WorldWideScience

Sample records for explicit discrete ordinates

  1. Recent developments in discrete ordinates electron transport

    International Nuclear Information System (INIS)

    Morel, J.E.; Lorence, L.J. Jr.

    1986-01-01

    The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote

  2. TRIDENT: a two-dimensional, multigroup, triangular mesh discrete ordinates, explicit neutron transport code

    International Nuclear Information System (INIS)

    Seed, T.J.; Miller, W.F. Jr.; Brinkley, F.W. Jr.

    1977-03-01

    TRIDENT solves the two-dimensional-multigroup-transport equations in rectangular (x-y) and cylindrical (r-z) geometries using a regular triangular mesh. Regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue searches) problems subject to vacuum, reflective, white, or source boundary conditions are solved. General anisotropic scattering is allowed and anisotropic-distributed sources are permitted. The discrete-ordinates approximation is used for the neutron directional variables. An option is included to append a fictitious source to the discrete-ordinates equations that is defined such that spherical-harmonics solutions (in x-y geometry) or spherical-harmonics-like solutions (in r-z geometry) are obtained. A spatial-finite-element method is used in which the angular flux is expressed as a linear polynomial in each triangle that is discontinous at triangle boundaries. Unusual Features of the program: Provision is made for creation of standard interface output files for S/sub N/ constants, angle-integrated (scalar) fluxes, and angular fluxes. Standard interface input files for S/sub N/ constants, inhomogeneous sources, cross sections, and the scalar flux may be read. Flexible edit options as well as a dump and restart capability are provided

  3. Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems

    Energy Technology Data Exchange (ETDEWEB)

    Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica

    2014-04-15

    In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)

  4. Acceleration techniques for the discrete ordinate method

    International Nuclear Information System (INIS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2013-01-01

    In this paper we analyze several acceleration techniques for the discrete ordinate method with matrix exponential and the small-angle modification of the radiative transfer equation. These techniques include the left eigenvectors matrix approach for computing the inverse of the right eigenvectors matrix, the telescoping technique, and the method of false discrete ordinate. The numerical simulations have shown that on average, the relative speedup of the left eigenvector matrix approach and the telescoping technique are of about 15% and 30%, respectively. -- Highlights: ► We presented the left eigenvector matrix approach. ► We analyzed the method of false discrete ordinate. ► The telescoping technique is applied for matrix operator method. ► Considered techniques accelerate the computations by 20% in average.

  5. Sputtering calculations with the discrete ordinated method

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1977-01-01

    The purpose of this work is to investigate the applicability of the discrete ordinates (S/sub N/) method to light ion sputtering problems. In particular, the neutral particle discrete ordinates computer code, ANISN, was used to calculate sputtering yields. No modifications to this code were necessary to treat charged particle transport. However, a cross section processing code was written for the generation of multigroup cross sections; these cross sections include a modification to the total macroscopic cross section to account for electronic interactions and small-scattering-angle elastic interactions. The discrete ordinates approach enables calculation of the sputtering yield as functions of incident energy and angle and of many related quantities such as ion reflection coefficients, angular and energy distributions of sputtering particles, the behavior of beams penetrating thin foils, etc. The results of several sputtering problems as calculated with ANISN are presented

  6. Multidimensional electron-photon transport with standard discrete ordinates codes

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1995-01-01

    A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems

  7. SPANDOM - source projection analytic nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Kim, Tae Hyeong; Cho, Nam Zin

    1994-01-01

    We describe a new discrete ordinates nodal method for the two-dimensional transport equation. We solve the discrete ordinates equation analytically after the source term is projected and represented in polynomials. The method is applied to two fast reactor benchmark problems and compared with the TWOHEX code. The results indicate that the present method accurately predicts not only multiplication factor but also flux distribution

  8. On the convergence of multigroup discrete-ordinates approximations

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.; Allen, E.J.; Ganguly, K.

    1987-01-01

    Our analysis is divided into two distinct parts which we label for convenience as Part A and Part B. In Part A, we demonstrate that the multigroup discrete-ordinates approximations are well-defined and converge to the exact transport solution in any subcritical setting. For the most part, we focus on transport in two-dimensional Cartesian geometry. A Nystroem technique is used to extend the discrete ordinates multigroup approximates to all values of the angular and energy variables. Such an extension enables us to employ collectively compact operator theory to deduce stability and convergence of the approximates. In Part B, we perform a thorough convergence analysis for the multigroup discrete-ordinates method for an anisotropically-scattering subcritical medium in slab geometry. The diamond-difference and step-characteristic spatial approximation methods are each studied. The multigroup neutron fluxes are shown to converge in a Banach space setting under realistic smoothness conditions on the solution. This is the first thorough convergence analysis for the fully-discretized multigroup neutron transport equations

  9. Multiband discrete ordinates method: formalism and results

    International Nuclear Information System (INIS)

    Luneville, L.

    1998-06-01

    The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author)

  10. Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1985-01-01

    Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered

  11. Time dependence linear transport III convergence of the discrete ordinate method

    International Nuclear Information System (INIS)

    Wilson, D.G.

    1983-01-01

    In this paper the uniform pointwise convergence of the discrete ordinate method for weak and strong solutions of the time dependent, linear transport equation posed in a multidimensional, rectangular parallelepiped with partially reflecting walls is established. The first result is that a sequence of discrete ordinate solutions converges uniformly on the quadrature points to a solution of the continuous problem provided that the corresponding sequence of truncation errors for the solution of the continuous problem converges to zero in the same manner. The second result is that continuity of the solution with respect to the velocity variables guarantees that the truncation erros in the quadrature formula go the zero and hence that the discrete ordinate approximations converge to the solution of the continuous problem as the discrete ordinate become dense. An existence theory for strong solutions of the the continuous problem follows as a result

  12. Multidimensional electron-photon transport with standard discrete ordinates codes

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1997-01-01

    A method is described for generating electron cross sections that are comparable with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the method is a simultaneous solution of the continuous-slowing-down (CSD) portion and elastic-scattering portion of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre cross sections are much smaller than the true scattering cross sections that they represent. Under certain conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion

  13. Multidimensional electron-photon transport with standard discrete ordinates codes

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1997-01-01

    A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages to using an established discrete ordinates solver, e.g., immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and synthetic radiation environments. The cross sections have been successfully used in the DORT, TWODANT, and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the method is a simultaneous solution of the continuous-slowing-down and elastic-scattering portions of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre cross sections are much smaller than the true scattering cross sections that they represent. Under certain conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion

  14. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  15. DOMINO, Coupling of Discrete Ordinate Program DOT with Monte-Carlo Program MORSE

    International Nuclear Information System (INIS)

    1974-01-01

    1 - Nature of physical problem solved: DOMINO is a general purpose code for coupling discrete ordinates and Monte Carlo radiation transport calculations. 2 - Method of solution: DOMINO transforms the angular flux as a function of energy group, mesh interval and discrete angle into current and subsequently into normalized probability distributions. 3 - Restrictions on the complexity of the problem: The discrete ordinates calculation is limited to an r-z geometry

  16. Data visualization for ONEDANT and TWODANT discrete ordinates codes

    International Nuclear Information System (INIS)

    Lee, C.L.

    1993-01-01

    Effective graphical display of code calculations allow for efficient analysis of results. This is especially true in the case of discrete ordinates transport codes, which can generate thousands of flux or reaction rate data points per calculation. For this reason, a package of portable interface programs called OTTUI (ONEDANT-TWODANT-Tecplot trademark Unix-Based Interface) has been developed at Los Alamos National Laboratory to permit rapid visualization of ONEDANT and TWODANT discrete ordinates results using the graphics package Tecplot. This paper describes the various uses of OTTUI for display of ONEDANT and TWODANT problem geometries and calculational results

  17. Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Brantley, P S

    2001-01-01

    An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S N ) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems

  18. Ordinal Welfare Comparisons with Multiple Discrete Indicators

    DEFF Research Database (Denmark)

    Arndt, Channing; Distante, Roberta; Hussain, M. Azhar

    We develop an ordinal method for making welfare comparisons between populations with multidimensional discrete well-being indicators observed at the micro level. The approach assumes that, for each well-being indicator, the levels can be ranked from worse to better; however, no assumptions are made...

  19. Development of three-dimensional program based on Monte Carlo and discrete ordinates bidirectional coupling method

    International Nuclear Information System (INIS)

    Han Jingru; Chen Yixue; Yuan Longjun

    2013-01-01

    The Monte Carlo (MC) and discrete ordinates (SN) are the commonly used methods in the design of radiation shielding. Monte Carlo method is able to treat the geometry exactly, but time-consuming in dealing with the deep penetration problem. The discrete ordinate method has great computational efficiency, but it is quite costly in computer memory and it suffers from ray effect. Single discrete ordinates method or single Monte Carlo method has limitation in shielding calculation for large complex nuclear facilities. In order to solve the problem, the Monte Carlo and discrete ordinates bidirectional coupling method is developed. The bidirectional coupling method is implemented in the interface program to transfer the particle probability distribution of MC and angular flux of discrete ordinates. The coupling method combines the advantages of MC and SN. The test problems of cartesian and cylindrical coordinate have been calculated by the coupling methods. The calculation results are performed with comparison to MCNP and TORT and satisfactory agreements are obtained. The correctness of the program is proved. (authors)

  20. The discrete ordinates method for solving the azimuthally dependent transport equation in plane geometry

    International Nuclear Information System (INIS)

    Chalhoub, Ezzat Selim

    1997-01-01

    The method of discrete ordinates is applied to the solution of the slab albedo problem with azimuthal dependence in transport theory. A new set of quadratures appropriate to the problem is introduced. In addition to the ANISN code, modified to include the proposed formalism, two new programs, PEESNC and PEESNA, which were created on the basis of the discrete ordinates formalism, using the direct integration method and the analytic solution method respectively, are used in the generation of results for a few sample problems. Program PEESNC was created to validate the results obtained with the discrete ordinates method and the finite difference approximation (ANISN), while program PEESNA was developed in order to implement an analytical discrete ordinates formalism, which provides more accurate results. The obtained results for selected sample problems are compared with highly accurate numerical results published in the literature. Compared to ANISN and PEESNC, program PEESNA presents a greater efficiency in execution time and much more precise numerical results. (author)

  1. Hydrogen transport in a toroidal plasma using multigroup discrete-ordinates methodology

    International Nuclear Information System (INIS)

    Wienke, B.R.; Miller, W.F. Jr.; Seed, T.J.

    1979-01-01

    Neutral hydrogen transport in a fully ionized two-dimensional tokamak plasma was examined using discrete ordinates and contrasted with earlier analyses. In particular, curvature effects induced by toroidal geometries and ray effects caused by possible source localization were investigated. From an overview of the multigroup discrete-ordinates approximation, methodology in two-dimensional cylindrical geometry is detailed, mesh and plasma zoning procedures are sketched, and the piecewise polynomial solution algorithm on a triangular domain is obtained. Toroidal effects and comparisons as related to reaction rates and perticle spectra are examined for various model and source configurations

  2. Multiband discrete ordinates method: formalism and results; Methode multibande aux ordonnees discretes: formalisme et resultats

    Energy Technology Data Exchange (ETDEWEB)

    Luneville, L

    1998-06-01

    The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author) 15 refs.

  3. Matrix albedo for discrete ordinates infinite-medium boundary condition

    International Nuclear Information System (INIS)

    Mathews, K.; Dishaw, J.

    2007-01-01

    Discrete ordinates problems with an infinite exterior medium (reflector) can be more efficiently computed by eliminating grid cells in the exterior medium and applying a matrix albedo boundary condition. The albedo matrix is a discretized bidirectional reflection distribution function (BRDF) that accounts for the angular quadrature set, spatial quadrature method, and spatial grid that would have been used to model a portion of the exterior medium. The method is exact in slab geometry, and could be used as an approximation in multiple dimensions or curvilinear coordinates. We present an adequate method for computing albedo matrices and demonstrate their use in verifying a discrete ordinates code in slab geometry by comparison with Ganapol's infinite medium semi-analytic TIEL benchmark. With sufficient resolution in the spatial and angular grids and iteration tolerance to yield solutions converged to 6 digits, the conventional (scalar) albedo boundary condition yielded 2-digit accuracy at the boundary, but the matrix albedo solution reproduced the benchmark scalar flux at the boundary to all 6 digits. (authors)

  4. TIMEX: a time-dependent explicit discrete ordinates program for the solution of multigroup transport equations with delayed neutrons

    International Nuclear Information System (INIS)

    Hill, T.R.; Reed, W.H.

    1976-01-01

    TIMEX solves the time-dependent, one-dimensional multigroup transport equation with delayed neutrons in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. The time variable is differenced by an explicit technique that is unconditionally stable so that arbitrarily large time steps can be taken. Because no iteration is performed the method is exceptionally fast in terms of computing time per time step. Two acceleration methods, exponential extrapolation and rebalance, are utilized to improve the accuracy of the time differencing scheme. Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. The running time for TIMEX is highly problem-dependent, but varies almost linearly with the total number of unknowns and time steps. Provision is made for creation of standard interface output files for angular fluxes and angle-integrated fluxes. Five interface units (use of interface units is optional), five output units, and two system input/output units are required. A large bulk memory is desirable, but may be replaced by disk, drum, or tape storage. 13 tables, 9 figures

  5. Discrete Ordinates Method-Like Computation with Group Condensation and Angle Collapsing in Transport Theory

    International Nuclear Information System (INIS)

    Won, Jong Hyuck; Cho, Nam Zin

    2010-01-01

    In group condensation for transport method, it is well-known that angle-dependent total cross section is generated. To remove this difficulty on angledependent total cross section, we normally perform the group condensation on total cross section by using scalar flux weight as used in neutron diffusion method. In this study, angle-dependent total cross section is directly applied to the discrete ordinates method. In addition, angle collapsing concept is introduced based on equivalence to reduce calculational burden of transport computation. We also show numerical results for a heterogeneous 1-D slab problem with local/global iteration, in which fine-group discrete ordinates calculation is used in local problem while few-group angle collapsed discrete ordinates calculation is used in global problem iteratively

  6. Nuclear data preparation and discrete ordinates calculation

    International Nuclear Information System (INIS)

    Carmignani, B.

    1980-01-01

    These lectures deal with the use of the GAM-GATHER and GAM-THERMOS chains for the calculation of lattice cross sections and within use of the discrete ordinates one dimensional ANISN code for the calculation of criticality and flux distribution of the cell and of the whole reactor. As an example the codes are applied to the calculation of a PWR. Results of different approximations are compared. (author)

  7. Variable discrete ordinates method for radiation transfer in plane-parallel semi-transparent media with variable refractive index

    Science.gov (United States)

    Sarvari, S. M. Hosseini

    2017-09-01

    The traditional form of discrete ordinates method is applied to solve the radiative transfer equation in plane-parallel semi-transparent media with variable refractive index through using the variable discrete ordinate directions and the concept of refracted radiative intensity. The refractive index are taken as constant in each control volume, such that the direction cosines of radiative rays remain non-variant through each control volume, and then, the directions of discrete ordinates are changed locally by passing each control volume, according to the Snell's law of refraction. The results are compared by the previous studies in this field. Despite simplicity, the results show that the variable discrete ordinate method has a good accuracy in solving the radiative transfer equation in the semi-transparent media with arbitrary distribution of refractive index.

  8. The response matrix discrete ordinates solution to the 1D radiative transfer equation

    International Nuclear Information System (INIS)

    Ganapol, Barry D.

    2015-01-01

    The discrete ordinates method (DOM) of solution to the 1D radiative transfer equation has been an effective method of solution for nearly 70 years. During that time, the method has experienced numerous improvements as numerical and computational techniques have become more powerful and efficient. Here, we again consider the analytical solution to the discrete radiative transfer equation in a homogeneous medium by proposing a new, and consistent, form of solution that improves upon previous forms. Aided by a Wynn-epsilon convergence acceleration, its numerical evaluation can achieve extreme precision as demonstrated by comparison with published benchmarks. Finally, we readily extend the solution to a heterogeneous medium through the star product formulation producing a novel benchmark for closed form Henyey–Greenstein scattering as an example. - Highlights: • Presents a new solution to the RTE called the response matrix DOM (RM/DOM). • Solution representations avoid the instability common in exponential solutions. • Explicit form in terms of matrix hyperbolic functions. • Extreme accuracy through Wynn-epsilon acceleration checked by published benchmarks. • Provides a more transparent numerical evaluation than found previously

  9. A variational synthesis nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M.

    1999-01-01

    A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems

  10. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  11. Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations

    International Nuclear Information System (INIS)

    FAN, WESLEY C.; DRUMM, CLIFTON R.; POWELL, JENNIFER L. email wcfan@sandia.gov

    2002-01-01

    The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations

  12. Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations

    CERN Document Server

    Fan, W C; Powell, J L

    2002-01-01

    The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.

  13. Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2012-01-01

    We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)

  14. First and second collision source for mitigating ray effects in discrete ordinate calculations

    International Nuclear Information System (INIS)

    Gomes, L.T.; Stevens, P.N.

    1991-01-01

    This work revisits the problem of ray effects in discrete ordinates calculations that frequently occurs in two- and three-dimensional systems which contain isolated sources within a highly absorbing medium. The effectiveness of using a first collision source or a second collision source are analyzed as possible remedies to mitigate this problem. The first collision and second collision sources are generated by three-dimensional Monte Carlo calculations that enables its application to a variety of source configurations, and the results can be coupled to a two- or three-dimensional discrete ordinates transport code. (author)

  15. CEPXS/ONELD: A one-dimensional coupled electron-photon discrete ordinates code package

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Morel, J.E.

    1992-01-01

    CEPXS/ONELD is a discrete ordinates transport code package that can model the electron-photon cascade from 100 MeV to 1 keV. The CEPXS code generates fully-coupled multigroup-Legendre cross section data. This data is used by the general-purpose discrete ordinates code, ONELD, which is derived from the Los Alamos ONEDANT and ONBTRAN codes. Version 1.0 of CEPXS/ONELD was released in 1989 and has been primarily used to analyze the effect of radiation environments on electronics. Version 2.0 is under development and will include user-friendly features such as the automatic selection of group structure, spatial mesh structure, and S N order

  16. Energy-pointwise discrete ordinates transport methods

    International Nuclear Information System (INIS)

    Williams, M.L.; Asgari, M.; Tashakorri, R.

    1997-01-01

    A very brief description is given of a one-dimensional code, CENTRM, which computes a detailed, space-dependent flux spectrum in a pointwise-energy representation within the resolved resonance range. The code will become a component in the SCALE system to improve computation of self-shielded cross sections, thereby enhancing the accuracy of codes such as KENO. CENTRM uses discrete-ordinates transport theory with an arbitrary angular quadrature order and a Legendre expansion of scattering anisotropy for moderator materials and heavy nuclides. The CENTRM program provides capability to deterministically compute full energy range, space-dependent angular flux spectra, rigorously accounting for resonance fine-structure and scattering anisotropy effects

  17. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  18. Application of a discrete-energy, discrete-ordinates technique to the study of neutron transport in iron

    International Nuclear Information System (INIS)

    Ching, J.T.

    1975-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated which allows the development of a discrete-energy, discrete-ordinates method for the solution of radiation transport problems. The method utilizes a modified version of a cross section processing scheme devised for the moments method code BMT and the transport equation solution algorithm from the one-dimensional discrete-ordinates transport code ANISN. The combined system, identified as MOMANS, computes fluxes directly from point cross sections in a single operation. In the cross-section processing, the group averaging required for multigroup calculations is replaced by a fast numerical scheme capable of generating a set of transfer cross sections containing all the physical features of interest, thereby increasing the detail in the calculated results. Test calculations in which the discrete-energy method was compared with the multigroup method have shown that for the same energy grid (number of points = number of groups), the discrete-energy method is faster but somewhat less accurate than the multigroup method. However, the accuracy of the discrete-energy method increases rapidly as the spacing between energy points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum the discrete-energy method has therefore proven to be as accurate as, and more economical than, the multigroup technique. This was demonstrated by the application of the method to the study of the transport of neutrons in an iron sphere. Using the capability of the discrete-energy method for rapidly treating changes in cross-section sets, the propagation of neutrons from a 14 MeV source in a 22 cm radius sphere of iron was analyzed for sensitivity to changes in the microscopic scattering mechanisms

  19. Discrete energy formulation of neutron transport theory applied to solving the discrete ordinates equations

    International Nuclear Information System (INIS)

    Ching, J.; Oblow, E.M.; Goldstein, H.

    1976-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated that allows the development of a discrete energy, discrete ordinates method for the solution of radiation transport problems. In the discrete energy method, the group averaging required in the cross-section processing for multigroup calculations is replaced by a faster numerical quadrature scheme capable of generating transfer cross sections describing all the physical processes of interest on a fine point-energy grid. Test calculations in which the discrete energy method is compared with the multigroup method show that, for the same energy grid, the discrete energy method is much faster, although somewhat less accurate, than the multigroup method. However, the accuracy of the discrete energy method increases rapidly as the spacing between energy grid points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum, the discrete energy method is therefore expected to be far more economical than the multigroup technique for equivalent accuracy solutions. This advantage of the point method is demonstrated by application to the study of neutron transport in a thick iron slab

  20. A discrete-ordinates solution for a radiation therapy problem

    International Nuclear Information System (INIS)

    Goldschmidt, Gustavo Brun; Reichert, Janice Teresinha; Barichello, Liliane Basso

    2008-01-01

    A concise and accurate procedure for evaluating dose distribution, in a radiation therapy planning, is presented. The analytical discrete-ordinates method (ADO method) is used to develop a complete solution for a spectral dependent radiative transfer equation, in a one-dimensional medium, according to a multigroup scheme. Numerical results are presented for test problems, where the Klein-Nishina scattering kernel was used to describe the interaction processes. (author)

  1. Adaptive discrete-ordinates algorithms and strategies

    International Nuclear Information System (INIS)

    Stone, J.C.; Adams, M.L.

    2005-01-01

    We present our latest algorithms and strategies for adaptively refined discrete-ordinates quadrature sets. In our basic strategy, which we apply here in two-dimensional Cartesian geometry, the spatial domain is divided into regions. Each region has its own quadrature set, which is adapted to the region's angular flux. Our algorithms add a 'test' direction to the quadrature set if the angular flux calculated at that direction differs by more than a user-specified tolerance from the angular flux interpolated from other directions. Different algorithms have different prescriptions for the method of interpolation and/or choice of test directions and/or prescriptions for quadrature weights. We discuss three different algorithms of different interpolation orders. We demonstrate through numerical results that each algorithm is capable of generating solutions with negligible angular discretization error. This includes elimination of ray effects. We demonstrate that all of our algorithms achieve a given level of error with far fewer unknowns than does a standard quadrature set applied to an entire problem. To address a potential issue with other algorithms, we present one algorithm that retains exact integration of high-order spherical-harmonics functions, no matter how much local refinement takes place. To address another potential issue, we demonstrate that all of our methods conserve partial currents across interfaces where quadrature sets change. We conclude that our approach is extremely promising for solving the long-standing problem of angular discretization error in multidimensional transport problems. (authors)

  2. Numerical solution of neutron transport equations in discrete ordinates and slab geometry

    International Nuclear Information System (INIS)

    Serrano Pedraza, F.

    1985-01-01

    An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used

  3. Diffusion-synthetic acceleration methods for discrete-ordinates problems

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1984-01-01

    The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas behind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems an the status of current efforts aimed at solving these problems

  4. Computation of 2-D pinhole image-formation process of large-scale furnaces using the discrete ordinates method

    CERN Document Server

    Li Hong; Lu Ji Dong; Zheng Chu Guan

    2003-01-01

    In most of the discrete ordinate schemes (DOS) reported in the literature, the discrete directions are fixed, and unable to be arbitrarily adjusted; therefore, it is difficult to employ these schemes to calculate the radiative energy image-formation of pulverized-coal furnaces. On the basis of a new DOS, named the discrete ordinate scheme with (an) infinitely small weight(s), which was recently proposed by the authors, a novel algorithm for computing the pinhole image-formation process is developed in this work. The performance of this algorithm is tested, and is found to be also suitable for parallel computation.

  5. Computation of 2-D pinhole image-formation process of large-scale furnaces using the discrete ordinates method

    International Nuclear Information System (INIS)

    Li Hongshun; Zhou Huaichun; Lu Jidong; Zheng Chuguang

    2003-01-01

    In most of the discrete ordinate schemes (DOS) reported in the literature, the discrete directions are fixed, and unable to be arbitrarily adjusted; therefore, it is difficult to employ these schemes to calculate the radiative energy image-formation of pulverized-coal furnaces. On the basis of a new DOS, named the discrete ordinate scheme with (an) infinitely small weight(s), which was recently proposed by the authors, a novel algorithm for computing the pinhole image-formation process is developed in this work. The performance of this algorithm is tested, and is found to be also suitable for parallel computation

  6. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  7. Parallel ray tracing for one-dimensional discrete ordinate computations

    International Nuclear Information System (INIS)

    Jarvis, R.D.; Nelson, P.

    1996-01-01

    The ray-tracing sweep in discrete-ordinates, spatially discrete numerical approximation methods applied to the linear, steady-state, plane-parallel, mono-energetic, azimuthally symmetric, neutral-particle transport equation can be reduced to a parallel prefix computation. In so doing, the often severe penalty in convergence rate of the source iteration, suffered by most current parallel algorithms using spatial domain decomposition, can be avoided while attaining parallelism in the spatial domain to whatever extent desired. In addition, the reduction implies parallel algorithm complexity limits for the ray-tracing sweep. The reduction applies to all closed, linear, one-cell functional (CLOF) spatial approximation methods, which encompasses most in current popular use. Scalability test results of an implementation of the algorithm on a 64-node nCube-2S hypercube-connected, message-passing, multi-computer are described. (author)

  8. High-order solution methods for grey discrete ordinates thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Maginot, Peter G., E-mail: maginot1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-12-15

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.

  9. A linear multiple balance method for discrete ordinates neutron transport equations

    International Nuclear Information System (INIS)

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  10. Diffusion-synthetic acceleration methods for the discrete-ordinates equations

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1983-01-01

    The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas beind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems and the status of current efforts aimed at solving these problems

  11. Use of the Streaming Matrix Hybrid Method for discrete-ordinates fusion reactor calculations

    International Nuclear Information System (INIS)

    Battat, M.E.; Davidson, J.W.; Dudziak, D.J.; Thayer, G.R.

    1984-01-01

    The use of the discrete-ordinates method for solving two-dimensional, neutral-particle transport in fusion reactor blankets and shields is often limited by inherent inaccuracies due to the ray-effect. This effect presents a particular problem in the case of neutron streaming in the large internal void regions of a fusion reactor. A deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) has been incorporated in the two-dimensional discrete-ordinates code TRIDENT-CTR. Calculations have been performed for an actual inertial-confinement fusion (ICF) reactor design using TRIDENT-CTR both with and without the SMHM. Comparisons of the calculated fluxes indicate that substantial mitigation of the ray effect can be achieved with the SMHM. Calculations were performed for the Los Alamos FIRST STEP hybrid ICF reactor designed for tritium production. Conventional 238 U fuel rod assemblies surround the spherical steel target chamber to form an annular cylindrical blanket. An axial fuel region is included to complete the blanket

  12. Particular solution of the discrete-ordinate method.

    Science.gov (United States)

    Qin, Yi; Box, Michael A; Jupp, David L

    2004-06-20

    We present two methods that can be used to derive the particular solution of the discrete-ordinate method (DOM) for an arbitrary source in a plane-parallel atmosphere, which allows us to solve the transfer equation 12-18% faster in the case of a single beam source and is even faster for the atmosphere thermal emission source. We also remove the divide by zero problem that occurs when a beam source coincides with a Gaussian quadrature point. In our implementation, solution for multiple sources can be obtained simultaneously. For each extra source, it costs only 1.3-3.6% CPU time required for a full solution. The GDOM code that we developed previously has been revised to integrate with the DOM. Therefore we are now able to compute the Green's function and DOM solutions simultaneously.

  13. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  14. Mining the multigroup-discrete ordinates algorithm for high quality solutions

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    2005-01-01

    A novel approach to the numerical solution of the neutron transport equation via the discrete ordinates (SN) method is presented. The new technique is referred to as 'mining' low order (SN) numerical solutions to obtain high order accuracy. The new numerical method, called the Multigroup Converged SN (MGCSN) algorithm, is a combination of several sequence accelerators: Romberg and Wynn-epsilon. The extreme accuracy obtained by the method is demonstrated through self consistency and comparison to the independent semi-analytical benchmark BLUE. (authors)

  15. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  16. On the spectrum of the one-speed slab-geometry discrete ordinates operator in neutron transport theory

    International Nuclear Information System (INIS)

    Abreu, Marcos Pimenta de

    1998-01-01

    We describe a numerical method applied to the first-order form of one-speed slab-geometry discrete ordinates equations modelling time-independent neutron transport problems with anisotropic scattering, with no interior source and defined in a nonmultiplying homogeneous host medium. Our numerical method is concerned with the generation of the spectrum and of a vector basis for the null space of the one-speed slab-geometry discrete ordinates operator. Moreover, it allows us to overcome the difficulties introduced in previous methods by anisotropic scattering and by angular quadrature sets of high order. To illustrate the positive features of our numerical method, we present numerical results for one-speed slab-geometry neutron transport model problems with anisotropic scattering

  17. Two-dimensional discrete ordinates photon transport calculations for brachytherapy dosimetry applications

    International Nuclear Information System (INIS)

    Daskalov, G.M.; Baker, R.S.; Little, R.C.; Rogers, D.W.O.; Williamson, J.F.

    2000-01-01

    The DANTSYS discrete ordinates computer code system is applied to quantitative estimation of water kerma rate distributions in the vicinity of discrete photon sources with energies in the 20- to 800-keV range in two-dimensional cylindrical r-z geometry. Unencapsulated sources immersed in cylindrical water phantoms of 40-cm diameter and 40-cm height are modeled in either homogeneous phantoms or shielded by Ti, Fe, and Pb filters with thicknesses of 1 and 2 mean free paths. The obtained dose results are compared with corresponding photon Monte Carlo simulations. A 210-group photon cross-section library for applications in this energy range is developed and applied, together with a general-purpose 42-group library developed at Los Alamos National Laboratory, for DANTSYS calculations. The accuracy of DANTSYS with the 42-group library relative to Monte Carlo exhibits large pointwise fluctuations from -42 to +84%. The major cause for the observed discrepancies is determined to be the inadequacy of the weighting function used for the 42-group library derivation. DANTSYS simulations with a finer 210-group library show excellent accuracy on and off the source transverse plane relative to Monte Carlo kerma calculations, varying from minus4.9 to 3.7%. The P 3 Legendre polynomial expansion of the angular scattering function is shown to be sufficient for accurate calculations. The results demonstrate that DANTSYS is capable of calculating photon doses in very good agreement with Monte Carlo and that the multigroup cross-section library and efficient techniques for mitigation of ray effects are critical for accurate discrete ordinates implementation

  18. Parallel performance of the angular versus spatial domain decomposition for discrete ordinates transport methods

    International Nuclear Information System (INIS)

    Fischer, J.W.; Azmy, Y.Y.

    2003-01-01

    A previously reported parallel performance model for Angular Domain Decomposition (ADD) of the Discrete Ordinates method for solving multidimensional neutron transport problems is revisited for further validation. Three communication schemes: native MPI, the bucket algorithm, and the distributed bucket algorithm, are included in the validation exercise that is successfully conducted on a Beowulf cluster. The parallel performance model is comprised of three components: serial, parallel, and communication. The serial component is largely independent of the number of participating processors, P, while the parallel component decreases like 1/P. These two components are independent of the communication scheme, in contrast with the communication component that typically increases with P in a manner highly dependent on the global reduced algorithm. Correct trends for each component and each communication scheme were measured for the Arbitrarily High Order Transport (AHOT) code, thus validating the performance models. Furthermore, extensive experiments illustrate the superiority of the bucket algorithm. The primary question addressed in this research is: for a given problem size, which domain decomposition method, angular or spatial, is best suited to parallelize Discrete Ordinates methods on a specific computational platform? We address this question for three-dimensional applications via parallel performance models that include parameters specifying the problem size and system performance: the above-mentioned ADD, and a previously constructed and validated Spatial Domain Decomposition (SDD) model. We conclude that for large problems the parallel component dwarfs the communication component even on moderately large numbers of processors. The main advantages of SDD are: (a) scalability to higher numbers of processors of the order of the number of computational cells; (b) smaller memory requirement; (c) better performance than ADD on high-end platforms and large number of

  19. Pin cell discontinuity factors in the transient 3-D discrete ordinates code TORT-TD - 237

    International Nuclear Information System (INIS)

    Seubert, A.

    2010-01-01

    This paper describes the application of generalized equivalence theory to the time-dependent 3-D discrete ordinates neutron transport code TORT-TD. The introduction of pin cell discontinuity factors into the discrete ordinates transport equation is described by assuming a linear dependence of the homogenized neutron angular flux within a pin cell which may be discontinuous at the interfaces to adjacent cells. The homogenized flux discontinuity at cell interfaces is expressed by pin cell discontinuity factors which in turn are determined from fuel assembly lattice calculations using HELIOS. Application of TORT-TD to the all rods in state of the PWR MOX/UO 2 Core Transient Benchmark with pin cell homogenized nuclear cross sections demonstrate the potential of pin cell discontinuity factors to reduce pin cell homogenization errors. (authors)

  20. Development and application of the discrete ordinate method in orthogonal curvilinear coordinates; Developpement et application de la methode des ordonnees discretes en coordonnees curvilignes orthogonales

    Energy Technology Data Exchange (ETDEWEB)

    Vaillon, R; Lallemand, M; Lemonnier, D [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France)

    1997-12-31

    The method of discrete ordinates, which is more and more widely used in radiant heat transfer studies, is mainly developed in Cartesian, (r,z) and (r,{Theta}) cylindrical, and spherical coordinates. In this study, the approach of this method is performed in orthogonal curvilinear coordinates: determination of the radiant heat transfer equation, treatment of the angular redistribution terms, numerical procedure. Some examples of application are described in 2-D geometry defined in curvilinear coordinates along a curve and at the thermal equilibrium. A comparison is made with the discrete ordinates method in association with the finite-volumes method in non structured mesh. (J.S.) 27 refs.

  1. Development and application of the discrete ordinate method in orthogonal curvilinear coordinates; Developpement et application de la methode des ordonnees discretes en coordonnees curvilignes orthogonales

    Energy Technology Data Exchange (ETDEWEB)

    Vaillon, R.; Lallemand, M.; Lemonnier, D. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)

    1996-12-31

    The method of discrete ordinates, which is more and more widely used in radiant heat transfer studies, is mainly developed in Cartesian, (r,z) and (r,{Theta}) cylindrical, and spherical coordinates. In this study, the approach of this method is performed in orthogonal curvilinear coordinates: determination of the radiant heat transfer equation, treatment of the angular redistribution terms, numerical procedure. Some examples of application are described in 2-D geometry defined in curvilinear coordinates along a curve and at the thermal equilibrium. A comparison is made with the discrete ordinates method in association with the finite-volumes method in non structured mesh. (J.S.) 27 refs.

  2. Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media

    International Nuclear Information System (INIS)

    Coelho, Pedro J.

    2014-01-01

    Many methods are available for the solution of radiative heat transfer problems in participating media. Among these, the discrete ordinates method (DOM) and the finite volume method (FVM) are among the most widely used ones. They provide a good compromise between accuracy and computational requirements, and they are relatively easy to integrate in CFD codes. This paper surveys recent advances on these numerical methods. Developments concerning the grid structure (e.g., new formulations for axisymmetrical geometries, body-fitted structured and unstructured meshes, embedded boundaries, multi-block grids, local grid refinement), the spatial discretization scheme, and the angular discretization scheme are described. Progress related to the solution accuracy, solution algorithm, alternative formulations, such as the modified DOM and FVM, even-parity formulation, discrete-ordinates interpolation method and method of lines, and parallelization strategies is addressed. The application to non-gray media, variable refractive index media, and transient problems is also reviewed. - Highlights: • We survey recent advances in the discrete ordinates and finite volume methods. • Developments in spatial and angular discretization schemes are described. • Progress in solution algorithms and parallelization methods is reviewed. • Advances in the transient solution of the radiative transfer equation are appraised. • Non-gray media and variable refractive index media are briefly addressed

  3. Improved treatment of two-dimensional neutral particle transport through voids within the discrete ordinates method by use of generalized view factors

    International Nuclear Information System (INIS)

    Brockmann, H.

    1992-01-01

    Using the discrete ordinates method for the treatment of neutral particle transport through voids serious flux distortions may occur due to the restricted streaming of particles along discrete directions. For mitigating this type of ray effect the method of view factors is proposed which has been developed in the theory of thermal radiation for describing the radiant exchange among surfaces. In order to apply this method to transport theory generalized view factors are defined which regard the angular dependence of the radiation leaving the surfaces. The generalized view factors are calculated analytically for r-z cylinder geometries and by applying the view factor algebra. The method was realized in the discrete ordinates transport code DOT 4.2 and applied to an r-z analogue of the S I S (Square-In-Square) sample problem. The results of the proposed method are compared with those calculated by the common discrete ordinates method and the Monte Carlo method

  4. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  5. Discrete-ordinates electron transport calculations using standard neutron transport codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1979-01-01

    The primary purpose of this work was to develop a method for using standard neutron transport codes to perform electron transport calculations. The method is to develop approximate electron cross sections which are sufficiently well-behaved to be treated with standard S/sub n/ methods, but which nonetheless yield flux solutions which are very similar to the exact solutions. The main advantage of this approach is that, once the approximate cross sections are constructed, their multigroup Legendre expansion coefficients can be calculated and input to any standard S/sub n/ code. Discrete-ordinates calculations were performed to determine the accuracy of the flux solutions for problems corresponding to 1.0-MeV electrons incident upon slabs of aluminum and gold. All S/sub n/ calculations were compared with similar calculations performed with an electron Monte Carlo code, considered to be exact. In all cases, the discrete-ordinates solutions for integral flux quantities (i.e., scalar flux, energy deposition profiles, etc.) are generally in agreement with the Monte Carlo solutions to within approximately 5% or less. The central conclusion is that integral electron flux quantities can be efficiently and accurately calculated using standard S/sub n/ codes in conjunction with approximate cross sections. Furthermore, if group structures and approximate cross section construction are optimized, accurate differential flux energy spectra may also be obtainable without having to use an inordinately large number of energy groups. 1 figure

  6. The three-dimensional, discrete ordinates neutral particle transport code TORT: An overview

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1996-01-01

    The centerpiece of the Discrete Ordinates Oak Ridge System (DOORS), the three-dimensional neutral particle transport code TORT is reviewed. Its most prominent features pertaining to large applications, such as adjustable problem parameters, memory management, and coarse mesh methods, are described. Advanced, state-of-the-art capabilities including acceleration and multiprocessing are summarized here. Future enhancement of existing graphics and visualization tools is briefly presented

  7. On the equivalence between the discrete ordinates and the spherical harmonics methods in radiative transfer

    International Nuclear Information System (INIS)

    Barichello, L.B.; Siewert, C.E.

    1998-01-01

    In this work concerning steady-state radiative-transfer calculations in plane-parallel media, the equivalence between the discrete ordinates method and the spherical harmonics method is proved. More specifically, it is shown that for standard radiative-transfer problems without the imposed restriction of azimuthal symmetry the two methods yield identical results for the radiation intensity when the quadrature scheme for the discrete ordinates method is defined by the zeros of the associated Legendre functions and when generalized Mark boundary conditions are used to define the spherical harmonics solution. It is also shown that, with these choices for a quadrature scheme and for the boundary conditions, the two methods can be formulated so as to require the same computational effort. Finally a justification for using the generalized Mark boundary conditions in the spherical harmonics solution is given

  8. New developments in the discrete ordinate method for the resolution of the radiative transfer equation

    International Nuclear Information System (INIS)

    Ben Jaffel, L.; Vidal-Madjar, A.

    1989-01-01

    The discrete ordinate method for the resolution of the radiative transfer equation is developed. We show that the construction of a quasi-analytical solution to the corresponding matrix diagonalization problem reduces the time calculation and allows the use of more dense discrete frequency and angle grids. Comparison with previous work is made, showing that the present method reduces by more than a factor of ten the computational time, and is more appropriate in all cases

  9. Computational Modeling of a Time-Independent, Heterogeneous Reactor Core Using Simplified Discrete Ordinates Neutron Transport Techniques

    National Research Council Canada - National Science Library

    Labowski, Kristofer

    2001-01-01

    The Linear Characteristic (LC) method on rectangular boxoid meshes is a discrete ordinate neutron transport technique that uses both zeroth and first moments of the angular neutron flux to construct a relatively accurate...

  10. Singular characteristic tracking algorithm for improved solution accuracy of the discrete ordinates method with isotropic scattering

    International Nuclear Information System (INIS)

    Duo, J. I.; Azmy, Y. Y.

    2007-01-01

    A new method, the Singular Characteristics Tracking algorithm, is developed to account for potential non-smoothness across the singular characteristics in the exact solution of the discrete ordinates approximation of the transport equation. Numerical results show improved rate of convergence of the solution to the discrete ordinates equations in two spatial dimensions with isotropic scattering using the proposed methodology. Unlike the standard Weighted Diamond Difference methods, the new algorithm achieves local convergence in the case of discontinuous angular flux along the singular characteristics. The method also significantly reduces the error for problems where the angular flux presents discontinuous spatial derivatives across these lines. For purposes of verifying the results, the Method of Manufactured Solutions is used to generate analytical reference solutions that permit estimating the local error in the numerical solution. (authors)

  11. Generating Importance Map for Geometry Splitting using Discrete Ordinates Code in Deep Shielding Problem

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Young Ouk

    2016-01-01

    When we use MCNP code for a deep shielding problem, we prefer to use variance reduction technique such as geometry splitting, or weight window, or source biasing to have relative error within reliable confidence interval. To generate importance map for geometry splitting in MCNP calculation, we should know the track entering number and previous importance on each cells since a new importance is calculated based on these information. If a problem is deep shielding problem such that we have zero tracks entering on a cell, we cannot generate new importance map. In this case, discrete ordinates code can provide information to generate importance map easily. In this paper, we use AETIUS code as a discrete ordinates code. Importance map for MCNP is generated based on a zone average flux of AETIUS calculation. The discretization of space, angle, and energy is not necessary for MCNP calculation. This is the big merit of MCNP code compared to the deterministic code. However, deterministic code (i.e., AETIUS) can provide a rough estimate of the flux throughout a problem relatively quickly. This can help MCNP by providing variance reduction parameters. Recently, ADVANTG code is released. This is an automated tool for generating variance reduction parameters for fixed-source continuous-energy Monte Carlo simulations with MCNP5 v1.60

  12. High-order discrete ordinate transport in non-conforming 2D Cartesian meshes

    International Nuclear Information System (INIS)

    Gastaldo, L.; Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    We present in this paper a numerical scheme for solving the time-independent first-order form of the Boltzmann equation in non-conforming 2D Cartesian meshes. The flux solution technique used here is the discrete ordinate method and the spatial discretization is based on discontinuous finite elements. In order to have p-refinement capability, we have chosen a hierarchical polynomial basis based on Legendre polynomials. The h-refinement capability is also available and the element interface treatment has been simplified by the use of special functions decomposed over the mesh entities of an element. The comparison to a classical S N method using the Diamond Differencing scheme as spatial approximation confirms the good behaviour of the method. (authors)

  13. Simplified discrete ordinates method in spherical geometry

    International Nuclear Information System (INIS)

    Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.

    1999-01-01

    The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations

  14. Modifications Of Discrete Ordinate Method For Computations With High Scattering Anisotropy: Comparative Analysis

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2012-01-01

    A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.

  15. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    International Nuclear Information System (INIS)

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-01-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S n ) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  16. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  17. Discrete-ordinate method with matrix exponential for a pseudo-spherical atmosphere: Scalar case

    International Nuclear Information System (INIS)

    Doicu, A.; Trautmann, T.

    2009-01-01

    We present a discrete-ordinate algorithm using the matrix-exponential solution for pseudo-spherical radiative transfer. Following the finite-element technique we introduce the concept of layer equation and formulate the discrete radiative transfer problem in terms of the level values of the radiance. The layer quantities are expressed by means of matrix exponentials, which are computed by using the matrix eigenvalue method and the Pade approximation. These solution methods lead to a compact and versatile formulation of the radiative transfer. Simulated nadir and limb radiances for an aerosol-loaded atmosphere and a cloudy atmosphere are presented along with a discussion of the model intercomparisons and timings

  18. On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    International Nuclear Information System (INIS)

    Asadzadeh, M.; Thevenot, L.

    2010-01-01

    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

  19. The discrete ordinate method in association with the finite-volume method in non-structured mesh; Methode des ordonnees discretes associee a la methode des volumes finis en maillage non structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Dez, V; Lallemand, M [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France); Sakami, M; Charette, A [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

    1997-12-31

    The description of an efficient method of radiant heat transfer field determination in a grey semi-transparent environment included in a 2-D polygonal cavity with surface boundaries that reflect the radiation in a purely diffusive manner is proposed, at the equilibrium and in radiation-conduction coupling situation. The technique uses simultaneously the finite-volume method in non-structured triangular mesh, the discrete ordinate method and the ray shooting method. The main mathematical developments and comparative results with the discrete ordinate method in orthogonal curvilinear coordinates are included. (J.S.) 10 refs.

  20. The discrete ordinate method in association with the finite-volume method in non-structured mesh; Methode des ordonnees discretes associee a la methode des volumes finis en maillage non structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Dez, V.; Lallemand, M. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France); Sakami, M.; Charette, A. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

    1996-12-31

    The description of an efficient method of radiant heat transfer field determination in a grey semi-transparent environment included in a 2-D polygonal cavity with surface boundaries that reflect the radiation in a purely diffusive manner is proposed, at the equilibrium and in radiation-conduction coupling situation. The technique uses simultaneously the finite-volume method in non-structured triangular mesh, the discrete ordinate method and the ray shooting method. The main mathematical developments and comparative results with the discrete ordinate method in orthogonal curvilinear coordinates are included. (J.S.) 10 refs.

  1. High order discrete ordinates transport in two dimensions

    International Nuclear Information System (INIS)

    Arkuszewski, J.J.

    1980-01-01

    A two-dimensional neutron transport equation in (x,y) geometry is solved by the subdomain version of the weighted residual method. The weight functions are chosen to be characteristic functions of computational boxes (subdomains). In the case of bilinear interpolant the conventional diamond relations are obtained, while the quadratic one produces generalized diamond relations containing first derivatives of the solution. The balance equation remains the same. The derivation yields also additional relations for extrapolating boundary values of derivatives and leaves the room for supplementing the interpolant with specially curtailed higher order polynomials. The method requires only slight modifications in inner iteration process used by conventional discrete ordinates programs, and has been introduced as an option into the program DOT2. The paper contains comparisons of the proposed method with conventional one based on calculations of IAEA-CRP transport theory benchmarks. (author)

  2. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    International Nuclear Information System (INIS)

    Childs, R.L.

    1979-01-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions

  3. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  4. Extended discrete-ordinate method considering full polarization state

    International Nuclear Information System (INIS)

    Box, Michael A.; Qin Yi

    2006-01-01

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation

  5. Timing comparison of two-dimensional discrete-ordinates codes for criticality calculations

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Alcouffe, R.E.; Bosler, G.E.; Brinkley, F.W. Jr.; O'dell, R.D.

    1979-01-01

    The authors compare two-dimensional discrete-ordinates neutron transport computer codes to solve reactor criticality problems. The fundamental interest is in determining which code requires the minimum Central Processing Unit (CPU) time for a given numerical model of a reasonably realistic fast reactor core and peripherals. The computer codes considered are the most advanced available and, in three cases, are not officially released. The conclusion, based on the study of four fast reactor core models, is that for this class of problems the diffusion synthetic accelerated version of TWOTRAN, labeled TWOTRAN-DA, is superior to the other codes in terms of CPU requirements

  6. The adaptive collision source method for discrete ordinates radiation transport

    International Nuclear Information System (INIS)

    Walters, William J.; Haghighat, Alireza

    2017-01-01

    Highlights: • A new adaptive quadrature method to solve the discrete ordinates transport equation. • The adaptive collision source (ACS) method splits the flux into n’th collided components. • Uncollided flux requires high quadrature; this is lowered with number of collisions. • ACS automatically applies appropriate quadrature order each collided component. • The adaptive quadrature is 1.5–4 times more efficient than uniform quadrature. - Abstract: A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This method allows for an optimal use of processing power, by using a high order quadrature for the first iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and is referred to as the adaptive collision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source problems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4 on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard TITAN code.

  7. Extended discrete-ordinate method considering full polarization state

    Energy Technology Data Exchange (ETDEWEB)

    Box, Michael A. [School of Physics, University of New South Wales (Australia)]. E-mail: m.box@unsw.edu.au; Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au

    2006-01-15

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation.

  8. An analytical discrete-ordinates solution for an improved one-dimensional model of three-dimensional transport in ducts

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    2015-01-01

    Highlights: • An improved 1-D model of 3-D particle transport in ducts is studied. • The cases of isotropic and directional incidence are treated with the ADO method. • Accurate numerical results are reported for ducts of circular cross section. • A comparison with results of other authors is included. • The ADO method is found to be very efficient. - Abstract: An analytical discrete-ordinates solution is developed for the problem of particle transport in ducts, as described by a one-dimensional model constructed with two basis functions. Two types of particle incidence are considered: isotropic incidence and incidence described by the Dirac delta distribution. Accurate numerical results are tabulated for the reflection probabilities of semi-infinite ducts and the reflection and transmission probabilities of finite ducts. It is concluded that the developed solution is more efficient than commonly used numerical implementations of the discrete-ordinates method.

  9. A discrete ordinate response matrix method for massively parallel computers

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1991-01-01

    A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry

  10. Discrete ordinates transport methods for problems with highly forward-peaked scattering

    International Nuclear Information System (INIS)

    Pautz, S.D.

    1998-04-01

    The author examines the solutions of the discrete ordinates (S N ) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S N equations. This analysis shows that in this asymptotic limit the S N solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S N equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method

  11. A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-01-01

    A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy

  12. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1987-01-01

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs

  13. Discrete ordinate solution of the radiative transfer equation in the 'polarization normal wave representation'

    Science.gov (United States)

    Kylling, A.

    1991-01-01

    The transfer equations for normal waves in finite, inhomogeneous and plane-parallel magnetoactive media are solved using the discrete ordinate method. The physical process of absorption, emission, and multiple scattering are accounted for, and the medium may be forced both at the top and bottom boundary by anisotropic radiation as well as by internal anisotropic sources. The computational procedure is numerically stable for arbitrarily large optical depths, and the computer time is independent of optical thickness.

  14. Gamma-Weighted Discrete Ordinate Two-Stream Approximation for Computation of Domain Averaged Solar Irradiance

    Science.gov (United States)

    Kato, S.; Smith, G. L.; Barker, H. W.

    2001-01-01

    An algorithm is developed for the gamma-weighted discrete ordinate two-stream approximation that computes profiles of domain-averaged shortwave irradiances for horizontally inhomogeneous cloudy atmospheres. The algorithm assumes that frequency distributions of cloud optical depth at unresolved scales can be represented by a gamma distribution though it neglects net horizontal transport of radiation. This algorithm is an alternative to the one used in earlier studies that adopted the adding method. At present, only overcast cloudy layers are permitted.

  15. Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms with Collisions

    International Nuclear Information System (INIS)

    Bailey, T.S.; Falgout, R.D.

    2008-01-01

    We present theoretical scaling models for a variety of discrete-ordinates sweep algorithms. In these models, we pay particular attention to the way each algorithm handles collisions. A collision is defined as a processor having multiple angles with ready to be swept during one stage of the sweep. The models also take into account how subdomains are assigned to processors and how angles are grouped during the sweep. We describe a data driven algorithm that resolves collisions efficiently during the sweep as well as other algorithms that have been designed to avoid collisions completely. Our models are validated using the ARGES and AMTRAN transport codes. We then use the models to study and predict scaling trends in all of the sweep algorithms

  16. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  17. Development of parallel 3D discrete ordinates transport program on JASMIN framework

    International Nuclear Information System (INIS)

    Cheng, T.; Wei, J.; Shen, H.; Zhong, B.; Deng, L.

    2015-01-01

    A parallel 3D discrete ordinates radiation transport code JSNT-S is developed, aiming at simulating real-world radiation shielding and reactor physics applications in a reasonable time. Through the patch-based domain partition algorithm, the memory requirement is shared among processors and a space-angle parallel sweeping algorithm is developed based on data-driven algorithm. Acceleration methods such as partial current rebalance are implemented. The correctness is proved through the VENUS-3 and other benchmark models. In the radiation shielding calculation of the Qinshan-II reactor pressure vessel model with 24.3 billion DoF, only 88 seconds is required and the overall parallel efficiency of 44% is achieved on 1536 CPU cores. (author)

  18. A Laplace transform method for energy multigroup hybrid discrete ordinates

    International Nuclear Information System (INIS)

    Segatto, C.F.; Vilhena, M.T.; Barros, R.C.

    2010-01-01

    In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this work we describe a hybrid discrete ordinates (S N) method for energy multigroup slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. The idea is based on the fact that in weakly absorbing media whose physical size is several neutron mean free paths in extent, even the S 2 method (P 1 approximation), leads to an accurate result. We use special fuel-moderator interface conditions and the Laplace transform (LTS N ) analytical numerical method to calculate the two-energy group neutron flux distributions and the thermal disadvantage factor. We present numerical results for a range of typical model problems.

  19. Performance of the discrete ordinates method-like neutron transport computation with equivalent group condensation and angle-collapsing

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Won, Jong Hyuck; Cho, Nam Zin

    2011-01-01

    In computational studies of neutron transport equations, the fine-group to few-group condensation procedure leads to equivalent total cross section that becomes angle dependent. The difficulty of this angle dependency has been traditionally treated by consistent P or extended transport approximation in the literature. In a previous study, we retained the angle dependency of the total cross section and applied directly to the discrete ordinates equation, with additional concept of angle-collapsing, and tested in a one-dimensional slab problem. In this study, we provide further results of this discrete ordinates-like method in comparison with the typical traditional methods. In addition, IRAM acceleration (based on Krylov subspace method) is tested for the purpose of further reducing the computational burden of few-group calculation. From the test results, it is ascertained that the angle-dependent total cross section with angle-collapsing gives excellent estimation of k_e_f_f and flux distribution and that IRAM acceleration effectively reduces the number of outer iterations. However, since IRAM requires sufficient convergence in inner iterations, speedup in total computer time is not significant for problems with upscattering. (author)

  20. A massively parallel discrete ordinates response matrix method for neutron transport

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1992-01-01

    In this paper a discrete ordinates response matrix method is formulated with anisotropic scattering for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices that result from the diamond-differenced equations are utilized in a factored form that minimizes memory requirements and significantly reduces the number of arithmetic operations required per node. The red-black solution algorithm utilizes massive parallelism by assigning each spatial node to one or more processors. The algorithm is accelerated by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red-black iterations. The method is implemented on a 16K Connection Machine-2, and S 8 and S 16 solutions are obtained for fixed-source benchmark problems in x-y geometry

  1. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  2. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  3. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    Science.gov (United States)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta

  4. Approximate albedo boundary conditions for energy multigroup X,Y-geometry discrete ordinates nuclear global calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi J.M.; Nunes, Carlos E.A.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: ceanunes@yahoo.com.br, E-mail: rcbarros@pq.cnpq.br [Secretaria Municipal de Educacao de Itaborai, RJ (Brazil); Universidade Estacio de Sa (UNESA), Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), Novra Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional

    2017-11-01

    Discussed here is the accuracy of approximate albedo boundary conditions for energy multigroup discrete ordinates (S{sub N}) eigenvalue problems in two-dimensional rectangular geometry for criticality calculations in neutron fission reacting systems, such as nuclear reactors. The multigroup (S{sub N}) albedo matrix substitutes approximately the non-multiplying media around the core, e.g., baffle and reflector, as we neglect the transverse leakage terms within these non-multiplying regions. Numerical results to a typical model problem are given to illustrate the accuracy versus the computer running time. (author)

  5. Use of exact albedo conditions in numerical methods for one-dimensional one-speed discrete ordinates eigenvalue problems

    International Nuclear Information System (INIS)

    Abreu, M.P. de

    1994-01-01

    The use of exact albedo boundary conditions in numerical methods applied to one-dimensional one-speed discrete ordinates (S n ) eigenvalue problems for nuclear reactor global calculations is described. An albedo operator that treats the reflector region around a nuclear reactor core implicitly is described and exactly was derived. To illustrate the method's efficiency and accuracy, it was used conventional linear diamond method with the albedo option to solve typical model problems. (author)

  6. Discrete ordinates cross-section generation in parallel plane geometry -- 2: Computational results

    International Nuclear Information System (INIS)

    Yavuz, M.

    1998-01-01

    In Ref. 1, the author presented inverse discrete ordinates (S N ) methods for cross-section generation with an arbitrary scattering anisotropy of order L (L ≤ N - 1) in parallel plane geometry. The solution techniques depend on the S N eigensolutions. The eigensolutions are determined by the inverse simplified S N method (ISS N ), which uses the surface Green's function matrices (T and R). Inverse problems are generally designed so that experimentally measured physical quantities can be used in the formulations. In the formulations, although T and R (TR matrices) are measurable quantities, the author does not have such data to check the adequacy and accuracy of the methods. However, it is possible to compute TR matrices by S N methods. The author presents computational results and computationally observed properties

  7. Benchmarking of EPRI-cell epithermal methods with the point-energy discrete-ordinates code (OZMA)

    International Nuclear Information System (INIS)

    Williams, M.L.; Wright, R.Q.; Barhen, J.; Rothenstein, W.

    1982-01-01

    The purpose of the present study is to benchmark E-C resonance-shielding and cell-averaging methods against a rigorous deterministic solution on a fine-group level (approx. 30 groups between 1 eV and 5.5 keV). The benchmark code used is OZMA, which solves the space-dependent slowing-down equations using continuous-energy discrete ordinates or integral transport theory to produce fine-group cross sections. Results are given for three water-moderated lattices - a mixed oxide, a uranium method, and a tight-pitch high-conversion uranium oxide configuration. The latter two lattices were chosen because of the strong self shielding of the 238 U resonances

  8. Solution of the one-dimensional time-dependent discrete ordinates problem in a slab by the spectral and LTSN methods

    International Nuclear Information System (INIS)

    Oliveira, J.V.P. de; Cardona, A.V.; Vilhena, M.T.M.B. de

    2002-01-01

    In this work, we present a new approach to solve the one-dimensional time-dependent discrete ordinates problem (S N problem) in a slab. The main idea is based upon the application of the spectral method to the set of S N time-dependent differential equations and solution of the resulting coupling equations by the LTS N method. We report numerical simulations

  9. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    Science.gov (United States)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  10. Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze

    Science.gov (United States)

    Kattawar, G. W.; Plass, G. N.; Catchings, F. E.

    1971-01-01

    Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.

  11. An analytical nodal method for time-dependent one-dimensional discrete ordinates problems

    International Nuclear Information System (INIS)

    Barros, R.C. de

    1992-01-01

    In recent years, relatively little work has been done in developing time-dependent discrete ordinates (S N ) computer codes. Therefore, the topic of time integration methods certainly deserves further attention. In this paper, we describe a new coarse-mesh method for time-dependent monoenergetic S N transport problesm in slab geometry. This numerical method preserves the analytic solution of the transverse-integrated S N nodal equations by constants, so we call our method the analytical constant nodal (ACN) method. For time-independent S N problems in finite slab geometry and for time-dependent infinite-medium S N problems, the ACN method generates numerical solutions that are completely free of truncation errors. Bsed on this positive feature, we expect the ACN method to be more accurate than conventional numerical methods for S N transport calculations on coarse space-time grids

  12. A parallel algorithm for solving the multidimensional within-group discrete ordinates equations with spatial domain decomposition - 104

    International Nuclear Information System (INIS)

    Zerr, R.J.; Azmy, Y.Y.

    2010-01-01

    A spatial domain decomposition with a parallel block Jacobi solution algorithm has been developed based on the integral transport matrix formulation of the discrete ordinates approximation for solving the within-group transport equation. The new methodology abandons the typical source iteration scheme and solves directly for the fully converged scalar flux. Four matrix operators are constructed based upon the integral form of the discrete ordinates equations. A single differential mesh sweep is performed to construct these operators. The method is parallelized by decomposing the problem domain into several smaller sub-domains, each treated as an independent problem. The scalar flux of each sub-domain is solved exactly given incoming angular flux boundary conditions. Sub-domain boundary conditions are updated iteratively, and convergence is achieved when the scalar flux error in all cells meets a pre-specified convergence criterion. The method has been implemented in a computer code that was then employed for strong scaling studies of the algorithm's parallel performance via a fixed-size problem in tests ranging from one domain up to one cell per sub-domain. Results indicate that the best parallel performance compared to source iterations occurs for optically thick, highly scattering problems, the variety that is most difficult for the traditional SI scheme to solve. Moreover, the minimum execution time occurs when each sub-domain contains a total of four cells. (authors)

  13. Program to solve the multigroup discrete ordinates transport equation in (x,y,z) geometry

    International Nuclear Information System (INIS)

    Lathrop, K.D.

    1976-04-01

    Numerical formulations and programming algorithms are given for the THREETRAN computer program which solves the discrete ordinates, multigroup transport equation in (x,y,z) geometry. An efficient, flexible, and general data-handling strategy is derived to make use of three hierarchies of storage: small core memory, large core memory, and disk file. Data management, input instructions, and sample problem output are described. A six-group, S 4 , 18 502 mesh point, 2 800 zone, k/sub eff/ calculation of the ZPPR-4 critical assembly required 144 min of CDC-7600 time to execute to a convergence tolerance of 5 x 10 -4 and gave results in good qualitative agreement with experiment and other calculations. 6 references

  14. Discrete elements method of neutron transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1988-01-01

    In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution

  15. The method of lines solution of discrete ordinates method for non-grey media

    International Nuclear Information System (INIS)

    Cayan, Fatma Nihan; Selcuk, Nevin

    2007-01-01

    A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for radiative heat transfer in non-grey absorbing-emitting media was developed by incorporation of a gas spectral radiative property model, namely wide band correlated-k (WBCK) model, which is compatible with MOL solution of DOM. Predictive accuracy of the code was evaluated by applying it to 1-D parallel plate and 2-D axisymmetric cylindrical enclosure problems containing absorbing-emitting medium and benchmarking its predictions against line-by-line solutions available in the literature. Comparisons reveal that MOL solution of DOM with WBCK model produces accurate results for radiative heat fluxes and source terms and can be used with confidence in conjunction with computational fluid dynamics codes based on the same approach

  16. A response matrix method for slab-geometry discrete ordinates adjoint calculations in energy-dependent source-detector problems

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Ralph S.; Moura, Carlos A., E-mail: ralph@ime.uerj.br, E-mail: demoura@ime.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Departamento de Engenharia Mecanica; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Modelagem Computacional

    2017-07-01

    Presented here is an application of the Response Matrix (RM) method for adjoint discrete ordinates (S{sub N}) problems in slab geometry applied to energy-dependent source-detector problems. The adjoint RM method is free from spatial truncation errors, as it generates numerical results for the adjoint angular fluxes in multilayer slabs that agree with the numerical values obtained from the analytical solution of the energy multigroup adjoint SN equations. Numerical results are given for two typical source-detector problems to illustrate the accuracy and the efficiency of the offered RM computer code. (author)

  17. Radiative transfer modelling in combusting systems using discrete ordinates method on three-dimensional unstructured grids; Modelisation des transferts radiatifs en combustion par methode aux ordonnees discretes sur des maillages non structures tridimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.

    2004-04-01

    The prediction of pollutant species such as soots and NO{sub x} emissions and lifetime of the walls in a combustion chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the development of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the combustion gases are taken into account by a statistical narrow bands correlated-k model (SNB-ck). Various types of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Ordinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling. (author)

  18. The linear characteristic method for spatially discretizing the discrete ordinates equations in (x,y)-geometry

    International Nuclear Information System (INIS)

    Larsen, E.W.; Alcouffe, R.E.

    1981-01-01

    In this article a new linear characteristic (LC) spatial differencing scheme for the discrete ordinates equations in (x,y)-geometry is described and numerical comparisons are given with the diamond difference (DD) method. The LC method is more stable with mesh size and is generally much more accurate than the DD method on both fine and coarse meshes, for eigenvalue and deep penetration problems. The LC method is based on computations involving the exact solution of a cell problem which has spatially linear boundary conditions and interior source. The LC method is coupled to the diffusion synthetic acceleration (DSA) algorithm in that the linear variations of the source are determined in part by the results of the DSA calculation from the previous inner iteration. An inexpensive negative-flux fixup is used which has very little effect on the accuracy of the solution. The storage requirements for LC are essentially the same as that for DD, while the computational times for LC are generally less than twice the DD computational times for the same mesh. This increase in computational cost is offset if one computes LC solutions on somewhat coarser meshes than DD; the resulting LC solutions are still generally much more accurate than the DD solutions. (orig.) [de

  19. A Deep Penetration Problem Calculation Using AETIUS:An Easy Modeling Discrete Ordinates Transport Code UsIng Unstructured Tetrahedral Mesh, Shared Memory Parallel

    Science.gov (United States)

    KIM, Jong Woon; LEE, Young-Ouk

    2017-09-01

    As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.

  20. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  1. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. I - Theory. II - Application

    Science.gov (United States)

    Weng, Fuzhong

    1992-01-01

    A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.

  2. High-order discrete ordinate transport in hexagonal geometry: A new capability in ERANOS

    International Nuclear Information System (INIS)

    Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J.M.

    2010-01-01

    This paper presents the implementation of an arbitrary order discontinuous Galerkin scheme within the framework of a discrete ordinate solver of the neutron transport equation for nuclear reactor calculations. More precisely, it deals with non-conforming spatial meshes for the 2 D and 3 D modeling of core geometries based on hexagonal assemblies. This work aims at improving the capabilities of the ERANOS code system dedicated to fast reactor analysis and design. Both the angular quadrature and spatial scheme peculiarities for hexagonal geometries are presented. A particular focus is set on the spatial non-conforming mesh and variable order capabilities of this scheme in anticipation to the development of spatial adaptiveness algorithms. These features are illustrated on a 3 D numerical benchmark with comparison to a Monte Carlo reference and a 2 D benchmark that shows the potential of this scheme for both h-and p-adaptation.

  3. A parallel algorithm for solving the integral form of the discrete ordinates equations

    International Nuclear Information System (INIS)

    Zerr, R. J.; Azmy, Y. Y.

    2009-01-01

    The integral form of the discrete ordinates equations involves a system of equations that has a large, dense coefficient matrix. The serial construction methodology is presented and properties that affect the execution times to construct and solve the system are evaluated. Two approaches for massively parallel implementation of the solution algorithm are proposed and the current results of one of these are presented. The system of equations May be solved using two parallel solvers-block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-clock time for execution. The conjugate gradient solver exhibits better performance to compete with the traditional source iteration technique in terms of execution time and scalability. The parallel conjugate gradient method is synchronous, hence it does not increase the number of iterations for convergence compared to serial execution, and the efficiency of the algorithm demonstrates an apparent asymptotic decline. (authors)

  4. Albedo boundary conditions for global calculations of thermal nuclear reactors with the model of discrete ordinates to two energy groups

    International Nuclear Information System (INIS)

    Nunes, Carlos Eduardo de Araujo

    2011-01-01

    As neutron fission events do not take place in the non-multiplying regions of nuclear reactors, e.g., moderator, reflector, and structural core, these regions do not generate power and the computational efficiency of nuclear reactor global calculations can hence be improved by eliminating the explicit numerical calculations within the non-multiplying regions around the active domain. Discussed here is the computational efficiency of approximate discrete ordinates (SN) albedo boundary conditions for two-energy group eigenvalue problems in X, Y geometry. Albedo, the Latin word for w hiteness , was originally defined as the fraction of incident light reflected diffusely by a surface. This Latin word has remained the usual scientific term in astronomy and in this dissertation this concept is extended for the reflection of neutrons. The non-standard SN albedo substitutes approximately the reflector region around the active domain, as we neglect the transverse leakage terms within the non-multiplying reflector. Should the problem have no transverse leakage terms, i.e., one dimensional slab geometry, then the offered albedo boundary conditions are exact. By computational efficiency we mean analyzing the accuracy of the numerical results versus the CPU execution time of each run for a given model problem. Numerical results to two 1/4 symmetric test problems are shown to illustrate this efficiency analysis. (author)

  5. Ray effects in the discrete-ordinate solution for surface radiation exchange

    Energy Technology Data Exchange (ETDEWEB)

    Liou, B T [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China); Wu, C Y [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China)

    1997-04-01

    A study of the application of the discrete-ordinate method (DOM) with remedy for the ray effects to the solution of surface radiation exchange is presented in this paper. The remedy for the ray effects is achieved by dividing the radiative intensity into the attenuated incident and the medium emitting components. To demonstrate the application of the technique, this work considers radiative heat transfer in a two-dimensional cylindrical enclosure filled with a nearly transparent medium. The results obtained by the present DOM are in excellent agreement with those by the radiosity/irradiation method. (orig.). With 4 figs., 3 tabs. [Deutsch] In der Arbeit wird ein Weg aufgezeigt, wie die Stoerstrahlungseffekte bei Anwendung der Methode der diskreten Ordinaten auf die Berechnung des Energietausches zwischen Oberflaechenstrahlern vermieden werden koennen. Dies laesst sich durch Aufspaltung der Strahlungsintensitaet in die abgeschwaechte einfallende und die vom Medium emittierte Komponente erreichen. Als Beispiel fuer die Anwendung dieses Verfahrens dient der Waermeaustausch durch Strahlung in einem zweidimensionalen zylindrischen Behaeltnis, das mit einem nahezu transparenten Medium befuellt ist. Die mit der modifizierten Methode erhaltenen Ergebnisse stimmen ausgezeichnet mit jenen nach dem klassischen Brutto-Verfahren ueberein. (orig.)

  6. Effect of flux discontinuity on spatial approximations for discrete ordinates methods

    International Nuclear Information System (INIS)

    Duo, J.I.; Azmy, Y.Y.

    2005-01-01

    This work presents advances on error analysis of the spatial approximation of the discrete ordinates method for solving the neutron transport equation. Error norms for different non-collided flux problems over a two dimensional pure absorber medium are evaluated using three numerical methods. The problems are characterized by the incoming flux boundary conditions to obtain solutions with different level of differentiability. The three methods considered are the Diamond Difference (DD) method, the Arbitrarily High Order Transport method of the Nodal type (AHOT-N), and of the Characteristic type (AHOT-C). The last two methods are employed in constant, linear and quadratic orders of spatial approximation. The cell-wise error is computed as the difference between the cell-averaged flux computed by each method and the exact value, then the L 1 , L 2 , and L ∞ error norms are calculated. The results of this study demonstrate that the level of differentiability of the exact solution profoundly affects the rate of convergence of the numerical methods' solutions. Furthermore, in the case of discontinuous exact flux the methods fail to converge in the maximum error norm, or in the pointwise sense, in accordance with previous local error analysis. (authors)

  7. C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL

    2011-01-01

    The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.

  8. A response matrix method for one-speed discrete ordinates fixed source problems in slab geometry with no spatial truncation error

    International Nuclear Information System (INIS)

    Lydia, Emilio J.; Barros, Ricardo C.

    2011-01-01

    In this paper we describe a response matrix method for one-speed slab-geometry discrete ordinates (SN) neutral particle transport problems that is completely free from spatial truncation errors. The unknowns in the method are the cell-edge angular fluxes of particles. The numerical results generated for these quantities are exactly those obtained from the analytic solution of the SN problem apart from finite arithmetic considerations. Our method is based on a spectral analysis that we perform in the SN equations with scattering inside a discretization cell of the spatial grid set up on the slab. As a result of this spectral analysis, we are able to obtain an expression for the local general solution of the SN equations. With this local general solution, we determine the response matrix and use the prescribed boundary conditions and continuity conditions to sweep across the discretization cells from left to right and from right to left across the slab, until a prescribed convergence criterion is satisfied. (author)

  9. On radiative transfer in water spray curtains using the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Collin, A. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Boulet, P. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)]. E-mail: Pascal.Boulet@lemta.uhp-nancy.fr; Lacroix, D. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Jeandel, G. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)

    2005-04-15

    Radiative transfer through water spray curtains has been presently addressed in conditions similar to devices used in fire protection systems. The radiation propagation from the heat source through the medium is simulated using a 2D Discrete Ordinates Method. The curtain is treated as an absorbing and anisotropically scattering medium, made of droplets injected in a mixing of air, water vapor and carbon dioxide. Such a participating medium requires a careful treatment of its spectral response in order to model the radiative transfer accurately. This particular problem is dealt with using a correlated-K method. Radiative properties for the droplets are calculated applying the Mie theory. Transmissivities under realistic conditions are then simulated after a validation thanks to comparisons with some experimental data available in the literature. Owing to promising results which are already observed in this case of uncoupled radiative problem, next step will be to combine the present study with a companion work dedicated to the careful treatment of the spray dynamics and of the induced heat transfer phenomena.

  10. Open Method of Co-Ordination for Demoi-Cracy?

    DEFF Research Database (Denmark)

    Borrás, Susana; Radaelli, Claudio

    2014-01-01

    Under which conditions does the open method of co-ordination match the standards for demoi-cracy? To answer this question, we need some explicit standards about demoi-cracy. In fact, open co-ordination serves three different but interrelated purposes in European Union policy: to facilitate...... convergence; to support learning processes; and to encourage exploration of policy innovation. By intersecting standards and purposes, we find open co-ordination is neither inherently ‘good’ nor ‘bad’ for demoi-cracy, as it depends on how it has been put into practice. Therefore, we qualify the answer...

  11. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  12. Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1983-01-01

    The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored

  13. Comparison of the auxiliary function method and the discrete-ordinate method for solving the radiative transfer equation for light scattering.

    Science.gov (United States)

    da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques

    2003-12-01

    Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.

  14. Experiences in the parallelization of the discrete ordinates method using OpenMP and MPI

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, A. [TUV Hannover/Sachsen-Anhalt e.V. (Germany); Langenbuch, S. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) mbH (Germany)

    2003-07-01

    The method of Discrete Ordinates is in principle parallelizable to a high degree, since the transport 'mesh sweeps' are mutually independent for all angular directions. However, in the well-known production code Dort such a type of angular domain decomposition has to be done on a spatial line-byline basis, causing the parallelism in the code to be very fine-grained. The construction of scalar fluxes and moments requires a large effort for inter-thread or inter-process communication. We have implemented two different parallelization approaches in Dort: firstly, we have used a shared-memory model suitable for SMP (Symmetric Multiprocessor) machines based on the standard OpenMP. The second approach uses the well-known Message Passing Interface (MPI) to establish communication between parallel processes running in a distributed-memory environment. We investigate the benefits and drawbacks of both models and show first results on performance and scaling behaviour of the parallel Dort code. (authors)

  15. Experiences in the parallelization of the discrete ordinates method using OpenMP and MPI

    International Nuclear Information System (INIS)

    Pautz, A.; Langenbuch, S.

    2003-01-01

    The method of Discrete Ordinates is in principle parallelizable to a high degree, since the transport 'mesh sweeps' are mutually independent for all angular directions. However, in the well-known production code Dort such a type of angular domain decomposition has to be done on a spatial line-byline basis, causing the parallelism in the code to be very fine-grained. The construction of scalar fluxes and moments requires a large effort for inter-thread or inter-process communication. We have implemented two different parallelization approaches in Dort: firstly, we have used a shared-memory model suitable for SMP (Symmetric Multiprocessor) machines based on the standard OpenMP. The second approach uses the well-known Message Passing Interface (MPI) to establish communication between parallel processes running in a distributed-memory environment. We investigate the benefits and drawbacks of both models and show first results on performance and scaling behaviour of the parallel Dort code. (authors)

  16. Discrete elements method of neutral particle transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1983-01-01

    A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method

  17. Verification of three dimensional triangular prismatic discrete ordinates transport code ENSEMBLE-TRIZ by comparison with Monte Carlo code GMVP

    International Nuclear Information System (INIS)

    Homma, Y.; Moriwaki, H.; Ikeda, K.; Ohdi, S.

    2013-01-01

    This paper deals with the verification of the 3 dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with the multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at the beginning of cycle of an initial core and at the beginning and the end of cycle of an equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multiplication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity. (authors)

  18. Exponential characteristics spatial quadrature for discrete ordinates radiation transport in slab geometry

    International Nuclear Information System (INIS)

    Mathews, K.; Sjoden, G.; Minor, B.

    1994-01-01

    The exponential characteristic spatial quadrature for discrete ordinates neutral particle transport in slab geometry is derived and compared with current methods. It is similar to the linear characteristic (or, in slab geometry, the linear nodal) quadrature but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx), whose parameters are root-solved to match the known (from the previous iteration) average and first moment of the source over the cell. Like the linear adaptive method, the exponential characteristic method is positive and nonlinear but more accurate and more readily extended to other cell shapes. The nonlinearity has not interfered with convergence. The authors introduce the ''exponential moment functions,'' a generalization of the functions used by Walters in the linear nodal method, and use them to avoid numerical ill-conditioning. The method exhibits O(Δx 4 ) truncation error on fine enough meshes; the error is insensitive to mesh size for coarse meshes. In a shielding problem, it is accurate to 10% using 16-mfp-thick cells; conventional methods err by 8 to 15 orders of magnitude. The exponential characteristic method is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems

  19. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3)

    Energy Technology Data Exchange (ETDEWEB)

    Rhoades, W.A.; Simpson, D.B.

    1997-10-01

    TORT calculates the flux or fluence of neutrons and/or photons throughout three-dimensional systems due to particles incident upon the system`s external boundaries, due to fixed internal sources, or due to sources generated by interaction with the system materials. The transport process is represented by the Boltzman transport equation. The method of discrete ordinates is used to treat the directional variable, and a multigroup formulation treats the energy dependence. Anisotropic scattering is treated using a Legendre expansion. Various methods are used to treat spatial dependence, including nodal and characteristic procedures that have been especially adapted to resist numerical distortion. A method of body overlay assists in material zone specification, or the specification can be generated by an external code supplied by the user. Several special features are designed to concentrate machine resources where they are most needed. The directional quadrature and Legendre expansion can vary with energy group. A discontinuous mesh capability has been shown to reduce the size of large problems by a factor of roughly three in some cases. The emphasis in this code is a robust, adaptable application of time-tested methods, together with a few well-tested extensions.

  20. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    OpenAIRE

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  1. Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer

    International Nuclear Information System (INIS)

    Godoy, William F.; Liu Xu

    2012-01-01

    The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing–emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram–Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution.

  2. Baecklund transformations for discrete Painleve equations: Discrete PII-PV

    International Nuclear Information System (INIS)

    Sakka, A.; Mugan, U.

    2006-01-01

    Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations

  3. Discrete ordinates solution of coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation

    International Nuclear Information System (INIS)

    Muresan, Cristian; Vaillon, Rodolphe; Menezo, Christophe; Morlot, Rodolphe

    2004-01-01

    The coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation is solved. The collimated and diffuse components problems are treated separately. The solution for diffuse radiation is obtained by using a composite discrete ordinates method and includes the development of adaptive directional quadratures to overcome the difficulties usually encountered at the interfaces. The complete radiation numerical model is validated against the predictions obtained by using the Monte Carlo method

  4. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system.

    Science.gov (United States)

    Gjerstad, Karl Idar; Stamnes, Jakob J; Hamre, Børge; Lotsberg, Jon K; Yan, Banghua; Stamnes, Knut

    2003-05-20

    We compare Monte Carlo (MC) and discrete-ordinate radiative-transfer (DISORT) simulations of irradiances in a one-dimensional coupled atmosphere-ocean (CAO) system consisting of horizontal plane-parallel layers. The two models have precisely the same physical basis, including coupling between the atmosphere and the ocean, and we use precisely the same atmospheric and oceanic input parameters for both codes. For a plane atmosphere-ocean interface we find agreement between irradiances obtained with the two codes to within 1%, both in the atmosphere and the ocean. Our tests cover case 1 water, scattering by density fluctuations both in the atmosphere and in the ocean, and scattering by particulate matter represented by a one-parameter Henyey-Greenstein (HG) scattering phase function. The CAO-MC code has an advantage over the CAO-DISORT code in that it can handle surface waves on the atmosphere-ocean interface, but the CAO-DISORT code is computationally much faster. Therefore we use CAO-MC simulations to study the influence of ocean surface waves and propose a way to correct the results of the CAO-DISORT code so as to obtain fast and accurate underwater irradiances in the presence of surface waves.

  5. Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system.

    Science.gov (United States)

    Hestenes, Kjersti; Nielsen, Kristian P; Zhao, Lu; Stamnes, Jakob J; Stamnes, Knut

    2007-04-20

    We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue. Our tests cover typical optical properties of skin tissue at the 280, 540, and 650 nm wavelengths. The normalized volume scattering function for internal structures in the skin is represented by the one-parameter Henyey-Greenstein function for large particles and the Rayleigh scattering function for small particles. The CAT-DISORT code is found to be approximately 1000 times faster than the CAT-MC code. We also show that the spectral radiance field is strongly dependent on the inherent optical properties of the skin tissue.

  6. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A; Sacadura, J F [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1997-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  7. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A.; Sacadura, J.F. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1996-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  8. On the adequacy of Cartesian geometry discrete ordinates solutions for assembly calculations

    International Nuclear Information System (INIS)

    Schunert, S.; Azmy, Y. Y.

    2009-01-01

    The current generation of lattice codes employs the method of Collision Probabilities (CP), the Method of Characteristics (MOC) or methods derived thereof to solve the two-dimensional multigroup transport equation on the assembly level. We compare the attainable solution accuracy of the lattice code DRAGON to the accuracy of the Discrete Ordinates (DO) code DORT on the basis of the two-dimensional GE-13 assembly in order to determine if the DO on Cartesian meshes is suitable as flux solver in future lattice codes. If DO exhibits high accuracy for assembly configurations, the next question is at what computational expense compared to traditional assembly codes. For this purpose DORT and DRAGON are required to converge to a reference solution, obtained by a multigroup MCNP calculation, with increasing angular quadrature order and decreasing spatial cell size; additionally for DRAGON the reference solution must be approached with increasing tracking density. The convergence of the two codes is judged via the multiplication factor, the pin wise relative error in the fission production rate, it's RMS and the maximum of it's absolute value over all pins. Additionally the computational cost of the obtained solutions is judged via the user CPU time. Although the multiplication factor computed by both codes converges with refinement of the employed meshes, the maximum deviation error of the fission production rate in the central region of the assembly remains unsatisfactorily high for CP and MOC. (authors)

  9. Slab geometry spatial discretization schemes with infinite-order convergence

    International Nuclear Information System (INIS)

    Adams, M.L.; Martin, W.R.

    1985-01-01

    Spatial discretization schemes for the slab geometry discrete ordinates transport equation have received considerable attention in the past several years, with particular interest shown in developing methods that are more computationally efficient that standard schemes. Here the authors apply to the discrete ordinates equations a spectral method that is significantly more efficient than previously proposed schemes for high-accuracy calculations of homogeneous problems. This is a direct consequence of the exponential (infinite-order) convergence of spectral methods for problems with every smooth solutions. For heterogeneous problems where smooth solutions do not exist and exponential convergence is not observed with spectral methods, a spectral element method is proposed which does exhibit exponential convergence

  10. The time-dependent 3D discrete ordinates code TORT-TD with thermal-hydraulic feedback by ATHLET models

    International Nuclear Information System (INIS)

    Seubert, A.; Velkov, K.; Langenbuch, S.

    2008-01-01

    This paper describes the time-dependent 3D discrete ordinates transport code TORT-TD. Thermal-hydraulic feedback is considered by coupling TORT-TD with the thermal-hydraulics system code ATHLET. The coupled code TORT-TD/ATHLET allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. The nuclear cross sections are interpolated between pre-calculated table values of fuel temperature, moderator density and boron concentration. For verification of the implementation, selected test cases have been calculated by TORT-TD/ATHLET. They include a control rod ejection transient in a small PWR fuel assembly arrangement and a local boron concentration change in a single PWR fuel assembly. In the latter, special attention has been paid to study the influence of the thermal-hydraulic feedback modelling in ATHLET. The results obtained for a control rod ejection accident in a PWR quarter core demonstrate the applicability of TORT-TD/ATHLET. (authors)

  11. Analysis of QUADOS problem on TLD-ALBEDO personal dosemeter responses using discrete ordinates and Monte Carlo methods

    International Nuclear Information System (INIS)

    Kodeli, I.; Tanner, R.

    2005-01-01

    In the scope of QUADOS, a Concerted Action of the European Commission, eight calculational problems were prepared in order to evaluate the use of computational codes for dosimetry in radiation protection and medical physics, and to disseminate 'good practice' throughout the radiation dosimetry community. This paper focuses on the analysis of the P4 problem on the 'TLD-albedo dosemeter: neutron and/or photon response of a four-element TL-dosemeter mounted on a standard ISO slab phantom'. Altogether 17 solutions were received from the participants, 14 of those transported neutrons and 15 photons. Most participants (16 out of 17) used Monte Carlo methods. These calculations are time-consuming, requiring several days of CPU time to perform the whole set of calculations and achieve good statistical precision. The possibility of using deterministic discrete ordinates codes as an alternative to Monte Carlo was therefore investigated and is presented here. In particular the capacity of the adjoint mode calculations is shown. (authors)

  12. New ordinances

    International Nuclear Information System (INIS)

    Reuter, H.

    1980-01-01

    Based on extensive preliminary work of the responsible Federal Minister of Labour and Social Affairs, the 'Ordinance to Replace Ordinances under Article 24 of the Irading and Industrial Code' has been issued by the Federal Government on February 27, 1980. This new ordinance also contains the new versions of the Steam Boiler Ordinance, the Pressure Gas Ordinance, the Lift Ordinance, the Ordinance on Electrical Installations in Rooms with High Explosion Hazards, the Acetylene Ordinance, and the Ordinance on Combustible Liquids. Accordingly, these new ordinances all have the same date of issue. Coming into force on July 1, 1980, they will replace six ordinances for plants to be licensed. The same applies to the pertinent general administrative regulations. (orig.) [de

  13. Spectral nodal methodology for multigroup slab-geometry discrete ordinates neutron transport problems with linearly anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)

  14. The CNCSN: one, two- and three-dimensional coupled neutral and charged particle discrete ordinates code package

    International Nuclear Information System (INIS)

    Voloschenko, A.M.; Gukov, S.V.; Kryuchkov, V.P.; Dubinin, A.A.; Sumaneev, O.V.

    2005-01-01

    The CNCSN package is composed of the following codes: -) KATRIN-2.0: a three-dimensional neutral and charged particle transport code; -) KASKAD-S-2.5: a two-dimensional neutral and charged particle transport code; -) ROZ-6.6: a one-dimensional neutral and charged particle transport code; -) ARVES-2.5: a preprocessor for the working macroscopic cross-section format FMAC-M for transport calculations; -) MIXERM: a utility code for preparing mixtures on the base of multigroup cross-section libraries in ANISN format; -) CEPXS-BFP: a version of the Sandia National Lab. multigroup coupled electron-photon cross-section generating code CEPXS, adapted for solving the charged particles transport in the Boltzmann-Fokker-Planck formulation with the use of discrete ordinate method; -) SADCO-2.4: Institute for High-Energy Physics modular system for generating coupled nuclear data libraries to provide high-energy particles transport calculations by multigroup method; -) KATRIF: the post-processor for the KATRIN code; -) KASF: the post-processor for the KASKAD-S code; and ROZ6F: the post-processor for the ROZ-6 code. The coding language is Fortran-90

  15. Applications of the Discrete ordinates of Oak ridge System (DOORS) package to Nuclear Engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Y.Y. [The Pennsylvania State University, 229 Reber Building, University Park, PA 16802 (United States)]. e-mail: yya3@psu.edu

    2004-07-01

    Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)

  16. Applications of the Discrete ordinates of Oak ridge System (DOORS) package to Nuclear Engineering problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    2004-01-01

    Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)

  17. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    International Nuclear Information System (INIS)

    Godoy, William F.; DesJardin, Paul E.

    2010-01-01

    The application of flux limiters to the discrete ordinates method (DOM), S N , for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to 'exact' solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  18. Domain decomposition and CMFD acceleration applied to discrete-ordinate methods for the solution of the neutron transport equation in XYZ geometries

    International Nuclear Information System (INIS)

    Masiello, Emiliano; Martin, Brunella; Do, Jean-Michel

    2011-01-01

    A new development for the IDT solver is presented for large reactor core applications in XYZ geometries. The multigroup discrete-ordinate neutron transport equation is solved using a Domain-Decomposition (DD) method coupled with the Coarse-Mesh Finite Differences (CMFD). The later is used for accelerating the DD convergence rate. In particular, the external power iterations are preconditioned for stabilizing the oscillatory behavior of the DD iterative process. A set of critical 2-D and 3-D numerical tests on a single processor will be presented for the analysis of the performances of the method. The results show that the application of the CMFD to the DD can be a good candidate for large 3D full-core parallel applications. (author)

  19. A generalized nodal finite element formalism for discrete ordinates equations in slab geometry Part I: Theory in the continuous moment case

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del.

    1995-01-01

    A generalized nodal finite element formalism is presented, which covers virtually all known finit difference approximation to the discrete ordinates equations in slab geometry. This paper (Part 1) presents the theory of the so called open-quotes continuous moment methodsclose quotes, which include such well-known methods as the open-quotes diamond differenceclose quotes and the open-quotes characteristicclose quotes schemes. In a second paper (hereafter referred to as Part II), the authors will present the theory of the open-quotes discontinuous moment methodsclose quotes, consisting in particular of the open-quotes linear discontinuousclose quotes scheme as well as of an entire new class of schemes. Corresponding numerical results are available for all these schemes and will be presented in a third paper (Part III). 12 refs

  20. A coarse-mesh diffusion synthetic acceleration of the scattering source iteration scheme for one-speed slab-geometry discrete ordinates problems

    International Nuclear Information System (INIS)

    Santos, Frederico P.; Alves Filho, Hermes; Barros, Ricardo C.; Xavier, Vinicius S.

    2011-01-01

    The scattering source iterative (SI) scheme is traditionally applied to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S N ) neutron transport problems. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe an acceleration technique based on an improved initial guess for the scattering source distribution within the slab. In other words, we use as initial guess for the fine-mesh scattering source, the coarse-mesh solution of the neutron diffusion equation with special boundary conditions to account for the classical S N prescribed boundary conditions, including vacuum boundary conditions. Therefore, we first implement a spectral nodal method that generates coarse-mesh diffusion solution that is completely free from spatial truncation errors, then we reconstruct this coarse-mesh solution within each spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh scattering source in the first S N transport sweep (μm > 0 and μm < 0, m = 1:N) across the spatial grid. We consider a number of numerical experiments to illustrate the efficiency of the offered diffusion synthetic acceleration (DSA) technique. (author)

  1. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.

    2011-08-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.

  2. Explicit strong stability preserving multistep Runge–Kutta methods

    KAUST Repository

    Bresten, Christopher; Gottlieb, Sigal; Grant, Zachary; Higgs, Daniel; Ketcheson, David I.; Né meth, Adrian

    2015-01-01

    High-order spatial discretizations of hyperbolic PDEs are often designed to have strong stability properties, such as monotonicity. We study explicit multistep Runge-Kutta strong stability preserving (SSP) time integration methods for use with such discretizations. We prove an upper bound on the SSP coefficient of explicit multistep Runge-Kutta methods of order two and above. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the linear advection and nonlinear Buckley-Leverett equations, and the results for the observed total variation diminishing and/or positivity preserving time-step are presented.

  3. Explicit strong stability preserving multistep Runge–Kutta methods

    KAUST Repository

    Bresten, Christopher

    2015-10-15

    High-order spatial discretizations of hyperbolic PDEs are often designed to have strong stability properties, such as monotonicity. We study explicit multistep Runge-Kutta strong stability preserving (SSP) time integration methods for use with such discretizations. We prove an upper bound on the SSP coefficient of explicit multistep Runge-Kutta methods of order two and above. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the linear advection and nonlinear Buckley-Leverett equations, and the results for the observed total variation diminishing and/or positivity preserving time-step are presented.

  4. Exponential characteristic spatial quadrature for discrete ordinates radiation transport with rectangular cells

    International Nuclear Information System (INIS)

    Minor, B.; Mathews, K.

    1995-01-01

    The exponential characteristic (EC) spatial quadrature for discrete ordinates neutral particle transport previously introduced in slab geometry is extended here to x-y geometry with rectangular cells. The method is derived and compared with current methods. It is similar to the linear characteristic (LC) quadrature (a linear-linear moments method) but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx + cy), whose parameters are rootsolved to match the known (from the previous iteration) spatial average and first moments of the source over the cell. Similarly, EC assumes exponential distributions of flux along cell edges through which particles enter the cell, with parameters chosen to match the average and first moments of flux, as passed from the adjacent, upstream cells (or as determined by boundary conditions). Like the linear adaptive (LA) method, EC is positive and nonlinear. It is more accurate than LA and does not require subdivision of cells. The nonlinearity has not interfered with convergence. The exponential moment functions, which were introduced with the slab geometry method, are extended to arbitrary dimensions (numbers of arguments) and used to avoid numerical ill conditioning. As in slab geometry, the method approaches O(Δx 4 ) global truncation error on fine-enough meshes, while the error is insensitive to mesh size for coarse meshes. Performance of the method is compared with that of the step characteristic, LC, linear nodal, step adaptive, and LA schemes. The EC method is a strong performer with scattering ratios ranging from 0 to 0.9 (the range tested), particularly so for lower scattering ratios. As in slab geometry, EC is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems

  5. A coarse-mesh diffusion synthetic acceleration of the source iteration scheme for one-speed discrete ordinates transport calculations in Slab geometry

    International Nuclear Information System (INIS)

    Santos, Frederico P.; Xavier, Vinicius S.; Alves Filho, Hermes; Barros, Ricardo C.

    2011-01-01

    The scattering source iterative (SI) scheme is traditionally applied to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S N ) neutron transport problems. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe an acceleration technique based on an improved initial guess for the scattering source distribution within the slab. In other words, we use as initial guess for the fine-mesh scattering source, the coarse-mesh solution of the neutron diffusion equation with special boundary conditions to account for the classical S N prescribed boundary conditions, including vacuum boundary conditions. Therefore, we first implement a spectral nodal method that generates coarse-mesh diffusion solution that is completely free from spatial truncation errors, then we reconstruct this coarse-mesh solution within each spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh scattering source in the first S N transport sweep (μm > 0 and μm < 0, m = 1:N) across the spatial grid. We consider a number of numerical experiments to illustrate the efficiency of the offered diffusion synthetic acceleration (DSA) technique. (author)

  6. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1997-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  7. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1996-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  8. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  9. ANISN-L, a CDC-7600 code which solves the one-dimensional, multigroup, time dependent transport equation by the method of discrete ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, T. P.

    1973-09-20

    The code ANISN-L solves the one-dimensional, multigroup, time-independent Boltzmann transport equation by the method of discrete ordinates. In problems involving a fissionable system, it can calculate the system multiplication or alpha. In such cases, it is also capable of determining isotopic concentrations, radii, zone widths, or buckling in order to achieve a given multiplication or alpha. The code may also calculate fluxes caused by a specified fixed source. Neutron, gamma, and coupled neutron--gamma problems may be solved in either the forward or adjoint (backward) modes. Cross sections describing upscatter, as well as the usual downscatter, may be employed. This report describes the use of ANISN-L; this is a revised version of ANISN which handles both large and small problems efficiently on CDC-7600 computers. (RWR)

  10. Positivity for Convective Semi-discretizations

    KAUST Repository

    Fekete, Imre

    2017-04-19

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.

  11. TDTORT: Time-Dependent, 3-D, Discrete Ordinates, Neutron Transport Code System with Delayed Neutrons

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: TDTORT solves the time-dependent, three-dimensional neutron transport equation with explicit representation of delayed neutrons to estimate the fission yield from fissionable material transients. This release includes a modified version of TORT from the C00650MFMWS01 DOORS3.1 code package plus the time-dependent TDTORT code. GIP is also included for cross-section preparation. TORT calculates the flux or fluence of particles due to particles incident upon the system from extraneous sources or generated internally as a result of interaction with the system in two- or three-dimensional geometric systems. The principle application is to the deep-penetration transport of neutrons and photons. Reactor eigenvalue problems can also be solved. Numerous printed edits of the results are available, and results can be transferred to output files for subsequent analysis. TDTORT reads ANISN-format cross-section libraries, which are not included in the package. Users may choose from several available in RSICC's data library collection which can be identified by the keyword 'ANISN FORMAT'. 2 - Methods:The time-dependent spatial flux is expressed as a product of a space-, energy-, and angle-dependent shape function, which is usually slowly varying in time and a purely time-dependent amplitude function. The shape equation is solved for the shape using TORT; and the result is used to calculate the point kinetics parameters (e.g., reactivity) by using their inner product definitions, which are then used to solve the time-dependent amplitude and precursor equations. The amplitude function is calculated by solving the kinetics equations using the LSODE solver. When a new shape calculation is needed, the flux is calculated using the newly computed amplitude function. The Boltzmann transport equation is solved using the method of discrete ordinates to treat the directional variable and weighted finite-difference methods, in addition to Linear Nodal

  12. Space in Numerical and Ordinal Information: A Common Construct?

    Directory of Open Access Journals (Sweden)

    Philipp Alexander Schroeder

    2017-12-01

    Full Text Available Space is markedly involved in numerical processing, both explicitly in instrumental learning and implicitly in mental operations on numbers. Besides action decisions, action generations, and attention, the response-related effect of numerical magnitude or ordinality on space is well documented in the Spatial-Numerical Associations of Response Codes (SNARC effect. Here, right- over left-hand responses become relatively faster with increasing magnitude positions. However, SNARC-like behavioral signatures in non-numerical tasks with ordinal information were also observed and inspired new models integrating seemingly spatial effects of ordinal and numerical metrics. To examine this issue further, we report a comparison between numerical SNARC and ordinal SNARC-like effects to investigate group-level characteristics and individual-level deductions from generalized views, i.e., convergent validity. Participants solved order-relevant (before/after classification and order-irrelevant tasks (font color classification with numerical stimuli 1-5, comprising both magnitude and order information, and with weekday stimuli, comprising only ordinal information. A small correlation between magnitude- and order-related SNARCs was observed, but effects are not pronounced in order-irrelevant color judgments. On the group level, order-relevant spatial-numerical associations were best accounted for by a linear magnitude predictor, whereas the SNARC effect for weekdays was categorical. Limited by the representativeness of these tasks and analyses, results are inconsistent with a single amodal cognitive mechanism that activates space in mental processing of cardinal and ordinal information alike. A possible resolution to maintain a generalized view is proposed by discriminating different spatial activations, possibly mediated by visuospatial and verbal working memory, and by relating results to findings from embodied numerical cognition.

  13. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  14. Scalable parallel prefix solvers for discrete ordinates transport

    International Nuclear Information System (INIS)

    Pautz, S.; Pandya, T.; Adams, M.

    2009-01-01

    The well-known 'sweep' algorithm for inverting the streaming-plus-collision term in first-order deterministic radiation transport calculations has some desirable numerical properties. However, it suffers from parallel scaling issues caused by a lack of concurrency. The maximum degree of concurrency, and thus the maximum parallelism, grows more slowly than the problem size for sweeps-based solvers. We investigate a new class of parallel algorithms that involves recasting the streaming-plus-collision problem in prefix form and solving via cyclic reduction. This method, although computationally more expensive at low levels of parallelism than the sweep algorithm, offers better theoretical scalability properties. Previous work has demonstrated this approach for one-dimensional calculations; we show how to extend it to multidimensional calculations. Notably, for multiple dimensions it appears that this approach is limited to long-characteristics discretizations; other discretizations cannot be cast in prefix form. We implement two variants of the algorithm within the radlib/SCEPTRE transport code library at Sandia National Laboratories and show results on two different massively parallel systems. Both the 'forward' and 'symmetric' solvers behave similarly, scaling well to larger degrees of parallelism then sweeps-based solvers. We do observe some issues at the highest levels of parallelism (relative to the system size) and discuss possible causes. We conclude that this approach shows good potential for future parallel systems, but the parallel scalability will depend heavily on the architecture of the communication networks of these systems. (authors)

  15. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.

    Science.gov (United States)

    Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K

    2013-04-22

    A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.

  16. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  17. Deteksi Pemalsuan Citra dengan Teknik Copy-Move Menggunakan Metode Ordinal Measure dari Koefisien Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Zulfan

    2016-07-01

    Full Text Available This article discusses a new method for the detection of forgery images generated by copy-move technique. Copy-move technique is one of image forgery techniques which taking a particular object from its original image and add it on that image for the purpose of increasing the number of or changing the same object in the original image. This study aims to detect the forged image generated by the copy-move techniques and copy-move forged image that has been modified by the rotation operation and histogram equalization. Detection feature used is Ordinal Measure of Discrete Cosine Transform coefficient (OM-DCT. Detection starts with division of the image into a block size of BXB (B = 16x16, 32x32 and 64x64 and two-dimensional DCT was performed to each of blocks. The feature distance from the original to the fake image, was calculated by the Euclidian distance and each feature has a distance of less than or equal to the threshold value (T according to the observations will be marked as a forged part. The results show that there are blocks detected on the copy-move image, whether on the unmodified copy-move forge image or those which modified by the rotation operation and histogram equalization. The number of blocks that are found in the copy-move object varies according to the size of the detection block used.

  18. Discrete Hamiltonian evolution and quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  19. Investigation of radiation effects in Hiroshima and Nagasaki using a general Monte Carlo-discrete ordinates coupling scheme

    International Nuclear Information System (INIS)

    Cramer, S.N.; Slater, C.O.

    1990-01-01

    A general adjoint Monte Carlo-forward discrete ordinates radiation transport calculational scheme has been created to study the effects of the radiation environment in Hiroshima and Nagasaki due to the bombing of these two cities. Various such studies for comparison with physical data have progressed since the end of World War II with advancements in computing machinery and computational methods. These efforts have intensified in the last several years with the U.S.-Japan joint reassessment of nuclear weapons dosimetry in Hiroshima and Nagasaki. Three principal areas of investigation are: (1) to determine by experiment and calculation the neutron and gamma-ray energy and angular spectra and total yield of the two weapons; (2) using these weapons descriptions as source terms, to compute radiation effects at several locations in the two cities for comparison with experimental data collected at various times after the bombings and thus validate the source terms; and (3) to compute radiation fields at the known locations of fatalities and surviving individuals at the time of the bombings and thus establish an absolute cause-and-effect relationship between the radiation received and the resulting injuries to these individuals and any of their descendants as indicated by their medical records. It is in connection with the second and third items, the determination of the radiation effects and the dose received by individuals, that the current study is concerned

  20. Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term

    International Nuclear Information System (INIS)

    Johnston, Hans; Liu Jianguo

    2004-01-01

    We present numerical schemes for the incompressible Navier-Stokes equations based on a primitive variable formulation in which the incompressibility constraint has been replaced by a pressure Poisson equation. The pressure is treated explicitly in time, completely decoupling the computation of the momentum and kinematic equations. The result is a class of extremely efficient Navier-Stokes solvers. Full time accuracy is achieved for all flow variables. The key to the schemes is a Neumann boundary condition for the pressure Poisson equation which enforces the incompressibility condition for the velocity field. Irrespective of explicit or implicit time discretization of the viscous term in the momentum equation the explicit time discretization of the pressure term does not affect the time step constraint. Indeed, we prove unconditional stability of the new formulation for the Stokes equation with explicit treatment of the pressure term and first or second order implicit treatment of the viscous term. Systematic numerical experiments for the full Navier-Stokes equations indicate that a second order implicit time discretization of the viscous term, with the pressure and convective terms treated explicitly, is stable under the standard CFL condition. Additionally, various numerical examples are presented, including both implicit and explicit time discretizations, using spectral and finite difference spatial discretizations, demonstrating the accuracy, flexibility and efficiency of this class of schemes. In particular, a Galerkin formulation is presented requiring only C 0 elements to implement

  1. Mittag-Leffler function for discrete fractional modelling

    Directory of Open Access Journals (Sweden)

    Guo-Cheng Wu

    2016-01-01

    Full Text Available From the difference equations on discrete time scales, this paper numerically investigates one discrete fractional difference equation in the Caputo delta’s sense which has an explicit solution in form of the discrete Mittag-Leffler function. The exact numerical values of the solutions are given in comparison with the truncated Mittag-Leffler function.

  2. Development of a discrete-ordinate approximation of the neutron transport equation for coupled xy-R-geometry

    International Nuclear Information System (INIS)

    Maertens, H.D.

    1982-01-01

    The inhomogenious structure of modern heavy water reactor fuel elements result in a strong spacial dependence of the neutron flux. The flux distribution can be calculated in detail by numerical methods, which describe exactly the geometrical heterogeniety and take into account the neutron flux anisotropy by higher transport theoretical approximations. Starting from the discrete ordinate method an approximation of the neutron transport equation has been developed, allowing for a cylindrical representation of the fuel-elements in a rectangular array of rods. The discretisation of the space variables, is based on the finite-difference approximation, defining a rectangular lattice in a two-dimensional cartesian coordinate system, which can be cut and replaced by circular mesh elements of a partially one-dimensional cylindrical coordinate system at arbitrary space points. To couple the two spacial regions the outer circle line of a cylindrical geometry is approximated in the cartesian system by a polygon with n >= 8. A cylindrical geometry is approximated in the cartesian system by a polygon with n>=8. A cylindrical geometry is thus enclosed by a system of two-dimensional rectangular, triangular and trapezoid mesh elements. The directional distribution of the neutron flux is conserved when switching from the xy-system to the cylindrical coordinate system. The angle discretisation by balanced sets of squares (EQsub(n)) allows a simple definition of transfer-coefficients for the redistribution of the neutron flux due to coordinate transformations. The procedure is verified and tested by selected problems. Possible applications and limits are discussed. (orig.) [de

  3. Second Ordinance amending the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    1989-01-01

    The amendment of the Radiation Protection Ordinance brings about the following changes: (1) Introduction of the concept of effective dose, reduction of limits for partial body dose, adoption of the radiotoxicity values of radionuclides as established by the EC Basis Standards; (2) introduction of a working-life-related dose limit of 400 mSv; (3) supplementing provisions for the protection of the population, particularly by the standard procedure for radioecological impact assessment and determination of dose factors; (4) supplementing provisions on the use of radioactive substances in medicine and medical research; (5) supplementing provisions on health physics monitoring; (6) provisions for improving the supervision and controls in the transport of radioactive substances; (7) definition of activities and their assignment to the provisions of the Radiation Protection Ordinance; (8) revision of the waste management provisions of the Radiation Protection Ordinance. (HP) [de

  4. Applying Multivariate Discrete Distributions to Genetically Informative Count Data.

    Science.gov (United States)

    Kirkpatrick, Robert M; Neale, Michael C

    2016-03-01

    We present a novel method of conducting biometric analysis of twin data when the phenotypes are integer-valued counts, which often show an L-shaped distribution. Monte Carlo simulation is used to compare five likelihood-based approaches to modeling: our multivariate discrete method, when its distributional assumptions are correct, when they are incorrect, and three other methods in common use. With data simulated from a skewed discrete distribution, recovery of twin correlations and proportions of additive genetic and common environment variance was generally poor for the Normal, Lognormal and Ordinal models, but good for the two discrete models. Sex-separate applications to substance-use data from twins in the Minnesota Twin Family Study showed superior performance of two discrete models. The new methods are implemented using R and OpenMx and are freely available.

  5. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  6. Coupling of discrete ordinates methods by transmission of boundary conditions in solving the neutron transport equation in slab geometry; Couplage de discretisations aux ordonnees discretes d`equations de transport 1D par passage de conditions frontieres

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Departement MMN, Service IMA, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1995-10-01

    Neutron transport in nuclear reactors is quite well modelled by the linear Boltzmann transport equation. Its solution is relatively easy, but unfortunately too expensive to achieve whole core computations. Thus, we have to simplify it, for example by homogenizing some physical characteristics. However, the solution may then be inaccurate. Moreover, in strongly homogeneous areas, the error may be too big. Then we would like to deal with such an inconvenient by solving the equation accurately on this area, but more coarsely away from it, so that the computation is not too expensive. This problem is the subject of a thesis. We present here some results obtained for slab geometry. The couplings between the fine and coarse discretization regions could be conceived in a number of approaches. Here, we only deal with the coupling at crossing the interface between two sub-domains. In the first section, we present the coupling of discrete ordinate methods for solving the homogeneous, isotropic and mono-kinetic equation. Coupling operators are defined and shown to be optimal. The second and the third sections are devoted to an extension of the previous results when the equation is non-homogeneous, anisotropic and multigroup (under some restrictive assumptions). Some numerical results are given in the case of isotropic and mono-kinetic equations. (author) 15 refs.

  7. Ordinance on the Protection against X-Radiation Hazards (X-Ray Ordinance)

    International Nuclear Information System (INIS)

    1987-01-01

    The ordinance refers to X-ray equipment and to stray radiation sources which generate X-radiation of at least 5 keV by means of accelerated electrons, and for this purpose apply an acceleration energy not exceeding 3 MeV. The ordinance does not apply to stray radiation sources which are used for the generation of ionizing particle radiation and thus are subject to the provisions of the Radiation Protection Ordinance. (orig./PW) [de

  8. Radiation protection Ordinance

    International Nuclear Information System (INIS)

    1976-06-01

    This Ordinance lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Office is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. This consolidated version of the Ordinance contains all the successive amendments up to 26 September 1988. (NEA) [fr

  9. Derivation of new 3D discrete ordinate equations

    International Nuclear Information System (INIS)

    Ahrens, C. D.

    2012-01-01

    The Sn equations have been the workhorse of deterministic radiation transport calculations for many years. Here we derive two new angular discretizations of the 3D transport equation. The first set of equations, derived using Lagrange interpolation and collocation, retains the classical Sn structure, with the main difference being how the scattering source is calculated. Because of the formal similarity with the classical S n equations, it should be possible to modify existing computer codes to take advantage of the new formulation. In addition, the new S n-like equations correctly capture delta function scattering. The second set of equations, derived using a Galerkin technique, does not retain the classical Sn structure because the streaming term is not diagonal. However, these equations can be cast into a form similar to existing methods developed to reduce ray effects. Numerical investigation of both sets of equations is under way. (authors)

  10. The Second Ordinance for Amendment of the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    Czajka, D.

    1989-01-01

    This Second Ordinance for Amendment of the Radiation Protection Ordinance has modified the most important legal provisions supplementing the Atomic Energy Act. But looking closer at the revised version of the Ordinance, many an amendment turns out to be just a new facade on the old brickwork. The article critically reviews the most important amendments, stating that the main principles have remained untouched, and discussing the modification of limiting values, the definition of regulatory scopes, the new meaning of the term 'wastes containing nuclear fuel', and the regulatory scope of provisions governing radioactive substances and their medical applications. (orig./RST) [de

  11. An Explicit MOT-TD-VIE Solver for Time Varying Media

    KAUST Repository

    Sayed, Sadeed Bin

    2016-03-15

    An explicit marching on-in-time (MOT) scheme for solving the time domain electric field integral equation enforced on volumes with time varying dielectric permittivity is proposed. Unknowns of the integral equation and the constitutive relation, i.e., flux density and field intensity, are discretized using full and half Schaubert-Wilton-Glisson functions in space. Temporal interpolation is carried out using band limited approximate prolate spherical wave functions. The discretized coupled system of integral equation and constitutive relation is integrated in time using a PE(CE)m type linear multistep scheme. Unlike the existing MOT methods, the resulting explicit MOT scheme allows for straightforward incorporation of the time variation in the dielectric permittivity.

  12. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  13. Normal scheme for solving the transport equation independently of spatial discretization

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    1993-01-01

    To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)

  14. Preparation and crystal structure of carbonyltris (diethyldithiocarbamato) technetium (III): an unexpected source of co-ordinated carbon monoxide

    International Nuclear Information System (INIS)

    Baldas, J.; Bonnyman, J.; Pojer, P.M.; Williams, G.A.

    1981-10-01

    Tc(S 2 CNEt 2 ) 3 CO has been prepared by the reduction of NH 4 TcO 4 with formamidinesulphinic acid in the presence of NaS 2 CNEt 2 . It is suggested that the co-ordinated carbon monoxide is formed after co-ordination of formamidinesulphinic acid, or some decomposition product, with technetium. The crystal structure of Tc(S 2 CNEt 2 ) 3 CO has been determined by single-crystal X-ray diffraction methods at 17 deg. C. Diffractometry has provided significant Bragg intensities for 2045 independent reflections and the structure has been refined by full-matrix least-squares methods to R 0.049. The compound is isostructural with the rhenium analogue and consists of discrete Tc(S 2 CNEt 2 ) 3 CO molecules, each containing a terminal linear CO group. The technetium atom has a seven co-ordinate environment which is best described as a distorted pentagonal bipyramid

  15. Revisiting the debate on the relationship between display rules and performance: considering the explicitness of display rules.

    Science.gov (United States)

    Christoforou, Paraskevi S; Ashforth, Blake E

    2015-01-01

    We argue that the strength with which the organization communicates expectations regarding the appropriate emotional expression toward customers (i.e., explicitness of display rules) has an inverted U-shaped relationship with service delivery behaviors, customer satisfaction, and sales performance. Further, we argue that service organizations need a particular blend of explicitness of display rules and role discretion for the purpose of optimizing sales performance. As hypothesized, findings from 2 samples of salespeople suggest that either high or low explicitness of display rules impedes service delivery behaviors and sales performance, which peaks at moderate explicitness of display rules and high role discretion. The findings also suggest that the explicitness of display rules has a positive relationship with customer satisfaction. (c) 2015 APA, all rights reserved.

  16. Ordinal measures for iris recognition.

    Science.gov (United States)

    Sun, Zhenan; Tan, Tieniu

    2009-12-01

    Images of a human iris contain rich texture information useful for identity authentication. A key and still open issue in iris recognition is how best to represent such textural information using a compact set of features (iris features). In this paper, we propose using ordinal measures for iris feature representation with the objective of characterizing qualitative relationships between iris regions rather than precise measurements of iris image structures. Such a representation may lose some image-specific information, but it achieves a good trade-off between distinctiveness and robustness. We show that ordinal measures are intrinsic features of iris patterns and largely invariant to illumination changes. Moreover, compactness and low computational complexity of ordinal measures enable highly efficient iris recognition. Ordinal measures are a general concept useful for image analysis and many variants can be derived for ordinal feature extraction. In this paper, we develop multilobe differential filters to compute ordinal measures with flexible intralobe and interlobe parameters such as location, scale, orientation, and distance. Experimental results on three public iris image databases demonstrate the effectiveness of the proposed ordinal feature models.

  17. Pin cell discontinuity factors in the transient 3-D discrete ordinates code TORT-TD

    International Nuclear Information System (INIS)

    Seubert, A.

    2010-01-01

    Even with the rapid increase of computing power, whole core transient and accident analyses based on the direct solution of the 3-D neutron transport equation with a large number of energy groups and a detailed heterogeneous description of the core still remain computationally challenging. Current industrial methods for reactor core calculations therefore involve a two step approach in which lattice (assembly) depletion transport methods are used to prepare energy collapsed and fuel assembly or pin cell homogenized cross sections for subsequent whole core transport calculations. Spatial homogenization, in principal, requires the knowledge of both the actual boundary condition (local core environment) of the fuel assembly and the exact heterogeneous flux distribution (reference solution) of the whole core problem within that fuel assembly. Since, in particular, the latter is not known a priori, an infinite medium (zero net current) condition is used in the lattice calculations. It is well known that this approximation may lead to undesirable errors in cores in which large flux gradients are present across the fuel assemblies. This is the case in cores that have high heterogeneity and/or strong local absorbers, e.g. PWRs with partial MOX loading and inserted control rod clusters. There are two major approaches to mitigate spatial homogenization errors, superhomogenization (SPH) factors, and discontinuity factors within the scope of equivalence theory (ET) and generalized equivalence theory (GET). Although discontinuity factors are usually applied at the level of fuel assembly node size (assembly discontinuity factors, ADF), the methodology can be extended to pin cell homogenized whole core calculations involving pin cell discontinuity factors (PDF). There are also further developments for both the diffusion and the simplified transport (SP3) equation. In this paper, PDFs are introduced into the time-dependent 3-D discrete ordinates code TORT-TD in order to reduce the

  18. Determination of point isotropic buildup factors of gamma rays including incoherent and coherent scattering for aluminum, iron, lead, and water by discrete ordinates method

    International Nuclear Information System (INIS)

    Kitsos, S.; Assad, A.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    Exposure and energy absorption buildup factors for aluminum, iron, lead, and water are calculated by the SNID discrete ordinates code for an isotropic point source in a homogeneous medium. The calculation of the buildup factors takes into account the effects of both bound-electron Compton (incoherent) and coherent (Rayleigh) scattering. A comparison with buildup factors from the literature shows that these two effects greatly increase the buildup factors for energies below a few hundred kilo-electron-volts, and thus the new results are improved relative to the experiment. This greater accuracy is due to the increase in the linear attenuation coefficient, which leads to the calculation of the buildup factors for a mean free path with a smaller shield thickness. On the other hand, for the same shield thickness, exposure increases when only incoherent scattering is included and decreases when only coherent scattering is included, so that the exposure finally decreases when both effects are included. Great care must also be taken when checking the approximations for gamma-ray deep-penetration transport calculations, as well as for the cross-section treatment and origin

  19. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  20. Simulating Ordinal Data

    Science.gov (United States)

    Ferrari, Pier Alda; Barbiero, Alessandro

    2012-01-01

    The increasing use of ordinal variables in different fields has led to the introduction of new statistical methods for their analysis. The performance of these methods needs to be investigated under a number of experimental conditions. Procedures to simulate from ordinal variables are then required. In this article, we deal with simulation from…

  1. Comments on `A discrete optimal control problem for descriptor systems'

    DEFF Research Database (Denmark)

    Ravn, Hans

    1990-01-01

    In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ......In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates...

  2. Discrete-continuous analysis of optimal equipment replacement

    OpenAIRE

    YATSENKO, Yuri; HRITONENKO, Natali

    2008-01-01

    In Operations Research, the equipment replacement process is usually modeled in discrete time. The optimal replacement strategies are found from discrete (or integer) programming problems, well known for their analytic and computational complexity. An alternative approach is represented by continuous-time vintage capital models that explicitly involve the equipment lifetime and are described by nonlinear integral equations. Then the optimal replacement is determined via the opt...

  3. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  4. Atomic Energy Act and ordinances. 8. ed.

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The new issue of the text contains the Atomic Energy Act (AtG) in its new wording of the announcement of 31 Oct 76, the new wording of the ordinances put in effect in 1977: Atomic procedure ordinance (AtVfV), radiation protection ordinance (SSU), and atomic financial security ordinance (AtDeckV); furthermore the x-ray ordinance (RoeV) of 1978 in its wording which has been changed by the radiation protection ordinance. Also printed are the cost ordinance (AtKostV) of 1971, the food irradiation ordinance (LebensmBestrV) in the wording of 1975 and the medicine ordinance (ArzneimV) in the wording of 1971. An addition was made by adding to the liability laws the Paris agreement (PUE) on the liability towards third persons in the field of nuclear energy in the wording of the announcement of 5 Feb 76. (orig./HP) [de

  5. Testing Preference Axioms in Discrete Choice experiments

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue

    Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...

  6. Solution of neutron transport equation using Daubechies' wavelet expansion in the angular discretization

    International Nuclear Information System (INIS)

    Cao Liangzhi; Wu Hongchun; Zheng Youqi

    2008-01-01

    Daubechies' wavelet expansion is introduced to discretize the angular variables of the neutron transport equation when the neutron angular flux varies very acutely with the angular directions. An improvement is made by coupling one-dimensional wavelet expansion and discrete ordinate method to make two-dimensional angular discretization efficient and stable. The angular domain is divided into several subdomains for treating the vacuum boundary condition exactly in the unstructured geometry. A set of wavelet equations coupled with each other is obtained in each subdomain. An iterative method is utilized to decouple the wavelet moments. The numerical results of several benchmark problems demonstrate that the wavelet expansion method can provide more accurate results by lower-order expansion than other angular discretization methods

  7. A piecewise bi-linear discontinuous finite element spatial discretization of the Sn transport equation

    International Nuclear Information System (INIS)

    Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.

    2011-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)

  8. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    International Nuclear Information System (INIS)

    Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.

    2010-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  9. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

    2010-12-22

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  10. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    Energy Technology Data Exchange (ETDEWEB)

    Di Bartolo, Cayetano; Grau, Javier [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Leal, Lorenzo [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Centro de Física Teórica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47270, Caracas 1041-A (Venezuela, Bolivarian Republic of)

    2013-12-15

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  11. Explicit solution of Calderon preconditioned time domain integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2013-07-01

    An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.

  12. Discrete systems and integrability

    CERN Document Server

    Hietarinta, J; Nijhoff, F W

    2016-01-01

    This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

  13. From ordinary to discrete quantum mechanics: The Charlier oscillator and its coalgebra symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Latini, D., E-mail: latini@fis.uniroma3.it [Department of Mathematics and Physics and INFN, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy); Riglioni, D. [Department of Mathematics and Physics, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2016-10-14

    The coalgebraic structure of the harmonic oscillator is used to underline possible connections between continuous and discrete superintegrable models which can be described in terms of SUSY discrete quantum mechanics. A set of 1-parameter algebraic transformations is introduced in order to generate a discrete representation for the coalgebraic harmonic oscillator. This set of transformations is shown to play a role in the generalization of classical orthogonal polynomials to the realm of discrete orthogonal polynomials in the Askey scheme. As an explicit example the connection between Hermite and Charlier oscillators, that share the same coalgebraic structure, is presented and a two-dimensional maximally superintegrable version of the Charlier oscillator is constructed. - Highlights: • We construct a discrete quantum version of the harmonic oscillator. • We solve the spectral problem on the lattice. • We introduce the coalgebra symmetry in real discrete Quantum Mechanics (rdQM). • The coalgebra is used to extend the system to higher dimensions preserving its superintegrability. • We explicitly write down a discrete version of both the angular momentum and the Demkov–Fradkin Tensor.

  14. Application of multivariate splines to discrete mathematics

    OpenAIRE

    Xu, Zhiqiang

    2005-01-01

    Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...

  15. Discrete gauge symmetries in discrete MSSM-like orientifolds

    International Nuclear Information System (INIS)

    Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.

    2012-01-01

    Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.

  16. The su(2)α Hahn oscillator and a discrete Fourier-Hahn transform

    International Nuclear Information System (INIS)

    Jafarov, E I; Stoilova, N I; Van der Jeugt, J

    2011-01-01

    We define the quadratic algebra su(2) α which is a one-parameter deformation of the Lie algebra su(2) extended by a parity operator. The odd-dimensional representations of su(2) (with representation label j, a positive integer) can be extended to representations of su(2) α . We investigate a model of the finite one-dimensional harmonic oscillator based upon this algebra su(2) α . It turns out that in this model the spectrum of the position and momentum operator can be computed explicitly, and that the corresponding (discrete) wavefunctions can be determined in terms of Hahn polynomials. The operation mapping position wavefunctions into momentum wavefunctions is studied, and this so-called discrete Fourier-Hahn transform is computed explicitly. The matrix of this discrete Fourier-Hahn transform has many interesting properties, similar to those of the traditional discrete Fourier transform. (paper)

  17. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  18. Explicit Singly Diagonally Implicit Runge-Kutta Methods and Adaptive Stepsize Control for Reservoir Simulation

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2010-01-01

    The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete......-Kutta methods, ESDIRK, Newton-Raphson, convergence control, error control, stepsize selection....

  19. Discrete R-symmetries and anomaly universality in heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Bizet, Nana G. Cabo [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear,Calle 30, esq.a 5ta Ave, Miramar, 6122 La Habana (Cuba); Kobayashi, Tatsuo [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Peña, Damián K. Mayorga [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Parameswaran, Susha L. [Department of Mathematics and Physics, Leibniz Universität Hannover,Welfengarten 1, 30167 Hannover (Germany); Schmitz, Matthias [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2014-02-24

    We study discrete R-symmetries, which appear in the 4D low energy effective field theory derived from heterotic orbifold models. We derive the R-symmetries directly from the geometrical symmetries of the orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. The R-charges obtained in this manner differ from those derived in earlier explicit computations. We study the anomalies associated with these R-symmetries, and comment on the results.

  20. Quantization in rotating co-ordinates revisited

    International Nuclear Information System (INIS)

    Hussain, F.; Qadir, A.

    1982-07-01

    Recent work on quantization in rotating co-ordinates showed that no radiation would be seen by an observer rotating with a constant angular speed. This work used a Galilean-type co-ordinate transformation. We show that the same result holds for a Lorentz-type co-ordinate system, in spite of the fact that the metric has a co-ordinate singularity at rΩ = 1. Further, we are able to define positive and negative energy modes for a particular case of a non-static, non-stationary metric. (author)

  1. Radiation (Safety Control) Ordinance 1978

    International Nuclear Information System (INIS)

    1978-01-01

    This Ordinance provides for the control, regulation, possession, use and transport of radioactive substance and irradiating apparatus. The Director of Health is responsible for administration of the Ordinance, which contains detailed provisions concerning the terms and conditions of licences, duties of licensees, medical examinations, maximum radiation doses, precautions to be taken to avoid exceeding such doses. The Ordinance also lays down a system of record-keeping and registration as well as packaging specifications for the transport of radioactive substances. (NEA) [fr

  2. Ordinal bivariate inequality

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter Raahave

    This paper introduces a concept of inequality comparisons with ordinal bivariate categorical data. In our model, one population is more unequal than another when they have common arithmetic median outcomes and the first can be obtained from the second by correlationincreasing switches and/or median......-preserving spreads. For the canonical 2x2 case (with two binary indicators), we derive a simple operational procedure for checking ordinal inequality relations in practice. As an illustration, we apply the model to childhood deprivation in Mozambique....

  3. An ordinal classification approach for CTG categorization.

    Science.gov (United States)

    Georgoulas, George; Karvelis, Petros; Gavrilis, Dimitris; Stylios, Chrysostomos D; Nikolakopoulos, George

    2017-07-01

    Evaluation of cardiotocogram (CTG) is a standard approach employed during pregnancy and delivery. But, its interpretation requires high level expertise to decide whether the recording is Normal, Suspicious or Pathological. Therefore, a number of attempts have been carried out over the past three decades for development automated sophisticated systems. These systems are usually (multiclass) classification systems that assign a category to the respective CTG. However most of these systems usually do not take into consideration the natural ordering of the categories associated with CTG recordings. In this work, an algorithm that explicitly takes into consideration the ordering of CTG categories, based on binary decomposition method, is investigated. Achieved results, using as a base classifier the C4.5 decision tree classifier, prove that the ordinal classification approach is marginally better than the traditional multiclass classification approach, which utilizes the standard C4.5 algorithm for several performance criteria.

  4. Ordinance on protection from the harmful effects of X-radiation (X-ray Ordinance). As of January 8, 1987. 3. ed.

    International Nuclear Information System (INIS)

    Hinrichs, O.

    1992-01-01

    The German X-ray Ordinance (Roentgenverordnung) contains the main protective provisions applying to the field of X-ray equipment and sources of unwanted X radiation. It thus forms a complement to the German Radiation Protection Ordinance (Strahlenschutzverordnung). The X-ray Ordinance is based, as is the Radiation Protection Ordinance, on the German Nuclear Energy Act (Atomgesetz). It transposes the same Euratom Directives into national law, through which above all the limit values are defined. The current state of the X-ray Ordinance is that of the text promulgated on 8.01.1987 with the subsequent amendments, the last of which was adopted on 19.12.1990. The brochure also reproduces the Official Memorandum to the X-ray Ordinance, as this gives important indications for the legal construction of the Ordinance. (orig./HSCH) [de

  5. Memory-Based Specification of Verbal Features for Classifying Animals into Super-Ordinate and Sub-Ordinate Categories

    Directory of Open Access Journals (Sweden)

    Takahiro Soshi

    2017-09-01

    Full Text Available Accumulating evidence suggests that category representations are based on features. Distinguishing features are considered to define categories, because of all-or-none responses for objects in different categories; however, it is unclear how distinguishing features actually classify objects at various category levels. The present study included 75 animals within three classes (mammal, bird, and fish, along with 195 verbal features. Healthy adults participated in memory-based feature-animal matching verification tests. Analyses included a hierarchical clustering analysis, support vector machine, and independent component analysis to specify features effective for classifications. Quantitative and qualitative comparisons for significant features were conducted between super-ordinate and sub-ordinate levels. The number of significant features was larger for super-ordinate than sub-ordinate levels. Qualitatively, the proportion of biological features was larger than cultural/affective features in both the levels, while the proportion of affective features increased at the sub-ordinate level. To summarize, the two types of features differentially function to establish category representations.

  6. General Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: An Update of DISORT

    Science.gov (United States)

    Tsay, Si-Chee; Stamnes, Knut; Wiscombe, Warren; Laszlo, Istvan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This update reports a state-of-the-art discrete ordinate algorithm for monochromatic unpolarized radiative transfer in non-isothermal, vertically inhomogeneous, but horizontally homogeneous media. The physical processes included are Planckian thermal emission, scattering with arbitrary phase function, absorption, and surface bidirectional reflection. The system may be driven by parallel or isotropic diffuse radiation incident at the top boundary, as well as by internal thermal sources and thermal emission from the boundaries. Radiances, fluxes, and mean intensities are returned at user-specified angles and levels. DISORT has enjoyed considerable popularity in the atmospheric science and other communities since its introduction in 1988. Several new DISORT features are described in this update: intensity correction algorithms designed to compensate for the 8-M forward-peak scaling and obtain accurate intensities even in low orders of approximation; a more general surface bidirectional reflection option; and an exponential-linear approximation of the Planck function allowing more accurate solutions in the presence of large temperature gradients. DISORT has been designed to be an exemplar of good scientific software as well as a program of intrinsic utility. An extraordinary effort has been made to make it numerically well-conditioned, error-resistant, and user-friendly, and to take advantage of robust existing software tools. A thorough test suite is provided to verify the program both against published results, and for consistency where there are no published results. This careful attention to software design has been just as important in DISORT's popularity as its powerful algorithmic content.

  7. How Triage Nurses Use Discretion: a Literature Review

    Directory of Open Access Journals (Sweden)

    Lars Emil Fagernes Johannessen

    2016-02-01

    Full Text Available Discretion is quintessential for professional work. This review aims to understand how nurses use discretion when they perform urgency assessments in emergency departments with formalised triage systems—systems that are intended to reduce nurses’ use of discretion. Because little research has dealt explicitly with this topic, this review addresses the discretionary aspects of triage by reinterpreting qualitative studies of how triage nurses perform urgency assessments. The review shows (a how inexhaustive guidelines and a hectic work environment are factors that necessitate nurses’ use of discretion and (b how nurses reason within this discretionary space by relying on their experience and intuition, judging patients according to criteria such as appropriateness and believability, and creating urgency ratings together with their patients. The review also offers a synthesis of the findings’ discretionary aspects and suggests a new interactionist dimension of discretion.Keywords: Triage, discretion, emergency department, meta-ethnography, review, decision-making

  8. Ordinal Bivariate Inequality

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter Raahave

    2016-01-01

    This paper introduces a concept of inequality comparisons with ordinal bivariate categorical data. In our model, one population is more unequal than another when they have common arithmetic median outcomes and the first can be obtained from the second by correlation-increasing switches and....../or median-preserving spreads. For the canonical 2 × 2 case (with two binary indicators), we derive a simple operational procedure for checking ordinal inequality relations in practice. As an illustration, we apply the model to childhood deprivation in Mozambique....

  9. Optimized low-order explicit Runge-Kutta schemes for high- order spectral difference method

    KAUST Repository

    Parsani, Matteo

    2012-01-01

    Optimal explicit Runge-Kutta (ERK) schemes with large stable step sizes are developed for method-of-lines discretizations based on the spectral difference (SD) spatial discretization on quadrilateral grids. These methods involve many stages and provide the optimal linearly stable time step for a prescribed SD spectrum and the minimum leading truncation error coefficient, while admitting a low-storage implementation. Using a large number of stages, the new ERK schemes lead to efficiency improvements larger than 60% over standard ERK schemes for 4th- and 5th-order spatial discretization.

  10. Tree Ordination as Invented Tradition

    Directory of Open Access Journals (Sweden)

    Avery Morrow

    2012-01-01

    Full Text Available The symbolic ordination of trees as monks in Thailand is widely perceived in Western scholarship to be proof of the power of Buddhism to spur ecological thought. However, a closer analysis of tree ordination demonstrates that it is not primarily about Buddhist teaching, but rather is an invented tradition based on the sanctity of Thai Buddhist symbols as well as those of spirit worship and the monarchy. Tree ordinations performed by non-Buddhist minorities in Thailand do not demonstrate a religious commitment but rather a political one.

  11. Periodic, quasiperiodic and chaotic discrete breathers in a parametrical driven two-dimensional discrete diatomic Klein–Gordon lattice

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    We study a two-dimensional (2D) diatomic lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the 2D discrete diatomic Klein–Gordon lattice with hard and soft on-site potentials. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers (QDBs) and chaotic discrete breathers (CDBs) by changing the amplitude of the driver. But the DBs and QDBs with symmetric and anti-symmetric profiles that are centered at a heavy atom are more stable than at a light atom, because the frequencies of the DBs and QDBs centered at a heavy atom are lower than those centered at a light atom

  12. Atomic Energy Law with ordinances. 9. ed.

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The revised edition of the text is due to a variety of major changes in, and amendments to, the German Atomic Energy Law. This book includes the current version of the Atomic Energy Law which has been changed several times, the 1982-version of the ordinace concerning procedures laid down in the Atomic Energy Law, the 1976 radiation protection ordinance together with recent amendments, the 1973 X-ray ordinance, the 1977 financial security ordinance laid down in the Atomic Energy Law, the 1981 ordinance concerning costs, the ordinance concerning performance in anticipation of ultimate disposal. The book is a compilation of the basic Atomic Energy Law which is needed mostly for imminent practical requirements. (orig./HSCH) [de

  13. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    International Nuclear Information System (INIS)

    Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan

    2015-01-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave

  14. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China

    2015-11-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.

  15. Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk

    International Nuclear Information System (INIS)

    Schmitz, A.T.; Schwalm, W.A.

    2016-01-01

    Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.

  16. Social Host Ordinances and Policies. Prevention Update

    Science.gov (United States)

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2011

    2011-01-01

    Social host liability laws (also known as teen party ordinances, loud or unruly gathering ordinances, or response costs ordinances) target the location in which underage drinking takes place. Social host liability laws hold noncommercial individuals responsible for underage drinking events on property they own, lease, or otherwise control. They…

  17. Processing ordinality and quantity: the case of developmental dyscalculia.

    Directory of Open Access Journals (Sweden)

    Orly Rubinsten

    Full Text Available In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1 the traditionally and well accepted numerical magnitude system but also (2 core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD. Participants made "ordered" or "non-ordered" judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1 and 3 numbers (symbolic task: Experiment 2. In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks, DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information.

  18. Processing ordinality and quantity: the case of developmental dyscalculia.

    Science.gov (United States)

    Rubinsten, Orly; Sury, Dana

    2011-01-01

    In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made "ordered" or "non-ordered" judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information.

  19. Properties of wavelet discretization of Black-Scholes equation

    Science.gov (United States)

    Finěk, Václav

    2017-07-01

    Using wavelet methods, the continuous problem is transformed into a well-conditioned discrete problem. And once a non-symmetric problem is given, squaring yields a symmetric positive definite formulation. However squaring usually makes the condition number of discrete problems substantially worse. This note is concerned with a wavelet based numerical solution of the Black-Scholes equation for pricing European options. We show here that in wavelet coordinates a symmetric part of the discretized equation dominates over an unsymmetric part in the standard economic environment with low interest rates. It provides some justification for using a fractional step method with implicit treatment of the symmetric part of the weak form of the Black-Scholes operator and with explicit treatment of its unsymmetric part. Then a well-conditioned discrete problem is obtained.

  20. The discrete cones methods for two-dimensional neutral particle transport problems with voids

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1983-01-01

    One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method

  1. Memory Efficient Data Structures for Explicit Verification of Timed Systems

    DEFF Research Database (Denmark)

    Taankvist, Jakob Haahr; Srba, Jiri; Larsen, Kim Guldstrand

    2014-01-01

    Timed analysis of real-time systems can be performed using continuous (symbolic) or discrete (explicit) techniques. The explicit state-space exploration can be considerably faster for models with moderately small constants, however, at the expense of high memory consumption. In the setting of timed......-arc Petri nets, we explore new data structures for lowering the used memory: PTries for efficient storing of configurations and time darts for semi-symbolic description of the state-space. Both methods are implemented as a part of the tool TAPAAL and the experiments document at least one order of magnitude...... of memory savings while preserving comparable verification times....

  2. An analytical approach for a nodal formulation of a two-dimensional fixed-source neutron transport problem in heterogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada

    2015-05-15

    A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.

  3. A guide to practical radiation protection in medicine. X-Ray Ordinance. Radiation Protection Ordinance. Practice-oriented hints, comments, text compilation

    International Nuclear Information System (INIS)

    Fiebich, M.; Nischelsky, J.E.; Pfeiff, H.; Westermann, K.

    2003-01-01

    This loose-leaf collection has been compiled for users who have to implement the X-ray Ordinance and the Radiation Protection Ordinance at their place of work. It presents all acts, ordinances, safety guides, regulations and recommendations of relevance in connection with the above two ordinances, as well as practical instructions and the full text of technical codes. Radiation protection officers and other persons in charge of radiation protection will find the references, information and advice needed to solve problems encountered. (orig.) [de

  4. The new German radiation protection ordinance

    International Nuclear Information System (INIS)

    Pfeffer, W.; Weimer, G.

    2003-01-01

    According to European law, the Basic Safety Standards (BSS) published by the European Council in 1996 and the Council Directive on health protection of individuals against dangers of ionising radiation in relation to medical exposure had to be transferred into national law within due time. In 2001 the new Ordinance for the Implementation of the Euratom Guidelines on Radiation Protection] was published, which replaces the old Radiation Protection Ordinance. The new German Ordinance adapts the European Directive to German law, covering the general principles but even giving more details in many fields of radiation protection. The BSS scope certainly is much broader than the prescriptions important for the field of radiation protection in nuclear power plants. According to the scope of this workshop on occupational exposure in nuclear power plants - and as the BSS most probably will be quite familiar to all of you - after a short general overview on relevant contents of the German Ordinance, this presentation will focus on the main issues important in the operation of NPP and especially on some areas which may give rise to necessary changes caused by the new Ordinance. (A.L.B.)

  5. Duality for discrete integrable systems

    International Nuclear Information System (INIS)

    Quispel, G R W; Capel, H W; Roberts, J A G

    2005-01-01

    A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones

  6. Co-ordinating Product Developing Activities

    DEFF Research Database (Denmark)

    Terkelsen, Søren Bendix

    1996-01-01

    The paper contains a presentation of research methods to be used in case studies in product development and a presentation on how to deal with Design Co-ordination according to litterature......The paper contains a presentation of research methods to be used in case studies in product development and a presentation on how to deal with Design Co-ordination according to litterature...

  7. Methodology for solving the equation of transport ordered discrete TORT code in the reactor IPEN/MB-01; Metodologia para resolver la ecuacion del transporte con el codigo de Ordenadas Discretas TORT en el reactor IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, A.; Abarca, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2013-07-01

    The resolution of the neutron transport equation in steady state in pool-type nuclear reactors, is normally achieved through 2 different numerical methods: Monte Carlo (stochastic) and discrete ordinates (deterministic). The discrete ordinates method solves the neutron transport equation for a set of specific addresses, obtaining a set of equations and solutions for each direction, where the solution for each direction is the angular flux. With the aim of treating energy dependence, used energy multigroup approximation, thus obtaining a set of equations that depends on the number of energy groups considered.

  8. Advanced quadrature sets and acceleration and preconditioning techniques for the discrete ordinates method in parallel computing environments

    Science.gov (United States)

    Longoni, Gianluca

    In the nuclear science and engineering field, radiation transport calculations play a key-role in the design and optimization of nuclear devices. The linear Boltzmann equation describes the angular, energy and spatial variations of the particle or radiation distribution. The discrete ordinates method (S N) is the most widely used technique for solving the linear Boltzmann equation. However, for realistic problems, the memory and computing time require the use of supercomputers. This research is devoted to the development of new formulations for the SN method, especially for highly angular dependent problems, in parallel environments. The present research work addresses two main issues affecting the accuracy and performance of SN transport theory methods: quadrature sets and acceleration techniques. New advanced quadrature techniques which allow for large numbers of angles with a capability for local angular refinement have been developed. These techniques have been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle TRANsport) code and applied to highly angular dependent problems, such as CT-Scan devices, that are widely used to obtain detailed 3-D images for industrial/medical applications. In addition, the accurate simulation of core physics and shielding problems with strong heterogeneities and transport effects requires the numerical solution of the transport equation. In general, the convergence rate of the solution methods for the transport equation is reduced for large problems with optically thick regions and scattering ratios approaching unity. To remedy this situation, new acceleration algorithms based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified SN), has been developed based on the EP-SSN method. The code is designed for parallel computing environments with spatial, angular and hybrid (spatial/angular) domain

  9. Overview of Existing Wind Energy Ordinances

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  10. Spatial Representation of Ordinal Information

    Directory of Open Access Journals (Sweden)

    Meng eZhang

    2016-04-01

    Full Text Available Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect. Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: The Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet. Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word green, suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task.

  11. Spatial Representation of Ordinal Information.

    Science.gov (United States)

    Zhang, Meng; Gao, Xuefei; Li, Baichen; Yu, Shuyuan; Gong, Tianwei; Jiang, Ting; Hu, Qingfen; Chen, Yinghe

    2016-01-01

    Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word "green"), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task.

  12. Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme

    International Nuclear Information System (INIS)

    Doliwa, A.; Grinevich, P.; Nieszporski, M.; Santini, P. M.

    2007-01-01

    We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schroedinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3

  13. Cable Television Report and Suggested Ordinance.

    Science.gov (United States)

    League of California Cities, Sacramento.

    Guidelines and suggested ordinances for cable television regulation by local governments are comprehensively discussed in this report. The emphasis is placed on franchising the cable operator. Seventeen legal aspects of franchising are reviewed, and an exemplary ordinance is presented. In addition, current statistics about cable franchising in…

  14. A Study on the Consistency of Discretization Equation in Unsteady Heat Transfer Calculations

    Directory of Open Access Journals (Sweden)

    Wenhua Zhang

    2013-01-01

    Full Text Available The previous studies on the consistency of discretization equation mainly focused on the finite difference method, but the issue of consistency still remains with several problems far from totally solved in the actual numerical computation. For instance, the consistency problem is involved in the numerical case where the boundary variables are solved explicitly while the variables away from the boundary are solved implicitly. And when the coefficient of discretization equation of nonlinear numerical case is the function of variables, calculating the coefficient explicitly and the variables implicitly might also give rise to consistency problem. Thus the present paper mainly researches the consistency problems involved in the explicit treatment of the second and third boundary conditions and that of thermal conductivity which is the function of temperature. The numerical results indicate that the consistency problem should be paid more attention and not be neglected in the practical computation.

  15. Estimating Ordinal Reliability for Likert-Type and Ordinal Item Response Data: A Conceptual, Empirical, and Practical Guide

    Science.gov (United States)

    Gadermann, Anne M.; Guhn, Martin; Zumbo, Bruno D.

    2012-01-01

    This paper provides a conceptual, empirical, and practical guide for estimating ordinal reliability coefficients for ordinal item response data (also referred to as Likert, Likert-type, ordered categorical, or rating scale item responses). Conventionally, reliability coefficients, such as Cronbach's alpha, are calculated using a Pearson…

  16. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed; Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu

    2012-01-01

    cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation

  17. Parisian ruin for the dual risk process in discrete-time

    OpenAIRE

    Palmowski, Zbigniew; Ramsden, Lewis; Papaioannou, Apostolos D.

    2017-01-01

    In this paper we consider the Parisian ruin probabilities for the dual risk model in a discrete-time setting. By exploiting the strong Markov property of the risk process we derive a recursive expression for the fnite-time Parisian ruin probability, in terms of classic discrete-time dual ruin probabilities. Moreover, we obtain an explicit expression for the corresponding infnite-time Parisian ruin probability as a limiting case. In order to obtain more analytic results, we employ a conditioni...

  18. Amendments to ordinances in Radiation Protection Law; Novellierung der strahlenschutzrechtlichen Verordnungen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, W.

    2007-05-15

    The last major reform of the German Radiation Protection Ordinance took place on July 26, 2001. The 'First Ordinance Amending Ordinances in Radiation Protection Law' now proposed is to cover primarily the necessary changes and supplements resulting from experience in the execution of the ordinances. They mainly relate to these issues: (1) the scope of application of the Radiation Protection Ordinance and of the x-ray Ordinance in medical research (2) the scope of application of the Radiation Protection Ordinance and the -ray Ordinance in unjustified types of activities (3) electronic communication ('e-government') (4) changes in the provisions about permits and announcements in the Radiation Protection Ordinance (5) new clearance levels in the Radiation Protection Ordinance (6) cross-border transports of 'NORM' materials (7) other changes in the scope of application of the Radiation Protection Ordinance (8) other changes in the x-ray area. (orig.)

  19. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. From discrete particles to continuum fields near a boundary

    NARCIS (Netherlands)

    Weinhart, Thomas; Thornton, Anthony Richard; Luding, Stefan; Bokhove, Onno

    An expression for the stress tensor near an external boundary of a discrete mechanical system is derived explicitly in terms of the constituents’ degrees of freedom and interaction forces. Starting point is the exact and general coarse graining formulation presented by Goldhirsch in [I.Goldhirsch,

  1. Ordinance on nuclear third party liability (ORCN)

    International Nuclear Information System (INIS)

    1983-12-01

    The Ordinance exempts from the application of the 1983 Act on Nuclear Third Party Liability some substances with low radiation effects. It determines the amount of private insurance cover and defines the risks that insurers may exclude from cover. It establishes a special fund for nuclear damage made up of contributions from the nuclear operators. Specifications are given on the amount of the contributions and their conditions, as well as on administration of the fund. The Ordinance repeals the Ordinance of 13 June 1960 on funds for delayed atomic damage, the Order of 19 December 1960 on contributions to the fund for delayed atomic damage and the Ordinance of 30 November 1981 on cover for third party liability resulting from nuclear power plant operation [fr

  2. On E-discretization of tori of compact simple Lie groups. II

    Science.gov (United States)

    Hrivnák, Jiří; Juránek, Michal

    2017-10-01

    Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.

  3. Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme

    KAUST Repository

    Al Jarro, Ahmed

    2012-11-01

    An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.

  4. Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme

    KAUST Repository

    Al Jarro, Ahmed; Salem, Mohamed; Bagci, Hakan; Benson, Trevor; Sewell, Phillip D.; Vuković, Ana

    2012-01-01

    An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.

  5. An energy recondensation method using the discrete generalized multigroup energy expansion theory

    International Nuclear Information System (INIS)

    Zhu Lei; Forget, Benoit

    2011-01-01

    Highlights: → Discrete-generalized multigroup method was implemented as a recondensation scheme. → Coarse group cross-sections were recondensed from core-level solution. → Neighboring effect of reflector and MOX bundle was improved. → Methodology was shown to be fully consistent when a flat angular flux approximation is used. - Abstract: In this paper, the discrete generalized multigroup (DGM) method was used to recondense the coarse group cross-sections using the core level solution, thus providing a correction for neighboring effect found at the core level. This approach was tested using a discrete ordinates implementation in both 1-D and 2-D. Results indicate that 2 or 3 iterations can substantially improve the flux and fission density errors associated with strong interfacial spectral changes as found in the presence of strong absorbers, reflector of mixed-oxide fuel. The methodology is also proven to be fully consistent with the multigroup methodology as long as a flat-flux approximation is used spatially.

  6. On a discrete version of the CP 1 sigma model and surfaces immersed in R3

    International Nuclear Information System (INIS)

    Grundland, A M; Levi, D; Martina, L

    2003-01-01

    We present a discretization of the CP 1 sigma model. We show that the discrete CP 1 sigma model is described by a nonlinear partial second-order difference equation with rational nonlinearity. To derive discrete surfaces immersed in three-dimensional Euclidean space a 'complex' lattice is introduced. The so-obtained surfaces are characterized in terms of the quadrilateral cross-ratio of four surface points. In this way we prove that all surfaces associated with the discrete CP 1 sigma model are of constant mean curvature. An explicit example of such discrete surfaces is constructed

  7. Radiation Ordinance 1983 (No. 58 of 1983) (Australian Capital Territory)

    International Nuclear Information System (INIS)

    1983-01-01

    This Ordinance provides for the safe use, transportation and disposal of radioactive materials and irradiating apparatus. It repeals the Fluoroscopes Ordinance of 1958. Radioactive materials whose radioactivity does not exceed levels as set out in a Schedule to the Ordinance are exempted from application of the Ordinance. (NEA) [fr

  8. Numerical instability of time-discretized one-point kinetic equations

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ikeda, Hideaki; Takeda, Toshikazu

    2000-01-01

    The one-point kinetic equations with numerical errors induced by the explicit, implicit and Crank-Nicolson integration methods are derived. The zero-power transfer functions based on the present equations are demonstrated to investigate the numerical stability of the discretized systems. These demonstrations indicate unconditional stability for the implicit and Crank-Nicolson methods but present the possibility of numerical instability for the explicit method. An upper limit of time mesh spacing for the stability is formulated and several numerical calculations are made to confirm the validity of this formula

  9. Overstatement in happiness reporting with ordinal, bounded scale.

    Science.gov (United States)

    Tanaka, Saori C; Yamada, Katsunori; Kitada, Ryo; Tanaka, Satoshi; Sugawara, Sho K; Ohtake, Fumio; Sadato, Norihiro

    2016-02-18

    There are various methods by which people can express subjective evaluations quantitatively. For example, happiness can be measured on a scale from 1 to 10, and has been suggested as a measure of economic policy. However, there is resistance to these types of measurement from economists, who often regard welfare to be a cardinal, unbounded quantity. It is unclear whether there are differences between subjective evaluation reported on ordinal, bounded scales and on cardinal, unbounded scales. To answer this question, we developed functional magnetic resonance imaging experimental tasks for reporting happiness from monetary gain and the perception of visual stimulus. Subjects tended to report higher values when they used ordinal scales instead of cardinal scales. There were differences in neural activation between ordinal and cardinal reporting scales. The posterior parietal area showed greater activation when subjects used an ordinal scale instead of a cardinal scale. Importantly, the striatum exhibited greater activation when asked to report happiness on an ordinal scale than when asked to report on a cardinal scale. The finding that ordinal (bounded) scales are associated with higher reported happiness and greater activation in the reward system shows that overstatement bias in happiness data must be considered.

  10. Discrete-continuous bispectral operators and rational Darboux transformations

    International Nuclear Information System (INIS)

    Boyallian, Carina; Portillo, Sofia

    2010-01-01

    In this Letter we construct examples of discrete-continuous bispectral operators obtained by rational Darboux transformations applied to a regular pseudo-difference operator with constant coefficients. Moreover, we give an explicit procedure to write down the differential operators involved in the bispectral situation corresponding to the pseudo-difference operator obtained by the Darboux process.

  11. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  12. Parallel discrete ordinates algorithms on distributed and common memory systems

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.; Brickner, R.G.

    1987-01-01

    The S/sub n/ algorithm employs iterative techniques in solving the linear Boltzmann equation. These methods, both ordered and chaotic, were compared on both the Denelcor HEP and the Intel hypercube. Strategies are linked to the organization and accessibility of memory (common memory versus distributed memory architectures), with common concern for acquisition of global information. Apart from this, the inherent parallelism of the algorithm maps directly onto the two architectures. Results comparing execution times, speedup, and efficiency are based on a representative 16-group (full upscatter and downscatter) sample problem. Calculations were performed on both the Los Alamos National Laboratory (LANL) Denelcor HEP and the LANL Intel hypercube. The Denelcor HEP is a 64-bit multi-instruction, multidate MIMD machine consisting of up to 16 process execution modules (PEMs), each capable of executing 64 processes concurrently. Each PEM can cooperate on a job, or run several unrelated jobs, and share a common global memory through a crossbar switch. The Intel hypercube, on the other hand, is a distributed memory system composed of 128 processing elements, each with its own local memory. Processing elements are connected in a nearest-neighbor hypercube configuration and sharing of data among processors requires execution of explicit message-passing constructs

  13. Amendment of Atomic Ordinance

    International Nuclear Information System (INIS)

    1987-10-01

    This amendment to the 1984 Ordinance on definitions and licences in the atomic energy field aims essentially to ensure that the commitments under the Treaty on the Non-Proliferation of Nuclear Weapons are complied with in Switzerland. The goods and articles involving uranium enrichment by the gas centrifuge process and nuclear fuel reprocessing as specified by the competent international bodies, are henceforth included in the goods subject to notification or licensing listed in the Annex to the Ordinance. Also, it is provided that a construction and an operating licence for a nuclear installation may be granted simultaneously in cases where safe operating conditions can be fully assessed. (NEA) [fr

  14. Spectral collocation method with a flexible angular discretization scheme for radiative transfer in multi-layer graded index medium

    Science.gov (United States)

    Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming

    2017-05-01

    The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.

  15. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  16. Why Overlearned Sequences are Special: Distinct Neural Networks for Ordinal Sequences

    Directory of Open Access Journals (Sweden)

    Vani ePariyadath

    2012-12-01

    Full Text Available Several observations suggest that overlearned ordinal categories (e.g., letters, numbers, weekdays, months are processed differently than non-ordinal categories in the brain. In synesthesia, for example, anomalous perceptual experiences are most often triggered by members of ordinal categories (Rich et al., 2005; Eagleman, 2009. In semantic dementia, the processing of ordinal stimuli appears to be preserved relative to non-ordinal ones (Cappelletti et al., 2001. Moreover, ordinal stimuli often map onto unconscious spatial representations, as observed in the SNARC effect (Dehaene et al, 1993; Fias, 1996. At present, little is known about the neural representation of ordinal categories. Using functional neuroimaging, we show that words in ordinal categories are processed in a fronto-temporo-parietal network biased toward the right hemisphere. This differs from words in non-ordinal categories (such as names of furniture, animals, cars and fruit, which show an expected bias toward the left hemisphere. Further, we find that increased predictability of stimulus order correlates with smaller regions of BOLD activation, a phenomenon we term prediction suppression. Our results provide new insights into the processing of ordinal stimuli, and suggest a new anatomical framework for understanding the patterns seen in synesthesia, unconscious spatial representation, and semantic dementia.

  17. Explicit formulation of an anisotropic Allman/DKT 3-node thin triangular flat shell elements

    Science.gov (United States)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular, flat shell element in global coordinates is presented. An Allman triangle is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending triangle. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, membrane and bending strain-displacement matrices.

  18. Ordinance of 8 February 1984 on the radioactivity of timepieces

    International Nuclear Information System (INIS)

    1984-01-01

    This Ordinance regulates the approval of radioluminescent timepieces (wristwatches, fob-watches, alarm-clocks, clocks, etc.) imported or made in Switzerland. Such timepieces must comply with conditions in particular regarding their maximum radioactivity as laid down by the Ordinance and are subject to controls by the Federal Office of Public Health. The Ordinance, which came into force on 1 March 1984, replaces a similar Ordinance of 18 April 1968. (NEA) [fr

  19. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

    KAUST Repository

    Liu, Yang

    2016-03-25

    A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

  20. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

    KAUST Repository

    Liu, Yang; Al-Jarro, Ahmed; Bagci, Hakan; Michielssen, Eric

    2016-01-01

    A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

  1. The influence of boundary conditions on resonant frequencies of cavities in 3-D FDTD algorithm using non-orthogonal co-ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Tong, L.S. [Southeast Univ., Nanjing (China). Research Inst. of Electronics; Carter, R.G. [Lancaster Univ. (United Kingdom). Engineering Dept.

    1994-09-01

    The 3-dimensional finite-difference time-domain method in non-orthogonal co-ordinates (non-standard FDTD) is used to calculate the frequencies of resonators. The numerical boundary conditions of the method are presented. The Influences of boundary conditions and discrete meshes on the numerical accuracy are investigated. The authors present the nonstandard FDTD method using the boundary-orthogonal mesh and equivalent dielectric constant so that the error is reduced from 8.66% to 3.0% for the cylindrical cavity loaded by a dielectric button.

  2. Dark energy from discrete spacetime.

    Directory of Open Access Journals (Sweden)

    Aaron D Trout

    Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  3. Dark energy from discrete spacetime.

    Science.gov (United States)

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  4. Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

    KAUST Repository

    Parsani, Matteo

    2013-04-10

    Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

  5. Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

    KAUST Repository

    Parsani, Matteo; Ketcheson, David I.; Deconinck, W.

    2013-01-01

    Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

  6. Comparison of two ordinal prediction models

    DEFF Research Database (Denmark)

    Kattan, Michael W; Gerds, Thomas A

    2015-01-01

    system (i.e. old or new), such as the level of evidence for one or more factors included in the system or the general opinions of expert clinicians. However, given the major objective of estimating prognosis on an ordinal scale, we argue that the rival staging system candidates should be compared...... on their ability to predict outcome. We sought to outline an algorithm that would compare two rival ordinal systems on their predictive ability. RESULTS: We devised an algorithm based largely on the concordance index, which is appropriate for comparing two models in their ability to rank observations. We...... demonstrate our algorithm with a prostate cancer staging system example. CONCLUSION: We have provided an algorithm for selecting the preferred staging system based on prognostic accuracy. It appears to be useful for the purpose of selecting between two ordinal prediction models....

  7. Radiation Protection Ordinance 1989. Supplement with Radiation Protection Register Ordinance, general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance, general administration regulation pursuant to Sect. 62 sub-sect. radiation passport

    International Nuclear Information System (INIS)

    Veith, H.M.

    1990-01-01

    The addendum contains regulations issued supplementary to the Radiation Protection Ordinance: The Radiation Protection Register as of April 3, 1990 including the law on the setting up of a Federal Office on Radiation Protection; the general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance as of February 21, 1990; the general administration regulation pursuant to Sect. 62 sub-sect. 2 Radiation Protection Ordinance as of May 3, 1990 (AVV Radiation passport). The volume contains, apart from the legal texts, the appropriate decision by the Bundesrat, the official explanation from the Bundestag Publications as well as a comprehensive introduction into the new legal matter. (orig.) [de

  8. A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system

    International Nuclear Information System (INIS)

    Zhao, Hai-qiong; Yuan, Jinyun

    2016-01-01

    A new integrable semi-discrete version is proposed for the multi-component coherently coupled nonlinear Schrödinger equation. The integrability of the semi-discrete system is confirmed by existence of Lax pair and infinite number of conservation laws. With the aid of gauge transformations, explicit formulas for N -fold Darboux transformations are derived whereby some physically important solutions of the system are presented. Furthermore, the theory of the semi-discrete system including Lax pair, Darboux transformations, exact solutions and infinite number of conservation laws are shown for their continuous counterparts in the continuous limit. (paper)

  9. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  10. Discrete Feature Model (DFM) User Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))

    2008-06-15

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this

  11. Discrete Feature Model (DFM) User Documentation

    International Nuclear Information System (INIS)

    Geier, Joel

    2008-06-01

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this software, the

  12. Knowledge of the ordinal position of list items in pigeons.

    Science.gov (United States)

    Scarf, Damian; Colombo, Michael

    2011-10-01

    Ordinal knowledge is a fundamental aspect of advanced cognition. It is self-evident that humans represent ordinal knowledge, and over the past 20 years it has become clear that nonhuman primates share this ability. In contrast, evidence that nonprimate species represent ordinal knowledge is missing from the comparative literature. To address this issue, in the present experiment we trained pigeons on three 4-item lists and then tested them with derived lists in which, relative to the training lists, the ordinal position of the items was either maintained or changed. Similar to the findings with human and nonhuman primates, our pigeons performed markedly better on the maintained lists compared to the changed lists, and displayed errors consistent with the view that they used their knowledge of ordinal position to guide responding on the derived lists. These findings demonstrate that the ability to acquire ordinal knowledge is not unique to the primate lineage. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  13. Extrapolated stabilized explicit Runge-Kutta methods

    Science.gov (United States)

    Martín-Vaquero, J.; Kleefeld, B.

    2016-12-01

    Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.

  14. A new parallelization algorithm of ocean model with explicit scheme

    Science.gov (United States)

    Fu, X. D.

    2017-08-01

    This paper will focus on the parallelization of ocean model with explicit scheme which is one of the most commonly used schemes in the discretization of governing equation of ocean model. The characteristic of explicit schema is that calculation is simple, and that the value of the given grid point of ocean model depends on the grid point at the previous time step, which means that one doesn’t need to solve sparse linear equations in the process of solving the governing equation of the ocean model. Aiming at characteristics of the explicit scheme, this paper designs a parallel algorithm named halo cells update with tiny modification of original ocean model and little change of space step and time step of the original ocean model, which can parallelize ocean model by designing transmission module between sub-domains. This paper takes the GRGO for an example to implement the parallelization of GRGO (Global Reduced Gravity Ocean model) with halo update. The result demonstrates that the higher speedup can be achieved at different problem size.

  15. Ordinance on measures for preparation of a radioactive waste repository (Ordinance on preparatory measures) of 24 October 1979

    International Nuclear Information System (INIS)

    1981-01-01

    This Ordinance contains details concerning the special procedure provided for under Section 10(2) of the Federal Order of 6th October 1978 concerning the Atomic Energy Act whereby the Federal Council must grant permission before preparations for the construction of radioactive waste repositories may be undertaken. The Ordinance defines the preparatory measures, which include maps and plans of the area, a geological report, etc. (NEA) [fr

  16. Lanthanide co-ordination frameworks: Opportunities and diversity

    International Nuclear Information System (INIS)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter; Schroeder, Martin; Champness, Neil R.

    2005-01-01

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly more difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials

  17. The new X-ray ordinance: what's new?

    International Nuclear Information System (INIS)

    Reichow, H.

    2000-01-01

    The augmented requirements for the minimisation of the radiation dose in medical exposure and the experiences gained from the implementation of the ordinance in force call for more extensive measures for reducing radiation, for quality assurance and expertise in radiological protection. In future physicians, dentists, veterinarians and other people using X-rays will have to bring their necessary expert knowledge regarding radiological protection up to date at regular intervals, and prove that they have done so. To protect the public against radiation exposure from targeted use, the limit value of the effective dose is reduced to 1 mSv in the calendar year. The dose level for the protection of people professionally exposed to radiation is reduced to 20 mSv. The further development of information technology and digital imaging demands that appropriate framework conditions be laid down in response to the changing requirements for radiation protection such as those in telemedicine and in digital recording and documentation possibilities in radiology. The draft further clarifies the distinction between the Radiological Protection Ordinance and the X-Ray Ordinance in relation to accelerators, in which electrons are accelerated with the aim of producing ionizing radiation, and reduces the limit energy from 3 MeV to 1 MeV. It is discussed to remove the X-ray therapy from the X-ray Ordinance and to insert it into the Radiological Protection Ordinance, in order to conform to the higher protection requirements in X-ray therapy. (orig.) [de

  18. A new spatial multiple discrete-continuous modeling approach to land use change analysis.

    Science.gov (United States)

    2013-09-01

    This report formulates a multiple discrete-continuous probit (MDCP) land-use model within a : spatially explicit economic structural framework for land-use change decisions. The spatial : MDCP model is capable of predicting both the type and intensit...

  19. Preparing the generalized Harvey–Shack rough surface scattering method for use with the discrete ordinates method

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    2015-01-01

    The paper shows how to implement the generalized Harvey–Shack (GHS) method for isotropic rough surfaces discretized in a polar coordinate system and approximated using Fourier series. This is particularly relevant for the use of the GHS method as a boundary condition for radiative transfer proble...

  20. Revision without ordinals

    NARCIS (Netherlands)

    Rivello, Edoardo

    2013-01-01

    We show that Herzberger’s and Gupta’s revision theories of truth can be recast in purely inductive terms, without any appeal neither to the transfinite ordinal numbers nor to the axiom of Choice. The result is presented in an abstract and general setting, emphasising both its validity for a wide

  1. The Pakistan atomic energy commission ordinance, 1965 ordinance no. XVII of 1965

    International Nuclear Information System (INIS)

    1983-01-01

    This act, entitled Pakistan Atomic Energy Commission ordinance 1965, allows amendments incorporated under PAEC (amendment) act 1974 upto August 1983. The amendments relates to regulations concerned with the composition and functions of the commission and some miscellaneous rules. (A.B.)

  2. Collection of laws and ordinances concerning regulation of atomic energy, 1991 edition

    International Nuclear Information System (INIS)

    1990-01-01

    This is the collection of the laws and ordinances on the regulation of atomic energy, 1991 edition, published under the supervision of Nuclear Safety Bureau, Science and Technology Agency. First, the abbreviated indication of the laws and ordinances is shown. The contents are those as of September 30, 1990. 12 basic laws and ordinances, 45 laws and ordinances on the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors, 26 laws and ordinances on the prevention of the radiation injuries due to radioisotopes and others, and 29 related laws and ordinances are collected in this book. (K.I.)

  3. Ordinal Log-Linear Models for Contingency Tables

    Directory of Open Access Journals (Sweden)

    Brzezińska Justyna

    2016-12-01

    Full Text Available A log-linear analysis is a method providing a comprehensive scheme to describe the association for categorical variables in a contingency table. The log-linear model specifies how the expected counts depend on the levels of the categorical variables for these cells and provide detailed information on the associations. The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-linear models used for contingency tables with ordinal variables. We introduce log-linear models for ordinal variables: linear-by-linear association, row effect model, column effect model and RC Goodman’s model. Algorithm, advantages and disadvantages will be discussed in the paper. An empirical analysis will be conducted with the use of R.

  4. Simple currents versus orbifolds with discrete torsion -- a complete classification

    CERN Document Server

    Kreuzer, M

    1994-01-01

    We give a complete classification of all simple current modular invariants, extending previous results for $(\\Zbf_p)^k$ to arbitrary centers. We obtain a simple explicit formula for the most general case. Using orbifold techniques to this end, we find a one-to-one correspondence between simple current invariants and subgroups of the center with discrete torsions. As a by-product, we prove the conjectured monodromy independence of the total number of such invariants. The orbifold approach works in a straightforward way for symmetries of odd order, but some modifications are required to deal with symmetries of even order. With these modifications the orbifold construction with discrete torsion is complete within the class of simple current invariants. Surprisingly, there are cases where discrete torsion is a necessity rather than a possibility.

  5. Simple currents versus orbifolds with discrete torsion - a complete classification

    International Nuclear Information System (INIS)

    Kreuzer, M.; Schellekens, A.N.

    1993-01-01

    We give a complete classification of all simple current modular invariants, extending previous results for (Z p ) k to arbitrary centers. We obtain a simple explicit formula for the most general case. Using orbifold techniques to this end, we find a one-to-one correspondence between simple current invariants and subgroups of the center with discrete torsions. As a by-product, we prove the conjectured monodromy independence of the total number of such invariants. The orbifold approach works in a straightforward way for symmetries of odd order, but some modifications are required to deal with symmetries of even order. With these modifications the orbifold construction with discrete torsion is complete within the class of simple current invariants. Surprisingly, there are cases where discrete torsion is a necessity rather than a possibility. (orig.)

  6. Urban Runoff: Model Ordinances for Erosion and Sediment Control

    Science.gov (United States)

    The model ordinance in this section borrows language from the erosion and sediment control ordinance features that might help prevent erosion and sedimentation and protect natural resources more fully.

  7. Angular discretization errors in transport theory

    International Nuclear Information System (INIS)

    Nelson, P.; Yu, F.

    1992-01-01

    Elements of the information-based complexity theory are computed for several types of information and associated algorithms for angular approximations in the setting of a on-dimensional model problem. For point-evaluation information, the local and global radii of information are computed, a (trivial) optimal algorithm is determined, and the local and global error of a discrete ordinates algorithm are shown to be infinite. For average cone-integral information, the local and global radii of information are computed, the local and global error tends to zero as the underlying partition is indefinitely refined. A central algorithm for such information and an optimal partition (of given cardinality) are described. It is further shown that the analytic first-collision source method has zero error (for the purely absorbing model problem). Implications of the restricted problem domains suitable for the various types of information are discussed

  8. An integrable (2+1)-dimensional Toda equation with two discrete variables

    International Nuclear Information System (INIS)

    Cao Cewen; Cao Jianli

    2007-01-01

    An integrable (2+1)-dimensional Toda equation with two discrete variables is presented from the compatible condition of a Lax triad composed of the ZS-AKNS (Zakharov, Shabat; Ablowitz, Kaup, Newell, Segur) eigenvalue problem and two discrete spectral problems. Through the nonlinearization technique, the Lax triad is transformed into a Hamiltonian system and two symplectic maps, respectively, which are integrable in the Liouville sense, sharing the same set of integrals, functionally independent and involutive with each other. In the Jacobi variety of the associated algebraic curve, both the continuous and the discrete flows are straightened out by the Abel-Jacobi coordinates, and are integrated by quadratures. An explicit algebraic-geometric solution in the original variable is obtained by the Riemann-Jacobi inversion

  9. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    Science.gov (United States)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  10. Atomic ordinance - amendment of 28 october 1987

    International Nuclear Information System (INIS)

    1987-10-01

    This Ordinance amends certain provisions of the 1984 Ordinance on licences for the construction and operation of nuclear installations, import, export and transit of nuclear fuel, as well as the export of nuclear reactors, equipment and technical data. The Order also amends the provisions on the delivery procedure for these licences and makes minor amendments to the 1983 Order on nuclear third party liability [fr

  11. Single-crossover recombination in discrete time.

    Science.gov (United States)

    von Wangenheim, Ute; Baake, Ellen; Baake, Michael

    2010-05-01

    Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.

  12. The German Radiation Protection Ordinance (StrlSchV). 3. ed.

    International Nuclear Information System (INIS)

    Hinrichs, O.

    1992-01-01

    The German Radiation Protection Ordinance constitutes the central statutory instrument containing the main protective provisions for all fields of application of radioactive materials and ionizing radiation, with the exception of the field covered by the X-ray Ordinance. The current text of the Ordinance is that promulgated on 30.06.1989 with the subsequent amendments, as last amended through the Unification Treaty (Einigungsvertrag) of 23.09.1990. The Radiation Protection Ordinance was adopted on the basis of the German Nuclear Energy Act (Atomgesetz), which contains, inter alia, the necessary empowerments to issue statutory ordinances. Further fields containing relevant protective provisions are, above all, the law of dangerous substances (which concerns the transport of radioactive materials), the law of pharmaceutical products and the law of foodstuffs. The whole regulatory package is a part of EC and Euratom law. The limit values of the Euratom Directives were transposed into the Radiation Protection Ordinance. In order to reduce the bulk of the Ordinance, the legislator has only included the limit values for the most important radionuclides, and has made provision for the separate promulgation of the other limit values. In order to enhance the practical use of the book, the provisions governing the radiation pass, which are regulated in a separate administrative instruction, are also reproduced. (orig./HSCH) [de

  13. Explicit Knowledge of the Spanish Subjunctive and Accurate Use in Discrete-Point, Oral Production, and Written Production Measures

    Science.gov (United States)

    Gutiérrez, Xavier

    2017-01-01

    The usefulness of explicit knowledge of the second language is a matter of controversy in the field of second language acquisition. In this regard, it has been argued that explicit representations might be useful for some structures but not for others (R. Ellis, 2006; Roehr & Gánem-Gutiérrez, 2009). The goal of this study was to examine…

  14. An approach to solve group-decision-making problems with ordinal interval numbers.

    Science.gov (United States)

    Fan, Zhi-Ping; Liu, Yang

    2010-10-01

    The ordinal interval number is a form of uncertain preference information in group decision making (GDM), while it is seldom discussed in the existing research. This paper investigates how the ranking order of alternatives is determined based on preference information of ordinal interval numbers in GDM problems. When ranking a large quantity of ordinal interval numbers, the efficiency and accuracy of the ranking process are critical. A new approach is proposed to rank alternatives using ordinal interval numbers when every ranking ordinal in an ordinal interval number is thought to be uniformly and independently distributed in its interval. First, we give the definition of possibility degree on comparing two ordinal interval numbers and the related theory analysis. Then, to rank alternatives, by comparing multiple ordinal interval numbers, a collective expectation possibility degree matrix on pairwise comparisons of alternatives is built, and an optimization model based on this matrix is constructed. Furthermore, an algorithm is also presented to rank alternatives by solving the model. Finally, two examples are used to illustrate the use of the proposed approach.

  15. Co-ordinated action between youth-care and sports: facilitators and barriers.

    Science.gov (United States)

    Hermens, Niels; de Langen, Lisanne; Verkooijen, Kirsten T; Koelen, Maria A

    2017-07-01

    In the Netherlands, youth-care organisations and community sports clubs are collaborating to increase socially vulnerable youths' participation in sport. This is rooted in the idea that sports clubs are settings for youth development. As not much is known about co-ordinated action involving professional care organisations and community sports clubs, this study aims to generate insight into facilitators of and barriers to successful co-ordinated action between these two organisations. A cross-sectional study was conducted using in-depth semi-structured qualitative interview data. In total, 23 interviews were held at five locations where co-ordinated action between youth-care and sports takes place. Interviewees were youth-care workers, representatives from community sports clubs, and Care Sport Connectors who were assigned to encourage and manage the co-ordinated action. Using inductive coding procedures, this study shows that existing and good relationships, a boundary spanner, care workers' attitudes, knowledge and competences of the participants, organisational policies and ambitions, and some elements external to the co-ordinated action were reported to be facilitators or barriers. In addition, the participants reported that the different facilitators and barriers influenced the success of the co-ordinated action at different stages of the co-ordinated action. Future research is recommended to further explore the role of boundary spanners in co-ordinated action involving social care organisations and community sports clubs, and to identify what external elements (e.g. events, processes, national policies) are turning points in the formation, implementation and continuation of such co-ordinated action. © 2017 John Wiley & Sons Ltd.

  16. Explicit Hilbert-space representations of atomic and molecular photoabsorption spectra: Computational studies of Stieltjes-Tchebycheff functions

    International Nuclear Information System (INIS)

    Hermann, M.R.; Langhoff, P.W.

    1983-01-01

    Explicit Hilbert-space techniques are reported for construction of the discrete and continuum Schroedinger states required in atomic and molecular photoexcitation and/or photoionization studies. These developments extend and clarify previously described moment-theory methods for determinations of photoabsorption cross sections from discrete basis-set calculations to include explicit construction of underlying wave functions. The appropriate Stieltjes-Tchebycheff excitation and ionization functions of nth order are defined as Radau-type eigenstates of an appropriate operator in an n-term Cauchy-Lanczos basis. The energies of these states are the Radau quadrature points of the photoabsorption cross section, and their (reciprocal) norms provide the corresponding quadrature weights. Although finite-order Stieltjes-Tchebycheff functions are L 2 integrable, and do not have asymptotic spatial tails in the continuous spectrum, the Radau quadrature weights nevertheless provide information for normalization in the conventional Dirac delta-function sense. Since one Radau point can be placed anywhere in the spectrum, appropriately normalized convergent approximations to any of the discrete or continuum Schroedinger states are obtained from the development. Connections with matrix partitioning methods are established, demonstrating that nth-order Stieltjes-Tchebycheff functions are optical-potential solutions of the matrix Schroedinger equation in the full Cauchy-Lanczos basis

  17. Piecewise quadratic Lyapunov functions for stability verification of approximate explicit MPC

    Directory of Open Access Journals (Sweden)

    Morten Hovd

    2010-04-01

    Full Text Available Explicit MPC of constrained linear systems is known to result in a piecewise affine controller and therefore also piecewise affine closed loop dynamics. The complexity of such analytic formulations of the control law can grow exponentially with the prediction horizon. The suboptimal solutions offer a trade-off in terms of complexity and several approaches can be found in the literature for the construction of approximate MPC laws. In the present paper a piecewise quadratic (PWQ Lyapunov function is used for the stability verification of an of approximate explicit Model Predictive Control (MPC. A novel relaxation method is proposed for the LMI criteria on the Lyapunov function design. This relaxation is applicable to the design of PWQ Lyapunov functions for discrete-time piecewise affine systems in general.

  18. Ordinance on the transport of dangerous goods by road (SDR)

    International Nuclear Information System (INIS)

    1985-04-01

    This Ordinance regulates the transport of dangerous goods by road and replaces a similar Ordinance of 1972. The dangerous goods are listed in Annex A and the special provisions to be complied with for their transport are contained in Annex B. Radioactive materials, categorized as Class IVb, are included in the goods covered by the Ordinance. The Ordinance which entered into force on 1 May 1985 was amended on 9 April 1987 on a minor point and on 27 November 1989 so as to provide for special training for drivers of vehicles carrying such goods. This latter amendment entered into force on 1 January 1990. (NEA) [fr

  19. Amendment of the Ordinance on the export and transit of goods

    International Nuclear Information System (INIS)

    1989-12-01

    This Ordinance amends the Annex of the Ordinance of 7 March 1983 on the export and transit of dangerous goods which lists the nuclear items, ie nuclear reactors, equipment and materials subject to export restrictions. The Ordinance came into force on 1 January 1990 (NEA) [fr

  20. Topology Optimization using an Explicit Interface Representation

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Nobel-Jørgensen, Morten; Bærentzen, J. Andreas

    to handle topology changes. It does so by discretizing the entire design domain into an irregular adaptive triangle mesh and thereby explicitly representing both the structure and the embedding space. In other words, the entire design domain is divided into triangles, where the interface is represented....... To increase performance, degrees of freedom associated with void triangles are eliminated from the FE equation. Using the triangle mesh for computations is possible since the DSC method ensures a mesh with no degenerate elements. If the mesh contained degenerate or close to degenerate elements the FEM...... seconds on an ordinary laptop utilizing a single thread. In addition, a coarse solution to the same problem has been obtained in approximately 10 seconds....

  1. Constructing ordinal partition transition networks from multivariate time series.

    Science.gov (United States)

    Zhang, Jiayang; Zhou, Jie; Tang, Ming; Guo, Heng; Small, Michael; Zou, Yong

    2017-08-10

    A growing number of algorithms have been proposed to map a scalar time series into ordinal partition transition networks. However, most observable phenomena in the empirical sciences are of a multivariate nature. We construct ordinal partition transition networks for multivariate time series. This approach yields weighted directed networks representing the pattern transition properties of time series in velocity space, which hence provides dynamic insights of the underling system. Furthermore, we propose a measure of entropy to characterize ordinal partition transition dynamics, which is sensitive to capturing the possible local geometric changes of phase space trajectories. We demonstrate the applicability of pattern transition networks to capture phase coherence to non-coherence transitions, and to characterize paths to phase synchronizations. Therefore, we conclude that the ordinal partition transition network approach provides complementary insight to the traditional symbolic analysis of nonlinear multivariate time series.

  2. 1984 Ordinance on nuclear activities (1984:14)

    International Nuclear Information System (INIS)

    1984-01-01

    This Supplementary Ordinance on Nuclear Activities (1984:14) sets out a regulatory regime for the conveyance out of Sweden of equipment or material that has been specially designed or prepared for the processing, use or production of nuclear substances or which is otherwise of essential importance for the production of nuclear devices. The Annex to the Ordinance sets out the list of such equipment or material whose export is subject to Government authorisation. (NEA) [fr

  3. Anatomical localization of electrophysiological recording sites by co-ordinate transformation.

    Science.gov (United States)

    Sinex, D G

    1997-07-18

    A method for estimating the anatomical locations of the units recorded in electrophysiological mapping experiments is described. A total of three locations must be marked by dye injections or electrolytic lesions and identified in tissue sections. From those locations, equations are derived to translate, scale, and rotate the three-dimensional co-ordinates of the recording sites, so that they are correct for a second, three-dimensional co-ordinate system based on the anatomy of the mapped structure. There is no limit to the number of recording sites that can be localized. This differs from methods that require a dye injection or lesion to be made at the exact location at which a particular unit was recorded. The accuracy of the transformed co-ordinates is limited by the accuracy with which the co-ordinates can be measured: in test measurements and in the experiments for which this algorithm was developed, the computed co-ordinates were typically accurate to within 100 microns or less.

  4. An ordinal model of the McGurk illusion

    DEFF Research Database (Denmark)

    Andersen, Tobias

    2011-01-01

    Audiovisual information is integrated in speech perception. One manifestation of this is the McGurk illusion in which watching the articulating face alters the auditory phonetic percept. Understanding this phenomenon fully requires a computational model with predictive power. Here, we describe...... model it also employed 30 free parameters where the ordinal model needed only 14. Testing the predictive power of the models using a form of cross-validation we found that, although both models performed rather poorly, the ordinal model performed better than the FLMP. Based on these findings we suggest...... that ordinal models generally have greater predictive power because they are constrained by a priori information about the adjacency of phonetic categories....

  5. Ordinance of 30 June 1976 on radiation protection

    International Nuclear Information System (INIS)

    1976-01-01

    This Ordinance on radiation protection lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Service is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. (NEA) [fr

  6. The Design Co-ordination Framework: key elements for effective product development

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Bowen, J.; Storm, T.

    1997-01-01

    This paper proposes a Design Co-ordination Framework (DCF) i.e. a concept for an ideal DC system with the abilities to support co-ordination of various complex aspects of product development. A set of frames, modelling key elements of co-ordination, which reflect the states of design, plans, orga...

  7. The expert knowledge as defined by the X-ray Ordinance

    International Nuclear Information System (INIS)

    1991-01-01

    Persons applying within their role responsibility X-rays in medicine or veterinary medicine, or persons with a responsibility as radiation protection officer or according to section 24, sub-sec. (3) Radiation Protection Ordinance have to give proof of the required expert knowledge (section 3, sub-sec. (2), no. 3, section 4, sub-sec. (1) no. 3, section 13, sub-sec. (4), section 23 no.s. 1 and 3 of the X-ray Ordinance). In addition, persons applying X-rays under the supervision and responsibility of a medical specialist or dentist, have to acquire the knowledge in radiation protection as defined by section 23, no. 2 and 4 X-ray Ordinance. As to the application of X-rays in veterinary medicine, the expert knowledge required is defined in section 3, sub-sec. (2) no. 3, section 4, sub-sec. 1 no. 3, section 13, sub-sec. (4), section 29 sub-sec. (1) no. 4 of the X-ray Ordinance. The knowledge to be acquired in radiation protection is given in section 29, sub-sec. (1) no. 3 of the X-ray Ordinance. The radiation protection officer or persons responsible for radiation protection have to give proof of their expert knowledge within the course of the licensing or notification procedure in accordance with sections 3 and 4 of the X-ray Ordinance, or in the course of the procedure for appointment of a radiation protection officier in accordance with section 13, sub-sec. (3) of the X-ray Ordinance. (orig.) [de

  8. Teaching Proofs and Algorithms in Discrete Mathematics with Online Visual Logic Puzzles

    Science.gov (United States)

    Cigas, John; Hsin, Wen-Jung

    2005-01-01

    Visual logic puzzles provide a fertile environment for teaching multiple topics in discrete mathematics. Many puzzles can be solved by the repeated application of a small, finite set of strategies. Explicitly reasoning from a strategy to a new puzzle state illustrates theorems, proofs, and logic principles. These provide valuable, concrete…

  9. Using GIS to check co-ordinates of genebank accessions

    NARCIS (Netherlands)

    Hijmans, R.J.; Schreuder, M.; Cruz, de la J.; Guarino, L.

    1999-01-01

    The geographic co-ordinates of the locations where germplasm accessions have been collected are usually documented in genebank databases. However, the co-ordinate data are often incomplete and may contain errors. This paper describes procedures to check for errors, to determine the cause of these

  10. Expert knowledge as defined by the X-Ray Ordinance

    International Nuclear Information System (INIS)

    1987-01-01

    The radiation protection officer or any person responsible for radiation safety have to give proof of their expert knowledge in accordance with sections 3, 4 of the X-Ray Ordinance. Proof of expert knowledge has to be furnished within the procedure of appointment (sec. 13, sub-sec. (3) X-Ray Ordinance). The directive defines the scope of the expert knowledge required, and the scope of expert knowledge persons must have, or acquire, who are responsible for radiation protection within the preview of sec. 23, no. 2, 4 and sec. 29, sub-sec. 1, no. 3 of the X-Ray Ordinance. (orig./HP) [de

  11. Local zoning ordinances -- how they limit or restrict mining

    International Nuclear Information System (INIS)

    Ingram, H.

    1991-01-01

    Local regulation of mining by zoning has taken place for a long period of time. The delegation to local municipalities of land use planning, zoning and nuisance abatement authority which may affect mining by state governments has been consistently upheld by appellate courts as valid exercises of the police power. Recently, mine operators and mineral owners have been confronted by efforts of local municipalities, often initiated by anti-mining citizen's groups, to impose more stringent restrictions on mining activities within their borders. In some situations, existing ordinances are being enforced for the first time, in others, new ordinances have been adopted without much awareness or involvement by the public. Enforced to the letter, these ordinances can sterilize large blocks of mineable reserves open-quotes operatingclose quotes or performance standards in excess of SMCRA-based regulatory requirements. It is fair to say that investigation of the potential impacts of local zoning and other related ordinances is essential in the planning for the expansion of existing operations or for new operations. There may be new rules in the game. This paper identifies problem areas in typical open-quotes modernclose quotes ordinances and discusses legal and constitutional issues which may arise by their enforcement in coal producing regions

  12. An assessment of the effects of a cadmium discharge ordinance

    International Nuclear Information System (INIS)

    Moser, J.H.; Schultz, J.L.

    1982-01-01

    The problem facing the MMSD was high levels of cadmium in Milorganite fertilizer. The cause was determined to be discharges from industry, primarily electroplaters. The solution was the cooperative development of an ordinance to limit the discharge of cadmium. Because the dischargers acted responsibly to comply with the ordinance, the ordinance succeeded in achieving its objective of significantly reducing the cadmium loading to the municipal sewerage system and subsequently reducing the cadmium concentration in Milorganite fertilizer

  13. Transitions between discrete and rhythmic primitives in a unimanual task

    Science.gov (United States)

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  14. Transitions between Discrete and Rhythmic Primitives in a Unimanual Task

    Directory of Open Access Journals (Sweden)

    Dagmar eSternad

    2013-07-01

    Full Text Available Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements, in order to stress the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: Starting at 2s the metronome intervals decreased by 36ms per cycle to 200ms, stayed at 200ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.

  15. First ordinance amending the Ordinance on Rail Transport of Dangerous Goods (1. Amendment Ordinance Rail Transport of Dangerous Goods). As of June 22, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    This Amendment which came into force on September 1, 1983 brings about modifications of many items of the original Ordinance on Rail Transport of Dangerous Goods and its supplement, as of August 29, 1979. (HSCH) [de

  16. Collections of laws and ordinances concerning radiation injury prevention as of July 24, 1981

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    1981-01-01

    There are laws, government and ministerial ordinances and notifications, each of them bears a definite role, and the contents of the legal regulation on a certain range of matter are determined by their close interrelation and mutual supplementation. Many laws and ordinances concerning atomic energy also form a legal system under such mutual relation. The Atomic Energy Act is positioned at its top, and the main part related to radiation injury prevention comprises a law, two ordinances, a regulation and a notification. Such relationship of individual laws and ordinances is mostly shown in lower rank laws and ordinances. In Chapter 1 of this book, the Atomic Energy Act and the government ordinance concerning the definition of nuclear fuel materials, nuclear raw materials, nuclear reactors and radiation are described. In Chapter 2, the law concerning prevention of radiation injuries due to radiactive isotopes and others, the ordinances and eight notifications closely related to them are collected. In Chapter 3, other related laws and ordinances are gathered. To understand the laws and ordinances synthetically and systematically, the provisions of different laws and ordinances, which are mutually related, are arranged together showing their relation. (Kako, I.)

  17. 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism.

    Science.gov (United States)

    Wu, QingXiang; McGinnity, Thomas Martin; Maguire, Liam; Belatreche, Ammar; Glackin, Brendan

    2008-11-01

    In order to plan accurate motor actions, the brain needs to build an integrated spatial representation associated with visual stimuli and haptic stimuli. Since visual stimuli are represented in retina-centered co-ordinates and haptic stimuli are represented in body-centered co-ordinates, co-ordinate transformations must occur between the retina-centered co-ordinates and body-centered co-ordinates. A spiking neural network (SNN) model, which is trained with spike-timing-dependent-plasticity (STDP), is proposed to perform a 2D co-ordinate transformation of the polar representation of an arm position to a Cartesian representation, to create a virtual image map of a haptic input. Through the visual pathway, a position signal corresponding to the haptic input is used to train the SNN with STDP synapses such that after learning the SNN can perform the co-ordinate transformation to generate a representation of the haptic input with the same co-ordinates as a visual image. The model can be applied to explain co-ordinate transformation in spiking neuron based systems. The principle can be used in artificial intelligent systems to process complex co-ordinate transformations represented by biological stimuli.

  18. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    Science.gov (United States)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of

  19. Awareness on the Implementation of Anti-Smoking Ordinance No. 1S. 2012

    Directory of Open Access Journals (Sweden)

    Rowena E. Mojares

    2014-10-01

    Full Text Available This study aimed to identify the respondent’s profile variable such as gender, age, educational attainment, occupation, and frequency of smoking; to identify the level of awareness of the public on Anti-Smoking Ordinance and to determine the significant difference on the level of awareness in the implementation when grouped according to profile variables. The researchers used the descriptive method of research and utilized two hundred-four (204 respondents. The result showed that the respondents are dominated by male, college graduate and under graduate and most of them are private employees. They agreed that they are aware on the implementation of anti-smoking ordinance no. 1S 2012 because the ordinance was clearly stated, well disseminated, there are authorities prohibiting it and there is a usage of signage. But they agree also that they are less aware about the specific boundary that the ordinance covered, that there is regular monitoring and there is enough number of personnel implementing the ordinance. The researchers recommended that the Pamahalaang Panglunsod may continue to maintain the strict implementation of the Anti-Smoking Ordinance; authorities should specify the boundary covered by the Ordinance and should have enough personnel to implement it,

  20. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    Science.gov (United States)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  1. Metal selective co-ordinative self-assembly of π-donors

    Indian Academy of Sciences (India)

    Metal selective co-ordinative nanostructures were constructed by the supramolecular ... observed an anomalous binding of metal ion to the core sulphur groups causing redox changes in the TTF ... attention on metal-assisted co-ordinative self-assembly ..... M TTF-Py in 1:1 CHCl3: MeCN and (c) photographs showing visual.

  2. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer use ordinance and evaluation...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and rehabilitation...

  3. Guidelines for the implementation of the X-ray Ordinance (RoeV). Vol. 2. Recommendations concerning data acquisition and archivation pursuant to paragraph 28 of the X-ray Ordinance passed by the Laender Committee for the X-ray Ordinance, 26/27 January 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The recommendations apply to biomedical radiography and X-ray therapy. They refer to: 1) Patients' personal data as required according to Paragraph 28, sub-sec. 1, X-ray Ordinance. 2) Scope of data to be recorded acc. to Paragraph 28, sub-sec. 2, X-ray Ordinance. 3) Archivation of data acc. to Paragraph 28, sub-sec., 4 + 5, X-ray Ordinance. 4) Passing on of data acc. to Paragraph 28, sub-sec. 6, X-ray Ordinance. 5) Archivation of technical standard data (X-ray equipment specification records). The recommendations' main aim is to provide for radiological protection of the patient and for data showing the radiation doses received by patients. (HP) [de

  4. One-dimensional Schroedinger operators with interactions singular on a discrete set

    International Nuclear Information System (INIS)

    Gesztesy, F.; Kirsch, W.

    We study the self-adjointness of Schroedinger operators -d 2 /dx 2 +V(x) on an arbitrary interval, (a,b) with V(x) locally integrable on (a,b)inverse slantX where X is a discrete set. The treatment of quantum mechanical systems describing point interactions or periodic (possibly strongly singular) potentials is thereby included and explicit examples are presented. (orig.)

  5. Augmenting Ordinal Methods of Attribute Weight Approximation

    DEFF Research Database (Denmark)

    Daneilson, Mats; Ekenberg, Love; He, Ying

    2014-01-01

    of the obstacles and methods for introducing so-called surrogate weights have proliferated in the form of ordinal ranking methods for criteria weights. Considering the decision quality, one main problem is that the input information allowed in ordinal methods is sometimes too restricted. At the same time, decision...... makers often possess more background information, for example, regarding the relative strengths of the criteria, and might want to use that. We propose combined methods for facilitating the elicitation process and show how this provides a way to use partial information from the strength of preference...

  6. Explicit free parametrization of the modified tetrahedron equation

    CERN Document Server

    Gehlen, G V; Sergeev, S

    2003-01-01

    The modified tetrahedron equation (MTE) with affine Weyl quantum variables at the Nth root of unity is solved by a rational mapping operator which is obtained from the solution of a linear problem. We show that the solutions can be parametrized in terms of eight free parameters and 16 discrete phase choices, thus providing a broad starting point for the construction of three-dimensional integrable lattice models. The Fermat-curve points parametrizing the representation of the mapping operator in terms of cyclic functions are expressed in terms of the independent parameters. An explicit formula for the density factor of the MTE is derived. For the example N=2 we write the MTE in full detail.

  7. Explicit free parametrization of the modified tetrahedron equation

    International Nuclear Information System (INIS)

    Gehlen, G von; Pakuliak, S; Sergeev, S

    2003-01-01

    The modified tetrahedron equation (MTE) with affine Weyl quantum variables at the Nth root of unity is solved by a rational mapping operator which is obtained from the solution of a linear problem. We show that the solutions can be parametrized in terms of eight free parameters and 16 discrete phase choices, thus providing a broad starting point for the construction of three-dimensional integrable lattice models. The Fermat-curve points parametrizing the representation of the mapping operator in terms of cyclic functions are expressed in terms of the independent parameters. An explicit formula for the density factor of the MTE is derived. For the example N=2 we write the MTE in full detail

  8. Inferring network structure in non-normal and mixed discrete-continuous genomic data.

    Science.gov (United States)

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2018-03-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.

  9. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Science.gov (United States)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  10. Co-ordination of heterovalent cation impurities in molten salts

    International Nuclear Information System (INIS)

    Andreoni, W.; Rovere, M.; Tosi, M.P.

    1982-01-01

    The local liquid structure around heterovalent cation impurities in molten chlorides is discussed in relation to spectroscopic data on solutions of transition metal ions. A tightly packed, low co-ordination shell is shown to be favoured by Coulomb ionic interactions for physically reasonable values of the size of the impurity. A competition between these forces and ''crystal field'' interactions favouring octahedral co-ordination is thus to be expected for many transition metal ions, as suggested by Gruen and McBeth. The transition observed for some transition metal ions from higher to lower co-ordination with increasing temperature is attributed primarily to entropy differences, that are roughly estimated in a solid-like model. (author)

  11. Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows.

    Science.gov (United States)

    Yang, L M; Shu, C; Wang, Y

    2016-03-01

    In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.

  12. Explicit Time Integrators for Nonlinear Dynamics Derived from the Midpoint Rule

    Directory of Open Access Journals (Sweden)

    P. Krysl

    2004-01-01

    Full Text Available We address the design of time integrators for mechanical systems that are explicit in the forcing evaluations. Our starting point is the midpoint rule, either in the classical form for the vector space setting, or in the Lie form for the rotation group. By introducing discrete, concentrated impulses we can approximate the forcing impressed upon the system over the time step, and thus arrive at first-order integrators. These can then be composed to yield a second order integrator with very desirable properties: symplecticity and momentum conservation. 

  13. Ordinance on the Finnish Centre of Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1990-01-01

    This Ordinance was adopted in implementation of the 1983 Act setting up the Finnish Centre for Radiation and Nuclear Safety and the 1987 Nuclear Energy Act and entered into force on 1 November 1990. The Ordinance specifies the tasks of the Centre, as provided under both Acts, and gives it several supplementary responsibilities. In addition to its overall competence in respect of radiation safety, the Centre will carry out research into and supervise the health effects of radiation and maintain a laboratory for national measurements in that field. The Ordinance also sets out the Centre's organisation chart and the staff duties [fr

  14. A geometric realization of the periodic discrete Toda lattice and its tropicalization

    International Nuclear Information System (INIS)

    Nobe, Atsushi

    2013-01-01

    An explicit formula concerning curve intersections equivalent to the time evolution of the periodic discrete Toda lattice (pdTL) is presented. First, the time evolution is realized as a point addition on a hyperelliptic curve, which is the spectral curve of the pdTL, then the point addition is translated into curve intersections. Next, it is shown that the curves which appear in the curve intersections are explicitly given by using the conserved quantities of the pdTL. Finally, the formulation is lifted to the framework of tropical geometry and a tropical geometric realization of the periodic box–ball system is constructed via tropical curve intersections. (paper)

  15. Co-ordination Action on Ocean Energy (CA-OE)

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    In October 2004, the Co-ordination Action on Ocean Energy (CA-OE) was launched, co-financed by the European Commission, under the Renewable Energy Technologies priority within the 6th Framework programme, contract number 502701, chaired by Kim Nielsen, Rambøll, Denmark. The project involves 41...... partners. In general the public is not aware of the development of ocean energy and its exploitation. There is a need to make a united effort from the developers and research community to present the various principles and results in a coordinated manner with public appeal. The main objectives of the Co......-ordination Action on Ocean Energy are: To develop a common knowledge base necessary for coherent research and development policiesTo bring a co-ordinated approach within key areas of ocean energy research and development.To provide a forum for the longer term marketing of promising research developments...

  16. Rite of Ordination of Fr Karol Wojtyła

    Directory of Open Access Journals (Sweden)

    Szymon Fedorowicz

    2014-06-01

    Full Text Available The article contains the source text of the Polish translation of the rite of ordination of a bishop prepared for the episcopal ordination of Fr. Karol Wojtyła by Franciszek Małaczyński OSB. The text was found in the archives of Jacek Fedorowicz and prepared for publication by his son Szymon Fedorowicz.

  17. Geometrical approach to the discrete Wigner function in prime power dimensions

    International Nuclear Information System (INIS)

    Klimov, A B; Munoz, C; Romero, J L

    2006-01-01

    We analyse the Wigner function in prime power dimensions constructed on the basis of the discrete rotation and displacement operators labelled with elements of the underlying finite field. We separately discuss the case of odd and even characteristics and analyse the algebraic origin of the non-uniqueness of the representation of the Wigner function. Explicit expressions for the Wigner kernel are given in both cases

  18. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)

    2016-12-15

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  19. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    International Nuclear Information System (INIS)

    Pham, Huyên; Wei, Xiaoli

    2016-01-01

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  20. Discrete gradients in discrete classical mechanics

    International Nuclear Information System (INIS)

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated

  1. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    Science.gov (United States)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  2. GGVS. Ordinance on road transport of hazardous materials, including the European agreement on international road transport of hazardous materials (ADR), in their wording. Annexes A and B. Ordinances regarding exceptions from GGVS and from the ordinance on rail transport of hazardous materials, GGVE. Reasons. Selected guidelines. List of materials. 6. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Ridder, K.

    1990-01-01

    The brochure contains the following texts: (1) Ordinance on road transport of hazardous materials (GGVS), including the European agreement on international road transport of hazardous materials (ADR), as of 1990: Skeleton ordinance, annexes A and B, reasons given for the first version, and for the first amendment in 1988, execution guidelines - RS 002 (guidelines for executing the ordinance on road transport of hazardous materials, with catalogue of penalties), guidelines for drawing up written instructions for the event of accidents - RS 006, guiding principles for the training of vehicle conductors; (2) ordinance regarding exceptions from the ordinance on road transport of hazardous materials; (3) ordinance regarding exceptions from the ordinance on rail transport of hazardous materials; (4) selected guidelines: Technical guidelines TR IBC K 001, TRS 003, TRS 004, TRS 005, TRS 006; (5) listing of materials and objects governed by the ordinance on hazardous materials transport; (6) catalogue of penalties relative to road transport of hazardous materials. (orig./HP) [de

  3. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  4. The analytical evolution of NLS solitons due to the numerical discretization error

    Science.gov (United States)

    Hoseini, S. M.; Marchant, T. R.

    2011-12-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank-Nicolson scheme and a scheme, due to Taha [1], based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t^{-{1\\over 2}}, which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank-Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found.

  5. The analytical evolution of NLS solitons due to the numerical discretization error

    International Nuclear Information System (INIS)

    Hoseini, S M; Marchant, T R

    2011-01-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank–Nicolson scheme and a scheme, due to Taha, based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t -1/2 , which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank–Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found. (paper)

  6. Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems

    Science.gov (United States)

    Cavaglieri, Daniele; Bewley, Thomas

    2015-04-01

    Implicit/explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) computational hardware, in which memory management is often the most significant computational bottleneck. In this paper, we develop and characterize eight new low-storage implicit/explicit RK schemes which have higher accuracy and better stability properties than the only low-storage implicit/explicit RK scheme available previously, the venerable second-order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or four registers of length N) and comparable floating-point operations per timestep.

  7. Ordinance on distribution of iodine tablets to the population

    International Nuclear Information System (INIS)

    1992-01-01

    This Ordinance provides for the organization of supplies of iodine tablets to the population. The tablets will be held in case of occurrences that might endanger the population following an accident provoking the emission of radioactive iodine. The Federal Health Ministry is responsible for organizing the supply to the appropriate bodies for distribution to the population. The Ordinance entered into force on 1 August 1992. (NEA)

  8. Accident prevention ordinance 2.0 Thermal Power Plants

    International Nuclear Information System (INIS)

    Egyptien, H.H.; Fischermann, E.

    This accident prevention ordinance is to cover primarily the very section of a power station where fossil or nuclear energy is converted into thermal energy, e.g. by heating or vaporization of a heat source. In paragraph 1, 40 GJ/h are stipulated as the lower limit of capacity corresponding to about 11 MW. Therefore, the accident prevention ordinance does not only marshal the operation of steam generators in electricity supply utilities but also covers smaller industrial power stations which partly do only meet the company's own requirements. Pipes are only covered as far as they are operated in conjunction with a heat generator. The same applies to coal handling and ash removal facilities. This means that for heat release e.g. in the framework of a district heating grid, the transfer station to the distribution grid is regarded as being a border of the power station and thus a border to the area of application of the accident prevention ordinance. (orig./HP) [de

  9. A Characterization of Ordinal Potential Games

    NARCIS (Netherlands)

    Voorneveld, M.; Norde, H.W.

    1996-01-01

    This note characterizes ordinal potential games by the absence of weak improvement cycles and an order condition on the strategy space.This order condition is automatically satisfied if the strategy space is countable.

  10. Extracts from the Ordinance on foodstuffs

    International Nuclear Information System (INIS)

    1936-05-01

    This Ordinance which regulates the consumption and treatment of foodstuffs also contains provisions on irradiated food, providing in particular that treatment of food by irradiation is subject to a prior licence. (NEA) [fr

  11. Discrete mKdV and discrete sine-Gordon flows on discrete space curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2014-01-01

    In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)

  12. Notes on qubit phase space and discrete symplectic structures

    International Nuclear Information System (INIS)

    Livine, Etera R

    2010-01-01

    We start from Wootter's construction of discrete phase spaces and Wigner functions for qubits and more generally for finite-dimensional Hilbert spaces. We look at this framework from a non-commutative space perspective and we focus on the Moyal product and the differential calculus on these discrete phase spaces. In particular, the qubit phase space provides the simplest example of a four-point non-commutative phase space. We give an explicit expression of the Moyal bracket as a differential operator. We then compare the quantum dynamics encoded by the Moyal bracket to the classical dynamics: we show that the classical Poisson bracket does not satisfy the Jacobi identity thus leaving the Moyal bracket as the only consistent symplectic structure. We finally generalize our analysis to Hilbert spaces of prime dimensions d and their associated d x d phase spaces.

  13. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  14. Allegheny County Municipal Land Use Ordinances

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Many municipalities have their own land use ordinances and establish standards and requirements for land use and development in that municipality. This dataset is...

  15. On discretization of tori of compact simple Lie groups: II

    International Nuclear Information System (INIS)

    Hrivnák, Jiří; Motlochová, Lenka; Patera, Jiří

    2012-01-01

    The discrete orthogonality of special function families, called C- and S-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnák and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the results of Hrivnák and Patera are extended to two additional recently discovered families of special functions, called S s - and S l -functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments F s M and F l M of a lattice in any dimension n ⩾ 2 and of any density controlled by M, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots. (paper)

  16. How to Plan an Ordinance: An Outline and Some Examples.

    Science.gov (United States)

    Cable Television Information Center, Washington, DC.

    Designed for public officials who must make policy decisions concerning cable television, this booklet forms a checklist to ensure that all basic questions have been considered in drafting an ordinance. The purpose of a cable television ordinance is to develop a law listing the specifications and obligations that will govern the franchising of a…

  17. Numerical stability of finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis of the classic explicit, fully implicit and Crank-Nicolson methods and typical problems involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...... has been paid to the effect of the discretization of the mixed, linear boundary condition with time-dependent coefficients on stability, assuming the two-point forward-difference approximations for the gradient at the left boundary (electrode). Under accepted assumptions one obtains the usual...... stability criteria for the classic explicit and fully implicit methods. The Crank-Nicolson method turns out to be only conditionally stable in contrast to the current thought regarding this method....

  18. On conservation laws for models in discrete, noncommutative and fractional differential calculus

    International Nuclear Information System (INIS)

    Klimek, M.

    2001-01-01

    We present the general method of derivation the explicit form of conserved currents for equations built within the framework of discrete, noncommutative or fractional differential calculus. The procedure applies to linear models with variable coefficients including also nonlinear potential part. As an example an equation on quantum plane, nonlinear Toda lattice model and homogeneous equation of fractional diffusion in 1+1 dimensions are studied

  19. Proposed Ordinance for the Regulation of Cable Television. Working Draft.

    Science.gov (United States)

    Chicago City Council, IL.

    A model ordinance is proposed for the regulation of cable television in the city of Chicago. It defines the language of the ordinance, sets forth the method of granting franchises, and describes the terms of the franchises. The duties of a commission to regulate cable television are listed and the method of selecting commission members is…

  20. Multi-GPU-based acceleration of the explicit time domain volume integral equation solver using MPI-OpenACC

    KAUST Repository

    Feki, Saber

    2013-07-01

    An explicit marching-on-in-time (MOT)-based time-domain volume integral equation (TDVIE) solver has recently been developed for characterizing transient electromagnetic wave interactions on arbitrarily shaped dielectric bodies (A. Al-Jarro et al., IEEE Trans. Antennas Propag., vol. 60, no. 11, 2012). The solver discretizes the spatio-temporal convolutions of the source fields with the background medium\\'s Green function using nodal discretization in space and linear interpolation in time. The Green tensor, which involves second order spatial and temporal derivatives, is computed using finite differences on the temporal and spatial grid. A predictor-corrector algorithm is used to maintain the stability of the MOT scheme. The simplicity of the discretization scheme permits the computation of the discretized spatio-temporal convolutions on the fly during time marching; no \\'interaction\\' matrices are pre-computed or stored resulting in a memory efficient scheme. As a result, most often the applicability of this solver to the characterization of wave interactions on electrically large structures is limited by the computation time but not the memory. © 2013 IEEE.

  1. Analysis of a discrete element method and coupling with a compressible fluid flow method

    International Nuclear Information System (INIS)

    Monasse, L.

    2011-01-01

    This work aims at the numerical simulation of compressible fluid/deformable structure interactions. In particular, we have developed a partitioned coupling algorithm between a Finite Volume method for the compressible fluid and a Discrete Element method capable of taking into account fractures in the solid. A survey of existing fictitious domain methods and partitioned algorithms has led to choose an Embedded Boundary method and an explicit coupling scheme. We first showed that the Discrete Element method used for the solid yielded the correct macroscopic behaviour and that the symplectic time-integration scheme ensured the preservation of energy. We then developed an explicit coupling algorithm between a compressible inviscid fluid and an un-deformable solid. Mass, momentum and energy conservation and consistency properties were proved for the coupling scheme. The algorithm was then extended to the coupling with a deformable solid, in the form of a semi implicit scheme. Finally, we applied this method to unsteady inviscid flows around moving structures: comparisons with existing numerical and experimental results demonstrate the excellent accuracy of our method. (author) [fr

  2. On discrete symmetries and torsion homology in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, Christoph [Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universität München,München (Germany); Palti, Eran; Till, Oskar; Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,Heidelberg (Germany)

    2015-06-04

    We study the relation between discrete gauge symmetries in F-theory compactifications and torsion homology on the associated Calabi-Yau manifold. Focusing on the simplest example of a ℤ{sub 2} symmetry, we show that there are two physically distinct ways that such a discrete gauge symmetry can arise. First, compactifications of M-Theory on Calabi-Yau threefolds which support a genus-one fibration with a bi-section are known to be dual to six-dimensional F-theory vacua with a ℤ{sub 2} gauge symmetry. We show that the resulting five-dimensional theories do not have a ℤ{sub 2} symmetry but that the latter emerges only in the F-theory decompactification limit. Accordingly the genus-one fibred Calabi-Yau manifolds do not exhibit torsion in homology. Associated to the bi-section fibration is a Jacobian fibration which does support a section. Compactifying on these related but distinct varieties does lead to a ℤ{sub 2} symmetry in five dimensions and, accordingly, we find explicitly an associated torsion cycle. We identify the expected particle and membrane system of the discrete symmetry in terms of wrapped M2 and M5 branes and present a field-theory description of the physics for both cases in terms of circle reductions of six-dimensional theories. Our results and methods generalise straightforwardly to larger discrete symmetries and to four-dimensional compactifications.

  3. Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations

    International Nuclear Information System (INIS)

    Bonelle, Jerome

    2014-01-01

    This thesis presents a new class of spatial discretization schemes on polyhedral meshes, called Compatible Discrete Operator (CDO) schemes and their application to elliptic and Stokes equations In CDO schemes, preserving the structural properties of the continuous equations is the leading principle to design the discrete operators. De Rham maps define the degrees of freedom according to the physical nature of fields to discretize. CDO schemes operate a clear separation between topological relations (balance equations) and constitutive relations (closure laws). Topological relations are related to discrete differential operators, and constitutive relations to discrete Hodge operators. A feature of CDO schemes is the explicit use of a second mesh, called dual mesh, to build the discrete Hodge operator. Two families of CDO schemes are considered: vertex-based schemes where the potential is located at (primal) mesh vertices, and cell-based schemes where the potential is located at dual mesh vertices (dual vertices being in one-to-one correspondence with primal cells). The CDO schemes related to these two families are presented and their convergence is analyzed. A first analysis hinges on an algebraic definition of the discrete Hodge operator and allows one to identify three key properties: symmetry, stability, and P0-consistency. A second analysis hinges on a definition of the discrete Hodge operator using reconstruction operators, and the requirements on these reconstruction operators are identified. In addition, CDO schemes provide a unified vision on a broad class of schemes proposed in the literature (finite element, finite element, mimetic schemes... ). Finally, the reliability and the efficiency of CDO schemes are assessed on various test cases and several polyhedral meshes. (author)

  4. An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions

    Science.gov (United States)

    Macías-Díaz, J. E.

    2018-06-01

    In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.

  5. Normal co-ordinate analysis of 1, 8-dibromooctane

    Science.gov (United States)

    Singh, Devinder; Jaggi, Neena; Singh, Nafa

    2010-02-01

    The organic compound 1,8-dibromooctane (1,8-DBO) exists in liquid phase at ambient temperatures and has versatile synthetic applications. In its liquid phase 1,8-DBO has been expected to exist in four most probable conformations, with all its carbon atoms in the same plane, having symmetries C 2h , C i , C 2 and C 1 . In the present study a detailed vibrational analysis in terms of assignment of Fourier transform infrared (FT-IR) and Raman bands of this molecule using normal co-ordinate calculations has been done. A systematic set of symmetry co-ordinates has been constructed for this molecule and normal co-ordinate analysis is carried out using the computer program MOLVIB. The force-field transferred from already studied lower chain bromo-alkanes is subjected to refinement so as to fit the observed infrared and Raman frequencies with those of calculated ones. The potential energy distribution (PED) has also been calculated for each mode of vibration of the molecule for the assumed conformations.

  6. A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Kretschmer, Uta; Pigorsch, Christian

    We develop an empirically highly accurate discrete-time daily stochastic volatility model that explicitly distinguishes between the jump and continuoustime components of price movements using nonparametric realized variation and Bipower variation measures constructed from high-frequency intraday...... dependencies inherent in the high-frequency intraday data....

  7. Rainbow-shift mechanism behind discrete optical-potential ambiguities

    International Nuclear Information System (INIS)

    Brandan, M.E.; McVoy, K.W.

    1991-01-01

    Some years ago, Drisko et al. suggested that the discrete ambiguity often encountered for elastic scattering optical potentials could be understood as being due to the interior or small-l S-matrix elements for two ''equivalent'' potentials differing in phase by 2π, l-by-l. We point out that the absence of this phase change for peripheral partial waves is equally essential, and suggest that a deeper understanding of the ambiguity may be achieved by viewing it as a consequence of a farside interference between interior and peripheral partial waves. It is this interference which produces the broad ''Airy maxima'' of a nuclear rainbow, and we show that a Drisko-type phase-shift increment δ l →(δ l +π) for low-l phases relative to the high-l ones is exactly what is needed to shift a farside rainbow pattern by one Airy maximum, thus providing an equivalent ''rainbow-shift'' interpretation of the discrete ambiguity. The physical importance of both interpretations lies in the fact that the existence of discrete ambiguities (as well as of nuclear rainbows) is explicit evidence for low-l transparency in nucleus-nucleus collisions. The essential role played by low partial waves explains why peripheral reactions have generally not proven helpful in resolving this ambiguity

  8. Dominant supply chain co-ordination strategies in the Dutch aerospace industry

    NARCIS (Netherlands)

    Voordijk, Johannes T.; Meijboom, Bert

    2005-01-01

    Purpose – Firms in the aerospace industry face considerable pressure to improve co-ordination in their supply chains. The major question of the present study is what supply chain co-ordination strategies are dominant in the Dutch aerospace industry given the market environment of this industry?

  9. 27 CFR 478.24 - Compilation of State laws and published ordinances.

    Science.gov (United States)

    2010-04-01

    ... published ordinances. (a) The Director shall annually revise and furnish Federal firearms licensees with a... Director annually revises the compilation and publishes it as “State Laws and Published Ordinances—Firearms... and published ordinances. 478.24 Section 478.24 Alcohol, Tobacco Products, and Firearms BUREAU OF...

  10. UK Natural Analogue Co-Ordinating Group: first annual progress report

    International Nuclear Information System (INIS)

    Hooker, P.J.; Chapman, N.A.

    1987-11-01

    The British Geological Survey is reponsible for co-ordinating the Department of the Environment's programme of natural analogue studies of radionuclide migration, a research programme that involved both UK and overseas sites. Co-ordination is achieved through the UK Natural Analogue Co-ordinating Group (NACG) which was established in October 1986. It has met three times to date and its function is to ensure that the different research projects have an integrated purpose aimed at improving and applying our understanding of natural geochemical processes in a way that will increase our confidence in long-term modelling predictions. Improved modelling prediction of radionuclide transport in the geosphere will directly benefit the performance and safety assessments of proposed radioactive waste repositories. (author)

  11. Ordinance on the body responsible for taking measures in case of increased radioactivity (OROIR)

    International Nuclear Information System (INIS)

    1987-04-01

    This Ordinance, based on atomic energy legislation, public safety, military organisation and the defense council, replaced a previous ordinance of 1966 on alert in case of increased radioactivity. It sets up the body responsible for this work and describes the tasks to be performed in case of an occurrence which could create hazards for the population due to increased radioactivity. If a Swiss nuclear installation creates such a hazard, the 1982 Ordinance on emergency measures in the neighbourhood of nuclear installations also applies. The Ordinance entered into force on 1 May 1987 (NEA) [fr

  12. Indoor smoking ordinances in workplaces and public places in Kansas.

    Science.gov (United States)

    Neuberger, John S; Davis, Ken; Nazir, Niaman; Dunton, Nancy; Winn, Kimberly; Jacquot, Sandy; Moler, Don

    2010-08-01

    The purpose of this study was to investigate the preferences of elected city officials regarding the need for a statewide clean indoor air law and to analyze the content of local smoking ordinances. A survey of elected officials in 57 larger Kansas cities obtained information on the perceived need for statewide legislation, venues to be covered, and motivating factors. Clean indoor air ordinances from all Kansas cities were analyzed by venue. The survey response rate was 190 out of 377 (50.4%) for elected officials. Over 70% of the respondents favored or strongly favored greater restrictions on indoor smoking. Sixty percent favored statewide legislation. Among these, over 80% favored restrictions in health care facilities, theaters, indoor sports arenas (including bowling alleys), restaurants, shopping malls, lobbies, enclosed spaces in outdoor arenas, and hotel/motel rooms. Officials who had never smoked favored a more restrictive approach. Employee and public health concerns were cited as influential by 76%-79% of respondents. Thirty-eight ordinances, covering over half of the state's population, were examined. They varied considerably in their exemptions. Official's attitudes toward smoking regulations were associated with their smoking status. The examination of existing ordinances revealed a piecemeal approach to smoking regulations.

  13. The number of bound states for a discrete Schroedinger operator on ZN, N≥1, lattices

    International Nuclear Information System (INIS)

    Karachalios, N I

    2008-01-01

    We consider the discrete Schroedinger operator -Δ d +U in Z N , N≥1 in the case of a potential with negative part in an appropriate l σ -space (decays with an appropriate rate). We present a discrete analog of the method of Li and Yau (1983 Commun. Math. Phys. 88 309-18), proving an explicit upper estimate on the number of bound states N d (0)={j:μ j ≤0}, which is independent of the dimension of the lattice. This is a major difference with the continuous counterpart estimate, which is not valid when N = 1, 2. As a consequence, a dimension-independent smallness criterion for the existence of bound states is derived in contrast to the continuous case as well as to the discrete case of vanishing potential. A short comment is made on possible applications of the results to the study of the dynamics of some particular spatially discrete nonlinear systems

  14. No toy for you! The healthy food incentives ordinance: paternalism or consumer protection?

    Science.gov (United States)

    Etow, Alexis M

    2012-01-01

    The newest approach to discouraging children's unhealthy eating habits, amidst increasing rates of childhood obesity and other diet-related diseases, seeks to ban something that is not even edible. In 2010, San Francisco enacted the Healthy Food Incentives Ordinance, which prohibits toys in kids' meals if the meals do not meet certain nutritional requirements. Notwithstanding the Ordinance's impact on interstate commerce or potential infringement on companies' commercial speech rights and on parents' rights to determine what their children eat, this Comment argues that the Ordinance does not violate the dormant Commerce Clause, the First Amendment, or substantive due process. The irony is that although the Ordinance likely avoids the constitutional hurdles that hindered earlier measures aimed at childhood obesity, it intrudes on civil liberties more than its predecessors. This Comment analyzes the legality of the Healthy Food Incentives Ordinance to understand its implications on subsequent legislation aimed at combating childhood obesity and on the progression of public health law.

  15. INFCE technical co-ordinating committee documents

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    A collection of the documents covering the period December 1977 through February 1980 submitted to or generated by the Technical Co-ordinating Comittee is presented. The documents cover primarily the organizational aspects of INFCE, but conclusions from the various Working Groups are summarized.

  16. INFCE technical co-ordinating committee documents

    International Nuclear Information System (INIS)

    A collection of the documents covering the period December 1977 through February 1980 submitted to or generated by the Technical Co-ordinating Comittee is presented. The documents cover primarily the organizational aspects of INFCE, but conclusions from the various Working Trays are summarized

  17. Spatial coding of ordinal information in short- and long-term memory

    Directory of Open Access Journals (Sweden)

    Veronique eGinsburg

    2015-01-01

    Full Text Available The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene, Bossini, & Giraux, 1993. However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck & Fias, 2011. Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time.

  18. Restaurant volatility and the Iowa City, Iowa, smoke-free restaurant ordinance.

    Science.gov (United States)

    Sheffer, Megan A; Squier, Christopher A; Gilmore, Gary D

    2013-01-01

    To determine the economic impact of the Iowa City, Iowa, smoke-free restaurant ordinance (IC-SFRO) using an immediate and novel approach. In this retrospective study, food permit licensure served as the measure to assess the IC-SFRO impact. The Iowa City experience provided an excellent experimental setting, as the ordinance was enacted March 1, 2002, and repealed May 7, 2003, because of preemption. The city of Coralville served as a natural control, as it is contiguous to Iowa City, has similar population demographics, and has never enacted a smoke-free restaurant ordinance. Food permit licensure data for all Iowa City and Coralville restaurants were obtained from the Johnson County Health Department. Differences in restaurant volatility were assessed using Fisher's exact probability test. The number of restaurants increased in both Iowa City and Coralville throughout the ordinance period. The ratio of the total number of restaurants in Iowa City to the total number of restaurants in the Iowa City-Coralville metropolitan area remained stable. The proportion of restaurants for each city did not differ significantly during the preordinance, ordinance, and postordinance periods. The IC-SFRO did not adversely impact the restaurant industry in terms of restaurant closures. The Iowa legislature was urged to draft evidence-based legislation, such as amending preemption of the IC-SFRO, to protect and promote the health of its communities.

  19. Spatial coding of ordinal information in short- and long-term memory.

    Science.gov (United States)

    Ginsburg, Véronique; Gevers, Wim

    2015-01-01

    The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene et al., 1993). However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck and Fias, 2011). Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time.

  20. Spatial coding of ordinal information in short- and long-term memory

    Science.gov (United States)

    Ginsburg, Véronique; Gevers, Wim

    2015-01-01

    The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene et al., 1993). However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck and Fias, 2011). Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time. PMID:25688199

  1. A test for ordinal measurement invariance

    NARCIS (Netherlands)

    Ligtvoet, R.; Millsap, R.E.; Bolt, D.M.; van der Ark, L.A.; Wang, W.-C.

    2015-01-01

    One problem with the analysis of measurement invariance is the reliance of the analysis on having a parametric model that accurately describes the data. In this paper an ordinal version of the property of measurement invariance is proposed, which relies only on nonparametric restrictions. This

  2. A Rational Decision Maker with Ordinal Utility under Uncertainty: Optimism and Pessimism

    OpenAIRE

    Han, Ji

    2009-01-01

    In game theory and artificial intelligence, decision making models often involve maximizing expected utility, which does not respect ordinal invariance. In this paper, the author discusses the possibility of preserving ordinal invariance and still making a rational decision under uncertainty.

  3. The Trend Odds Model for Ordinal Data‡

    Science.gov (United States)

    Capuano, Ana W.; Dawson, Jeffrey D.

    2013-01-01

    Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values (Peterson and Harrell, 1990). We consider a trend odds version of this constrained model, where the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc Nlmixed, and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical dataset is used to illustrate the interpretation of the trend odds model, and we apply this model to a Swine Influenza example where the proportional odds assumption appears to be violated. PMID:23225520

  4. The trend odds model for ordinal data.

    Science.gov (United States)

    Capuano, Ana W; Dawson, Jeffrey D

    2013-06-15

    Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values. We consider a trend odds version of this constrained model, wherein the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc NLMIXED and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical data set is used to illustrate the interpretation of the trend odds model, and we apply this model to a swine influenza example wherein the proportional odds assumption appears to be violated. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Ordination of self-organizing feature map neural networks and its application to the study of plant communities

    Institute of Scientific and Technical Information of China (English)

    Jintun ZHANG; Dongping MENG; Yuexiang XI

    2009-01-01

    A self-organizing feature map (SOFM) neural network is a powerful tool in analyzing and solving complex, non-linear problems. According to its features, a SOFM is entirely compatible with ordination studies of plant communities. In our present work, mathematical principles, and ordination techniques and procedures are introduced. A SOFM ordination was applied to the study of plant communities in the middle of the Taihang mountains. The ordination was carried out by using the NNTool box in MATLAB. The results of 68 quadrats of plant communities were distributed in SOFM space. The ordination axes showed the ecological gradients clearly and provided the relationships between communities with ecological meaning. The results are consistent with the reality of vegetation in the study area. This suggests that SOFM ordination is an effective technique in plant ecology. During ordination procedures, it is easy to carry out clustering of communities and so it is beneficial for combining classification and ordination in vegetation studies.

  6. Cultural Consensus Theory for the ordinal data case.

    Science.gov (United States)

    Anders, Royce; Batchelder, William H

    2015-03-01

    A Cultural Consensus Theory approach for ordinal data is developed, leading to a new model for ordered polytomous data. The model introduces a novel way of measuring response biases and also measures consensus item values, a consensus response scale, item difficulty, and informant knowledge. The model is extended as a finite mixture model to fit both simulated and real multicultural data, in which subgroups of informants have different sets of consensus item values. The extension is thus a form of model-based clustering for ordinal data. The hierarchical Bayesian framework is utilized for inference, and two posterior predictive checks are developed to verify the central assumptions of the model.

  7. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  8. Model county ordinance for wind projects

    Energy Technology Data Exchange (ETDEWEB)

    Bain, D.A. [Oregon Office of Energy, Portland, OR (United States)

    1997-12-31

    Permitting is a crucial step in the development cycle of a wind project and permits affect the timing, cost, location, feasibility, layout, and impacts of wind projects. Counties often have the lead responsibility for permitting yet few have appropriate siting regulations for wind projects. A model ordinance allows a county to quickly adopt appropriate permitting procedures. The model county wind ordinance developed for use by northwest states is generally applicable across the country and counties seeking to adopt siting or zoning regulations for wind will find it a good starting place. The model includes permitting procedures for wind measurement devices and two types of wind systems. Both discretionary and nondiscretionary standards apply to wind systems and a conditional use permit would be issued. The standards, criteria, conditions for approval, and process procedures are defined for each. Adaptation examples for the four northwest states are provided along with a model Wind Resource Overlay Zone.

  9. The revised German radiation protection ordinance

    International Nuclear Information System (INIS)

    Palm, M.

    2002-01-01

    Since August 2001, German radiation protection law is governed by a new Radiation Protection Ordinance, implementing two new Euratom Directives and taking into account new scientific developments, which provides a comprehensive basis for the protection of man and the environment. The Ordinance has been completely restructured; however, it is still a very complex piece of legislation comprising 118 provisions and 14 annexes, some of them highly technical. Reduced dose limits for occupationally exposed persons and members of the public, a detailed provision on clearance of radioactive substances, a new part aiming at the protection of man and the environment against ionising radiation emanating from natural sources, and regulations dealing with the protection of consumers in connection with the addition of radioactive substances to consumer goods are some of the centre pieces of the new legislation which shall contribute significantly to the further prevention or at least minimisation of the adverse effects of radiation exposure. (orig.) [de

  10. On the discrete Frobenius-Perron operator of the Bernoulli map

    International Nuclear Information System (INIS)

    Bai Zaiqiao

    2006-01-01

    We study the spectra of a finite-dimensional Frobenius-Perron operator (matrix) of the Bernoulli map derived from phase space discretization. The eigenvalues and (right and left) eigenvectors are analytically calculated, which are closely related to periodic orbits on the partition points. In the degenerate case, Jordan decomposition of the matrix is explicitly constructed. Except for the isolated eigenvalue 1, there is no definite limit with respect to eigenvalues when n → ∞. The behaviour of the eigenvectors is discussed in the limit of large n

  11. A posteriori error estimator and AMR for discrete ordinates nodal transport methods

    International Nuclear Information System (INIS)

    Duo, Jose I.; Azmy, Yousry Y.; Zikatanov, Ludmil T.

    2009-01-01

    In the development of high fidelity transport solvers, optimization of the use of available computational resources and access to a tool for assessing quality of the solution are key to the success of large-scale nuclear systems' simulation. In this regard, error control provides the analyst with a confidence level in the numerical solution and enables for optimization of resources through Adaptive Mesh Refinement (AMR). In this paper, we derive an a posteriori error estimator based on the nodal solution of the Arbitrarily High Order Transport Method of the Nodal type (AHOT-N). Furthermore, by making assumptions on the regularity of the solution, we represent the error estimator as a function of computable volume and element-edges residuals. The global L 2 error norm is proved to be bound by the estimator. To lighten the computational load, we present a numerical approximation to the aforementioned residuals and split the global norm error estimator into local error indicators. These indicators are used to drive an AMR strategy for the spatial discretization. However, the indicators based on forward solution residuals alone do not bound the cell-wise error. The estimator and AMR strategy are tested in two problems featuring strong heterogeneity and highly transport streaming regime with strong flux gradients. The results show that the error estimator indeed bounds the global error norms and that the error indicator follows the cell-error's spatial distribution pattern closely. The AMR strategy proves beneficial to optimize resources, primarily by reducing the number of unknowns solved for to achieve prescribed solution accuracy in global L 2 error norm. Likewise, AMR achieves higher accuracy compared to uniform refinement when resolving sharp flux gradients, for the same number of unknowns

  12. Stabilization and tracking controller for a class of nonlinear discrete-time systems

    International Nuclear Information System (INIS)

    Sharma, B.B.; Kar, I.N.

    2011-01-01

    Highlights: → We present recursive design of stabilizing controller for nonlinear discrete-time systems. → Problem of stabilizing and tracking control of single link manipulator system is addressed. → We extend the proposed results to output tracking problems. → The proposed methodology is applied satisfactorily to discrete-time chaotic maps. - Abstract: In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.

  13. Law 2006-26 of 9 August concerning the modification of ordinance 93-16 of 2 March 1993 concerning mining law completed by ordinance 99-48 of 5 November 1999

    International Nuclear Information System (INIS)

    2006-01-01

    This law precise that article 36 of ordinance 93-16 of 2 March 1993 concerning mining law and completed by ordinance 99-48 of 5 November is abrogated. Articles 2, 8, 24, 34, 35, 44, 49, 51, 63, 82, 83, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 97, 99, 105, 136 and title X bis of ordinance 93-16 of 2 mach 1993 are modified or completely changed. The modification involves State ownership, government right, surface and validity of licence or lease, domain of mining law application, mining convention, closed/protected or prohibited zones, fiscal and custom duties [fr

  14. Food marketing to children through toys: response of restaurants to the first U.S. toy ordinance.

    Science.gov (United States)

    Otten, Jennifer J; Hekler, Eric B; Krukowski, Rebecca A; Buman, Matthew P; Saelens, Brian E; Gardner, Christopher D; King, Abby C

    2012-01-01

    On August 9, 2010, Santa Clara County CA became the first U.S. jurisdiction to implement an ordinance that prohibits the distribution of toys and other incentives to children in conjunction with meals, foods, or beverages that do not meet minimal nutritional criteria. Restaurants had many different options for complying with this ordinance, such as introducing more healthful menu options, reformulating current menu items, or changing marketing or toy distribution practices. To assess how ordinance-affected restaurants changed their child menus, marketing, and toy distribution practices relative to non-affected restaurants. Children's menu items and child-directed marketing and toy distribution practices were examined before and at two time points after ordinance implementation (from July through November 2010) at ordinance-affected fast-food restaurants compared with demographically matched unaffected same-chain restaurants using the Children's Menu Assessment tool. Affected restaurants showed a 2.8- to 3.4-fold improvement in Children's Menu Assessment scores from pre- to post-ordinance with minimal changes at unaffected restaurants. Response to the ordinance varied by restaurant. Improvements were seen in on-site nutritional guidance; promotion of healthy meals, beverages, and side items; and toy marketing and distribution activities. The ordinance appears to have positively influenced marketing of healthful menu items and toys as well as toy distribution practices at ordinance-affected restaurants, but did not affect the number of healthful food items offered. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  16. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  17. Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)

    1982-01-01

    The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru

  18. sGD: software for estimating spatially explicit indices of genetic diversity.

    Science.gov (United States)

    Shirk, A J; Cushman, S A

    2011-09-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.

  19. Low-power hardware implementation of movement decoding for brain computer interface with reduced-resolution discrete cosine transform.

    Science.gov (United States)

    Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E

    2014-01-01

    This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.

  20. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  1. Hessen: ordinance concerning competences in the field of nuclear protection and radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Competences for: 1) Licensing of nuclear facilities; 2) use of nuclear fuels; 3) plan approval procedure; 4) supervisory authorities; 5) Radiation Protection Ordinance; 6) X-Ray Ordinance; 7) proceedings and disciplinary action against breaches of the rules. (HP) [de

  2. Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random.

    Science.gov (United States)

    Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C

    2018-04-01

    A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.

  3. Ordinal regression models to describe tourist satisfaction with Sintra's world heritage

    Science.gov (United States)

    Mouriño, Helena

    2013-10-01

    In Tourism Research, ordinal regression models are becoming a very powerful tool in modelling the relationship between an ordinal response variable and a set of explanatory variables. In August and September 2010, we conducted a pioneering Tourist Survey in Sintra, Portugal. The data were obtained by face-to-face interviews at the entrances of the Palaces and Parks of Sintra. The work developed in this paper focus on two main points: tourists' perception of the entrance fees; overall level of satisfaction with this heritage site. For attaining these goals, ordinal regression models were developed. We concluded that tourist's nationality was the only significant variable to describe the perception of the admission fees. Also, Sintra's image among tourists depends not only on their nationality, but also on previous knowledge about Sintra's World Heritage status.

  4. Ordinance of 17 May 1978 on definitions and licences in the atomic energy field

    International Nuclear Information System (INIS)

    1978-01-01

    This Ordinance came into force on 1 July 1978. It enables the Swiss authorities to apply the provisions of the Treaty on the Non-Proliferation of Nuclear Weapons and the guidelines on the transfer of nuclear material and equipment of the group of nuclear supplier countries (London Club) according to the IAEA document INFCIRC 254. The Ordinance is supplemented by annexes and appendices which list and specify the material, reactors and equipment which are subject to an export licence. The Federal Office of Energy Economy issues the licences required for the import and export of such material and equipment. Finally, this Ordinance repeals the Ordinance of 13 June 1960 on Definitions and Permits in the Atomic Energy Field. (NEA) [fr

  5. Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations

    International Nuclear Information System (INIS)

    Hof, Bas van’t; Veldman, Arthur E.P.

    2012-01-01

    The paper explains a method by which discretizations of the continuity and momentum equations can be designed, such that they can be combined with an equation of state into a discrete energy equation. The resulting ‘MaMEC’ discretizations conserve mass, momentum as well as energy, although no explicit conservation law for the total energy is present. Essential ingredients are (i) discrete convection that leaves the discrete energy invariant, and (ii) discrete consistency between the thermodynamic terms. Of particular relevance is the way in which finite volume fluxes are related to nodal values. The method is an extension of existing methods based on skew-symmetry of discrete operators, because it allows arbitrary equations of state and a larger class of grids than earlier methods. The method is first illustrated with a one-dimensional example on a highly stretched staggered grid, in which the MaMEC method calculates qualitatively correct results and a non-skew-symmetric finite volume method becomes unstable. A further example is a two-dimensional shallow water calculation on a rectilinear grid as well as on an unstructured grid. The conservation of mass, momentum and energy is checked, and losses are found negligible up to machine accuracy.

  6. On the Linear Stability of the Fifth-Order WENO Discretization

    KAUST Repository

    Motamed, Mohammad

    2010-10-03

    We study the linear stability of the fifth-order Weighted Essentially Non-Oscillatory spatial discretization (WENO5) combined with explicit time stepping applied to the one-dimensional advection equation. We show that it is not necessary for the stability domain of the time integrator to include a part of the imaginary axis. In particular, we show that the combination of WENO5 with either the forward Euler method or a two-stage, second-order Runge-Kutta method is linearly stable provided very small time step-sizes are taken. We also consider fifth-order multistep time discretizations whose stability domains do not include the imaginary axis. These are found to be linearly stable with moderate time steps when combined with WENO5. In particular, the fifth-order extrapolated BDF scheme gave superior results in practice to high-order Runge-Kutta methods whose stability domain includes the imaginary axis. Numerical tests are presented which confirm the analysis. © Springer Science+Business Media, LLC 2010.

  7. Ordinance of 14 March 1983 concerning the Federal Commission for the Safety of Nuclear Installations

    International Nuclear Information System (INIS)

    1983-01-01

    The Frederal Council issued a new Ordinance concerning the Federal Commission for the Safety of Nuclear Installations. This Ordinance replaces an Ordinance of 13 June 1960 and takes into account the distribution of tasks decided several years ago between the Commission, which operates on a part-time basis, and the principal Division for the Safety of Nuclear Installations attached to the Federal Office of Energy. (NEA) [fr

  8. IAEA co-ordinated technical support programme to the NIS

    International Nuclear Information System (INIS)

    Olsen, R.; Murakami, K.; Blacker, C.; Sharma, S.K.

    1999-01-01

    With most Newly Independent States (NIS) of the former Soviet Union becoming parties to the Non-Proliferation Treaty as Non-Nuclear Weapon States, there has been an acute need in these states for considerable assistance for the establishment of the necessary structure and resources to ensure that their commitments to non-proliferation are fully implemented in a timely manner. A number of IAEA Member States have offered and are now providing assistance to the NIS on a bilateral level to set up an appropriate State System of Accounting and Control (SSAC) which includes Import/Export Control and Physical Protection of Nuclear Material in each state. The IAEA and these Member States established the Co-ordinated Technical Support Programme (CTSP) to ensure that the support given to the NIS was done in a co-ordinated and transparent manner and to avoid duplication of effort. The IAEA has played a coordinating role for the past 5 years by helping to identify detailed needs in individual States, by providing a platform for Member States to identify areas where they could provide the optimum support, and in developing and preparing the Co-ordinated Technical Support Plans. The IAEA organises annual meetings in Vienna attended by all donor and recipient countries to review the focus and implementation status of the co-ordinated technical support activities. A position statement is made by each donor and recipient country, and views and experiences are exchanged. The contents of the CTSPs and the role of the Agency in monitoring the progress of the individual tasks are reviewed in this paper. A summary comparing the implementation status of the Programme by each country is presented. (author)

  9. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    Science.gov (United States)

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  10. Co-ordinated research programme on applications of stable isotope tracers in human nutrition research

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a very brief report on the final Research Co-ordination Meeting of this Co-ordinated Research Project (CRP): the final report on the CRP will be published by the IAEA in the IAEA-TECDOC series. The present document contains a detailed proposal for a new Co-ordinated Research Programme on ''Stable Isotope Tracer Techniques for Studies on Protein-Energy Interactions'', and a brief series of notes on stable isotopic methods for investigating protein and amino-acid metabolism in man. Refs

  11. About local fractional three-dimensional compressible Navier-Stokes equations in Cantor-type cylindrical co-ordinate system

    Directory of Open Access Journals (Sweden)

    Gao Guo-Ping

    2016-01-01

    Full Text Available In this article, we investigate the local fractional 3-D compressible Navier-Stokes equation via local fractional derivative. We use the Cantor-type cylindrical co-ordinate method to transfer 3-D compressible Navier-Stokes equation from the Cantorian co-ordinate system to the Cantor-type cylindrical co-ordinate system.

  12. Discrete Model for the Structure and Strength of Cementitious Materials

    Science.gov (United States)

    Balopoulos, Victor D.; Archontas, Nikolaos; Pantazopoulou, Stavroula J.

    2017-12-01

    Cementitious materials are characterized by brittle behavior in direct tension and by transverse dilatation (due to microcracking) under compression. Microcracking causes increasingly larger transverse strains and a phenomenological Poisson's ratio that gradually increases to about ν =0.5 and beyond, at the limit point in compression. This behavior is due to the underlying structure of cementitious pastes which is simulated here with a discrete physical model. The computational model is generic, assembled from a statistically generated, continuous network of flaky dendrites consisting of cement hydrates that emanate from partially hydrated cement grains. In the actual amorphous material, the dendrites constitute the solid phase of the cement gel and interconnect to provide the strength and stiffness against load. The idealized dendrite solid is loaded in compression and tension to compute values for strength and Poisson's effects. Parametric studies are conducted, to calibrate the statistical parameters of the discrete model with the physical and mechanical characteristics of the material, so that the familiar experimental trends may be reproduced. The model provides a framework for the study of the mechanical behavior of the material under various states of stress and strain and can be used to model the effects of additives (e.g., fibers) that may be explicitly simulated in the discrete structure.

  13. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-01-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads

  14. Invariant differential operators on H-type groups and discrete components in restrictions of complementary series of rank one semisimple groups

    DEFF Research Database (Denmark)

    Möllers, Jan; Ørsted, Bent; Zhang, Genkai

    2016-01-01

    We explicitly construct a finite number of discrete components in the restriction of complementary series representations of rank one semisimple groups $G$ to rank one subgroups $G_1$. For this we use the realizations of complementary series representations of $G$ and $G_1$ on Sobolev spaces...

  15. Kernel Optimum Nearly-analytical Discretization (KOND) algorithm

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Hosaka, Yasuo; Ishii, Kenji

    1992-10-01

    Two applications of the Kernel Optimum Nearly-analytical Discretization (KOND) algorithm to the parabolic- and the hyperbolic type equations a presented in detail to lead to novel numerical schemes with very high numerical accuracy. It is demonstrated numerically that the two dimensional KOND-P scheme for the parabolic type yields quite less numerical error by over 2-3 orders and reduces the CPU time to about 1/5 for a common numerical accuracy, compared with the conventional explicit scheme of reference. It is also demonstrated numerically that the KOND-H scheme for the hyperbolic type yields fairly less diffusive error and has fairly high stability for both of the linear- and the nonlinear wave propagations compared with other conventional schemes. (author)

  16. Care co-ordination for older people in the third sector: scoping the evidence.

    Science.gov (United States)

    Abendstern, Michele; Hughes, Jane; Jasper, Rowan; Sutcliffe, Caroline; Challis, David

    2018-05-01

    The third sector has played a significant role internationally in the delivery of adult social care services for many years. Its contribution to care co-ordination activities for older people, however, in England and elsewhere, is relatively unknown. A scoping review was therefore conducted to ascertain the character of the literature, the nature and extent of third sector care co-ordination activity, and to identify evidence gaps. It was undertaken between autumn 2013 and summer 2014 and updated with additional searches in 2016. Electronic and manual searches of international literature using distinct terms for different approaches to care co-ordination were undertaken. From a total of 835 papers, 26 met inclusion criteria. Data were organised in relation to care co-ordination approaches, types of third sector organisation and care recipients. Papers were predominantly from the UK and published this century. Key findings included that: a minority of literature focused specifically on older people and that those doing so described only one care co-ordination approach; third sector services tended to be associated with independence and person-centred practice; and working with the statutory sector, a prerequisite of care co-ordination, was challenging and required a range of features to be in place to support effective partnerships. Strengths and weaknesses of care co-ordination practice in the third sector according to key stakeholder groups were also highlighted. Areas for future research included the need for: a specific focus on older people's experiences; an investigation of workforce issues; detailed examination of third sector practices, outcomes and costs; interactions with the statutory sector; and an examination of quality assurance systems and their appropriateness to third sector practice. The main implication of the findings is a need to nurture variety within the third sector in order to provide older people and other adults with the range of service

  17. Multivariate ordination statistics workshop with R slides

    OpenAIRE

    Strack, Michael

    2015-01-01

    2-hour workshop given at Macquarie University Department of Biological Sciences, 4 November 2015. Workshop was an introduction to the family of techniques falling under multivariate ordination, using the R language and drawing heavily from the book "Numerical Ecology with R" by Borcard et. al (2012).

  18. Damping efficiency of the Tchamwa-Wielgosz explicit dissipative scheme under instantaneous loading conditions

    Science.gov (United States)

    Mahéo, Laurent; Grolleau, Vincent; Rio, Gérard

    2009-11-01

    To deal with dynamic and wave propagation problems, dissipative methods are often used to reduce the effects of the spurious oscillations induced by the spatial and time discretization procedures. Among the many dissipative methods available, the Tchamwa-Wielgosz (TW) explicit scheme is particularly useful because it damps out the spurious oscillations occurring in the highest frequency domain. The theoretical study performed here shows that the TW scheme is decentered to the right, and that the damping can be attributed to a nodal displacement perturbation. The FEM study carried out using instantaneous 1-D and 3-D compression loads shows that it is useful to display the damping versus the number of time steps in order to obtain a constant damping efficiency whatever the size of element used for the regular meshing. A study on the responses obtained with irregular meshes shows that the TW scheme is only slightly sensitive to the spatial discretization procedure used. To cite this article: L. Mahéo et al., C. R. Mecanique 337 (2009).

  19. Discretely Conservative Finite-Difference Formulations for Nonlinear Conservation Laws in Split Form: Theory and Boundary Conditions

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles

    2011-01-01

    Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.

  20. Radiation Protection Ordinance. Preventive Radiation Protection Act. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1990-01-01

    This 3rd edition presents the official explanations of the legislative intent behind the Radiation Protection Ordinance of 1976 and the 2nd amending ordinance, and the commentaries which as usual refer to the legal aspects and the related medical, scientific, and technical aspects. As a consequence of the reactor accident at Chernobyl, the existing radiation protection law has been extended by the Act for Preventive Measures for Pretection of the Population Against the Hazards of Ionizing Radiation (Preventive Radiation Protection Act), establishing preventive legal provisions and measures, so that this new edition has likewise been extended by commentaries on the Protective Radiation Protection Act and an introduction to the new area of law. The material also includes the Act for Establishment of a Federal Office for Radiation Protection, of October 9, 1989, which amended the Atomic Energy Act and the Preventive Radiation Protection Act. The correction of the Radiation Protection Ordinance of October 16, 1989 (BGBl. I p. 1926) has been incorporated into the text of the amended version of the Radiation Protection Ordinance. Court decisions and literature referred to cover material published up to the first months of 1989. (orig.) [de

  1. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    International Nuclear Information System (INIS)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility

  2. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  3. The Impact of the 2002 Delaware Smoking Ordinance on Heart Attack and Asthma

    Directory of Open Access Journals (Sweden)

    Luis H. Solis

    2010-12-01

    Full Text Available In the United States, smoking is the leading cause of death - having a mortality rate of approximately 435,000 people in 2000—accounting for 8.1% of all US deaths recorded that year. Consequently, we analyzed the Delaware Hospital Discharge Database, and identified state and non-state residents discharged with AMI or asthma for the years 1999 to 2004. Statistical data analysis compared the incidence of AMI or asthma for each group before (1999–2002 and after (2003–2004 the amendment. As a result, we found that pre-ordinance and post-ordinance quarterly rates of AMI for Delaware residents were 451 (se = 21 and 430 (se = 21 respectively, representing a 4.7% reduction. Over the same time period, there was negligible change in the incidence of AMI for non-Delaware residents. After adjusting for population growth, the Risk Ratio (RR for asthma in Delaware residents post-ordinance was 0.95 (95% CI, 0.90 to 0.999, which represented a significant reduction (P = 0.046. By comparison, non-Delaware residents had an increased RR for asthma post-ordinance of 1.62 (95% CI, 1.46 to 1.86; P < 0.0001.The results suggest that Delaware’s comprehensive non-smoking ordinance effectively was associated with a statistically significant decrease in the incidence of AMI and asthma in Delaware residents when compared to non-Delaware residents.

  4. The impact of ordinate scaling on the visual analysis of single-case data.

    Science.gov (United States)

    Dart, Evan H; Radley, Keith C

    2017-08-01

    Visual analysis is the primary method for detecting the presence of treatment effects in graphically displayed single-case data and it is often referred to as the "gold standard." Although researchers have developed standards for the application of visual analysis (e.g., Horner et al., 2005), over- and underestimation of effect size magnitude is not uncommon among analysts. Several characteristics have been identified as potential contributors to these errors; however, researchers have largely focused on characteristics of the data itself (e.g., autocorrelation), paying less attention to characteristics of the graphic display which are largely in control of the analyst (e.g., ordinate scaling). The current study investigated the impact that differences in ordinate scaling, a graphic display characteristic, had on experts' accuracy in judgments regarding the magnitude of effect present in single-case percentage data. 32 participants were asked to evaluate eight ABAB data sets (2 each presenting null, small, moderate, and large effects) along with three iterations of each (32 graphs in total) in which only the ordinate scale was manipulated. Results suggest that raters are less accurate in their detection of treatment effects as the ordinate scale is constricted. Additionally, raters were more likely to overestimate the size of a treatment effect when the ordinate scale was constricted. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  5. Ordinance on the Carriage of Dangerous Goods by Rail (GGVE). 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Ridder, K.; Katholnig, F.

    1993-01-01

    The book presents the legislative texts and other legal provisions concerning the transport of dangerous goods by rail: (1) Act on the transport of dangerous goods, full text. (2) Ordinance on the carriage of dangerous goods by rail (GGVE) - GGVE skeleton ordinance; Annex to the skeleton ordinance. (3) Documents - GGVE implementing regulations RE 001; R 002; Ordinance on exeptions GGVE; Extracts from IAEA recommendations concerning safe transport of radioactive materials; catalogue of fines pertaining to section 10 GGVE. (4) Alphabetical list of materials for GGVE/RID and GGVS/ADR. Index terms printed in deep black at the margin of pages allow quick access to the text passages of interest, and there is a subject index for retrieval over the entire book. (orig./HP) [de

  6. Discretization analysis of bifurcation based nonlinear amplifiers

    Science.gov (United States)

    Feldkord, Sven; Reit, Marco; Mathis, Wolfgang

    2017-09-01

    Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.

  7. Analysis of Ordinal Categorical Data

    CERN Document Server

    Agresti, Alan

    2012-01-01

    Statistical science's first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available st

  8. On Darboux-integrable semi-discrete chains

    International Nuclear Information System (INIS)

    Habibullin, Ismagil; Sakieva, Alfia; Zheltukhina, Natalya

    2010-01-01

    A differential-difference equation d/dx t (n+1,x) = f(x,t(n,x),t(n+1,x),d/dx t (n,x)) with unknown t(n, x) depending on the continuous and discrete variables x and n is studied. We call an equation of such kind Darboux integrable if there exist two functions (called integrals) F and I of a finite number of dynamical variables such that D x F = 0 and DI = I, where D x is the operator of total differentiation with respect to x and D is the shift operator: Dp(n) = p(n + 1). It is proved that the integrals can be brought to some canonical form. A method of construction of an explicit formula for a general solution to Darboux-integrable chains is discussed and such solutions are found for a class of chains.

  9. Compliance to two city convenience store ordinance requirements

    Science.gov (United States)

    Menéndez, Cammie K Chaumont; Amandus, Harlan E; Wu, Nan; Hendricks, Scott A

    2015-01-01

    Background Robbery-related homicides and assaults are the leading cause of death in retail businesses. Robbery reduction approaches focus on compliance to Crime Prevention Through Environmental Design (CPTED) guidelines. Purpose We evaluated the level of compliance to CPTED guidelines specified by convenience store safety ordinances effective in 2010 in Dallas and Houston, Texas, USA. Methods Convenience stores were defined as businesses less than 10 000 square feet that sell grocery items. Store managers were interviewed for store ordinance requirements from August to November 2011, in a random sample of 594 (289 in Dallas, 305 in Houston) convenience stores that were open before and after the effective dates of their city’s ordinance. Data were collected in 2011 and analysed in 2012–2014. Results Overall, 9% of stores were in full compliance, although 79% reported being registered with the police departments as compliant. Compliance was consistently significantly higher in Dallas than in Houston for many requirements and by store type. Compliance was lower among single owner-operator stores compared with corporate/franchise stores. Compliance to individual requirements was lowest for signage and visibility. Conclusions Full compliance to the required safety measures is consistent with industry ‘best practices’ and evidence-based workplace violence prevention research findings. In Houston and Dallas compliance was higher for some CPTED requirements but not the less costly approaches that are also the more straightforward to adopt. PMID:26337569

  10. Mimetic discretization methods

    CERN Document Server

    Castillo, Jose E

    2013-01-01

    To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and

  11. A discrete single server queue with Markovian arrivals and phase type group services

    Directory of Open Access Journals (Sweden)

    Attahiru Sule Alfa

    1995-01-01

    Full Text Available We consider a single-server discrete queueing system in which arrivals occur according to a Markovian arrival process. Service is provided in groups of size no more than M customers. The service times are assumed to follow a discrete phase type distribution, whose representation may depend on the group size. Under a probabilistic service rule, which depends on the number of customers waiting in the queue, this system is studied as a Markov process. This type of queueing system is encountered in the operations of an automatic storage retrieval system. The steady-state probability vector is shown to be of (modified matrix-geometric type. Efficient algorithmic procedures for the computation of the rate matrix, steady-state probability vector, and some important system performance measures are developed. The steady-state waiting time distribution is derived explicitly. Some numerical examples are presented.

  12. Co-ordinated research programme applications of stable isotope tracers in human nutrition research

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of this Co-ordinated Research Programme is to help establish competence in the use of stable isotope techniques, particularly in developing countries. This report summarizes the discussions that took, place during the Second Research Co-ordination Meeting, held in Bangalore in November 1990. Working papers presented by the participants are included as annexes. Refs, figs and tabs

  13. Ordinal Comparison of Multidimensional Deprivation

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter

    This paper develops an ordinal method of comparison of multidimensional inequality. In our model, population distribution g is more unequal than f when the distributions have common median and can be obtained from f  by one or more shifts in population density that increase inequality. For our be...... benchmark 2x2 case (i.e. the case of two binary outcome variables), we derive an empirical method for making inequality comparisons. As an illustration, we apply the model to childhood poverty in Mozambique....

  14. X-ray ordinance (RoeV) with regulations for implementation

    International Nuclear Information System (INIS)

    Bischof, W.

    1977-01-01

    The commentary contains, along with an introduction, a detailed survey of the implementation regulations issued by the Bundeslaender, and in those instances where individual regulations are commented upon, information is also given on which authority or institution is responsible for the administrative tasks in the various Laender according to the X-ray Ordinance. Special attention is paid to the application of X-rays in medicine (sections 20 through 29 RoeV), taking into consideration the recommendations of the ICRP. In the annex to the commentary, all guidelines for implementing the X-ray Ordinance, issued by the Federal Ministry for Youth, Family, and Health and the Federal Ministry for Labour and Social Affairs up to this date, are presented with their full wording. (orig./HP) [de

  15. Explicit time marching methods for the time-dependent Euler computations

    International Nuclear Information System (INIS)

    Tai, C.H.; Chiang, D.C.; Su, Y.P.

    1997-01-01

    Four explicit type time marching methods, including one proposed by the authors, are examined. The TVD conditions of this method are analyzed with the linear conservation law as the model equation. Performance of these methods when applied to the Euler equations are numerically tested. Seven examples are tested, the main concern is the performance of the methods when discontinuities with different strengths are encountered. When the discontinuity is getting stronger, spurious oscillation shows up for three existing methods, while the method proposed by the authors always gives the results with satisfaction. The effect of the limiter is also investigated. To put these methods in the same basis for the comparison the same spatial discretization is used. Roe's solver is used to evaluate the fluxes at the cell interface; spatially second-order accuracy is achieved by the MUSCL reconstruction. 19 refs., 8 figs

  16. Case management for high-intensity service users: towards a relational approach to care co-ordination.

    Science.gov (United States)

    McEvoy, Phil; Escott, Diane; Bee, Penny

    2011-01-01

    This study is based on a formative evaluation of a case management service for high-intensity service users in Northern England. The evaluation had three main purposes: (i) to assess the quality of the organisational infrastructure; (ii) to obtain a better understanding of the key influences that played a role in shaping the development of the service; and (iii) to identify potential changes in practice that may help to improve the quality of service provision. The evaluation was informed by Gittell's relational co-ordination theory, which focuses upon cross-boundary working practices that facilitate task integration. The Assessment of Chronic Illness Care Survey was used to assess the organisational infrastructure and qualitative interviews with front line staff were conducted to explore the key influences that shaped the development of the service. A high level of strategic commitment and political support for integrated working was identified. However, the quality of care co-ordination was variable. The most prominent operational factor that appeared to influence the scope and quality of care co-ordination was the pattern of interaction between the case managers and their co-workers. The co-ordination of patient care was much more effective in integrated co-ordination networks. Key features included clearly defined, task focussed, relational workspaces with interactive forums where case managers could engage with co-workers in discussions about the management of interdependent care activities. In dispersed co-ordination networks with fewer relational workspaces, the case managers struggled to work as effectively. The evaluation concluded that the creation of flexible and efficient task focused relational workspaces that are systemically managed and adequately resourced could help to improve the quality of care co-ordination, particularly in dispersed networks. © 2010 Blackwell Publishing Ltd.

  17. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  18. Digital Discretion

    DEFF Research Database (Denmark)

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  19. ordination et classification de la vegetation des zones humides

    African Journals Online (AJOL)

    USER

    classes des Phragmitetea Tüxen & Pressing 1942 et des Potametea Tuxen et ... ORDINATION AND CLASSIFICATION OF WETLAND VEGETATION IN ... Principal Component Analysis, Cluster .... ensemble ; ce qui a permis d'avoir une vue.

  20. On three-dimensional incompressible Navier-Stokes fluid on cantor sets in spherical Cantor type co-ordinate system

    Directory of Open Access Journals (Sweden)

    Meng Zhi-Jun

    2016-01-01

    Full Text Available This paper addresses the systems of the incompressible Navier-Stokes equations on Cantor sets without the external force involving the fractal heat-conduction problem vial local fractional derivative. The spherical Cantor type co-ordinate method is used to transfer the incompressible Navier-Stokes equation from the Cantorian co-ordinate system into the spherical Cantor type co-ordinate system.

  1. Compliance to two city convenience store ordinance requirements.

    Science.gov (United States)

    Chaumont Menéndez, Cammie K; Amandus, Harlan E; Wu, Nan; Hendricks, Scott A

    2016-04-01

    Robbery-related homicides and assaults are the leading cause of death in retail businesses. Robbery reduction approaches focus on compliance to Crime Prevention Through Environmental Design (CPTED) guidelines. We evaluated the level of compliance to CPTED guidelines specified by convenience store safety ordinances effective in 2010 in Dallas and Houston, Texas, USA. Convenience stores were defined as businesses less than 10 000 square feet that sell grocery items. Store managers were interviewed for store ordinance requirements from August to November 2011, in a random sample of 594 (289 in Dallas, 305 in Houston) convenience stores that were open before and after the effective dates of their city's ordinance. Data were collected in 2011 and analysed in 2012-2014. Overall, 9% of stores were in full compliance, although 79% reported being registered with the police departments as compliant. Compliance was consistently significantly higher in Dallas than in Houston for many requirements and by store type. Compliance was lower among single owner-operator stores compared with corporate/franchise stores. Compliance to individual requirements was lowest for signage and visibility. Full compliance to the required safety measures is consistent with industry 'best practices' and evidence-based workplace violence prevention research findings. In Houston and Dallas compliance was higher for some CPTED requirements but not the less costly approaches that are also the more straightforward to adopt. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Information on Nea programmes on nuclear energy and civil society and their co-ordination

    International Nuclear Information System (INIS)

    Mays, C.; Riotte, H.

    2004-01-01

    At its session in May 2002, the Steering Committee for Nuclear Energy welcomed the activities that the NEA standing technical committees were carrying out in the field of nuclear energy and civil society, and agreed on the value of existing co-ordination among them. Tile Committee asked the Secretariat to prepare an information document on such co-ordination activities. With this in mind, the present room document offers an up-to-date account of relevant NEA activities and their co-ordination, pending a broader review of NEA's involvement in the area of nuclear energy and civil society, in the context of the NEA Strategic Plan at an appropriate time. (author)

  3. ITER co-ordinated technical activities

    International Nuclear Information System (INIS)

    2001-01-01

    As agreed upon between the ITER Engineering Design Activities (EDA) Parties 'Co-ordinated Technical Activities' (CTA) means technical activities which are deemed necessary to maintain the integrity of the international project, so as to prepare for the ITER joint implementation. The scope of these activities includes design adaptation to the specific site conditions, safety analysis and licensing preparation that are based on specific site offers, evaluation of cost and construction schedule, preparation of procurement documents and other issues raised by the Parties collectively, whilst assuring the coherence of the ITER project including design control

  4. Tax revenue in Mississippi communities following implementation of smoke-free ordinances: an examination of tourism and economic development tax revenues.

    Science.gov (United States)

    McMillen, Robert; Shackelford, Signe

    2012-10-01

    There is no safe level of exposure to tobacco smoke. More than 60 Mississippi communities have passed smoke-free ordinances in the past six years. Opponents claim that these ordinances harm local businesses. Mississippi law allows municipalities to place a tourism and economic development (TED) tax on local restaurants and hotels/motels. The objective of this study is to examine the impact of these ordinances on TED tax revenues. This study applies a pre/post quasi-experimental design to compare TED tax revenue before and after implementing ordinances. Descriptive analyses indicated that inflation-adjusted tax revenues increased during the 12 months following implementation of smoke-free ordinances while there was no change in aggregated control communities. Multivariate fixed-effects analyses found no statistically significant effect of smoke-free ordinances on hospitality tax revenue. No evidence was found that smoke-free ordinances have an adverse effect on the local hospitality industry.

  5. Ordinance of 18 January 1984 on definitions and licences in the atomic energy field

    International Nuclear Information System (INIS)

    1984-01-01

    This Ordinance (RS 732.11) repeals the 1978 Ordinance on definitions and licences in the atomic energy field with the exception of Annexes 2 and 3 and concerns in particular, the licensing procedure for atomic installations. It also regulates the export, import and transit of nuclear materials and equipment. (NEA) [fr

  6. The impact of the 2002 Delaware smoking ordinance on heart attack and asthma.

    Science.gov (United States)

    Moraros, John; Bird, Yelena; Chen, Shande; Buckingham, Robert; Meltzer, Richard S; Prapasiri, Surasri; Solis, Luis H

    2010-12-01

    In the United States, smoking is the leading cause of death - having a mortality rate of approximately 435,000 people in 2000-accounting for 8.1% of all US deaths recorded that year. Consequently, we analyzed the Delaware Hospital Discharge Database, and identified state and non-state residents discharged with AMI or asthma for the years 1999 to 2004. Statistical data analysis compared the incidence of AMI or asthma for each group before (1999-2002) and after (2003-2004) the amendment. As a result, we found that pre-ordinance and post-ordinance quarterly rates of AMI for Delaware residents were 451 (se = 21) and 430 (se = 21) respectively, representing a 4.7% reduction. Over the same time period, there was negligible change in the incidence of AMI for non-Delaware residents. After adjusting for population growth, the Risk Ratio (RR) for asthma in Delaware residents post-ordinance was 0.95 (95% CI, 0.90 to 0.999), which represented a significant reduction (P = 0.046). By comparison, non-Delaware residents had an increased RR for asthma post-ordinance of 1.62 (95% CI, 1.46 to 1.86; P asthma in Delaware residents when compared to non-Delaware residents.

  7. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.

    2017-05-23

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

  8. Ordinance of 28 November 1983 on protection in case of emergencies in the neighbourhood of nuclear installations

    International Nuclear Information System (INIS)

    1983-01-01

    This Ordinance (RS 732.23) lays down the measures to be taken to assure the security of the population neighbouring nuclear installations. It defines the tasks of the nuclear operator, the Federal services as well as those of the Cantons and Communes. The Ordinance fixes the exact allocation of the costs of the emergency organisation and alarm system. The Ordinance entered into effect on 1 January 1984. (NEA) [fr

  9. A more efficient implementation of the discrete-ordinates method for an approximate model of particle transport in a duct

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    2015-01-01

    Highlights: • Method of doubling solution for the pipe problem. • Uses convergence acceleration. • Fully discretized solution. • Improvement over ADO. - Abstract: We consider transport of light, neutrons, or any uncharged particles in a straight duct of circular cross section. This problem first came to fashion some 30 years ago when Pomraning and Prinja formulated their so called “pipe problem”. In the years to follow, investigators applied essentially every known method of numerical solution, including MMRW’s Wiener–Hopf – except possibly one. This presentation concerns that particular numerical solution, which arguably seems to be the most efficient of all.

  10. Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.

    Science.gov (United States)

    Rios, Anthony; Kavuluru, Ramakanth

    2017-11-01

    The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) provided a set of 1000 neuropsychiatric notes to participants as part of a competition to predict psychiatric symptom severity scores. This paper summarizes our methods, results, and experiences based on our participation in the second track of the shared task. Classical methods of text classification usually fall into one of three problem types: binary, multi-class, and multi-label classification. In this effort, we study ordinal regression problems with text data where misclassifications are penalized differently based on how far apart the ground truth and model predictions are on the ordinal scale. Specifically, we present our entries (methods and results) in the N-GRID shared task in predicting research domain criteria (RDoC) positive valence ordinal symptom severity scores (absent, mild, moderate, and severe) from psychiatric notes. We propose a novel convolutional neural network (CNN) model designed to handle ordinal regression tasks on psychiatric notes. Broadly speaking, our model combines an ordinal loss function, a CNN, and conventional feature engineering (wide features) into a single model which is learned end-to-end. Given interpretability is an important concern with nonlinear models, we apply a recent approach called locally interpretable model-agnostic explanation (LIME) to identify important words that lead to instance specific predictions. Our best model entered into the shared task placed third among 24 teams and scored a macro mean absolute error (MMAE) based normalized score (100·(1-MMAE)) of 83.86. Since the competition, we improved our score (using basic ensembling) to 85.55, comparable with the winning shared task entry. Applying LIME to model predictions, we demonstrate the feasibility of instance specific prediction interpretation by identifying words that led to a particular decision. In this paper, we present a method that successfully uses wide features and

  11. 77 FR 10547 - Kickapoo Traditional Tribe of Texas-First Amended Beer and Liquor Tax Ordinance

    Science.gov (United States)

    2012-02-22

    ... Amended Beer and Liquor Tax Ordinance AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice. SUMMARY: This notice publishes the amendment to the Kickapoo Traditional Tribe of Texas' Beer and Liquor Tax... adopted this amendment to the Kickapoo Traditional Tribe of Texas' Beer and Liquor Tax Ordinance by...

  12. Minimum requirements on implementation of the greenhouse gases ordinance. EU ordinance on fluorinated greenhouse gases; Mindestanforderungen zur Implementierung der F-Gase-Verordnung. Die EG-Verordnung zu fluorierten Treibhausgasen

    Energy Technology Data Exchange (ETDEWEB)

    Preisegger, E. [Solvay Fluor GmbH, Hannover (Germany). Environmental and Public Affairs Fluorochemicals

    2008-04-15

    On 4 July 2006, the EU ordinance 842/2006 on fluorinated greenhouse gases came into force. Since 4 July 2007, it has been in effect with the exception of article 9 and appendix II both of which had been effective since 4 July 2006. However, some articles of the ordinance necessitate the definition of minimum requirements resp. of form and contents by the EU commission. The minimum requirements for training and certification will provide a basis for national implementation of these measures in the EU member states. (orig.)

  13. An Integrated Model of Co-ordinated Community-Based Care.

    Science.gov (United States)

    Scharlach, Andrew E; Graham, Carrie L; Berridge, Clara

    2015-08-01

    Co-ordinated approaches to community-based care are a central component of current and proposed efforts to help vulnerable older adults obtain needed services and supports and reduce unnecessary use of health care resources. This study examines ElderHelp Concierge Club, an integrated community-based care model that includes comprehensive personal and environmental assessment, multilevel care co-ordination, a mix of professional and volunteer service providers, and a capitated, income-adjusted fee model. Evaluation includes a retrospective study (n = 96) of service use and perceived program impact, and a prospective study (n = 21) of changes in participant physical and social well-being and health services utilization. Over the period of this study, participants showed greater mobility, greater ability to meet household needs, greater access to health care, reduced social isolation, reduced home hazards, fewer falls, and greater perceived ability to obtain assistance needed to age in place. This study provides preliminary evidence that an integrated multilevel care co-ordination approach may be an effective and efficient model for serving vulnerable community-based elders, especially low and moderate-income elders who otherwise could not afford the cost of care. The findings suggest the need for multisite controlled studies to more rigorously evaluate program impacts and the optimal mix of various program components. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The First Women’s ordination in the Episcopal Church of the 1970s

    Directory of Open Access Journals (Sweden)

    Posternak Andrei, priest

    2015-02-01

    Full Text Available Episcopal Church of the USA in 1976 adopted a positive resolution (1976-B300 regarding women’s ordination to the priesthood and episcopacy. The Church thus legalizes the experience of the Anglican community of the East coast: Philadelphia and Washington where in July 1974 and September 1975, took place women’s ordination. The article is devoted to the history of these ordinations, public reactions to them and theological discussions concerning the permissibility of female ordination in the Episcopal community of the first half of the 1970s. The research is based on the offi cial reports of the Episcopal Church. Believe in the Divine will on the vocation of women to the priesthood was associated with transformation of the Western society: women’s struggle for their rights and public struggle against race discrimination. The Anglican bishops were concerned about the problem of adaptation of the new ministry to modern conditions: the 1970s became a period of transition from traditional to post-Christian society in which gender was considered as a new social function. It will transform the Anglican community where the priesthood will become a form of ministry to the parish and in these conditions women can be ordained .

  15. Ordinal-Measure Based Shape Correspondence

    Directory of Open Access Journals (Sweden)

    Faouzi Alaya Cheikh

    2002-04-01

    Full Text Available We present a novel approach to shape similarity estimation based on distance transformation and ordinal correlation. The proposed method operates in three steps: object alignment, contour to multilevel image transformation, and similarity evaluation. This approach is suitable for use in shape classification, content-based image retrieval and performance evaluation of segmentation algorithms. The two latter applications are addressed in this papers. Simulation results show that in both applications our proposed measure performs quite well in quantifying shape similarity. The scores obtained using this technique reflect well the correspondence between object contours as humans perceive it.

  16. Explicitly represented polygon wall boundary model for the explicit MPS method

    Science.gov (United States)

    Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

    2015-05-01

    This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

  17. Information Design for Synchronization and Co-ordination of Modern, Complex, Multi-National Operations

    Science.gov (United States)

    2011-06-01

    1 16th ICCRTS Information design for synchronization and co-ordination of modern, complex, multi- national operations “Collective C2 in...REPORT DATE JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Information design for synchronization and co...at 11th ICCRTS) who emphasise that information needs to be designed, not merely found or catalogued, to achieve synchronizations and co-ordinations

  18. First IAEA research co-ordination meeting on 'Tritium inventory in fusion reactors'. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2003-02-01

    The proceedings and conclusions of the first Research Co-ordination Meeting on 'Tritium Inventory in Fusion Reactors', held on November 4-6, 2002 at the IAEA Headquarters in Vienna are briefly described. This report includes a summary of the presentations made by the meeting participants and the specific goals set by the participants of the Co-ordinated Research Project (CRP). (author)

  19. Non-proportional odds multivariate logistic regression of ordinal family data.

    Science.gov (United States)

    Zaloumis, Sophie G; Scurrah, Katrina J; Harrap, Stephen B; Ellis, Justine A; Gurrin, Lyle C

    2015-03-01

    Methods to examine whether genetic and/or environmental sources can account for the residual variation in ordinal family data usually assume proportional odds. However, standard software to fit the non-proportional odds model to ordinal family data is limited because the correlation structure of family data is more complex than for other types of clustered data. To perform these analyses we propose the non-proportional odds multivariate logistic regression model and take a simulation-based approach to model fitting using Markov chain Monte Carlo methods, such as partially collapsed Gibbs sampling and the Metropolis algorithm. We applied the proposed methodology to male pattern baldness data from the Victorian Family Heart Study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pappas' scheme of correlating R6 and R4 co-ordinate transformations

    International Nuclear Information System (INIS)

    Teli, M.T.

    1984-01-01

    Pappas has suggested that R 4 co-ordinates can be connected with those in the R 6 by taking t'sub(x)=t'sub(y)=t'sub(z)=t'. Such connection is here obtained by introducing the scaling of space-time co-ordinates xsub(i), tsub(i) in all the frames by the corresponding factor c/c'sub(i) and have shown that taking of t'sub(x)=t'sub(y)=t'sub(z)=t' for this purpose is not necessary. The scaling factors get ignored after the connection

  1. Comparison of species ordinations resulting from alternative indices of interspecific association and different numbers of included species

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F G

    1975-12-19

    Several measures of interspecific association are compared. Dispersion and covariance are limited in value because they respond to the commonness of the species compared. Correlation is not so limited but it responds to discrepancies in commonness among the species. The practical result of these relationships between commonness and association is that only the most common species can occupy peripheral positions in a species ordination. Rare species are relegated to positions near the center not on the basis of their phytosociological pattern but simply because of their rarity. Both Cole's index of association and the tetrachoric correlation overcome the problem imposed by the relationship between ordination position and species commonness and they both produce very similar results. The effect of differing numbers of species on the ordination configuration is examined using both Pearson's correlation and Cole's index. The basic pattern of the ordination is set with the first few species when Cole's index is used, however, since rare species are given more weight in the analysis with this index, the addition of several very rare species can change the configuration of the ordination. (auth)

  2. Collection of laws and ordinances concerning regulation of atomic energy, 1989 edition. 1989 ed.

    International Nuclear Information System (INIS)

    1989-01-01

    The collection of the laws and ordinances concerning the regulation of atomic energy, 1989 edition, was published by the Nuclear Safety Bureau, Science and Technology Agency. First, the abbreviated expressions of 56 laws and ordinances are shown. The contents are divided into Part 1: Fundamental laws and ordinances, Part 2: Regulation of nuclear source materials, nuclear fuel materials and nuclear reactors, Part 3: Prevention of radiation injuries due to radioactive isotopes and others, and Part 4: Related laws and ordinances. In Part 1, Atomic Energy Fundamental Act, Act of Institution of Atomic Energy Commission and Nuclear Safety Commission of Japan, Law Concerning the Technical Standard for Prevention of Radiation Injuries and 9 others are included. In Part 2, Law Concerning Regulation of Nuclear Source Materials, Nuclear Fuel Materials and Nuclear Reactors and 45 others are included. In Part 3, Law Concerning Prevention of Radiation Injuries Due to Radioisotopes and Others and 25 others are included. In Part 4, Electricity Enterprises Act, Road Transport and Vehicles Act, Ships' Safety Law, Labor Safety and Hygiene Law, Japan Atomic Energy Research Institute Law and 29 others are included. The contents are those as of November 30, 1988. (Kako, I.)

  3. A Framework for the Optimization of Discrete-Event Simulation Models

    Science.gov (United States)

    Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.

    1996-01-01

    With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.

  4. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2017-01-01

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy

  5. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2008-07-01

    Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA

  6. An Efficient Explicit Finite-Difference Scheme for Simulating Coupled Biomass Growth on Nutritive Substrates

    Directory of Open Access Journals (Sweden)

    G. F. Sun

    2015-01-01

    Full Text Available A novel explicit finite-difference (FD method is presented to simulate the positive and bounded development process of a microbial colony subjected to a substrate of nutrients, which is governed by a nonlinear parabolic partial differential equations (PDE system. Our explicit FD scheme is uniquely designed in such a way that it transfers the nonlinear terms in the original PDE into discrete sets of linear ones in the algebraic equation system that can be solved very efficiently, while ensuring the stability and the boundedness of the solution. This is achieved through (1 a proper design of intertwined FD approximations for the diffusion function term in both time and spatial variations and (2 the control of the time-step through establishing theoretical stability criteria. A detailed theoretical stability analysis is conducted to reveal that our FD method is indeed stable. Our examples verified the fact that the numerical solution can be ensured nonnegative and bounded to simulate the actual physics. Numerical examples have also been presented to demonstrate the efficiency of the proposed scheme. The present scheme is applicable for solving similar systems of PDEs in the investigation of the dynamics of biological films.

  7. DISCRETE MATHEMATICS/NUMBER THEORY

    OpenAIRE

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  8. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

    International Nuclear Information System (INIS)

    Maruno, Ken-ichi; Biondini, Gino

    2004-01-01

    We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)

  9. Shielding analyses: the rabbit vs the turtle?

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1996-01-01

    This paper compares solutions using Monte Carlo and discrete- ordinates methods applied to two actual shielding situations in order to make some general observations concerning the efficiency and advantages/disadvantages of the two approaches. The discrete- ordinates solutions are performed using two-dimensional geometries, while the Monte Carlo approaches utilize three-dimensional geometries with both multigroup and point cross-section data

  10. Economic and ordinal benefits of Hydrogen Energy Technology

    International Nuclear Information System (INIS)

    Giannantoni, C.; Zoli, M.

    2009-01-01

    A method for assessing economic, environmental and energy investments is particularly suited for hydrogen technologies, because it makes it possible to calculate business returns, negative externalities and, above all, the economic benefits to the citizens: the monetizable positive externalities and the ordinal benefits, i.e. those which cannot be reduced to a simple monetary value. [it

  11. Rate My Stake: Interpretation of Ordinal Stake Ratings

    Science.gov (United States)

    Patricia Lebow; Grant Kirker

    2014-01-01

    Ordinal rating systems are commonly employed to evaluate biodeterioration of wood exposed outdoors over long periods of time. The purpose of these ratings is to compare the durability of test systems to nondurable wood products or known durable wood products. There are many reasons why these systems have evolved as the chosen method of evaluation, including having an...

  12. Co-ordinated research project on comparative international studies of osteoporosis using isotope techniques. Report on the final research co-ordination meeting

    International Nuclear Information System (INIS)

    2002-01-01

    In 1994, the International Atomic Energy Agency started the five-year Co-ordinated Research Project (CRP) on Comparative International Studies of Osteoporosis Using Isotope Techniques. The objectives of this study were: To harmonize the techniques of measuring BMD within the participating countries and to obtain data that can be compared between the different study groups (countries); To determine whether early adult PBM varies between populations over the age range from 15 to 50 years. In other words, to determine the age of peak bone mass in selected populations from developing countries; To explore environmental and nutritional contributions to any determined differences. Further information about the purpose and scope of the CRP may be found in the report of the Advisory Group Meeting (AGM) held in 19921 and other reports of this CRP. The fourth Research Co-ordination Meeting (RCM) for participants of the CRP, which is the subject of the present report, was held at the University of Sheffield Medical School; WHO Collaborating Center for Metabolic Bone Diseases in Sheffield, UK from 28 Feb. to 3 March 2000

  13. Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar.

    Science.gov (United States)

    Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald

    2006-11-01

    We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.

  14. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  15. Is the Eco Audit Ordinance an effective instrument for the protection of the environment?

    International Nuclear Information System (INIS)

    Hickmann, M.; Wasser, U.; Wolf, F.

    1994-01-01

    Mr. Adams' discussion of the Eco-Audit Ordinance needs to be supplemented to by pointed out that, different from producers, the gas and water utilities are excluded from a participation in this communal system as laid down by the current version of the Eco-Audit Ordinance. But utilities are welcomed to observe the introduction and practical implementation of the Eco-Audit System in active and constructive way. (orig.) [de

  16. Co-ordinated research activities: Annual report and statistics for 2003

    International Nuclear Information System (INIS)

    2004-07-01

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These co-ordinated research activities are normally implemented through Co-ordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports several Doctoral CRPs. This new, optional type of CRP has been designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs are currently being carried out by the Human Health programme. Further information on the Agency's co-ordinated research activities, including current information on CRPs and programme areas supported, information on policies and procedures and the administration of the activities is contained in the Agency's website at http://www-crp.iaea.org. The co-ordinated research activities reported in this document are conducted in support of the following Agency programmes: Nuclear Power; Nuclear Fuel Cycle and Material Technologies; Analysis for Sustainable

  17. Co-ordinated research activities: Annual report and statistics for 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-15

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These co-ordinated research activities are normally implemented through Co-ordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports several Doctoral CRPs. This new, optional type of CRP has been designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs are currently being carried out by the Human Health programme. Further information on the Agency's co-ordinated research activities, including current information on CRPs and programme areas supported, information on policies and procedures and the administration of the activities is contained in the Agency's website at http://www-crp.iaea.org. The co-ordinated research activities reported in this document are conducted in support of the following Agency programmes: Nuclear Power; Nuclear Fuel Cycle and Material Technologies; Analysis for Sustainable

  18. Modeling and evaluating repeatability and reproducibility of ordinal classifications

    NARCIS (Netherlands)

    de Mast, J.; van Wieringen, W.N.

    2010-01-01

    This paper argues that currently available methods for the assessment of the repeatability and reproducibility of ordinal classifications are not satisfactory. The paper aims to study whether we can modify a class of models from Item Response Theory, well established for the study of the reliability

  19. Space-angle approximations in the variational nodal method

    International Nuclear Information System (INIS)

    Lewis, E. E.; Palmiotti, G.; Taiwo, T.

    1999-01-01

    The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared

  20. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    Science.gov (United States)

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.