WorldWideScience

Sample records for explain differential protein

  1. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    Science.gov (United States)

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Differential Precipitation and Solubilization of Proteins.

    Science.gov (United States)

    Ryan, Barry J; Kinsella, Gemma K

    2017-01-01

    Differential protein precipitation is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of the polypeptide. Precipitation of recombinant proteins, lysed from the host cell, is commonly used to concentrate the protein of choice before further polishing steps with more selective purification columns (e.g., His-Tag, Size Exclusion, etc.). Recombinant proteins can also precipitate naturally as inclusion bodies due to various influences during overexpression in the host cell. Although this phenomenon permits easier initial separation from native proteins, these inclusion bodies must carefully be differentially solubilized so as to reform functional, correctly folded proteins. Here, appropriate bioinformatics tools to aid in understanding a protein's propensity to aggregate and solubilize are explored as a backdrop for a typical protein extraction, precipitation, and selective resolubilization procedure, based on a recombinantly expressed protein.

  3. Differential scanning microcalorimetry of intrinsically disordered proteins.

    Science.gov (United States)

    Permyakov, Sergei E

    2012-01-01

    Ultrasensitive differential scanning calorimetry (DSC) is an indispensable thermophysical technique enabling to get direct information on enthalpies accompanying heating/cooling of dilute biopolymer solutions. The thermal dependence of protein heat capacity extracted from DSC data is a valuable source of information on intrinsic disorder level of a protein. Application details and limitations of DSC technique in exploration of protein intrinsic disorder are described.

  4. Tunneling explains efficient electron transport via protein junctions.

    Science.gov (United States)

    Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David

    2018-05-15

    Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.

  5. Yeast prion architecture explains how proteins can be genes

    Science.gov (United States)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  6. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  7. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    Full Text Available 【Abstract】Objectives: Surgical repair of Achilles tendon (AT rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Methods: Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n=16 received postoperative cast immobilization; Group B (early motion group, n=16 received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C. The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing twodimensional polyacrylamide gel electrophoresis (2D-PAGE. PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI protein database retrieval and then for bioinformatics analysis. Results: A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1

  8. Analyzing Protein Denaturation using Fast Differential Scanning Calorimetry

    NARCIS (Netherlands)

    Splinter, R.; Van Herwaarden, A.W.; Iervolino, E.; Vanden Poel, G.; Istrate, D.; Sarro, P.M.

    2012-01-01

    This paper investigates the possibility to measure protein denaturation with Fast Differential Scanning Calorimetry (FDSC). Cancer can be diagnosed by measuring protein denaturation in blood plasma using Differential Scanning Calorimetry (DSC). FDSC can reduce diagnosis time from hours to minutes,

  9. Explaining the differential distribution of Clean Development Mechanism projects across host countries

    International Nuclear Information System (INIS)

    Winkelman, Andrew G.; Moore, Michael R.

    2011-01-01

    The Clean Development Mechanism (CDM) of the Kyoto Protocol represents an opportunity to involve all developing countries in the effort to reduce greenhouse gas emissions while also promoting sustainable development. To date, however, the majority of CDM projects have gone to emerging markets such as China, India, Brazil, and Mexico, while very few least developed countries have hosted projects. This paper investigates the differential distribution of CDM activities across countries. We develop a conceptual model for project profitability, which helps to identify potential country-level determinants of CDM activity. These potential determinants are employed as explanatory variables in regression analysis to explain the actual distribution of projects. Human capital and greenhouse gas emission levels influenced which countries have hosted projects and the amount of certified emission reductions (CER) created. Countries that offered growing markets for CDM co-products, such as electricity, were more likely to be CDM hosts, while economies with higher carbon intensity levels had greater CER production. These findings work against the least developed countries and help to explain their lack of CDM activity. - Research Highlights: → Regression models are used to explain the inter-country distribution of CDM projects. → Emissions and human capital are significant for hosting projects and CER creation. → An economy's emissions intensity is significant in determining CERs created. → Capacity building and electricity sector growth are significant in hosting projects. → The experience level for host countries in the CDM is significant for CER creation.

  10. Protein nativity explains emulsifying properties of aqueous extracted protein components from yellow pea

    NARCIS (Netherlands)

    Geerts, Marlies E.J.; Nikiforidis, Constantinos V.; Goot, van der Atze Jan; Padt, van der Albert

    2017-01-01

    In this paper, the emulsifying properties of a protein-enriched fraction from pea are unravelled. The emulsifying properties of mildly fractionated protein fractions from yellow pea and compared to those of commercial pea protein isolate. The emulsion stability of an oil-in-water emulsions were

  11. A Bystander Mechanism Explains the Specific Phenotype of a Broadly Expressed Misfolded Protein.

    Directory of Open Access Journals (Sweden)

    Lauren Klabonski

    2016-12-01

    Full Text Available Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-β. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype-deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-β is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-β explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations.

  12. Evolution is a cooperative process: the biodiversity-related niches differentiation theory (BNDT) can explain why.

    Science.gov (United States)

    Gatti, Roberto Cazzolla

    2011-01-01

    A. McFayden and G.E. Hutchinson defined a niche as a multidimensional space or hypervolume within the environment that allows an individual or a species to survive, we consider niches as a fundamental ecological variable that regulate species' composition and relation in ecosystems. Successively the niche concept has been associated to the genetic term "phenotype" by MacArthurstressing the importance on what a species or a genome can show outside, either in the environmental functions or in body characteristics. Several indexes have been developed to evaluate the grade of overlapping and similarities of species' niches, even utilizing the theory of information. However, which are the factors that determine the number of species that can coexist in a determinate environment and why a generalist species do not compete until the exclusion of the remaining species to maximize its fitness, is still quite unknown. Moreover, there are few studies and theories that clearly explain why the number of niches is so variable through ecosystems and how can several species live in the same basal niche, intended in a comprehensive sense as the range of basic conditions (temperature, humidity, food-guild, etc.). Here I show that the number of niches in an ecosystem depends on the number of species present in a particular moment and that the species themselves allow the enhancement of niches in terms of space and number. I found that using a three-dimensional model as hypervolume and testing the theory on a Mediterranean, temperate and tropical forest ecosystem it is possible to demonstrate that each species plays a fundamental role in facilitating the colonization by other species by simply modifying the environment and exponentially increasing the available niches' space and number. I resumed these hypothesis, after some preliminary empiric tests, in the Biodiversity-related Niches Differentiation Theory (BNDT), stressing with these definition that the process of niches

  13. Identification of differentially expressed proteins in response to Pb ...

    African Journals Online (AJOL)

    In response to Pb, a total of 76 proteins, out of the 95 differentially expressed proteins, were subjected to MALDI-TOF-MS Of these, 46 identities were identified by PMF and 19 identities were identified by microsequencing. Basic metabolisms such as photosynthesis, photorespiration and protein biosynthesis in C. roseus ...

  14. Body Composition Explains Sex Differential in Physical Performance Among Older Adults

    NARCIS (Netherlands)

    Tseng, L.A.; Delmonico, M.J.; Visser, M.; Boudreau, R.M.; Goodpaster, B.H.; Schwartz, A.V.; Simonsick, E.M.; Satterfield, S.; Harris, T.; Newman, A.B.

    2014-01-01

    Background. Older women have higher percent body fat, poorer physical function, lower strength, and higher rates of nonfatal chronic conditions than men. We sought to determine whether these differences explained physical performance differences between men and women. Methods. Physical performance

  15. On explaining performance differentials: Marketing and the managerial theory of the firm

    NARCIS (Netherlands)

    Stoelhorst, J.W.; Raaij, van E.M.

    2004-01-01

    Efforts to develop a managerially meaningful alternative to the neoclassical theory of the firm have always been an important part of theory development in marketing. This paper argues that the main explanandum of a managerial theory of the firm is performance differentials between firms. Marketing

  16. On explaining performance differentials: marketing and the managerial theory of the firm

    NARCIS (Netherlands)

    Stoelhorst, J.W.; van Raaij, E.M.

    2004-01-01

    Efforts to develop a managerially meaningful alternative to the neoclassical theory of the firm have always been an important part of theory development in marketing. This paper argues that the main explanandum of a managerial theory of the firm is performance differentials between firms. Marketing

  17. Differential Stoichiometry among Core Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2015-11-01

    Full Text Available Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs, some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function.

  18. EXPLAINING CORPORATE STRUCTURE:THE MD MATRIX, PRODUCT DIFFERENTIATION AND SIZE OF MARKET

    OpenAIRE

    Alessandro Sembenelli; Laura Rondi; Stephen W. Davies

    1995-01-01

    Conventional explanations of diversification and multinationality both point to the existence of intangible assets as a driving force. Using a new database of leading EU firms in 100 NACE 3-digit industries, we devise a classificatory scheme which allows us to analyze multinationality and diversification jointly. We find that product differentiation and home market primary industry size constraints impact differently on different types of diversified firms. For instance, it appears that the c...

  19. Differentiation without distancing. explaining bi-polarization of opinions without negative influence.

    Directory of Open Access Journals (Sweden)

    Michael Mäs

    Full Text Available Explanations of opinion bi-polarization hinge on the assumption of negative influence, individuals' striving to amplify differences to disliked others. However, empirical evidence for negative influence is inconclusive, which motivated us to search for an alternative explanation. Here, we demonstrate that bi-polarization can be explained without negative influence, drawing on theories that emphasize the communication of arguments as central mechanism of influence. Due to homophily, actors interact mainly with others whose arguments will intensify existing tendencies for or against the issue at stake. We develop an agent-based model of this theory and compare its implications to those of existing social-influence models, deriving testable hypotheses about the conditions of bi-polarization. Hypotheses were tested with a group-discussion experiment (N = 96. Results demonstrate that argument exchange can entail bi-polarization even when there is no negative influence.

  20. Differentiation without distancing. explaining bi-polarization of opinions without negative influence.

    Science.gov (United States)

    Mäs, Michael; Flache, Andreas

    2013-01-01

    Explanations of opinion bi-polarization hinge on the assumption of negative influence, individuals' striving to amplify differences to disliked others. However, empirical evidence for negative influence is inconclusive, which motivated us to search for an alternative explanation. Here, we demonstrate that bi-polarization can be explained without negative influence, drawing on theories that emphasize the communication of arguments as central mechanism of influence. Due to homophily, actors interact mainly with others whose arguments will intensify existing tendencies for or against the issue at stake. We develop an agent-based model of this theory and compare its implications to those of existing social-influence models, deriving testable hypotheses about the conditions of bi-polarization. Hypotheses were tested with a group-discussion experiment (N = 96). Results demonstrate that argument exchange can entail bi-polarization even when there is no negative influence.

  1. Factors explaining the North-South differentials in contraceptive use in Nigeria: A nonlinear decomposition analysis

    Directory of Open Access Journals (Sweden)

    Stella Babalola

    2018-01-01

    Full Text Available Background: Northern Nigeria has some of the worst reproductive health indicators worldwide. Conspicuous North-South variations exist in contraceptive use; not much is known about the drivers of contraceptive use disparities in the North compared to the South. Objective: In this study, we examine the relative weights of the factors that contribute to this North-South gap in contraceptive prevalence. Methods: Using the women's 2013 Demographic Health Survey dataset, we applied a nonlinear decomposition technique to determine the contribution of sociodemographic and socioeconomic characteristics, conjugal relationship dynamics, intimate partner violence, ideational variables, and Islamic culture to the North-South disparities in contraceptive use. Results: There was a gap of 12.4 percentage points in contraceptive prevalence between the north and south of Nigeria (5.2Š vs 17.6Š. The largest contributors to the gap were ideational characteristics (explaining 42.0Š of the gap and socio-economic profiles (explaining 42.6Š. Patterns of conjugal relationship dynamics (11.1Š, socio-demographic characteristics (‒11.0Š, Islamic religious culture (7.6Š, and exposure to family planning messaging (6.1Š were also significant contributors. Conclusions: Effective interventions to increase contraceptive use in northern Nigeria should aim at addressing socioeconomic disadvantage in the North, impacting ideational characteristics and specifically targeting poor women and those with low levels of education. Working with Islamic religious leaders is also critical to bridging the gap. Contribution: This paper broadens the knowledge on the determinants of contraceptive use in Nigeria by identifying contextual factors that operate differently in the North compared to the South.

  2. Explaining religious differentials in family-size preference: Evidence from Nepal in 1996.

    Science.gov (United States)

    Pearce, Lisa D; Brauner-Otto, Sarah R; Ji, Yingchun

    2015-01-01

    We examine how religio-ethnic identity, individual religiosity, and family members' religiosity were related to preferred family size in Nepal in 1996. Analyses of survey data from the Chitwan Valley Family Study show that socio-economic characteristics and individual experiences can suppress, as well as largely account for, religio-ethnic differences in fertility preference. These religio-ethnic differentials are associated with variance in particularized theologies or general value orientations (like son preference) across groups. In addition, individual and family religiosity are both positively associated with preferred family size, seemingly because of their association with religious beliefs—beliefs that are likely to shape fertility strategies. These findings suggest the need for improvements in how we conceptualize and measure supra-individual religious influence in a variety of settings and for a range of demographically interesting outcomes.

  3. Explaining Religious Differentials in Family Size Preferences: Evidence from Nepal in 1996

    Science.gov (United States)

    Pearce, Lisa D.; Brauner-Otto, Sarah; Ji, Yingchun

    2015-01-01

    This paper presents an examination of how religio-ethnic identity, individual religiosity, and family members’ religiosity are related to preferred family size in Nepal. Analyses of survey data from the Chitwan Valley Family Study show that socioeconomic characteristics and individual experiences can suppress, as well as largely account for, religio-ethnic differences in fertility preferences. These religio-ethnic differentials are associated with variance in particularized religious theologies or general value orientations (like son preference) across groups. In addition, individual and family religiosity are both positively associated with preferred family size, seemingly because of their association with religious beliefs that are likely to shape fertility strategies. These findings suggest improvements in how we conceptualize and empirically measure supra-individual religious influence in a variety of settings and for a range of demographically interesting outcomes. PMID:25685878

  4. Proteinuria: The diagnostic strategy based on urine proteins differentiation

    Directory of Open Access Journals (Sweden)

    Stojimirović Biljana B.

    2004-01-01

    Full Text Available Basal glomerular membrane represents mechanical and electrical barrier for passing of the plasma proteins. Mechanical barrier is composed of cylindrical pores and filtration fissure, and negative layer charge in exterior and interior side of basal glomerular membrane, made of heparan sulphate and sialoglicoproteine, provides certain electrical barrier. Diagnostic strategy based on different serum and urine proteins enables the differentiation of various types of proteinuria. Depending on etiology of proteinuria it can be prerenal, renal and postrenal. By analyzing albumin, armicroglobulin, immunoglobulin G and armacroglobulin, together with total protein in urine, it is possible to detect and differentiate causes of prerenal, renal (glomerular, tubular, glomerulo-tubular and postrenal proteinuria. The adequate and early differentiation of proteinuria type is of an immense diagnostic and therapeutic importance.

  5. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa.

    Science.gov (United States)

    Choudoir, Mallory J; Buckley, Daniel H

    2018-06-07

    The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.

  6. [An attempt to explain fertility differentials in Upper Volta and in Ghana].

    Science.gov (United States)

    Coulibaly, S P; Pool, I

    1975-01-01

    This study examines fertility differentials in Western Africa, notably in Upper Volta and in Ghana. The relationship between social and cultural transformation and fertility rate is usually seen as a matter of cause and effect. Direct variables caused by social transformation would be education, migration, and urbanization. This is not necessarily so, at least according to the Davis-Blake paradigm, which says that there are intermediate variables which intervene between fertility rate and the social system. For West Africa such variables are of 3 distinct types: 1) those which upset the normal flow of the family, such as separation due to migration, divorce, and marriage age; 2) those which influence conception itself, such as birth control, lactation and sexual abstinence; and, 3) cultural factors, such as poligamy and monogamy, type of conjugal union, and postpartum sexual abstinence. The central point of this study is that direct variables, i.e. migration, education and urbanization, do not directly influence fertility, but they influence the so-called intermediate variables, which, in turn, cause a change in fertility patterns. It must be remembered that birth control is still practically unknown in Western Africa.

  7. Adolescent stress and symptoms of anxiety and depression: Resilience explains and differentiates the relationships.

    Science.gov (United States)

    Anyan, Frederick; Hjemdal, Odin

    2016-10-01

    Some adolescents exhibit resilience even in the face of high levels of stress exposure. Despite this relationship, studies that investigate explanations for how resilience interacts with risk to produce particular outcomes and why this is so are lacking. The effect of resilience across the relationship between stress and symptoms of anxiety and stress and symptoms of depression was tested to provide explanations for how resilience interacts with stress and symptoms of anxiety, and depression. In a cross-sectional survey, 533 Ghanaian adolescents aged 13-17 years (M=15.25, SD=1.52), comprising 290 girls and 237 boys completed the Resilience Scale for Adolescents, Adolescent Stress Questionnaire, Spielberger State Anxiety Inventory, and Short Mood Feeling Questionnaire. Mediation and moderation analyses were conducted. The results indicated that resilience partially mediated the relationship between stress, and symptoms of anxiety, and depression. Effects of stress were negatively associated with resilience, and positively associated with symptoms of anxiety and depression. In a differential moderator effect, resilience moderated the relationship between stress and symptoms of depression but not stress and symptoms of anxiety. Although the findings in this study are novel, they do not answer questions about protective mechanisms or processes. Evidence that resilience did not have the same effect across stress, and symptoms of anxiety and depression may support resilience as a dynamic process model. Access to different levels of resilience shows that enhancing resilience while minimizing stress may improve psychiatric health in adolescents' general population. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Willingness to pay and preference for imported rice brands in Nigeria: Do price–quality differentials explain consumers’ inertia?

    Directory of Open Access Journals (Sweden)

    Uchenna Obih

    2017-12-01

    Full Text Available Background: Rice (Oryza sativa is the most consumed staple food in Nigeria. Consumers have persistently preferred and are willing to pay higher prices for imported rice despite improvements in the quality attributes of local rice brands in the last 5 years. Nigeria’s import bill of over $6million daily on rice is not only a drain on the country’s Forex reserves, but a threat to the development of the domestic rice industry. Previous studies on rice consumers’ behaviours have not explained the underlying reason of how consumers with imported brands preference mind-set make purchasing decisions when faced with both local and imported rice brands with almost similar quality attributes but different market prices. Aim: When making purchase decisions, consumers consider product quality in comparison to its price. This study attempts to explain how the differences in prices and quality attributes of local and imported rice brands determine consumer’s inertia against preference for imported rice brands in Nigeria. Setting: This study was conducted in the Federal Capital Territory of Nigeria using data sets collected from a survey of 460 rice consumer households. Methods: Data were collected using a structured questionnaire administered to the household heads during the face-to-face interview. Two separate binary logit regression models were estimated for households’ preference and WTP for imported rice. Results: The results show that price, household head’s age, household’s income and general perception are statistically significant variables explaining household’s preference and WTP for imported rice brands. Consumers’ inertia against preference and WTP for imported rice persists because of the negative price–quality differential gaps between local and imported rice brands. Conclusion: Rice consumers in Nigeria compare price and quality differentials before making a choice between local and imported rice brands. There is need

  9. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  10. Birth and death of protein domains: A simple model of evolution explains power law behavior

    Directory of Open Access Journals (Sweden)

    Berezovskaya Faina S

    2002-10-01

    Full Text Available Abstract Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i domain birth (duplication with divergence, ii death (inactivation and/or deletion, and iii innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer. This formalism can be described as a birth, death and innovation model (BDIM. The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational

  11. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. Myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load...... to elucidate also the signaling pathway by which this mechanical stimulation can causes an increase in protein expression. When mechanically stimulated via laminin receptors on cell surface, C(2)C(12) cells showed an increase in cell proliferation and differentiation. Populations undergoing mechanical...... stimulation through laminin receptors show an increase in expression of Myo-D, myogenin and an increase in ERK1/2 phosphorylation. Cells stimulated via fibronectin receptors show no significant increases in fusion competence. We conclude that load induced signalling through integrin containing laminin...

  12. Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice.

    Science.gov (United States)

    Han, Lanzhi; Han, Chao; Liu, Zewen; Chen, Fajun; Jurat-Fuentes, Juan Luis; Hou, Maolin; Peng, Yufa

    2014-08-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  14. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    Directory of Open Access Journals (Sweden)

    Uri Barenholz

    Full Text Available Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  15. Understanding renal nuclear protein accumulation: an in vitro approach to explain an in vivo phenomenon.

    Science.gov (United States)

    Luks, Lisanne; Maier, Marcia Y; Sacchi, Silvia; Pollegioni, Loredano; Dietrich, Daniel R

    2017-11-01

    Proper subcellular trafficking is essential to prevent protein mislocalization and aggregation. Transport of the peroxisomal enzyme D-amino acid oxidase (DAAO) appears dysregulated by specific pharmaceuticals, e.g., the anti-overactive bladder drug propiverine or a norepinephrine/serotonin reuptake inhibitor (NSRI), resulting in massive cytosolic and nuclear accumulations in rat kidney. To assess the underlying molecular mechanism of the latter, we aimed to characterize the nature of peroxisomal and cyto-nuclear shuttling of human and rat DAAO overexpressed in three cell lines using confocal microscopy. Indeed, interference with peroxisomal transport via deletion of the PTS1 signal or PEX5 knockdown resulted in induced nuclear DAAO localization. Having demonstrated the absence of active nuclear import and employing variably sized mCherry- and/or EYFP-fusion proteins of DAAO and catalase, we showed that peroxisomal proteins ≤134 kDa can passively diffuse into mammalian cell nuclei-thereby contradicting the often-cited 40 kDa diffusion limit. Moreover, their inherent nuclear presence and nuclear accumulation subsequent to proteasome inhibition or abrogated peroxisomal transport suggests that nuclear localization is a characteristic in the lifecycle of peroxisomal proteins. Based on this molecular trafficking analysis, we suggest that pharmaceuticals like propiverine or an NSRI may interfere with peroxisomal protein targeting and import, consequently resulting in massive nuclear protein accumulation in vivo.

  16. Identification of differentially expressed proteins in vitamin B 12

    Directory of Open Access Journals (Sweden)

    Swati Varshney

    2015-01-01

    Full Text Available Background: Vitamin B 12 (cobalamin is a water-soluble vitamin generally synthesized by microorganisms. Mammals cannot synthesize this vitamin but have evolved processes for absorption, transport and cellular uptake of this vitamin. Only about 30% of vitamin B 12 , which is bound to the protein transcobalamin (TC (Holo-TC [HoloTC] enters into the cell and hence is referred to as the biologically active form of vitamin B 12 . Vitamin B 12 deficiency leads to several complex disorders, including neurological disorders and anemia. We had earlier shown that vitamin B 12 deficiency is associated with coronary artery disease (CAD in Indian population. In the current study, using a proteomics approach we identified proteins that are differentially expressed in the plasma of individuals with low HoloTC levels. Materials and Methods: We used isobaric-tagging method of relative and absolute quantitation to identify proteins that are differently expressed in individuals with low HoloTC levels when compared to those with normal HoloTC level. Results: In two replicate isobaric tags for relative and absolute quantitation experiments several proteins involved in lipid metabolism, blood coagulation, cholesterol metabolic process, and lipoprotein metabolic process were found to be altered in individuals having low HoloTC levels. Conclusions: Our study indicates that low HoloTc levels could be a risk factor in the development of CAD.

  17. Novel leukocyte protein, Trojan, differentially expressed during thymocyte development.

    Science.gov (United States)

    Petrov, Petar; Motobu, Maki; Salmi, Jussi; Uchida, Tatsuya; Vainio, Olli

    2010-04-01

    "Trojan" is a novel cell surface protein, discovered from chicken embryonic thymocytes on the purpose to identify molecules involved in T cell differentiation. The molecule is predicted as a type I transmembrane protein having a Sushi and two fibronectin type III domains and a pair of intracellular phosphorylation sites. Its transcript expression is specific for lymphoid tissues and the presence of the protein on the surface of recirculating lymphocytes and macrophages was confirmed by immunofluorescence analysis. In thymus, about half of the double negative (CD4(-) CD8(-)) and CD8 single positive and the majority of CD4 single positive cells express Trojan with a relatively high intensity. However, only a minority of the double positive (CD4(+) CD8(+)) cells are positive for Trojan. This expression pattern, similar to that of some proteins with anti-apoptotic and function, like IL-7Ralpha, makes Trojan an attractive candidate of having an anti-apoptotic role. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    International Nuclear Information System (INIS)

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-01-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase [A-kinase], from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from 32 P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the 32 P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase

  19. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Genetic factors explain half of all variance in serum eosinophil cationic protein

    DEFF Research Database (Denmark)

    Elmose, Camilla; Sverrild, Asger; van der Sluis, Sophie

    2014-01-01

    with variation in serum ECP and to determine the relative proportion of the variation in ECP due to genetic and non-genetic factors, in an adult twin sample. METHODS: A sample of 575 twins, selected through a proband with self-reported asthma, had serum ECP, lung function, airway responsiveness to methacholine......, exhaled nitric oxide, and skin test reactivity, measured. Linear regression analysis and variance component models were used to study factors associated with variation in ECP and the relative genetic influence on ECP levels. RESULTS: Sex (regression coefficient = -0.107, P ... was statistically non-significant (r = -0.11, P = 0.50). CONCLUSION: Around half of all variance in serum ECP is explained by genetic factors. Serum ECP is influenced by sex, BMI, and airway responsiveness. Serum ECP and airway responsiveness seem not to share genetic variance....

  1. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    Science.gov (United States)

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  2. Differential Distractor Functioning as a Method for Explaining DIF: The Case of a National Admissions Test in Saudi Arabia

    Science.gov (United States)

    Tsaousis, Ioannis; Sideridis, Georgios; Al-Saawi, Fahad

    2018-01-01

    The aim of the present study was to examine Differential Distractor Functioning (DDF) as a means of improving the quality of a measure through understanding biased responses across groups. A DDF analysis could shed light on the potential sources of construct-irrelevant variance by examining whether the differential selection of incorrect choices…

  3. Explaining participation differentials in Dutch higher education: The impact of subjective success probabilities on level choice and field choice

    NARCIS (Netherlands)

    Tolsma, J.; Need, A.; Jong, U. de

    2010-01-01

    In this article we examine whether subjective estimates of success probabilities explain the effect of social origin, sex, and ethnicity on students' choices between different school tracks in Dutch higher education. The educational options analysed differ in level (i.e. university versus

  4. Explaining participation differentials in Dutch higher education : the impact of subjective success probabilities on level choice and field choice

    NARCIS (Netherlands)

    Tolsma, J.; Need, A.; Jong, U. de

    2010-01-01

    In this article we examine whether subjective estimates of success probabilities explain the effect of social origin, sex, and ethnicity on students’ choices between different school tracks in Dutch higher education. The educational options analysed differ in level (i.e. university versus

  5. Binding Site Concentration Explains the Differential Susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-Producing Rice

    OpenAIRE

    Han, Lanzhi; Han, Chao; Liu, Zewen; Chen, Fajun; Jurat-Fuentes, Juan Luis; Hou, Maolin; Peng, Yufa

    2014-01-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduc...

  6. The Differential role of parenting, peers, and temperament for explaining interindividual differences in 18-months-olds' comforting and helping.

    Science.gov (United States)

    Schuhmacher, Nils; Collard, Jenny; Kärtner, Joscha

    2017-02-01

    This study analyzes temperamental and social correlates of 18-month-olds' (N=58) instrumental helping (i.e., handing over out-of-reach objects) and comforting (i.e., alleviating experimenter's distress). While out-of-reach helping as a basic type of prosocial behavior was not associated with any of the social and temperamental variables, comforting was associated with maternal responsible parenting, day care attendance, and temperamental fear, accounting for 34% of the total variance in a corresponding regression model. The data of the present study suggest that, while simple instrumental helping seems to be a robust developmental phenomenon, comforting is associated with specific social experiences and child temperament that constitute interindividual differences and thereby help to explain the domain-specific development of prosociality. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; te Riele, Hein; Kristiansen, Karsten

    2004-01-01

    the major energy store and brown adipocytes being potent energy-dissipaters through thermogenesis. Yet, little is known about factors differentially regulating the formation of white and brown fat cells. Members of the retinoblastoma protein family (pRB, p107, p130) have been implicated in the regulation...... of adipocyte differentiation, and expression and phosphorylation of the three retinoblastoma family proteins oscillate in a characteristic manner during differentiation of the white preadipocyte cell line 3T3-L1. We have recently demonstrated a surprising function of the retinoblastoma protein...... in the regulation of white versus brown adipocyte differentiation in vitro and possibly in vivo. Here we summarize the current knowledge on the retinoblastoma protein in fat cells, with particular emphasis on its potential role in adipocyte lineage commitment and differentiation....

  8. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  9. Differential regulation of two FLNA transcripts explains some of the phenotypic heterogeneity in the loss-of-function filaminopathies.

    Science.gov (United States)

    Jenkins, Zandra A; Macharg, Alison; Chang, Cheng-Yee; van Kogelenberg, Margriet; Morgan, Tim; Frentz, Sophia; Wei, Wenhua; Pilch, Jacek; Hannibal, Mark; Foulds, Nicola; McGillivray, George; Leventer, Richard J; García-Miñaúr, Sixto; Sugito, Stuart; Nightingale, Scott; Markie, David M; Dudding, Tracy; Kapur, Raj P; Robertson, Stephen P

    2018-01-01

    Loss-of-function mutations in the X-linked gene FLNA can lead to abnormal neuronal migration, vascular and cardiac defects, and congenital intestinal pseudo-obstruction (CIPO), the latter characterized by anomalous intestinal smooth muscle layering. Survival in male hemizygotes for such mutations is dependent on retention of residual FLNA function but it is unclear why a subgroup of males with mutations in the 5' end of the gene can present with CIPO alone. Here, we demonstrate evidence for the presence of two FLNA isoforms differing by 28 residues at the N-terminus initiated at ATG +1 and ATG +82 . A male with CIPO (c.18_19del) exclusively expressed FLNA ATG +82 , implicating the longer protein isoform (ATG +1 ) in smooth muscle development. In contrast, mutations leading to reduction of both isoforms are associated with compound phenotypes affecting the brain, heart, and intestine. RNA-seq data revealed three distinct transcription start sites, two of which produce a protein isoform utilizing ATG +1 while the third utilizes ATG +82 . Transcripts sponsoring translational initiation at ATG +1 predominate in intestinal smooth muscle, and are more abundant compared with the level measured in fibroblasts. Together these observations describe a new mechanism of tissue-specific regulation of FLNA that could reflect the differing mechanical requirements of these cell types during development. © 2017 Wiley Periodicals, Inc.

  10. Do cultural conditions induce differential protein expression: Profiling of extracellular proteome of Aspergillus terreus CM20.

    Science.gov (United States)

    M, Saritha; Singh, Surender; Tiwari, Rameshwar; Goel, Renu; Nain, Lata

    2016-11-01

    The present study reports the diversity in extracellular proteins expressed by the filamentous fungus, Aspergillus terreus CM20 with respect to differential hydrolytic enzyme production profiles in submerged fermentation (SmF) and solid-state fermentation (SSF) conditions, and analysis of the extracellular proteome. The SSF method was superior in terms of increase in enzyme activities resulting in 1.5-3 fold enhancement as compared to SmF, which was explained by the difference in growth pattern of the fungus under the two culture conditions. As revealed by zymography, multiple isoforms of endo-β-glucanase, β-glucosidase and xylanase were expressed in SSF, but not in SmF. Extracellular proteome profiling of A. terreus CM20 under SSF condition using liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) identified 63 proteins. Functional classification revealed the hydrolytic system to be composed of glycoside hydrolases (56%), proteases (16%), oxidases and dehydrogenases (6%), decarboxylases (3%), esterases (3%) and other proteins (16%). Twenty families of glycoside hydrolases (GH) (1, 3, 5, 7, 10, 11, 12, 15, 16, 28, 30, 32, 35, 43, 54, 62, 67, 72, 74 and 125), and one family each of auxiliary activities (AA7) and carbohydrate esterase (CE1) were detected, unveiling the vast diversity of synergistically acting biomass-cleaving enzymes expressed by the fungus. Saccharification of alkali-pretreated paddy straw with A. terreus CM20 proteins released high amounts of glucose (439.63±1.50mg/gds), xylose (121.04±1.25mg/gds) and arabinose (56.13±0.56mg/gds), thereby confirming the potential of the enzyme cocktail in bringing about considerable conversion of lignocellulosic polysaccharides to sugar monomers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed.

    Science.gov (United States)

    Tornow, J; Santangelo, G M

    1994-06-01

    A duplicate copy of the RPL37A gene (encoding ribosomal protein L37) was cloned and sequenced. The coding region of RPL37B is very similar to that of RPL37A, with only one conservative amino-acid difference. However, the intron and flanking sequences of the two genes are extremely dissimilar. Disruption experiments indicate that the two loci are not functionally equivalent: disruption of RPL37B was insignificant, but disruption of RPL37A severely impaired the growth rate of the cell. When both RPL37 loci are disrupted, the cell is unable to grow at all, indicating that rpL37 is an essential protein. The functional disparity between the two RPL37 loci could be explained by differential gene expression. The results of two experiments support this idea: gene fusion of RPL37A to a reporter gene resulted in six-fold higher mRNA levels than was generated by the same reporter gene fused to RPL37B, and a modest increase in gene dosage of RPL37B overcame the lack of a functional RPL37A gene.

  12. Differential plasma protein binding to metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F; Schiller, Tara; Musumeci, Anthony; Martin, Darren

    2009-01-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO 2 , the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO 2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  13. Differential protein expression in maize (Zea mays) in response to ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... Accepted 25 May, 2011. Maize (Zea mays) is a major food stable in sub-Saharan Africa. .... has investigated differential expression at the proteome level, comparing this ..... GK, Jwa NS (2001). Characterization of rice (Oryza.

  14. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis.

    Science.gov (United States)

    He, Ding; Pengtao, Gong; Ju, Yang; Jianhua, Li; He, Li; Guocai, Zhang; Xichen, Zhang

    2017-04-01

    Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis , we detected 2 strains of T. vaginalis ; the virus-infected (V + ) and uninfected (V - ) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V + compared with V - isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V + isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V + and V - isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

  15. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Daniele Marcotulli

    2017-12-01

    Full Text Available Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.

  16. Is Melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells

    Directory of Open Access Journals (Sweden)

    Chan Linda S

    2005-03-01

    Full Text Available Abstract Background Although several genes and proteins have been implicated in the development of melanomas, the molecular mechanisms involved in the development of these tumors are not well understood. To gain a better understanding of the relationship between the cell growth, tumorigenesis and differentiation, we have studied a highly malignant cat melanoma cell line that trans-differentiates into neuronal cells after exposure to a feline endogenous retrovirus RD114. Methods To define the repertoire of proteins responsible for the phenotypic differences between melanoma and its counterpart trans-differentiated neuronal cells we have applied proteomics technology and compared protein profiles of the two cell types and identified differentially expressed proteins by 2D-gel electrophoresis, image analyses and mass spectrometry. Results The melanoma and trans-differentiated neuronal cells could be distinguished by the presence of distinct sets of proteins in each. Although approximately 60–70% of the expressed proteins were shared between the two cell types, twelve proteins were induced de novo after infection of melanoma cells with RD114 virus in vitro. Expression of these proteins in trans-differentiated cells was significantly associated with concomitant down regulation of growth promoting proteins and up-regulation of neurogenic proteins (p = 95% proteins expressed in trans-differentiated cells could be associated with the development, differentiation and regulation of nervous system cells. Conclusion Our results indicate that the cat melanoma cells have the ability to differentiate into distinct neuronal cell types and they express proteins that are essential for self-renewal. Since melanocytes arise from the neural crest of the embryo, we conclude that this melanoma arose from embryonic precursor stem cells. This model system provides a unique opportunity to identify domains of interactions between the expressed proteins that halt the

  17. Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Holmer-Jensen, Jens; Mortensen, Lene Sundahl; Astrup, Arne

    2013-01-01

    Non-fasting triglyceridemia is much closer associated to cardiovascular risk compared to fasting triglyceridemia. We hypothesized that there would be acute differential effects of four common dietary proteins (cod protein, whey isolate, gluten, and casein) on postprandial lipemia in obese non......-diabetic subjects. To test the hypothesis we conducted a randomized, acute clinical intervention study with crossover design. We supplemented a fat rich mixed meal with one of four dietary proteins i.e. cod protein, whey protein, gluten or casein. Eleven obese non-diabetic subjects (age: 40-68, body mass index: 30...... concentration in the chylomicron rich fraction (P = .0293). Thus, we have demonstrated acute differential effects on postprandial metabolism of four dietary proteins supplemented to a fat rich mixed meal in obese non-diabetic subjects. Supplementation with whey protein caused lower postprandial lipemia compared...

  18. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction.

    Directory of Open Access Journals (Sweden)

    Pradeep R Dumpala

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05 difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.

  19. Differential expression of speckled POZ protein, SPOP: Putative ...

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... In other mouse tissues and human cancer cell lines analysed, only low SPOP ... speckled POZ protein; SRC-3, steroid receptor co-activator-3; TNF, tumour necrosis factor; ...... complexity of primary human prostate cancer.

  20. Protein signaling pathways in differentiation of neural stem cells

    Czech Academy of Sciences Publication Activity Database

    Skalníková, Helena; Vodička, Petr; Pelech, S.; Motlík, Jan; Gadher, S. J.; Kovářová, Hana

    2008-01-01

    Roč. 8, - (2008), s. 4547-4559 ISSN 1615-9853 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : antibody microarray * differentiation * neural stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.586, year: 2008

  1. Differential Protein Expression in Congenital and Acquired Cholesteatomas.

    Directory of Open Access Journals (Sweden)

    Seung-Ho Shin

    Full Text Available Congenital cholesteatomas are epithelial lesions that present as an epithelial pearl behind an intact eardrum. Congenital and acquired cholesteatomas progress quite differently from each other and progress patterns can provide clues about the unique origin and pathogenesis of the abnormality. However, the exact pathogenic mechanisms by which cholesteatomas develop remain unknown. In this study, key proteins that directly affect cholesteatoma pathogenesis are investigated with proteomics and immunohistochemistry. Congenital cholesteatoma matrices and retroauricular skin were harvested during surgery in 4 patients diagnosed with a congenital cholesteatoma. Tissue was also harvested from the retraction pocket in an additional 2 patients during middle ear surgery. We performed 2-dimensional (2D electrophoresis to detect and analyze spots that are expressed only in congenital cholesteatoma and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS to separate proteins by molecular weight. Protein expression was confirmed by immunohistochemical staining. The image analysis of 2D electrophoresis showed that 4 congenital cholesteatoma samples had very similar protein expression patterns and that 127 spots were exclusively expressed in congenital cholesteatomas. Of these 127 spots, 10 major spots revealed the presence of titin, forkhead transcription activator homolog (FKH 5-3, plectin 1, keratin 10, and leucine zipper protein 5 by MALDI-TOF/MS analysis. Immunohistochemical staining showed that FKH 5-3 and titin were expressed in congenital cholesteatoma matrices, but not in acquired cholesteatomas. Our study shows that protein expression patterns are completely different in congenital cholesteatomas, acquired cholesteatomas, and skin. Moreover, non-epithelial proteins, including FKH 5-3 and titin, were unexpectedly expressed in congenital cholesteatoma tissue. Our data indicates that congenital cholesteatoma origins

  2. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    Directory of Open Access Journals (Sweden)

    Qian Pei-Yuan

    2011-09-01

    Full Text Available Abstract Background The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. Results Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. Conclusion It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.

  3. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2011-09-03

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  4. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Soo, Lisa; Qian, Pei-Yuan

    2011-01-01

    Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.

  5. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    Directory of Open Access Journals (Sweden)

    Brian A Chow

    Full Text Available Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.

  6. Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.

    Science.gov (United States)

    Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M

    2012-04-06

    Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.

  7. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    International Nuclear Information System (INIS)

    Ostlund, Cecilia; Guan, Tinglu; Figlewicz, Denise A.; Hays, Arthur P.; Worman, Howard J.; Gerace, Larry; Schirmer, Eric C.

    2009-01-01

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  8. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, Cecilia [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Guan, Tinglu [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Figlewicz, Denise A. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Hays, Arthur P. [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Worman, Howard J. [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Gerace, Larry [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Schirmer, Eric C., E-mail: e.schirmer@ed.ac.uk [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  9. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  10. Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    Srsen Vlastimil

    2009-04-01

    Full Text Available Abstract Background Muscle fibres are formed by elongation and fusion of myoblasts into myotubes. During this differentiation process, the cytoskeleton is reorganized, and proteins of the centrosome re-localize to the surface of the nucleus. The exact timing of this event, and the underlying molecular mechanisms are still poorly understood. Results We performed studies on mouse myoblast cell lines that were induced to differentiate in culture, to characterize the early events of centrosome protein re-localization. We demonstrate that this re-localization occurs already at the single cell stage, prior to fusion into myotubes. Centrosome proteins that accumulate at the nuclear surface form an insoluble matrix that can be reversibly disassembled if isolated nuclei are exposed to mitotic cytoplasm from Xenopus egg extract. Our microscopy data suggest that this perinuclear matrix of centrosome proteins consists of a system of interconnected fibrils. Conclusion Our data provide new insights into the reorganization of centrosome proteins during muscular differentiation, at the structural and biochemical level. Because we observe that centrosome protein re-localization occurs early during differentiation, we believe that it is of functional importance for the reorganization of the cytoskeleton in the differentiation process.

  11. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes.

    Science.gov (United States)

    Mehic, Denis; Bakiri, Latifa; Ghannadan, Minoo; Wagner, Erwin F; Tschachler, Erwin

    2005-01-01

    Activator protein 1 (AP-1) proteins play key roles in the regulation of cell proliferation and differentiation. In this study we investigated the expression of Fos and Jun proteins in different models of terminal differentiation of human keratinocytes and in skin from psoriasis patients. All Jun and Fos proteins, with the exception of FosB, were efficiently expressed in keratinocytes in monolayer cultures. In contrast, in normal epidermis as well as in organotypic epidermal cultures, the expression pattern of AP-1 proteins was dependent on the differentiation stage. Fos proteins were readily detected in nuclei of keratinocytes of basal and suprabasal layers. JunB and JunD were expressed in all layers of normal epidermis. Interestingly, expression of c-Jun started suprabasally, then disappeared and became detectable again in distinct cells of the outermost granular layer directly at the transition zone to the stratum corneum. In psoriatic epidermis, c-Jun expression was prominent in both hyperproliferating basal and suprabasal keratinocytes, whereas c-Fos expression was unchanged. These data indicate that AP-1 proteins are expressed in a highly specific manner during terminal differentiation of keratinocytes and that the enhanced expression of c-Jun in basal and suprabasal keratinocytes might contribute to the pathogenesis of psoriasis.

  12. Regulation, cell differentiation and protein-based inheritance.

    Science.gov (United States)

    Malagnac, Fabienne; Silar, Philippe

    2006-11-01

    Recent research using fungi as models provide new insight into the ability of regulatory networks to generate cellular states that are sufficiently stable to be faithfully transmitted to daughter cells, thereby generating epigenetic inheritance. Such protein-based inheritance is driven by infectious factors endowed with properties usually displayed by prions. We emphasize the contribution of regulatory networks to the emerging properties displayed by cells.

  13. FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Lipinski M.

    2011-10-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes

  14. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  15. Differentiation of Vitis vinifera varieties by MALDI-MS analysis of the grape seed proteins.

    Science.gov (United States)

    Pesavento, Ivana Chiara; Bertazzo, Antonella; Flamini, Riccardo; Vedova, Antonio Dalla; De Rosso, Mirko; Seraglia, Roberta; Traldi, Pietro

    2008-02-01

    Until now the study of pathogenic related proteins in grape juice and wine, performed by ESI-MS, LC/ESI-MS, and MALDI/MS, has been proposed for differentiation of varieties. In fact, chitinases and thaumatin-like proteins persist through the vinification process and cause hazes and sediments in bottled wines. An additional instrument, potentially suitable for the grape varieties differentiation, has been developed by MALDI/MS for the grape seed protein analysis. The hydrosoluble protein profiles of seeds extract from three different Vitis vinifera grape (red and white) varieties were analyzed and compared. In order to evaluate the environmental conditions and harvest effects, the seed protein profiles of one grape variety from different locations and harvests were studied. (c) 2008 John Wiley & Sons, Ltd.

  16. Detecting differential protein expression in large-scale population proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Soyoung; Qian, Weijun; Camp, David G.; Smith, Richard D.; Tompkins, Ronald G.; Davis, Ronald W.; Xiao, Wenzhong

    2014-06-17

    Mass spectrometry-based high-throughput quantitative proteomics shows great potential in clinical biomarker studies, identifying and quantifying thousands of proteins in biological samples. However, methods are needed to appropriately handle issues/challenges unique to mass spectrometry data in order to detect as many biomarker proteins as possible. One issue is that different mass spectrometry experiments generate quite different total numbers of quantified peptides, which can result in more missing peptide abundances in an experiment with a smaller total number of quantified peptides. Another issue is that the quantification of peptides is sometimes absent, especially for less abundant peptides and such missing values contain the information about the peptide abundance. Here, we propose a Significance Analysis for Large-scale Proteomics Studies (SALPS) that handles missing peptide intensity values caused by the two mechanisms mentioned above. Our model has a robust performance in both simulated data and proteomics data from a large clinical study. Because varying patients’ sample qualities and deviating instrument performances are not avoidable for clinical studies performed over the course of several years, we believe that our approach will be useful to analyze large-scale clinical proteomics data.

  17. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Directory of Open Access Journals (Sweden)

    Stéphane Tchankouo-Nguetcheu

    Full Text Available BACKGROUND: Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. METHODOLOGY AND PRINCIPAL FINDINGS: Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE, we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI with dengue 2 (DENV-2 and chikungunya (CHIKV viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. CONCLUSION/SIGNIFICANCE: Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha

  18. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  19. Effects of low dose radiation on differential expression of serum protein in mice

    International Nuclear Information System (INIS)

    Chen Wei; He Ying; Shen Xianrong

    2014-01-01

    The aim is to find out the key proteins related with low dose radiation (Ld) by parametric technology, which provided the theory foundation for LDR protection Two-dimensional electrophoresis (2-DE) was performed on serum protein Differential expression proteins were identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and database analysis Compared with the control group, 7 altered proteins was definite in terms of apolipoprotein C-Ⅲ, beta-globin parotid secretory protein alpha-2-macroglobulin precursor, mouse transthyretin, C1qc protein and clusterin. Some proteins related with LDR are found. It may provide some new explanations for the mechanism of LDR. (authors)

  20. Differential protein expression in alligator leukocytes in response to bacterial lipopolysaccharide injection.

    Science.gov (United States)

    Merchant, Mark; Kinney, Clint; Sanders, Paige

    2009-12-01

    Blood was collected from three juvenile alligators (Alligator mississippiensis) before, and again 24h after, injection with bacterial lipopolysaccharide (LPS). The leukocytes were collected from both samples, and the proteins were extracted. Each group of proteins was labeled with a different fluorescent dye and the differences in protein expression were analyzed by two dimensional differential in-gel expressions (2D-DIGE). The proteins which appeared to be increased or decreased by treatment with LPS were selected and analyzed by MALDI-TOF to determine mass and LC-MS/MS to acquire the partial protein sequences. The peptide sequences were compared to the NCBI protein sequence database to determine homology with other sequences from other species. Several proteins of interest appeared to be increased upon LPS stimulation. Proteins with homology to human transgelin-2, fish glucose-6-phosphate dehydrogenase, amphibian α-enolase, alligator lactate dehydrogenase, fish ubiquitin-activating enzyme, and fungal β-tubulin were also increased after LPS injection. Proteins with homology to fish vimentin 4, murine heterogeneous nuclear ribonucleoprotein A3, and avian calreticulin were found to be decreased in response to LPS. In addition, five proteins, four of which were up-regulated (827, 560, 512, and 650%) and one that exhibited repressed expression (307%), did not show homology to any protein in the database, and thus may represent newly discovered proteins. We are using this biochemical approach to isolate and characterize alligator proteins with potential relevant immune function.

  1. In silico modelling and validation of differential expressed proteins in lung cancer

    Directory of Open Access Journals (Sweden)

    Bhagavathi S

    2012-05-01

    Full Text Available Objective: The present study aims predict the three dimensional structure of three major proteins responsible for causing Lung cancer. Methods: These are the differentially expressed proteins in lung cancer dataset. Initially, the structural template for these proteins is identified from structural database using homology search and perform homology modelling approach to predict its native 3D structure. Three-dimensional model obtained was validated using Ramachandran plot analysis to find the reliability of the model. Results: Four proteins were differentially expressed and were significant proteins in causing lung cancer. Among the four proteins, Matrixmetallo proteinase (P39900 had a known 3D structure and hence was not considered for modelling. The remaining proteins Polo like kinase I Q58A51, Trophinin B1AKF1, Thrombomodulin P07204 were modelled and validated. Conclusions: The three dimensional structure of proteins provides insights about the functional aspect and regulatory aspect of the protein. Thus, this study will be a breakthrough for further lung cancer related studies.

  2. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Jørgensen, Claus; Petersen, Rasmus K

    2004-01-01

    Adipocyte precursor cells give raise to two major cell populations with different physiological roles: white and brown adipocytes. Here we demonstrate that the retinoblastoma protein (pRB) regulates white vs. brown adipocyte differentiation. Functional inactivation of pRB in wild-type mouse embryo...... fibroblasts (MEFs) and white preadipocytes by expression of simian virus 40 large T antigen results in the expression of the brown fat-specific uncoupling protein 1 (UCP-1) in the adipose state. Retinoblastoma gene-deficient (Rb-/-) MEFs and stem cells, but not the corresponding wild-type cells, differentiate...

  3. Inhibition of protein kinase C induces differentiation in Neuro-2a cells

    International Nuclear Information System (INIS)

    Minana, M.D.; Felipo, V.; Grisolia, S.

    1990-01-01

    1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 μM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 μM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased ∼7-fold after 48 hr with 500 μM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed

  4. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    Science.gov (United States)

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. © 2015 American Society for Nutrition.

  5. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  6. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei.

    Science.gov (United States)

    McDermott, Suzanne M; Guo, Xuemin; Carnes, Jason; Stuart, Kenneth

    2015-10-09

    Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3'-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya

    2017-01-10

    Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.

  8. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  9. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure.

    Science.gov (United States)

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states.

  10. Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure

    Science.gov (United States)

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566

  11. Differential dissociation micromethod for the investigation of binding of metandrostenolone (Nerobol) to plasma proteins

    International Nuclear Information System (INIS)

    Bojadzsieva, Milka; Kocsar, Laszlo; Kremmer, Tibor

    1985-01-01

    A micromethod was developed to determine the binding of anabolic streoids to plasma proteins. The new procedure combines precipitation with ammonium sulphate and differential dissociation. The binding parameters (association constant, specific binding capacity) are calculated on the basis of dissociation curves of sup(3)H-metandrostenolone from the precipitated sexual binding globuline. (L.E.)

  12. Differential dissociation micromethod for the investigation of binding of metandrostenolone (Nerobol) to plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bojadzsieva, M.; Kocsar, L. (Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary)); Kremmer, T. (Orszagos Onkologiai Intezet, Budapest (Hungary))

    1985-01-01

    A micromethod was developed to determine the binding of anabolic steroids to plasma proteins. The new procedure combines precipitation with ammonium sulphate and differential dissociation. The binding parameters (association constant, specific binding capacity) are calculated on the basis of dissociation curves of sup(3)H-metandrostenolone from the precipitated sexual binding globuline.

  13. Protein kinase C prevents oligodendrocyte differentiation : Modulation of actin cytoskeleton and cognate polarized membrane traffic

    NARCIS (Netherlands)

    Baron, W; de Vries, EJ; de Vries, H; Hoekstra, D

    1999-01-01

    In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro-oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the

  14. Down-regulation of E protein activity augments an ILC2 differentiation program in the thymus

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are important regulators in various immune responses. Current paradigm states that all newly-made ILCs originate from common lymphoid progenitors (CLP) in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Une...

  15. Differential saliva-induced breakdown of starch filled protein gels in relation to sensory perception

    NARCIS (Netherlands)

    Janssen, A.M.; Pijpekamp, A.M. van de; Labiausse, D.

    2009-01-01

    In this study, the differential breakdown of protein gels containing four types of high and low cross-linked starch granules were studied. Susceptibility to saliva-induced breakdown of starch granules and the consequences of these for overall breakdown of the gel matrix were captured using a

  16. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation

    Czech Academy of Sciences Publication Activity Database

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    2016-01-01

    Roč. 132, č. 1 (2016), s. 13-20 ISSN 1874-3919 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell adhesion proteins * cell surface capture * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.914, year: 2016

  17. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days. Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.

  18. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    Science.gov (United States)

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.

    2012-04-19

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein\\'s associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of \\'presence/absence,\\' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. \\'one-state\\' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY: All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.

  20. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  1. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    Science.gov (United States)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  2. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    International Nuclear Information System (INIS)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João

    2013-01-01

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag + presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag + (10 μg L −1 ) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag + . Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag + , with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in

  3. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João, E-mail: mbebian@ualg.pt

    2013-07-15

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag{sup +} presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag{sup +} (10 μg L{sup −1}) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag{sup +}. Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag{sup +}, with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one

  4. Differential abundance of egg white proteins in laying hens treated with corticosterone.

    Science.gov (United States)

    Kim, Jimin; Choi, Yang-Ho

    2014-12-24

    Stressful environments can affect not only egg production and quality but also gene and protein abundance in the ovary and oviduct in laying hens. The oviductal magnum of laying hens is the organ responsible for the synthesis and secretion of egg white proteins. The objective of this study was to investigate the effects of dietary corticosterone as a stress model on the abundance of proteins in the egg white and of mRNA and proteins in the magnum in laying hens. After a 14-day acclimation, 40 laying hens were divided into two groups which were provided for the next 14 days with either control (Control) or corticosterone (Stress) diet containing at 30 mg/kg. Corticosterone treatment resulted in increased feed intake (P ≤ 0.05) and decreased egg production. Two-dimensional electrophoresis (2DE) with MALDI-TOF/TOF MS/MS using eggs obtained on days 0 and 5 revealed differential abundance of egg white proteins by Stress: transiently expressed in neural precursors (TENP), hemopexin (HPX), IgY-Fcυ3-4, and extracellular fatty acid-binding protein (Ex-FABP) were decreased while ovoinhibitor and ovalbumin-related protein X (OVAX) were increased on days 5 vs 0 (P ≤ 0.05). Expression of mRNAs and proteins was also significantly modulated in the magnum of hens in Stress on day 14 (P ≤ 0.05). In conclusion, the current study provides the first evidence showing that dietary corticosterone modulates protein abundance in the egg white in laying hens, and it suggests that environmental stress can differentially modify expression of egg white proteins in laying hens.

  5. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    International Nuclear Information System (INIS)

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark; Dharmarajan, Arunasalam

    2008-01-01

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  6. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins.

    Science.gov (United States)

    Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit

    2015-01-01

    Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Activation of peroxisome proliferator-activated receptor gamma bypasses the function of the retinoblastoma protein in adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B.; Petersen, R K; Larsen, B M

    1999-01-01

    The retinoblastoma protein (pRB) is an important regulator of development, proliferation, and cellular differentiation. pRB was recently shown to play a pivotal role in adipocyte differentiation, to interact physically with adipogenic CCAAT/enhancer-binding proteins (C/EBPs), and to positively...

  8. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma.

    Science.gov (United States)

    Zhao, Q; He, Y; Wang, X-L; Zhang, Y-X; Wu, Y-M

    2015-08-01

    To explore the differentially expressed proteins in normal cervix, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) tissues by differential proteomics technique. Cervical tissues (including normal cervix, CIN and CSCC) were collected in Department of Gynecologic Oncology of Beijing Obstetrics and Gynecology Hospital. Two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) and DeCyder software were used to detect the differentially expressed proteins. Matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to identify the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were performed to validate the expressions of selected proteins among normal cervix, CIN and CSCC. 2-D DIGE images with high resolution and good repeatability were obtained. Forty-six differentially expressed proteins (27 up-regulated and 19 down-regulated) were differentially expressed among the normal cervix, CIN and CSCC. 26 proteins were successfully identified by MALDI-TOF/TOF MS. S100A9 (S100 calcium-binding protein A9) was the most significantly up-regulated protein. Eukaryotic elongation factor 1-alpha-1 (eEF1A1) was the most significantly down-regulated protein. Pyruvate kinase isozymes M2 (PKM2) was both up-regulated and down-regulated. The results of WB showed that with the increase in the severity of cervical lesions, the expression of S100A9 protein was significantly increased among the three groups (P = 0.010). The expression of eEF1A1 was reduced but without significant difference (P = 0.861). The expression of PKM2 was significantly reduced (P = 0.000). IHC showed that protein S100A9 was mainly expressed in the cytoplasm, and its positive expression rate was 20.0 % in normal cervix, 70.0 % in CIN and 100.0 % in CSCC, with a significant difference among them (P = 0.006). eEF1A1 was mainly expressed in the cell plasma, and its

  9. The diagnostic value of c-reactive protein estimation in differentiating bacterial from viral meningitis

    International Nuclear Information System (INIS)

    Sheikh, A.

    2001-01-01

    Objective: To evaluate the efficacy of serum and CSF C-reactive protein (C-rp) in differentiating bacterial from viral meningitis. Design: An observational, respective hospital-based study. Place and duration of study: It was conducted at the Department of Medicine and Department of Pediatrics, Shaikh Zayed Postgraduate Medical Institute Lahore, Over a Period of one year between march, 1999 and March, 2000. Subject and Methods: A randomized group of thirty patients, who presented with clinical features, suggestive of meningitis, were included in the study. C-reactive protein determinations were performed by latex agglutination method on the serum and cerebrospinal fluid (CSF) of these patients. Results: In the present study, c-reactive protein was found to be a more sensitive test for differentiating bacterial from non-bacterial meningitis on initial examination than the usual conventional methods used to diagnose bacterial meningitis. CSF C-reactive protein had a greater sensitivity (92% as compared to serum C-reactive protein (71%). Conclusion: C-reactive protein determination in CSF was found to be a useful indicator of bacterial meningitis that can be used to distinguish it from viral meningitis. (author)

  10. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  11. Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors

    Directory of Open Access Journals (Sweden)

    Sara Pizzamiglio

    2017-02-01

    Full Text Available We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA or reverse-phase protein array (RPPA, were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012. The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5, signal transducer and activator of transcription 3 (STAT3, bone morphogenetic protein 6 (BMP6, cluster of differentiation 74 (CD74, transferrin receptor (TFRC, inhibin alpha (INHA, and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88, CD74, iron exporter ferroportin (FPN, high mobility group box 1 (HMGB1, STAT3_pS727, TFRC, ferritin heavy chain (FTH, and ferritin light chain (FTL. Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.

  12. Apparent inhibition of β-fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion

    International Nuclear Information System (INIS)

    Faye, L.; Chrispeels, M.J.

    1989-01-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete β-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of β-fructosidase as measured by the accumulation of the 35 S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated β-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated β-fructosidase does not remain in the cells and appears to be secreted in the same way as glycosylated β-fructosidase; however, no radioactive, unglycosylated β-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete β-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated β-fructosidase. In the presence of tunicamycin, there is no accumulation of β-fructosidase activity or unglycosylated β-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of β-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall

  13. A VESICLE TRAFFICKING PROTEIN αSNAP REGULATES PANETH CELL DIFFERENTIATION IN VIVO

    Science.gov (United States)

    Lechuga, Susana; Naydenov, Nayden G.; Feygin, Alex; Jimenez, Antonio J.; Ivanov, Andrei I.

    2017-01-01

    A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. PMID:28359759

  14. A vesicle trafficking protein αSNAP regulates Paneth cell differentiation in vivo.

    Science.gov (United States)

    Lechuga, Susana; Naydenov, Nayden G; Feygin, Alex; Jimenez, Antonio J; Ivanov, Andrei I

    2017-05-13

    A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Discovery of protein profiles for differentiated thyroid cancer using SELDI TOF MS

    International Nuclear Information System (INIS)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Soh, Eui Young

    2003-01-01

    Low sensitivity of diagnostic whole body iodine scintigraphy and intermediate range of serum thyroglobulin (Tg) with or without anti-Tg antibody make it difficult to select the patients with differentiated thyroid cancer who need further treatment. Surfaced Enhanced Laser Desorption /Ionization - Time of Flight - Mass Spectrometry (SELDI TOF MS) is a useful method to evaluate cancer proteome, biomarkers and patterns of biomarkers. In this preliminary study, we evaluated and developed protein profiles for the discrimination between patients with differentiated thyroid cancer and non-cancer controls using SELDI technology. Serum samples from 10 healthy controls and from 14 patients with papillary thyroid cancer before thyroidectomy were analyzed by SELDI MS. Multiple protein peaks detected were analyzed by the computer software to develop a classifier for separating cancer patients form controls. The classifier was then challenged to 24 serum samples to determine the validity and accuracy of the classification system. All patients with papillary thyroid cancer had no other concomitant cancer or thyroiditis. Their serum Tg concentration was 55.8 (1.5 - 249.7) and 2 patients had extra-thyroidal extension. According to the SELDI analysis, protein peaks at 3696 Da, 4178 Da, and 8149 Da were more prominent in cancer patients than controls in various degrees. Among those, protein peak at 4178 Da was determined as classifier by computer software, and the sensitivity, specificity and accuracy for discrimination of cancer patients from controls was 92.9% (13/14), 90% (9/10) and 91.7% respectively. This preliminary study suggests that serum protein profiles of differentiated thyroid cancer can be used for differentiation between cancer patients and non-cancer controls. And further clinical studies in various test sets will offer useful information in selecting patients who require treatment

  16. Discovery of protein profiles for differentiated thyroid cancer using SELDI TOF MS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Soh, Eui Young [College of Medicine, Univ. of Ajou, Suwon (Korea, Republic of)

    2003-07-01

    Low sensitivity of diagnostic whole body iodine scintigraphy and intermediate range of serum thyroglobulin (Tg) with or without anti-Tg antibody make it difficult to select the patients with differentiated thyroid cancer who need further treatment. Surfaced Enhanced Laser Desorption /Ionization - Time of Flight - Mass Spectrometry (SELDI TOF MS) is a useful method to evaluate cancer proteome, biomarkers and patterns of biomarkers. In this preliminary study, we evaluated and developed protein profiles for the discrimination between patients with differentiated thyroid cancer and non-cancer controls using SELDI technology. Serum samples from 10 healthy controls and from 14 patients with papillary thyroid cancer before thyroidectomy were analyzed by SELDI MS. Multiple protein peaks detected were analyzed by the computer software to develop a classifier for separating cancer patients form controls. The classifier was then challenged to 24 serum samples to determine the validity and accuracy of the classification system. All patients with papillary thyroid cancer had no other concomitant cancer or thyroiditis. Their serum Tg concentration was 55.8 (1.5 - 249.7) and 2 patients had extra-thyroidal extension. According to the SELDI analysis, protein peaks at 3696 Da, 4178 Da, and 8149 Da were more prominent in cancer patients than controls in various degrees. Among those, protein peak at 4178 Da was determined as classifier by computer software, and the sensitivity, specificity and accuracy for discrimination of cancer patients from controls was 92.9% (13/14), 90% (9/10) and 91.7% respectively. This preliminary study suggests that serum protein profiles of differentiated thyroid cancer can be used for differentiation between cancer patients and non-cancer controls. And further clinical studies in various test sets will offer useful information in selecting patients who require treatment.

  17. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics

    Directory of Open Access Journals (Sweden)

    Yuping Ren

    2017-12-01

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF and mitochondrial antiviral-signaling (MAVS proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s. Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s. This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.

  18. Stability of some Cactaceae proteins based on fluorescence, circular dichroism, and differential scanning calorimetry measurements.

    Science.gov (United States)

    Gorinstein, S; Zemser, M; Vargas-Albores, F; Ochoa, J L; Paredes-Lopez, O; Scheler, C; Aksu, S; Salnikow, J

    1999-02-01

    Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of alpha-helix.

  19. Nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation

    Science.gov (United States)

    Nakaguro, Masato; Kiyonari, Shinichi; Kishida, Satoshi; Cao, Dongliang; Murakami-Tonami, Yuko; Ichikawa, Hitoshi; Takeuchi, Ichiro; Nakamura, Shigeo; Kadomatsu, Kenji

    2015-01-01

    Neuroblastoma (NB) is a childhood malignant tumor that arises from precursor cells of the sympathetic nervous system. Spontaneous regression is a phenomenon unique to NBs and is caused by differentiation of tumor cells. PES1 is a multifunctional protein with roles in both neural development and ribosome biogenesis. Various kinds of models have revealed the significance of PES1 in neurodevelopment. However, the roles of PES1 in NB tumorigenesis and differentiation have remained unknown. Here we show that NB cases with MYCN amplification and clinically unfavorable stage (INSS stage 4) express higher levels of PES1. High PES1 expression was associated with worse overall and relapse-free survival. In NB cell lines, PES1 knockdown suppressed tumor cell growth and induced apoptosis. This growth inhibition was associated with the expression of NB differentiation markers. However, when the differentiation of NB cell lines was induced by the use of all-trans retinoic acid, there was a corresponding decrease in PES1 expression. Pes1 expression of tumorspheres originated from MYCN transgenic mice also diminished after the induction of differentiation with growth factors. We also reanalyzed the distribution of PES1 in the nucleolus. PES1 was localized in the dense fibrillar component, but not in the granular component of nucleoli. After treatment with the DNA-damaging agent camptothecin, this distribution was dramatically changed to diffuse nucleoplasmic. These data suggest that PES1 is a marker of NB outcome, that it regulates NB cell proliferation, and is associated with NB differentiation. PMID:25557119

  20. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Science.gov (United States)

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  1. Binding to membrane proteins within the endoplasmic reticulum cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes.

    Science.gov (United States)

    Ceriotti, A; Colman, A

    1988-03-01

    We have studied the compartmentation and movement of the rat 78-kd glucose-regulated protein (GRP78) and other secretory and membrane proteins in Xenopus oocytes. Full length GRP78, normally found in the lumen of rat endoplasmic reticulum (ER), is localized to a membraneous compartment in oocytes and is not secreted. A truncated GRP78 lacking the C-terminal (KDEL) ER retention signal is secreted, although at a slow rate. When the synthesis of radioactive GRP78 is confined to a polar (animal or vegetal) region of the oocyte and the subsequent movement across the oocyte monitored, we find that both full-length and truncated GRP78 move at similar rates and only slightly slower than a secretory protein, chick ovalbumin. In contrast, a plasma membrane protein (influenza haemagglutinin) and two ER membrane proteins (rotavirus VP10 and a mutant haemagglutinin) remained confined to their site of synthesis. We conclude that the retention of GRP78 in the ER is not due to its tight binding to a membrane-bound receptor.

  2. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes

    Directory of Open Access Journals (Sweden)

    Kim CH

    2016-05-01

    Full Text Available Cy Hyun Kim,1,2,* Jin-Hong Shin,1,3,* Sung Jun Hwang,1,2 Yung Hyun Choi,4 Dae-Seong Kim,1,3 Cheol Min Kim2,51Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 2Center for Anti-Aging Industry, Pusan National University, Busan, 3Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 4Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 5Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Republic of Korea*These authors contributed equally to this work Abstract: Schisandrae fructus (SF has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 µg/mL of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 µg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged

  3. Differential diagnosis of feline leukemia virus subgroups using pseudotype viruses expressing green fluorescent protein.

    Science.gov (United States)

    Nakamura, Megumi; Sato, Eiji; Miura, Tomoyuki; Baba, Kenji; Shimoda, Tetsuya; Miyazawa, Takayuki

    2010-06-01

    Feline leukemia virus (FeLV) is classified into three receptor interference subgroups, A, B and C. In this study, to differentiate FeLV subgroups, we developed a simple assay system using pseudotype viruses expressing green fluorescent protein (GFP). We prepared gfp pseudotype viruses, named gfp(FeLV-A), gfp(FeLV-B) and gfp(FeLV-C) harboring envelopes of FeLV-A, B and C, respectively. The gfp pseudotype viruses completely interfered with the same subgroups of FeLV reference strains on FEA cells (a feline embryonic fibroblast cell line). We also confirmed that the pseudotype viruses could differentiate FeLV subgroups in field isolates. The assay will be useful for differential diagnosis of FeLV subgroups in veterinary diagnostic laboratories in the future.

  4. Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation

    Science.gov (United States)

    Brero, Alessandro; Easwaran, Hariharan P.; Nowak, Danny; Grunewald, Ingrid; Cremer, Thomas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2005-01-01

    Pericentric heterochromatin plays an important role in epigenetic gene regulation. We show that pericentric heterochromatin aggregates during myogenic differentiation. This clustering leads to the formation of large chromocenters and correlates with increased levels of the methyl CpG–binding protein MeCP2 and pericentric DNA methylation. Ectopic expression of fluorescently tagged MeCP2 mimicked this effect, causing a dose-dependent clustering of chromocenters in the absence of differentiation. MeCP2-induced rearrangement of heterochromatin occurred throughout interphase, did not depend on the H3K9 histone methylation pathway, and required the methyl CpG–binding domain (MBD) only. Similar to MeCP2, another methyl CpG–binding protein, MBD2, also increased during myogenic differentiation and could induce clustering of pericentric regions, arguing for functional redundancy. This MeCP2- and MBD2-mediated chromatin reorganization may thus represent a molecular link between nuclear genome topology and the epigenetic maintenance of cellular differentiation. PMID:15939760

  5. Quantitative proteome and phosphoproteome analyses of Streptomyces coelicolor reveal proteins and phosphoproteins modulating differentiation and secondary metabolism

    DEFF Research Database (Denmark)

    Rioseras, Beatriz; Sliaha, Pavel V; Gorshkov, Vladimir

    2018-01-01

    identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (MI); secondary metabolite producing hyphae (MII); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during....../Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor. We...... the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signalling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism...

  6. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation.

    Science.gov (United States)

    Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha; Vidal, Christopher; Duque, Gustavo

    2017-12-01

    Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear β-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425-4435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Comparative proteomic analysis of differentially expressed proteins in the urine of reservoir hosts of leptospirosis.

    Directory of Open Access Journals (Sweden)

    Jarlath E Nally

    Full Text Available Rattus norvegicus is a natural reservoir host for pathogenic species of Leptospira. Experimentally infected rats remain clinically normal, yet persistently excrete large numbers of leptospires from colonized renal tubules via urine, despite a specific host immune response. Whilst persistent renal colonization and shedding is facilitated in part by differential antigen expression by leptospires to evade host immune responses, there is limited understanding of kidney and urinary proteins expressed by the host that facilitates such biological equilibrium. Urine pellets were collected from experimentally infected rats shedding leptospires and compared to urine from non-infected controls spiked with in vitro cultivated leptospires for analysis by 2-D DIGE. Differentially expressed host proteins include membrane metallo endopeptidase, napsin A aspartic peptidase, vacuolar H+ATPase, kidney aminopeptidase and immunoglobulin G and A. Loa22, a virulence factor of Leptospira, as well as the GroEL, were increased in leptospires excreted in urine compared to in vitro cultivated leptospires. Urinary IgG from infected rats was specific for leptospires. Results confirm differential protein expression by both host and pathogen during chronic disease and include markers of kidney function and immunoglobulin which are potential biomarkers of infection.

  8. SPSS explained

    CERN Document Server

    Hinton, Perry R; Brownlow, Charlotte

    2014-01-01

    SPSS Explained provides the student with all that they need to undertake statistical analysis using SPSS. It combines a step-by-step approach to each procedure with easy to follow screenshots at each stage of the process. A number of other helpful features are provided: regular advice boxes with tips specific to each test explanations divided into 'essential' and 'advanced' sections to suit readers at different levels frequently asked questions at the end of each chapter. The first edition of this popular book has been fully updated for IBM SPSS version 21 and also includes: chapters that expl

  9. [Retrospective analysis of influence of differential protein intake on renal prognosis for progressive chronic kidney disease].

    Science.gov (United States)

    Dai, Wendi; Yin, Daoxin; Cui, Wenying; Liu, Wenhu

    2014-01-28

    To explore retrospectively the influence of differential protein intake on renal prognosis for progressive chronic kidney disease (CKD). A total of 159 chronic kidney disease patients at stages 2, 3 and 4 were enrolled and a questionnaire survey was conducted from January 2009 to July 2012. They were followed monthly and their clinical data collected, including primary disease, blood pressure, body mass index and adverse events. Laboratory tests were performed every 3 months, including biochemical parameters, protein-energy malnutrition (PEM), diet reviews and daily protein intake (DPI). A simplified MDRD formula was employed to evaluate the level of estimated glomerular filtration rate (eGFR). According to the level of DPI, they were divided into 3 groups of very low protein diet (VLPD): DPI ≤ 0.6 g · kg(-1) · d(-1), low-protein diet (LPD): DPI >0.6-protein diet (NPD): DPI ≥ 0.8 · g · kg(-1) · d(-1). Among them, 4 cases (2.50%) progressed to uremia stage and received renal replacement therapy, 2(1.25%) experienced rapid decline in renal function, 9(5.66%) were hospitalized from cardio-cerebral diseases and the 2-year kidney survival rate was 97.5%. At the end of study, among 9 patients of PEM, 2 subjects had a serum level of albumin under 32 g/L and another 7 with a BMI 0.05). Within a certain range, differential protein intake may not significantly affect the prognosis of kidney for progressive CKD patients.

  10. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells.

    Science.gov (United States)

    Alugubelly, Navatha; Hercik, Kamil; Kibler, Peter; Nanduri, Bindu; Edelmann, Mariola J

    2016-05-01

    Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells. Copyright © 2016. Published by Elsevier B.V.

  12. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Science.gov (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies

  13. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  14. Astronomy Explained

    Science.gov (United States)

    North, Gerald

    Every year large numbers of people take up the study of astronomy, mostly at amateur level. There are plenty of elementary books on the market, full of colourful photographs, but lacking in proper explanations of how and why things are as they are. Many people eventually wish to go beyond the 'coffee-table book' stage and study this fascinating subject in greater depth. This book is written for them. In addition, many people sit for public examinations in this subject each year and this book is also intended to be of use to them. All the topics from the GCSE syllabus are covered here, with sample questions at the end of each chapter. Astronomy Explained provides a comprehensive treatment of the subject in more depth than is usually found in elementary works, and will be of interest to both amateur astronomers and students of astronomy.

  15. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    Science.gov (United States)

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  16. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Screening differentially expressed plasma proteins in cold stress rats based on iTRAQ combined with mass spectrometry technology].

    Science.gov (United States)

    Liu, Yan-zhi; Guo, Jing-ru; Peng, Meng-ling; Ma, Li; Zhen, Li; Ji, Hong; Yang, Huan-min

    2015-09-01

    Isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry were used to screen differentially expressed plasma proteins in cold stress rats. Thirty health SPF Wistar rats were randomly divided into cold stress group A and control group B, then A and B were randomly divided into 3 groups (n = 5): A1, A2, A3 and B1, B2, B3. The temperature of room raising was (24.0 +/- 0.1) degrees C, and the cold stress temperature was (4.0 +/- 0.1) degrees C. The rats were treated with different temperatures until 12 h. The abdominal aortic blood was collected with heparin anticoagulation suction tube. Then, the plasma was separated for protein extraction, quantitative, enzymolysis, iTHAQ labeling, scx fractionation and mass spectrometry analysis. Totally, 1085 proteins were identified in the test, 39 differentially expressed proteins were screened, including 29 up-regulated proteins and 10 down-regulated proteins. Three important differentially expressed proteins related to cold stress were screened by bioinfonnatics analysis (Minor histocompatihility protein HA-1, Has-related protein Rap-1b, Integrin beta-1). In the experiment, the differentially expressed plasma proteins were successfully screened in cold stress rats. iTRAQ technology provided a good platform to screen protein diaguostic markers on cold stress rats, and laid a good foundation for further. study on animal cold stress mechanism.

  18. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  19. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins During Ex Vivo Osteoblast Differentiation of Human Stromal Stem Cells*

    Science.gov (United States)

    Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.

    2012-01-01

    It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418

  20. Identification of differentially expressed proteins during human urinary bladder cancer progression.

    Science.gov (United States)

    Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.

  1. Differential activation of G-proteins by μ-opioid receptor agonists

    Science.gov (United States)

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-01-01

    We investigated the ability of the activated μ-opioid receptor (MOR) to differentiate between myristoylated Gαi1 and GαoA type Gα proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each Gα protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The Gα subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified Gα protein by CB1 cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[35S]GTPγS exchange was then compared for Gαi1 and GαoA. Activation of MOR by DAMGO produced a high-affinity saturable interaction for GαoA (Km=20±1 nM) but a low-affinity interaction with Gαi1 (Km=116±12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal Gα activation among the agonists evaluated. Endomorphins 1 and 2, methadone and β-endorphin activated both Gα to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between Gαi1 and GαoA. Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two Gα. Differences in maximal activity and potency, for Gαi1 versus GαoA, are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects. PMID:16415903

  2. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L. flower development

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2016-10-01

    Full Text Available Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L. seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1, pollination (S2, and the post-pollination senescence period (S3. Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD. Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs, carbonic anhydrase (CA, and NADPH: quinone oxidoreductase-like protein (NQOLs. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower

  3. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and

  4. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    International Nuclear Information System (INIS)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-01-01

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  5. Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens

    Science.gov (United States)

    Zhou, Xiaohong; Wang, Ke; Lv, Dongwen; Wu, Chengjun; Li, Jiarui; Zhao, Pei; Lin, Zhishan; Du, Lipu; Yan, Yueming; Ye, Xingguo

    2013-01-01

    Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops. PMID:24278131

  6. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    Full Text Available Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs and differentially expressed proteins (DEPs were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq and two-dimensional electrophoresis (2-DE in conjunction with mass spectrometry (MS. A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.

  7. Difference gel electrophoresis (DiGE) identifies differentially expressed proteins in endoscopically-collected pancreatic fluid

    Science.gov (United States)

    Paulo, Joao A.; Lee, Linda S.; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Alterations in the pancreatic fluid proteome of individuals with chronic pancreatitis may offer insights into the development and progression of the disease. The endoscopic pancreas function test (ePFT) can safely collect large volumes of pancreatic fluid that are potentially amenable to proteomic analyses using difference gel electrophoresis (DiGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pancreatic fluid was collected endoscopically using the ePFT method following secretin stimulation from three individuals with severe chronic pancreatitis and three chronic abdominal pain controls. The fluid was processed to minimize protein degradation and the protein profiles of each cohort, as determined by DiGE and LC-MS/MS, were compared. This DiGE-LC-MS/MS analysis reveals proteins that are differentially expressed in chronic pancreatitis compared to chronic abdominal pain controls. Proteins with higher abundance in pancreatic fluid from chronic pancreatitis individuals include: actin, desmoplankin, alpha-1-antitrypsin, SNC73, and serotransferrin. Those of relatively lower abundance include carboxypeptidase B, lipase, alpha-1-antichymotrypsin, alpha-2-macroglobulin, Arp2/3 subunit 4, glyceraldehyde-3-phosphate dehydrogenase, and protein disulfide isomerase. Endoscopic collection (ePFT) in tandem with DiGE-LC-MS/MS is a suitable approach for pancreatic fluid proteome analysis, however, further optimization of our protocol, as outlined herein, may improve proteome coverage in future analyses. PMID:21792986

  8. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin.

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M

    2016-10-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3'UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    International Nuclear Information System (INIS)

    Zhang, Nawei; Zhang, Zhenyu; Feng, Shan; Wang, Qingtao; Malamud, Daniel; Deng, Haiteng

    2013-01-01

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity

  10. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nawei; Zhang, Zhenyu [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Feng, Shan [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China); Wang, Qingtao [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Malamud, Daniel [NYU College of Dentistry, 345 East 24th Street, New York, NY 10010 (United States); Deng, Haiteng, E-mail: dht@mail.tsinghua.edu.cn [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China)

    2013-04-24

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity.

  11. WAP explained

    International Nuclear Information System (INIS)

    Kaiser, M.J.; Pulsipher, A.G.

    2004-01-01

    The Weatherization Assistance Program (WAP) is a federal block grant program administered by all 50 states and the District of Columbia through community action agencies, state energy offices, local government, and other nonprofit organizations to provide weatherization services to eligible households. The WAP was established in 1976 to increase the energy efficiency, reduce the energy expenditures, and improve the health and safety of low-income households, especially those households that are particularly vulnerable such as families with children, persons with disabilities, and the elderly. The manner in which WAP funds have been allocated to states, however, has been a contentious issue since the inception of the program. Southern states have argued that too much of the federal funding goes to cold-climate and rural states. Northern states disagree. In 1990, Congress amended the Energy Conservation and Production Act and required the Department of Energy to develop a new funding formula. The Department of Energy currently uses a three-factor formula developed in 1995 in conjunction with a two-factor formula developed in 1977 and a hold-harmless provision to allocate WAP funding. The purpose of this paper is to explain the WAP allocation mechanism and the assumptions associated with the 1977 and the 1995 funding formula. The factors that compose each funding formula are critically assessed and various implementation issues are reviewed, including the selection of the trigger point and program capacity levels. It is not possible to define the need for weatherization assistance objectively and in a unique manner, and this ambiguity is the main reason why the WAP allocation mechanism is expected to remain a lively topic of debate and contention

  12. α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization

    Science.gov (United States)

    Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  13. INF-γ Enhances Nox2 Activity by Upregulating phox Proteins When Applied to Differentiating PLB-985 Cells but Does Not Induce Nox2 Activity by Itself.

    Directory of Open Access Journals (Sweden)

    Michael A Ellison

    Full Text Available The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-Γ on NOX2 activity: To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-Γ on phox protein levels: Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferon-γ mediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox

  14. Fitting a Mixture Rasch Model to English as a Foreign Language Listening Tests: The Role of Cognitive and Background Variables in Explaining Latent Differential Item Functioning

    Science.gov (United States)

    Aryadoust, Vahid

    2015-01-01

    The present study uses a mixture Rasch model to examine latent differential item functioning in English as a foreign language listening tests. Participants (n = 250) took a listening and lexico-grammatical test and completed the metacognitive awareness listening questionnaire comprising problem solving (PS), planning and evaluation (PE), mental…

  15. Differential proteomics of human seminal plasma: A potential target for searching male infertility marker proteins.

    Science.gov (United States)

    Tomar, Anil Kumar; Sooch, Balwinder Singh; Singh, Sarman; Yadav, Savita

    2012-04-01

    The clinical fertility tests, available in the market, fail to define the exact cause of male infertility in almost half of the cases and point toward a crucial need of developing better ways of infertility investigations. The protein biomarkers may help us toward better understanding of unknown cases of male infertility that, in turn, can guide us to find better therapeutic solutions. Many clinical attempts have been made to identify biomarkers of male infertility in sperm proteome but only few studies have targeted seminal plasma. Human seminal plasma is a rich source of proteins that are essentially required for development of sperm and successful fertilization. This viewpoint article highlights the importance of human seminal plasma proteome in reproductive physiology and suggests that differential proteomics integrated with functional analysis may help us in searching potential biomarkers of male infertility. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation.

    Directory of Open Access Journals (Sweden)

    Eugénie Ansseau

    were recently shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Further investigations are on-going to evaluate whether these interactions play roles during muscle regeneration as previously suggested for DUX4c.

  17. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Pablo Schierloh

    2014-01-01

    Full Text Available Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb, formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM and from Haarlem (H lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB.

  18. Identification of α(1,6)fucosylated proteins differentially expressed in human colorectal cancer

    International Nuclear Information System (INIS)

    Muinelo-Romay, Laura; Villar-Portela, Susana; Cuevas, Elisa; Gil-Martín, Emilio; Fernández-Briera, Almudena

    2011-01-01

    A universal hallmark of cancer cells is the change in their glycosylation phenotype. One of the most frequent alterations in the normal glycosylation pattern observed during carcinogenesis is the enhancement of α(1,6)linked fucose residues of glycoproteins, due to the up-regulation of the α(1,6)fucosyltransferase activity. Our previous results demonstrated the specific alteration of this enzyme activity and expression in colorectal cancer, suggesting its implication in tumour development and progression. In the current work we combined a LCA-affinity chromatography with SDS-PAGE and mass spectrometry in order to identify α(1,6)fucosylated proteins differentially expressed in colorectal cancer. This strategy allowed the identification of a group of α(1,6)fucosylated proteins candidates to be involved in CRC malignancy. The majority of the identified proteins take part in cell signaling and interaction processes as well as in modulation of the immunological response. Likewise, we confirmed the increased expression of GRP94 in colorectal cancer tissue and the significant down-regulation of the IgGFcBP expression in tumour cells. All these results validate the importance of core-fucosylated proteins profile analysis to understand the mechanisms which promote cancer onset and progression and to discover new tumour markers or therapeutic targets

  19. Application of TZERO calibrated modulated temperature differential scanning calorimetry to characterize model protein formulations.

    Science.gov (United States)

    Badkar, Aniket; Yohannes, Paulos; Banga, Ajay

    2006-02-17

    The objective of this study was to evaluate the feasibility of using T(ZERO) modulated temperature differential scanning calorimetry (MDSC) as a novel technique to characterize protein solutions using lysozyme as a model protein and IgG as a model monoclonal antibody. MDSC involves the application of modulated heating program, along with the standard heating program that enables the separation of overlapping thermal transitions. Although characterization of unfolding transitions for protein solutions requires the application of high sensitive DSC, separation of overlapping transitions like aggregation and other exothermic events may be possible only by use of MDSC. A newer T(ZERO) calibrated MDSC model from TA instruments that has improved sensitivity than previous models was used. MDSC analysis showed total, reversing and non-reversing heat flow signals. Total heat flow signals showed a combination of melting endotherms and overlapping exothermic events. Under the operating conditions used, the melting endotherms were seen in reversing heat flow signal while the exothermic events were seen in non-reversing heat flow signal. This enabled the separation of overlapping thermal transitions, improved data analysis and decreased baseline noise. MDSC was used here for characterization of lysozyme solutions, but its feasibility for characterizing therapeutic protein solutions needs further assessment.

  20. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma.

    Science.gov (United States)

    Pieragostino, Damiana; Bucci, Sonia; Agnifili, Luca; Fasanella, Vincenzo; D'Aguanno, Simona; Mastropasqua, Alessandra; Ciancaglini, Marco; Mastropasqua, Leonardo; Di Ilio, Carmine; Sacchetta, Paolo; Urbani, Andrea; Del Boccio, Piero

    2012-04-01

    Primary open angle (POAG) and pseudoexfoliative glaucoma (PXG) are the most common primary and secondary forms of glaucoma, respectively. Even though the patho-physiology, aqueous humor composition, risk factors, clinical features, therapy and drug induced ocular surface changes in POAG and PXG have been widely studied, to date information concerning tear protein characterization is lacking. Tears are a source of nourishment for ocular surface tissues and a vehicle to remove local waste products, metabolized drugs and inflammatory mediators produced in several ophthalmic diseases. In glaucoma, the proteomic definition of tears may provide insights concerning patho-physiology of the disease and ocular surface modifications induced by topical therapy. Our study aimed at characterizing protein patterns in tears of patients with medically controlled POAG and PXG. A comparative tears proteomic analysis by label-free LC-MS(E) highlighted differences in the expression of several proteins in the two glaucoma sub-types and control subjects, highlighting inflammation pathways expressed in both diseases. Results were independently reconfirmed by SDS-PAGE and linear MALDI-TOF MS, validating altered levels of Lysozyme C, Lipocalin-1, Protein S100, Immunoglobulins and Prolactin Inducible Protein. Moreover, we found a differential pattern of phosphorylated Cystatin-S that distinguishes the two pathologies. The most relevant results suggest that in both pathologies there may be active inflammation pathways related to the disease and/or induced by therapy. We show, for the first time, tear protein patterns expressed under controlled intraocular pressure conditions in POAG and PXG subjects. These findings could help in the understanding of molecular machinery underlying these ophthalmologic diseases, resulting in early diagnosis and more specific therapy.

  1. Integrative omics analysis reveals differentially distributed proteins in dimorphic euspermatozoa of the squid, Loligo bleekeri.

    Science.gov (United States)

    Yoshida, Masa-aki; Yamada, Lixy; Ochi, Hiroe; Iwata, Yoko; Tamura-Nakano, Miwa; Sawada, Hitoshi; Sauer, Warwick H H; Ogura, Atsushi; Hirohashi, Noritaka

    2014-08-01

    In the coastal squid Loligo bleekeri, each male produces one of two types of fertilization-competent spermatozoa (eusperm) that exhibit morphological and behavioral differences. Large "consort" males produce short-tailed spermatozoa that display free-swimming behavior when ejaculated into seawater. Small "sneaker" males, on the other hand, produce long-tailed spermatozoa that exhibit a self-swarming trait after ejaculation. To understand the molecular basis for adaptive traits employed by alternative male mating tactics, we performed the transcriptome deep sequencing (RNA-seq) and proteome analyses to search for differences in testicular mRNAs and sperm proteins, respectively. From mature male testes we identified a total of 236,455 contigs (FPKM ≧1) where 3789 and 2789 were preferentially (≧10-fold) expressed in consort and sneaker testes, respectively. A proteomic analysis detected 4302 proteins in the mature sperm as post-translational products. A strongly biased (≧10-fold) distribution occurred in 55 consort proteins and 61 sneaker proteins. There was no clear mRNA-protein correlation, making a ballpark estimate impossible for not only overall protein abundance but also the degree of biased sperm type expressed in the spermatozoa. A family encoding dynein heavy chain gene, however, was found to be biased towards sneakers, whereas many enzymes involving energy metabolism were heavily biased towards consort spermatozoa. The difference in flagellar length matched exactly the different amount of tubulins. From these results we hypothesize that discrete differential traits in dimorphic eusperm arose from a series of innovative alterations in the intracellular components of spermatozoa. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Directory of Open Access Journals (Sweden)

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  3. Two-dimensional gel human protein databases offer a systematic approach to the study of cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Celis, julio E.; Gesser, Borbala; Dejgaard, Kurt

    1989-01-01

    Human cellular protein databases have been established using computer-analyzed 2D gel electrophoresis. These databases, which include information on various properties of proteins, offer a global approach to the study of regulation of cell proliferation and differentiation. Furthermore, thanks...

  4. Natural loss-of-function mutation of myeloid differentiation protein 88 disrupts its ability to form Myddosomes

    NARCIS (Netherlands)

    Nagpal, K.; Plantinga, T.S.; Sirois, C.M.; Monks, B.G.; Latz, E.; Netea, M.G.; Golenbock, D.T.

    2011-01-01

    Myeloid differentiation protein 88 (MyD88) is a key signaling adapter in Toll-like receptor (TLR) signaling. MyD88 is also one of the most polymorphic adapter proteins. We screened the reported nonsynonymous coding mutations in MyD88 to identify variants with altered function. In reporter assays, a

  5. Two dimensional gel human protein databases offer a systematic approach to the study of cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Celis, J E; Gesser, B; Dejgaard, K

    1989-01-01

    Human cellular protein databases have been established using computer-analyzed 2D gel electrophoresis. These databases, which include information on various properties of proteins, offer a global approach to the study of regulation of cell proliferation and differentiation. Furthermore, thanks to...

  6. Simplified Enrichment of Plasma Membrane Proteins from Arabidopsis thaliana Seedlings Using Differential Centrifugation and Brij-58 Treatment.

    Science.gov (United States)

    Collins, Carina A; Leslie, Michelle E; Peck, Scott C; Heese, Antje

    2017-01-01

    The plasma membrane (PM) forms a barrier between a plant cell and its environment. Proteins at this subcellular location play diverse and complex roles, including perception of extracellular signals to coordinate cellular changes. Analyses of PM proteins, however, are often limited by the relatively low abundance of these proteins in the total cellular protein pool. Techniques traditionally used for enrichment of PM proteins are time consuming, tedious, and require extensive optimization. Here, we provide a simple and reproducible enrichment procedure for PM proteins from Arabidopsis thaliana seedlings starting from total microsomal membranes isolated by differential centrifugation. To enrich for PM proteins, total microsomes are treated with the nonionic detergent Brij-58 to decrease the abundance of contaminating organellar proteins. This protocol combined with the genetic resources available in Arabidopsis provides a powerful tool that will enhance our understanding of proteins at the PM.

  7. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture

    International Nuclear Information System (INIS)

    Kopecky, J.; Baudysova, M.; Zanotti, F.; Janikova, D.; Pavelka, S.; Houstek, J.

    1990-01-01

    In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-[35S]methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria

  8. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters

    Science.gov (United States)

    Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.

    2015-10-01

    Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

  9. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  10. Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis.

    Science.gov (United States)

    Yang, Mengdi; Sun, Yi; Sun, Jing; Wang, Zhiyu; Zhou, Yiyi; Yao, Guangyu; Gu, Yifeng; Zhang, Huizhen; Zhao, Hui

    2018-04-01

    Despite recent advances in targeted and immune-based therapies, the poor prognosis of lung adenocarcinoma (LUAD) with bone metastasis (BM) remains a challenge. First, two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in LUAD with BM, and then matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was used to identify these proteins. Second, the Cancer Genome Atlas (TCGA) was used to identify mutations in these differentially expressed proteins and Kaplan-Meier plotter (KM Plotter) was used to generate survival curves for the analyzed cases. Immunohistochemistry (IHC) was used to check the expression of proteins in 28 patients with BM and nine patients with LUAD. Lastly, the results were analyzed with respect to clinical features and patient's follow-up. We identified a number of matched proteins from 2-DE. High expression of enolase 1 (ENO1) (HR = 1.67, logrank P = 1.9E-05), ribosomal protein lateral stalk subunit P2 (RPLP2) (HR = 1.77, logrank P = 2.9e-06), and NME/NM23 nucleoside diphosphate kinase 2 (NME1-NME2) (HR = 2.65, logrank P = 3.9E-15) was all significantly associated with poor survival (P < 0.05). Further, ENO1 was upregulated (P = 0.0004) and calcyphosine (CAPS1) was downregulated (P = 5.34E-07) in TCGA LUAD RNA-seq expression data. IHC revealed that prominent ENO1 staining (OR = 7.5, P = 0.034) and low levels of CAPS1 (OR = 0.01, P < 0.0001) staining were associated with BM incidence. Finally, we found that LUAD patients with high expression of ENO1 and RPLP2 had worse overall survival. This is the first instance where the genes ENO1, RPLP2, NME1-NME2 and CAPS1 were associated with disease severity and progression in LUAD patients with BM. Thus, with this study, we have identified potential biomarkers and therapeutic targets for this disease. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Andrea M Siegel

    2008-04-01

    Full Text Available Murine gammaherpesvirus 68 (MHV68 establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV. EBV encodes an interleukin-10 (IL-10 homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25 and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis

  12. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Science.gov (United States)

    Siegel, Andrea M; Herskowitz, Jeremy H; Speck, Samuel H

    2008-04-04

    Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis-identifying a

  13. Protein kinase Cɛ inhibition restores megakaryocytic differentiation of hematopoietic progenitors from primary myelofibrosis patients.

    Science.gov (United States)

    Masselli, E; Carubbi, C; Gobbi, G; Mirandola, P; Galli, D; Martini, S; Bonomini, S; Crugnola, M; Craviotto, L; Aversa, F; Vitale, M

    2015-11-01

    Among the three classic Philadelphia chromosome-negative myeloproliferative neoplasms, primary myelofibrosis (PMF) is the most severe in terms of disease biology, survival and quality of life. Abnormalities in the process of differentiation of PMF megakaryocytes (MKs) are a hallmark of the disease. Nevertheless, the molecular events that lead to aberrant megakaryocytopoiesis have yet to be clarified. Protein kinase Cɛ (PKCɛ) is a novel serine/threonine kinase that is overexpressed in a variety of cancers, promoting aggressive phenotype, invasiveness and drug resistance. Our previous findings on the role of PKCɛ in normal (erythroid and megakaryocytic commitment) and malignant (acute myeloid leukemia) hematopoiesis prompted us to investigate whether it could be involved in the pathogenesis of PMF MK-impaired differentiation. We demonstrate that PMF megakaryocytic cultures express higher levels of PKCɛ than healthy donors, which correlate with higher disease burden but not with JAK2V617F mutation. Inhibition of PKCɛ function (by a negative regulator of PKCɛ translocation) or translation (by target small hairpin RNA) leads to reduction in PMF cell growth, restoration of PMF MK differentiation and inhibition of PKCɛ-related anti-apoptotic signaling (Bcl-xL). Our data suggest that targeting PKCɛ directly affects the PMF neoplastic clone and represent a proof-of-concept for PKCɛ inhibition as a novel therapeutic strategy in PMF.

  14. JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.

    Science.gov (United States)

    Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane

    2014-09-25

    Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.

  15. Use of green fluorescent fusion protein to track activation of the transcription factor osterix during early osteoblast differentiation

    International Nuclear Information System (INIS)

    Tai Guangping; Christodoulou, Ioannis; Bishop, Anne E.; Polak, Julia M.

    2005-01-01

    Osterix (Osx) is a transcription factor required for the differentiation of preosteoblasts into fully functioning osteoblasts. However, the pattern of Osx activation during preosteoblast differentiation and maturation has not been clearly defined. Our aim was to study Osx activation during these processes in osteoblasts differentiating from murine and human embryonic stem cells (ESC). To do this, we constructed an Osx-GFP fusion protein reporter system to track Osx translocation within the cells. The distribution of Osx-GFP at representative stages of differentiation was also investigated by screening primary osteoblasts, mesenchymal stem cells, synoviocytes, and pre-adipocytes. Our experiments revealed that Osx-GFP protein was detectable in the cytoplasm of cultured, differentiated ESC 4 days after plating of enzymatically dispersed embryoid bodies. Osterix-GFP protein became translocated into the nucleus on day 7 following transfer of differentiated ESC to osteogenic medium. After 14 days of differentiation, cells showing nuclear translocation of Osx-GFP formed rudimentary bone nodules that continued to increase in number over the following weeks (through day 21). We also found that Osx translocated into the nuclei of mesenchymal stem cells (C3H10T1/2) and pre-osteoblasts (MC3T3-E1) and showed partial activation in pre-adipocytes (MC3T3-L1). These data suggest that Osx activation occurs at a very early point in the differentiation of the mesenchymal-osteoblastic lineage

  16. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-03-01

    Full Text Available Chen Chen,1 Li-Guo Zhang,1 Jian Liu,1 Hui Han,1 Ning Chen,1 An-Liang Yao,1 Shao-San Kang,1 Wei-Xing Gao,1 Hong Shen,2 Long-Jun Zhang,1 Ya-Peng Li,1 Feng-Hong Cao,1 Zhi-Guo Li3 1Department of Urology, North China University of Science and Technology Affiliated Hospital, 2Department of Modern Technology and Education Center, 3Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China Abstract: We mined the literature for proteomics data to examine the occurrence and metastasis of prostate cancer (PCa through a bioinformatics analysis. We divided the differentially expressed proteins (DEPs into two groups: the group consisting of PCa and benign tissues (P&b and the group presenting both high and low PCa metastatic tendencies (H&L. In the P&b group, we found 320 DEPs, 20 of which were reported more than three times, and DES was the most commonly reported. Among these DEPs, the expression levels of FGG, GSN, SERPINC1, TPM1, and TUBB4B have not yet been correlated with PCa. In the H&L group, we identified 353 DEPs, 13 of which were reported more than three times. Among these DEPs, MDH2 and MYH9 have not yet been correlated with PCa metastasis. We further confirmed that DES was differentially expressed between 30 cancer and 30 benign tissues. In addition, DEPs associated with protein transport, regulation of actin cytoskeleton, and the extracellular matrix (ECM–receptor interaction pathway were prevalent in the H&L group and have not yet been studied in detail in this context. Proteins related to homeostasis, the wound-healing response, focal adhesions, and the complement and coagulation pathways were overrepresented in both groups. Our findings suggest that the repeatedly reported DEPs in the two groups may function as potential biomarkers for detecting PCa and predicting its aggressiveness. Furthermore

  17. Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin.

    Science.gov (United States)

    Kumar, Raj; Kukreja, Roshan V; Cai, Shuowei; Singh, Bal R

    2014-06-01

    Botulinum neurotoxins (BoNTs) are proteins of great interest not only because of their extreme toxicity but also paradoxically for their therapeutic applications. All the known serotypes (A-G) have varying degrees of longevity and potency inside the neuronal cell. Differential chemical modifications such as phosphorylation and ubiquitination have been suggested as possible mechanisms for their longevity, but the molecular basis of the longevity remains unclear. Since the endopeptidase domain (light chain; LC) of toxin apparently survives inside the neuronal cells for months, it is important to examine the structural features of this domain to understand its resistance to intracellular degradation. Published crystal structures (both botulinum neurotoxins and endopeptidase domain) have not provided adequate explanation for the intracellular longevity of the domain. Structural features obtained from spectroscopic analysis of LCA and LCB were similar, and a PRIME (PReImminent Molten Globule Enzyme) conformation appears to be responsible for their optimal enzymatic activity at 37°C. LCE, on the other hand, was although optimally active at 37°C, but its active conformation differed from the PRIME conformation of LCA and LCB. This study establishes and confirms our earlier finding that an optimally active conformation of these proteins in the form of PRIME exists for the most poisonous poison, botulinum neurotoxin. There are substantial variations in the structural and functional characteristics of these active molten globule related structures among the three BoNT endopeptidases examined. These differential conformations of LCs are important in understanding the fundamental structural features of proteins, and their possible connection to intracellular longevity could provide significant clues for devising new countermeasures and effective therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools.

    Science.gov (United States)

    Rasinger, J D; Marbaix, H; Dieu, M; Fumière, O; Mauro, S; Palmblad, M; Raes, M; Berntssen, M H G

    2016-09-16

    The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥133°C, at 3bar for 20min) protein feed ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The differential role of cortical protein synthesis in taste memory formation and persistence

    Science.gov (United States)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  20. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2012-09-01

    Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

  1. Differentially expressed proteins on postoperative 3 days healing in rabbit Achilles tendon rupture model after early kinesitherapy.

    Science.gov (United States)

    Jialili, Ainuer; Jielile, Jiasharete; Abudoureyimu, Shajidan; Sabirhazi, Gulnur; Redati, Darebai; Bai, Jing-Ping; Bin, Liang; Duisabai, Sailike; Aishan, Jiangaguli; Kasimu, Haxiaobieke

    2011-04-01

    Surgical repair of Achilles tendon (AT) rupture should immediately be followed by active tendon mobilization. The optimal time as to when the mobilization should begin is important yet controversial. Early kinesitherapy leads to reduced rehabilitation period. However, an insight into the detailed mechanism of this process has not been gained. Proteomic technique can be used to separate and purify the proteins by differential expression profile which is related to the function of different proteins, but research in the area of proteomic analysis of AT 3 days after repair has not been studied so far. Forty-seven New Zealand white rabbits were randomized into 3 groups. Group A (immobilization group, n equal to 16) received postoperative cast immobilization; Group B (early motion group, n equal to 16) received early active motion treatments immediately following the repair of AT rupture from tenotomy. Another 15 rabbits served as control group (Group C). The AT samples were prepared 3 days following the microsurgery. The proteins were separated employing two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). PDQuest software version 8.0 was used to identify differentially expressed proteins, followed by peptide mass fingerprint (PMF) and tandem mass spectrum analysis, using the National Center for Biotechnology Information (NCBI) protein database retrieval and then for bioinformatics analysis. A mean of 446.33, 436.33 and 462.67 protein spots on Achilles tendon samples of 13 rabbits in Group A, 14 rabbits in Group B and 13 rabbits in Group C were successfully detected in the 2D-PAGE. There were 40, 36 and 79 unique proteins in Groups A, B and C respectively. Some differentially expressed proteins were enzyme with the gel, matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We successfully identified 9 and 11 different proteins in Groups A and B, such as GAPDH, phosphoglycerate kinase 1, pro-alpha-1 type 1 collagen

  2. Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV core DII protein.

    Directory of Open Access Journals (Sweden)

    Rodney K Lyn

    Full Text Available Host cell lipid droplets (LD are essential in the hepatitis C virus (HCV life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein's lipid binding domain II (DII-core induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV.

  3. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-09-01

    Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.

  4. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  5. Induction of DNA damage in γ-irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation

    International Nuclear Information System (INIS)

    Xue, L.-Y.; Friedman, L.R.; Oleinick, N.L.; Chiu, S.-M.

    1994-01-01

    The influence of chromatin proteins on the induction of DNA double-strand breaks (dsb) and DNA-protein crosslinks (dpc) by γ-radiation was investigated. Low molecular weight non-histone proteins and classes of histones were extracted with increasing concentrations of NaC1, whereas nuclear matrix proteins were not extractable even by 2.0 M NACl. The yield of dsb increased with progressive removal of proteins from chromatin. The data support our previous conclusion that nuclear matrix protein rather than the majority of the histones are the predominant substrates for dpc production, although the involvement of a subset of tightly bound histones (H3 and H4) has not been excluded. This finding demonstrates that chromatin proteins can differentially modify the yield of two types of radiation-induced DNA lesions. (author)

  6. Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor.

    Directory of Open Access Journals (Sweden)

    Véronique Bertrand-Vallery

    Full Text Available BACKGROUND: Repeated exposures to UVB of human keratinocytes lacking functional p16(INK-4a and able to differentiate induce an alternative state of differentiation rather than stress-induced premature senescence. METHODOLOGY/PRINCIPAL FINDINGS: A 2D-DIGE proteomic profiling of this alternative state of differentiation was performed herein at various times after the exposures to UVB. Sixty-nine differentially abundant protein species were identified by mass spectrometry, many of which are involved in keratinocyte differentiation and survival. Among these protein species was TRIpartite Motif Protein 29 (TRIM29. Increased abundance of TRIM29 following UVB exposures was validated by Western blot using specific antibody and was also further analysed by immunochemistry and by RT-PCR. TRIM29 was found very abundant in keratinocytes and reconstructed epidermis. Knocking down the expression of TRIM29 by short-hairpin RNA interference decreased the viability of keratinocytes after UVB exposure. The abundance of involucrin mRNA, a marker of late differentiation, increased concomitantly. In TRIM29-knocked down reconstructed epidermis, the presence of picnotic cells revealed cell injury. Increased abundance of TRIM29 was also observed upon exposure to DNA damaging agents and PKC activation. The UVB-induced increase of TRIM29 abundance was dependent on a PKC signaling pathway, likely PKCdelta. CONCLUSIONS/SIGNIFICANCE: These findings suggest that TRIM29 allows keratinocytes to enter a protective alternative differentiation process rather than die massively after stress.

  7. Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik Halavaty, Katarina; Regan, Jennifer; Mehta, Kavi; Laimins, Laimonis, E-mail: l-laimins@northwestern.edu

    2014-03-15

    Human papillomaviruses (HPV) infect stratified epithelia and link their life cycles to epithelial differentiation. The HPV E5 protein plays a role in the productive phase of the HPV life cycle but its mechanism of action is still unclear. We identify a new binding partner of E5, A4, using a membrane-associated yeast-two hybrid system. The A4 protein co-localizes with HPV 31 E5 in perinuclear regions and forms complexes with E5 and Bap31. In normal keratinocytes, A4 is found primarily in basal cells while in HPV positive cells high levels of A4 are seen in both undifferentiated and differentiated cells. Reduction of A4 expression by shRNAs, enhanced HPV genome amplification and increased cell proliferation ability following differentiation but this was not seen in cells lacking E5. Our studies suggest that the A4 protein is an important E5 binding partner that plays a role in regulating cell proliferation ability upon differentiation. - Highlights: • A4 associates with HPV 31 E5 proteins. • A4 is localized to endoplasmic reticulum. • HPV proteins induce A4 expression in suprabasal layers of stratified epithelium. • E5 is important for proliferation ability of differentiating HPV positive cells.

  8. Selective solubilization of membrane proteins differentially labeled by p-chloromercuribenzenesulfonic acid in the presence of sucrose

    International Nuclear Information System (INIS)

    M'Batchi, B.; Pichelin, D.; Delrot, S.

    1987-01-01

    Broadbean (Vicia faba L.) leaf discs have been incubated with the slowly permeant thiol reagent [ 203 Hg]-para-chloromercuribenzenesulfonic acid (PCMBS) in the presence or in the absence of sucrose, and the release of PCMBS-labeled proteins has been monitored in media containing various concentrations of urea, ethylene glycol-bis-(β-aminoethyl ether)-N, N, N', N'-tetraacetic acid (EGTA), sodium cholate, sodium dodecyl sulfate, Triton X-100, octylglucoside or (3-[3-cholamidopropyl)-dimethylammonio] 1-propane-sulfonate)(CHAPS). The proteins differentially labeled by PCMBS in the presence of sucrose which, on the basis of previous results, are assumed to included the sucrose carrier, were preferentially solubilized by 1% CHAPS, 1% octylglucoside, or 1% Triton X-100. Other PCMBS-labeled proteins (background proteins) could be partially removed by EGTA, urea, or 0.1% cholate. Sequential treatment by 10 mM EGTA and 1% CHAPS was found to give a fraction highly enriched in the differentially labeled proteins. Analysis of the specific activity of microsomal pellets suggests that the results obtained with leaf discs give a good account of what is occurring at the plasma membrane level. These data, which suggest that the proteins differentially labeled, by PCMBS in the presence of sucrose are intrinsic membrane proteins, can be used to solubilize these proteins from microsomal fractions

  9. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    Science.gov (United States)

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  10. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway.

    Science.gov (United States)

    Abdallah, Basem M; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-05-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Megan R.; Liu, Gai; Mire, Chad E.; Sureshchandra, Suhas; Luthra, Priya; Yen, Benjamin; Shabman, Reed S.; Leung, Daisy W.; Messaoudi, Ilhem; Geisbert, Thomas W.; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-02-11

    Suppression of innate immune responses during filoviral infection contributes to disease severity. Ebola (EBOV) and Marburg (MARV) viruses each encode a VP35 protein that suppresses RIG-I-like receptor signaling and interferon-α/β (IFN-α/β) production by several mechanisms, including direct binding to double stranded RNA (dsRNA). Here, we demonstrate that in cell culture, MARV infection results in a greater upregulation of IFN responses as compared to EBOV infection. This correlates with differences in the efficiencies by which EBOV and MARV VP35s antagonize RIG-I signaling. Furthermore, structural and biochemical studies suggest that differential recognition of RNA elements by the respective VP35 C-terminal IFN inhibitory domain (IID) rather than affinity for RNA by the respective VP35s is critical for this observation. Our studies reveal functional differences in EBOV versus MARV VP35 RNA binding that result in unexpected differences in the host response to deadly viral pathogens.

  12. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  13. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins during ex vivo Osteoblast Differentiation of Human Stromal Stem Cells

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Chen, Li; Nielsen, Maria Overbeck

    2012-01-01

    , is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC...... the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate...... regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated...

  14. Differential 3’ processing of specific transcripts expands regulatory and protein diversity across neuronal cell types

    Science.gov (United States)

    Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E

    2018-01-01

    Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408

  15. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  17. Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.

    Science.gov (United States)

    Su, S; Bird, R C

    1995-09-15

    A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed

  18. Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Yoshitaka Sunami

    Full Text Available Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia-retinoic acid receptor α (PML-RAR-α stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.

  19. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  20. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR γ ) and CCAAT element binding protein α (C/EBP α ), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  1. Complexes of γ-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells

    International Nuclear Information System (INIS)

    Kukharskyy, Vitaliy; Sulimenko, Vadym; Macurek, Libor; Sulimenko, Tetyana; Draberova, Eduarda; Draber, Pavel

    2004-01-01

    Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that γ-tubulin (γ-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, γ-tubulin, and with anti-phosphotyrosine antibody revealed that γ-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in γ-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated γ-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing γ-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of γ-tubulin interaction with tubulin dimers or other proteins during neurogenesis

  2. Nicotinic Acid Increases Adiponectin Secretion from Differentiated Bovine Preadipocytes through G-Protein Coupled Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Christina Kopp

    2014-11-01

    Full Text Available The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001 and the mRNA abundances of GPR109A (p ≤ 0.05 and chemerin (p ≤ 0.01. Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001. The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.

  3. Machine learning can differentiate venom toxins from other proteins having non-toxic physiological functions

    Directory of Open Access Journals (Sweden)

    Ranko Gacesa

    2016-10-01

    Full Text Available Ascribing function to sequence in the absence of biological data is an ongoing challenge in bioinformatics. Differentiating the toxins of venomous animals from homologues having other physiological functions is particularly problematic as there are no universally accepted methods by which to attribute toxin function using sequence data alone. Bioinformatics tools that do exist are difficult to implement for researchers with little bioinformatics training. Here we announce a machine learning tool called ‘ToxClassifier’ that enables simple and consistent discrimination of toxins from non-toxin sequences with >99% accuracy and compare it to commonly used toxin annotation methods. ‘ToxClassifer’ also reports the best-hit annotation allowing placement of a toxin into the most appropriate toxin protein family, or relates it to a non-toxic protein having the closest homology, giving enhanced curation of existing biological databases and new venomics projects. ‘ToxClassifier’ is available for free, either to download (https://github.com/rgacesa/ToxClassifier or to use on a web-based server (http://bioserv7.bioinfo.pbf.hr/ToxClassifier/.

  4. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    Science.gov (United States)

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  5. CCAAT/Enhancer Binding Protein β Regulates Expression of Indian Hedgehog during Chondrocytes Differentiation

    Science.gov (United States)

    Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Ishihara, Kohei; Doi, Toshio; Iwamoto, Yukihide

    2014-01-01

    Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh) also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2) was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation. Methodology/Results Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between −214 and −210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression. Conclusions C

  6. CCAAT/enhancer binding protein β regulates expression of Indian hedgehog during chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Takahiro Ushijima

    Full Text Available CCAAT/enhancer binding protein β (C/EBPβ is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2 was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation.Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between -214 and -210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA and a chromatin immunoprecipitation (ChIP assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression.C/EBPβ and RUNX2 cooperatively stimulate

  7. Study on proliferation and differentiation mechanisms in tree cells mediated by protein phosphorylation

    International Nuclear Information System (INIS)

    Nishiguchi, Mitsuru; Kadozono, Toshiro; Yokota, Satoru; Yoshida, Kazumasa; Ishii, Katsuaki; Mori, Takeshi

    2000-01-01

    Characterization of protein phosphorylase family was made using radiolabeled compounds to elucidate the regulation mechanisms of cell proliferation and differentiation. Poplar tree, Populus nigra var. italica was used as a woody plant model. For gene cloning of enzymes for protein phosphorylation (PP), RNA was extracted from the shoot and bud of the plant by SDS-phenol method and CTAB method, respectively and λZAPII library was constructed by synthesizing cDNA for each RNA extract. Three kinds of full-length cDNA for PP enzymes were obtained to the present. The gene selected from shoot DNA library was composed of 2356 bp and included an open reading frame corresponding to the length of 676 amino acids. At the amino-terminal end, a domain of which 35% was homologous to that of beam lectin. Since lectin generally binds a specific sugar ligand, the presence of homologous region suggests that the PP enzyme might produce a sugar-binding complex besides its homodimer or heterodimer and also the PP enzyme might localize on cell membrane. On the other hand, two PP enzymes were cloned from the bud cDNA library. This cDNA consisted of 1658 and 1685 bp coding 405 and 406 amino acids of ORF, respectively. The homology between these two PP enzymes was so high as 87%. Therefore, these proteins were thought to have some important functions in cytoplasm. Moreover, some cell lines were established from aseptic poplar organ culture to use for RI labeling in a closed system. The number of culture cells increased rapidly after two days from the passage, whereas the wet weight of culture cells increased in a period from 8 days to 12 days after the passage. Thus, it was thought that the time for RI addition into culture medium should be carefully chosen. (M.N.)

  8. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Dipto

    2012-05-01

    Full Text Available Abstract Background Podophyllotoxin (PTOX, the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA elicitation. High-resolution two-dimensional gel electrophoresis (2-DE followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell’s proteome. Result The HPLC analysis showed approximately 7–8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed. Conclusions Elicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level.

  9. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh1[OPEN

    Science.gov (United States)

    Wang, Lun; Deng, Xiuxin

    2015-01-01

    Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast

  11. Identification of differentially expressed proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53

    DEFF Research Database (Denmark)

    Honoré, Bent; Buus, Søren; Claësson, Mogens H

    2008-01-01

    ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two-dimensiona......ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two...... alpha type 3, transforming acidic coiled-coil containing protein 3, mitochondrial ornithine aminotransferase and epidermal fatty acid binding protein and down-regulation of adenylosuccinate synthetase, tubulin beta-3 chain, a 25 kDa actin fragment, proteasome subunit beta type 9, cofilin-1 and glia...

  12. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    International Nuclear Information System (INIS)

    Wang Liu; Zheng Aihua; Yi Ling; Xu Chongren; Ding Mingxiao; Deng Hongkui

    2004-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation

  13. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Min Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Mun, Ji-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kwon, Ohsuk [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kwon, Ki-Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Oh, Doo-Byoung, E-mail: dboh@kribb.re.kr [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  14. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    International Nuclear Information System (INIS)

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-01-01

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method

  15. Rare sugar D-allose strongly induces thioredoxin-interacting protein and inhibits osteoclast differentiation in Raw264 cells.

    Science.gov (United States)

    Yamada, Kana; Noguchi, Chisato; Kamitori, Kazuyo; Dong, Youyi; Hirata, Yuko; Hossain, Mohammad A; Tsukamoto, Ikuko; Tokuda, Masaaki; Yamaguchi, Fuminori

    2012-02-01

    Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function

  16. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P; Jäkel, Martin; Soeters, Peter B

    2005-05-01

    Dietary protein quality is considered to be dependent on the degree and velocity with which protein is digested, absorbed as amino acids, and retained in the gut as newly synthesized protein. Metabolic animal studies suggest that the quality of soy protein is inferior to that of casein protein, but confirmatory studies in humans are lacking. The study objective was to assess the quality of casein and soy protein by comparing their metabolic effects in healthy human subjects. Whole-body protein kinetics, splanchnic leucine extraction, and urea production rates were measured in the postabsorptive state and during 8-h enteral intakes of isonitrogenous [0.42 g protein/(kg body weight . 8 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope techniques were used to study metabolic effects. With enteral food intake, protein metabolism changed from net protein breakdown to net protein synthesis. Net protein synthesis was greater in the CAPM group than in the SOPM group [52 +/- 14 and 17 +/- 14 nmol/(kg fat-free mass (FFM) . min), respectively; P CAPM (P = 0.07). Absolute splanchnic extraction of leucine was higher in the subjects that consumed CAPM [306 +/- 31 nmol/(kg FFM . min)] vs. those that consumed SOPM [235 +/- 29 nmol/(kg FFM . min); P < 0.01]. In conclusion, a significantly larger portion of soy protein is degraded to urea, whereas casein protein likely contributes to splanchnic utilization (probably protein synthesis) to a greater extent. The biological value of soy protein must be considered inferior to that of casein protein in humans.

  17. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim

    Full Text Available Outer membrane (OM proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  18. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Science.gov (United States)

    Ibrahim, Muhammad; Shi, Yu; Qiu, Hui; Li, Bin; Jabeen, Amara; Li, Liping; Liu, He; Kube, Michael; Xie, Guanlin; Wang, Yanli; Blondel, Carlos; Santiviago, Carlos A; Contreras, Ines; Sun, Guochang

    2012-01-01

    Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  19. Potential biological process of X-linked inhibitor of apoptosis protein in renal cell carcinoma based upon differential protein expression analysis.

    Science.gov (United States)

    Chen, Chao; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the IAP family and is a potent inhibitor of the caspase/apoptosis pathway. It has also been revealed that XIAP has additional biological functions that rely on its direct inhibition of apoptosis. In the present study, stably transfected Caki-1 cells with XIAP-knockdown were generated, and an isobaric tag for relative and absolute quantitation-based proteomics approach was employed to investigate the regulatory mechanism of XIAP in renal cell carcinoma (RCC). The results demonstrate that the sensitivity of the RCC cell line to apoptotic stimulation increased markedly with XIAP-knockdown. A number of differentially expressed proteins were detected between the original Caki-1 cell line and the XIAP-knockdown Caki-1 cell line; 87 at 0 h (prior to etoposide treatment), 178 at 0.5 h and 169 at 3 h, while no differentially expressed proteins were detected (ratio >1.5 or <0.5; P<0.05) at 12 h after etoposide treatment. Through analysis of the differentially expressed proteins, it was revealed that XIAP may participate in the tumor protein p53 pathway, the Wnt signaling pathway, glucose metabolism, endoplasmic reticulum stress, cytoskeletal regulation and DNA repair. These results indicate that XIAP may have a number of biological functions and may provide an insight into the biomedical significance of XIAP overexpression in RCC.

  20. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy.

    Science.gov (United States)

    Li, Jiajia; Ding, Xianlong; Han, Shaohuai; He, Tingting; Zhang, Hao; Yang, Longshu; Yang, Shouping; Gai, Junyi

    2016-04-14

    To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean

  1. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    Science.gov (United States)

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  2. Yes-Associated Protein Expression Is Correlated to the Differentiation of Prostate Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Myung-Giun Noh

    2017-07-01

    Full Text Available Background Yes-associated protein (YAP in the Hippo signaling pathway is a growth control pathway that regulates cell proliferation and stem cell functions. Abnormal regulation of YAP was reported in human cancers including liver, lung, breast, skin, colon, and ovarian cancer. However, the function of YAP is not known in prostate adenocarcinoma. The purpose of this study was to investigate the role of YAP in tumorigenesis, differentiation, and prognosis of prostate adenocarcinoma. Methods The nuclear and cytoplasmic expression of YAP was examined in 188 cases of prostate adenocarcinoma using immunohistochemistry. YAP expression levels were evaluated in the nucleus and cytoplasm of the prostate adenocarcinoma and the adjacent normal prostate tissue. The presence of immunopositive tumor cells was evaluated and interpreted in comparison with the patients’ clinicopathologic data. Results YAP expression levels were not significantly different between normal epithelial cells and prostate adenocarcinoma. However, YAP expression level was significantly higher in carcinomas with a high Gleason grades (8–10 than in carcinomas with a low Gleason grades (6–7 (p < .01. There was no statistical correlation between YAP expression and stage, age, prostate-specific antigen level, and tumor volume. Biochemical recurrence (BCR–free survival was significantly lower in patients with high YAP expressing cancers (p = .02. However high YAP expression was not an independent prognostic factor for BCR in the Cox proportional hazards model. Conclusions The results suggested that YAP is not associated with prostate adenocarcinoma development, but it may be associated with the differentiation of the adenocarcinoma. YAP was not associated with BCR.

  3. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages.

    Directory of Open Access Journals (Sweden)

    Haijun Zhang

    Full Text Available There is emerging evidence identifying microRNAs (miRNAs as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1 in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30% by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122 and down-regulated (107 in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin. Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs.

  4. EFFECTS OF ATRAZINE AND AN ATRAZINE METABOLITE MIXTURE ON DIFFERENTIATED MAMMARY EPITHELIAL CELL MILK PROTEIN PRODUCTION IN CULTURE

    Science.gov (United States)

    Effects of Atrazine and an Atrazine Metabolite Mixture on Differentiated Mammary Epithelial Cell Milk Protein Production in CultureE.P. Hines, R. Barbee, M. Blanton, M.S. Pooler, and S.E. Fenton. US EPA, ORD/NHEERL, RTD, RTP, NC, 27711, USA.Previous studies have ...

  5. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    International Nuclear Information System (INIS)

    Cambier, Linda; Pomies, Pascal

    2011-01-01

    Highlights: → The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. → smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. → The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. → The LIM domain of smALP is essential for the nuclear accumulation of the protein. → smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  6. Inhibition of 3T3-L1 adipocyte differentiation by expression of acyl-CoA-binding protein antisense RNA

    DEFF Research Database (Denmark)

    Mandrup, S; Sorensen, R V; Helledie, T

    1998-01-01

    Several lines of evidence have recently underscored the significance of fatty acids or fatty acid-derived metabolites as signaling molecules in adipocyte differentiation. The acyl-CoA-binding protein (ACBP), which functions as an intracellular acyl-CoA pool former and transporter, is induced duri...

  7. Differential metabolism and leakage of protein in an inherited cataract and a normal lens cultured with ouabain

    International Nuclear Information System (INIS)

    Piatigorsky, J.; Fukui, H.N.; Kinoshita, J.H.

    1978-01-01

    Ocular lenses in Nakano mice showed marked changes in synthesis, degradation and leakage of protein during cataractogenesis. The cataract-associated changes included the differential lowering of crystalline synthesis, the cleavage of crystallin polypeptides to lower molecular weight forms and the leakage of crystallins from cultured lenses. Ouabain treatment of normal lenses induced these alterations, suggesting that changes in the intracellular levels of Na + and K + affect the anabolism and catabolism of protein during cataract formation. 35 S-methionine was used during the course of the experiments as a method of protein identification. (author)

  8. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns.

    Science.gov (United States)

    Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B

    2013-05-01

    Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 k

  9. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  10. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wenjuan; Huang, Hui; Wang, Yanfei [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wong, Tsz Yan [Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wang, C.C. [Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Leung, Lai K., E-mail: laikleung@cuhk.edu.hk [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)

    2013-06-01

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice.

  11. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    Science.gov (United States)

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    International Nuclear Information System (INIS)

    Tan, Wenjuan; Huang, Hui; Wang, Yanfei; Wong, Tsz Yan; Wang, C.C.; Leung, Lai K.

    2013-01-01

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice

  13. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation

    DEFF Research Database (Denmark)

    Foster, Leonard J; Zeemann, Patricia A; Li, Chen

    2005-01-01

    in a cell model of hMSCs established by overexpression of human telomerase reverse-transcriptase gene. We identified 463 unique proteins with extremely high confidence, including all known markers of hMSCs (e.g., SH3 [CD71], SH2 [CD105], CD166, CD44, Thy1, CD29, and HOP26 [CD63]) among 148 integral membrane...

  14. Differential effects of vasopressin and phenylephrine on protein kinase C-mediated protein phosphorylations in isolated hepatocytes

    International Nuclear Information System (INIS)

    Cooper, R.H.; Johanson, R.A.; Wiliamson, J.R.

    1986-01-01

    Receptor-mediated breakdown of inositol lipids produces two intracellular signals, diacylglycerol, which activates protein kinase C, and inositol trisphosphate, which causes release of intracellular vesicular Ca 2+ . This study examined the effects of Ca 2+ -ionophores, vasopressin, phenylephrine, and phorbol ester (PMA) on hepatocyte protein phosphorylations. [ 32 P] Phosphoproteins from hepatocytes prelabeled with 32 P were resolved by 2-dimensional SDS-PAGE and corresponding autoradiographs were quantitated by densitometric analysis. The phosphorylation of five proteins, a plasma membrane bound 16 kDa protein with pI 6.4, a cytosolic 16 kDa protein with pI 5.8, and proteins with Mr's of 36 kDa, 52 kDa, and 68 kDa, could be attributed to phosphorylation by protein kinase C since the phosphorylation was stimulated by PMA. When the vasopressin concentration was varied, low vasopressin stimulated the phosphorylation of only the membrane bound 16 kDa protein of the above set of proteins, while higher vasopressin concentrations were required to stimulate the phosphorylation of all five proteins. Phenylephrine, even at supramaximal concentrations, stimulated the phosphorylation of only the membrane bound 16 kDa protein. These results suggest that phenylephrine is a less potent activator of protein kinase C than vasopressin by virtue of limited or localized diacylglycerol production

  15. Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence.

    Science.gov (United States)

    Fang, Xiangling; Barbetti, Martin J

    2014-08-28

    This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  17. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  18. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    Science.gov (United States)

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  19. Differential downstream functions of protein kinase Ceta and -theta in EL4 mouse thymoma cells.

    Science.gov (United States)

    Resnick, M S; Kang, B S; Luu, D; Wickham, J T; Sando, J J; Hahn, C S

    1998-10-16

    Sensitive EL4 mouse thymoma cells (s-EL4) respond to phorbol esters with growth inhibition, adherence to substrate, and production of cytokines including interleukin 2. Since these cells express several of the phorbol ester-sensitive protein kinase C (PKC) isozymes, the function of each isozyme remains unclear. Previous studies demonstrated that s-EL4 cells expressed substantially more PKCeta and PKCtheta than did EL4 cells resistant to phorbol esters (r-EL4). To examine potential roles for PKCeta and PKCtheta in EL4 cells, wild type and constitutively active versions of the isozymes were transiently expressed using a Sindbis virus system. Expression of constitutively active PKCeta, but not PKCtheta, in s- and r-EL4 cells altered cell morphology and cytoskeletal structure in a manner similar to that of phorbol ester treatment, suggesting a role for PKCeta in cytoskeletal organization. Prolonged treatment of s-EL4 cells with phorbol esters results in inhibition of cell cycling along with a decreased expression of most of the PKC isozymes, including PKCtheta. Introduction of virally expressed PKCtheta, but not PKCeta, overcame the inhibitory effects of the prolonged phorbol ester treatment on cell cycle progression, suggesting a possible involvement of PKCtheta in cell cycle regulation. These results support differential functions for PKCeta and PKCtheta in T cell activation.

  20. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  1. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  2. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays

    Science.gov (United States)

    Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.

    2007-01-01

    Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592

  3. Differential protein expression using proteomics from a crustacean brine shrimp (Artemia sinica) under CO2-driven seawater acidification.

    Science.gov (United States)

    Chang, Xue-Jiao; Zheng, Chao-Qun; Wang, Yu-Wei; Meng, Chuang; Xie, Xiao-Lu; Liu, Hai-Peng

    2016-11-01

    Gradually increasing atmospheric CO 2 partial pressure (pCO 2 ) has caused an imbalance in carbonate chemistry and resulted in decreased seawater pH in marine ecosystems, termed seawater acidification. Anthropogenic seawater acidification is postulated to affect the physiology of many marine calcifying organisms. To understand the possible effects of seawater acidification on the proteomic responses of a marine crustacean brine shrimp (Artemia sinica) three groups of cysts were hatched and further raised in seawater at different pH levels (8.2 as control and 7.8 and 7.6 as acidification stress levels according to the predicted levels at the end of this century and next century, respectively) for 1, 7 and 14 days followed by examination of the protein expression changes via two-dimensional gel electrophoresis. Searches of protein databases revealed that 67 differential protein spots were altered due to lower pH level (7.6 and 7.8) stress in comparison to control groups (pH 8.2) by mass spectrometry. Generally, these differentially expressed proteins included the following: 1) metabolic process-related proteins involved in glycolysis and glucogenesis, nucleotide/amino acid/fatty acid metabolism, protein biosynthesis, DNA replication and apoptosis; 2) stress response-related proteins, such as peroxiredoxin, thioredoxin peroxidase, 70-kDa heat shock protein, Na/K ATPase, and ubiquinol-cytochrome c reductase; 3) immune defence-related proteins, such as prophenoloxidase and ferritin; 4) cytoskeletal-related proteins, such as myosin light chain, TCP1 subunit 2, tropomyosin and tubulin alpha chain; and 5) signal transduction-related proteins, such as phospholipase C-like protein, 14-3-3 zeta, translationally controlled tumour protein and RNA binding motif protein. Taken together, these data support the idea that CO 2 -driven seawater acidification may affect protein expression in the crustacean A. sinica and possibly also in other species that feed on brine shrimp in the

  4. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg lean...... body mass), or a non-caloric control after heavy resistance exercise on protein turnover and mRNA expressions of forkhead homeobox type O (FOXO) isoforms, muscle RING finger 1 (MuRF1), and Atrogin1 in young healthy males. Methods Protein turnover was determined by stable isotope-labeled leucine...

  5. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; Aluko, Rotimi E; Strappe, Padraig

    2015-10-15

    This study assessed the ability of canola protein isolate (CPI) and enzymatic hydrolysates (CPHs) to inhibit adipogenic differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro. Cell viability was maintained at concentrations of 60 μg/ml of sample. Cells treated with Alcalase hydrolysate demonstrated a higher reduction in anti-adipogenic differentiation through quantitation by oil-red O staining. qPCR analysis showed that CPI and CPH-treated cells significantly inhibited PPARγ expression, a key transcription factor involved in adipocyte differentiation, as evident in an ∼ 60-80% fold reduction of PPARγ mRNA. Immunofluorescence staining for PPARγ protein also showed a reduced expression in some treated cells when compared to differentiated untreated cells. The 50% inhibition concentration (IC50) of CPI, CPHs and their membrane ultrafiltration fractions on pancreatic lipase (PL) activity ranged between 0.75 and 2.5 mg/ml, (p < 0.05) for the hydrolysed and unhydrolysed samples. These findings demonstrate that CPI and CPHs contain bioactive components which can modulate in vitro adipocyte differentiation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Jia, Bingbing; Madsen, Lise; Petersen, Rasmus Koefoed

    2012-01-01

    ) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence......Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA...... results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells....

  7. The potential role of ribosomal protein S5 on cell cycle arrest and initiation of murine erythroleukemia cell differentiation.

    Science.gov (United States)

    Matragkou, Christina N; Papachristou, Eleni T; Tezias, Sotirios S; Tsiftsoglou, Asterios S; Choli-Papadopoulou, Theodora; Vizirianakis, Ioannis S

    2008-07-01

    Evidence now exists to indicate that some ribosomal proteins besides being structural components of the ribosomal subunits are involved in the regulation of cell differentiation and apoptosis. As we have shown earlier, initiation of erythroid differentiation of murine erythroleukemia (MEL) cells is associated with transcriptional inactivation of genes encoding ribosomal RNAs and ribosomal proteins S5 (RPS5) and L35a. In this study, we extended these observations and investigated whether transfection of MEL cells with RPS5 cDNA affects the onset of initiation of erythroid maturation and their entrance in cell cycle arrest. Stably transfected MEL cloned cells (MEL-C14 and MEL-C56) were established and assessed for their capacity to produce RPS5 RNA transcript and its translated product. The impact of RPS5 cDNA transfection on the RPS5 gene expression patterns and the accumulation of RPS5 protein in inducible transfected MEL cells were correlated with their ability to: (a) initiate differentiation, (b) enter cell cycle arrest at G(1)/G(0) phase, and (c) modulate the level of cyclin-dependent kinases CDK2, CDK4, and CDK6. The data presented indicate that deregulation of RPS5 gene expression (constitutive expression) affects RPS5 protein level and delays both the onset of initiation of erythroid maturation and entrance in cell cycle arrest in inducer-treated MEL cells. 2008 Wiley-Liss, Inc.

  8. Differential sensing using proteins: exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume.

    Science.gov (United States)

    Adams, Michelle M; Anslyn, Eric V

    2009-12-02

    There has been a growing interest in the use of differential sensing for analyte classification. In an effort to mimic the mammalian senses of taste and smell, which utilize protein-based receptors, we have introduced serum albumins as nonselective receptors for recognition of small hydrophobic molecules. Herein, we employ a sensing ensemble consisting of serum albumins, a hydrophobic fluorescent indicator (PRODAN), and a hydrophobic additive (deoxycholate) to detect terpenes. With the aid of linear discriminant analysis, we successfully applied our system to differentiate five terpenes. We then extended our terpene analysis and utilized our sensing ensemble for terpene discrimination within the complex mixtures found in perfume.

  9. Identification of differentially expressed proteins between human esophageal immortalized and carcinomatous cell lines by two-dimensional electrophoresis and MALDI-TOF-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Xing-Dong Xiong; Li-Yan Xu; Zhong-Ying Shen; Wei-Jia Cai; Jian-Min Luo; Ya-Li Han; En-Min Li

    2002-01-01

    AIM: To identify the differentially expressed proteins between the human immortalized esophageal epithelial cell line (SHEE) and the malignant transformed esophageal carcinoma cell line (SHEEC), and to explore new ways for studying esophageal carcinoma associated genes. METHODS: SHEE and SHEEC cell lines were used to separate differentially expressed proteins by two-dimensional electrophoresis/The silver-stained 2-D gels was scanned with EDAS290 digital camera system and analyzed with the PDQuest 6.2 Software. Six spots in which the differentially expressed protein was more obvious were selected and analyzed with matrix-assisted laser desorption/ionization time of flying mass spectrometry (MALDI-TOF-MS).RESULTS: There were 107±4.58 and 115±9.91 protein spots observed in SHEE and SHEEC respectively, and the majority of these spots between the two cell lines matched each other (r=-0.772), only a few were expressed differentially. After analyzed by MALDI-TOF-MS and database search for the six differentially expressed proteins, One new protein as well as other five sequence-known proteins including RNPEP-like protein, human rRNA gene upstream sequence binding transcription factor, uracil DNA glycosylase,Annexin A2 and p300/CBP-associated factor were preliminarily identified.CONCLUSION: These differentially expressed proteins might play an importance role during malignant transformation of SHEEC from SHEE. The identification of these proteins may serve as a new way for studying esophageal carcinoma associated genes.

  10. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Christian Konrad

    2010-04-01

    Full Text Available Controlled secretion of a protective extracellular matrix is required for transmission of the infective stage of a large number of protozoan and metazoan parasites. Differentiating trophozoites of the highly minimized protozoan parasite Giardia lamblia secrete the proteinaceous portion of the cyst wall material (CWM consisting of three paralogous cyst wall proteins (CWP1-3 via organelles termed encystation-specific vesicles (ESVs. Phylogenetic and molecular data indicate that Diplomonads have lost a classical Golgi during reductive evolution. However, neogenesis of ESVs in encysting Giardia trophozoites transiently provides basic Golgi functions by accumulating presorted CWM exported from the ER for maturation. Based on this "minimal Golgi" hypothesis we predicted maturation of ESVs to a trans Golgi-like stage, which would manifest as a sorting event before regulated secretion of the CWM. Here we show that proteolytic processing of pro-CWP2 in maturing ESVs coincides with partitioning of CWM into two fractions, which are sorted and secreted sequentially with different kinetics. This novel sorting function leads to rapid assembly of a structurally defined outer cyst wall, followed by slow secretion of the remaining components. Using live cell microscopy we find direct evidence for condensed core formation in maturing ESVs. Core formation suggests that a mechanism controlled by phase transitions of the CWM from fluid to condensed and back likely drives CWM partitioning and makes sorting and sequential secretion possible. Blocking of CWP2 processing by a protease inhibitor leads to mis-sorting of a CWP2 reporter. Nevertheless, partitioning and sequential secretion of two portions of the CWM are unaffected in these cells. Although these cysts have a normal appearance they are not water resistant and therefore not infective. Our findings suggest that sequential assembly is a basic architectural principle of protective wall formation and requires

  11. Lysosomes and unfolded protein response, determinants of differential resistance of melanoma cells to vinca alkaloids.

    Science.gov (United States)

    Vincent, Laure-Anais; Attaoua, Chaker; Bellis, Michel; Rozkydalova, Lucie; Hadj-Kaddour, Kamel; Vian, Laurence; Cuq, Pierre

    2015-04-01

    On account of its strong ability to become chemoresistant after a primary response to drugs, malignant melanoma (MM) remains a therapeutic challenge. This study focuses on acquired resistance to vinca alkaloids (VAs) using VA-resistant MM cell lines (CAL1R-VCR, CAL1R-VDS, and CAL1R-VRB), established by long-term continuous exposure of parental CAL1-wt cells to vincristine (VCR), vindesine (VDS), or vinorelbine (VRB), respectively. Transcriptomic profiling using rma and rdam methods led to distinguish two cell groups: CAL1R-VCR and CAL1R-VDS, CAL1R-VRB, and CAL1-wt. mgsa of the specifically altered genes in the first group evidenced the GO terms 'lysosomal lumen' and 'vacuolar lumen' linked to underexpressed genes, and 'endoplasmic reticulum (ER) stress response' associated with overexpressed genes. A specific reduction of lysosomal enzymes, independent of acidic vacuole organelle (AVO) turnover, was observed (LTG probe) in CAL1R-VCR and CAL1R-VDS cells. It was associated with the specific lowering of cathepsin B and L, known to be involved in the lysosomal pathway of apoptosis. Confirming gene profiling, the same groups (CAL1R-VCR and CAL1R-VDS, CAL1-wt and CAL1R-VRB) could be distinguished regarding the VA-mediated changes on mean size areas and on acidic compartment volumes. These two parameters were reduced in CAL1R-VCR and CAL1R-VDS cells, suggesting a smaller AVO accumulation and thus a reduced sensitivity to lysosomal membrane permeabilization-mediated apoptosis. In addition, 'ER stress response' inhibition by tauroursodeoxycholic acid induced a higher VA sensitization of the first cell group. In conclusion, lysosomes and unfolded protein response could be key determinants of the differential resistance of MM to VAs. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  12. Primary Screening for Proteins Differentially Expressed in the Myocardium of a Rat Model of Acute Methamphetamine Intoxication

    Directory of Open Access Journals (Sweden)

    Guoqiang Qu

    2016-01-01

    Full Text Available The mechanism of myocardial injury induced by the cardiovascular toxicity of methamphetamine (MA has been shown to depend on alterations in myocardial proteins caused by MA. Primary screening of the expression of myocardial proteins in a rat model of MA intoxication was achieved by combining two-dimensional electrophoresis and mass spectrometry analyses, which revealed a total of 100 differentially expressed proteins. Of these, 13 displayed significantly altered expression. Moreover, Western blotting and real-time reverse transcription quantitative polymerase chain reaction analyses of several relative proteins demonstrated that acute MA intoxication lowers protein expression and mRNA transcription of aldehyde dehydrogenase-2 and NADH dehydrogenase (ubiquinone 1 alpha subcomplex subunit 10. In contrast, MA intoxication elevated the protein expression and mRNA transcription of heat shock protein family B (small member 1. By combining behavioral assessments of experimental rat models with the histological and pathological changes evident in cardiomyocytes, a mechanism accounting for MA myocardial toxicity was suggested. MA alters the regulation of gene transcription and the subsequent expression of certain proteins that participate in myocardial respiration and in responding to oxidative stress, resulting in myocardial dysfunction and structural changes that affect the functioning of the cardiovascular system.

  13. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  14. Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Wu, Da-Wei; Chang, Wei-An; Liu, Kuan-Ting; Yen, Meng-Chi; Kuo, Po-Lin

    2017-09-01

    Pleural effusion is associated with multiple benign and malignant conditions. Currently no biomarkers differentiate malignant pleural effusion (MPE) and benign pleural effusion (BPE) sensitively and specifically. The present study identified a novel combination of biomarkers in pleural effusion for differentiating MPE from BPE by enrolling 75 patients, 34 with BPE and 41 with MPE. The levels of lactate dehydrogenase, glucose, protein, and total cell, neutrophil, monocyte and lymphocyte counts in the pleural effusion were measured. The concentrations of interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α, interferon γ, transforming growth factor-β1, colony stimulating factor 2, monocyte chemoattractant protein-1 and vascular endothelial growth factor (VEGF) were detected using cytometric bead arrays. Protein and VEGF levels differed significantly between patients with BPE and those with MPE. The optimal cutoff value of VEGF and protein was 214 pg/ml and 3.35 g/dl respectively, according to the receiver operating characteristic curve. A combination of VEGF >214 pg/ml and protein >3.35 g/dl in pleural effusion presented a sensitivity of 92.6% and an accuracy of 78.6% for MPE, but was not associated with a decreased survival rate. These results suggested that this novel combination strategy may provide useful biomarkers for predicting MPE and facilitating early diagnosis.

  15. Identification of differentially expressed reproductive and metabolic proteins in the female abalone (Haliotis laevigata) gonad following artificial induction of spawning.

    Science.gov (United States)

    Mendoza-Porras, Omar; Botwright, Natasha A; Reverter, Antonio; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2017-12-01

    Inefficient control of temperate abalone spawning prevents pair-wise breeding and production of abalone with highly marketable traits. Traditionally, abalone farmers have used a combination of UV irradiation and application of temperature gradients to the tank water to artificially induce spawning. Proteins are known to regulate crucial processes such as respiration, muscle contraction, feeding, growth and reproduction. Spawning as a pre-requisite of abalone reproduction is likely to be regulated, in part, by endogenous proteins. A first step in elucidating the mechanisms that regulate spawning is to identify which proteins are directly involved during spawning. The present study examined protein expression following traditional spawning induction in the Haliotis laevigata female. Gonads were collected from abalone in the following physiological states: (1) spawning; (2) post-spawning; and (3) failed-to-spawn. Differential protein abundance was initially assessed using two-dimensional difference in-gel electrophoresis coupled with mass spectrometry for protein identification. A number of reproductive proteins such as vitellogenin, vitelline envelope zona pellucida domain 29 and prohibitin, and metabolic proteins such as thioredoxin peroxidase, superoxide dismutase and heat shock proteins were identified. Differences in protein abundance levels between physiological states were further assessed using scheduled multiple reaction monitoring mass spectrometry. Positive associations were observed between the abundance of specific proteins, such as heat shock cognate 70 and peroxiredoxin 6, and the propensity or failure to spawn in abalone. These findings have contributed to better understand both the effects of oxidative and heat stress over abalone physiology and their influence on abalone spawning. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer

    DEFF Research Database (Denmark)

    Mollenhauer, J; Herbertz, S; Holmskov, U

    2000-01-01

    in the respiratory immune defense. Immunohistochemical analyses revealed that DMBT1 is produced by both tumor-associated macrophages and tumor cells and that it is deregulated in glioblastoma multiforme in comparison to normal brain tissue. Our data further suggest that the proteins CRP-ductin and hensin, both...... of which have been implicated in epithelial differentiation, are the DMBT1 orthologs in mice and rabbits, respectively. These findings and the spatial and temporal distribution of DMBT1 in fetal and adult epithelia suggest that DMBT1 further plays a role in epithelial development. Rearrangements of DMBT1......, DMBT1 is a gene that is highly unstable in cancer and encodes for a protein with at least two different functions, one in the immune defense and a second one in epithelial differentiation....

  17. Receptor-interacting Protein 140 Overexpression Promotes Neuro-2a Neuronal Differentiation by ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Xiao Feng

    2015-01-01

    Full Text Available Background: Abnormal neuronal differentiation plays an important role in central nervous system (CNS development abnormalities such as Down syndrome (DS, a disorder that results directly from overexpression of genes in trisomic cells. Receptor-interacting protein 140 (RIP140 is significantly upregulated in DS brains, suggesting its involvement in DS CNS development abnormalities. However, the role of RIP140 in neuronal differentiation is still not clear. The current study aimed to investigate the effect of RIP140 overexpression on the differentiation of neuro-2a (N2a neuroblastoma cells, in vitro. Methods: Stably RIP140-overexpressing N2a (N2a-RIP140 cells were used as a neurodevelopmental model, and were constructed by lipofection and overexpression validated by real-time polymerase chain reaction and Western blot. Retinoic acid (RA was used to stimulate N2a differentiation. Combining the expression of Tuj1 at the mRNA and protein levels, the percentage of cells baring neurites, and the number of neurites per cell body was semi-quantified to determine the effect of RIP140 on differentiation of N2a cells. Furthermore, western blot and the ERK1/2 inhibitor U0126 were used to identify the specific signaling pathway by which RIP140 induces differentiation of N2a cells. Statistical significance of the differences between groups was determined by one-way analysis of variance followed by the Dunnett test. Results: Compared to untransfected N2a cells RIPl40 expression in N2a-RIP140 cells was remarkably upregulated at both the mRNA and protein levels. N2a-RIP140 cells had a significantly increased percentage of cells baring neurites, and numbers of neurites per cell, as compared to N2a cells, in the absence and presence of RA (P < 0.05. In addition, Tuj1, a neuronal biomarker, was strongly upregulated in N2a-RIP140 cells (P < 0.05 and phosphorylated ERK1/2 (p-ERK1/2 levels in N2a-RIP140 cells were dramatically increased, while differentiation was

  18. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Kalume, Dario E; Blagoev, Blagoy

    2002-01-01

    molecules that have not been shown previously to be expressed differentially during the process of adipogenesis. Pigment epithelium-derived factor, a soluble molecule with potent antiangiogenic properties, was found to be highly secreted by preadipocytes but not adipocytes. Conversely, we found hippocampal...... cholinergic neurostimulating peptide, neutrophil gelatinase-associated lipocalin, and haptoglobin to be expressed highly by mature adipocytes. We also used liquid chromatography-based separation followed by automated tandem mass spectrometry to identify proteins secreted by mature adipocytes. Several...

  19. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  20. Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Robinson, Meghan; Chapani, Parv; Styan, Tara; Vaidyanathan, Ranjani; Willerth, Stephanie Michelle

    2016-08-01

    Pluripotent stem cells can become any cell type found in the body. Accordingly, one of the major challenges when working with pluripotent stem cells is producing a highly homogenous population of differentiated cells, which can then be used for downstream applications such as cell therapies or drug screening. The transcription factor Ascl1 plays a key role in neural development and previous work has shown that Ascl1 overexpression using viral vectors can reprogram fibroblasts directly into neurons. Here we report on how a recombinant version of the Ascl1 protein functionalized with intracellular protein delivery technology (Ascl1-IPTD) can be used to rapidly differentiate human induced pluripotent stem cells (hiPSCs) into neurons. We first evaluated a range of Ascl1-IPTD concentrations to determine the most effective amount for generating neurons from hiPSCs cultured in serum free media. Next, we looked at the frequency of Ascl1-IPTD supplementation in the media on differentiation and found that one time supplementation is sufficient enough to trigger the neural differentiation process. Ascl1-IPTD was efficiently taken up by the hiPSCs and enabled rapid differentiation into TUJ1-positive and NeuN-positive populations with neuronal morphology after 8 days. After 12 days of culture, hiPSC-derived neurons produced by Ascl1-IPTD treatment exhibited greater neurite length and higher numbers of branch points compared to neurons derived using a standard neural progenitor differentiation protocol. This work validates Ascl1-IPTD as a powerful tool for engineering neural tissue from pluripotent stem cells.

  1. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.; Anderson, G. A.; Smith, R. D.; Dabney, A. R.

    2012-01-01

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical MS-based proteomics datasets have substantial

  2. The polycomb group protein Suz12 is required for embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Hansen, Jacob Bo Højberg

    2007-01-01

    results in early lethality of mouse embryos. Here, we demonstrate that Suz12(-/-) mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12(-/-) ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation......-specific genes. Moreover, Suz12(-/-) ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which...... despite an increase in H3K27me3 levels is not always sufficient to prevent transcriptional activation. In summary, we demonstrate that Suz12 is required for the establishment of specific expression programs required for ES cell differentiation. Furthermore, we provide evidence that PcGs have different...

  3. Differential Synthesis in Vitro of Barley Aleurone and Starchy Endosperm Proteins

    DEFF Research Database (Denmark)

    Mundy, John; Hejgaard, Jørn; Hansen, Annette

    1986-01-01

    RNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA(3). B and C hordein polypeptides and the salt-soluble proteins beta-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2...

  4. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    Science.gov (United States)

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  5. ERK2 protein regulates the proliferation of human mesenchymal stem cells without affecting their mobilization and differentiation potential

    International Nuclear Information System (INIS)

    Carcamo-Orive, Ivan; Tejados, Naiara; Delgado, Jesus; Gaztelumendi, Ainhoa; Otaegui, David; Lang, Valerie; Trigueros, Cesar

    2008-01-01

    Human Mesenchymal Stem Cells (hMSC), derived mainly from adult bone marrow, are valuable models for the study of processes involved in stem cell self-renewal and differentiation. As the Extracellular signal-Regulated Kinase (ERK) signalling pathway is a major contributor to cellular growth, differentiation and survival, we have studied the functions of this kinase in hMSC activity. Ablation of ERK2 gene expression (but not ERK1) by RNA interference significantly reduced proliferation of hMSC. This reduction was due to a defect in Cyclin D1 expression and subsequent arrest in the G0/G1 phase of the cell cycle. hMSC growth is enhanced through culture medium supplementation with growth factors (GFs) such as Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF) or Epidermal Growth Factor (EGF). However, these supplements could not rescue the defect observed after ERK2 knockdown, suggesting a common signalling pathway used by these GFs for proliferation. In contrast, ERK1/2 may be dissociated from chemotactic signalling induced by the same GFs. Additionally, hMSCs were capable of differentiating into adipocytes even in the absence of either ERK1 or ERK2 proteins. Our data show that hMSCs do not require cell division to enter the adipogenic differentiation process, indicating that clonal amplification of these cells is not a critical step. However, cell-cell contact seems to be an essential requirement to be able to differentiate into mature adipocytes

  6. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  7. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins.

    Science.gov (United States)

    Verma, Pooja; Kaur, Harmeet; Petla, Bhanu Prakash; Rao, Venkateswara; Saxena, Saurabh C; Majee, Manoj

    2013-03-01

    PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.

  8. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori

    Science.gov (United States)

    Takiya, Shigeharu; Tsubota, Takuya; Kimoto, Mai

    2016-01-01

    The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP) axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp) directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM)-homeodomain transcriptional factor Arrowhead (Awh) regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins. PMID:29615585

  9. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Shigeharu Takiya

    2016-05-01

    Full Text Available The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM-homeodomain transcriptional factor Arrowhead (Awh regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins.

  10. High Concentrations of Angiopoietin-Like Protein 4 Detected in Serum from Patients with Rheumatoid Arthritis Can Be Explained by Non-Specific Antibody Reactivity

    OpenAIRE

    Makoveichuk, Elena; Ruge, Toralph; Nilsson, Solveig; S?dergren, Anna; Olivecrona, Gunilla

    2017-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is suggested to be a master regulator of plasma triglyceride metabolism. Our aim was to study whether the previously reported high levels of ANGPTL4 detected in serum from patients with rheumatoid arthritis (RA) by ELISA was due to any specific molecular form of this protein (oligomers, monomers or fragments). ANGPTL4 levels were first determined in serum from 68 RA patients and 43 age and sex matched control subjects and the mean values differed by a fac...

  11. Differential Mobility Spectrometry-Hydrogen Deuterium Exchange (DMS-HDX) as a Probe of Protein Conformation in Solution.

    Science.gov (United States)

    Zhu, Shaolong; Campbell, J Larry; Chernushevich, Igor; Le Blanc, J C Yves; Wilson, Derek J

    2016-06-01

    Differential mobility spectrometry (DMS) is an ion mobility technique that has been adopted chiefly as a pre-filter for small- to medium-sized analytes (DMS-field asymmetric waveform ion mobility spectroscopy (FAIMS)-the application of DMS to intact biomacromolecules remains largely unexplored. In this work, we employ DMS combined with gas-phase hydrogen deuterium exchange (DMS-HDX) to probe the gas-phase conformations generated from proteins that were initially folded, partially-folded, and unfolded in solution. Our findings indicate that proteins with distinct structural features in solution exhibit unique deuterium uptake profiles as function of their optimal transmission through the DMS. Ultimately we propose that DMS-HDX can, if properly implemented, provide rapid measurements of liquid-phase protein structural stability that could be of use in biopharmaceuticals development. Graphical Abstract ᅟ.

  12. Kazakh therapy on differential protein expression of Achilles tendon healing in a 7-day postoperative rabbit model.

    Science.gov (United States)

    Nuerai, Shawutali; Ainuer, Jialili; Jiasharete, Jielile; Darebai, Redati; Kayrat, Aldyarhan; Tang, Bin; Jiangannur, Zheyiken; Bai, Jingping; Makabel, Bolat

    2011-12-01

    To compare the effect of cast immobilization with that of early Kiymil arkili emdew (Kazakh exercise therapy) on the post-operative healing of Achilles tendon rupture in rabbits, and to observe the influence of early Kiymil arkili emdew on the differentially expressed proteins in the healing tendon. Forty-five New Zealand white rabbits were randomly divided into three groups (Arm A: control group; Arm B: postoperative immobilization group; and Arm C: postoperative early Kiymil arkili emdew group). After tenotomy, the rabbits of the two experimental groups received microsurgery to repair the ruptured tendons, and then received either cast immobilization or early Kiymil arkili emdew treatment. Achilles tendon tissue samples were collected 7 days after the surgery, and two-dimensional gel electrophoresis and MALDI-TOF-MS technique were used to analyze differentially expressed proteins in the tendon tissue of the three Arms. A total of 462.67 +/- 11.59, 532.33 +/- 27.79, and 515.33 +/- 6.56 protein spots were detected by the two-dimensional polyacrylamide gels in the Achilles tendon samples of the rabbits in Arms A, B, and C, respectively. Nineteen differentially expressed protein spots were randomly selected from Arm C. Among them, 7 were unique, and 15 had five times higher abundance than those in Arm B. These included annexin A2, gelsolin isoforms and alpha-1 Type III collagen. It was confirmed by western blot that gelsolin isoform b, annexin A2, etc. had specific and incremental expression in Arm C. The self-protective instincts of humans were overlooked in the classical postoperative treatment for Achilles tendon rupture with cast immobilization. Kiymil arkili emdew induced the specific and incremental expression of proteins in the repaired Achilles tendon in the early healing stage in a rabbit model, compared with those treated with postoperative cast immobilization. These differentially expressed proteins may contribute to the healing of the Achilles tendon via

  13. Differential metabolic effects of casein and soy protein meals on skeletal muscle in healthy volunteers.

    Science.gov (United States)

    Luiking, Yvette C; Engelen, Mariëlle P K J; Soeters, Peter B; Boirie, Yves; Deutz, Nicolaas E P

    2011-02-01

    Dietary protein intake is known to affect whole body and interorgan protein turnover. We examined if moderate-nitrogen and carbohydrate casein and soy meals have a different effect on skeletal muscle protein and amino acid kinetics in healthy young subjects. Muscle protein and amino acid kinetics were measured in the postabsorptive state and during 4-h enteral intake of isonitrogenous [0.21 g protein/(kg body weight. 4 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope and muscle biopsy techniques were used to study metabolic effects. The net uptake of glutamate, serine, histidine, and lysine across the leg was larger during CAPM than during SOPM intake. Muscle concentrations of glutamate, serine, histidine, glutamine, isoleucine and BCAA changed differently after CAPM and SOPM (P CAPM and SOPM, but differences in their (net) breakdown rates were not significant. Muscle protein synthesis was not different between CAPM and SOPM. Moderate-nitrogen casein and soy protein meals differently alter leg amino acid uptake without a significant difference in influencing acute muscle protein metabolism. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  15. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  16. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-09-01

    Full Text Available Hepatitis B virus (HBV core protein assembles viral pre-genomic (pg RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs and sulfamoylbenzamides (SBAs, have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  17. Identification of Differentially Expressed Proteins in Liver in Response to Subacute Ruminal Acidosis (SARA Induced by High-concentrate Diet

    Directory of Open Access Journals (Sweden)

    X. Y. Jiang

    2014-08-01

    Full Text Available The aim of this study was to evaluate protein expression patterns of liver in response to subacute ruminal acidosis (SARA induced by high-concentrate diet. Sixteen healthy mid-lactating goats were randomly divided into 2 groups and fed either a high-forage (HF diet or a high-concentrate (HC diet. The HC diet was expected to induce SARA. After ensuring the occurrence of SARA, liver samples were collected. Proteome analysis with differential in gel electrophoresis technology revealed that, 15 proteins were significantly modulated in liver in a comparison between HF and HC-fed goats. These proteins were found mainly associated with metabolism and energy transfer after identified by matrix-assisted laser desorption ionization/time of flight. The results indicated that glucose, lipid and protein catabolism could be enhanced when SARA occurred. It prompted that glucose, lipid and amine acid in the liver mainly participated in oxidation and energy supply when SARA occurred, which possibly consumed more precursors involved in milk protein and milk fat synthesis. These results suggest new candidate proteins that may contribute to a better understanding of the mechanisms that mediate liver adaptation to SARA.

  18. Differential effects of leucine and leucine-enriched whey protein on skeletal muscle protein synthesis in aged mice

    NARCIS (Netherlands)

    Dijk, Francina J.; Dijk, van Miriam; Walrand, Stéphane; Loon, van Luc J.C.; Norren, van Klaske; Luiking, Yvette C.

    2018-01-01

    Background & aims: It has been suggested that anabolic resistance, or a blunted protein synthetic response to anabolic stimuli, contributes to the failure of muscle mass maintenance in older adults. The amino acid leucine is one of the most prominent food-related anabolic stimuli. However, data

  19. Differential impact of respiratory syncytial virus and parainfluenza virus on the frequency of acute otitis media is explained by lower adaptive and innate immune responses in otitis-prone children.

    Science.gov (United States)

    Verhoeven, David; Xu, Qingfu; Pichichero, Michael E

    2014-08-01

    Acute otitis media (AOM) is a leading cause of bacterial pediatric infections associated with viral upper respiratory infections (URIs). We examined the differential impact of respiratory syncytial virus (RSV) and parainfluenza virus URIs on the frequency of AOM caused by Streptococcus pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi) in stringently defined otitis-prone (sOP) and non-otitis-prone (NOP) children as a potential mechanism to explain increased susceptibility to AOM. Peripheral blood and nasal washes were obtained from sOP and NOP children (n = 309). Colonization events and antiviral responses consisting of total specific immunoglobulin G (IgG) responses, neutralizing antibody responses, and T-cell responses were determined. Isolated neutrophils were infected with varying multiplicities of infection of both viruses, and opsonophagocytosis potential was measured. A significant increase was found in frequency of AOM events caused by Spn and NTHi, with a concurrent RSV infection in sOP children. These results correlated with diminished total RSV-specific IgG, higher viral nasal burdens, and lower IgG neutralizing capacity. The sOP children had diminished T-cell responses to RSV that correlated with lower Toll-like receptor 3/7 transcript and decreased expression of HLA-DR on antigen-presenting cells. RSV interfered with the Spn phagocytic capacity of neutrophils in a dose-dependent manner. Parainfluenza virus infections did not differentially affect AOM events in sOP and NOP children. Lower innate and adaptive immune responses to RSV in sOP children may slow the kinetics of viral clearance from the nasopharynx and allow for viral interference with antibacterial immune responses, thus contributing to increased frequency of AOMs. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Development of a lectin binding assay to differentiate between recombinant and endogenous proteins in pharmacokinetic studies of protein-biopharmaceuticals.

    Science.gov (United States)

    Weber, Alfred; Minibeck, Eva; Scheiflinger, Friedrich; Turecek, Peter L

    2015-04-10

    Human glycoproteins, expressed in hamster cell lines, show similar glycosylation patterns to naturally occurring human molecules except for a minute difference in the linkage of terminal sialic acid: both cell types lack α2,6-galactosyl-sialyltransferase, abundantly expressed in human hepatocytes and responsible for the α2,6-sialylation of circulating glycoproteins. This minute difference, which is currently not known to have any physiological relevance, was the basis for the selective measurement of recombinant glycoproteins in the presence of their endogenous counterparts. The assay is based on using the lectin Sambucus nigra agglutinin (SNA), selectively binding to α2,6-sialylated N-glycans. Using von Willebrand factor (VWF), factor IX (FIX), and factor VIIa (FVIIa), it was demonstrated that (i) the plasma-derived proteins, but not the corresponding recombinant proteins, specifically bind to SNA and (ii) this binding can be used to deplete the plasma-derived proteins. The feasibility of this approach was confirmed in spike-recovery studies for all three recombinant coagulation proteins in human plasma and for recombinant VWF (rVWF) in macaque plasma. Analysis of plasma samples from macaques after administration of recombinant and a plasma-derived VWF demonstrated the suitability and robustness of this approach. Data showed that rVWF could be selectively measured without changing the ELISAs and furthermore revealed the limitations of baseline adjustment using a single measurement of the predose concentration only. The SNA gel-based depletion procedure can easily be integrated in existing procedures as a specific sample pre-treatment step. While ELISA-based methods were used to measure the recombinant coagulation proteins in the supernatants obtained by depletion, this procedure is applicable for all biochemical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice.

    Science.gov (United States)

    Lombardo, Ylenia; Scopelliti, Alessandro; Cammareri, Patrizia; Todaro, Matilde; Iovino, Flora; Ricci-Vitiani, Lucia; Gulotta, Gaspare; Dieli, Francesco; de Maria, Ruggero; Stassi, Giorgio

    2011-01-01

    The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal cancer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immunoblot, and flow cytometry analyses. The potential therapeutic effect of BMP4 was assessed in immunocompromised mice after injection of CRC-SCs that responded to chemotherapy (n = 4) or that did not (n = 2). CRC-SCs did not express BMP4 whereas differentiated cells did. Recombinant BMP4 promoted differentiation and apoptosis of CRC-SCs in 12 of 15 independent experiments; this effect did not depend on Small Mothers against decapentaplegic (Smad)4 expression level or microsatellite stability. BMP4 activated the canonical and noncanonical BMP signaling pathways, including phosphoInositide 3-kinase (PI3K) and PKB (protein kinase B)/AKT. Mutations in PI3K or loss of Phosphatase and Tensin homolog (PTEN) in Smad4-defective tumors made CRC-SCs unresponsive to BMP4. Administration of BMP4 to immunocompromised mice with tumors that arose from CRC-SCs increased the antitumor effects of 5-fluorouracil and oxaliplatin. BMP4 promotes terminal differentiation, apoptosis, and chemosensitization of CRC-SCs in tumors that do not have simultaneous mutations in Smad4 and constitutive activation of PI3K. BMP4 might be developed as a therapeutic agent against cancer stem cells in advanced colorectal tumors. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Differential expression of mRNAs for protein kinase inhibitor isoforms in mouse brain.

    OpenAIRE

    Seasholtz, A F; Gamm, D M; Ballestero, R P; Scarpetta, M A; Uhler, M D

    1995-01-01

    Many neurotransmitters are known to regulate neuronal cell function by means of activation of cAMP-dependent protein kinase (PKA) and phosphorylation of neuronal substrate proteins, including transcription factors and ion channels. Here, we have characterized the gene expression of two isoforms of a protein kinase inhibitor (PKI) specific for PKA in mouse brain by RNase protection and in situ hybridization histochemistry. The studies demonstrate that the PKI alpha isoform is abundant in many ...

  3. Differential antigenic protein recovery from Taenia solium cyst tissues using several detergents.

    Science.gov (United States)

    Navarrete-Perea, José; Orozco-Ramírez, Rodrigo; Moguel, Bárbara; Sciutto, Edda; Bobes, Raúl J; Laclette, Juan P

    2015-07-01

    Human and porcine cysticercosis is caused by the larval stage of the flatworm Taenia solium (Cestoda). The protein extracts of T. solium cysts are complex mixtures including cyst's and host proteins. Little is known about the influence of using different detergents in the efficiency of solubilization-extraction of these proteins, including relevant antigens. Here, we describe the use of CHAPS, ASB-14 and Triton X-100, alone or in combination in the extraction buffers, as a strategy to notably increase the recovery of proteins that are usually left aside in insoluble fractions of cysts. Using buffer with CHAPS alone, 315 protein spots were detected through 2D-PAGE. A total of 255 and 258 spots were detected using buffers with Triton X-100 or ASB-14, respectively. More protein spots were detected when detergents were combined, i.e., 2% CHAPS, 1% Triton X-100 and 1% ASB-14 allowed detection of up to 368 spots. Our results indicated that insoluble fractions of T. solium cysts were rich in antigens, including several glycoproteins that were sensitive to metaperiodate treatment. Host proteins, a common component in protein extracts of cysts, were present in larger amounts in soluble than insoluble fractions of cysts proteins. Finally, antigens present in the insoluble fraction were more appropriate as a source of antigens for diagnostic procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    Science.gov (United States)

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  5. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus Fruit Peel in Response to Pre-storage Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2018-01-01

    Full Text Available Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs right after PsCA treatment and 23 after the following cold storage (PsCA+CS. These proteins are mainly related to stress response and defense (SRD, energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter

  6. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Evgenya Y.; Krauss, Sharon Wald; Short, Sarah A.; Lee, Gloria; Villalobos, Jonathan; Etzell, Joan; Koury, Mark J.; Ney, Paul A.; Chasis, Joel Anne; Grigoryev, Sergei A.

    2008-08-21

    Terminal erythroid differentiation in vertebrates is characterized by progressive heterochromatin formation, chromatin condensation and, in mammals, culminates in nuclear extrusion. To date, although mechanisms regulating avian erythroid chromatin condensation have been identified, little is known regarding this process during mammalian erythropoiesis. To elucidate the molecular basis for mammalian erythroblast chromatin condensation, we used Friend virus-infected murine spleen erythroblasts that undergo terminal differentiation in vitro. Chromatin isolated from early and late stage erythroblasts had similar levels of linker and core histones, only a slight difference in nucleosome repeats, and no significant accumulation of known developmentally-regulated architectural chromatin proteins. However, histone H3(K9) dimethylation markedly increased while histone H4(K12) acetylation dramatically decreased and became segregated from the histone methylation as chromatin condensed. One histone deacetylase, HDAC5, was significantly upregulated during the terminal stages of Friend virus-infected erythroblast differentiation. Treatment with histone deacetylase inhibitor, trichostatin A, blocked both chromatin condensation and nuclear extrusion. Based on our data, we propose a model for a unique mechanism in which extensive histone deacetylation at pericentromeric heterochromatin mediates heterochromatin condensation in vertebrate erythroblasts that would otherwise be mediated by developmentally-regulated architectural proteins in nucleated blood cells.

  7. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    Directory of Open Access Journals (Sweden)

    Elena Elizabeth Bagley

    2014-06-01

    Full Text Available Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1 currents in periaqueductal gray (PAG neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1

  8. Modulation of Signal Proteins: A Plausible Mechanism to Explain How a Potentized Drug Secale Cor 30C Diluted beyond Avogadro's Limit Combats Skin Papilloma in Mice.

    Science.gov (United States)

    Khuda-Bukhsh, Anisur Rahman; Bhattacharyya, Soumya Sundar; Paul, Saili; Dutta, Suman; Boujedaini, Naoual; Belon, Philippe

    2011-01-01

    In homeopathy, ability of ultra-high diluted drugs at or above potency 12C (diluted beyond Avogadro's limit) in ameliorating/curing various diseases is often questioned, particularly because the mechanism of action is not precisely known. We tested the hypothesis if suitable modulations of signal proteins could be one of the possible pathways of action of a highly diluted homeopathic drug, Secale cornutum 30C (diluted 10(60) times; Sec cor 30). It could successfully combat DMBA + croton oil-induced skin papilloma in mice as evidenced by histological, cytogenetical, immunofluorescence, ELISA and immunoblot findings. Critical analysis of several signal proteins like AhR, PCNA, Akt, Bcl-2, Bcl-xL, NF-κB and IL-6 and of pro-apoptotic proteins like cytochrome c, Bax, Bad, Apaf, caspase-3 and -9 revealed that Sec cor 30 suitably modulated their expression levels along with amelioration of skin papilloma. FACS data also suggested an increase of cell population at S and G2 phases and decrease in sub-G1 and G1 phages in carcinogen-treated drug-unfed mice, but these were found to be near normal in the Sec cor 30-fed mice. There was reduction in genotoxic and DNA damages in bone marrow cells of Sec Cor 30-fed mice, as revealed from cytogenetic and Comet assays. Changes in histological features of skin papilloma were noted. Immunofluorescence studies of AhR and PCNA also suggested reduced expression of these proteins in Sec cor 30-fed mice, thereby showing its anti-cancer potentials against skin papilloma. Furthermore, this study also supports the hypothesis that potentized homeopathic drugs act at gene regulatory level.

  9. Modulation of Signal Proteins: A Plausible Mechanism to Explain How a Potentized Drug Secale Cor 30C Diluted beyond Avogadro's Limit Combats Skin Papilloma in Mice

    Directory of Open Access Journals (Sweden)

    Anisur Rahman Khuda-Bukhsh

    2011-01-01

    Full Text Available In homeopathy, ability of ultra-high diluted drugs at or above potency 12C (diluted beyond Avogadro's limit in ameliorating/curing various diseases is often questioned, particularly because the mechanism of action is not precisely known. We tested the hypothesis if suitable modulations of signal proteins could be one of the possible pathways of action of a highly diluted homeopathic drug, Secale cornutum 30C (diluted 1060 times; Sec cor 30. It could successfully combat DMBA + croton oil-induced skin papilloma in mice as evidenced by histological, cytogenetical, immunofluorescence, ELISA and immunoblot findings. Critical analysis of several signal proteins like AhR, PCNA, Akt, Bcl-2, Bcl-xL, NF-κB and IL-6 and of pro-apoptotic proteins like cytochrome c, Bax, Bad, Apaf, caspase-3 and -9 revealed that Sec cor 30 suitably modulated their expression levels along with amelioration of skin papilloma. FACS data also suggested an increase of cell population at S and G2 phases and decrease in sub-G1 and G1 phages in carcinogen-treated drug-unfed mice, but these were found to be near normal in the Sec cor 30-fed mice. There was reduction in genotoxic and DNA damages in bone marrow cells of Sec Cor 30-fed mice, as revealed from cytogenetic and Comet assays. Changes in histological features of skin papilloma were noted. Immunofluorescence studies of AhR and PCNA also suggested reduced expression of these proteins in Sec cor 30-fed mice, thereby showing its anti-cancer potentials against skin papilloma. Furthermore, this study also supports the hypothesis that potentized homeopathic drugs act at gene regulatory level.

  10. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR.

    Directory of Open Access Journals (Sweden)

    Zhao Yang Wang

    Full Text Available Glucokinase (GCK plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity.GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified.GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard or mutated (mammals GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.

  11. Molecular Docking Explains Atomic Interaction between Plant-originated Ligands and Oncogenic E7 Protein of High Risk Human Papillomavirus Type 16

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2014-12-01

    Full Text Available Cervical cancer caused by Human papillomavirus (HPV is one of the leading causes of cancer mortality in women worldwide, particularly in the developing countries. In the last few decades, various compounds from plant origin such as Curcumin, Epigallocatechin gallate (EGCG, Jaceosidin, Resveratrol etc. have been used as anti cancer therapeutic agents. Different studies have shown these plant-originated compounds are able to suppress HPV infection. The E6 and E7 oncoproteins of high-risk HPV play a key role in HPV related cancers. In this study, we explored these ligands from plants origin against E7 oncoprotein of high risk HPV 16, which is known to inactivate tumor suppressor pRb protein. A robust homology model of HPV 16 E7 was built to foresee the interaction mechanism of E7 oncoprotein with these ligands using structure-based drug designing approach. Docking studies demonstrate the interaction of these ligands with pRb binding site of E7 protein by residues Tyr52, Asn53, Val55, Phe57, Cys59, Ser63, Thr64, Thr72, Arg77, Glu80 and Asp81 and help restoration of pRb functioning. This in silico based atomic interaction between these ligands and E7 protein may assist in validating the plant-originated ligands as effective drugs against HPV.

  12. Differential Protein Expression in Streptococcus uberis under Planktonic and Biofilm Growth Conditions ▿ †

    Science.gov (United States)

    Crowley, R. C.; Leigh, J. A.; Ward, P. N.; Lappin-Scott, H. M.; Bowler, L. D.

    2011-01-01

    The bovine pathogen Streptococcus uberis was assessed for biofilm growth. The transition from planktonic to biofilm growth in strain 0140J correlated with an upregulation of several gene products that have been shown to be important for pathogenesis, including a glutamine ABC transporter (SUB1152) and a lactoferrin binding protein (gene lbp; protein SUB0145). PMID:21075893

  13. Role of OCT-1 and partner proteins in T cell differentiation.

    Science.gov (United States)

    Hwang, Soo Seok; Kim, Lark Kyun; Lee, Gap Ryol; Flavell, Richard A

    2016-06-01

    The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells. Copyright © 2016. Published by Elsevier B.V.

  14. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity.

    Science.gov (United States)

    Caira, Simonetta; Iannelli, Antonio; Sciarrillo, Rosaria; Picariello, Gianluca; Renzone, Giovanni; Scaloni, Andrea; Addeo, Pietro

    2017-12-01

    The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.

  15. The Role of Protein Modifications of T-Bet in Cytokine Production and Differentiation of T Helper Cells

    Directory of Open Access Journals (Sweden)

    Sera Oh

    2014-01-01

    Full Text Available T-Bet (T-box protein expressed in T cells, also called as TBX21 was originally cloned as a key transcription factor involved in the commitment of T helper (Th cells to the Th1 lineage. T-Bet directly activates IFN-γ gene transcription and enhances development of Th1 cells. T-Bet simultaneously modulates IL-2 and Th2 cytokines in an IFN-γ-independent manner, resulting in an attenuation of Th2 cell development. Numerous studies have demonstrated that T-bet plays multiple roles in many subtypes of immune cells, including B cell, dendritic cells, natural killer (NK cells, NK T cells, and innate lymphoid cells. Therefore, T-bet is crucial for the development and coordination of both innate and adaptive immune responses. To fulfill these multiple roles, T-bet undergoes several posttranslational protein modifications, such as phosphorylation at tyrosine, serine, and threonine residues, and ubiquitination at lysine residues, which affect lineage commitment during Th cell differentiation. This review presents a current overview of the progress made in understanding the roles of various types of T-bet protein modifications in the regulation of cytokine production during Th cell differentiation.

  16. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Warzecha, Jörg; Göttig, Stephan; Brüning, Christian; Lindhorst, Elmar; Arabmothlagh, Mohammad; Kurth, Andreas

    2006-10-01

    Sonic hedgehog (Shh) protein is known to be an important signaling protein in early embryonic development. Also, Shh is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb and in the spine. The impact of Shh on adult stem cells, human bone marrow-derived mesenchymal stem cells (MSCs), was tested. The MSCs were treated either with recombinant Sonic hedgehog protein (r-Shh) or with transforming growth factor-beta 1 (TGF-beta(1)) as a positive control in vitro for 3 weeks. The effects on cartilaginous differentiation and proliferation were assayed. MSCs when treated with either Shh or TGF-beta(1) showed expression of cartilage markers aggrecan, Sox9, CEP-68, and collagen type II and X within 3 weeks. Only r-Shh-treated cells showed a very strong cell proliferation and much higher BrdU incorporation in cell assay systems. These are the first data that indicate an important role of Shh for the induction of cartilage production by MSCs in vitro.

  17. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  18. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah V Gerhart

    Full Text Available Connexins (Cx are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.

  19. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    International Nuclear Information System (INIS)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven

    2014-01-01

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro

  20. Differential protein expression of hepatic cells associated with MeHg exposure: deepening into the molecular mechanisms of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Cuello, Susana; Madrid, Yolanda; Luque-Garcia, Jose L.; Camara, Carmen [Complutense University of Madrid, Department of Analytical Chemistry, Faculty of Chemistry, Madrid (Spain); Ramos, Sonia [Institute of Food Science, Technology and Nutrition, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain)

    2012-08-15

    Understanding the molecular mechanisms underlying MeHg toxicity and the way in which this molecule interacts with living organisms is a critical point since MeHg represents a well-known risk to ecosystems and human health. We used a quantitative proteomic approach based on stable isotopic labeling by amino acids in cell culture in combination with SDS-PAGE and nanoflow LC-ESI-LTQ for analyzing the differential protein expression of hepatic cells associated to MeHg exposure. Seventy-eight proteins were found de-regulated by more than 1.5-fold. We identified a number of proteins involved in different essential biological processes including apoptosis, mitochondrial dysfunction, cellular trafficking and energy production. Among these proteins, we found several molecules whose de-regulation has been already related to MeHg exposure, thus confirming the usefulness of our discovery approach, and new ones that helped to gain a deeper insight into the biomolecular mechanisms related to MeHg-induced toxicity. Overexpression of several HSPs and the proteasome 26S subunit itself showed the proteasome system as a molecular target of toxic MeHg. As for the interaction networks, the top ranked was the nucleic acid metabolism, where many of the identified de-regulated proteins are involved. (orig.)

  1. Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness.

    Science.gov (United States)

    El-Bebany, Ahmed F; Rampitsch, Christof; Daayf, Fouad

    2010-01-01

    Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396-9) and weakly (Vs06-14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty-five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC-ESI-MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant-defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics-based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.

  2. Mueller-matrix mapping of biological tissues in differential diagnosis of optical anisotropy mechanisms of protein networks

    Energy Technology Data Exchange (ETDEWEB)

    Ushenko, V A; Sidor, M I [Yuriy Fedkovych Chernivtsi National University, Chernivtsi (Ukraine); Marchuk, Yu F; Pashkovskaya, N V; Andreichuk, D R [Bukovinian State Medical University, Chernivtsi (Ukraine)

    2015-03-31

    We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours. (laser applications and other topics in quantum electronics)

  3. Trichostatin-A induces differential changes in histone protein dynamics and expression in HeLa cells

    International Nuclear Information System (INIS)

    Rao, Jyothsna; Bhattacharya, Dipanjan; Banerjee, Bidisha; Sarin, Apurva; Shivashankar, G.V.

    2007-01-01

    Trichostatin-A (TSA), a histone deacetylase (HDAC) inhibitor, results in enhanced acetylation of core histones thereby disrupting chromatin organization within living cells. We report on changes in chromatin organization and the resultant alteration in nuclear architecture following treatment with TSA using fluorescence imaging. TSA triggers an expected increase in the euchromatin fraction which is accompanied by a significant increase in nuclear volume and alterations in chromatin compaction mapped using fluorescence anisotropy imaging. We observe differential changes in the mobility of core and linker histones as measured by fluorescence recovery after photo-bleaching (FRAP) and fluorescence correlation spectroscopy (FCS) methods. Further TSA induces a differential increase in linker histone transcription and increased phosphorylation of linker histone proteins accompanying an expected increase in core histone acetylation patterns. Thus subtle feedback responses triggered by changes in chromatin configurations impinge selectively on linker histone mobility and its expression. These observations have implications for understanding the role of HDAC in the dynamic maintenance of chromatin organization

  4. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    Science.gov (United States)

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  5. Identification of differentially expressed proteins during human urinary bladder cancer progression

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; chang, Jong. w; Oh, Bong R.

    2005-01-01

    and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder...... cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may...

  6. High Concentrations of Angiopoietin-Like Protein 4 Detected in Serum from Patients with Rheumatoid Arthritis Can Be Explained by Non-Specific Antibody Reactivity.

    Directory of Open Access Journals (Sweden)

    Elena Makoveichuk

    Full Text Available Angiopoietin-like protein 4 (ANGPTL4 is suggested to be a master regulator of plasma triglyceride metabolism. Our aim was to study whether the previously reported high levels of ANGPTL4 detected in serum from patients with rheumatoid arthritis (RA by ELISA was due to any specific molecular form of this protein (oligomers, monomers or fragments. ANGPTL4 levels were first determined in serum from 68 RA patients and 43 age and sex matched control subjects and the mean values differed by a factor of 5.0. Then, ANGPTL4 was analyzed after size exclusion chromatography (SEC of serum samples. With serum from one of the RA patients with high levels of ANGPTL4, the dominant reactivity was found in fractions corresponding to high-molecular weight proteins. In addition, a minor peak of reactivity eluting late from the column was found both in the patient and in controls. By the use of HeteroBlock®, and by careful selection of antibodies, we documented non-specific reactions for ANGPTL4 in 39% of samples from the RA patients, most likely due to cross-reactivity of the antibodies with rheumatoid factor (RF. The corresponding figure for control subjects was 6.3%. After corrections for non-specific reactions, the mean level of ANGPTL4 in serum from RA patients was still significantly higher than in control individuals (mean levels were 101±62 and 67±39 ng/ml respectively, P = 0.02. We re-analyzed samples from our previously published studies on ANGPL4 levels in patients on hemodialysis and patients with diabetes type 2. These samples did not show false positive reactions. The levels of ANGPTL4 were comparable to those detected previously.

  7. High Concentrations of Angiopoietin-Like Protein 4 Detected in Serum from Patients with Rheumatoid Arthritis Can Be Explained by Non-Specific Antibody Reactivity.

    Science.gov (United States)

    Makoveichuk, Elena; Ruge, Toralph; Nilsson, Solveig; Södergren, Anna; Olivecrona, Gunilla

    2017-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is suggested to be a master regulator of plasma triglyceride metabolism. Our aim was to study whether the previously reported high levels of ANGPTL4 detected in serum from patients with rheumatoid arthritis (RA) by ELISA was due to any specific molecular form of this protein (oligomers, monomers or fragments). ANGPTL4 levels were first determined in serum from 68 RA patients and 43 age and sex matched control subjects and the mean values differed by a factor of 5.0. Then, ANGPTL4 was analyzed after size exclusion chromatography (SEC) of serum samples. With serum from one of the RA patients with high levels of ANGPTL4, the dominant reactivity was found in fractions corresponding to high-molecular weight proteins. In addition, a minor peak of reactivity eluting late from the column was found both in the patient and in controls. By the use of HeteroBlock®, and by careful selection of antibodies, we documented non-specific reactions for ANGPTL4 in 39% of samples from the RA patients, most likely due to cross-reactivity of the antibodies with rheumatoid factor (RF). The corresponding figure for control subjects was 6.3%. After corrections for non-specific reactions, the mean level of ANGPTL4 in serum from RA patients was still significantly higher than in control individuals (mean levels were 101±62 and 67±39 ng/ml respectively, P = 0.02). We re-analyzed samples from our previously published studies on ANGPL4 levels in patients on hemodialysis and patients with diabetes type 2. These samples did not show false positive reactions. The levels of ANGPTL4 were comparable to those detected previously.

  8. Differentially Regulated Host Proteins Associated with Chronic Rhinosinusitis Are Correlated with the Sinonasal Microbiome

    Directory of Open Access Journals (Sweden)

    Kristi Biswas

    2017-12-01

    Full Text Available The chronic inflammatory nature of chronic rhinosinusitis (CRS makes it a morbid condition for individuals with the disease and one whose pathogenesis is poorly understood. To date, proteomic approaches have been applied successfully in a handful of CRS studies. In this study we use a multifaceted approach, including proteomics (iTRAQ labeling and microbiome (bacterial 16S rRNA gene sequencing analyses of middle meatus swabs, as well as immune cell analysis of the underlying tissue, to investigate the host-microbe interaction in individuals with CRS (n = 10 and healthy controls (n = 9. Of the total 606 proteins identified in this study, seven were significantly (p < 0.05 more abundant and 104 were significantly lower in the CRS cohort compared with healthy controls. The majority of detected proteins (82% of proteins identified were not significantly correlated with disease status. Elevated levels of blood and immune cell proteins in the CRS cohort, together with significantly higher numbers of B-cells and macrophages in the underlying tissue, confirmed the inflammatory status of CRS individuals. Protein PRRC2C and Ras-related protein (RAB14 (two of the seven elevated proteins showed the biggest fold difference between the healthy and CRS groups. Validation of the elevated levels of these two proteins in CRS samples was provided by immunohistochemistry. Members of the bacterial community in the two study cohorts were not associated with PRRC2C, however members of the genus Moraxella did correlate with RAB14 (p < 0.0001, rho = −0.95, which is a protein involved in the development of basement membrane. In addition, significant correlations between certain members of the CRS bacterial community and 33 lower abundant proteins in the CRS cohort were identified. Members of the genera Streptococcus, Haemophilus and Veillonella were strongly correlated with CRS and were significantly associated with a number of proteins with varying functions. The

  9. Explaining Away Intuitions

    Directory of Open Access Journals (Sweden)

    Jonathan Ichikawa

    2009-12-01

    Full Text Available What is it to explain away an intuition? Philosophers regularly attempt to explain intuitions away, but it is often unclear what the success conditions for their project consist in. I attempt to articulate some of these conditions, taking philosophical case studies as guides, and arguing that many attempts to explain away intuitions underestimate the challenge the project of explaining away involves. I will conclude, therefore, that explaining away intuitions is a more difficult task than has sometimes been appreciated; I also suggest, however, that the importance of explaining away intuitions has often been exaggerated.

  10. Knockdown of Indian hedgehog protein induces an inhibition of cell growth and differentiation in osteoblast MC3T3-E1 cells

    OpenAIRE

    Deng, Ang; Zhang, Hongqi; Hu, Minyu; Liu, Shaohua; Gao, Qile; Wang, Yuxiang; Guo, Chaofeng

    2017-01-01

    Indian hedgehog protein (Ihh) is evolutionarily conserved and serves important roles in controlling the differentiation of progenitor cells into osteoblasts. Ihh null mutant mice exhibit a failure of osteoblast development in endochondral bone. Although studies have demonstrated that Ihh signaling is a potent local factor that regulates osteoblast differentiation, the specific transcription factors that determine osteoblast differentiation remain unclear. Further studies are required to deter...

  11. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...... proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized...

  12. Dose-dependent differential effect of hemin on protein synthesis and ...

    Indian Academy of Sciences (India)

    Unknown

    However, in situ labelling experiments along with Western blots revealed that high concentration of .... separated proteins in the gel were transferred on to nitro- cellulose membrane according to Towbin et al (1979), and probed either with ...

  13. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity.

    Science.gov (United States)

    Wang, Xuchu; Fan, Pengxiang; Song, Hongmiao; Chen, Xianyang; Li, Xiaofang; Li, Yinxin

    2009-07-01

    Soil salinity is a major abiotic stress that limits agriculture productivity worldwide. Salicornia europaea is a succulent annual euhalophyte and one of the most salt tolerant plant species. The elucidation of its salt tolerance mechanism is of significance for generating salt-tolerant crops. In this study, we provided high resolution of proteome reference maps of S. europaea shoot and obtained evidence on the salt tolerance mechanism by analyzing the proteomic responses of this plant to high salinity. Our results demonstrated significant variations existed in 196 out of 1880 protein spots detected on CBB stained 2-DE gels. Of these, 111 proteins were identified by mass spectrometry. Among them, the majority was energy production and conversion related proteins, followed by photosynthesis and carbohydrate metabolism associated enzymes. Analysis of protein expression patters revealed that energy production and ion homeostasis associated proteins played important roles for this plant salt tolerance ability. Hierarchical clustering results revealed many proteins were involved in S. europaea salt tolerance mechanism as a dynamic network. Finally, based on our proteomic results, we brought forward a possible schematic representation of mechanism associated with the systematic salt tolerance phenotype in S. europaea.

  14. AZFa protein DDX3Y is differentially expressed in human male germ cells during development and in testicular tumours

    DEFF Research Database (Denmark)

    Gueler, B; Sonne, S B; Zimmer, J

    2012-01-01

    are believed to originate from fetal gonocytes.METHODSDDX3Y protein expression was analysed during development in different tissues by western blotting. The localization of DDX3Y in normal fetal and prepubertal testis tissue of different ages as well as in a series of distinct TGCT tissue samples (CIS......, classical seminoma, spermatocytic seminoma, teratoma and embryonal carcinoma) was performed by immunohistochemistry.RESULTSGerm cell-specific expression of DDX3Y protein was revealed in fetal prospermatogonia but not in gonocytes and not before the 17th gestational week. After birth, DDX3Y was expressed......, but not in somatically differentiated non-seminomas, consistent with its germ-cell specific function.CONCLUSIONSThe fetal germ cell DDX3Y expression suggests a role in early spermatogonial proliferation and implies that, in men with AZFa deletion, germ cell depletion may begin prenatally. The strong expression of DDX3Y...

  15. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  16. Effects of Synthetic Neural Adhesion Molecule Mimetic Peptides and Related Proteins on the Cardiomyogenic Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ruodan Xu

    2015-04-01

    Full Text Available Background/Aims: Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. Methods: In the present study, using a transgenic murine embryonic stem (ES cell lineage expressing enhanced green fluorescent protein (EGFP under the control of α-myosin heavy chain (α-MHC promoter (pαMHC-EGFP, we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGLL, hNgf_C2, EnkaminE, Plannexin and C3 on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. Results: The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Conclusion: Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to

  17. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao; Song, Guanbin

    2014-01-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  18. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes.

    Science.gov (United States)

    Clark, David J; Fondrie, William E; Yang, Austin; Mao, Li

    2016-02-05

    Exosomes are 30-100 nm sized membrane vesicles released by cells into the extracellular space that mediate intercellular communication via transfer of proteins and other biological molecules. To better understand the role of these microvesicles in lung carcinogenesis, we employed a Triple SILAC quantitative proteomic strategy to examine the differential protein abundance between exosomes derived from an immortalized normal bronchial epithelial cell line and two non-small cell lung cancer (NSCLC) cell lines harboring distinct activating mutations in the cell signaling molecules: Kirsten rat sarcoma viral oncogene homolog (KRAS) or epidermal growth factor receptor (EGFR). In total, we were able to quantify 721 exosomal proteins derived from the three cell lines. Proteins associated with signal transduction, including EGFR, GRB2 and SRC, were enriched in NSCLC exosomes, and could actively regulate cell proliferation in recipient cells. This study's investigation of the NSCLC exosomal proteome has identified enriched protein cargo that can contribute to lung cancer progression, which may have potential clinical implications in biomarker development for patients with NSCLC. The high mortality associated with lung cancer is a result of late-stage diagnosis of the disease. Current screening techniques used for early detection of lung cancer lack the specificity for accurate diagnosis. Exosomes are nano-sized extracellular vesicles, and the increased abundance of select protein cargo in exosomes derived from cancer cells may be used for diagnostic purposes. In this paper, we applied quantitative proteomic analysis to elucidate abundance differences in exosomal protein cargo between two NSCLC cell lines with distinctive oncogene mutations and an immortalized normal bronchial epithelial cell line. This study revealed proteins associated with cell adhesion, the extracellular matrix, and a variety of signaling molecules were enriched in NSCLC exosomes. The present data reveals

  19. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development.

    Science.gov (United States)

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K; Samuelson, John; Ferguson, David J P; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother's cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis , IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma . IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin

  20. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470

    International Nuclear Information System (INIS)

    Hering, Thomas M.; Kazmi, Najam H.; Huynh, Tru D.; Kollar, John; Xu, Laura; Hunyady, Aaron B.; Johnstone, Brian

    2004-01-01

    As part of a study to identify novel transcriptional regulators of chondrogenesis-related gene expression, we have cloned and characterized cDNA for zinc-finger protein 470 (ZNF470), the human ortholog of which encodes a 717 amino acid residue protein containing 17 Cys 2 His 2 zinc-finger domains, as well as KRAB-A and KRAB-B motifs. The cDNA library used to isolate the initial ZNF470 clone was prepared from human bone marrow-derived mesenchymal progenitor cells at an intermediate stage of chondrogenic differentiation. We have determined the intron-exon structure of the human ZNF470 gene, which has been mapped to a zinc-finger cluster in a known imprinted region of human chromosome 19q13.4. ZNF470 is expressed at high levels in human testis and is expressed at low or undetectible levels in other adult tissues. Human ZNF470 expressed in mammalian cells as an EGFP fusion protein localizes predominantly to the nucleus, consistent with a role in transcriptional regulation. ZNF470, analyzed by quantitative real time PCR, was transiently expressed before the maximal expression of COL2A1 during chondrogenic differentiation in vitro. We have also characterized the bovine ortholog of human ZNF470, which encodes a 508 amino acid residue protein having 10 zinc-finger domains. A bovine ZNF470 cDNA clone was used to examine expression of ZNF470 in bovine articular chondrocytes treated with retinoic acid to stimulate dedifferentiation. Bovine ZNF470 expression was undetectable in freshly isolated bovine articular chondrocytes, but was dramatically upregulated in dedifferentiated retinoic acid-treated chondrocytes. These results, in two model systems, suggest a possible role for ZNF470 in the regulation of chondrogenesis-specific gene expression

  1. Differential Protein Expression in the Hemolymph of Bithynia siamensis goniomphalos Infected with Opisthorchis viverrini.

    Directory of Open Access Journals (Sweden)

    Kulwadee Suwannatrai

    2016-11-01

    Full Text Available Bithynia siamensis goniomphalos is a freshwater snail that serves as the first intermediate host of the human liver fluke Opisthorchis viverrini. This parasite is a major public health problem in different countries throughout the Greater Mekong sub-region (Thailand, southern Vietnam, Lao PDR and Cambodia. Chronic O. viverrini infection also results in a gradual increase of fibrotic tissues in the biliary tract that are associated with hepatobiliary diseases and contribute to cholangiocarcinoma (a fatal type of bile duct cancer. Infectivity of the parasite in the snail host is strongly correlated with destruction of helminths by the snail's innate immune system, composed of cellular (hemocyte and humoral (plasma defense factors. To better understand this important host-parasite interface we applied sequential window acquisition of all theoretical spectra mass spectrometry (SWATH-MS to identify and quantify the proteins from the hemolymph of B. siamensis goniomphalos experimentally infected with O. viverrini and compare them to non-infected snails (control group. A total of 362 and 242 proteins were identified in the hemocytes and plasma, respectively. Of these, 145 and 117 proteins exhibited significant differences in expression upon fluke infection in hemocytes and plasma, respectively. Among the proteins with significantly different expression patterns, we found proteins related to immune response (up-regulated in both hemocyte and plasma of infected snails and proteins belonging to the structural and motor group (mostly down-regulated in hemocytes but up-regulated in plasma of infected snails. The proteins identified and quantified in this work will provide important information for the understanding of the factors involved in snail defense against O. viverrini and might facilitate the development of new strategies to control O. viverrini infection in endemic areas.

  2. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.

    Science.gov (United States)

    Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H

    2007-04-15

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

  3. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.

    Science.gov (United States)

    Chen, Ziyan; Zhu, Dong; Wu, Jisu; Cheng, Zhiwei; Yan, Xing; Deng, Xiong; Yan, Yueming

    2018-05-17

    In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd 2+ ) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd 2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd 2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd 2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd 2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.

  4. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Benito Minjarez

    2016-06-01

    Full Text Available Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article “Identification of proteins that are differentially expressed in brains with Alzheimer’s disease using iTRAQ labeling and tandem mass spectrometry” (Minjarez et al., 2016 [1].

  5. Differential Expression of Claudin Family Proteins in Mouse Ovarian Serous Papillary Epithelial Adenoma in Aging FSH Receptor-Deficient Mutants

    Directory of Open Access Journals (Sweden)

    Jayaprakash Aravindakshan

    2006-12-01

    Full Text Available Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of folliclestimulating hormone receptor (FSH-R signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma.

  6. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2).

    Science.gov (United States)

    Xu, Zheng; Li, Weixin; Han, Jibo; Zou, Chunpeng; Huang, Weijian; Yu, Weihui; Shan, Xiaoou; Lum, Hazel; Li, Xiaokun; Liang, Guang

    2017-03-21

    Growing evidence indicates that angiotensin II (Ang II), a potent biologically active product of RAS, is a key regulator of renal inflammation and fibrosis. In this study, we tested the hypothesis that Ang II induces renal inflammatory injury and fibrosis through interaction with myeloid differentiation protein-2 (MD2), the accessory protein of toll-like receptor 4 (TLR4) of the immune system. Results indicated that in MD2 -/- mice, the Ang II-induced renal fibrosis, inflammation and kidney dysfunction were significantly reduced compared to control Ang II-infused wild-type mice. Similarly, in the presence of small molecule MD2 specific inhibitor L6H21 or siRNA-MD2, the Ang II-induced increases of pro-fibrotic and pro-inflammatory molecules were prevented in tubular NRK-52E cells. MD2 blockade also inhibited activation of NF-κB and ERK. Moreover, MD2 blockade prevented the Ang II-stimulated formation of the MD2/TLR4/MyD88 signaling complex, as well as the increased surface binding of Ang II in NRK-52E cells. In addition, Ang II directly bound recombinant MD2 protein, rather than TLR4 protein. We conclude that MD2 is a significant contributor in the Ang II-induced kidney inflammatory injury in chronic renal diseases. Furthermore, MD2 inhibition could be a new and important therapeutic strategy for preventing progression of chronic renal diseases.

  7. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    Science.gov (United States)

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.

  8. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  9. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    Science.gov (United States)

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  10. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes.

    Science.gov (United States)

    Ytterberg, A Jimmy; Peltier, Jean-Benoit; van Wijk, Klaas J

    2006-03-01

    Plastoglobules (PGs) are oval or tubular lipid-rich structures present in all plastid types, but their specific functions are unclear. PGs contain quinones, alpha-tocopherol, and lipids and, in chromoplasts, carotenoids as well. It is not known whether PGs contain any enzymes or regulatory proteins. Here, we determined the proteome of PGs from chloroplasts of stressed and unstressed leaves of Arabidopsis (Arabidopsis thaliana) as well as from pepper (Capsicum annuum) fruit chromoplasts using mass spectrometry. Together, this showed that the proteome of chloroplast PGs consists of seven fibrillins, providing a protein coat and preventing coalescence of the PGs, and an additional 25 proteins likely involved in metabolism of isoprenoid-derived molecules (quinines and tocochromanols), lipids, and carotenoid cleavage. Four unknown ABC1 kinases were identified, possibly involved in regulation of quinone monooxygenases. Most proteins have not been observed earlier but have predicted N-terminal chloroplast transit peptides and lack transmembrane domains, consistent with localization in the PG lipid monolayer particles. Quantitative differences in PG composition in response to high light stress and degreening were determined by differential stable-isotope labeling using formaldehyde. More than 20 proteins were identified in the PG proteome of pepper chromoplasts, including four enzymes of carotenoid biosynthesis and several homologs of proteins observed in the chloroplast PGs. Our data strongly suggest that PGs in chloroplasts form a functional metabolic link between the inner envelope and thylakoid membranes and play a role in breakdown of carotenoids and oxidative stress defense, whereas PGs in chromoplasts are also an active site for carotenoid conversions.

  11. Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes1[W

    Science.gov (United States)

    Ytterberg, A. Jimmy; Peltier, Jean-Benoit; van Wijk, Klaas J.

    2006-01-01

    Plastoglobules (PGs) are oval or tubular lipid-rich structures present in all plastid types, but their specific functions are unclear. PGs contain quinones, α-tocopherol, and lipids and, in chromoplasts, carotenoids as well. It is not known whether PGs contain any enzymes or regulatory proteins. Here, we determined the proteome of PGs from chloroplasts of stressed and unstressed leaves of Arabidopsis (Arabidopsis thaliana) as well as from pepper (Capsicum annuum) fruit chromoplasts using mass spectrometry. Together, this showed that the proteome of chloroplast PGs consists of seven fibrillins, providing a protein coat and preventing coalescence of the PGs, and an additional 25 proteins likely involved in metabolism of isoprenoid-derived molecules (quinines and tocochromanols), lipids, and carotenoid cleavage. Four unknown ABC1 kinases were identified, possibly involved in regulation of quinone monooxygenases. Most proteins have not been observed earlier but have predicted N-terminal chloroplast transit peptides and lack transmembrane domains, consistent with localization in the PG lipid monolayer particles. Quantitative differences in PG composition in response to high light stress and degreening were determined by differential stable-isotope labeling using formaldehyde. More than 20 proteins were identified in the PG proteome of pepper chromoplasts, including four enzymes of carotenoid biosynthesis and several homologs of proteins observed in the chloroplast PGs. Our data strongly suggest that PGs in chloroplasts form a functional metabolic link between the inner envelope and thylakoid membranes and play a role in breakdown of carotenoids and oxidative stress defense, whereas PGs in chromoplasts are also an active site for carotenoid conversions. PMID:16461379

  12. Differential expression of a novel seven transmembrane domain protein in epididymal fat from aged and diabetic mice.

    Science.gov (United States)

    Yang, H; Egan, J M; Rodgers, B D; Bernier, M; Montrose-Rafizadeh, C

    1999-06-01

    To identify novel seven transmembrane domain proteins from 3T3-L1 adipocytes, we used PCR to amplify 3T3-L1 adipocyte complementary DNA (cDNA) with primers homologous to the N- and C-termini of pancreatic glucagon-like peptide-1 (GLP-1) receptor. We screened a cDNA library prepared from fully differentiated 3T3-L1 adipocytes using a 500-bp cDNA PCR product probe. Herein describes the isolation and characterization of a 1.6-kb cDNA clone that encodes a novel 298-amino acid protein that we termed TPRA40 (transmembrane domain protein of 40 kDa regulated in adipocytes). TPRA40 has seven putative transmembrane domains and shows little homology with the known GLP-1 receptor or with other G protein-coupled receptors. The levels of TPRA40 mRNA and protein were higher in 3T3-L1 adipocytes than in 3T3-L1 fibroblasts. TPRA40 is present in a number of mouse and human tissues. Interestingly, TPRA40 mRNA levels were significantly increased by 2- to 3-fold in epididymal fat of 24-month-old mice vs. young controls as well as in db/db and ob/ob mice vs. nondiabetic control littermates. No difference in TPRA40 mRNA levels was observed in brain, heart, skeletal muscle, liver, or kidney. Furthermore, no difference in TPRA40 expression was detected in brown fat of ob/ob mice when compared with age-matched controls. Taken together, these data suggest that TPRA40 represents a novel membrane-associated protein whose expression in white adipose tissue is altered with aging and type 2 diabetes.

  13. Differential Modulation of Transcription Factors and Cytoskeletal Proteins in Prostate Carcinoma Cells by a Bacterial Lactone

    Directory of Open Access Journals (Sweden)

    Senthil R. Kumar

    2018-01-01

    Full Text Available The present study tested the effect of a bacterial lactone N-(3-oxododecanoyl-homoserine lactone (C12-HSL on the cytoskeletal and transcriptional genes and proteins in prostate adenocarcinoma (PA cells (DU145 and LNCaP and prostate small cell neuroendocrine carcinoma (SCNC PC3 cells including their cellular viability and apoptosis. Our data indicate that cell migration and colony formation were affected in the presence of C12-HSL. C12-HSL induced apoptosis and altered viability of both PA and SCNC cells in a concentration dependent manner as measured by fluorescence and chemiluminescence assays. Compared to PCa cells, noncancerous prostate epithelial cells (RWPE1 were resistant to modification by C12-HSL. Further, the viability of PC3 cells in 3D matrix was suppressed by C12-HSL treatment as detected using calcein AM fluorescence in situ. C12-HSL treatment induced cytoskeletal associated protein expression of vinculin and RhoC, which may have implications in cancer cell motility, adhesion, and metastasis. IQGAP protein expression was reduced in DU145 and RWPE1 cells in the presence of C12-HSL. C12-HSL decreased STAT3 phosphorylation in DU145 cells but increased STAT1 protein phosphorylation in PC3 and LNCaP cells. Overall, these studies indicate that C12-HSL can trigger changes in transcription factors and cytoskeletal proteins and thereby modulate growth and migration properties of PCa cells.

  14. Differential in vivo gene expression of major Leptospira proteins in resistant or susceptible animal models.

    Science.gov (United States)

    Matsui, Mariko; Soupé, Marie-Estelle; Becam, Jérôme; Goarant, Cyrille

    2012-09-01

    Transcripts of Leptospira 16S rRNA, FlaB, LigB, LipL21, LipL32, LipL36, LipL41, and OmpL37 were quantified in the blood of susceptible (hamsters) and resistant (mice) animal models of leptospirosis. We first validated adequate reference genes and then evaluated expression patterns in vivo compared to in vitro cultures. LipL32 expression was downregulated in vivo and differentially regulated in resistant and susceptible animals. FlaB expression was also repressed in mice but not in hamsters. In contrast, LigB and OmpL37 were upregulated in vivo. Thus, we demonstrated that a virulent strain of Leptospira differentially adapts its gene expression in the blood of infected animals.

  15. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Yan-Long Jia

    2016-01-01

    Full Text Available Abstract Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE was used to investigate the expression of halotolerant proteins under high (3 M NaCl and low (0.75 M NaCl salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress.

  16. Influence of genotype on contractile protein differentiation in different bovine muscles during foetal life

    OpenAIRE

    Gagnière , Hélène; Ménissier , François; Geay , Yves; Picard , Brigitte

    2000-01-01

    International audience; The purpose of this work was to compare muscle fibre differentiation in two genetic types: "normal charolais" and double-muscled (DM) "INRA 95" cattles displaying muscle hypertrophy. Six muscles with different contractile and metabolic characteristics in adult animal: Masseter, Diaphragma (Di), Biceps femoris (BF), Longissimus thoracis, Semitendinosus and Cutaneus trunci (CT) were excised from 60 to 260-day-old fœtuses of both genotypes. These muscles present different...

  17. Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins

    Czech Academy of Sciences Publication Activity Database

    Petrák, J.; Ivánek, Robert; Toman, O.; Čmejla, R.; Čmejlová, J.; Vyoral, D.; Živný, J.; Vulpe, D. Ch.

    2008-01-01

    Roč. 8, č. 9 (2008), s. 1744-1749 ISSN 1615-9853 Grant - others:NIH(US) R01-DK056376; GA MZd(CZ) NR8930; GA ČR(CZ) GA204/07/0830; GA MŠk(CZ) LC06044 Institutional research plan: CEZ:AV0Z50520514 Keywords : proteomics * differential expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.586, year: 2008

  18. High performance of histidine-rich protein 2 based rapid diagnostic tests in French Guiana are explained by the absence of pfhrp2 gene deletion in P. falciparum.

    Directory of Open Access Journals (Sweden)

    Mélanie Trouvay

    Full Text Available BACKGROUND: Care for malaria patients in endemic areas has been improved through the increasing use of Rapid Diagnostic Tests (RDTs. Most RDTs target the histidine-rich protein-2 antigen (PfHRP2 to detect P. falciparum, as it is abundant and shows great heat stability. However, their use in South America has been widely questioned following a recent publication that pinpoints the high prevalence of Peruvian field isolates lacking the gene encoding this protein. In the remote rural health centers of French Guiana, RDTs are the main diagnosis tools. Therefore, a study of PfHRP2 RDT performances and pfhrp2 genotyping was conducted to determine whether a replacement of the current pLDH-based kit could be considered. METHODS: The performance study compared the SD Malaria Ag test P.f/Pan® kit with the current gold standard diagnosis by microscopy. The prevalence of pfhrp2 and pfhrp3 deletions were evaluated from 221 P. falciparum isolates collected between 2009 and 2011 in French Guiana. RESULTS: Between January 2010 and August 2011, 960 suspected cases of malaria were analyzed using microscopy and RDTs. The sensitivity of the SD Malaria Ag test P.f/Pan® for detection of P. falciparum was 96.8% (95% CI: 90.9-99.3, and 86.0% (95% CI: 78.9-91.5 for the detection of P. vivax. No isolates (95% CI: 0-4.5 lacking either exon of the pfhrp2 gene were identified among the 221 P. falciparum isolates analyzed, but 7.4% (95% CI: 2.8-15.4 lacked the exon 2 part of the pfhrp3 gene. CONCLUSIONS: Field isolates lacking either exon of the pfhrp2 gene are absent in this western part of South America. Despite its sensibility to detect P. vivax, the SD Malaria Ag test P.f/Pan® kit is a satisfying alternative to microscopy in remote health centers, where it is difficult to provide highly skilled microscopists and to maintain the necessary equipment.

  19. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    Science.gov (United States)

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  20. Stearoyl-acyl carrier protein and unusual acyl-acyl carrier protein desaturase activities are differentially influenced by ferredoxin.

    Science.gov (United States)

    Schultz, D J; Suh, M C; Ohlrogge, J B

    2000-10-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.

  1. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-01

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  2. HPV-18 E2circumflexE4 chimera: 2 new spliced transcripts and proteins induced by keratinocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chye Ling [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Gunaratne, Jayantha [Mass Spectrometry and Systems Biology Laboratory, Institute of Molecular and Cell Biology, A-STAR, Biopolis, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Lai, Deborah [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Carthagena, Laetitia [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Wang, Qian [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Xue, Yue Zhen; Quek, Ling Shih [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Doorbar, John [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Bachelerie, Francoise [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Thierry, Francoise, E-mail: francoise.thierry@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Bellanger, Sophie, E-mail: sophie.bellanger@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore)

    2012-07-20

    The Human Papillomavirus (HPV) E4 is known to be synthesized as an E1circumflexE4 fusion resulting from splice donor and acceptor sites conserved across HPV types. Here we demonstrate the existence of 2 HPV-18 E2circumflexE4 transcripts resulting from 2 splice donor sites in the 5 Prime part of E2, while the splice acceptor site is the one used for E1circumflexE4. Both E2circumflexE4 transcripts are up-regulated by keratinocyte differentiation in vitro and can be detected in clinical samples containing low-grade HPV-18-positive cells from Pap smears. They give rise to two fusion proteins in vitro, E2circumflexE4-S and E2circumflexE4-L. Whereas we could not differentiate E2circumflexE4-S from E1circumflexE4 in vivo, E2circumflexE4-L could be formally identified as a 23 kDa protein in raft cultures in which the corresponding transcript was also found, and in a biopsy from a patient with cervical intraepithelial neoplasia stage I-II (CINI-II) associated with HPV-18, demonstrating the physiological relevance of E2circumflexE4 products.

  3. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Eda D; Gueceri, Selcuk; Sun, Wei [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Besunder, Robyn; Allen, Fred [Drexel University, School of Biomedical Engineering Science and Health System, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pappas, Daphne, E-mail: edy22@drexel.ed [Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2010-03-15

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  4. Rhesus lymphocryptovirus latent membrane protein 2A activates β-catenin signaling and inhibits differentiation in epithelial cells

    International Nuclear Information System (INIS)

    Siler, Catherine A.; Raab-Traub, Nancy

    2008-01-01

    Rhesus lymphocryptovirus (LCV) is a γ-herpesvirus closely related to Epstein-Barr virus (EBV). The rhesus latent membrane protein 2A (LMP2A) is highly homologous to EBV LMP2A. EBV LMP2A activates the phosphatidylinositol 3-kinase (PI3K) and β-catenin signaling pathways in epithelial cells and affects differentiation. In the present study, the biochemical and biological properties of rhesus LMP2A in epithelial cells were investigated. The expression of rhesus LMP2A in epithelial cells induced Akt activation, GSK3β inactivation and accumulation of β-catenin in the cytoplasm and nucleus. The nuclear translocation, but not accumulation of β-catenin was dependent on Akt activation. Rhesus LMP2A also impaired epithelial cell differentiation; however, this process was not dependent upon Akt activation. A mutant rhesus LMP2A lacking six transmembrane domains functioned similarly to wild-type rhesus LMP2A indicating that the full number of transmembrane domains is not required for effects on β-catenin or cell differentiation. These results underscore the similarity of LCV to EBV and the suitability of the macaque as an animal model for studying EBV pathogenesis

  5. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia.

    Science.gov (United States)

    Preston, Jill C; Jorgensen, Stacy A; Orozco, Rebecca; Hileman, Lena C

    2016-02-01

    Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.

  6. Protein Kinase A Regulatory Subunit Isoforms Regulate Growth and Differentiation in Mucor circinelloides: Essential Role of PKAR4

    Science.gov (United States)

    Ocampo, J.; McCormack, B.; Navarro, E.; Moreno, S.; Garre, V.

    2012-01-01

    The protein kinase A (PKA) signaling pathway plays a role in regulating growth and differentiation in the dimorphic fungus Mucor circinelloides. PKA holoenzyme is comprised of two catalytic (C) and two regulatory (R) subunits. In M. circinelloides, four genes encode the PKAR1, PKAR2, PKAR3, and PKAR4 isoforms of R subunits. We have constructed null mutants and demonstrate that each isoform has a different role in growth and differentiation. The most striking finding is that pkaR4 is an essential gene, because only heterokaryons were obtained in knockout experiments. Heterokaryons with low levels of wild-type nuclei showed an impediment in the emission of the germ tube, suggesting a pivotal role of this gene in germ tube emergence. The remaining null strains showed different alterations in germ tube emergence, sporulation, and volume of the mother cell. The pkaR2 null mutant showed an accelerated germ tube emission and was the only mutant that germinated under anaerobic conditions when glycine was used as a nitrogen source, suggesting that pkaR2 participates in germ tube emergence by repressing it. From the measurement of the mRNA and protein levels of each isoform in the wild-type and knockout strains, it can be concluded that the expression of each subunit has its own mechanism of differential regulation. The PKAR1 and PKAR2 isoforms are posttranslationally modified by ubiquitylation, suggesting another regulation point in the specificity of the signal transduction. The results indicate that each R isoform has a different role in M. circinelloides physiology, controlling the dimorphism and contributing to the specificity of cyclic AMP (cAMP)-PKA pathway. PMID:22635921

  7. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3ζ protein

    International Nuclear Information System (INIS)

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-01-01

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  8. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression.

    Science.gov (United States)

    Li, Xiaosu; Chen, Rui; Zhu, Sijun

    2017-11-15

    Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation

    DEFF Research Database (Denmark)

    Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha

    2017-01-01

    Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic diffe...

  10. Differentially expressed proteins in human breat cancer cells sensitive andresistant to paclitaxel

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, N.; Bartoňová, I.; Dinčáková, L.; Halada, Petr; Kovář, J.

    2014-01-01

    Roč. 45, č. 2 (2014), s. 822-830 ISSN 1019-6439 R&D Projects: GA MZd NT13679 Institutional support: RVO:61388971 Keywords : paclitaxel * cancer * breaast cells * expressed proteins * cytokeratin 18 Subject RIV: EC - Immunology Impact factor: 3.025, year: 2014

  11. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    Science.gov (United States)

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  12. Quantitative methods for differentiation of vegetable and animal proteins in foods

    NARCIS (Netherlands)

    Elenbaas, H.L.

    1982-01-01

    Op verzoek van de nederlandse delegatie van het Codex Committee on vegetable proteins ( CXVP) hebben twee leden van de werkgroep MOVE in samenwerking met het CXVP (Van Gils) een working paper opgesteld over geschikte kwantitatieve methoden voor de differentiatie van plantaardige en dierlijke

  13. Quantitative methods for differentiation of vegetable and animal proteins in foods II

    NARCIS (Netherlands)

    Olsman, W.J.; Groot, de W.; Elenbaas, H.L.

    1983-01-01

    Op verzoek van de Nederlandse delegatie van het Codex Committee on vegetable proteins (CXVP) is een tweede "working paper" over de differentiatie van plantaardige en dierlijke eiwitten in voedingsmiddelen samengesteld. Deze "working paper" is een vervolg op de eerste van november 1981 over hetzelfde

  14. Treatment of cardiovascular disorders using the cell differentiation signaling protein Nell1

    Science.gov (United States)

    Culiat, Cymbeline T

    2014-05-13

    It has been identified in accordance with the present invention that Nell1 is essential for normal cardiovascular development by promoting proper formation of the heart and blood vessels. The present invention therefore provides therapeutic methods for treating cardiovascular disorders by employing a Nell1 protein or nucleic acid molecule.

  15. Differential Labeling of Free and Disulfide-Bound Thiol Functions in Proteins

    NARCIS (Netherlands)

    Seiwert, B.; Hayen, H.; Karst, U.

    2008-01-01

    A method for the simultaneous determination of the number of free cysteine groups and disulfide-bound cysteine groups in proteins has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. Liquid

  16. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs

    DEFF Research Database (Denmark)

    Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey

    2017-01-01

    A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex...

  17. Differential effects of divalent cations on elk prion protein fibril formation and stability

    Science.gov (United States)

    Misfolding of the normally folded prion protein of mammals (PrPC) into infectious fibrils causes a variety of different diseases, from scrapie in sheep to bovine spongiform encephalopathy in cattle to chronic wasting disease (CWD) in deer and elk. The misfolded form of PrPC, termed PrPSc, or in this...

  18. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Petersen, Rasmus K; Jørgensen, Claus

    2002-01-01

    A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity...

  19. Differential expression in Phanerochaete chrysosporium of membrane- associated proteins relevant to lignin degradation

    Science.gov (United States)

    Semarjit Shary; Alexander N. Kapich; Ellen A. Panisko; Jon K. Magnuson; Daniel Cullen; Kenneth E. Hammel

    2008-01-01

    Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew...

  20. Histone H1 Differentially Inhibits DNA Bending by Reduced and Oxidized HMGB1 Protein

    Czech Academy of Sciences Publication Activity Database

    Štros, Michal; Muselíková Polanská, Eva; Kučírek, Martin; Pospíšilová, Š.

    2015-01-01

    Roč. 10, č. 9 (2015) E-ISSN 1932-6203 R&D Projects: GA ČR GAP305/12/2475; GA ČR GA15-01354S Institutional support: RVO:68081707 Keywords : GROUP BOX DOMAINS * BINDING PROTEINS * LINKER HISTONES Subject RIV: BO - Biophysics Impact factor: 3.057, year: 2015

  1. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    Science.gov (United States)

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. Copyright © 2015 Elsevier B

  2. Differential Effects of High-Protein Diets Derived from Soy and Casein on Blood–Brain Barrier Integrity in Wild-type Mice

    OpenAIRE

    Matthew Snelson; Matthew Snelson; John C. L. Mamo; John C. L. Mamo; Virginie Lam; Virginie Lam; Corey Giles; Corey Giles; Ryusuke Takechi; Ryusuke Takechi

    2017-01-01

    A number of studies report that a diet high in protein influences cognitive performance, but the results are inconsistent. Studies demonstrated that protein from different food sources has differential effects on cognition. It is increasingly recognized that the integrity of cerebrovascular blood–brain barrier (BBB) is pivotal for central nervous system function. However, to date, no studies have reported the effects of high-protein diets on BBB integrity. Therefore, in this study, the effect...

  3. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity.

    Science.gov (United States)

    Sawant, Akshada; Floyd, Ashley M; Dangeti, Mohan; Lei, Wen; Sobol, Robert W; Patrick, Steve M

    2017-03-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dystroglycan and mitochondrial ribosomal protein L34 regulate differentiation in the Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Yougen Zhan

    2010-05-01

    Full Text Available Mutations that diminish the function of the extracellular matrix receptor Dystroglycan (DG result in muscular dystrophies, with associated neuronal migration defects in the brain and mental retardation e.g. Muscle Eye Brain Disease. To gain insight into the function of DG in the nervous system we initiated a study to examine its contribution to development of the eye of Drosophila melanogaster. Immuno-histochemistry showed that DG is concentrated on the apical surface of photoreceptors (R cells during specification of cell-fate in the third instar larva and is maintained at this location through early pupal stages. In point mutations that are null for DG we see abortive R cell elongation during differentiation that first appears in the pupa and results in stunted R cells in the adult. Overexpression of DG in R cells results in a small but significant increase in their size. R cell differentiation defects appear at the same stage in a deficiency line Df(2RDg(248 that affects Dg and the neighboring mitochondrial ribosomal gene, mRpL34. In the adult, these flies have severely disrupted R cells as well as defects in the lens and ommatidia. Expression of an mRpL34 transgene rescues much of this phenotype. We conclude that DG does not affect neuronal commitment but functions R cell autonomously to regulate neuronal elongation during differentiation in the pupa. We discuss these findings in view of recent work implicating DG as a regulator of cell metabolism and its genetic interaction with mRpL34, a member of a class of mitochondrial genes essential for normal metabolic function.

  5. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.

    Science.gov (United States)

    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H; Whittemore, Scott R; Cao, Qilin L

    2011-04-20

    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

  6. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    treated with either saline, MK-801 (5 mg/kg i.p.) or NBQX (30 mg/kg i.p. x 3) were subjected to permanent MCAO. Regional CPSR and volumes of gray matter structures displaying normal CPSR were measured in coronal cryosections of the brain by quantitative autoradiography following an i.v. bolus injection....... Treatment with MK-801 significantly increased the volume of tissue with normal CPSR in the ischemic hemisphere compared to controls, whereas this was not seen with NBQX treatment. The results suggest that MK-801 and NBQX have different effects on peri-infarct protein synthesis after MCAO. Since both......We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  7. Detection of interferon alpha protein reveals differential levels and cellular sources in disease.

    Science.gov (United States)

    Rodero, Mathieu P; Decalf, Jérémie; Bondet, Vincent; Hunt, David; Rice, Gillian I; Werneke, Scott; McGlasson, Sarah L; Alyanakian, Marie-Alexandra; Bader-Meunier, Brigitte; Barnerias, Christine; Bellon, Nathalia; Belot, Alexandre; Bodemer, Christine; Briggs, Tracy A; Desguerre, Isabelle; Frémond, Marie-Louise; Hully, Marie; van den Maagdenberg, Arn M J M; Melki, Isabelle; Meyts, Isabelle; Musset, Lucile; Pelzer, Nadine; Quartier, Pierre; Terwindt, Gisela M; Wardlaw, Joanna; Wiseman, Stewart; Rieux-Laucat, Frédéric; Rose, Yoann; Neven, Bénédicte; Hertel, Christina; Hayday, Adrian; Albert, Matthew L; Rozenberg, Flore; Crow, Yanick J; Duffy, Darragh

    2017-05-01

    Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation. © 2017 Rodero et al.

  8. Differential association of protein subunits with the human RNase MRP and RNase P complexes.

    Science.gov (United States)

    Welting, Tim J M; Kikkert, Bastiaan J; van Venrooij, Walther J; Pruijn, Ger J M

    2006-07-01

    RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.

  9. Differential tissue expression of enhanced green fluorescent protein in ‘Green mice’

    OpenAIRE

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-01-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in ‘green mice’ from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these ‘green mice’ by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On i...

  10. Nuclease-resistant c-di-AMP derivatives that differentially recognize RNA and protein receptors

    Science.gov (United States)

    Meehan, Robert E.; Torgerson, Chad D.; Gaffney, Barbara L.; Jones, Roger A.; Strobel, Scott A.

    2016-01-01

    The ability of bacteria to sense environmental cues and adapt is essential for their survival. The use of second-messenger signaling molecules to translate these cues into a physiological response is a common mechanism employed by bacteria. The second messenger 3’-5’-cyclic diadenosine monophosphate (c-di-AMP) has been linked to a diverse set of biological processes involved in maintaining cell viability and homeostasis, as well as pathogenicity. A complex network of both protein and RNA receptors inside the cell activate specific pathways and mediate phenotypic outputs in response to c-di-AMP. Structural analysis of these RNA and protein receptors has revealed the different recognition elements employed by these effectors to bind the same small molecule. Herein, using a series of c-di-AMP analogs, we probed the interactions made with a riboswitch and a phosphodiesterase protein to identify the features important for c-di-AMP binding and recognition. We found that the ydaO riboswitch binds c-di-AMP in two discrete sites with near identical affinity and a Hill coefficient of 1.6. The ydaO riboswitch distinguishes between c-di-AMP and structurally related second messengers by discriminating against an amine at the C2 position, more than a carbonyl at the C6 position. We also identified phosphate-modified analogs that bind both the ydaO RNA and GdpP protein with high affinity, while symmetrically-modified ribose analogs exhibited a substantial decrease in ydaO affinity, but retained high affinity for GdpP. These ligand modifications resulted in increased resistance to enzyme-catalyzed hydrolysis by the GdpP enzyme. Together, these data suggest that these c-di-AMP analogs could be useful as chemical tools to specifically target subsections of the second-messenger signaling pathways. PMID:26789423

  11. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  12. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma.

    Science.gov (United States)

    Bozdogan, Onder; Yulug, Isik G; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer

    2015-08-01

    Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors. © 2014 The International Society of Dermatology.

  13. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    Science.gov (United States)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  14. To drink or grasp? How bullet ants ( Paraponera clavata) differentiate between sugars and proteins in liquids

    Science.gov (United States)

    Jandt, Jennifer; Larson, Hannah K.; Tellez, Peter; McGlynn, Terrence P.

    2013-12-01

    Flexibility in behavior can increase the likelihood that a forager may respond optimally in a fluctuating environment. Nevertheless, physiological or neuronal constraints may result in suboptimal responses to stimuli. We observed foraging workers of the giant tropical ant (also referred to as the "bullet ant"), Paraponera clavata, as they reacted to liquid solutions with varying concentrations of sugar and protein. We show that when protein/sucrose concentration is high, many bullet ants will often try to grasp at the droplet, rather than gather it by drinking. Because P. clavata actively hunt for prey, fixed action patterns and rapid responses to protein may be adaptively important, regardless of the medium in which it is presented. We conclude that, in P. clavata, food-handling decisions are made in response to the nutrient content of the food rather than the texture of the food. Further, we suggest that colonies that maintain a mixture of individuals with consistent fixed or flexible behavioral responses to food-handling decisions may be better adapted to fluctuating environmental conditions, and we propose future studies that could address this.

  15. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuping Luo

    2010-04-01

    Full Text Available Fragile X syndrome (FXS, the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP. FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs. We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  16. Differential screening and mass mapping of proteins from premalignant and cancer cell lines using nonporous reversed-phase HPLC coupled with mass spectrometric analysis.

    Science.gov (United States)

    Chong, B E; Hamler, R L; Lubman, D M; Ethier, S P; Rosenspire, A J; Miller, F R

    2001-03-15

    Nonporous (NPS) RP-HPLC has been used to rapidly separate proteins from whole cell lysates of human breast cell lines. The nonporous separation involves the use of hard-sphere silica beads of 1.5-microm diameter coated with C18, which can be used to separate proteins ranging from 5 to 90 kDa. Using only 30-40 microg of total protein, the protein molecular weights are detectable on-line using an ESI-oaTOF MS. Of hundreds of proteins detected in this mass range, approxinately 75-80 are more highly expressed. The molecular weight profiles can be displayed as a mass map analogous to a virtual "1-D gel" and differentially expressed proteins can be compared by image analysis. The separated proteins can also be detected by UV absorption and differentially expressed proteins quantified. The eluting proteins can be collected in the liquid phase and the molecular weight and peptide maps determined by MALDI-TOF MS for identification. It is demonstrated that the expressed protein profiles change during neoplastic progression and that many oncoproteins are readily detected. It is also shown that the response of premalignant cancer cells to estradiol can be rapidly screened by this method, demonstrating significant changes in response to an external agent. Ultimately, the proteins can be studied by peptide mapping to search for posttranslational modifications of the oncoproteins accompanying progression.

  17. Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse.

    Science.gov (United States)

    Hadem, Ibanylla Kynjai Hynniewta; Sharma, Ramesh

    2017-08-01

    Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective

  18. Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Monika; Pal, Subhashis; China, Shyamsundar Pal; Porwal, Konica [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India); Dev, Kapil [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Shrivastava, Richa [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Raju, Kanumuri Siva Rama; Rashid, Mamunur [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Trivedi, Arun Kumar; Sanyal, Sabyasachi [Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Wahajuddin, Muhammad [Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Bhaduria, Smrati [Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Maurya, Rakesh [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Chattopadhyay, Naibedya, E-mail: n_chattopadhyay@cdri.res.in [Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031 (India)

    2017-02-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuated the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda-1

  19. Evidence for differential changes of junctional complex proteins in murine neurocysticercosis dependent upon CNS vasculature.

    Science.gov (United States)

    Alvarez, Jorge I; Teale, Judy M

    2007-09-12

    The delicate balance required to maintain homeostasis of the central nervous system (CNS) is controlled by the blood-brain barrier (BBB). Upon injury, the BBB is disrupted compromising the CNS. BBB disruption has been represented as a uniform event. However, our group has shown in a murine model of neurocysticercosis (NCC) that BBB disruption varies depending upon the anatomical site/vascular bed analyzed. In this study further understanding of the mechanisms of BBB disruption was explored in blood vessels located in leptomeninges (pial vessels) and brain parenchyma (parenchymal vessels) by examining the expression of junctional complex proteins in murine brain infected with Mesocestoides corti. Both pial and parenchymal vessels from mock infected animals showed significant colocalization of junctional proteins and displayed an organized architecture. Upon infection, the patterned organization was disrupted and in some cases, particular tight junction and adherens junction proteins were undetectable or appeared to be undergoing proteolysis. The extent and timing of these changes differed between both types of vessels (pial vessel disruption within days versus weeks for parenchymal vessels). To approach potential mechanisms, the expression and activity of matrix metalloproteinase-9 (MMP-9) were evaluated by in situ zymography. The results indicated an increase in MMP-9 activity at sites of BBB disruption exhibiting leukocyte infiltration. Moreover, the timing of MMP activity in pial and parenchymal vessels correlated with the timing of permeability disruption. Thus, breakdown of the BBB is a mutable process despite the similar structure of the junctional complex between pial and parenchymal vessels and involvement of MMP activity.

  20. Plagiarism explainer for students

    OpenAIRE

    Barba, Lorena A.

    2016-01-01

    A slide deck to serve as an explainer of plagiarism in academic settings, with a personal viewpoint. For my students.Also on SpeakerDeck:https://speakerdeck.com/labarba/plagiarism-explainer-for-students(The slide viewer on SpeakerDeck is much nicer.)

  1. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock

    International Nuclear Information System (INIS)

    Eckey-Kaltenbach, H.; Kiefer, E.; Grosskopf, E.; Ernst, D.; Sandermann, H. Jr

    1997-01-01

    Parsley (Petroselinum (crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV irradiation by the synthesis of flavone glycosides whereas ozone treatment results in the induction of both pathways. A cDNA library from parsley plants was differentially screened using labelled reverse-transcribed poly(A)+ RNA isolated from ozone-treated parsley plants. This resulted in the isolation of 13 independent cDNA clones representing ozone-induced genes and of 11 cDNA clones representing ozone-repressed genes. DNA sequencing of several clones resulted in the identification of pathogenesis-related protein 1-3 (PR1-3), of a new member of PR1 cDNAs (PRI-4) and of a small heat shock protein (sHSP). Northern blot analyses showed a transient induction of the three mRNA species after ozone fumigation. In contrast, heat shock treatment of parsley plants resulted in an increase of sHSP mRNA whereas no increase for transcripts of PR1-3 and PR1-4 could be observed. This is the first characterized sHSP cDNA clone for plants induced by heat shock, as well as by oxidative stress caused by ozone. (author)

  2. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Chika C Nwugo

    Full Text Available Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA, a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.

  3. Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins

    International Nuclear Information System (INIS)

    Schroit, A.J.; Madsen, J.; Ruoho, A.E.

    1987-01-01

    An isotopically labeled cross-linking reagent, succinimido 3-(3-[ 125 I]iodo-4-azidophenyl)propionate, has been synthesized and coupled to 1-acyl-2-(aminocaproyl)phosphatidylcholine according to previously described procedures. 125 I- and N 3 -labeled phosphatidylserine ( 125 I-N 3 -PS) was produced from the phosphatidylcholine (PC) analog by phospholipase D catalyzed base exchange in the presence of L-serine. These phospholipid analogues are photoactivatable, are labeled with 125 I at high specific activity, completely incorporate into synthetic vesicles, and spontaneously transfer between membranes. When an excess of acceptor vesicles or red blood cells (RBC) was mixed with a population of donor vesicles containing the 125 I-N 3 -phospholipids, approximately 40% of the analogues transferred to the acceptor population. After transfer in the dark to RBC, all of the 125 I-N 3 -PC incorporated into the cells could be removed by washing with serum, whereas the 125 I-N 3 -PS could not. After photolabeling of intact RBC, ∼50% of the PC and 20% of the PS cross-linked to membrane proteins as determined by their insolubility in CHCl 3 /MeOH. Analysis of probe distribution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that 125 I-N 3 -PS preferentially labeled a M/sub r/ 30,000 peptide which contained ∼30% of the protein-bound label

  4. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

    Science.gov (United States)

    Johnson, A J; Shukle, R H; Chen, M-S; Srivastava, S; Subramanyam, S; Schemerhorn, B J; Weintraub, P G; Abdel Moniem, H E M; Flanders, K L; Buntin, G D; Williams, C E

    2015-01-01

    Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions. PMID:25528896

  5. Differential Proteome Analysis of the Preeclamptic Placenta Using Optimized Protein Extraction

    Directory of Open Access Journals (Sweden)

    Magnus Centlow

    2010-01-01

    Full Text Available The human placenta is a difficult tissue to work with using proteomic technology since it contains large amounts of lipids and glycogen. Both lipids and glycogen are known to interfere with the first step in the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE, the isoelectric focusing. In order to gain the best possible protein separation on 2D-PAGE, an optimized sample preparation protocol for placental proteins was developed. Two different buffers, urea/CHAPS and Hepes, were used for solubilization in combination with six different precipitation methods. The removal of glycogen from the samples by centrifugation was crucial for the final proteome maps. Solubilization with urea/CHAPS in combination with dichloromethane/methanol or acidified acetone proved to be the best precipitation procedures. When applied to clinical placenta samples apolipoprotein A1 was found to be accumulated in the preeclamptic placenta, where it may either have a nutritional effect or act as a modifier of signal transduction.

  6. Differential expression of pancreatitis-associated protein and thrombospondins in arterial versus venous tissues.

    Science.gov (United States)

    Szasz, Theodora; Eddy, Susan; Paulauskis, Joseph; Burnett, Robert; Ellekilde, Merete; Iovanna, Juan L; Watts, Stephanie W

    2009-01-01

    Arteries and veins modulate cardiovascular homeostasis and contribute to hypertension pathogenesis. Functional differences between arteries and veins are based upon differences in gene expression. To better characterize these expression patterns, and to identify candidate genes that could be manipulated selectively in the venous system, we performed whole genome expression profiling of arteries and veins. We used the CodeLink platform and the major artery (thoracic aorta) and vein (caudal vena cava) of the rat. The most prominent difference was pancreatitis-associated protein (PAP1), expressed 64-fold higher in vena cava versus aorta. Expression of mRNA for thrombospondins (TSP-1, TSP-4) was greater than 5-fold higher in veins versus arteries. Higher mRNA expression of TSP-1, TSP-2, TSP-4 and PAP1 in vena cava versus aorta was confirmed by PCR. Immunohistochemical analysis of tissue sections qualitatively confirmed a higher expression of these proteins in vena cava versus aorta. This is the first gene array study of adult rat arterial and venous tissues, and also the first study to report differences in inflammatory genes between arteries and veins. Data from these studies may provide novel insights into the genetic basis for functional differences between arteries and veins in health and disease. Copyright 2009 S. Karger AG, Basel.

  7. Differential expression of pancreatitis associated protein and thrombospondins in arterial vs venous tissues

    Science.gov (United States)

    Szasz, Theodora; Eddy, Susan; Paulauskis, Joseph; Burnett, Robert; Ellekilde, Merete; Iovanna, Juan L.; Watts, Stephanie W.

    2015-01-01

    BACKGROUND/AIMS Arteries and veins modulate cardiovascular homeostasis and contribute to hypertension pathogenesis. Functional differences between arteries and veins are based upon differences in gene expression. To better characterize these expression patterns, and to identify candidate genes that could be manipulated selectively in the venous system, we performed whole genome expression profiling of arteries and veins. METHODS We used the CodeLink platform and the major artery (thoracic aorta) and vein (caudal vena cava) of the rat. RESULTS The most prominent difference was pancreatitis associated protein (PAP1), expressed 64-fold higher in vena cava vs aorta. Expression of mRNA for thrombospondins (TSP-1, TSP-4) was greater than 5-fold higher in veins vs arteries. Higher mRNA expression of thrombospondins (TSP-1, 2, 4) and PAP1 in vena cava vs aorta was confirmed by PCR. Immunohistochemical analysis of tissue sections qualitatively confirmed a higher expression of these proteins in vena cava vs aorta. CONCLUSION This is the first gene array study of adult rat arterial and venous tissues, and also the first study to report differences in inflammatory genes between arteries and veins. Data from these studies may provide novel insights into the genetic basis for functional differences between arteries and veins in health and disease. PMID:19571575

  8. Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells.

    Science.gov (United States)

    Lee, Seo-Young; Noh, Hye Bin; Kim, Hyeong-Taek; Lee, Kang-In; Hwang, Dong-Youn

    2017-09-29

    The ground-breaking discovery of the reprogramming of somatic cells into pluripotent cells, termed induced pluripotent stem cells (iPSCs), was accomplished by delivering 4 transcription factors, Oct4, Sox2, Klf4, and c-Myc, into fibroblasts. Since then, several efforts have attempted to unveil other factors that are directly implicated in or might enhance reprogramming. Importantly, a number of transcription factors are reported to retain reprogramming activity. A previous study suggested Gli-similar 1 (Glis1) as a factor that enhances the reprogramming of fibroblasts during iPSC generation. However, the implication of other Glis members, including Glis2 and Glis3 (variants 1 and 2), in cellular reprogramming remains unknown. In this study, we investigated the potential involvement of human Glis family proteins, including hGlis1-3, in cellular reprogramming. Our results demonstrate that hGlis1, which is reported to reprogram human fibroblasts, promotes the reprogramming of human adipose-derived stromal cells (hADSCs), indicating that the reprogramming activity of Glis1 is not cell type-specific. Strikingly, hGlis3 promoted the reprogramming of hADSCs as efficiently as hGlis1. On the contrary, hGlis2 showed a strong negative effect on reprogramming. Together, our results reveal clear differences in the cellular reprogramming activity among Glis family members and provide valuable insight into the development of a new reprogramming strategy using Glis family proteins.

  9. Thaumatin-like proteins are differentially expressed and localized in phloem tissues of hybrid poplar

    Directory of Open Access Journals (Sweden)

    Dafoe Nicole J

    2010-08-01

    Full Text Available Abstract Background Two thaumatin-like proteins (TLPs were previously identified in phloem exudate of hybrid poplar (Populus trichocarpa × P. deltoides using proteomics methods, and their sieve element localization confirmed by immunofluorescence. In the current study, we analyzed different tissues to further understand TLP expression and localization in poplar, and used immunogold labelling to determine intracellular localization. Results Immunofluorescence using a TLP antiserum confirmed the presence of TLP in punctate, organelle-like structures within sieve elements. On western blots, the antiserum labeled two constitutively expressed proteins with distinct expression patterns. Immunogold labelling suggested that TLPs are associated with starch granules and starch-containing plastids in sieve elements and phloem parenchyma cells. In addition, the antiserum recognized TLPs in the inner cell wall and sieve plate region of sieve elements. Conclusions TLP localization in poplar cells and tissues is complex. TLP1 is expressed predominantly in tissues with a prominent vascular system such as midveins, petioles and stems, whereas the second TLP is primarily expressed in starch-storing plastids found in young leaves and the shoot apex.

  10. Proteomic analysis of differential protein expression of achilles tendon in a rabbit model by two-dimensional polyacrylamide gel electrophoresis at 21 days postoperation.

    Science.gov (United States)

    Jielile, Jiasharete; Jialili, Ainuer; Sabirhazi, Gulnur; Shawutali, Nuerai; Redati, Darebai; Chen, Jiangtao; Tang, Bin; Bai, Jingping; Aldyarhan, Kayrat

    2011-10-01

    Postoperative early kinesitherapy has been advocated as an optimal method for treating Achilles tendon rupture. However, an insight into the rationale of how early kinesitherapy contributes to healing of Achilles tendon remains to be achieved, and research in the area of proteomic analysis of Achilles tendon has so far been lacking. Forty-two rabbits were randomized into control group, immobilization group, and early motion group, and received postoperative cast immobilization and early motion treatments. Achilles tendon samples were prepared 21 days following microsurgery, and the proteins were separated with two-dimensional polyacrylamide gel electrophoresis. Differentially expressed proteins were first recognized by PDQuest software, and then identified using peptide mass fingerprinting, tandem mass spectrometry, and database searching. A total of 463  ±  12, 511  ±  39, and 513  ±  80 protein spots were successfully detected in the two-dimensional polyacrylamide gels for the Achilles tendon samples of rabbits in the control group, immobilization group, and early motion group, respectively. There were 15, 8, and 9 unique proteins in these three groups, respectively, and some differentially expressed proteins were also identified in each group. It was indicated that some of the differentially expressed proteins were involved in various metabolism pathways and may play an important role in healing of Achilles tendon rupture. Postoperative early kinesitherapy resulted in differentially expressed proteins in ruptured Achilles tendon compared with those treated with postoperative cast immobilization. These differentially expressed proteins may contribute to healing of Achilles tendon rupture through a mechanobiological mechanism due to the application of postoperative early kinesitherapy.

  11. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    Science.gov (United States)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  12. Downregulation of heat shock protein B8 decreases osteogenic differentiation potential of dental pulp stem cells during in vitro proliferation.

    Science.gov (United States)

    Flanagan, M; Li, C; Dietrich, M A; Richard, M; Yao, S

    2018-04-01

    Tissue-derived stem cells, such as dental pulp stem cells (DPSCs), reduce differentiation capability during in vitro culture. We found that cultured DPSCs reduce expression of heat shock protein B8 (HspB8) and GIPC PDZ domain containing family member 2 (Gipc2). Our objectives were to evaluate the changes in DPSC composition during in vitro proliferation and to determine whether HspB8 and Gipc2 have function in differentiation potential of DPSCs. Different passages of rat DPSCs were evaluated for changes in CD90+ and/or CD271+ stem cells and changes in osteogenic potential. Real-time RT-PCR and immunostaining were conducted to determine expression of HspB8 and Gipc2. Expression of the genes in DPSCs was knocked down by siRNA, followed by osteogenic induction to evaluate the function of the genes. About 90% of cells in the DPSC cultures were CD90+ and/or CD271+ cells without dramatic change during in vitro proliferation. The DPSCs at passages 3 to 5 (P3 to P5) possess strong osteogenic potential, but such potential was greatly reduced at later passages. Expression of HspB8 and Gipc2 was significantly reduced at P11 versus P3. Knock-down of HspB8 expression abolished osteogenic potential of the DPSCs, but knock-down of Gipc2 had no effect. CD90+ and CD271+ cells are the major components of DPSCs in in vitro culture. High-level expression of HspB8 was critical for maintaining differentiation potential of DPSCs. © 2017 John Wiley & Sons Ltd.

  13. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p pleural fluid reactive oxygen species modulator 1 were 61.54% and 82.00%, respectively, with the optimized cutoff value of 589.70 pg/mL. However, the diagnostic sensitivity and specificity of serum reactive oxygen species modulator 1 were only 41.38% and 86.21%, respectively, with the cutoff value of 27.22 ng/mL, indicating that serum reactive oxygen species modulator 1 may not be a good option in the differential diagnosis of malignant pleural effusion and benign pleural effusion. The sensitivity and specificity of pleural fluid carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97.84% in serial detection.

  14. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  15. Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis.

    Science.gov (United States)

    Milles, Sigrid; Lemke, Edward A

    2014-07-07

    Intrinsically disordered proteins (IDPs) can bind to multiple interaction partners. Numerous binding regions in the IDP that act in concert through complex cooperative effects facilitate such interactions, but complicate studying IDP complexes. To address this challenge we developed a combined fluorescence correlation and time-resolved polarization spectroscopy approach to study the binding properties of the IDP nucleoporin153 (Nup153) to nuclear transport receptors (NTRs). The detection of segmental backbone mobility of Nup153 within the unperturbed complex provided a readout of local, region-specific binding properties that are usually masked in measurements of the whole IDP. The binding affinities of functionally and structurally diverse NTRs to distinct regions of Nup153 can differ by orders of magnitudes-a result with implications for the diversity of transport routes in nucleocytoplasmic transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation

    Science.gov (United States)

    Grond, Susanne; Radner, Franz P.W.; Eichmann, Thomas O.; Kolb, Dagmar; Grabner, Gernot F.; Wolinski, Heimo; Gruber, Robert; Hofer, Peter; Heier, Christoph; Schauer, Silvia; Rülicke, Thomas; Hoefler, Gerald; Schmuth, Matthias; Elias, Peter M.; Lass, Achim; Zechner, Rudolf; Haemmerle, Guenter

    2017-01-01

    Adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) are limiting in cellular triglyceride catabolism. Although ATGL deficiency is compatible with normal skin development, mice globally lacking CGI-58 die postnatally and exhibit a severe epidermal permeability barrier defect, which may originate from epidermal and/or peripheral changes in lipid and energy metabolism. Here, we show that epidermis-specific disruption of CGI-58 is sufficient to provoke a defect in the formation of a functional corneocyte lipid envelope linked to impaired ω-O-acylceramide synthesis. As a result, epidermis-specific CGI-58-deficient mice show severe skin dysfunction, arguing for a tissue autonomous cause of disease development. Defective skin permeability barrier formation in global CGI-58-deficient mice could be reversed via transgenic restoration of CGI-58 expression in differentiated but not basal keratinocytes suggesting that CGI-58 is essential for lipid metabolism in suprabasal epidermal layers. The compatibility of ATGL deficiency with normal epidermal function indicated that CGI-58 may stimulate an epidermal triglyceride lipase beyond ATGL required for the adequate provision of fatty acids as a substrate for ω-O-acylceramide synthesis. Pharmacological inhibition of ATGL enzyme activity similarly reduced triglyceride-hydrolytic activities in wild-type and CGI-58 overexpressing epidermis implicating that CGI-58 participates in ω-O-acylceramide biogenesis independent of its role as a coactivator of epidermal triglyceride catabolism. PMID:27725204

  17. Differential expression of centrosomal proteins at different stages of human glioma

    International Nuclear Information System (INIS)

    Loh, Joon-Khim; Lieu, Ann-Shung; Chou, Chia-Hua; Lin, Fang-Yi; Wu, Chia-Hung; Howng, Sheng-Long; Chio, Chung-Ching; Hong, Yi-Ren

    2010-01-01

    High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p < 0.05). Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies

  18. Differential expression of centrosomal proteins at different stages of human glioma

    Directory of Open Access Journals (Sweden)

    Lin Fang-Yi

    2010-06-01

    Full Text Available Abstract Background High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. Methods A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. Results In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p Conclusions Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies.

  19. Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation.

    Science.gov (United States)

    Meyer-Roxlau, Stefanie; Lämmle, Simon; Opitz, Annett; Künzel, Stephan; Joos, Julius P; Neef, Stefan; Sekeres, Karolina; Sossalla, Samuel; Schöndube, Friedrich; Alexiou, Konstantin; Maier, Lars S; Dobrev, Dobromir; Guan, Kaomei; Weber, Silvio; El-Armouche, Ali

    2017-07-01

    Protein phosphatase 1 (PP1) is a key regulator of important cardiac signaling pathways. Dysregulation of PP1 has been heavily implicated in cardiac dysfunctions. Accordingly, pharmacological targeting of PP1 activity is considered for therapeutic intervention in human cardiomyopathies. Recent evidence from animal models implicated previously unrecognized, isoform-specific activities of PP1 in the healthy and diseased heart. Therefore, this study examined the expression of the distinct PP1 isoforms PP1α, β, and γ in human heart failure (HF) and atrial fibrillation (AF) and addressed the consequences of β-adrenoceptor blocker (beta-blocker) therapy for HF patients with reduced ejection fraction on PP1 isoform expression. Using western blot analysis, we found greater abundance of PP1 isoforms α and γ but unaltered PP1β levels in left ventricular myocardial tissues from HF patients as compared to non-failing controls. However, expression of all three PP1 isoforms was higher in atrial appendages from patients with AF compared to patients with sinus rhythm. Moreover, we found that in human failing ventricles, beta-blocker therapy was associated with lower PP1α abundance and activity, as indicated by higher phosphorylation of the PP1α-specific substrate eIF2α. Greater eIF2α phosphorylation is a known repressor of protein translation, and accordingly, we found lower levels of the endoplasmic reticulum (ER) stress marker Grp78 in the very same samples. We propose that isoform-specific targeting of PP1α activity may be a novel and innovative therapeutic strategy for the treatment of human cardiac diseases by reducing ER stress conditions.

  20. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    OpenAIRE

    Khwanraj, Kawinthra; Phruksaniyom, Chareerut; Madlah, Suriyat; Dharmasaroja, Permphan

    2015-01-01

    The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decre...

  1. Differential Expression of Tyrosine Hydroxylase Protein and Apoptosis-Related Genes in Differentiated and Undifferentiated SH-SY5Y Neuroblastoma Cells Treated with MPP+

    Directory of Open Access Journals (Sweden)

    Kawinthra Khwanraj

    2015-01-01

    Full Text Available The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson’s disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP+ and evaluate the differential expression of tyrosine hydroxylase (TH in undifferentiated and retinoic acid- (RA- induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP+ and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 μM of MPP+ for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 μM MPP+ led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible.

  2. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  3. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    International Nuclear Information System (INIS)

    Ren, Luqing; Tao, Jianjian; Chen, Huaicheng; Bian, Yang; Yang, Xi; Chen, Gaozhi; Zhang, Xin; Liang, Guang; Wu, Wencan; Song, Zongming; Wang, Yi

    2017-01-01

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigment epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.

  4. Differential Diagnosis of Dementia with High Levels of Cerebrospinal Fluid Tau Protein.

    Science.gov (United States)

    Grangeon, Lou; Paquet, Claire; Bombois, Stephanie; Quillard-Muraine, Muriel; Martinaud, Olivier; Bourre, Bertrand; Lefaucheur, Romain; Nicolas, Gaël; Dumurgier, Julien; Gerardin, Emmanuel; Jan, Mary; Laplanche, Jean-Louis; Peoc'h, Katell; Hugon, Jacques; Pasquier, Florence; Maltête, David; Hannequin, Didier; Wallon, David

    2016-01-01

    Total Tau concentration in cerebrospinal fluid (CSF) is widely used as a biomarker in the diagnosis of neurodegenerative process primarily in Alzheimer's disease (AD). A particularly high Tau level may indicate AD but may also be associated with Creutzfeldt-Jakob disease (CJD). In such situations little is known about the distribution of differential diagnoses. Our study aimed to describe the different diagnoses encountered in clinical practice for patients with dementia and CSF Tau levels over 1000 pg/ml. We studied the p-Tau/Tau ratio to specify its ability to distinguish AD from CJD. Patients (n = 202) with CSF Tau levels over 1000 pg/ml were recruited in three memory clinics in France. All diagnoses were made using the same diagnostic procedure and criteria. Patients were diagnosed with AD (n = 148, 73.2%), mixed dementia (n = 38, 18.8%), CJD, vascular dementia (n = 4, 2.0% for each), Lewy body dementia, and frontotemporal dementia (n = 3, 1.5% for each). Dispersion of CSF Tau levels clearly showed an overlap between all diagnoses. Using the p-Tau/Tau ratio suggestive of CJD (<0.075), all CJD patients were correctly categorized and only two AD patients were miscategorized. This ratio was highly associated with CJD compared to AD (p < 0.0001). Our study showed that in clinical practice, extremely high CSF Tau levels are mainly related to diagnosis of AD. CJD patients represent a minority. Our results support a sequential interpretation algorithm for CSF biomarkers in dementia. High CSF Tau levels should alert clinicians to check the p-Tau/Tau ratio to consider a probable diagnosis of CJD.

  5. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Luqing [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Tao, Jianjian; Chen, Huaicheng; Bian, Yang; Yang, Xi [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Chen, Gaozhi; Zhang, Xin; Liang, Guang [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Wencan, E-mail: wuwencan118@163.com [The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Song, Zongming, E-mail: szmeyes@126.com [The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi, E-mail: yi.wang1122@wmu.edu.cn [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-02-15

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigment epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.

  6. Differential Effects of High-Protein Diets Derived from Soy and Casein on Blood–Brain Barrier Integrity in Wild-type Mice

    Directory of Open Access Journals (Sweden)

    Matthew Snelson

    2017-07-01

    Full Text Available A number of studies report that a diet high in protein influences cognitive performance, but the results are inconsistent. Studies demonstrated that protein from different food sources has differential effects on cognition. It is increasingly recognized that the integrity of cerebrovascular blood–brain barrier (BBB is pivotal for central nervous system function. However, to date, no studies have reported the effects of high-protein diets on BBB integrity. Therefore, in this study, the effects of diets enriched in casein or soy protein on BBB permeability were investigated. Immunomicroscopy analyses of cerebral parenchymal immunoglobulin G extravasation indicated significant BBB disruption in the cortex of young adult mice maintained on high-casein diet for 12 weeks, while no signs of BBB dysfunction were observed in mice fed with control or high-soy protein diet. Moreover, cortical expression of glial fibrillary acidic protein (GFAP was significantly greater in mice fed the high-casein diet compared to control mice, indicating heightened astrocyte activation, whereas mice maintained on a soy-enriched diet showed no increase of GFAP abundance. Plasma concentrations of homocysteine were markedly greater in mice maintained on a high-casein diet in comparison to control mice. Collectively, these findings suggest that a diet enriched in casein but not soy protein may induce astrocyte activation through exaggerated BBB permeability by increased plasma homocysteine. The outcomes indicate the differential effects of protein sources on BBB and neuroinflammation, which may provide an important implication for dietary guidelines for protein supplementation.

  7. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  8. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    Directory of Open Access Journals (Sweden)

    Xiaolin eWu

    2015-01-01

    Full Text Available ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5, deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs, late embryogenesis abundant (LEA proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.

  9. Placental heat shock proteins: no immunohistochemical evidence for a differential stress response in preterm labour.

    Science.gov (United States)

    Divers, M J; Bulmer, J N; Miller, D; Lilford, R J

    1995-01-01

    The aetiology of idiopathic preterm labour remains obscure. The hypothesis that a stress response induced by low-grade bacterial infection in utero-placental tissues was investigated. Distribution of cognate and inducible isoforms of heat shock proteins (HSP) 70 kD, HSP 60 kD and HSP 90 kD were investigated in an immunohistochemical study of placental and decidual tissues before and after labour at varying gestations. Subjects were pregnant women undergoing singleton delivery after idiopathic preterm labour at less than 34 weeks' gestation (n = 23); spontaneous term labour at 37-42 weeks' gestation (n =24); preterm caesarean sections at less than 34 weeks' gestation for preeclampsia or intrauterine growth retardation (n=14); elective caesarean section at 37-42 weeks' gestation for cephalopelvic disproportion (n = 6). HSP expression was constant throughout the third trimester of pregnancy and did not change following the onset of labour, regardless of gestational age. A stress response in decidual tissues as determined by immunohistochemical analysis is apparently not associated with preterm labour.

  10. Transcription and translation of phloem protein (PP2) during phloem differentiation in Cucurbita maxima.

    Science.gov (United States)

    Sham, M H; Northcote, D H

    1987-03-01

    The synthesis of a major phloem protein, PP2, was investigated by measurement of the mRNA at various stages of phloem development in Cucurbita. Quantitative assays with immuno-electrophoresis showed that the amounts of PP2 in hypocotyls of Cucurbita seedlings increased with the age of seedlings. An increase in mRNA for PP2 during the early stages of seedling growth was also observed by immunoprecipitation of the invitro translation products of hypocotyl polyadenylated RNA. There was close timing in the variations of PP2 synthesised in vivo and in the changes in amounts of translatable PP2-mRNA during the course of seedling growth. A complementary-DNA (cDNA) library to polyadenylated RNA from hypocotyls of 3-d-old Cucurbita seedlings has been constructed. Two cDNA clones, A and B, have been identified by hybrid-release translation to be complementary to the mRNA coding for PP2. The levels of total mRNA for PP2 measured with clone A were found to increase in the first 4 d of seedling growth but decreased to lower levels in older seedlings. Regulatory controls on both transcription and modification of transcripts appeared to occur during the synthesis of PP2.

  11. Mutations in Alström protein impair terminal differentiation of cardiomyocytes.

    Science.gov (United States)

    Shenje, Lincoln T; Andersen, Peter; Halushka, Marc K; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A S; Chen, Yan; Chelko, Stephen; Crosson, Jane E; Scheel, Janet; Vricella, Luca; Craig, Brian D; Marosy, Beth A; Mohr, David W; Hetrick, Kurt N; Romm, Jane M; Scott, Alan F; Valle, David; Naggert, Jürgen K; Kwon, Chulan; Doheny, Kimberly F; Judge, Daniel P

    2014-03-04

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest.

  12. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.

    Science.gov (United States)

    Wang, Xiaoming; Wang, Ruochen; Ma, Chuang; Shi, Xue; Liu, Zhenshan; Wang, Zhonghua; Sun, Qixin; Cao, Jun; Xu, Shengbao

    2017-05-31

    Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.

  13. Serum C-Reactive Protein Level as a Biomarker for Differentiation of Ischemic from Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Seyed Ali Roudbary

    2011-03-01

    Full Text Available Cerebrovascular accidents rank first in the frequency and importance among all neurological disease. Although a number of studies had shown increased level of the high sensitive C-reactive protein (hs-CRP in patients with ischemic stroke, the association of increased hs-CRP with various type of stroke especially the assessment hs-CRP level in ischemic and hemorrhagic stroke have not been investigated. In the present study, we assessed the concentration of hs-CRP in patients with documented ischemic and hemorrhagic stroke in the first 24 hours of the onset of symptoms. Thirty-two patients with Ischemic and hemorrhagic stroke were evaluated at neurology department of Poursina Hospital. The presence of baseline vascular risk factors, including hypertension, diabetes mellitus, hypercholesterolemia, obesity, and smoking, was determined. The blood samples were then collected and routine hematology and biochemistry tests were done. hs-CRP levels were determined using a highly sensitive immunonephelometric method. In this cross sectional study, the age of patient varied from 45-85 years (Mean 70.9  9.4. Serum level of hs-CRP in Ischemic patients were 18.92  11.28 and in hemorrhagic group was 2.65  1.7. This relationship was statistically significant (P<0.0001. It might be concluded that hs-CRP might be considered as a usefully adjunct method for the initial diagnosis of the type of stroke.

  14. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1.

    Science.gov (United States)

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma

    2009-04-01

    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668.

  15. Reduced amyloidogenic processing of the amyloid β-protein precursor by the small-molecule Differentiation Inducing Factor-1

    Science.gov (United States)

    Myre, Michael A.; Washicosky, Kevin; Moir, Robert D.; Tesco, Giuseppina; Tanzi, Rudolph E.; Wasco, Wilma

    2013-01-01

    The detection of cell cycle proteins in Alzheimer’s disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Aβ properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid β-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Aβ40 and Aβ42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Aβ42 to Aβ40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Aβ. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a γ-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  16. Conformational study of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) by tryptophan fluorescence and differential scanning calorimetry.

    Science.gov (United States)

    Yin, Shou-Wei; Tang, Chuan-He; Yang, Xiao-Quan; Wen, Qi-Biao

    2011-01-12

    Fluorescence and differential scanning calorimetry (DSC) were used to study changes in the conformation of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) under various environmental conditions. The possible relationship between fluorescence data and DSC characteristics was also discussed. Tryptophan fluorescence and fluorescence quenching analyses indicated that the tryptophan residues in KPI, exhibiting multiple fluorophores with different accessibilities to acrylamide, are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains close to at least some of the tryptophan residues. GdnHCl was more effective than urea and SDS in denaturing KPI. SDS and urea caused variable red shifts, 2-5 nm, in the emission λ(max), suggesting the conformational compactness of KPI. The result was further supported by DSC characteristics that a discernible endothermic peak was still detected up to 8 M urea or 30 mM SDS, also evidenced by the absence of any shift in emission maximum (λ(max)) at different pH conditions. Marked decreases in T(d) and enthalpy (ΔH) were observed at extreme alkaline and/or acidic pH, whereas the presence of NaCl resulted in higher T(d) and ΔH, along with greater cooperativity of the transition. Decreases in T(d) and ΔH were observed in the presence of protein perturbants, for example, SDS and urea, indicating partial denaturation and decrease in thermal stability. Dithiothreitol and N-ethylmaleimide have a slight effect on the thermal properties of KPI. Interestingly, a close linear relationship between the T(d) (or ΔH) and the λ(max) was observed for KPI in the presence of 0-6 M urea.

  17. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    Science.gov (United States)

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  18. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2

    Science.gov (United States)

    Bylund, Jeffery B.; Trinh, Linh T.; Awgulewitsch, Cassandra P.; Paik, David T.; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B.; Kamp, Timothy J.

    2017-01-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling. PMID:28125926

  19. Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training.

    Science.gov (United States)

    Noble, E G; Moraska, A; Mazzeo, R S; Roth, D A; Olsson, M C; Moore, R L; Fleshner, M

    1999-05-01

    High-intensity treadmill exercise increases the expression of a cardioprotective, inducible 72-kDa stress protein (SP72) in cardiac muscle. This investigation examined whether voluntary free wheel exercise training would be sufficient to confer a similar response. Male Sprague-Dawley rats were randomly assigned to either treadmill (TM-Tr) or free wheel (FW-Tr) training groups. By the end of the 8-wk training period, TM-Tr animals ran 1 h/day, 5 days/wk up a 10% grade, covering a distance of 8,282 m/wk. FW-Tr rats ran, on average, 5,300 m/wk, with one-third of the animals covering distances similar to those for the TM-Tr group. At the time of death, hearts of trained and caged sedentary control (Sed) animals were divided into left (LV) and right (RV) ventricles. Citrate synthase activity and the relative immunoblot contents of SP72, SP73 (the constitutive isoform of the SP70 family), and a 75-kDa mitochondrial chaperone (SP75) were subsequently determined. LV and RV did not differ on any measure, and SP73, SP75, and citrate synthase were not affected by training. Cardiac SP72 levels were elevated over fourfold in both ventricles of TM-Tr compared with RV of FW-Sed rats. Despite the animals having run a similar total distance, cardiac SP72 content in FW-Tr rats was not different from that in Sed animals. These data indicate that voluntary exercise training is insufficient to elicit an elevation of SP72 in rat heart and suggest that exercise intensity may be a critical factor in evoking the cardioprotective SP72 response.

  20. Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors.

    Science.gov (United States)

    Zhao, Li-Hua; Yin, Yanting; Yang, Dehua; Liu, Bo; Hou, Li; Wang, Xiaoxi; Pal, Kuntal; Jiang, Yi; Feng, Yang; Cai, Xiaoqing; Dai, Antao; Liu, Mingyao; Wang, Ming-Wei; Melcher, Karsten; Xu, H Eric

    2016-07-15

    G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Immunization with myelin components can elicit experimental autoimmune encephalomyelitis (EAE. EAE susceptibility varies between mouse strains, depending on the antigen employed. BL/6 mice are largely resistant to EAE induction with proteolipid protein (PLP, probably a reflection of antigen-specific tolerance. However, the extent and mechanism(s of tolerance to PLP remain unclear. Here, we identified three PLP epitopes in PLP-deficient BL/6 mice. PLP-sufficient mice did not respond against two of these, whereas tolerance was “leaky” for an epitope with weak predicted MHCII binding, and only this epitope was encephalitogenic. In TCR transgenic mice, the “EAE-susceptibility-associated” epitope was “ignored” by specific CD4 T cells, whereas the “resistance-associated” epitope induced clonal deletion and Treg induction in the thymus. Central tolerance was autoimmune regulator dependent and required expression and presentation of PLP by thymic epithelial cells (TECs. TEC-specific ablation of PLP revealed that peripheral tolerance, mediated by dendritic cells through recessive tolerance mechanisms (deletion and anergy, could largely compensate for a lack of central tolerance. However, adoptive EAE was exacerbated in mice lacking PLP in TECs, pointing toward a non-redundant role of the thymus in dominant tolerance to PLP. Our findings reveal multiple layers of tolerance to a central nervous system autoantigen that vary among epitopes and thereby specify disease susceptibility. Understanding how different modalities of tolerance apply to distinct T cell epitopes of a target in autoimmunity has implications for antigen-specific strategies to therapeutically interfere with unwanted immune reactions against self.

  2. UV laser radiation alters the embryonic protein profile of adrenal-kidney-gonadal complex and gonadal differentiation in the lizard, Calotes Versicolor.

    Science.gov (United States)

    Khodnapur, Bharati S; Inamdar, Laxmi S; Nindi, Robertraj S; Math, Shivkumar A; Mulimani, B G; Inamdar, Sanjeev R

    2015-02-01

    To examine the impact of ultraviolet (UV) laser radiation on the embryos of Calotes versicolor in terms of its effects on the protein profile of the adrenal-kidney-gonadal complex (AKG), sex determination and differentiation, embryonic development and hatching synchrony. The eggs of C. versicolor, during thermo-sensitive period (TSP), were exposed to third harmonic laser pulses at 355 nm from a Q-switched Nd:YAG laser for 180 sec. Subsequent to the exposure they were incubated at the male-producing temperature (MPT) of 25.5 ± 0.5°C. The AKG of hatchlings was subjected to protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and to histology. The UV laser radiation altered the expression of the protein banding pattern in the AKG complex of hatchlings and it also affected the gonadal sex differentiation. SDS-PAGE of AKG of one-day-old hatchlings revealed a total of nine protein bands in the control group whereas UV laser irradiated hatchlings expressed a total of seven protein bands only one of which had the same Rf as a control band. The UV laser treated hatchlings have an ovotestes kind of gonad exhibiting a tendency towards femaleness instead of the typical testes. It is inferred that 355 nm UV laser radiation during TSP induces changes in the expression of proteins as well as their secretions. UV laser radiation had an impact on the gonadal differentiation pathway but no morphological anomalies were noticed.

  3. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rybkina, Valentina L.; Azizova, Tamara V.; Adamova, Galina V.; Teplyakova, Olga V.; Osovets, Sergey V.; Bannikova, Maria V. [Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region (Russian Federation); Scherthan, Harry; Meineke, Viktor; Doerr, Harald [University of Ulm, Bundeswehr Institute of Radiobiology, Munich (Germany); Zurochka, Alexander V. [Immunology Institute, Yekaterinburg (Russian Federation)

    2014-11-15

    This study aimed to assess effects of chronic occupational exposure on immune status in Mayak workers chronically exposed to ionizing radiation (IR). The study cohort consists of 77 workers occupationally exposed to external gamma-rays at total dose from 0.5 to 3.0 Gy (14 individuals) and workers with combined exposure (external gamma-rays at total dose range 0.7-5.1 Gy and internal alpha-radiation from incorporated plutonium with a body burden of 0.3-16.4 kBq). The control group consists of 43 age- and sex-matched individuals who never were exposed to IR, never involved in any cleanup operations following radiation accidents and never resided at contaminated areas. Enzyme-linked immunoassay and flow cytometry were used to determine the relative concentration of lymphocytes and proteins. The concentrations of T-lymphocytes, interleukin-8 and immunoglobulins G were decreased in external gamma-exposed workers relative to control. Relative concentrations of NKT-lymphocytes, concentrations of transforming growth factor-β, interferon gamma, immunoglobulins A, immunoglobulins M and matrix proteinase-9 were higher in this group as compared with control. Relative concentrations of T-lymphocytes and concentration of interleukin-8 were decreased, while both the relative and absolute concentration of natural killers, concentration of immunoglobulins A and M and matrix proteinase-9 were increased in workers with combined exposure as compared to control. An inverse linear relation was revealed between absolute concentration of T-lymphocytes, relative and absolute concentration of T-helpers cells, concentration of interferon gamma and total absorbed dose from external gamma-rays in exposed workers. For workers with incorporated plutonium, there was an inverse linear relation of absolute concentration of T-helpers as well as direct linear relation of relative concentration of NKT-lymphocytes to total absorbed red bone marrow dose from internal alpha-radiation. In all, chronic

  4. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Rybkina, Valentina L.; Azizova, Tamara V.; Adamova, Galina V.; Teplyakova, Olga V.; Osovets, Sergey V.; Bannikova, Maria V.; Scherthan, Harry; Meineke, Viktor; Doerr, Harald; Zurochka, Alexander V.

    2014-01-01

    This study aimed to assess effects of chronic occupational exposure on immune status in Mayak workers chronically exposed to ionizing radiation (IR). The study cohort consists of 77 workers occupationally exposed to external gamma-rays at total dose from 0.5 to 3.0 Gy (14 individuals) and workers with combined exposure (external gamma-rays at total dose range 0.7-5.1 Gy and internal alpha-radiation from incorporated plutonium with a body burden of 0.3-16.4 kBq). The control group consists of 43 age- and sex-matched individuals who never were exposed to IR, never involved in any cleanup operations following radiation accidents and never resided at contaminated areas. Enzyme-linked immunoassay and flow cytometry were used to determine the relative concentration of lymphocytes and proteins. The concentrations of T-lymphocytes, interleukin-8 and immunoglobulins G were decreased in external gamma-exposed workers relative to control. Relative concentrations of NKT-lymphocytes, concentrations of transforming growth factor-β, interferon gamma, immunoglobulins A, immunoglobulins M and matrix proteinase-9 were higher in this group as compared with control. Relative concentrations of T-lymphocytes and concentration of interleukin-8 were decreased, while both the relative and absolute concentration of natural killers, concentration of immunoglobulins A and M and matrix proteinase-9 were increased in workers with combined exposure as compared to control. An inverse linear relation was revealed between absolute concentration of T-lymphocytes, relative and absolute concentration of T-helpers cells, concentration of interferon gamma and total absorbed dose from external gamma-rays in exposed workers. For workers with incorporated plutonium, there was an inverse linear relation of absolute concentration of T-helpers as well as direct linear relation of relative concentration of NKT-lymphocytes to total absorbed red bone marrow dose from internal alpha-radiation. In all, chronic

  5. Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases

    Science.gov (United States)

    Woo, Jongchan; Park, Eunsook; Dinesh-Kumar, S. P.

    2014-01-01

    Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a–AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants. PMID:24379391

  6. miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation

    Directory of Open Access Journals (Sweden)

    Hsiao-Ning Huang

    2014-03-01

    Full Text Available Human embryonic stem cells (hESCs are functionally unique for their self-renewal ability and pluripotency, but the molecular mechanisms giving rise to these properties are not fully understood. hESCs can differentiate into embryoid bodies (EBs containing ectoderm, mesoderm, and endoderm. In the miR-200 family, miR-200c was especially enriched in undifferentiated hESCs and significantly downregulated in EBs. The knockdown of the miR-200c in hESCs downregulated Nanog expression, upregulated GATA binding protein 4 (GATA4 expression, and induced hESC apoptosis. The knockdown of GATA4 rescued hESC apoptosis induced by downregulation of miR-200c. miR-200c directly targeted the 3′-untranslated region of GATA4. Interestingly, the downregulation of GATA4 significantly inhibited EB formation in hESCs. Overexpression of miR-200c inhibited EB formation and repressed the expression of ectoderm, endoderm, and mesoderm markers, which could partially be rescued by ectopic expression of GATA4. Fibroblast growth factor (FGF and activin A/nodal can sustain hESC renewal in the absence of feeder layer. Inhibition of transforming growth factor-β (TGF-β/activin A/nodal signaling by SB431542 treatment downregulated the expression of miR-200c. Overexpression of miR-200c partially rescued the expression of Nanog/phospho-Smad2 that was downregulated by SB431542 treatment. Our observations have uncovered novel functions of miR-200c and GATA4 in regulating hESC renewal and differentiation.

  7. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-08-01

    Full Text Available A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1 is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat domain of the EMS1 (EXCESS MICROSPOROCYTES1 receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction.

  8. Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions.

    Science.gov (United States)

    Hazuchova, Katarina; Held, Susanne; Neiger, Reto

    2017-08-01

    Objectives The aim of this study was to evaluate the measurement of acute phase proteins (APPs) as a diagnostic tool to differentiate between feline infectious peritonitis (FIP) and other diseases in cats with body cavity effusions. Methods Cats with pleural, abdominal or pericardial effusion were prospectively enrolled. Cats were classified as having or not having FIP based on immunohistochemistry (if available) or a sophisticated statistical method using machine learning methodology with concepts from game theory. Cats without FIP were further subdivided into three subgroups: cardiac disease, neoplasia and other diseases. Serum amyloid A (SAA), haptoglobin (Hp) and α 1 -acid glycoprotein (AGP) were measured in serum and effusion, using assays previously validated in cats. Results Serum and effusion samples were available for the measurement of APPs from 88 and 67 cats, respectively. Concentrations of the APPs in serum and effusion were significantly different in cats with and without FIP ( P <0.001 for all three APPs). The best APP to distinguish between cats with and without FIP was AGP in the effusion; a cut-off value of 1550 µg/ml had a sensitivity and specificity of 93% each for diagnosing FIP. Conclusions and relevance AGP, particularly if measured in effusion, was found to be useful in differentiating between FIP and other diseases, while SAA and Hp were not. The concentration of all three APPs in some diseases (eg, septic processes, disseminated neoplasia) was as high as in cats with FIP; therefore, none of these can be recommended as a single diagnostic test for FIP.

  9. Effects of extracellular matrix proteins on macrophage differentiation, growth, and function: comparison of liquid and agar culture systems

    Science.gov (United States)

    Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Both spaceflight and skeletal unloading suppress the haematopoietic differentiation of macrophages (Sonnenfeld et al., Aviat. Space Environ. Med., 61:648-653, 1990; Armstrong et al., J. Appl. Physiol., 75:2734-2739, 1993). The mechanism behind this reduction in haematopoiesis has yet to be elucidated. However, changes in bone marrow extracellular matrix (ECM) may be involved. To further understand the role of ECM products in macrophage differentiation, we have performed experiments evaluating the effects of fibronectin, laminin, collagen type I, and collagen type IV on macrophage development and function. Bone marrow-derived macrophages cultured on four different ECM substrates in liquid culture medium showed less growth than those cultured on plastic. Significant morphological differences were seen on each of the substrates used. Phenotypically and functionally, as measured by class II major histocompatibility molecule (MHCII) expression, MAC-2 expression, and the secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), these macrophages were similar. In contrast, bone marrow-derived macrophages cultured in suspension, using agar, showed no difference in growth when exposed to ECM proteins. However, IL-6 and TNF-alpha secretion was affected by fibronectin, laminin, collagen type I, and collagen type IV in a concentration-dependent manner. We conclude that the ECM products fibronectin, laminin, collagen type I, and collagen type IV have profound effects on macrophage development and function. Additionally, we suggest that an ECM-supplemented agar culture system provides an environment more analogous to in vivo bone marrow than does a traditional liquid culture system.

  10. Determination of the binding mode for anti-inflammatory natural product xanthohumol with myeloid differentiation protein 2

    Directory of Open Access Journals (Sweden)

    Fu W

    2016-01-01

    Full Text Available Weitao Fu,1,* Lingfeng Chen,1,* Zhe Wang,1 Chengwei Zhao,1 Gaozhi Chen,1 Xing Liu,1 Yuanrong Dai,2 Yuepiao Cai,1 Chenglong Li,1,3 Jianmin Zhou,1 Guang Liang1 1Chemical Biology Research Center, School of Pharmaceutical Sciences, 2Department of Respiratory Medicine, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 3Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, USA *These authors contributed equally to this work Abstract: It is recognized that myeloid differentiation protein 2 (MD-2, a coreceptor of toll-like receptor 4 (TLR4 for innate immunity, plays an essential role in activation of the lipopolysaccharide signaling pathway. MD-2 is known as a neoteric and suitable therapeutical target. Therefore, there is great interest in the development of a potent MD-2 inhibitor for anti-inflammatory therapeutics. Several studies have reported that xanthohumol (XN, an anti-inflammatory natural product from hops and beer, can block the TLR4 signaling by binding to MD-2 directly. However, the interaction between MD-2 and XN remains unknown. Herein, our work aims at characterizing interactions between MD-2 and XN. Using a combination of experimental and theoretical modeling analysis, we found that XN can embed into the hydrophobic pocket of MD-2 and form two stable hydrogen bonds with residues ARG-90 and TYR-102 of MD-2. Moreover, we confirmed that ARG-90 and TYR-102 were two necessary residues during the recognition process of XN binding to MD-2. Results from this study identified the atomic interactions between the MD-2 and XN, which will contribute to future structural design of novel MD-2-targeting molecules for the treatment of inflammatory diseases. Keywords: myeloid differentiation 2, xanthohumol, binding mode, inflammation, molecular dynamics simulation 

  11. Computer jargon explained

    CERN Document Server

    Enticknap, Nicholas

    2014-01-01

    Computer Jargon Explained is a feature in Computer Weekly publications that discusses 68 of the most commonly used technical computing terms. The book explains what the terms mean and why the terms are important to computer professionals. The text also discusses how the terms relate to the trends and developments that are driving the information technology industry. Computer jargon irritates non-computer people and in turn causes problems for computer people. The technology and the industry are changing so rapidly; it is very hard even for professionals to keep updated. Computer people do not

  12. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1986-01-01

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (αGs), assayed by radiolabeling in the presence of cholera toxin and [ 32 P]NAD + , increased upon differentiation as previously described by others. The amounts of αGi and αGo assayed by radiolabeling in the presence of pertussis toxin and [ 32 P]NAD + increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain αGo and with one raised against theβ-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of αGo and also demonstrate an increase in the amount of the β-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes

  13. Differential stimulation by CCAAT/enhancer-binding protein alpha isoforms of the estrogen-activated promoter of the very-low-density apolipoprotein II gene

    NARCIS (Netherlands)

    Calkhoven, CF; Snippe, L; Ab, G

    1997-01-01

    The transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBP alpha and C/EBP beta) are highly expressed in liver and are believed to function in maintaining the differentiated state of the hepatocytes, C/EBP alpha appears to be a critical regulator of genes involved in metabolic

  14. CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models?

    Science.gov (United States)

    W.J. Mattson; R. Julkunen-Tiitto; D.A. Herms

    2005-01-01

    Rising levels of atmospheric CO2 can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDBe) are similar but alternative models that address ontogenetic and environmental effects on whole-plant carbon partitioning to the...

  15. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts

    DEFF Research Database (Denmark)

    Bennett, K L; Kussmann, M; Björk, P

    2000-01-01

    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vit...

  16. Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons

    DEFF Research Database (Denmark)

    Novitskaya, V; Grigorian, M; Kriajevska, M

    2000-01-01

    protein family. The oligomeric but not the dimeric form of Mts1 strongly induces differentiation of cultured hippocampal neurons. A mutant with a single Y75F amino acid substitution, which stabilizes the dimeric form of Mts1, is unable to promote neurite extension. Disulfide bonds do not play an essential...

  17. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  18. Self-explaining roads

    NARCIS (Netherlands)

    Horst, A.R.A. van der; Kaptein, N.

    1999-01-01

    As a means to a sustainable safe traffic environment the concept of Self-Explaining Roads (SER) has been developed. The SER concept advocates a traffic environment that elicits safe driving behaviour simply by its design. In order to support safe driving behaviour and appropriate speed choice,

  19. [Expression of ICAT and Wnt signaling-related proteins in the monocytic differentiation of HL-60 cells induced by a new steroidal drug NSC67657].

    Science.gov (United States)

    Wang, J S; Wang, W J; Wang, T; Zhang, Y

    2016-04-01

    To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (Pcells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (Pprotein, and down-regulated the expression of β-catenin mRNA and protin (Pprotein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (Pcells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.

  20. Proteomic Profiling of a Primary CD4+ T Cell Model of HIV-1 Latency Identifies Proteins Whose Differential Expression Correlates with Reactivation of Latent HIV-1.

    Science.gov (United States)

    Saha, Jamaluddin Md; Liu, Hongbing; Hu, Pei-Wen; Nikolai, Bryan C; Wu, Hulin; Miao, Hongyu; Rice, Andrew P

    2018-01-01

    The latent HIV-1 reservoir of memory CD4 + T cells that persists during combination antiviral therapy prevents a cure of infection. Insight into mechanisms of latency and viral reactivation are essential for the rational design of strategies to reduce the latent reservoir. In this study, we quantified the levels of >2,600 proteins in the CCL19 primary CD4 + T cell model of HIV-1 latency. We profiled proteins under conditions that promote latent infection and after cells were treated with phorbol 12-myristate 13-acetate (PMA) + ionomycin, which is known to efficiently induce reactivation of latent HIV-1. In an analysis of cells from two healthy blood donors, we identified 61 proteins that were upregulated ≥2-fold, and 36 proteins that were downregulated ≥2-fold under conditions in which latent viruses were reactivated. These differentially expressed proteins are, therefore, candidates for cellular factors that regulate latency or viral reactivation. Two unexpected findings were obtained from the proteomic data: (1) the interactions among the majority of upregulated proteins are largely undetermined in published protein-protein interaction networks and (2) downregulated proteins are strongly associated with Gene Ontology terms related to mitochondrial protein synthesis. This proteomic data set provides a useful resource for future mechanistic studies of HIV-1 latency.

  1. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage.

    Science.gov (United States)

    Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin

    2018-02-01

    Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.

  2. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters!

    Science.gov (United States)

    Chaudhury, Arun

    2015-01-01

    Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of "sphincter proteome." Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled "idiopathic" and facilitating practice of precision medicine.

  3. Proteomic Characterization of Differential Abundant Proteins Accumulated between Lower and Upper Epidermises of Fleshy Scales in Onion (Allium cepa L. Bulbs.

    Directory of Open Access Journals (Sweden)

    Si Wu

    Full Text Available The onion (Allium cepa L. is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE and upper epidermis (UE of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and β-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors.

  4. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  5. Design of a Vitronectin-Based Recombinant Protein as a Defined Substrate for Differentiation of Human Pluripotent Stem Cells into Hepatocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Masato Nagaoka

    Full Text Available Maintenance and differentiation of human pluripotent stem cells (hPSCs usually requires culture on a substrate for cell adhesion. A commonly used substratum is Matrigel purified from Engelbr