed procedure leads to economical solutions with the soil non-linearities handled accurately and efficiently. (orig.)

  13. An Efficient Algorithm for Perturbed Orbit Integration Combining Analytical Continuation and Modified Chebyshev Picard Iteration

    Science.gov (United States)

    Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.

    2014-09-01

    Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the

  14. An application of the explicit method for analysing intersystem dependencies in the evaluation of event trees

    International Nuclear Information System (INIS)

    Oliveira, L.F.S.; Frutuoso e Melo, P.F.; Lima, J.E.P.; Stal, I.L.

    1985-01-01

    We discuss in this paper a computational application of the explicit method for analyzing event trees in the context of probabilistic risk assessments. A detailed analysis of the explicit method is presented, including the train level analysis (TLA) of safety systems and the impact vector method. It is shown that the penalty for not adopting TLA is that in some cases non-conservative results may be reached. The impact vector method can significantly reduce the number of sequences to be considered, and its use has inspired the definition of a dependency matrix, which enables the proper running of a computer code especially developed for analysing event trees. This code constructs and quantifies the event trees in the fashion just discussed, by receiving as input the construction and quantification dependencies defined in the dependency matrix. The code has been extensively used in the Angra 1 PRA currently underway. In its present version it gives as output the dominant sequences for each given initiator, properly classifying them in core-degradation classes as specified by the user. This calculation is made in a pointwise fashion. Extensions of this code are being developed in order to perform uncertainty analyses on the dominant sequences and also risk importance measures of the safety systems envolved. (orig.)

  15. A new method for explicit modelling of single failure event within different common cause failure groups

    International Nuclear Information System (INIS)

    Kančev, Duško; Čepin, Marko

    2012-01-01

    Redundancy and diversity are the main principles of the safety systems in the nuclear industry. Implementation of safety components redundancy has been acknowledged as an effective approach for assuring high levels of system reliability. The existence of redundant components, identical in most of the cases, implicates a probability of their simultaneous failure due to a shared cause—a common cause failure. This paper presents a new method for explicit modelling of single component failure event within multiple common cause failure groups simultaneously. The method is based on a modification of the frequently utilised Beta Factor parametric model. The motivation for development of this method lays in the fact that one of the most widespread softwares for fault tree and event tree modelling as part of the probabilistic safety assessment does not comprise the option for simultaneous assignment of single failure event to multiple common cause failure groups. In that sense, the proposed method can be seen as an advantage of the explicit modelling of common cause failures. A standard standby safety system is selected as a case study for application and study of the proposed methodology. The results and insights implicate improved, more transparent and more comprehensive models within probabilistic safety assessment.

  16. Implicit vs. Explicit Trust in Social Matrix Factorization

    NARCIS (Netherlands)

    Fazeli, Soude; Loni, Babak; Bellogin, Alejandro; Drachsler, Hendrik; Sloep, Peter

    2014-01-01

    Incorporating social trust in Matrix Factorization (MF) methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist

  17. The impact of time step definition on code convergence and robustness

    Science.gov (United States)

    Venkateswaran, S.; Weiss, J. M.; Merkle, C. L.

    1992-01-01

    We have implemented preconditioning for multi-species reacting flows in two independent codes, an implicit (ADI) code developed in-house and the RPLUS code (developed at LeRC). The RPLUS code was modified to work on a four-stage Runge-Kutta scheme. The performance of both the codes was tested, and it was shown that preconditioning can improve convergence by a factor of two to a hundred depending on the problem. Our efforts are currently focused on evaluating the effect of chemical sources and on assessing how preconditioning may be applied to improve convergence and robustness in the calculation of reacting flows.

  18. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    Science.gov (United States)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  19. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  20. A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection.

    Science.gov (United States)

    Song, Yun S; Steinrücken, Matthias

    2012-03-01

    The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.