WorldWideScience

Sample records for experimentally determined stiffness

  1. Stiffness analysis and experimental validation of robotic systems

    Science.gov (United States)

    Carbone, Giuseppe

    2011-06-01

    Stiffness can be considered of primary importance in order to guarantee the successful use of any robotic system for a given task. Therefore, this paper proposes procedures for carrying out both numerical and experimental estimations of stiffness performance for multibody robotic systems. The proposed numerical procedure is based on models with lumped parameters for deriving the Cartesian stiffness matrix. Stiffness performance indices are also proposed for comparing stiffness performance. Then, an experimental procedure for the evaluation stiffness performance is proposed as based on a new measuring system named as Milli-CATRASYS (Milli Cassino Tracking System) and on a trilateration technique. Cases of study are reported to show the soundness and engineering feasibility of both the proposed numerical formulation for stiffness analysis and experimental validation of stiffness performance.

  2. Biomaterial stiffness determines stem cell fate.

    Science.gov (United States)

    Lv, Hongwei; Wang, Heping; Zhang, Zhijun; Yang, Wang; Liu, Wenbin; Li, Yulin; Li, Lisha

    2017-06-01

    Stem cells have potential to develop into numerous cell types, thus they are good cell source for tissue engineering. As an external physical signal, material stiffness is capable of regulating stem cell fate. Biomaterial stiffness is an important parameter in tissue engineering. We summarize main measurements of material stiffness under different condition, then list and compare three main methods of controlling stiffness (material amount, crosslinking density and photopolymeriztion time) which interplay with one another and correlate with stiffness positively, and current advances in effects of biomaterial stiffness on stem cell fate. We discuss the unsolved problems and future directions of biomaterial stiffness in tissue engineering. Copyright © 2017. Published by Elsevier Inc.

  3. Synthesis of stiffness and mass matrices from experimental vibration modes.

    Science.gov (United States)

    Ross, R. G., Jr.

    1971-01-01

    With highly complex structures, it is sometimes desirable to derive a dynamic model of the system from experimental vibration data. This paper presents algorithms for synthesizing the mass and stiffness matrices from experimentally derived modal data in a way which preserves the physical significance of the individual mass and stiffness elements. The synthesizing procedures allow for the incorporation of other mass and stiffness data, whether empirical or based on the analyst's insight. The mass and stiffness matrices are derived for a cantilever beam example and are compared with those obtained using earlier techniques.

  4. Experimental Challenges to Stiffness as a Transport Paradigm

    Science.gov (United States)

    Luce, T. C.

    2017-10-01

    Transport in plasmas is treated experimentally as a relationship between gradients and fluxes in analogy to the random-walk problem. Gyrokinetic models often predict strong increases in local flux for small increases in local gradient when above a threshold, holding all other parameters fixed. This has been named `stiffness'. The radial scalelength is then expected to vary little with source strength as a result of high stiffness. To probe the role of ExB shearing on stiffness in the DIII-D tokamak, two neutral beam injection power scans in H-mode plasmas were specially crafted-one with constant, low torque and one with increasing torque. The ion heat, electron heat, and ion toroidal momentum transport do not show expected signatures of stiffness, while the ion particle transport does. The ion heat transport shows the clearest discrepancy; the normalized heat flux drops with increasing inverse ion temperature scalelength. ExB shearing affects the transport magnitude, but not the scalelength dependence. Linear gyrofluid (TGLF) and nonlinear gyrokinetic (GYRO) predictions show stiff ion heat transport around the experimental profiles. The ion temperature gradient required to match the ion heat flux with increasing auxiliary power is not correctly described by TGLF, even when parameters are varied within the experimental uncertainties. TGLF also underpredicts transport at smaller radii, but overpredicts transport at larger radii. Independent of the theory/experiment comparison, it is not clear that the theoretical definition of stiffness yields any prediction about parameter scans such as the power scans here, because the quantities that must be held fixed to quantify stiffness are varied. A survey of recent literature indicated that profile resilience is routinely attributed to stiffness, but simple model calculations show profile resilience does not imply stiffness. Taken together, these observations challenge the use of local stiffness as a paradigm for explaining

  5. A new approach to determine press stiffness

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    A new procedure is proposed for measuring press stiffness, including separated horizontal and vertical loading of the press frame. The load can be eccentrically positioned for measuring rotational stiffnesses. Two loading devices and corresponding measuring equipment for registration of press...... deflections are designed. The press stiffness is presented as a 6 by 6 flexibility matrix. The approach has been tested by measuring the stiffness of a 5000 kN O-frame, ring element, hydraulic press, a 10000 kN O-frame, pillar element, hydraulic press and a 10000 kN O-frame, ring element mechanical press...

  6. Determination of 6 stiffnesses for a press

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras

    2000-01-01

    the workpiece will result in deflections of the press, which will decrease the tolerances of the component. At present, it is possible to measure the reaction forces from the workpiece, for instance by use of the model material technique as described in [1-2]. If the stiffness and clearances of the press...... is known too, the final dimensions can be predicted by divide the force by the stiffness and add the clearance. If the stiffness of the press is known, it is possible to optimize the orientation of the workpiece too, so the direction, in which the best tolerances is demanded, is equal to the direction...... in which the press has the highest stiffness. Furthermore, knowledge about the stiffnesses of all presses in a production system makes it possible to choose the press which best fit to a specific process....

  7. Experimental challenges to stiffness as a transport paradigm

    Science.gov (United States)

    Luce, T. C.; Burrell, K. H.; Holland, C.; Marinoni, A.; Petty, C. C.; Smith, S. P.; Austin, M. E.; Grierson, B. A.; Zeng, L.

    2018-02-01

    Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans is presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the case of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that E  ×  B shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating E  ×  B shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.

  8. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal

    Science.gov (United States)

    Pugachev, A. O.; Deckner, M.

    2012-08-01

    Experimental and theoretical results are presented for a multistage brush seal. Experimental stiffness is obtained from integrating circumferential pressure distribution measured in seal cavities. A CFD analysis is used to predict seal performance. Bristle packs are modeled by the porous medium approach. Leakage is predicted well by the CFD method. Theoretical stiffness coefficients are in reasonable agreement with the measurements. Experimental results are also compared with a three-teeth-on-stator labyrinth seal. The multistage brush seal gives about 60% leakage reduction over the labyrinth seal. Rotordynamic stiffness coefficients are also improved: the brush seal has positive direct stiffness and smaller cross-coupled stiffness.

  9. An Algorithm for Synthesizing Mass and Stiffness Matrices from Experimental Vibration Modes

    Science.gov (United States)

    Ross, R. G., Jr.

    1972-01-01

    An algorithm is described for synthesizing the mass and stiffness matrices from experimentally derived modal data in a way that preserves the physical significance of the individual mass and stiffness elements. The mass and stiffness matrices are derived for a rollup solar array example, and are then used to define the modal response of a modified array.

  10. Meal ingestion markedly increases liver stiffness suggesting the need for liver stiffness determination in fasting conditions.

    Science.gov (United States)

    Alvarez, Daniel; Orozco, Federico; Mella, José María; Anders, Maria; Antinucci, Florencia; Mastai, Ricardo

    2015-01-01

    The introduction of noninvasive liver stiffness (LS) determination has heralded a new stage in the diagnosis and treatment of liver fibrosis. We evaluated the effect of food intake on LS in patients with different degrees of liver disease. We evaluated 24 patients (F≤1, n=11 and F> 1, n=13). LS (Fibroscan®) and portal blood flow (PBF) (Doppler ultrasound) were studied before and 30min after ingestion of a standard liquid meal. Food intake increased PBF (51±10%, p1). Hemodynamic and LS values returned to baseline pre-meal levels within 2hours. LS increases markedly after ingestion of a standard meal, irrespective of the degree of fibrosis. Our results strongly suggest that LS should be measured in fasting conditions. Copyright © 2015 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  11. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal

    OpenAIRE

    Pugachev, A.O.;Deckner, M.

    2017-01-01

    Experimental and theoretical results are presented for a multistage brush seal. Experimental stiffness is obtained from integrating circumferential pressure distribution measured in seal cavities. A CFD analysis is used to predict seal performance. Bristle packs are modeled by the porous medium approach. Leakage is predicted well by the CFD method. Theoretical stiffness coefficients are in reasonable agreement with the measurements. Experimental results are also compared with a three-teeth-on...

  12. Theoretical and experimental studies on in-plane stiffness of integrated container structure

    Directory of Open Access Journals (Sweden)

    Xiaoxiong Zha

    2016-03-01

    Full Text Available This article presents analytical, numerical, and experimental studies on the in-plane stiffness of container buildings. First, based on diaphragm theory, parallel corrugated direction stiffness of corrugated sheet has been deduced, and based on energy method, shear modulus of two elastic principal directions of orthotropic plate has been deduced, and through stiffness conversion method, the stiffness relationship between parallel corrugated direction and vertical corrugated direction has been obtained. Combined with container frame, the container stiffness of loading end and non-loading end, as bottom side beam fixed, has been obtained. Second, through the software Abaqus, full-scale container model has been established. The loading–displacement curve of finite element model has been compared with theoretical analysis and has a good agreement. Third, through 20 and 40 ft container, corresponding experimental verification has been done, and by comparison of container stiffness, the theoretical analysis and finite element simulation have been verified. Finally, based on verified finite element model, parametric analysis of corrugated sheet size, corrugated sheeting cross section, elasticity modulus of top side beam, and every plate action for container stiffness have been given. Research result has made feasible in design and construction of container buildings and can provide some references to corresponding specification preparation.

  13. Determinants of arterial stiffness in chronic kidney disease stage 3.

    Directory of Open Access Journals (Sweden)

    Natasha J McIntyre

    Full Text Available BACKGROUND: Early chronic kidney disease (CKD is associated with increased cardiovascular (CV risk but underlying mechanisms remain uncertain. Arterial stiffness (AS is associated with increased CV risk in advanced CKD, but it is unclear whether AS is relevant to CV disease (CVD in early CKD. STUDY DESIGN: Cross-sectional. SETTING AND PARTICIPANTS: 1717 patients with previous estimated glomerular filtration rate (eGFR 59-30 mL/min/1.73 m(2; mean age 73±9y, were recruited from 32 general practices in primary care. OUTCOMES: Increased arterial stiffness. MEASUREMENTS: Medical history was obtained and participants underwent clinical assessment, urine and serum biochemistry testing. Carotid to femoral pulse wave velocity (PWV was determined as a measure of AS, using a Vicorder™ device. RESULTS: Univariate analysis revealed significant correlations between PWV and risk factors for CVD including age (r = 0.456; p<0.001, mean arterial pressure (MAP (r = 0.228; p<0.001, body mass index (r = -0.122; p<0.001, log urinary albumin to creatinine ratio (r = 0.124; p<0.001, Waist to Hip ratio (r = 0.124, p<0.001, eGFR (r = -0.074; p = 0.002, log high sensitivity c-reactive protein (r = 0.066; p = 0.006, HDL (r = -0.062; p = 0.01 and total cholesterol (r = -0.057; p = 0.02. PWV was higher in males (9.6 m/sec vs.10.3 m/sec; p<0.001, diabetics (9.8 m/sec vs. 10.3 m/sec; p<0.001, and those with previous CV events (CVE (9.8 m/s vs. 10.3 m/sec; p<0.001. Multivariable analysis identified age, MAP and diabetes as strongest independent determinants of higher PWV (adjusted R² = 0.29. An interactive term indicated that PWV increased to a greater extent with age in males versus females. Albuminuria was a weaker determinant of PWV and eGFR did not enter the model. LIMITATIONS: Data derived from one study visit, with absence of normal controls. CONCLUSION: In this cohort, age and traditional CV risk factors were

  14. EXPERIMENTAL INVESTIGATIONS OF HORIZONTAL LATERAL STIFFNESS OF RAILS UNDER DIFFERENT DESIGNS OF RAIL FASTENERS

    OpenAIRE

    Velinets, V. P.

    2015-01-01

    Purpose. Calculation of a railway track on the strength is one of the sections of the overall complex research problems of interaction track and rolling stock. This paper describes the experimental study of horizontal transverse stiffness of railway rails with various strands of rail fasteners. Materials of this article should be relevant and will make it possible to calculate the strength of railway track using the correct and corrected performance of horizontal transverse stiffness of rail ...

  15. EXPERIMENTAL INVESTIGATIONS OF HORIZONTAL LATERAL STIFFNESS OF RAILS UNDER DIFFERENT DESIGNS OF RAIL FASTENERS

    Directory of Open Access Journals (Sweden)

    V. P. Velinets

    2015-11-01

    Full Text Available Purpose. Calculation of a railway track on the strength is one of the sections of the overall complex research problems of interaction track and rolling stock. This paper describes the experimental study of horizontal transverse stiffness of railway rails with various strands of rail fasteners. Materials of this article should be relevant and will make it possible to calculate the strength of railway track using the correct and corrected performance of horizontal transverse stiffness of rail threads. Methodology. Determination of horizontal transverse rigidity of rail yarns with different designs of rail fasteners was conducted by measuring the quantities of transverse displacement of rails calculation points – namely the head and sole. For research the specialist equipment was created, made up of lineside jack DC-20, equipped with a hydraulic pressure gauge to measure pressure and rigid rod for horizontal rail stop in the thread, the opposite of the jack. Lateral movement of the head and sole of the track were recorded, and measured with indicators of clock type within a few hundredths of a millimeter. The horizontal lateral load on the rail jack was created by the injection pressure in the cylinder which was fixed with manometer into the jack. Load of rails was conducted over 2 tons of degrees ranging from 0 to 8 tons. To obtain reliable measurement results of lateral movement of the head and the base rails, its movement was conducted for each type fasteners not less than in 3 sections. Measurements were carried out without the creation of vertical load. Findings. With the developed method was found transverse displacement magnitude of rails calculation points at different designs of rail fasteners. Originality. The experimental studies were first found the mentioned horizontal transverse stiffness of rail threads in the head and sole of modern designs for different rail fasteners. Practical value. The values of horizontal transverse

  16. Feasibility of using 3D MR elastography to determine pancreatic stiffness in healthy volunteers.

    Science.gov (United States)

    Shi, Yu; Glaser, Kevin J; Venkatesh, Sudhakar K; Ben-Abraham, Ephraim I; Ehman, Richard L

    2015-02-01

    To evaluate the feasibility of using three-dimensional (3D) MR elastography (MRE) to determine the stiffness of the pancreas in healthy volunteers. Twenty healthy volunteers underwent 1.5 Tesla MRE exams using an accelerated echo planar imaging (EPI) pulse sequence with low-frequency vibrations (40 and 60 Hz). Stiffness was calculated with a 3D direct inversion algorithm. The mean shear stiffness in five pancreatic subregions (uncinate, head, neck, body, and tail) and the corresponding liver stiffness were calculated. The intrasubject coefficient of variation (CV) was calculated as a measure of the reproducibility for each volunteer. The mean shear stiffness (average of values obtained in different pancreatic subregions) was (1.15 ± 0.17) kPa at 40 Hz, and (2.09 ± 0.33) kPa at 60 Hz. The corresponding liver stiffness was higher than the pancreas stiffness at 40 Hz ([1.60 ± 0.21] kPa, mean pancreas-to-liver stiffness ratio: 0.72), but similar at 60Hz ([2.12 ± 0.23) kPa, mean ratio: 0.95). The mean intrasubject CV for each pancreatic subregion was lower at 40 Hz than 60 Hz (P measurements throughout the pancreas, with more consistent data acquired at 40 Hz. © 2014 Wiley Periodicals, Inc.

  17. Telemetric ambulatory arterial stiffness index, a predictor of cardio-cerebro-vascular mortality, is associated with aortic stiffness-determining factors.

    Science.gov (United States)

    Li, Zhi-Yong; Xu, Tian-Ying; Zhang, Sai-Long; Zhou, Xiao-Ming; Xu, Xue-Wen; Guan, Yun-Feng; Lo, Ming; Miao, Chao-Yu

    2013-09-01

    Ambulatory arterial stiffness index (AASI) has been proposed as a new measure of arterial stiffness for predicting cardio-cerebro-vascular morbidity and mortality. However, there has been no research on the direct relationships between AASI and arterial stiffness-determining factors. We utilized beat-to-beat intra-aortic blood pressure (BP) telemetry to characterize AASI in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). By determination of aortic structural components and analysis of their correlations with AASI, we provided the first direct evidence for the associations between AASI and arterial stiffness-determining factors including the collagen content and collagen/elastin. Ambulatory arterial stiffness index was positively correlated with pulse pressure in both WKY and SHR, less dependent on BP and BP variability than pulse pressure, and relatively stable, especially the number of BP readings not less than ~36. The correlations between AASI and aortic components were comparable for various AASI values derived from BP readings not less than ~36. Not only AASI but also BP variability and pulse pressure demonstrated a direct relationship with arterial stiffness. These findings indicate AASI may become a routine measure in human arterial stiffness assessment. It is recommended to use a cluster of parameters such as AASI, BP variability, and pulse pressure for evaluating arterial stiffness. © 2013 John Wiley & Sons Ltd.

  18. Noninvasive pulse wave analysis for the determination of central artery stiffness

    DEFF Research Database (Denmark)

    Wittrock, Marc; Scholze, Alexandra; Compton, Friederike

    2009-01-01

    of the peripheral radial artery waveform with invasive measurements of the ratio of pulse-pressure-to-stroke-volume. A total of 112 invasive measurements of the ratio of pulse-pressure-to-stroke-volume and noninvasive determinations of central artery stiffness were performed in 49 patients on the intensive care...... a significant correlation between noninvasively obtained central artery stiffness and invasive measurements of the ratio of pulse-pressure-to-stroke-volume (Spearman r=0.40; p...

  19. Effects of experimentally increased trunk stiffness on thorax and pelvis rotations during walking.

    Science.gov (United States)

    Wu, Wen Hua; Lin, Xiao Cong; Meijer, Onno G; Gao, Jin Tuan; Hu, Hai; Prins, Maarten R; Liang, Bo Wei; Zhang, Li Qun; Van Dieën, Jaap H; Bruijn, Sjoerd M

    2014-02-01

    Patients with non-specific low back pain, or a similar disorder, may stiffen their trunk, which probably alters their walking coordination. To study the direct effects of increasing trunk stiffness, we experimentally increased trunk stiffness during walking, and compared the results with what is known from the literature about gait coordination with, e.g., low back pain. Healthy subjects walked on a treadmill at 3 speeds (0.5, 1.0 and 1.5m/s), in three conditions (normal, while contracting their abdominal muscles, or wearing an orthopedic brace that limits trunk motions). Kinematics of the legs, thorax and pelvis were recorded, and relative Fourier phases and amplitudes of segment motions were calculated. Increasing trunk stiffness led to a lower thorax-pelvis relative phase, with both a decrease in thorax-leg relative phase, and an increase in pelvis-leg relative phase, as well as reduced rotational amplitude of thorax relative to pelvis. While lower thorax-pelvis relative phase was also found in patients with low back pain, higher pelvis-leg relative phase has never been reported in patients with low back pain or related disorders. These results suggest that increasing trunk stiffness in healthy subjects causes short-term gait coordination changes which are different from those seen in patients with back pain. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Ultrasonic Determination of the Elastic Constants of the Stiffness Matrix for Unidirectional Fiberglass Epoxy Composites.

    Science.gov (United States)

    1986-12-01

    the principal directions were also calculated from layered media theory [14] and are also shown in Table 3. Table 3 shows also the percentage...differences between the experimental and layered media theory values. From the experimental values of the velocities , the elastic constants of the stiffness...comparison of the experimental results with the results of layered media theory show reasonable agreement for the values of velocities of longitudinal

  1. A METHOD OF DETERMINING THE COORDINATES OF THE STIFFNESS CENTER AND THE STIFFNESS PRINCIPAL AXIS OF THE VIBRATING SYSTEM WITH DAMPING

    Directory of Open Access Journals (Sweden)

    Dang Xuan Truong

    2014-12-01

    Full Text Available The report presents a methodology to determine the directions of the stiffness principal axis (in this case subject to the linear displacement and forced rotation angle of a solid object interact with the surrounding environment by resilient bearing supports. The results also show that determining the coordinates of the stiffness center in the vibrating system with damping factors is necessary in our research.

  2. Discriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET

    DEFF Research Database (Denmark)

    Baiocchi, B.; Mantica, P.; Giroud, C.

    2013-01-01

    Starting from recent JET experimental results that show a significant reduction of ion stiffness in the plasma core region due to plasma rotation in the presence of low magnetic shear, an experiment was carried out at JET in order to separate the role of rotation and rotation gradient in mitigati...

  3. A parameter optimization method to determine ski stiffness properties from ski deformation data.

    Science.gov (United States)

    Heinrich, Dieter; Mössner, Martin; Kaps, Peter; Nachbauer, Werner

    2011-02-01

    The deformation of skis and the contact pressure between skis and snow are crucial factors for carved turns in alpine skiing. The purpose of the current study was to develop and to evaluate an optimization method to determine the bending and torsional stiffness that lead to a given bending and torsional deflection of the ski. Euler-Bernoulli beam theory and classical torsion theory were applied to model the deformation of the ski. Bending and torsional stiffness were approximated as linear combinations of B-splines. To compute the unknown coefficients, a parameter optimization problem was formulated and successfully solved by multiple shooting and least squares data fitting. The proposed optimization method was evaluated based on ski stiffness data and ski deformation data taken from a recently published simulation study. The ski deformation data were used as input data to the optimization method. The optimization method was capable of successfully reproducing the shape of the original bending and torsional stiffness data of the ski with a root mean square error below 1 N m2. In conclusion, the proposed computational method offers the possibility to calculate ski stiffness properties with respect to a given ski deformation.

  4. Determinants of the ambulatory arterial stiffness index in 7604 subjects from 6 populations

    DEFF Research Database (Denmark)

    Adiyaman, Ahmet; Dechering, Dirk G; Boggia, José

    2008-01-01

    The ambulatory arterial stiffness index (AASI) is derived from 24-hour ambulatory blood pressure recordings. We investigated whether the goodness-of-fit of the AASI regression line in individual subjects (r(2)) impacts on the association of AASI with established determinants of the relation betwe...

  5. Does experimental low back pain change posteroanterior lumbar spinal stiffness and trunk muscle activity? A randomized crossover study.

    Science.gov (United States)

    Wong, Arnold Y L; Parent, Eric C; Prasad, Narasimha; Huang, Christopher; Chan, K Ming; Kawchuk, Gregory N

    2016-05-01

    While some patients with low back pain demonstrate increased spinal stiffness that decreases as pain subsides, this observation is inconsistent. Currently, the relation between spinal stiffness and low back pain remains unclear. This study aimed to investigate the effects of experimental low back pain on temporal changes in posteroanterior spinal stiffness and concurrent trunk muscle activity. In separate sessions five days apart, nine asymptomatic participants received equal volume injections of hypertonic or isotonic saline in random order into the L3-L5 interspinous ligaments. Pain intensity, spinal stiffness (global and terminal stiffness) at the L3 level, and the surface electromyographic activity of six trunk muscles were measured before, immediately after, and 25-minute after injections. These outcome measures under different saline conditions were compared by generalized estimating equations. Compared to isotonic saline injections, hypertonic saline injections evoked significantly higher pain intensity (mean difference: 5.7/10), higher global (mean difference: 0.73N/mm) and terminal stiffness (mean difference: 0.58N/mm), and increased activity of four trunk muscles during indentation (Ppain subsided. While previous clinical research reported inconsistent findings regarding the association between spinal stiffness and low back pain, our study revealed that experimental pain caused temporary increases in spinal stiffness and concurrent trunk muscle co-contraction during indentation, which helps explain the temporal relation between spinal stiffness and low back pain observed in some clinical studies. Our results substantiate the role of spinal stiffness assessments in monitoring back pain progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Tire stiffness and damping determined from static and free-vibration tests. [aircraft tires

    Science.gov (United States)

    Sleeper, R. K.; Dreher, R. C.

    1980-01-01

    Stiffness and damping of a nonrolling tire were determined experimentally from both static force-displacement relations and the free-vibration behavior of a cable-suspended platen pressed against the tire periphery. Lateral and force-and-aft spring constants and damping factors of a 49 x 17 size aircraft tire for different tire pressure and vertical loads were measured assuming a rate-independent damping form. In addition, a technique was applied for estimating the magnitude of the tire mass which participates in the vibratory motion of the dynamic tests. Results show that both the lateral and force-and-aft spring constants generally increase with tire pressure but only the latter increased significantly with vertical tire loading. The fore-and-aft spring constants were greater than those in the lateral direction. The static-spring-constant variations were similar to the dynamic variations but exhibited lower magnitudes. Damping was small and insensitive to tire loading. Furthermore, static damping accounted for a significant portion of that found dynamically. Effective tire masses were also small.

  7. Determinants of Peripheral Arterial Stiffness in Patients With Chronic Kidney Disease in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Jui-Hsin Chen

    2009-07-01

    Full Text Available High prevalences of peripheral artery occlusive disease (PAOD and increased arterial stiffness have been reported in patients with chronic kidney disease (CKD. However, these have not been assessed in Taiwan where the prevalence of CKD is high. The aim of this study was to investigate the determinants of PAOD and arterial stiffness in patients with CKD in southern Taiwan. We enrolled 169 patients with stage 3–5 CKD in one regional hospital. Ankle-brachial index (ABI and brachial-ankle pulse wave velocity were measured using an ABI-form device (Colin VP1000. In multivariate analysis, ABI < 0.9 was positively correlated with the presence of diabetes mellitus (p = 0.014 and negatively correlated with the estimated glomerular filtration rate (eGFR (p = 0.049, and increased brachial-ankle pulse wave velocity was correlated with increased age, diabetes mellitus, increased systolic blood pressure, decreased pulse pressure and decreased eGFR. This study identified determinants of PAOD and arterial stiffness in patients with CKD in one hospital in southern Taiwan. In addition to the traditional atherosclerotic risk factors, decreased eGFR was also correlated with PAOD and increased arterial stiffness in these patients.

  8. Determinants of aortic stiffness: 16-year follow-up of the Whitehall II study.

    Directory of Open Access Journals (Sweden)

    Nanna B Johansen

    Full Text Available Aortic stiffness is a strong predictor of cardiovascular disease endpoints. Cross-sectional studies have shown associations of various cardiovascular risk factors with aortic pulse wave velocity, a measure of aortic stiffness, but the long-term impact of these factors on aortic stiffness is unknown.In 3,769 men and women from the Whitehall II cohort, a wide range of traditional and novel cardiovascular risk factors were determined at baseline (1991-1993 and aortic pulse wave velocity was measured at follow-up (2007-2009. The prospective associations between each baseline risk factor and aortic pulse wave velocity at follow-up were assessed through sex stratified linear regression analysis adjusted for relevant confounders. Missing data on baseline determinants were imputed using the Multivariate Imputation by Chained Equations.Among men, the strongest predictors were waist circumference, waist-hip ratio, heart rate and interleukin 1 receptor antagonist, and among women, adiponectin, triglycerides, pulse pressure and waist-hip ratio. The impact of 10 centimeter increase in waist circumference on aortic pulse wave velocity was twice as large for men compared with women (men: 0.40 m/s (95%-CI: 0.24;0.56; women: 0.17 m/s (95%-CI: -0.01;0.35, whereas the opposite was true for the impact of a two-fold increase in adiponectin (men: -0.30 m/s (95%-CI: -0.51;-0.10; women: 0.61 m/s (95%-CI: -0.86;-0.35.In this large prospective study, central obesity was a strong predictor of aortic stiffness. Additionally, heart rate in men and adiponectin in women predicted aortic pulse wave velocity suggesting that strategies to prevent aortic stiffening should be focused differently by sex.

  9. Stiffness determination of the controlled wheel module of a two-axle vehicle

    Directory of Open Access Journals (Sweden)

    Belevtseva N.V.

    2016-08-01

    Full Text Available The conditions of a secure loss of stability of a two-axle wheel vehicle with absolutely hard steering have been found before. The analytically derived conditions of a secure stability loss in case of torsional stiffness are dependent on the relationship between the slipping resistance coefficients, the transverse clutch coefficients on the axes, and the torsional stiffness of the controlled wheel module. In this case, the trail distance is taken into account in the wheel module control system, the mass of the module being neglected. The approach suggested in the paper does take into account the mass of the controlled wheel module. The slipping forces are presented accurate to a cubic term of expansion in slipping angles. The torsional stiffness intervals have been found that provide a secure loss of stability of a two-axle wheel vehicle model. The intervals have been obtained on the basis of a bifurcation analysis of actual bifurcations of the stationary states in the vicinity of the rectilinear motion of the model. Diagrams that illustrate the fulfillment of secure stability loss conditions and allow using the results obtained in designing a wheel module are presented in the paper. The technique used is alternative to the well-known M. Bautin’s approach to determination of secure-insecure conditions in case of a divergent loss of stability.

  10. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter.

    Science.gov (United States)

    Akagi, Ryota; Kusama, Saki

    2015-08-01

    The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Smart instrumentation for determination of ligament stiffness and ligament balance in total knee arthroplasty.

    Science.gov (United States)

    Hasenkamp, W; Villard, J; Delaloye, J R; Arami, A; Bertsch, A; Jolles, B M; Aminian, K; Renaud, P

    2014-06-01

    Ligament balance is an important and subjective task performed during total knee arthroplasty (TKA) procedure. For this reason, it is desirable to develop instruments to quantitatively assess the soft-tissue balance since excessive imbalance can accelerate prosthesis wear and lead to early surgical revision. The instrumented distractor proposed in this study can assist surgeons on performing ligament balance by measuring the distraction gap and applied load. Also the device allows the determination of the ligament stiffness which can contribute a better understanding of the intrinsic mechanical behavior of the knee joint. Instrumentation of the device involved the use of hall-sensors for measuring the distractor displacement and strain gauges to transduce the force. The sensors were calibrated and tested to demonstrate their suitability for surgical use. Results show the distraction gap can be measured reliably with 0.1mm accuracy and the distractive loads could be assessed with an accuracy in the range of 4N. These characteristics are consistent with those have been proposed, in this work, for a device that could assist on performing ligament balance while permitting surgeons evaluation based on his experience. Preliminary results from in vitro tests were in accordance with expected stiffness values for medial collateral ligament (MCL) and lateral collateral ligament (LCL). Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  13. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    Science.gov (United States)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  14. Experimental Study on Shear Fatigue Behavior and Stiffness Performance of Warm Mix Asphalt by adding Synthetic Wax

    CERN Document Server

    Petit, Christophe; Canestrari, Francesco; Pannunzio, Valter; Virgili, Amadeo

    2012-01-01

    Synthetic waxes produced by standard and registered processes may be used to manufacture Warm Mix Asphalt (WMA), which is a modified asphalt concrete produced, applied and compacted at temperatures below those typically required. This feature leads to environmental benefits, such as reduced energy consumption, gas and fume emissions, as well as to economic/operational advantages, such as lower production costs and greater hauling distances for extended construction seasons with tighter schedules. The present article serves to compare the mechanical performance of a WMA produced by adding synthetic wax with a traditional Hot Mix Asphalt (HMA) specimen, in terms of shear fatigue response and both complex and stiffness moduli. The experimental results and related modeling work demonstrate that adding synthetic wax into the WMA composition does not hinder either the destructive or non-destructive performance of an HMA, and this finding is corroborated by respectively measuring fatigue life and stiffness.

  15. An Experimental Study on the Stiffness of Size-Isolated Microbubbles Using Atomic Force Microscopy

    Science.gov (United States)

    Chen, Cherry C.; Wu, Shih-Ying; Finan, John D.; Morrison, Barclay; Konofagou, Elisa E.

    2014-01-01

    To fully assess contrast-enhanced acoustic bioeffects in diagnostic and therapeutic procedures, the mechanical properties of microbubbles need to be considered. In the present study, direct measurements of the microbubble stiffness were performed using atomic force microscopy by applying nanoscale compressions (up to 25 nN/s) on size-isolated, lipid-coated microbubbles (diameter ranges of 4 to 6 μm and 6 to 8 μm). The stiffness was found to lie between 4 and 22 mN/m and to decrease exponentially with the microbubble size within the diameter range investigated. No cantilever spring constant effect was found on the measured stiffness. The Young’s modulus of the size-isolated microbubbles used in our study ranged between 0.4 and 2 MPa. Microstructures on the surface of the microbubbles were found to influence the overall microbubble elasticity. Our results indicated that more detailed theoretical models are needed to account for the size-dependent microbubble mechanical properties to accurately predict their acoustic behavior. The findings provided useful insights into guidance of cavitation-induced drug and gene delivery and could be used as part of the framework in studies on the shear stresses induced on the blood vessel walls by oscillating microbubbles. PMID:23475918

  16. Time-Varying Total Stiffness Matrix of a Rigid Machine Spindle-Angular Contact Ball Bearings Assembly: Theory and Analytical/Experimental Verifications

    Directory of Open Access Journals (Sweden)

    Fawzi M.A. El-Saeidy

    2011-01-01

    Full Text Available A lagrangian formulation is presented for the total dynamic stiffness and damping matrices of a rigid rotor carrying noncentral rigid disk and supported on angular contact ball bearings (ACBBs. The bearing dynamic stiffness/damping marix is derived in terms of the bearing motions (displacements/rotations and then the principal of virtual work is used to transfer it from the bearing location to the rotor mass center to obtain the total dynamic stiffness/damping matrix. The bearing analyses take into account the bearing nonlinearities, cage rotation and bearing axial preload. The coefficients of these time-dependent matrices are presented analytically. The equations of motion of a rigid rotor-ACBBs assembly are derived using Lagrange's equation. The proposed analyses on deriving the bearing stiffness matrix are verified against existing bearing analyses of SKF researchers that, in turn, were verified using both SKF softwares/experiments and we obtained typical agreements. The presented total stiffness matrix is applied to a typical grinding machine spindle studied experimentally by other researchers and excellent agreements are obtained between our analytical eigenvalues and the experimental ones. The effect of using the total full stiffness matrix versus using the total diagonal stiffness matrix on the natural frequencies and dynamic response of the rigid rotor-bearings system is studied. It is found that using the diagonal matrix affects natural frequencies values (except the axial frequency and response amplitudes and pattern and causes important vibration tones to be missig from the response spectrum. Therefore it is recommended to use the full total stiffness matrix and not the diagonal matrix in the design/vibration analysis of these rotating machines. For a machine spindle-ACBBs assembly under mass unbalnce and a horizontal force at the spindle cutting nose when the bearing time-varying stiffness matrix (bearing cage rotation is considered

  17. Determination of the elastic and stiffness characteristics of cross-laminated timber plates from flexural wave velocity measurements

    Science.gov (United States)

    Santoni, Andrea; Schoenwald, Stefan; Van Damme, Bart; Fausti, Patrizio

    2017-07-01

    Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is also economically competitive with the traditional building construction materials. However, due to its low volume density combined with its high stiffness, it does not provide sufficient sound insulation, thus it is necessary to develop specific acoustic treatments in order to increase the noise reduction performance. The material's mechanical properties are required as input data to perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic constants of a CLT plate are derived by fitting the real component of the experimental flexural wave velocity with Mindlin's dispersion relation for thick plates, neglecting the influence of the plate's size and boundary conditions. Furthermore, its apparent elastic and stiffness properties are derived from the same set of experimental data, for the plate considered to be thin. Under this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by using an elliptic model and verified with experimental results.

  18. Classical and numerical approaches to determining V-section band clamp axial stiffness

    Science.gov (United States)

    Barrans, Simon M.; Khodabakhshi, Goodarz; Muller, Matthias

    2014-12-01

    V-band clamp joints are used in a wide range of applications to connect circular flanges, for ducts, pipes and the turbocharger housing. Previous studies and research on V-bands are either purely empirical or analytical with limited applicability on the variety of V-band design and working conditions. In this paper models of the V-band are developed based on the classical theory of solid mechanics and the finite element method to study the behaviour of theV-bands under axial loading conditions. The good agreement between results from the developed FEA and the classical model support the suitability of the latter to modelV-band joints with diameters greater than 110mm under axial loading. The results from both models suggest that the axial stiffness for thisV-band cross section reaches a peak value for V-bands with radius of approximately 150 mmacross a wide range of coefficients of friction. Also, it is shown that the coefficient of friction and the wedge angle have a significant effect on the axial stiffness of V-bands.

  19. Estimating Gear Teeth Stiffness

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffness’s of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact length is constant....

  20. On gear tooth stiffness evaluation

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Jørgensen, Martin Felix

    2014-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...

  1. Design and Experimental Development of a Pneumatic Stiffness Adjustable Foot System for Biped Robots Adaptable to Bumps on the Ground

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2017-09-01

    Full Text Available Walking on rough terrains still remains a challenge that needs to be addressed for biped robots because the unevenness on the ground can easily disrupt the walking stability. This paper proposes a novel foot system with passively adjustable stiffness for biped robots which is adaptable to small-sized bumps on the ground. The robotic foot is developed by attaching eight pneumatic variable stiffness units to the sole separately and symmetrically. Each variable stiffness unit mainly consists of a pneumatic bladder and a mechanical reversing valve. When walking on rough ground, the pneumatic bladders in contact with bumps are compressed, and the corresponding reversing valves are triggered to expel out the air, enabling the pneumatic bladders to adapt to the bumps with low stiffness; while the other pneumatic bladders remain rigid and maintain stable contact with the ground, providing support to the biped robot. The performances of the proposed foot system, including the variable stiffness mechanism, the adaptability on the bumps of different heights, and the application on a biped robot prototype are demonstrated by various experiments.

  2. Evaluation of a reduced section modulus model for determining effects of incising on bending strength and stiffness of structural lumber

    Science.gov (United States)

    Roland Hernandez; Jerrold E. Winandy

    2005-01-01

    A quantitative model is presented for evaluating the effects of incising on the bending strength and stiffness of structural dimension lumber. This model is based on the premise that bending strength and stiffness are reduced when lumber is incised, and the extent of this reduction is related to the reduction in moment of inertia of the bending members. Measurements of...

  3. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness.

    Science.gov (United States)

    Gandyra, Daniel; Walheim, Stefan; Gorb, Stanislav; Barthlott, Wilhelm; Schimmel, Thomas

    2015-01-01

    We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young's modulus) for individual hairs of 3.0 × 10(5) N/cm(2), which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

  4. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

    Directory of Open Access Journals (Sweden)

    Daniel Gandyra

    2015-01-01

    Full Text Available We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1 determination of the water adhesion force and the elasticity of individual hairs (trichomes of the floating fern Salvinia molesta. (2 The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3 Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

  5. Are Sport-Specific Profiles of Tendon Stiffness and Cross-Sectional Area Determined by Structural or Functional Integrity?

    Directory of Open Access Journals (Sweden)

    Hans-Peter Wiesinger

    Full Text Available The present study aimed to determine whether distinct sets of tendon properties are seen in athletes engaged in sports with contrasting requirements for tendon function and structural integrity. Patellar and Achilles tendon morphology and force-deformation relation were measured by combining ultrasonography, electromyography and dynamometry in elite ski jumpers, distance runners, water polo players and sedentary individuals. Tendon cross-sectional area normalized to body mass2/3 was smaller in water polo players than in other athletes (patellar and Achilles tendon; -28 to -24% or controls (patellar tendon only; -9%. In contrast, the normalized cross-sectional area was larger in runners (patellar tendon only; +26% and ski jumpers (patellar and Achilles tendon; +21% and +13%, respectively than in controls. Tendon stiffness normalized to body mass2/3 only differed in ski jumpers, compared to controls (patellar and Achilles tendon; +11% and +27%, respectively and to water polo players (Achilles tendon only; +23%. Tendon size appears as an adjusting variable to changes in loading volume and/or intensity, possibly to preserve ultimate strength or fatigue resistance. However, uncoupled morphological and mechanical properties indicate that functional requirements may also influence tendon adaptations.

  6. Mechanical stiffness: a global parameter associated to elite sprinters performance

    Directory of Open Access Journals (Sweden)

    Fernando López Mangini

    Full Text Available Abstract This study analyzes vertical stiffness as a global parameter that could be directly associated to sprinter's performance. We evaluated vertical stiffness, performance, heart rate and lactate concentration on fifteen male sprinters that ran on a treadmill at gait transition speed and 13 km h−1. Vertical Stiffness was determined by the ratio of the vertical acceleration peak and maximum displacement of the center of mass. Physiological parameters were measured throughout the experimental procedure and performance was estimated by athlete's time records on 100 m track race. As expected, vertical stiffness and heart rate increased with running speed. We found a high correlation between heart rate and vertical stiffness at gait transition speed. However, at 13 km h−1, lactate peak showed a higher correlation with vertical stiffness, suggesting a greater participation of the anaerobic system. An inverse relationship between performance and vertical stiffness was found, where faster athletes were the stiffer ones. Performance and lactate peak presented the same inverse relationship; faster athletes had higher lactate peaks. As a result, faster athletes were stiffer and consume more energy. All in all, these findings suggest that mechanical stiffness could be a potential global parameter to evaluate performance in sprinters.

  7. The frequency and determinants of liver stiffness measurement failure: a retrospective study of "real-life" 38,464 examinations.

    Directory of Open Access Journals (Sweden)

    Dong Ji

    Full Text Available To investigate the frequency and determinants of liver stiffness measurement (LSM failure by means of FibroScan in "real-life" Chinese patients.A total of 38,464 "real-life" Chinese patients in 302 military hospital of China through the whole year of 2013, including asymptomatic carrier, chronic hepatitis B, chronic hepatitis C, liver cirrhosis (LC, alcoholic liver disease, autoimmune liver disease, hepatocellular carcinoma (HCC and other, were enrolled, their clinical and biological parameters were retrospectively investigated. Liver fibrosis was evaluated by FibroScan detection. S probe (for children with height less than 1.20 m and M probe (for adults were used. LSM failure defined as zero valid shots (unsuccessful LSM, or the ratio of the interquartile range to the median of 10 measurements (IQR/M greater than 0.30 plus median LSM greater or equal to 7.1 kPa (unreliable LSM.LSM failure occurred in 3.34% of all examinations (1286 patients out of 38,464, among them, there were 958 cases (2.49% with unsuccessful LSM, and 328 patients (0.85% with unreliable LSM. Statistical analyses showed that LSM failure was independently associated with body mass index (BMI greater than 30 kg/m(2, female sex, age greater than 50 years, intercostal spaces (IS less than 9 mm, decompensated liver cirrhosis and HCC patients. There were no significant differences among other diseases. By changing another skilled operator, success was achieved on 301 cases out of 1286, which reduced the failure rate to 2.56%, the decrease was significant (P<0.0001.The principal reasons of LSM failure are ascites, obesity and narrow of IS. The failure rates of HCC, decompensated LC, elder or female patients are higher. These results emphasize the need for adequate operator training, technological improvements and optimal criteria for specific patient subpopulations.

  8. Pharmacological modulation of arterial stiffness.

    LENUS (Irish Health Repository)

    Boutouyrie, Pierre

    2011-09-10

    Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for \\'de-stiffening drugs\\

  9. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...

  10. Trabecular meshwork stiffness in glaucoma.

    Science.gov (United States)

    Wang, Ke; Read, A Thomas; Sulchek, Todd; Ethier, C Ross

    2017-05-01

    Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β2 (TGF-β2), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Validity and reliability of three methods of stiffness assessment

    National Research Council Canada - National Science Library

    Elizabeth C.Pruyn Mark L.Watsford Aron J.Murphy

    2016-01-01

    ... and reliability of 3 in vivo methods of stiffness assessment using 1 cohort of participants.Methods:To determine inter-day reliability,15 female netballers were assessed for stiffness twice within 1 week using unilateral hopping(vertical stiffness...

  12. Experimental determinations of the eigenmodes for composite bars made with carbon and Kevlar-carbon fibers

    Science.gov (United States)

    Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.

    2015-11-01

    For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.

  13. Learning While Voting: Determinants of Collective Experimentation

    OpenAIRE

    Bruno Strulovici

    2008-01-01

    This paper analyzes collective decision making when individual preferences evolve through learning. Votes are affected by their anticipated effect on future preferences. The analysis is conducted in a two-arm bandit model with a safe alternative and a risky alternative whose payoff distribution, or “type”, varies across individuals and may be learned through experimentation. Society is shown to experiment less than any of its members would if he could dictate future decisions, and to be syste...

  14. Development of an experimental model to study the relationship between day-to-day variability in blood pressure and aortic stiffness

    Directory of Open Access Journals (Sweden)

    Camille eBouissou-Schurtz

    2015-12-01

    Full Text Available We aimed to develop an animal model of long-term blood pressure variability (BPV and to investigate its consequences on aortic damage. We hypothesized that day-to-day BPV produced by discontinuous treatment of spontaneously hypertensive rats (SHR by valsartan may increase arterial stiffness. For that purpose, rats were discontinuously treated, 2 days a week, or continuously treated by valsartan (30 mg/kg/d in chow or placebo. Telemetered BP was recorded during 2 minutes every 15 min, 3 days a week during 8 weeks to cover the full BP variations in response to the treatment schedule. Pulse wave velocity (PWV and aortic structure evaluated by immunohistochemistry were investigated in a second set of rats treated under the same conditions. Continuous treatment with valsartan reduced systolic BP (SBP and reversed the aortic structural alterations observed in placebo treated SHR (decrease of medial cross-sectional area. Discontinuous treatment with valsartan decreased SBP to a similar extent but increased the day-to-day blood pressure variability, short term BPV, diastolic blood pressure (DBP and PWV as compared with continuous treatment. Despite no modifications in the elastin/collagen ratio and aortic thickness, an increase in PWV was observed following discontinuous treatment and was associated with a specific accumulation of fibronectin and its av-integrin receptor compared with both groups of rats. Taken together the present results indicate that a discontinuous treatment with valsartan is able to induce a significant increase in day-to-day blood pressure variability coupled to an aortic phenotype close to that observed in hypertension. This experimental model should pave the way for future experimental and clinical studies aimed at assessing how long-term BPV increases aortic stiffness.

  15. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.

    Science.gov (United States)

    Chino, Kintaro; Takashi, Hideyuki

    2017-11-15

    Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, we assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle-torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggest that muscle stiffness of the MG would not be a prominent factor to determine passive ankle joint stiffness and the sex-related difference in the joint stiffness.

  16. An Experimental Determination of Thermodynamic Values

    Science.gov (United States)

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  17. Arterial stiffness

    Directory of Open Access Journals (Sweden)

    Ursula Quinn

    2012-09-01

    Full Text Available Measurements of biomechanical properties of arteries have become an important surrogate outcome used in epidemiological and interventional cardiovascular research. Structural and functional differences of vessels in the arterial tree result in a dampening of pulsatility and smoothing of blood flow as it progresses to capillary level. A loss of arterial elastic properties results a range of linked pathophysiological changes within the circulation including increased pulse pressure, left ventricular hypertrophy, subendocardial ischaemia, vessel endothelial dysfunction and cardiac fibrosis. With increased arterial stiffness, the microvasculature of brain and kidneys are exposed to wider pressure fluctuations and may lead to increased risk of stroke and renal failure. Stiffening of the aorta, as measured by the gold-standard technique of aortic Pulse Wave Velocity (aPWV, is independently associated with adverse cardiovascular outcomes across many different patient groups and in the general population. Therefore, use of aPWV has been proposed for early detection of vascular damage and individual cardiovascular risk evaluation and it seems certain that measurement of arterial stiffness will become increasingly important in future clinical care. In this review we will consider some of the pathophysiological processes that result from arterial stiffening, how it is measured and factors that may drive it as well as potential avenues for therapy. In the face of an ageing population where mortality from atheromatous cardiovascular disease is falling, pathology associated with arterial stiffening will assume ever greater importance. Therefore, understanding these concepts for all clinicians involved in care of patients with cardiovascular disease will become vital.

  18. Impact of dry weight determined by calf bioimpedance ratio on carotid stiffness and left ventricular hypertrophy in hemodialysis patients.

    Science.gov (United States)

    Zhou, Yi-Lun; Liu, Jing; Ma, LiJie; Sun, Fang; Shen, Yang; Huang, Jing; Cui, TaiGen

    2014-04-01

    Our previous study has shown that modification of bioimpedance technique by the measurement of bioimpedance ratio in the calf (calf-BR) was a simple and practical method in assessing fluid status in hemodialysis patients. However, the consequences of periodical dry weight (DW) adjustment under the guidance of calf-BR on target organ damage have not been investigated. One hundred fifteen hemodialysis patients were enrolled in this pilot trial. Patients were divided into bioimpedance group and control group according to their dialysis schedule. In the bioimpedance group, DW was routinely adjusted under the guidance of calf-BR every 3 months. In the control group, the assessment of DW remained a clinical judgment. Carotid stiffness, left ventricular mass index (LVMI), and calf-BR were measured at baseline and at the 12th month in both groups. Home blood pressure (BP) was monitored monthly. Episodes of dialysis-related adverse events were recorded. No significant differences were observed in parameters between the two groups at baseline. Compared with the control group, the bioimpedance group had significantly lower values in terms of the annual averages of systolic home BP (147.4 ± 15.3 mm Hg vs. 152.6 ± 16.9 mm Hg, P = 0.019), carotid stiffness index β (10.7 ± 3.3 vs. 12.2 ± 3.1, P = 0.003), LVMI (155.21 ± 15.64 g/m(2) vs. 165.17 ± 16.76 g/m(2) , P measurement improved arterial stiffness and left ventricular hypertrophy with good tolerability in hemodialysis patients. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  19. Comparison of the mechanical properties of dentin and enamel determined by different nanoindentation techniques: conventional method and continuous stiffness measurement

    Directory of Open Access Journals (Sweden)

    Ceballos, L.

    2010-06-01

    Full Text Available The obtaining of mechanical properties as elastic modulus and hardness of enamel and dentin has been an important topic of study in material science. Due to the small size of the samples, nanoindentation test becomes an ideal technique for determining the mechanical properties of these structures. Despite numerous studies, there is no agreement on the values of elastic modulus and hardness. The present study analyzes the mechanical properties variability of enamel and dentin for two different bovine teeth by a conventional nanoindentation test. Also, this work compares the elastic modulus and hardness by two different nanoindentation techniques: conventional method (CM and continuous stiffness measurement method (CSM. Two bovine incisor teeth were extracted, cleaned and stored at 4ºC immersed in distilled water during one month. They were transversally sectioned and the crowns were cross-sectioned into 2 mm thick slices, obtaining 6 sections from each tooth. All sections were polished and kept fully hydrated in artificial saliva at room temperature for 24 hours. On each section, CT and CSM nanoindentation tests were carried out to obtain the elastic modulus and hardness of enamel and dentin. Both elastic modulus and hardness decrease as indentation load increases. However differences on mechanical properties values have been obtained depending of the nanoindentation technique applied.

    La obtención de las propiedades mecánicas del esmalte y de la dentina se ha convertido en una tarea de importancia creciente en ciencia de materiales. Debido al tamaño reducido de las muestras, los métodos de nanoindentación se han convertido en una técnica idónea para este análisis. A pesar de los numerosos y recientes estudios, no existe un acuerdo generalizado en los valores de módulo elástico y dureza. El presente trabajo estudia la variabilidad en los valores de las propiedades mecánicas del esmalte y la dentina en dos dientes bovinos

  20. Determinants of Littering: An Experimental Analysis

    OpenAIRE

    Fatima Salim Khawaja; Anwar Shah

    2013-01-01

    Littering, the improper disposal of small quantities of waste, is one of the main causes of environmental degradation. To protect the environment from this degradation, we need to factor out the determinants of littering behaviour. In this study, we conduct a controlled laboratory experiment to examine whether people would avoid littering if the social cost of this behaviour was internalised. Based on the microeconomic theory relating to externality, we test whether penalising littering decre...

  1. Club Cell-16 and RelB as Novel Determinants of Arterial Stiffness in Exacerbating COPD Patients.

    Directory of Open Access Journals (Sweden)

    Laura E Labonté

    Full Text Available Exacerbations of chronic obstructive pulmonary disease (COPD are acute events of worsened respiratory symptoms that may increase the risk of cardiovascular disease (CVD, a leading cause of mortality amongst COPD patients. The utility of lung-specific inflammatory mediators such as club cell protein-16 (CC-16 and surfactant protein D (SPD and that of a novel marker of CV outcomes in COPD- RelB- in predicting adverse cardiovascular events during exacerbation is not known.Thirty-eight subjects with COPD admitted to the hospital for severe exacerbation were included in this analysis. Clinical, physiological and arterial stiffness measurements were performed within 72 hours of admission; this was followed by measurements taken every 3 days until hospital discharge, then once a week until 30 days after discharge, and then again at 90 and 180 days. Plasma concentrations of inflammatory mediators were measured from peripheral venous blood taken at admission, and at days 15, 30, 90 and 180.CC-16 and RelB concentrations were increased at day 15 of exacerbations whereas SPD concentrations were decreased. The course of change in CC-16 and RelB levels over time was inversely associated with that of carotid-femoral pulse wave velocity, the gold-standard measure of arterial stiffness. Increases in CC-16 could predict a decreased number of subsequent exacerbations during follow-up.Lung-specific (CC-16 and novel (RelB biomarkers are associated with systemic cardiovascular changes over time. CC-16 can predict subsequent exacerbations in subjects with severe COPD and may be an important biomarker of pulmonary and systemic stress in COPD.

  2. Elasticity of Stiff Biopolymers

    OpenAIRE

    Ghosh, Abhijit; Samuel, Joseph; Sinha, Supurna

    2007-01-01

    We present a statistical mechanical study of stiff polymers, motivated by experiments on actin filaments and the considerable current interest in polymer networks. We obtain simple, approximate analytical forms for the force-extension relations and compare these with numerical treatments. We note the important role of boundary conditions in determining force-extension relations. The theoretical predictions presented here can be tested against single molecule experiments on neurofilaments and ...

  3. Arterial stiffness and cognitive impairment.

    Science.gov (United States)

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility

  4. Determination of experimental K-shell fluorescence yield for ...

    Indian Academy of Sciences (India)

    K-shell fluorescence yields were experimentally determined for potassium and calcium compounds using a Si(Li) X-ray detector system (FWHM=5.96 keV at 160 eV). The samples were excited by 5.96 keV photons produced by a 55Fe radioisotope source. The experimental values are systematically lower than the ...

  5. Gradual stiffness versus magnetic imaging-guided variable stiffness colonoscopes: A randomized noninferiority trial.

    Science.gov (United States)

    Garborg, Kjetil; Wiig, Håvard; Hasund, Audun; Matre, Jon; Holme, Øyvind; Noraberg, Geir; Løberg, Magnus; Kalager, Mette; Adami, Hans-Olov; Bretthauer, Michael

    2017-02-01

    Colonoscopes with gradual stiffness have recently been developed to enhance cecal intubation. We aimed to determine if the performance of gradual stiffness colonoscopes is noninferior to that of magnetic endoscopic imaging (MEI)-guided variable stiffness colonoscopes. Consecutive patients were randomized to screening colonoscopy with Fujifilm gradual stiffness or Olympus MEI-guided variable stiffness colonoscopes. The primary endpoint was cecal intubation rate (noninferiority limit 5%). Secondary endpoints included cecal intubation time. We estimated absolute risk differences with 95% confidence intervals (CIs). We enrolled 475 patients: 222 randomized to the gradual stiffness instrument, and 253 to the MEI-guided variable stiffness instrument. Cecal intubation rate was 91.7% in the gradual stiffness group versus 95.6% in the variable stiffness group. The adjusted absolute risk for cecal intubation failure was 4.3% higher in the gradual stiffness group than in the variable stiffness group (upper CI border 8.1%). Median cecal intubation time was 13 minutes in the gradual stiffness group and 10 minutes in the variable stiffness group (p < 0.001). The study is inconclusive with regard to noninferiority because the 95% CI for the difference in cecal intubation rate between the groups crosses the noninferiority margin. (ClinicalTrials.gov identifier: NCT01895504).

  6. Experimental determination of thermodynamic equilibrium in biocatalytic transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang

    2012-01-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones....... Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore...

  7. Reference values of one-point carotid stiffness parameters determined by carotid echo-tracking and brachial pulse pressure in a large population of healthy subjects.

    Science.gov (United States)

    Vriz, Olga; Aboyans, Victor; Minisini, Rosalba; Magne, Julien; Bertin, Nicole; Pirisi, Mario; Bossone, Eduardo

    2017-07-01

    Arterial stiffness can predict cardiovascular events, and the aim of this study was to produce age- and sex-specific reference values for echo-tracking carotid stiffness in healthy subjects. A total of 900 subjects (500 males, mean age 45.8±19 years) were enrolled. Common carotid artery stiffness and compliance, using a high-definition echo-tracking ultrasound system, were evaluated. To compare stiffness parameters across the different age groups, individual scores were transformed into T-scores, indicating how many standard deviation (s.d.) units an individual's score was above or below the mean that was observed in the group including same-sex individuals aged 36 to 44 years. Carotid stiffness was similar among genders, except compliance, which was lower in women (Pparameters increased significantly with age, but the opposite occurred for compliance. The T-score was found to increase significantly across all age groups, with a steeper increase in stiffness around the age of 60 years in women. For each T-score s.d., the corresponding carotid absolute values for arterial stiffness and compliance were obtained. In a multivariate model, carotid stiffness parameters were constantly and independently associated with age, mean arterial pressure, pulse pressure, heart rate and body mass index. Our study provides a normogram of carotid arterial stiffness and compliance indices obtained with the echo-tracking method in a large population of healthy subjects stratified by gender and age that can be used in clinical practice.

  8. Endothelial shear stress: a critical determinant of arterial remodeling and arterial stiffness in humans--a carotid 3.0-T MRI study.

    NARCIS (Netherlands)

    Duivenvoorden, R.; Bavel, E. van; Groot, E. de; Stroes, E.S.; Disselhorst, J.A.; Hutten, B.A.; Lameris, J.S.; Kastelein, J.J.; Nederveen, A.J.

    2010-01-01

    BACKGROUND: Low endothelial shear stress (ESS) elicits endothelial dysfunction. However, the relationship between ESS and arterial remodeling and arterial stiffness is unknown in humans. We developed a 3.0-T MRI protocol to evaluate the contribution of ESS to arterial remodeling and stiffness.

  9. Rigidez do papelão ondulado: comparação entre resultados experimentais e os obtidos por cálculo analítico Bending stiffness evaluation of cardboard: comparison between experimental and analytically results

    Directory of Open Access Journals (Sweden)

    Paulo G. Magalhães

    2006-04-01

    transverse direction. The papers liner and medium resistance to the traction, used to calculate the bending stiffness, was determined in a universal machine test. To obtaining of the bending stiffens the four points test was accomplished. Expressive variations among the methods from which the modulus of elasticity is obtained were observed and that influence the bending stiffness of the structure. The stiffness values obtained experimentally were always greater than the values obtained from analytical method. This difference can be attributed to two factors, the production processes that assurance a larger rigidity than the components separately and the addition of the adhesive layer that is not taken in consideration in the analytic calculations.

  10. [Comparison between experimentally and theoretically determined CT values].

    Science.gov (United States)

    Christ, G; Schmitt, W G

    1983-09-01

    The article presents two methods for the theoretical determination of CT values. These methods involve relatively little work and cost and enable at least an estimation of the CT value of any object to be examined. The results are compared with the experimental data, and possible sources of errors are shown. The article concludes with a discussion of a few examples from actual practice.

  11. Method for Determining Volumetric Efficiency and Its Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ambrozik Andrzej

    2017-12-01

    Full Text Available Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.

  12. The stiffness change and the increase in the ultimate capacity for a stiff pile resulting from a cyclic loading

    DEFF Research Database (Denmark)

    Lada, Aleksandra; Ibsen, Lars Bo; Nicolai, Giulio

    In the paper the experimental results of small-scale tests on a stiff monopile are presented to outline the change in stiffness during the cyclic loading and the change in the ultimate pile capacity. The results confirm the increase of stiffness and the increase in bearing capacity resulting from...

  13. The metabolic syndrome, cardiopulmonary fitness, and subcutaneous trunk fat as independent determinants of arterial stiffness: the Amsterdam Growth and Health Longitudinal Study

    NARCIS (Netherlands)

    Ferreira, I.; Henry, R.M.A.; Twisk, J.W.R.; van Mechelen, W.; Kemper, H.C.G.; Stehouwer, C.D.A.

    2005-01-01

    Background: The mechanisms that link the metabolic syndrome to increased cardiovascular risk are incompletely understood, especially in young people. We therefore examined whether the metabolic syndrome was associated with arterial stiffness and whether any such associations were independent of

  14. Embodying Desired Behavior in Variable Stiffness Actuators

    NARCIS (Netherlands)

    Visser, L.C.; Stramigioli, Stefano; Bicchi, Antonio

    2011-01-01

    Variable stiffness actuators are a class of actuators with the capability of changing their apparent output stiffness independently from the actuator output position. This is achieved by introducing internally a number of compliant elements, and internal actuated degrees of freedom that determine

  15. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually....... For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems...

  16. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    Science.gov (United States)

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Stiffness Control of Surgical Continuum Manipulators.

    Science.gov (United States)

    Mahvash, Mohsen; Dupont, Pierre E

    2011-04-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot's coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions.

  18. HIV infection and aortic stiffness.

    Science.gov (United States)

    Leite, Luisa Helena Maia; Cohen, Ariel; Boccara, Franck

    People living with human immunodeficiency virus (HIV) infection and receiving antiretroviral therapy now have the same life expectancy as the general population. However, they have a higher risk of atherosclerotic cardiovascular events because of a complex and polyfactorial vasculopathy, combining the effects of antiretroviral therapy, the HIV virus itself, immune activation, chronic inflammation and metabolic disturbances. Whether people living with HIV infection experience increased vascular aging compared with the general population remains controversial. To summarize current knowledge of the association between HIV infection and aortic stiffness as a marker of vascular aging. This review included 18 clinical studies in adult populations, published between 2009 and 2016, and identified on PubMed/MEDLINE or other databases. Search terms were aortic stiffness, arterial stiffness, vascular aging, pulse wave velocity and HIV. All 18 studies were observational, and compared groups infected (HIV+) and not infected (HIV-) with HIV. Ten studies (55%) reported no significant differences in aortic stiffness between HIV+ groups and age-matched HIV- control groups. The main reported determinants of aortic stiffness were age, blood pressure, smoking, metabolic syndrome and HIV-related variables, including CD4/CD8 ratio, current T-CD4 count < 200/mm 3 and nadir T-CD4+ count < 200/mm 3 . We found discordant results regarding whether HIV+ patients had increased aortic stiffness compared with HIV- controls. However, HIV-related conditions were associated with vascular health. This association has been confirmed in recent prospective studies. There is emerging evidence that HIV itself and immune activity affect vascular health and the large arteries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Experimental determination of core electron deformation in diamond.

    Science.gov (United States)

    Bindzus, Niels; Straasø, Tine; Wahlberg, Nanna; Becker, Jacob; Bjerg, Lasse; Lock, Nina; Dippel, Ann Christin; Iversen, Bo B

    2014-01-01

    Synchrotron powder X-ray diffraction data are used to determine the core electron deformation of diamond. Core shell contraction inherently linked to covalent bond formation is observed in close correspondence with theoretical predictions. Accordingly, a precise and physically sound reconstruction of the electron density in diamond necessitates the use of an extended multipolar model, which abandons the assumption of an inert core. The present investigation is facilitated by negligible model bias in the extraction of structure factors, which is accomplished by simultaneous multipolar and Rietveld refinement accurately determining an atomic displacement parameter (ADP) of 0.00181 (1) Å(2). The deconvolution of thermal motion is a critical step in experimental core electron polarization studies, and for diamond it is imperative to exploit the monatomic crystal structure by implementing Wilson plots in determination of the ADP. This empowers the electron-density analysis to precisely administer both the deconvolution of thermal motion and the employment of the extended multipolar model on an experimental basis.

  20. Research on Detection of Machine Stiffness

    Directory of Open Access Journals (Sweden)

    Wang Li-Jie

    2015-01-01

    Full Text Available Machine tool stiffness is a principal factor affecting machine tool precision, traditional methods can only be used to detect limited categories of machine tools. The paper introduces a new scheme to detect machine tool stiffness on the basis of dynamic detection of machine tool stiffness considering its characteristics and stress state during processing. An experiment conducted in turn-milling machining center CH7516GS indicated by comparison that statics analysis of finite elements matched the experimental result well, which provided precise original data for design of improved machine tool precision and access to design of precision detection equipment for other types of machine tools.

  1. Experimental determination of monoethanolamine protonation constant and its temperature dependency

    Directory of Open Access Journals (Sweden)

    Ma’mun Sholeh

    2017-01-01

    Full Text Available Carbon dioxide as one of the major contributors to the global warming problem is produced in large quantities by many important industries and its emission seems to rise from year to year. Aminebased absorption is one of the methods to capture CO2 from its sources. As a reactive system, mass transfer and chemical reaction take place simultaneously. In a vapor-liquid equilibrium model for the CO2-amine-water system, some parameters such as mass transfer coefficients and chemical equilibrium constants need to be known. However, some parameters could be determined experimentally and the rests could be regressed from the model. The protonation constant (pKa, as one of the model parameters, could then be measured experimentally. The purpose of this study is to measure the pKa of monoethanolamine (MEA at a range of temperatures from 303 to 330K by a potentiometric titration method. The experimental data obtained were in a good agreement with the literature data. The pKa data from this work together with those from the literature were then correlated in an empirical correlation to be used for future research.

  2. 'Stiff-person'-syndroom

    NARCIS (Netherlands)

    Vogels, R. L.; van Orshoven, N. P.; de Koning-Tijssen, M. A.; Wouda, E. J.

    2003-01-01

    In two patients, a man aged 54 years and a woman aged 49 years, stiff-person syndrome was diagnosed. This is a rare disorder of the central nervous system, with signs of an autoimmune pathogenesis. Patients present with pain and stiffness of the lower back, a complaint that is regularly seen in

  3. Tooth stiffness with composite veneers: a strain gauge and finite element evaluation.

    Science.gov (United States)

    Reeh, E S; Ross, G K

    1994-07-01

    This study was conducted to determine the impact of composite veneer procedures on the functional properties of incisors. Ten extracted human maxillary central incisors were mounted in pairs in a nylon ring. One strain gauge was bonded along the long axis of each tooth on the center of the lingual surface. Each pair formed half of a Wheatstone bridge circuit and was wired to eliminate all but the voltage resulting from experimentally applied procedures. The teeth were ramp-loaded to 50 N near the incisal edge on the lingual surface. Loading was performed on the unaltered teeth, teeth with preparations and restored teeth. Two-dimensional finite element (FE) models were generated to evaluate each test condition. Relative stiffness, compared with the unaltered tooth, was calculated from measurements with the strain gauge steps and from the FE models. A relative stiffness value of unity represents recovery of stiffness to the level of the unaltered tooth. Both methods of evaluation demonstrated a decrease in mean relative stiffness with each subsequent reduction in tooth structure. The composite restoration increased its mean relative stiffness compared to its corresponding preparation but never to the level of the unaltered tooth. Across all procedures, the two-dimensional FE model correlated well in both direction and magnitude with the experimental strain gauge method (R = 0.83). A resin composite veneer does not restore the stiffness to the level of an unaltered tooth.

  4. A projection method for under determined optimal experimental designs

    KAUST Repository

    Long, Quan

    2014-01-09

    A new implementation, based on the Laplace approximation, was developed in (Long, Scavino, Tempone, & Wang 2013) to accelerate the estimation of the post–experimental expected information gains in the model parameters and predictive quantities of interest. A closed–form approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general cases where the model parameters could not be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the corresponding Jacobian matrix, so that the information gain (Kullback–Leibler divergence) can be reduced to an integration against the marginal density of the transformed parameters which are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the projected posterior covariance matrix. To deal with the issue of dimensionality in a complex problem, we use Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under determined numerical examples.

  5. Experimental determination of the physicochemical properties of lumefantrine.

    Science.gov (United States)

    Kotila, O A; Olaniyi, O O; Adegoke, A O; Babalola, C P

    2013-09-01

    The physicochemical properties of lumefantrine, a first line combination medicine for the treatment of uncomplicated falciparum malaria have been determined experimentally rather than theoretically as a guide to understanding its disposition in human. The solubility of lumefantrine in various organic solvents was evaluated by estimating the volume of solvent that completely dissolved 15 mg of the drug. Melting point determination was carried out using a melting point apparatus. Dissociation constant of the drug was determined potentiometrically in 0.1M perchloric acid and partition coefficient was by the method of Leo Hansch, using ratio of the concentration of organic to aqueous phase. Lumefantrine has a melting point of 128-131 degrees C. Its solubility in selected solvents range from 0.013% in acetonitrile (very slightly soluble) to 7.5% in chloroform and dichloromethane (soluble), and it is practically insoluble (0.002%) in water. The ionization constant (pKa), determined in 0.1 M perchloric acid was found to be 9.35. The Log P lies in the range 2.29-3.52, confirming the lipophilicity of lumefantrine. The physicochemical properties of lumefantrine reveal that it is highly lipophilic, weakly basic and readily dissolves in non-polar and/or aprotic organic solvents. While these properties will favour its distribution across cellular membranes, the rate-limiting step will be at the dissolution-absorption stage which will require biopharmaceutical modifications.

  6. Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.

    Science.gov (United States)

    Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław

    2015-07-22

    A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform.

  7. Experimental determination of group flux control coefficients in metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.

  8. Observer-Based Human Knee Stiffness Estimation.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Riener, Robert; Leonhardt, Steffen

    2017-05-01

    We consider the problem of stiffness estimation for the human knee joint during motion in the sagittal plane. The new stiffness estimator uses a nonlinear reduced-order biomechanical model and a body sensor network (BSN). The developed model is based on a two-dimensional knee kinematics approach to calculate the angle-dependent lever arms and the torques of the muscle-tendon-complex. To minimize errors in the knee stiffness estimation procedure that result from model uncertainties, a nonlinear observer is developed. The observer uses the electromyogram (EMG) of involved muscles as input signals and the segmental orientation as the output signal to correct the observer-internal states. Because of dominating model nonlinearities and nonsmoothness of the corresponding nonlinear functions, an unscented Kalman filter is designed to compute and update the observer feedback (Kalman) gain matrix. The observer-based stiffness estimation algorithm is subsequently evaluated in simulations and in a test bench, specifically designed to provide robotic movement support for the human knee joint. In silico and experimental validation underline the good performance of the knee stiffness estimation even in the cases of a knee stiffening due to antagonistic coactivation. We have shown the principle function of an observer-based approach to knee stiffness estimation that employs EMG signals and segmental orientation provided by our own IPANEMA BSN. The presented approach makes realtime, model-based estimation of knee stiffness with minimal instrumentation possible.

  9. Dynamic stiffness of suction caissons - vertical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)

  10. Programmable variable stiffness 2D surface design

    Science.gov (United States)

    Trabia, Sarah; Hwang, Taeseon; Yim, Woosoon

    2014-03-01

    Variable stiffness features can contribute to many engineering applications ranging from robotic joints to shock and vibration mitigation. In addition, variable stiffness can be used in the tactile feedback to provide the sense of touch to the user. A key component in the proposed device is the Biased Magnetorheological Elastomer (B-MRE) where iron particles within the elastomer compound develop a dipole interaction energy. A novel feature of this device is to introduce a field induced shear modulus bias via a permanent magnet which provides an offset with a current input to the electromagnetic control coil to change the compliance or modulus of a base elastomer in both directions (softer or harder). The B-MRE units can lead to the design of a variable stiffness surface. In this preliminary work, both computational and experimental results of the B-MRE are presented along with a preliminary design of the programmable variable stiffness surface design.

  11. Experimental Determination of Spin Glass Lower Critical Dimension

    Science.gov (United States)

    Guchhait, Samaresh; Orbach, Raymond

    2014-03-01

    Zero field cooled (ZFC) measurements on thin film Ge:Mn spin glass can explore the lower critical dimension dl. The correlation length ξ(t , T) is nucleated upon a rapid quench into the spin glass phase, and grows to the thickness of the film, L, resulting in a transition for dynamics from d = 3 to d = 2 at a crossover time tco. Our experiments demonstrate that conventional ZFC dynamics vanish at t =tco , but there remain spins within a length scale rise of the remaining ZFC magnetization exhibits an exponential time dependence determined by the highest barrier surmounted at tco, Δmax(tco , T) . By carefully choosing a temperature region where the dynamics fall within experimental time scales, both regimes are observed. Further, there is a direct relationship between the magnitude of ξ(tco , T) and Δmax(tco , T) . This relationship is satisfied, determining the parameters controlling the growth of ξ(t , T) without arbitrary parameters. The existence of the crossover establishes that 2

  12. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  13. A novel variable stiffness mechanism for dielectric elastomer actuators

    Science.gov (United States)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  14. Experimental determination of residence time distribution in continuous dry granulation.

    Science.gov (United States)

    Mangal, Haress; Kleinebudde, Peter

    2017-05-30

    With increasing importance of continuous manufacturing, the interest in integrating dry granulation into a continuous manufacturing line is growing. Residence time distribution measurements are of importance as they provide information about duration of materials within the process. These data enable traceability and are highly beneficial for developing control strategies. A digital image analysis system was used to determine the residence time distribution of two materials with different deformation behavior (brittle, plastic) in the milling unit of dry granulation systems. A colorant was added to the material (20%w/w iron oxide), which did not affect the material properties excessively, so the milling process could be mimicked well. Experimental designs were conducted to figure out which parameters effect the mean residence time strongly. Moreover, two types of dry granulation systems were contrasted. Longer mean residence times were obtained for the oscillating mill (OM) compared to the conical mill (CM). For co-processed microcrystalline cellulose residence times of 19.8-44.4s (OM) and 11.6-29.1s (CM) were measured, mainly influenced by the specific compaction force, the mill speed and roll speed. For dibasic calcium phosphate anhydrate residence times from 17.7-46.4 (OM) and 5.4-10.2s (CM) were measured, while here the specific compaction force, the mill speed and their interactions with the roll speed had an influence on the mean residence time. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling of Axial Spring Stiffness in Active Vibration Controlled Drilling

    Directory of Open Access Journals (Sweden)

    Pao William

    2014-07-01

    Full Text Available During drilling process, substantial amount of vibration and shock are induced to the drill string. Active vibration controlled drilling is introduced to reduce the vibration and increase the efficiency of drilling process. In this system, two main components that determine the damping coefficient are magnetorheological (MR damper and spring assembly. Performance of vibration damping system is depending on the viscosity of MR fluid in the damper and spring constant of spring assembly. One of the key issues that are unclear from the design is the correlation between the axial spring stiffness configuration and the damping force which needs to be tuned actively. There has been lack of studies on how the viscosity of MR fluid on the active vibration damper affects the damping stiffness of the whole system. The objective of the project is to extract the correlations for the viscous damping coefficient, equivalent spring stiffness and power input to the system. Simplified vibration model is thus created using Simulink, together with experimental data fed from APS Technology’s in-house team. Inputs of the simulation such as force exerted, mass of mandrel, spring constant and step time are based on the experimental data and can be adjusted to suit different experiments. By having the model, behavior of the system can be studied and analyzed. From the simulation, it is also observed that the relationship between damping coefficient and power input of the system is linear.

  16. Experimental Determination of Chloritoid Stability in Subducting Oceanic Crust

    Science.gov (United States)

    Forneris, J.; Holloway, J. R.

    2001-12-01

    Dehydration of subducting oceanic lithosphere is the key process for understanding arc magma generation and transport of H2O into the mantle. To establish when and how H2O may be released from the slab into the overlying mantle it is necessary to determine the stability of hydrous phases in the subducting lithosphere. In the past 10 years, experimental investigations of phase relationships in basaltic compositions representing the crustal component of the slab have led to controversial results. Results obtained by Schmidt and Poli (1998) and Pawley and Holloway (1993) on basaltic compositions under H2O saturated conditions showed the potential importance of hydrous phases other than amphibole (such as chloritoid, epidote and lawsonite) in the dehydration process. However, these results are in disagreement with the experiments of Liu et al. (1996), which showed that no hydrous phases are stable beyond the amphibole breakdown reaction at or above 650° C. In our study, piston-cylinder experiments were conducted between 2.2 GPa and 2.8 GPa at 650° C. The starting material consisted of a natural basaltic glass with blueschist/eclogite seeds and H2O. Samples were pressure-sealed in a thick-walled silver capsule with a gold lining designed to prevent hydrogen diffusion in long-duration experiments. The oxygen fugacity was fixed at or near Ni+NiO. These experiments have been focused on determining the stability field of chloritoid by running long-duration experiments (up to 1 month). Our results are in agreement with results by Liu et al. (1996): Chloritoid appears in short-duration runs (144 hours or less at 2.6 GPa and 650° C) but is not present in longer-duration experiments (696 hours or more under the same conditions). The amphiboles obtained in our run products have a glaucophane composition and seem to be stable up to higher pressures (at least 2.6 GPa) than the more calcic amphiboles obtained by the three other groups. Epidote/zoisite is present up to at least

  17. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. Experimental determination of the degree of polarization of quantum states

    DEFF Research Database (Denmark)

    Kothe-Termén, Christian; Madsen, Lars Skovgaard; Andersen, Ulrik Lund

    2013-01-01

    We demonstrate experimental excitation-manifold-resolved polarization characterization of quantum states of light ranging from the few-photon to the many-photon level. In contrast to the traditional characterization of polarization that is based on the Stokes parameters, we experimentally determi...

  20. Recent Experimental Advances to Determine (noble) Gases in Waters

    Science.gov (United States)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment, e.g., making an argument why 220Rn is not detectable in water, but in soil air. As 220Rn occurrence is of 'very local origin

  1. Stiffness Evolution in Frozen Sands Subjected to Stress Changes

    KAUST Repository

    Dai, Sheng

    2017-04-21

    Sampling affects all soils, including frozen soils and hydrate-bearing sediments. The authors monitor the stiffness evolution of frozen sands subjected to various temperature and stress conditions using an oedometer cell instrumented with P-wave transducers. Experimental results show the stress-dependent stiffness of freshly remolded sands, the dominant stiffening effect of ice, creep after unloading, and the associated exponential decrease in stiffness with time. The characteristic time for stiffness loss during creep is of the order of tens of minutes; therefore it is inevitable that frozen soils experience sampling disturbances attributable to unloading. Slow unloading minimizes stiffness loss; conversely, fast unloading causes a pronounced reduction in stiffness probably attributable to the brittle failure of ice or ice-mineral bonding.

  2. Stiff quantum polymers

    OpenAIRE

    Kleinert, H.

    2009-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  3. Experimental Determination of Stress Intensity in a Cracked Cylindrical Specimen,

    Science.gov (United States)

    1980-05-01

    CRACKED CYLINDRICAL SPEC IMEN 7 ABSTRACT The range of stress intensity at the tip of a fatigue crack is the major factor controlling the crack growth...of this report will be similarly clesiied): The range of stress intensity at the tip of a fatigue crack is the major factor controlling the crack...EXPERIMENTAL STRESS INTENSITY CALIBRATION 3 3. EXPERIMENTAL DETAILS 4 3.1 Specimen Geometries 4 3.2 Material 5 3.3 Fatigue Loading 5 3.4 Crack Length

  4. Inverse and reciprocity methods for experimental determination of radiation modes.

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Sarajlic, Edin; Cazzolato, B.S.; Hansen, C.H.

    2001-01-01

    Experimental methods are presented for the problem of finding the vibration patterns of a structure that radi-ate sound most efficiently. These vibration patterns, the so-called radiation modes, diagonalize the acoustic radiation operator and therefore radiate independently. The methods that are

  5. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  6. Experimental bifurcation analysis of an impact oscillator – Determining stability

    DEFF Research Database (Denmark)

    Bureau, Emil; Schilder, Frank; Elmegård, Michael

    2014-01-01

    We propose and investigate three different methods for assessing stability of dynamical equilibrium states during experimental bifurcation analysis, using a control-based continuation method. The idea is to modify or turn off the control at an equilibrium state and study the resulting behavior. A...

  7. Experimental determination of the heterotroph anoxic yield in anoxic ...

    African Journals Online (AJOL)

    This paper describes experimental research to directly quantify the ordinary heterotrophic organism (OHO) cell yield coefficient under anoxic and aerobic conditions with real wastewater as substrate. Until recently these two values were assumed equal in activated sludge models, despite theoretical predictions that the ...

  8. experimental determination of some thermal properties of raphia ...

    African Journals Online (AJOL)

    NIJOTECH

    OF RAPHIA VINIFERA GUM by. DAVID C. ONYEJEKWE. Department of Mechanical Engineering,. University of Nigeria, Nsukka. Abstract. The thermal properties - thermal conductivity, specific heat capacity and viscosity of raphia gum are studied experimentally. The results show that thermal conductivity varies from 0.0164 ...

  9. Experimental Bifurcation Analysis By Control-based Continuation - Determining Stability’

    DEFF Research Database (Denmark)

    Bureau, Emil; Santos, Ilmar; Thomsen, Jon Juel

    2012-01-01

    stable and unstable equilibrium states. We present the ongoing work of developing and applying the control-based continuation method to an experimental mechanical test-rig, consisting of a harmonically forced nonlinear impact oscillator controlled by electromagnetic actuators. Furthermore we propose...

  10. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  11. Experimental determination of the slow-neutron wavelength distribution

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.; Sledziewska-Blocka, D.

    1970-01-01

    Different experiments for determining the slow-neutron wavelength distribution in the region 227-3 meV have been carried out, and the results compared. It is concluded that the slow-neutron wave-length distribution can be determined accurately by elastic scattering on a pure incoherent or a pure...

  12. Experimental electron density determinations on penicillins and a fullerene derivative

    OpenAIRE

    Wagner, Armin

    2010-01-01

    The number of experimental charge density studies increased during the past years. This is prior to technical developments, especially the now widely spread area detectors which allow to measure high resolution X-ray diffraction data sets in a reasonable time. With the program system XD a computer program is available which enables the user to easily handle the substantial parameters in the Hansen-Coppens multipole formalism. The combination of the area detection technique with the high...

  13. Experimental determination of useful resistance value during pasta dough kneading

    Science.gov (United States)

    Podgornyj, Yu I.; Martynova, T. G.; Skeeba, V. Yu; Kosilov, A. S.; Chernysheva, A. A.; Skeeba, P. Yu

    2017-10-01

    There is a large quantity of materials produced in the form of dry powder or low humidity granulated masses in the modern market, and there is a need to develop new manufacturing machinery and to renew the existing facilities involved in the production of various loose mixtures. One of the machinery upgrading tasks is enhancing its performance. In view of the fact that experimental research is not feasible in full-scale samples, an experimental installation was to be constructed. The article contains its kinematic scheme and the 3D model. The angle of the kneading blade location, the volume of the loose mixture, rotating frequency and the number of the work member double passes were chosen as variables to carry out the experiment. The technique of the experiment, which includes two stages for the rotary and reciprocating movement of the work member, was proposed. The results of the experimental data processing yield the correlations between the load characteristics of the mixer work member and the angle of the blade, the volume of the mixture and the work member rotating frequency, allowing for the recalculation of loads for this type machines.

  14. Patterns of shading tolerance determined from experimental light reduction studies of seagrasses

    Science.gov (United States)

    An extensive review of the experimental literature on seagrass shading evaluated the relationship between experimental light reductions, duration of experiment and seagrass response metrics to determine whether there were consistent statistical patterns. There were highly signif...

  15. Vascular Aging and Arterial Stiffness

    Directory of Open Access Journals (Sweden)

    Luana de Rezende Mikael

    Full Text Available Abstract Cardiovascular diseases (CVD account annually for almost one third of all deaths worldwide. Among the CVD, systemic arterial hypertension (SAH is related to more than half of those outcomes. Type 2 diabetes mellitus is an independent risk factor for SAH because it causes functional and structural damage to the arterial wall, leading to stiffness. Several studies have related oxidative stress, production of free radicals, and neuroendocrine and genetic changes to the physiopathogenesis of vascular aging. Indirect ways to analyze that aging process have been widely studied, pulse wave velocity (PWV being considered gold standard to assess arterial stiffness, because there is large epidemiological evidence of its predictive value for cardiovascular events, and it requires little technical knowledge to be performed. A pulse wave is generated during each cardiac contraction and travels along the arterial bed until finding peripheral resistance or any bifurcation point, determining the appearance of a reflected wave. In young individuals, arteries tend to be more elastic, therefore, the reflected wave occurs later in the cardiac cycle, reaching the heart during diastole. In older individuals, however, the reflected wave occurs earlier, reaching the heart during systole. Because PWV is an important biomarker of vascular damage, highly valuable in determining the patient’s global cardiovascular risk, we chose to review the articles on vascular aging in the context of cardiovascular risk factors and the tools available to the early identification of that damage.

  16. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  17. Stiffness characterization of a 3-PPR planar parallel manipulator with actuation compliance

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2015-01-01

    This paper investigates the stiffness of a compliant planar parallel manipulator. Instead of establishing stiffness matrix directly for planar mechanisms, we adopt the modeling approach for spatial mechanisms, which allows us to derive two decoupled homogeneous matrices, corresponding to the tran......This paper investigates the stiffness of a compliant planar parallel manipulator. Instead of establishing stiffness matrix directly for planar mechanisms, we adopt the modeling approach for spatial mechanisms, which allows us to derive two decoupled homogeneous matrices, corresponding...... submatrices. In addition, the influence of the nonlinear actuation compliance to the manipulator stiffness is investigated, and the established stiffness model is experimentally verified....

  18. Experimentally determined temperature thresholds for Arctic plankton community metabolism

    Directory of Open Access Journals (Sweden)

    J. M. Holding

    2013-01-01

    Full Text Available Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 °C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half of its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase the rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rates and thus both the rate of primary production and respiration will increase. However, these predictions do not consider the specific metabolic balance of the communities. We tested, experimentally, the response of Arctic plankton communities to seawater temperature spanning from 1 °C to 10 °C. Two types of communities were tested, open-ocean Arctic communities from water collected in the Barents Sea and Atlantic influenced fjord communities from water collected in the Svalbard fjord system. Metabolic rates did indeed increase as suggested by metabolic theory, however these results suggest an experimental temperature threshold of 5 °C, beyond which the metabolism of plankton communities shifts from autotrophic to heterotrophic. This threshold is also validated by field measurements across a range of temperatures which suggested a temperature 5.4 °C beyond which Arctic plankton communities switch to heterotrophy. Barents Sea communities showed a much clearer threshold response to temperature manipulations than fjord communities.

  19. Determination of the stochastic evolution equation from noisy experimental data

    NARCIS (Netherlands)

    Maunuksela, J.; Myllys, M.; Merikoski, J.; Timonen, J.; Karkkainen, T.; Welling, M.S.; Wijngaarden, R.J.

    2003-01-01

    We have determined the coefficients of the Kardar-Parisi-Zhang equation as functions of coarse graining, which best describe the time evolution and spatial behavior observed for slow-combustion fronts in sheets of paper and magnetic flux fronts in a thin-film high-T

  20. Experimental determination of the heterotroph anoxic yield in anoxic ...

    African Journals Online (AJOL)

    driniev

    Additionally, the aerobic and anoxic yield coefficients were directly determined by using defined quantities of the artificial RBCOD acetate. The wastewater ... Integral to the biological nutrient removal (BNR) activated sludge system is the biologically mediated process of denitrification. Accordingly, biological denitrification ...

  1. Nonlinear stiffness profiles of external fixators constructed with composite rods.

    Science.gov (United States)

    Carlson, Kimberly R; Kraus, Karl H; Kowaleski, Michael P

    2006-12-01

    To determine if composite connecting rods confer nonlinear stiffness characteristics on unilateral and bilateral external skeletal fixators (ESF) in cranial-caudal bending and axial loading. Mechanical testing performed on models. Six models of 6-pin ESF constructs composed of birch dowels, a commercial ESF system, and composite connecting rods. Unilateral and bilateral ESF configurations were assembled using either specially designed composite titanium and silicone (composite group) or solid titanium (solid group) connecting rods. Mechanical testing was performed in axial loading and 4-point cranial-caudal bending. Stiffness was determined at a low and high-load range, and was considered increasing and nonlinear if the stiffness at high loads was greater than at low loads. The stiffness of the solid group was linear in all testing modes and configurations. Bilateral composite fixators had a nonlinear increasing stiffness in axial loading and cranial-caudal bending. Unilateral composite fixators had a nonlinear increasing stiffness in axial loading, but not cranial-caudal bending. Solid connecting rods conferred a higher stiffness in all testing modes and configurations. Composite connecting rods resulted in nonlinear increasing axial and bending stiffness in bilateral fixators, and in axial load in unilateral fixators. Conventional ESF can be constructed so that the stiffness increases as load increases. This provides the surgeon with additional options to control the local mechanical environment of a healing fracture, which may be used to enhance fracture healing.

  2. Experimental And Theoretical Determination Of Forming Limit Curve

    Directory of Open Access Journals (Sweden)

    Adamus J.

    2015-09-01

    Full Text Available The paper presents a method for determining forming limit curves based on a combination of experiments with finite element analysis. In the experiment a set of 6 samples with different geometries underwent plastic deformation in stretch forming till the appearance of fracture. The heights of the stamped parts at fracture moment were measured. The sheet - metal forming process for each sample was numerically simulated using Finite Element Analysis (FEA. The values of the calculated plastic strains at the moment when the simulated cup reaches the height of the real cup at fracture initiation were marked on the FLC. FLCs for stainless steel sheets: ASM 5504, 5596 and 5599 have been determined. The resultant FLCs are then used in the numerical simulations of sheet - metal forming. A comparison between the strains in the numerically simulated drawn - parts and limit strains gives the information if the sheet - metal forming process was designed properly.

  3. experimental determination of some thermal properties of raphia ...

    African Journals Online (AJOL)

    NIJOTECH

    C) respectively. The specific heat capacity is from 1.178 to 1.315 (KJ/kg o. C) for moisture content and temperature of 59.77 to 70.06% (W.B) and 50 to 70 ( o. C) respectively. The gum is a non-. Newtonian pseudoplastic fluid and hence its viscosity is determined from the shear rate against shear stress plot. Nomentclature. A.

  4. Arterial stiffness, hypertension, and rational use of nebivolol

    Directory of Open Access Journals (Sweden)

    Enrico Agabiti-Rosei

    2009-05-01

    Full Text Available Enrico Agabiti-Rosei, Enzo Porteri, Damiano RizzoniClinica Medica, Department of Medical and Surgical Sciences, University of Brescia, ItalyAbstract: Arterial stiffness plays a key role in the pathophysiology of the cardiovascular system. Some indices of arterial stiffness (pulse wave velocity, augmentation index, characteristics of central blood pressure waveform may be presently calculated and evaluated in the clinical setting. Age and blood pressure are the two major clinical determinants of increased arterial stiffness, while molecular determinants of arterial stiffness are related to fibrotic components of the extracellular matrix, mainly elastin, collagen and fibronectin. Increased arterial stiffness has been consistently observed in conditions such as hypertension, dyslipidemia and diabetes. Arterial stiffness evaluated by means of carotid-femoral pulse wave velocity yielded prognostic significance beyond and above traditional risk factors. A more favorable effect of calcium channel blockers, diuretics and ACE inhibitors compared with β-blockers on indices of arterial stiffness was observed in several studies. It is conceivable that newer β-blockers with additional vasodilating properties, such as nebivolol, which has favorable effects on carbohydrate and lipid metabolism, as well as on endothelial function and on oxidative stress, may have favorable effects on arterial stiffness, compared with atenolol. In fact, in recent studies, nebivolol was demonstrated to improve artery stiffness to a greater extent than older β-blockers. Because endothelial dysfunction and increased arterial stiffness play an important role in the early atherosclerotic processes and are associated with poor outcomes and increased mortality, independently of blood pressure, the ability of nebivolol to enhance release of endothelium-derived nitric oxide, and consequently improve endothelial function and arterial stiffness, may have significant clinical

  5. Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    Science.gov (United States)

    Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  6. Keratinocytes determine Th1 immunity during early experimental leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Jan M Ehrchen

    2010-04-01

    Full Text Available Experimental leishmaniasis is an excellent model system for analyzing Th1/Th2 differentiation. Resistance to Leishmania (L. major depends on the development of a L. major specific Th1 response, while Th2 differentiation results in susceptibility. There is growing evidence that the microenvironment of the early affected tissue delivers the initial triggers for Th-cell differentiation. To analyze this we studied differential gene expression in infected skin of resistant and susceptible mice 16h after parasite inoculation. Employing microarray technology, bioinformatics, laser-microdissection and in-situ-hybridization we found that the epidermis was the major source of immunomodulatory mediators. This epidermal gene induction was significantly stronger in resistant mice especially for several genes known to promote Th1 differentiation (IL-12, IL-1beta, osteopontin, IL-4 and for IL-6. Expression of these cytokines was temporally restricted to the crucial time of Th1/2 differentiation. Moreover, we revealed a stronger epidermal up-regulation of IL-6 in the epidermis of resistant mice. Accordingly, early local neutralization of IL-4 in resistant mice resulted in a Th2 switch and mice with a selective IL-6 deficiency in non-hematopoietic cells showed a Th2 switch and dramatic deterioration of disease. Thus, our data indicate for the first time that epidermal cytokine expression is a decisive factor in the generation of protective Th1 immunity and contributes to the outcome of infection with this important human pathogen.

  7. A randomized trial of once-daily fluticasone furoate/vilanterol or vilanterol versus placebo to determine effects on arterial stiffness in COPD

    Directory of Open Access Journals (Sweden)

    Bhatt SP

    2017-01-01

    Full Text Available Surya P Bhatt,1 Mark T Dransfield,1 John R Cockcroft,2 Jie Wang-Jairaj,3 Dawn A Midwinter,3 David B Rubin,4 Catherine A Scott-Wilson,4 Courtney Crim4 1Division of Pulmonary, Allergy and Critical Care Medicine and UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Cardiology, Wales Heart Research Institute, Cardiff, 3GSK, Stockley Park, Uxbridge, UK; 4GSK, Research Triangle Park, NC, USA Introduction: Chronic obstructive pulmonary disease (COPD is associated with increased cardiovascular morbidity and mortality. Elevated arterial stiffness, measured by aortic pulse wave velocity (aPWV, is a cardiovascular risk surrogate and is potentially modifiable by inhaled corticosteroid/long-acting beta2-agonist combinations in patients with COPD.Materials and methods: The effects of once-daily inhaled fluticasone furoate/vilanterol (FF/VI 100/25 µg, VI 25 µg, versus placebo on arterial stiffness in patients with COPD and baseline aPWV ≥11.0 m/s were investigated in a 24-week, multicenter, double-blind, randomized, stratified (by COPD exacerbation history, parallel-group, placebo-controlled trial. Eligible patients were ≥40 years old, with ≥10 pack-year smoking history, forced expiratory volume in 1 s (FEV1/forced vital capacity ≤0.70, and post-bronchodilator FEV1 ≤70% of predicted. Patients with a major cardiovascular event in the previous 6 months/current severe heart failure/uncontrolled hypertension were excluded. Primary endpoint is change from baseline in aPWV after 24 weeks of treatment. Safety analyses included adverse events (AEs.Results: The intent-to-treat population included 430 patients: FF/VI (n=135, VI (n=154, and placebo (n=141. Patients were predominantly male (79% and Asian or White (each 48%, with a mean age of 68.5 years (standard deviation [SD] =7.9, percentage predicted post-bronchodilator FEV1 50.1% (SD =13.3, and aPWV 13.26 m/s (SD =2.22 at screening. At 24 weeks, mean

  8. Experimental determination of cavitation thresholds in liquid water and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; West, C.D. [Oak Ridge National Lab., TN (United States); Moraga, F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1998-11-01

    An overview is provided on cavitation threshold measurement experiments for water and mercury. Various aspects to be considered that affect onset determination are discussed along with design specifications developed for construction of appropriate apparatus types. Both static and transient-cavitation effects were studied using radically different apparatus designs. Preliminary data are presented for cavitation thresholds for water and mercury over a range of temperatures in static and high-frequency environments. Implications and issues related to spallation neutron source target designs and operation are discussed.

  9. Effect of Stiffness of Rolling Joints on the Dynamic Characteristic of Ball Screw Feed Systems in a Milling Machine

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-01-01

    Full Text Available Dynamic characteristic of ball screw feed system in a milling machine is studied numerically in this work. In order to avoid the difficulty in determining the stiffness of rolling joints theoretically, a dynamic modeling method for analyzing the feed system is discussed, and a stiffness calculation method of the rolling joints is proposed based on the Hertz contact theory. Taking a 3-axis computer numerical control (CNC milling machine set ermined as a research object, the stiffness of its fixed joint between the column and the body together with the stiffness parameters of the rolling joints is evaluated according to the Takashi Yoshimura method. Then, a finite element (FE model is established for the machine tool. The correctness of the FE model and the stiffness calculation method of the rolling joints are validated by theoretical and experimental modal analysis results of the machine tool’s workbench. Under the two modeling methods of joints incorporating the stiffness parameters and rigid connection, a theoretical modal analysis is conducted for the CNC milling machine. The natural frequencies and modal shapes reveal that the joints’ dynamic characteristic has an important influence on the dynamic performance of a whole machine tool, especially for the case with natural frequency and higher modes.

  10. Determination of dynamic fracture toughness using a new experimental technique

    Directory of Open Access Journals (Sweden)

    Cady Carl M.

    2015-01-01

    Full Text Available In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ∼0.15 mm/s to 2.5 m/s. Digital image correlation (DIC will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  11. Experimental determination of the segregation process using computer tomography

    Directory of Open Access Journals (Sweden)

    Konstantin Beckmann

    2016-07-01

    Full Text Available Modelling methods such as DEM and CFD are increasingly used for developing high efficient combine cleaning systems. For this purpose it is necessary to verify the complex segregation and separation processes in the combine cleaning system. One way is to determine the segregation and separation function using 3D computer tomography (CT. This method makes it possible to visualize and analyse the movement behaviour of the components of the mixture during the segregation and separation process as well as the derivation of descriptive process parameters. A mechanically excited miniature test rig was designed and built at the company CLAAS Selbstfahrende Erntemaschinen GmbH to achieve this aim. The investigations were carried out at the Fraunhofer Institute for Integrated Circuits IIS. Through the evaluation of the recorded images the segregation process is described visually. A more detailed analysis enabled the development of segregation and separation function based on the different densities of grain and material other than grain.

  12. Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region

    Science.gov (United States)

    Mazurek, Grzegorz; Iwański, Marek

    2017-10-01

    Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 stiffness modulus of asphalt concrete under steady-state strain was performed using the simple axial compression-tensile test under controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the

  13. Stiffness, resilience, compressibility

    Energy Technology Data Exchange (ETDEWEB)

    Leu, Bogdan M. [Argonne National Laboratory, Advanced Photon Source (United States); Sage, J. Timothy, E-mail: jtsage@neu.edu [Northeastern University, Department of Physics and Center for Interdisciplinary Research on Complex Systems (United States)

    2016-12-15

    The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.

  14. Influence of running velocity on vertical, leg and joint stiffness : modelling and recommendations for future research.

    Science.gov (United States)

    Brughelli, Matt; Cronin, John

    2008-01-01

    Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.

  15. Electrothermally Actuated Microbeams With Varying Stiffness

    KAUST Repository

    Tella, Sherif Adekunle

    2017-11-03

    We present axially loaded clamped-guided microbeams that can be used as resonators and actuators of variable stiffness, actuation, and anchor conditions. The applied axial load is implemented by U-shaped electrothermal actuators stacked at one of the beams edges. These can be configured and wired in various ways, which serve as mechanical stiffness elements that control the operating resonance frequency of the structures and their static displacement. The experimental results have shown considerable increase in the resonance frequency and mid-point deflection of the microbeam upon changing the end conditions of the beam. These results can be promising for applications requiring large deflection and high frequency tunability, such as filters, memory devices, and switches. The experimental results are compared to multi-physics finite-element simulations showing good agreement among them.

  16. Dispersive Stiffness of Dzyaloshinskii Domain Walls

    Science.gov (United States)

    Pellegren, J. P.; Lau, D.; Sokalski, V.

    2017-07-01

    It is well documented that subjecting perpendicular magnetic films that exhibit the interfacial Dzyaloshinskii-Moriya interaction to an in-plane magnetic field results in a domain wall (DW) energy σ , which is highly anisotropic with respect to the orientation of the DW in the film plane Θ . We demonstrate that this anisotropy has a profound impact on the elastic response of the DW as characterized by the surface stiffness σ ˜ (Θ )=σ (Θ )+σ''(Θ ) and evaluate its dependence on the length scale of deformation. The influence of stiffness on DW mobility in the creep regime is assessed, with analytic and numerical calculations showing trends in σ ˜ that better represent experimental measurements of domain wall velocity in magnetic thin films compared to σ alone. Our treatment provides experimental support for theoretical models of the mobility of anisotropic elastic manifolds and makes progress toward a more complete understanding of magnetic domain wall creep.

  17. Equilibration of experimentally determined protein structures for molecular dynamics simulation.

    Science.gov (United States)

    Walton, Emily B; Vanvliet, Krystyn J

    2006-12-01

    Preceding molecular dynamics simulations of biomolecular interactions, the molecule of interest is often equilibrated with respect to an initial configuration. This so-called equilibration stage is required because the input structure is typically not within the equilibrium phase space of the simulation conditions, particularly in systems as complex as proteins, which can lead to artifactual trajectories of protein dynamics. The time at which nonequilibrium effects from the initial configuration are minimized-what we will call the equilibration time-marks the beginning of equilibrium phase-space exploration. Note that the identification of this time does not imply exploration of the entire equilibrium phase space. We have found that current equilibration methodologies contain ambiguities that lead to uncertainty in determining the end of the equilibration stage of the trajectory. This results in equilibration times that are either too long, resulting in wasted computational resources, or too short, resulting in the simulation of molecular trajectories that do not accurately represent the physical system. We outline and demonstrate a protocol for identifying the equilibration time that is based on the physical model of Normal Mode Analysis. We attain the computational efficiency required of large-protein simulations via a stretched exponential approximation that enables an analytically tractable and physically meaningful form of the root-mean-square deviation of atoms comprising the protein. We find that the fitting parameters (which correspond to physical properties of the protein) fluctuate initially but then stabilize for increased simulation time, independently of the simulation duration or sampling frequency. We define the end of the equilibration stage--and thus the equilibration time--as the point in the simulation when these parameters attain constant values. Compared to existing methods, our approach provides the objective identification of the time at

  18. Three-Dimensional Stiffness of the Carpal Arch

    Science.gov (United States)

    Gabra, Joseph N.; Li, Zong-Ming

    2015-01-01

    The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n = 8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4 ± 4.6 N/mm that was significantly larger than the other principal components of 3.1 ± 0.9 and 2.6 ± 0.5 N/mm (p articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist's three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function. PMID:26617368

  19. Limit cycles and stiffness control with variable stiffness actuators

    NARCIS (Netherlands)

    Carloni, Raffaella; Marconi, Lorenzo

    2012-01-01

    Variable stiffness actuators realize highly dynamic systems, whose inherent mechanical compliance can be properly exploited to obtain a robust and energy-efficient behavior. The paper presents a control strategy for variable stiffness actuators with the primarily goal of tracking a limit cycle

  20. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness.

    Science.gov (United States)

    Ramsey, Jason Allan

    2011-03-01

    A non-articulated plantarflexion resist ankle foot orthosis (AFO), commonly known as a posterior leaf spring AFO, is indicated for patients with motor impairment to the dorsiflexors. The AFO is often custom molded to a patient's lower limb anatomy and fabricated from polypropylene. There are no established guidelines for fabricating this type of AFO with predetermined stiffness of the ankle region for normal walking speeds. Therefore an AFO may not meet the biomechanical needs of the patient. Quantify the biomechanical ankle stiffness requirement for an individual with complete dorsiflexor impairment and develop a method for fabricating an AFO with ankle stiffness to meet that requirement. Experimental, bench research. The literature on sagittal biomechanics of non-pathological adults was reviewed to derive the stiffness of the ankle during loading response. Computer models of 144 AFOs were created with geometric variations to account for differences in human anthropometrics. Computer-based finite element analysis was employed to determine the stiffness and safety factor of the models. Stiffness of the AFOs ranged from 0.04 to 1.8 Nm/deg. This ample range is expected to account for the stiffness required for most adults with complete dorsiflexor impairment. At 5° deflection the factor of safety (ratio of strength to stress) ranged from 2.8 to 9.1. A computer program was generated that computes AFO stiffness from user-input variables of AFO geometry. The stiffness is compared to a theoretically appropriate stiffness based on the patient mass. The geometric variables can be modified until there is a close match, resulting in AFO design specification that is appropriate for the patient. Through validation on human subjects, this method may benefit patient outcomes in clinical practice by avoiding the current uncertainty surrounding AFO performance and reducing the labor and time involved in rectifying a custom AFO post-fabrication. This method provides an avenue for

  1. The posttraumatic stiff elbow.

    Science.gov (United States)

    Morrey, Bernard F

    2005-02-01

    The development of joint contracture is a well-recognized complication of elbow injury. Precise causes of the propensity of this joint for ankylosis are understood poorly. Yet, treatment is emerging and therefore the indications and willingness on the part of the surgeon to address this problem is improving. Limited open procedures have emerged during the past several years that are safe and effective by improving arcs of motion of 50-70 degrees in approximately 80-90% of patients. For severe injuries that involve the articular surface, interposition arthroplasty is less documented but has been shown to be effective but constitutes one of the most challenging technical procedures. Joint replacement arthroplasty generally should not be considered as a treatment for posttraumatic stiffness unless the patient is older than 65 years. The experience with this procedure indicates that with linked semiconstrained implants, approximately 80% of patients will achieve a near functional arc of motion. Arthroscopic intervention shows the greatest activity of investigation and clinical expansion. The learning curve is defined by a concern of complications to the neural structures and the fear of this complication has limited the application but the emerging documentation of the safeness of this option also has been associated with improved effectiveness. Therefore, arthroscopic intervention for the stiff elbow, particularly those with soft tissue extrinsic involvement, is emerging as the treatment of choice in many instances. The investigation regarding the medical treatment of altering the tendency of the soft tissue to go through such intense contracture is in its infancy but suggests that this could be a long-term solution at least for many patients.

  2. Determination of the fibre orientation distribution of a mineral wool network and prediction of its transverse stiffness using X-ray tomography

    DEFF Research Database (Denmark)

    Chapelle, Lucie; Lyckegaard, Allan; Kusano, Yukihiro

    2018-01-01

    A method to determine the orientation and diameter distributions of mineral wool fibre networks using X-ray tomography and image analysis is presented. The method is applied to two different types of mineral wool: glass wool and stone wool. The orientation information is obtained from the computa...

  3. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  4. Investigation of the torsional stiffness of flexible disc coupling

    Science.gov (United States)

    Buryy, A.; Simonovsky, V.; Obolonik, V.

    2017-08-01

    Calculation of flexible coupling torsional stiffness is required when analyzing the torsional vibrations of the reciprocating machinery train. While having the lowest torsional stiffness of all the elements of the train, flexible coupling has a significant influence on the natural frequencies of torsional vibration. However, considering structural complexity of coupling, precise definition of its torsional stiffness is quite a difficult task. The paper presents a method for calculating the torsional stiffness of flexible disc coupling based on the study of its finite element model response under the action of torque. The analysis of the basic parameters that quantitatively and qualitatively affect the coupling torsional stiffness has been also provided. The results of the calculation as well as model adequacy, sufficient for practical application, have been confirmed at the experimental measurement of flexible disc coupling torsional stiffness. The obtained elastic characteristics (dependences of applied torque and torsional stiffness versus twist angle) are nonlinear in the initial stage of loading. This feature should be taken into account when creating reliable mathematical models of torsional vibrations of reciprocating machinery trains containing flexible disc couplings.

  5. Determining the concrete stiffness matrix through ultrasonic testing Determinação da matriz de rigidez do concreto utilizando ultrassom

    Directory of Open Access Journals (Sweden)

    Raquel Gonçalves

    2011-06-01

    Full Text Available The determination of the modulus tangent (Eci and of the modulus secant (Ecs of the concrete can be done using compression test but, to be simpler, it is used relations with characteristic strength (f ck. Relations are also used to determine the transversal modulus (Gc and, in the case of the Poisson's ratio (ν, a fixed value 0.20 is established. The objective of this research was to evaluate the use of the ultrasonic propagation waves to determine these properties. For the tests were used specimens with f ck varying from 10 to 35 MPa. For the ultrasonic tests were used cylindrical and cubic specimens. The modulus of deformation obtained by ultrasound was statistically equivalent to the obtained by compression tests. The results of modules obtained using the relations with f ck was far away from those obtained by ultrasound or by compression tests. The Poisson's ratio obtained by ultrasound was superior to the fixed value. We can conclude that the concrete characterization by ultrasound is consistent and, to this characterization the cylindrical specimen, normally used to determine f ck, can be used.A determinação dos módulos de deformação tangente (Eci e secante (Ecs do concreto pode ser realizada por meio do ensaio de compressão, mas, por facilidade, utilizam-se relações com a resistência característica (f ck. Relações são também utilizadas na determinação do módulo de elasticidade transversal (Gc e, no caso do coeficiente de Poisson (ν, um valor fixo de 0,20 é adotado. O objetivo do trabalho foi avaliar o uso de propagação de ondas de ultrassom na determinação dessas propriedades. Para os ensaios, foram utilizados corpos de prova com f ck variando de 10 a 35 MPa. No caso do ultrassom, os corpos de prova foram cilíndricos e cúbicos. Os valores de módulo de deformação obtidos por ultrassom foram estatisticamente equivalentes aos obtidos por compressão e, no caso do ultrassom, os corpos de prova cúbicos e cil

  6. Stiffness Matrices and Anisotropy in the Trapezoidal Corrugated Composite Sheets

    Directory of Open Access Journals (Sweden)

    Mohammad Golzar

    2013-10-01

    Full Text Available In the some applications like as morphing technology, high strain and anisotropic behavior are essential design requirements. The corrugated composite sheets due to their special geometries have potential to high deflection under axial loading through longitudinal direction of corrugation. In this research, the strain and the anisotropic behavior of corrugated composite sheets are investigated by fabricating glass/epoxy samples with trapezoidal geometries. For evaluation of the mechanical behavior of the composites the samples were subjected to tension and flexural tests in the longitudinal and transverse directions of corrugation. In order to determine anisotropic behavior of the corrugated sheets, two approaches were introduced: (1 tensile anisotropic (E* and (2 flexural anisotropic (D*. The anisotropic behavior and ultimate deflections were investigated theoretically and experimentally. In this paper, mechanical behaviors based on theoretical and experimental analysis including the elastic constants and stiffness matrices of trapezoidal corrugated composite sheets were studied and the results were verified by finite element method. The results of the numerical and analytical solutions were compared with those of experimental tests. Finally, the load-displacement curves of tensile tests in longitudinal direction of corrugation, the ultimate deflection and anisotropy behavior of these exclusive composite sheets in the corrugated composite sheets were studied experimentally. The experimental results of the trapezoidal corrugated sheets showed that one of the most important parameters in the ultimate strain was amplitude of the corrugation elements. Generally, increasing the amplitude and element per length unit of trapezoidal corrugated specimen led to higher ultimate strain.

  7. Stiffness Properties of Adventitia, Media, and Full Thickness Human Atherosclerotic Carotid Arteries in the Axial and Circumferential Directions.

    Science.gov (United States)

    Hoffman, Allen H; Teng, Zhongzhao; Zheng, Jie; Wu, Zheyang; Woodard, Pamela K; Billiar, Kristen L; Wang, Liang; Tang, Dalin

    2017-12-01

    Arteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.

  8. MODELING OF EQUIVALENT STIFFNESS OF A MAGNETIC SPRING OF VIBRATION EXCITER BASED ON COAXIAL-LINEAR MOTOR

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2015-12-01

    Full Text Available Purpose. The research of the influence of value and direction of current on the equivalent spring magnetic force based on coaxial-linear motor (CLM – MS. Methodology. We carried out investigation of the equivalent harshness of magnetic spring with determination of electromechanical propulsion performance characteristics by the methods of computer modeling and experimental research of physical model of CLM – MS. The modeling of magnetic spring of CLM – MS is carried out by the finite-element method. The challenge is met as an axisymmetric challenge in cylindrical co-ordinates in magnetostatic approach. The experimental investigattion of the propulsion performance characteristics of magnetic spring is carried out on the test bench. Results. After the computer modeling and the experimental investigation of the electromechanical propulsion performance characteristics of magnetic spring the expressions of equivalent stiffness coefficient depending on the current in winding are obtained. The results of computer modeling are confirmed experimentally. Originality. The determination of equivalent stiffness coefficient of magnetic spring of vibration exciter based on coaxial-linear motor. Practical value. The obtained determination of equivalent stiffness coefficient of magnetic spring may be used in process of designing of vibration machines with devices for change of natural oscillation frequency.

  9. Definition and experimental determination of a soil-water retention surface

    OpenAIRE

    Salager, Simon; El Youssoufi, Moulay Saïd; Saix, Christian

    2010-01-01

    International audience; This paper deals with the definition and determination methods of the soil-water retention surface (SWRS), which is the tool used to present the hydromechanical behaviour of soils to highlight both the effect of suction on the change in water and total volumes and the effect of deformation with respect to the water retention capability. An experimental method is introduced to determine the SWRS and applied to a clayey silty sand. The determination of this surface is ba...

  10. Influence of Compression and Stiffness Apparel on Vertical Jump Performance.

    Science.gov (United States)

    Wannop, John W; Worobets, Jay T; Madden, Ryan; Stefanyshyn, Darren J

    2016-04-01

    Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint stiffness independently from one another affects vertical jumping performance. Ten male athletes performed countermovement vertical jumps in 8 concept apparel conditions and 1 control condition (loose fitting shorts). The 8 apparel conditions, 4 that specifically altered the amount of compression exerted on the thigh and 4 that altered the hip joint stiffness by means of elastic thermoplastic polyurethane bands, were tested on 2 separate testing sessions (one testing the compression apparel and the other testing the stiffness apparel). Maximum jump height was measured, while kinematic data of the hip, knee, and ankle joint were recorded with a high-speed camera (480 Hz). Both compression and stiffness apparel can have a positive influence on vertical jumping performance. The increase in jump height for the optimal compression was due to increased hip joint range of motion and a trend of increasing the jump time. Optimal stiffness also increased jump height and had the trend of decreasing the hip joint range of motion and hip joint angular velocity. The exact mechanisms by which apparel interventions alter performance is not clear, but it may be due to alterations to the force-length and force-velocity relationships of muscle.

  11. Polarization-induced stiffness asymmetry of optical tweezers.

    Science.gov (United States)

    Madadi, Ebrahim; Samadi, Akbar; Cheraghian, Mojtaba; Reihani, S Nader S

    2012-09-01

    A tightly focused, linearly polarized laser beam, so-called optical tweezers, is proven to be a useful micromanipulation tool. It is known that there is a stiffness asymmetry in the direction perpendicular to the optical axis inherited from the polarization state of the laser. In this Letter, we report our experimental results of stiffness asymmetry for different bead sizes measured at the optimal trapping condition. We also provide the results of our generalized Lorenz-Mie based calculations, which are in good agreement with our experimental results. We also compare our results with previous reports.

  12. Comparison of thoracic kyphosis and postural stiffness in younger and older women.

    Science.gov (United States)

    Hinman, Martha R

    2004-01-01

    An increase in thoracic kyphosis and postural stiffness is commonly associated with aging and many pathological conditions. Simple clinical measurements are needed to estimate the relative degree of postural stiffness to determine whether clinical interventions, such as exercise, are beneficial. To compare the amount of kyphosis and postural stiffness in the thoracic spine of younger and older women. Experimental design conducted at a large health science center in southeastern Texas. Fifty-one healthy adult women, 25 between the ages of 21 and 51 years and 26 aged 66 to 88 years. Index of kyphosis (IK) measured with a surveyor's flexicurve. Differences, percent change and ratios between IK measures taken in the relaxed and maximally erect positions were used to estimate postural stiffness. Subjects were measured while standing in their usual relaxed posture and again in their maximally erect posture by three different raters. IK measures were calculated by each rater and averaged for further data analysis. Independent t tests were used to compare the two age groups at the .05 alpha level. Significant differences were found in both the relaxed (p= .018) and erect (polder women. The differences, percent change and ratio between the two IK measures were also significantly different in that the younger women demonstrated a greater degree of active reduction of their kyphosis (in the erect posture) than older women. Age-related differences in thoracic kyphosis and postural stiffness were documented between younger and older women by means of repeated flexicurve measurements performed in both a relaxed and a maximally erect position.

  13. Effects of mechanical properties and geometric conditions on stiffness of Hyperboloid Shallow Shell

    Directory of Open Access Journals (Sweden)

    Zhao Lihong

    2015-01-01

    Full Text Available The experiment models based on the hyperboloid shallow shells that represent automobile panel's surface features are established. The effects of material properties and geometric conditions condition on the stiffness of hyperboloid shallow shell are investigated experimentally. The influences of panel thickness and geometric conditions on stiffness are very obvious. Stiffness increases with increasing of the panel thickness, and stiffness doubled as increasing in thickness with 0.1 mm. The effect of thickness on stiffness is far greater than that of blank holding force. The greater the arc height of punch, the greater the stiffness. And stiffness increases nearly by five times with arc height of punch is from 3mm to 9mm. The effect of arc height of punch on stiffness is far greater than that of materials mechanical properties. The stiffness is varied with different panel material properties by the same forming and stiffness test conditions. The decrease of yield strength is beneficial to the panel stiffness. The appropriate choice of materials and forming process condition is important in meeting necessary requirements for the energy-saving, lightweight and reducing wind resistance design in automotive industry.

  14. Anterior glenohumeral laxity and stiffness after a shoulder-strengthening program in collegiate cheerleaders.

    Science.gov (United States)

    Laudner, Kevin G; Metz, Betsy; Thomas, David Q

    2013-01-01

    Approximately 62% of all cheerleaders sustain some type of orthopaedic injury during their cheerleading careers. Furthermore, the occurrence of such injuries has led to inquiry regarding optimal prevention techniques. One possible cause of these injuries may be related to inadequate conditioning in cheerleaders. To determine whether a strength and conditioning program produces quantifiable improvements in anterior glenohumeral (GH) laxity and stiffness. Descriptive laboratory study. University laboratory. A sample of 41 collegiate cheerleaders (24 experimental and 17 control participants) volunteered. No participants had a recent history (in the past 6 months) of upper extremity injury or any history of upper extremity surgery. The experimental group completed a 6-week strength and conditioning program between the pretest and posttest measurements; the control group did not perform any strength training between tests. We measured anterior GH laxity and stiffness with an instrumented arthrometer. We conducted a group × time analysis of variance with repeated measures on time (P Cheerleaders who participate in a shoulder-strengthening program developed less anterior GH laxity and more stiffness than cheerleaders in the control group.

  15. Warm-up with a weighted vest improves running performance via leg stiffness and running economy.

    Science.gov (United States)

    Barnes, K R; Hopkins, W G; McGuigan, M R; Kilding, A E

    2015-01-01

    To determine the effects of "strides" with a weighted-vest during a warm-up on endurance performance and its potential neuromuscular and metabolic mediators. A bout of resistance exercise can enhance subsequent high-intensity performance, but little is known about such priming exercise for endurance performance. A crossover with 5-7 days between an experimental and control trial was performed by 11 well-trained distance runners. Each trial was preceded by a warm-up consisting of a 10-min self-paced jog, a 5-min submaximal run to determine running economy, and six 10-s strides with or without a weighted-vest (20% of body mass). After a 10-min recovery period, runners performed a series of jumps to determine leg stiffness and other neuromuscular characteristics, another 5-min submaximal run, and an incremental treadmill test to determine peak running speed. Clinical and non-clinical forms of magnitude-based inference were used to assess outcomes. Correlations and linear regression were used to assess relationships between performance and underlying measures. The weighted-vest condition resulted in a very-large enhancement of peak running speed (2.9%; 90% confidence limits ±0.8%), a moderate increase in leg stiffness (20.4%; ±4.2%) and a large improvement in running economy (6.0%; ±1.6%); there were also small-moderate clear reductions in cardiorespiratory measures. Relationships between change scores showed that changes in leg stiffness could explain all the improvements in performance and economy. Strides with a weighted-vest have a priming effect on leg stiffness and running economy. It is postulated the associated major effect on peak treadmill running speed will translate into enhancement of competitive endurance performance. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. High frequency, multi-axis dynamic stiffness analysis of a fractionally damped elastomeric isolator using continuous system theory

    Science.gov (United States)

    Fredette, Luke; Singh, Rajendra

    2017-02-01

    A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.

  17. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Ioana Mozos

    2017-08-01

    Full Text Available Arterial stiffness predicts an increased risk of cardiovascular events. Inflammation plays a major role in large arteries stiffening, related to atherosclerosis, arteriosclerosis, endothelial dysfunction, smooth muscle cell migration, vascular calcification, increased activity of metalloproteinases, extracellular matrix degradation, oxidative stress, elastolysis, and degradation of collagen. The present paper reviews main mechanisms explaining the crosstalk between inflammation and arterial stiffness and the most common inflammatory markers associated with increased arterial stiffness, considering the most recent clinical and experimental studies. Diverse studies revealed significant correlations between the severity of arterial stiffness and inflammatory markers, such as white blood cell count, neutrophil/lymphocyte ratio, adhesion molecules, fibrinogen, C-reactive protein, cytokines, microRNAs, and cyclooxygenase-2, in patients with a broad variety of diseases, such as metabolic syndrome, diabetes, coronary heart disease, peripheral arterial disease, malignant and rheumatic disorders, polycystic kidney disease, renal transplant, familial Mediterranean fever, and oral infections, and in women with preeclampsia or after menopause. There is strong evidence that inflammation plays an important and, at least, partly reversible role in the development of arterial stiffness, and inflammatory markers may be useful additional tools in the assessment of the cardiovascular risk in clinical practice. Combined assessment of arterial stiffness and inflammatory markers may improve non-invasive assessment of cardiovascular risk, enabling selection of high-risk patients for prophylactic treatment or more regular medical examination. Development of future destiffening therapies may target pro-inflammatory mechanisms.

  18. Experimental determination of kerma factors at E/sub n/ approx. = 15 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, E.; Slaughter, D.R.; Howell, R.H.

    1978-04-05

    Experimental values for the kerma per unit fluence at the neutron energy, E/sub n/ = 15 MeV, have been determined for graphite, Mg, and Fe. Ion chambers of small size with walls of these materials were employed, and were filled with a variety of gases--N/sub 2/, CO/sub 2/, Ne, Ar, Kr, and Xe. A calibrated neutron source was employed, allowing a straightforward determination of the kerma per unit fluence.

  19. Experimental determination and thermodynamic calculation of the phase equilibria in the Co-Mn-Ta system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Liu, Xingjun [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Research Center of Materials Design and Applications; Zhao, Cancan; Lin, Zhong [Xiamen Univ. (China). Dept. of Materials Science and Engineering

    2014-12-15

    The phase equilibria in the Co-rich corner of the Co-Mn-Ta system were investigated by means of optical microscopy, electron probe microanalysis and X-ray diffraction. Six isothermal sections in the Co-rich corner of the Co-Mn-Ta ternary system at 1300 C, 1200 C, 1100 C, 1000 C, 900 C, 800 C were experimentally determined. On the basis of previous and present experimental data of the phase equilibria, the thermodynamic assessments of the Mn-Ta binary and Co-Mn-Ta ternary systems were carried out by using CALPHAD. The thermodynamic parameters of the Mn-Ta binary and the Co-Mn-Ta ternary systems have been optimized for reproducing the experimental results in each system. An agreement between the calculated results and experimental data is obtained.

  20. Ambulatory arterial stiffness index and its role in assessing arterial stiffness in dialysis patients.

    Science.gov (United States)

    Liu, Wenjin; Zhou, Jiajun; Chen, Jianping; Meng, Meijuan; Li, Xiurong; Gao, Chaoqing; Zhou, Jianmei; Wang, Liang; Sun, Zhuxing; Chu, Hong; Fan, Wei; Bai, Youwei; Yang, Junwei

    2017-06-01

    Ambulatory arterial stiffness index (AASI) is a parameter derived from ambulatory blood pressure (ABP) readings. It is calculated as 1 minus the linear slope of DBP on SBP. We tested its value in assessing arterial stiffness in dialysis patients. We performed a cross-sectional analysis of the baseline data from a cohort study. A total of 344 patients on maintenance hemodialysis from six tertiary hospitals were included. All patients underwent ABP monitoring and carotid-femoral pulse wave velocity (cfPWV) measurement. Clinical determinants of AASI were analyzed, and the ability of AASI for assessing arterial stiffness was compared with ambulatory pulse pressure (PP). Multiple regression analysis revealed that ambulatory PP (β = 0.003), current smoker (β = -0.069), age (β = 0.003) and ambulatory SBP (β = 0.001) were independent determinants of AASI. Ambulatory PP correlates better with cfPWV than AASI (r = 0.28 for AASI and 0.59 for PP; P for difference: <0.001). When cfPWV was treated as a categorical variable, receiver operating characteristic curve analysis also showed a more potent predictive value of PP over AASI (area under the curve: 0.64 for AASI, 0.80 for PP; P for difference: <0.001). Net reclassification improvement and integrated discrimination improvement analysis demonstrated no added predictive value of AASI to PP (net reclassification improvement = -2.2%, P = 0.26; integrated discrimination improvement = 0.001, P = 0.51). Sensitivity analysis in patients with more ABP readings (≥49) yielded similar results. For dialysis patients, AASI has very limited value in assessing arterial stiffness, whether used alone or added to PP. Our results suggest that this index should not be used as a surrogate marker of arterial stiffness for dialysis patients in future practice and studies.

  1. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    Science.gov (United States)

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  2. On experimental determination of the random-incidence response of microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2007-01-01

    . The random-incidence correction of a number of laboratory standard microphones has been determined experimentally. Although the measurement procedure seems to be straightforward, some practical and fundamental problems arise: i Reflections from the mounting rig contaminate the measured frequency response...

  3. Theoretical and Experimental Determination of the Crack Width in Reinforced Concrete at Very Low Temperatures

    NARCIS (Netherlands)

    V.d. Veen, G.

    1990-01-01

    The compressive strength, the tensile splitting strength, the stress strain relationship and the thermal deformation of concrete are determined experimentally as a function of temperature. Theoretical formulae are derived based on the classical bond stress-slip theory to predict crack width and

  4. Determination of the angle of attack on the mexico rotor using experimental data

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    characteristics from experimental data on the MEXICO (Model Experiments in controlled Conditions) rotor. Detailed surface pressure and Particle Image Velocimetry (PIV) flow field at different rotor azimuth positions were examined for determining the sectional airfoil data. It is worthwhile noting that the present...

  5. An experimental method to determine the electrostatic field enhancement factor of a practical conductor surface

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1989-01-01

    A method of determining the field enhancement factor of a practical conductor is presented. The method is developed from a modified theory of discharge onset in a gaseous medium. This modification incorporates the influence of conductor surface roughness. Onset data from an experimental study...

  6. Experimental determination of the electron-avalanche and the electron-ion recombination coefficient

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    The electron-ion recombination coefficient γ and the avalanche coefficient δ = (α − a) · vd, where α and a are the ionizat ion and attachment coefficients respectively and vd the drift velocity of the electrons, have been experimentally determined in a self-sustained CO2-laser system (1:1:3 mixture)

  7. EXPERIMENTAL DETERMINATION OF THE HYDROGEN CONCENTRATION IN THE BATTERY BOXES OF THE PASSENGER CARS

    Directory of Open Access Journals (Sweden)

    G. S. Ighnatov

    2010-06-01

    Full Text Available In the work the experimental determination of the hydrogen concentration in accumulator boxes of the coach in a charging mode of nickel-cadmium batteries in operating conditions (stop and operation is presented. The comparison of the obtained characteristics at different environmental and operating conditions as well as the corresponding conclusions are made.

  8. Physically Inspired Models for the Synthesis of Stiff Strings with Dispersive Waveguides

    Directory of Open Access Journals (Sweden)

    Testa I

    2004-01-01

    Full Text Available We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.

  9. Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: A simulation study.

    Science.gov (United States)

    De Groote, Friedl; Allen, Jessica L; Ting, Lena H

    2017-04-11

    Simulating realistic musculoskeletal dynamics is critical to understanding neural control of muscle activity evoked in sensorimotor feedback responses that have inherent neural transmission delays. Thus, the initial mechanical response of muscles to perturbations in the absence of any change in muscle activity determines which corrective neural responses are required to stabilize body posture. Muscle short-range stiffness, a history-dependent property of muscle that causes a rapid and transient rise in muscle force upon stretch, likely affects musculoskeletal dynamics in the initial mechanical response to perturbations. Here we identified the contributions of short-range stiffness to joint torques and angles in the initial mechanical response to support surface translations using dynamic simulation. We developed a dynamic model of muscle short-range stiffness to augment a Hill-type muscle model. Our simulations show that short-range stiffness can provide stability against external perturbations during the neuromechanical response delay. Assuming constant muscle activation during the initial mechanical response, including muscle short-range stiffness was necessary to account for the rapid rise in experimental sagittal plane knee and hip joint torques that occurs simultaneously with very small changes in joint angles and reduced root mean square errors between simulated and experimental torques by 56% and 47%, respectively. Moreover, forward simulations lacking short-range stiffness produced unreasonably large joint angle changes during the initial response. Using muscle models accounting for short-range stiffness along with other aspects of history-dependent muscle dynamics may be important to advance our ability to simulate inherently unstable human movements based on principles of neural control and biomechanics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Experimental determination of the absolute infrared absorption intensities of formyl radical HCO.

    Science.gov (United States)

    Ryazantsev, Sergey V; Tyurin, Daniil A; Feldman, Vladimir I

    2017-12-05

    Formyl radical HCO is an important reactive intermediate in combustion, atmospheric and extraterrestrial chemistry. Like in the case of other transients, the lack of knowledge of the absolute IR intensities limits the quantitative spectroscopic studies on this species. We report the first experimental determination of the absorption intensities for the fundamental vibrational bands of HCO. The measurements have been performed using matrix-isolation FTIR spectroscopy. Determination of the values was based on the repeated photodissociation and thermal recovery of the HCO radical using the known value of the absorption coefficient of CO. The experimentally determined values (93.2±6.0, 67.2±4.5, and 109.2±6.6kmmol(-1) for the ν1, ν2, and ν3 modes, respectively) have been compared to the calculated IR intensities obtained by DFT and UCCSD(T) computations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lase Ultrasonic Web Stiffness tester

    Energy Technology Data Exchange (ETDEWEB)

    Tim Patterson, Ph.D., IPST at Ga Tech

    2009-01-12

    The objective is to provide a sensor that uses non-contact, laser ultrasonics to measure the stiffness of paper during the manufacturing process. This will allow the manufacturer to adjust the production process in real time, increase filler content, modify fiber refining and as result produce a quality product using less energy. The sensor operates by moving back and forth across the paper web, at pre-selected locations firing a laser at the sheet, measuring the out-of-plane velocity of the sheet then using that measurement to calculate sheet stiffness.

  12. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    Science.gov (United States)

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  13. A new method to determine the number of experimental data using statistical modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jung-Ho; Kang, Young-Jin; Lim, O-Kaung; Noh, Yoojeong [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    For analyzing the statistical performance of physical systems, statistical characteristics of physical parameters such as material properties need to be estimated by collecting experimental data. For accurate statistical modeling, many such experiments may be required, but data are usually quite limited owing to the cost and time constraints of experiments. In this study, a new method for determining a rea- sonable number of experimental data is proposed using an area metric, after obtaining statistical models using the information on the underlying distribution, the Sequential statistical modeling (SSM) approach, and the Kernel density estimation (KDE) approach. The area metric is used as a convergence criterion to determine the necessary and sufficient number of experimental data to be acquired. The pro- posed method is validated in simulations, using different statistical modeling methods, different true models, and different convergence criteria. An example data set with 29 data describing the fatigue strength coefficient of SAE 950X is used for demonstrating the performance of the obtained statistical models that use a pre-determined number of experimental data in predicting the probability of failure for a target fatigue life.

  14. Comparative study of sound absorption coefficient determination using FEM method and experimental tests on Kundt's tube

    Science.gov (United States)

    Deaconu, Marius; Toma, Adina Cristina; Dragasanu, Luminita Ioana; Mihai, Dragos

    2017-06-01

    Sound absorption coefficient is a commonly used parameter to characterize the acoustic properties of sound absorbing materials that plays an important role in noise attenuation. For this study a specific material has been chosen in order to be evaluated experimentally and compared with the simulated results. Both simulation and experimental assessments used to estimate the sound absorption coefficient are based on transfer function method in accordance with standard SR EN JSO 10354-2. Results are obtained for 15, 30, 45 mm material sample thickness in order to assess the relationship between absorption coefficient, thickness and frequency response. Comparative analysis is performed to determine differences given by the two approaches.

  15. Lower-extremity arterial stiffness vs. aortic stiffness in the general population.

    Science.gov (United States)

    Wohlfahrt, Peter; Krajčoviechová, Alena; Seidlerová, Jitka; Galovcová, Markéta; Bruthans, Jan; Filipovský, Jan; Laurent, Stéphane; Cífková, Renata

    2013-08-01

    While determinants of aortic pulse wave velocity (aPWV) are well known, much less is known about factors affecting lower-extremity pulse wave velocity (lePWV). Unlike aPWV, increased lePWV does not predict cardiovascular risk, but limits lower-extremity blood flow and is associated with increased left ventricular mass. The aim of this study was to compare the effect of cardiovascular risk factors on aPWV and lePWV. A total of 911 individuals from the Czech post-MONICA study (a randomly selected 1% representative population sample, mean age 54±13.5 years, 47% men) were examined. Pulse wave velocity was measured using the SphygmoCor device. Aging had a large effect on aPWV, but only a small effect on lePWV. After adjustment for covariates, we observed that hypertension, diabetes, chronic kidney disease and dyslipidemia were positively and significantly associated with aPWV. However, only hypertension had a significant effect on lePWV. Increased ankle systolic blood pressure was associated with increased aPWV independently of brachial blood pressure. Ankle systolic blood pressure was more closely related to aPWV than lePWV. Subjects with an ankle-brachial index lower lePWV compared with individuals with a normal ankle-brachial index. Lower-extremity arterial stiffness is affected by age and cardiovascular risk factors to a lesser extent than aortic stiffness. Increased ankle systolic blood pressure is linked not only to increased lower-extremity arterial stiffness, but also increased aortic stiffness. In subjects with a low ankle-brachial index, lower-extremity arterial stiffness is spuriously decreased.

  16. Estimation of axial stiffness of plant fibres from compaction of non-woven mats

    DEFF Research Database (Denmark)

    Gamstedt, E. K.; Bommier, E.; Madsen, Bo

    2014-01-01

    Plant fibres are known to show a large variability in stiffness, which makes it time-consuming to experimentally characterize this property by conventional tensile testing. In this work, an alternative method is used, where the average fibre stiffness is back-calculated from compaction tests of i...

  17. Terminology: resistance or stiffness for medical compression stockings?

    Directory of Open Access Journals (Sweden)

    André Cornu-Thenard

    2013-04-01

    Full Text Available Based on previous experimental work with medical compression stockings it is proposed to restrict the term stiffness to measurements on the human leg and rather to speak about resistance when it comes to characterize the elastic property of compression hosiery in the textile laboratory.

  18. Experimental determination of load bearing capacity of connections realized by punched metal plate fastener

    Directory of Open Access Journals (Sweden)

    Tekić Žikica M.

    2014-01-01

    Full Text Available This paper demonstrates the results of experimental determination of load bearing capacity of structural timber member connections realized by WOLF and LKVC metal connector plates. Considering the complexity of the connections realized by these modern mechanical fasteners, this paper deals only with plate anchorage capacity (stress in the metal-wood contact. The aim of the conducted experimental study was to determine the metal connector plate anchorage capacity in accordance with the provisions of Eurocode 5 and also to analyze the ratio of the load bearing capacities of these two types of connectors in terms of their geometry. Experimental testing was conducted by loading of multiple samples up to the limit plate anchorage capacity. Discussion of the test results included the analysis of the connection deformation for different levels of load, as well as the mode of reaching the limit plate anchorage capacity. Review of the determined limit plate anchorage capacities, for the determined displacements of connection, was given in the conclusion, together with the comment on test results.

  19. Sex Differences in Limb and Joint Stiffness in Recreational Runners

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2015-09-01

    Full Text Available Purpose. Female runners are known to be at greater risk from chronic running injuries than age-matched males, although the exact mechanisms are often poorly understood. The aim of the current investigation was to determine if female recreational runners exhibit distinct limb and joint stiffness characteristics in relation to their male counterparts. Methods. Fourteen male and fourteen female runners ran over a force platform at 4.0 m · s-1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system operating at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. All stiffness and joint moment parameters were normalized to body mass. Sex differences in normalized limb and knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that normalized limb (male = 0.18 ± 0.07, female = 0.37 ± 0.10 kN · kg · m-1 and knee stiffness (male = 5.59 ± 2.02, female = 7.34 ± 1.78 Nm · kg · rad-1 were significantly greater in female runners. Conclusions. On the basis that normalized knee and limb stiffness were shown to be significantly greater in female runners, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between sexes.

  20. Measurement of cadaver lumbar spine motion segment stiffness.

    Science.gov (United States)

    Brown, Mark D; Holmes, David C; Heiner, Anneliese D

    2002-05-01

    Prospective. To measure lumbar spine motion segment stiffness and relate it to the degree of disc degeneration. The association between the instability of the lumbar spine motion segment and disc degeneration remains unclear. The traditional method for determining motion segment instability at the time of decompressive surgery is a manual test performed by the surgeon. To quantify instability of the lumbar spine, a vertebrae distractor was developed in the authors' laboratory to measure motion segment stiffness by applying a defined load at a constant rate. Lumbar stiffness was measured by subjecting cadaver lumbar spine motion segments to a constant rate flexion-traction load and recording the magnitude of the resistance to distraction versus the range of motion. Disc degeneration was measured by pressure-volume discography and by grading of disc morphology. Motion segment stiffness decreased with the initial stages of disc degeneration and then increased with severe disc degeneration. This measure of motion segment stiffness correlated well with a manual stiffness measure. The observed results follow an accepted hypothesis of motion segment instability associated with disc degeneration.

  1. Experimental determination of crack softening characteristics of normalweight and lightweight concrete

    NARCIS (Netherlands)

    Cornelissen, H.A.W.; Hordijk, D.A.; Reinhardt, H.W.

    1986-01-01

    For modelling fracture behaviour of concrete various types of deformation controlled uniaxial tests were performed on normal weight and on lightweight concrete. These two types of concrete were compared with respect to their envelope curves, material stiffness and degradation during post-peak

  2. Method of experimental and calculation determination of dissipative properties of carbon

    Science.gov (United States)

    Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.

    2017-12-01

    This paper describes the process of definition of relations between the damping ratio and strain/state levels in a material. For these purposes, the experimental-calculation approach was applied. The experimental research was performed on plane composite specimens. The tests were accompanied by finite element modeling using the ANSYS software. Optimization was used as a tool for FEM property setting and for finding the above-mentioned relations. A difference between the calculation and experimental results was accepted as objective functions of this optimization. The optimization cycle was implemented using the pSeven DATADVANCE software platform. The developed approach makes it possible to determine the relations between the damping ratio and strain/state levels in the material, which can be used for computer modeling of the structure response under dynamic loading.

  3. CONSTRUCTIVE ASPECTS INFLUENCE ON STIFFNESS OF DIAPHRAGM WALLS IN FRAME CONSTRUCTIONS WITH (LIGHT STEEL THIN –WALLED STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. V. Savytskyi

    2010-10-01

    Full Text Available The dependences of influence of structural features of diaphragms of lightweight steel framing braced wall structures on their stiffness are determined. On the basis of dependences the procedure for estimation of stiffness of a diaphragm of any configuration that allows making decisions for maintenance of building stiffness is developed.

  4. A proposed experimental method for interpreting Doppler effect measurements and determining their precision

    Science.gov (United States)

    Klann, P. G.

    1973-01-01

    The principal problem in the measurement of the Doppler reactivity effect is separating it from the thermal reactivity effects of the expansion of the heated sample. It is shown in this proposal that the thermal effects of sample expansion can be experimentally determined by making additional measurements with porous samples having the same mass and/or volume as the primary sample. By combining these results with independent measurements of the linear temperature coefficient and the computed temperature dependence of the Doppler coefficient the magnitude of the Doppler coefficient may be extracted from the data. These addiational measurements are also useful to experimentally determine the precision of the reactivity oscillator technique used to measure the reactivity effects of the heated sample.

  5. On the experimental determination of the one-way speed of light

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Israel, E-mail: cooguion@yahoo.com, E-mail: iperez@cicese.mx [Department of Applied Physics, Optics Division, CICESE, Carretera Ensena da-Tijuana 3918, Zona Playitas, CP 22860, Ensenada, Baja California (Mexico)

    2011-07-15

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities close paths. The procedure employed here will provide epistemological tools so that physicists understand that a direct measurement of the speed not only of light but of any physical entity is by no means trivial. Our results shed light on the physics behind the experiments which may be of interest for both physicists with an elemental knowledge in special relativity and philosophers of science.

  6. An experimental investigation devoted to determine heat transfer characteristics in a radiant ceiling heating system

    Science.gov (United States)

    Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai

    2017-08-01

    Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.

  7. An experimental investigation devoted to determine heat transfer characteristics in a radiant ceiling heating system

    Science.gov (United States)

    Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai

    2018-02-01

    Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.

  8. Thermophysical properties of yacon (Smallanthus sonchifolius: experimental determination and effect of moisture content

    Directory of Open Access Journals (Sweden)

    Camila Augusto Perussello

    2015-01-01

    Full Text Available The knowledge about thermophysical properties of foods is especially important in thermal processing, influencing the design, optimization and cost reduction of the process, as well as the quality and safety of the final product. This article deals with the determination of some thermophysical properties of yacon, namely, specific mass, specific heat, thermal conductivity and thermal diffusivity during the osmo-convective drying. Yacon is a root with approximately 90% w.b. of moisture content, whose high concentration of fructooligosacharydes and antioxidants has gained attention in the food research field. Yacon slices were osmotically dehydrated for 2 hours in a sucralose solution and then dried in a convective tray dryer for 2 hours, varying the osmotic solution’s temperature and stirring rate and temperature of the drying air. All thermophysical properties were determined during the drying process at 30-minute intervals. The thermophysical properties were determined not only experimentally but also calculated by models available in literature based on the product’s centesimal composition. A satisfactory agreement between experimental and predicted results was obtained. Further, empirical models obtained by nonlinear regression were successfully fitted to the experimental data, as a function of moisture content, within a 94% - 3% w.b. range.

  9. Determination of Operation Characteristics of a Synchronous Generator by Static Experimental Tests

    Directory of Open Access Journals (Sweden)

    ILINA, I.-D.

    2016-05-01

    Full Text Available This paper deals with the determination of the operation characteristics of a Synchronous Generator (SG using static experimental tests (current and voltage decay tests. Using these tests the magnetization characteristic, the machine parameters (synchronous magnetization inductances and differential magnetization inductances, the no-load characteristic and the external characteristic were determined. The magnetization characteristic, the parameters and the operational characteristics provide important information about the performance of synchronous generator, machine which is currently used in most power plants. Compared to classical experimental methods with moving rotor and numerical methods of field computation that require the knowledge of geometric dimensions and material properties, static experimental methods are distinguished by several advantages: simple implementation for any type of SG, quick results, low power consumption and no effect on the drive system where the machine is integrated. The mathematical model of SG uses dedicated Matlab-Simulink programs and the results obtained by static methods are compared with those obtained by classical methods. Also to better approach the phenomenon of magnetic saturation and a more accurate estimate of the parameters, the magnetization characteristic, synchronous magnetization inductances and differential magnetization inductances are determined versus the total magnetizing current.

  10. Severity of Osteoarthritis Is Associated with Increased Arterial Stiffness

    Directory of Open Access Journals (Sweden)

    Kaspar Tootsi

    2016-01-01

    Full Text Available Objective. Osteoarthritis (OA is associated with increased cardiovascular comorbidity and mortality. Evidence is lacking about whether arterial stiffness is involved in OA. The objective of our study was to find out associations between OA, arterial stiffness, and adipokines. Design. Seventy end-stage knee and hip OA patients (age 62±7 years and 70 asymptomatic controls (age 60±7 years were investigated using the applanation tonometry to determine their parameters of arterial stiffness. Serum adiponectin, leptin, and matrix metalloproteinase 3 (MMP-3 levels were determined using the ELISA method. Correlation between variables was determined using Spearman’s rho. Multiple regression analysis with a stepwise selection procedure was employed. Results. Radiographic OA grade was positively associated with increased carotid-femoral pulse wave velocity (cf-PWV (r=0.272, p=0.023. We found that OA grade was also associated with leptin and MMP-3 levels (rho=-0.246, p=0.040 and rho=0.235, p=0.050, resp.. In addition, serum adiponectin level was positively associated with augmentation index and inversely with large artery elasticity index (rho=0.293, p=0.006 and rho=-0.249, p=0.003, resp.. Conclusions. Our results suggest that OA severity is independently associated with increased arterial stiffness and is correlated with expression of adipokines. Thus, increased arterial stiffness and adipokines might play an important role in elevated cardiovascular risk in end-stage OA.

  11. [From stiff man syndrome to stiff person spectrum disorders].

    Science.gov (United States)

    Meinck, H-M; Balint, B

    2018-02-01

    The identification of new variants of the stiff man syndrome (SMS) and of new, probably pathogenic neuronal autoantibodies has led to the concept of stiff man (or person) spectrum disorders (SPSD). This is an expanding group of rare chronic autoimmune inflammatory diseases of the central nervous system (CNS) that have in common the main symptoms of fluctuating rigidity and spasms with pronounced stimulus sensitivity. These core symptoms are mandatory and can be accompanied by a wide variety of other neurological signs. The SPSDs are associated with autoantibodies directed against neuronal proteins that attenuate excitability. Neither clinical phenotypes nor the course of SPSD correlate closely with the antibody status. The treatment of these diseases aims at maintaining mobility and is pragmatically oriented to the degree of impediment and comprises antispastic, anticonvulsant and immunomodulating or immunosuppressive medication strategies.

  12. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe.

    Directory of Open Access Journals (Sweden)

    Nantachai Sornkarn

    Full Text Available When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes.

  13. Stiffness of the extrafibrillar phase in staggered biological arrays.

    Science.gov (United States)

    Bar-On, Benny; Wagner, H Daniel

    2012-08-17

    A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike) elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis based on previous analytical formulation that results in a relation between the XF modulus and the deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue.

  14. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  15. Elastic metamaterial beam with remotely tunable stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2016-02-07

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  16. Determination of acid dissociation constants (pKa) of cephalosporin antibiotics: Computational and experimental approaches.

    Science.gov (United States)

    Ribeiro, Alyson R; Schmidt, Torsten C

    2017-02-01

    Cefapirin (CEPA) and ceftiofur (CEF) are two examples of widely used veterinarian cephalosporins presenting multiple ionization centers. However, the acid dissociation constants (pKa) of CEF are missing and experimental data about CEPA are rare. The same is true for many cephalosporins, where available data are either incomplete or even wrong. Environmentally relevant biotic and abiotic processes depend primordially on the antibiotic pH-dependent speciation. Consequently, this physicochemical parameter should be reliable, including the correct ionization center identification. In this direction, two experimental techniques, potentiometry and spectrophotometry, along with two well-known pKa predictors, Marvin and ACD/Percepta, were used to study the macro dissociation constants of CEPA and CEF. Additionally, the experimental dissociation constants of 14 cephalosporins available in the literature were revised, compiled and compared with data obtained in silico. Only one value was determined experimentally for CEF (2.68 ± 0.05), which was associated to the carboxylic acid group deprotonation. For CEPA two values were obtained experimentally: 2.74 ± 0.01 for the carboxylic acid deprotonation and 5.13 ± 0.01 for the pyridinium ring deprotonation. In general, experimentally obtained values agree with the in silico predicted data (ACD/Percepta RMSE: 0.552 and Marvin RMSE: 0.706, n = 88). However, for cephalosporins having imine and aminothiazole groups structurally close, Marvin presented problems in pKa predictions. For the biological and environmental fate and effect discussion, it is important to recognize that CEPA and CEF, as well as many other cephalosporins, are present as anionic species in the biologic and environmentally relevant pH values of 6-7.5. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Energy-Efficient Variable Stiffness Actuators

    NARCIS (Netherlands)

    Visser, L.C.; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated

  18. Shoulder Stiffness : Current Concepts and Concerns

    NARCIS (Netherlands)

    Itoi, Eiji; Arce, Guillermo; Bain, Gregory I.; Diercks, Ronald L.; Guttmann, Dan; Imhoff, Andreas B.; Mazzocca, Augustus D.; Sugaya, Hiroyuki; Yoo, Yon-Sik

    Shoulder stiffness can be caused by various etiologies such as immobilization, trauma, or surgical interventions. The Upper Extremity Committee of ISAKOS defined the term "frozen shoulder" as idiopathic stiff shoulder, that is, without a known cause. Secondary stiff shoulder is a term that should be

  19. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction.

    Science.gov (United States)

    Jutila, Aaron A; Zignego, Donald L; Schell, William J; June, Ronald K

    2015-05-01

    In articular cartilage, chondrocytes reside within a gel-like pericellular matrix (PCM). This matrix provides a mechanical link through which joint loads are transmitted to chondrocytes. The stiffness of the PCM decreases in the most common degenerative joint disease, osteoarthritis. To develop a system for modeling the stiffness of both the healthy and osteoarthritic PCM, we determined the concentration-stiffness relationships for agarose. We extended these results to encapsulate chondrocytes in agarose of physiological stiffness. Finally, we assessed the relevance of stiffness for chondrocyte mechanotransduction by examining the biological response to mechanical loading for cells encapsulated in low- and high-stiffness gels. We achieved agarose equilibrium stiffness values as large as 51.3 kPa. At 4.0% agarose, we found equilibrium moduli of 34.3 ± 1.65 kPa, and at 4.5% agarose, we found equilibrium moduli of 35.7 ± 0.95 kPa. Cyclical tests found complex moduli of ~100-300 kPa. Viability was >96% for all studies. We observed distinct metabolomic responses in >500 functional small molecules describing changes in cell physiology, between primary human chondrocytes encapsulated in 2.0 and 4.5% agarose indicating that the gel stiffness affects cellular mechanotransduction. These data demonstrate both the feasibility of modeling the chondrocyte pericellular matrix stiffness and the importance of the physiological pericellular stiffness for understanding chondrocyte mechanotransduction.

  20. The effect of ankle-foot orthosis plantarflexion stiffness on ankle and knee joint kinematics and kinetics during first and second rockers of gait in individuals with stroke.

    Science.gov (United States)

    Singer, Madeline L; Kobayashi, Toshiki; Lincoln, Lucas S; Orendurff, Michael S; Foreman, K Bo

    2014-11-01

    Stiffness of an ankle-foot orthosis plays an important role in improving gait in patients with a history of stroke. To address this, the aim of this case series study was to determine the effect of increasing plantarflexion stiffness of an ankle-foot orthosis on the sagittal ankle and knee joint angle and moment during the first and second rockers of gait. Gait data were collected in 5 subjects with stroke at a self-selected walking speed under two plantarflexion stiffness conditions (0.4Nm/° and 1.3Nm/°) using a stiffness-adjustable experimental ankle-foot orthosis on a Bertec split-belt fully instrumented treadmill in a 3-dimensional motion analysis laboratory. By increasing the plantarflexion stiffness of the ankle-foot orthosis, peak plantarflexion angle of the ankle was reduced and peak dorsiflexion moment was generally increased in the first rocker as hypothesized. Two subjects demonstrated increases in both peak knee flexion angle and peak knee extension moment in the second rocker as hypothesized. The two subjects exhibited minimum contractility during active plantarflexion, while the other three subjects could actively plantarflex their ankle joint. It was suggested that those with the decreased ability to actively plantarflex their ankle could not overcome excessive plantarflexion stiffness at initial contact of gait, and as a result exhibited compensation strategies at the knee joint. Providing excessively stiff ankle-foot orthoses might put added stress on the extensor muscles of the knee joint, potentially creating fatigue and future pathologies in some patients with stroke. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding...... soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients...... for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been...

  2. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra.

    Science.gov (United States)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-05

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  3. Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-12-05

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  4. Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-08-31

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  5. Determination of Radiative Heat Transfer Coefficient at High Temperatures Using a Combined Experimental-Computational Technique

    Science.gov (United States)

    Kočí, Václav; Kočí, Jan; Korecký, Tomáš; Maděra, Jiří; Černý, Robert Č.

    2015-04-01

    The radiative heat transfer coefficient at high temperatures is determined using a combination of experimental measurement and computational modeling. In the experimental part, cement mortar specimen is heated in a laboratory furnace to 600°C and the temperature field inside is recorded using built-in K-type thermocouples connected to a data logger. The measured temperatures are then used as input parameters in the three dimensional computational modeling whose objective is to find the best correlation between the measured and calculated data via four free parameters, namely the thermal conductivity of the specimen, effective thermal conductivity of thermal insulation, and heat transfer coefficients at normal and high temperatures. The optimization procedure which is performed using the genetic algorithms provides the value of the high-temperature radiative heat transfer coefficient of 3.64 W/(m2K).

  6. Experimental determination of the scattering length for positron scattering from krypton

    Energy Technology Data Exchange (ETDEWEB)

    Zecca, A.; Trainotti, E. [Department of Physics, University of Trento, Povo, 38123 Trento (Italy); Fursa, D.V.; Bray, I. [ARC Centre for Antimatter-Matter Studies, Curtin University, Perth (Australia); Chiari, L. [Departement of Physics, University of Trento, Povo, 38123 Trento (Italy); ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, Adelaide (Australia); Brunger, M.J. [ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, Adelaide (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia)

    2011-10-15

    We report the first experimentally supported determination of the scattering length for positron scattering from krypton. Our result of (-10.3 {+-} 1.5) a.u. compares favourably with that from a convergent close coupling calculation performed as a part of this investigation (-9.5 a.u.), and also with an earlier many body theory calculation of -10.1 a.u. from Gribakin and Ludlow [Phys. Rev. A 70, 032720 (2004)] and a polarized-orbital result of -10.4 a.u. from McEachran et al. [J. Phys. B 13, 1281 (1980)]. The present experimental scattering length supports the existence of a low-lying positron-krypton virtual state (Surko et al. [J. Phys. B 38, R57 (2005)]) at an energy E = 0.13 eV. (authors)

  7. Negative stiffness in gear contact

    Directory of Open Access Journals (Sweden)

    Půst L.

    2015-12-01

    Full Text Available The tooth contact stiffness is very often included in dynamic mathematical models of gear drives. It is an important value for calculation of torsion eigenfrequencies as well as the dynamic properties of the whole transmission systems. Planetary gear drives have several advantages over simple parallel axis gears, especially due to theirs compact design and great torque-to-weight ratio caused by multiple parallel paths. However, the dimensional or mounting errors can cause that some planets have the tendency to take more load than the others. One of the ways how to improve load sharing is the application of flexible planetary pins or by using a free central wheel. However in such cases, the wheels motion is defined in one rotation coordinate and two translation coordinates — tangential and radial. The reaction force at radial change of axis distance is usually neglected. The focus of this contribution is to derive the stiffness of this radial connection and to analyse the influence of radial stiffness on planetary gear dynamics.

  8. Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain

    NARCIS (Netherlands)

    Halbertsma, JPK; Goeken, LNH; Hof, AL; Groothoff, JW; Eisma, WH; Göeken, L.N.H.

    Objective: To investigate the extensibility and stiffness of the hamstrings in patients with nonspecific low back pain (LBP). Design: An experimental design. Setting: A university laboratory for human movement analysis in a department of rehabilitation medicine. Participants: Forty subjects, a

  9. A mechanism to compensate undesired stiffness in joints of prosthetic hands.

    Science.gov (United States)

    Smit, Gerwin; Plettenburg, Dick; Van der Helm, Frans

    2014-04-01

    Cosmetic gloves that cover a prosthetic hand have a parasitic positive stiffness that counteracts the flexion of a finger joint. Reducing the required input torque to move a finger of a prosthetic hand by compensating the parasitic stiffness of the cosmetic glove. Experimental, test bench. The parasitic positive stiffness and the required input torques of a polyvinyl chloride glove and a silicone glove were measured when flexing a metacarpophalangeal finger joint for 90°. To compensate this positive stiffness, an adjustable compensation mechanism with a negative stiffness was designed and built. A MATLAB model was created to predict the optimal settings of the mechanism, based on the measured stiffness, in order to minimize the required input torque of the total system. The mechanism was tested in its optimal setting with an applied glove. The mechanism reduced the required input torque by 58% for the polyvinyl chloride glove and by 52% for the silicone glove. The total energy dissipation of the joint did not change significantly. This study shows that the undesired positive stiffness in the joint can be compensated with a relatively simple negative stiffness mechanism, which fits inside a finger of a standard cosmetic glove. Clinical relevance This study presents a mechanism that compensates the undesired stiffness of cosmetic gloves on prosthetic hands. As a result, it requires less input force, torque and energy to move the fingers. Application of this mechanism in body-powered hands will reduce the control effort of the user.

  10. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils.

    Science.gov (United States)

    Seo, Hyun-Sun; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2015-12-23

    There is a growing interest in the use of naturally-occurring antimicrobial agents such as plant essential oils (EOs) to inhibit the growth of hazardous and spoilage microorganisms in foods. Gaseous EOs (EO gases) have many potential applications in the food industry, including use as antimicrobial agents in food packaging materials and sanitizing agents for foods and food-contact surfaces, and in food processing environments. Despite the potentially beneficial applications of EO gases, there is no standard method to evaluate their antimicrobial activities. Thus, the present study was aimed at developing an experimental apparatus and protocol to determine the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of EO gases against microorganisms. A sealed experimental apparatus was constructed for simultaneous evaluation of antimicrobial activities of EO gases at different concentrations without creating concentration gradients. A differential medium was then evaluated in which a color change allowed for the determination of growth of glucose-fermenting microorganisms. Lastly, an experimental protocol for the assessment of MIC and MLC values of EO gases was developed, and these values were determined for 31 EO gases against Escherichia coli O157:H7 as a model bacterium. Results showed that cinnamon bark EO gas had the lowest MIC (0.0391 μl/ml), followed by thyme-thymol EO gas (0.0781 μl/ml), oregano EO gas (0.3125 μl/ml), peppermint EO gas (0.6250 μl/ml), and thyme-linalool EO gas (0.6250 μl/ml). The order of the MLC values of the EO gases against the E. coli O157:H7 was thyme-thymol (0.0781 μl/ml)oregano (0.3125 μl/ml)antimicrobial agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B. [HSX Plasma Laboratory, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  12. Adaptive absorber based on dielectric elastomer stack actuator with variable stiffness

    Science.gov (United States)

    Karsten, Roman; Schlaak, Helmut F.

    2012-04-01

    This paper describes the theoretical analysis for changing the stiffness in dielectric elastomer stack actuators (DESA) by electric voltage and investigates the influence of the mounting of DESA. The theoretical calculations are validated by the experimental measurements. The tuning of the stiffness by electrical voltage can be used for small adaptive absorbers to attenuate varying resonance frequencies of a system for example caused by the temperature variations. The best experimental results were reached for the structure with unbonded DESA between stiff plates. The resonance frequency was shifted from 129 Hz to 108 Hz. Besides, the selective mounting of DESA is a promising approach for the adaptive absorber applications.

  13. Shoulder stiffness and rotator cuff repair.

    Science.gov (United States)

    Papalia, Rocco; Franceschi, Francesco; Vasta, Sebastiano; Gallo, Andrea; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Shoulder stiffness is a frequent complication of surgical repair of rotator cuff tears. Post-operative stiffness negatively affects surgical outcomes leading to a substantial comorbidity and to the failure of surgical treatment. Also, a stiff shoulder could commonly be concomitant with an rotator cuff tear (RCT). We performed a comprehensive search of CINAHL, Embase, Medline and the Cochrane Central Registry of Controlled Trials, from inception of the database to 31 July 2011. Sixteen articles published in peer-reviewed journals were included in this comprehensive review. The management of shoulder stiffness is still controversial. The role of rehabilitation programs (standard versus early passive mobilization) after RCT repair on the development of stiffness is not clear, while the role of arthroscopic capsular release for post-operative stiffness is better defined, although a threshold of decreased the range of movement for which capsular release is advised has not been identified. Several factors have been identified to predispose the development of shoulder stiffness. There is also evidence in favor of surgical management of RCTs even when accompanied by shoulder stiffness, and there are strong evidences that arthroscopic capsular release is reliable and effective in managing shoulder stiffness. The post-operative rehabilitation protocol remains controversial. We are still far from definitive guidelines for the management of pre- and post-operative stiffness, and prospective double-blinded randomized clinical trials are needed to obtain evidence allowing to establish a reliable and effective management plan for shoulder stiffness.

  14. Experimental determination of spin-transfer torque nonadiabaticity parameter and spin polarization in permalloy

    Science.gov (United States)

    Lepadatu, S.; Hickey, M. C.; Potenza, A.; Marchetto, H.; Charlton, T. R.; Langridge, S.; Dhesi, S. S.; Marrows, C. H.

    2009-03-01

    The domain-wall depinning boundary, showing the variation in critical current density with magnetic field, is measured for notched permalloy wires using pulsed-current measurements. The structure of domain walls trapped at the pinning potential provided by the notch is imaged using photoemission electron microscopy. The experimental depinning boundary is compared with those obtained by micromagnetic simulations including the adiabatic and nonadiabatic spin-torque terms. This method allows for the determination of both the nonadiabaticity parameter β and spin current polarization P , which we obtain as β=0.040±0.005 and P=0.40±0.02 at room temperature.

  15. EXPERIMENTAL DETERMINATION OF THE OXYGEN TRANSFER COEFFICIENT (kLa) IN A BATCH BIOREACTOR

    OpenAIRE

    Erazo E., Raymundo; Departamento Académico de Procesos, Facultad de Química e Ingeniería Química, UNMSM, Av. Venezuela s/n., Ciudad Universitaria, Lima - Perú.; Cárdenas R., Jorge L.; Departamento Académico de Procesos, Facultad de Química e Ingeniería Química, UNMSM, Av. Venezuela s/n., Ciudad Universitaria, Lima - Perú

    2014-01-01

    The volumetrlc oxygen transfer coefficient, kLa, has been determined experimentally in a batch operating bioreactor at 30ºC. It was found that it is dlrectly proportional to the degree of aereation and the agitation, whlie it is inversely proportional to the viscosity. This behavior is in accord with other correlations found in the literature [3, 7]. The gas eliminatlon method may be applied to systems with or without presence of microorganisms. As a result the only required data are the conc...

  16. Determination of scatter fractions of some materials by experimental studies and Monte Carlo calculations

    CERN Document Server

    Meric, N; Bor, D

    1999-01-01

    Scatter fractions have been determined experimentally for lucite, polyethylene, polypropylene, aluminium and copper of varying thicknesses using a polyenergetic broad X-ray beam of 67 kVp. Simulation of the experiment has been carried out by the Monte Carlo technique under the same input conditions. Comparison of the measured and predicted data with each other and with the previously reported values has been given. The Monte Carlo calculations have also been carried out for water, bakelite and bone to examine the dependence of scatter fraction on the density of the scatterer.

  17. Experimental Method for Determination of Self-Heating at the Point of Measurement

    Science.gov (United States)

    Sestan, D.; Zvizdic, D.; Grgec-Bermanec, L.

    2017-09-01

    This paper presents a new experimental method and algorithm for the determination of self-heating of platinum resistance thermometer (PRT) when the temperature instability of medium of interest would prevent an accurate self-heating determination using standard methods. In temperature measurements performed by PRT, self-heating is one of the most common sources of error and arises from the increase in sensor temperature caused by the dissipation of electrical heat when measurement current is applied to the temperature sensing element. This increase depends mainly on the applied current and the thermal resistances between thermometer sensing element and the environment surrounding the thermometer. The method is used for determination of self-heating of a 100 Ω industrial PRT which is intended for measurement of air temperature inside the saturation chamber of the primary dew/frost point generator at the Laboratory for Process Measurement (HMI/FSB-LPM). Self-heating is first determined for conditions present during the comparison calibration of the thermometer, using the calibration bath. The measurements were then repeated with thermometer being placed in an air stream inside the saturation chamber. The experiment covers the temperature range between -65°C and 10°C. Self-heating is determined for two different air velocities and two different vertical positions of PRT in relation to the chamber bottom.

  18. Experimental determination of the phase equilibria in the Co–Cr–Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.C. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, S.Y.; Liu, X.J. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Wang, C.P., E-mail: wangcp@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)

    2014-09-01

    Highlights: • Three isothermal sections at 800, 1000, and 1100 °C were established. • A large solubility of Cr is identified in the Co{sub 6}Ta{sub 7} phase. • The high–temperature phase (Co,Cr){sub 2}Ta(HT) was found to be stabilized at low temperatures. - Abstract: The phase equilibria in the Co–Cr–Ta ternary system were experimentally investigated by using backscattered electron (BSE), wavelength dispersive X-ray analyzer (WDX) and X-ray diffraction (XRD). Three isothermal sections of the Co–Cr–Ta ternary system at 800 °C, 900 °C and 1100 °C were experimentally determined. The experimental results show that: (1) No ternary compound is found in this system; (2) A large solubility of Cr is identified in the Co{sub 6}Ta{sub 7} phase; (3) The (Co, Cr){sub 2}Ta(HT) phase is stabilized at temperatures below it stability limits in Co–Ta and Cr–Ta binary systems in the range of Cr concentrations from 4 to 61 at.% and from 24 to 41 at.% Ta.

  19. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Toghraie, Davood; Alempour, Seyed Mohammadbagher [Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Afrand, Masoud, E-mail: masoud.afrand@pmc.iaun.ac.ir [Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of)

    2016-11-01

    In this paper, experimental determination of dynamic viscosity of water based magnetite nanofluid (Fe{sub 3}O{sub 4}/water) was performed. The viscosity was measured in the temperature range of 20–55 °C for various samples with solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. The results showed that the viscosity considerably decreases with increasing temperature. Moreover, the viscosity enhances with an increase in the solid volume fraction, remarkably. The calculated viscosity ratios showed that the maximum viscosity enhancement was 129.7%. Using experimental data, a new correlation has been proposed to predict the viscosity of magnetite nanofluid (Fe{sub 3}O{sub 4}/water). A comparison between the experimental results and the correlation outputs showed that the proposed model has a suitable accuracy. - Highlights: • Preparing Magnetite nanofluids with solid volume fractions up to 3%. • Measuring viscosity in temperature range of 20–55 °C using Brookfield Viscometer. • Maximum viscosity enhancement occurred at volume fraction of 3% and was 129.7%. • Proposing new correlation to predict the viscosity of Fe3O4/water nanofluid.

  20. First experimentally determined thermodynamic values of francium: hydration energy, energy of partitioning, and thermodynamic radius.

    Science.gov (United States)

    Delmau, Lætitia H; Moine, Jérôme; Mirzadeh, Saed; Moyer, Bruce A

    2013-08-08

    The Gibbs energy of partitioning of Fr(+) ion between water and nitrobenzene has been determined to be 14.5 ± 0.6 kJ/mol at 25 °C, the first ever Gibbs energy of partitioning for francium in particular and the first ever solution thermodynamic quantity for francium in general. This value enabled the ionic radius and standard Gibbs energy of hydration for Fr(+) to be estimated as 173 pm and -251 kJ/mol, respectively, the former value being significantly smaller than previously thought. A new experimental method was established using a cesium dicarbollide as a cation-exchange agent, overcoming problems inherent to the trace-level concentrations of francium. The methodology opens the door to the study of the partitioning behavior of francium to other water-immiscible solvents and the determination of complexation constants for francium binding by receptor molecules.

  1. Experimental Determination of Third Derivative of the Gibbs Free Energy, G II

    DEFF Research Database (Denmark)

    Koga, Yoshikata; Westh, Peter; Inaba, Akira

    2010-01-01

    We have been evaluating third derivative quantities of the Gibbs free energy, G, by graphically differentiating the second derivatives that are accessible experimentally, and demonstrated their power in elucidating the mixing schemes in aqueous solutions. Here we determine directly one of the third...... derivatives of G, the partial molar entropy-volume cross fluctuation density of 2-butoxyethanol (BE) in the BE–H2O system, SV δ BE . The difference of the heats of compression were directly determined using two identical cells and applying the same pressure change to both cells concurrently. Both cells...... of 0.01%, the method provides the required results to within 0.1% without the thermal expansivity data. This success opens a possibility of evaluating the fourth derivative graphically, which is expected to provide much more detailed information about the molecular processes in aqueous solutions....

  2. Online Identification and Verification of the Elastic Coupling Torsional Stiffness

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2016-01-01

    Full Text Available To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.

  3. Foundation stiffness in the linear modeling of wind turbines

    Science.gov (United States)

    Chiang, Chih-Hung; Yu, Chih-Peng; Chen, Yan-Hao; Lai, Jiunnren; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2017-04-01

    Effects of foundation stiffness on the linear vibrations of wind turbine systems are of concerns for both planning and construction of wind turbine systems. Current study performed numerical modeling for such a problem using linear spectral finite elements. The effects of foundation stiffness were investigated for various combinations of shear wave velocity of soil, size of tower base plate, and pile length. Multiple piles are also included in the models such that the foundation stiffness can be analyzed more realistically. The results indicate that the shear wave velocity of soil and the size of tower base plate have notable effects on the dominant frequency of the turbine-tower system. The larger the lateral dimension, the stiffer the foundation. Large pile cap and multiple spaced piles result in higher stiffness than small pile cap and a mono-pile. The lateral stiffness of a mono-pile mainly depends on the shear wave velocity of soil with the exception for a very short pile that the end constraints may affect the lateral vibration of the superstructure. Effective pile length may be determined by comparing the simulation results of the frictional pile to those of the end-bearing pile.

  4. The Progression of Diabetic Microvascular Complications and Increased Vascular Stiffness

    Directory of Open Access Journals (Sweden)

    Georgescu Olivia

    2014-12-01

    Full Text Available In patients with type 2 diabetes mellitus it might be helpful to use, for risk stratification, non-invasive techniques as markers of early atherosclerosis. Arterial stiffness shows the functional vascular properties and can be estimated by pulse wave velocity (PWV and augmentation index (AIX. Typical for type 2 diabetes is premature arterial stiffening which appears before the onset of clinically micro or macrovascular disease and is increased in the presence of microvascular complications. Further studies are needed to determine whether therapeutic interventions for reducing vascular stiffness may decrease the cardiovascular mortality in patients with type 2 diabetes.

  5. Experimental determination of critical parameters for gas-condensate-oil systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanova, Z.E.; Yagubov, A.S.; Razamat, M.S.; Babaev, R.D.

    1971-01-01

    An experimental study was conducted to determine the effect of crude oil quantity and quality on changes of critical parameters in gas-condensate-oil systems. Experiments were performed at 40/sup 0/, 100/sup 0/, and 140/sup 0/C, and pressures up to 1,000 kg/sq cm. The 3 components of the system were gas, condensate, and crude oil. Isotherms of condensation were determined to the left and right of the critical point, reaching one-phase zones for liquid and gas. Experimental values of critical parameters varied widely from calculated values. Even insignificant changes in composition caused sharp changes in the critical parameters. For example by changing the weight fraction of crude oil from 0.499 to 0.503, critical temperature changed from 40/sup 0/ to 140/sup 0/C and critical pressure from 640 to 780 kg/sq cm. This type of occurrence must be kept in mind when exploiting gas-oil reservoirs near the critical range.

  6. Calculation of generalized spin stiffness constant of strongly correlated doped quantum antiferromagnet on two-dimensional lattice and it’s application to effective exchange constant for semi-itinerant systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Suraka, E-mail: surakabhatta@bose.res.in; Chaudhury, Ranjan, E-mail: ranjan@bose.res.in

    2016-11-01

    The generalized spin stiffness constant for a doped quantum antiferromagnet has been investigated both analytically and numerically as a function of doping concentration at zero temperature, based on the strongly correlated t-J model on two-dimensional square lattice. The nature of the theoretical dependence of the stiffness constant on doping shows a striking similarity with that of the effective exchange constant, obtained from the combination of other theoretical and experimental techniques in the low doping region. This correspondence once again establishes that spin stiffness can very well play the role of an effective exchange constant even in the strongly correlated semi-itinerant systems. Our theoretical plot of the stiffness constant against doping concentration in the whole doping region exhibits the various characteristic features like a possible crossover in the higher doping regions and persistence of short range ordering even for very high doping with the complete vanishing of spin stiffness occurring only close to 100% doping. Our results receive very good support from various other theoretical approaches and also brings out a few limitations of some of them. Our detailed analysis highlights the crucial importance of the study of spin stiffness for the proper understanding of magnetic correlations in a semi-itinerant magnetic system described by the strongly correlated t-J model. Moreover, our basic formalism can also be utilized for determination of the effective exchange constant and magnetic correlations for itinerant magnetic systems, in general in a novel way.

  7. Variable Mesh Stiffness of spur gear teeth using finite element method

    African Journals Online (AJOL)

    The objective of this paper is to determine the variable mesh stiffness of spur gear teeth using the finite element method. There are many factors for the variation of stiffness. In this paper only the numbers of contact tooth pairs and applied load are taken into considerations. For accomplishing the objective, a computer ...

  8. Influence of wheel configuration on wheelchair basketball performance : Wheel stiffness, tyre type and tyre orientation

    NARCIS (Netherlands)

    Mason, B. S.; Lemstra, M.; van der Woude, L. H. V.; Vegter, R.; Goosey-Tolfrey, V. L.

    The aim of the current investigation was to explore the lateral stiffness of different sports wheelchair wheels available to athletes in 'new' and 'used' conditions and to determine the effect of (a) stiffness, (b) tyre type (clincher vs. tubular) and (c) tyre orientation on the physiological and

  9. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    Directory of Open Access Journals (Sweden)

    Myoung Youl Pac

    2016-01-01

    Full Text Available This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (ν¯e generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the |Δm312| and |Δm322| oscillations by applying the Fourier sine and cosine transforms to the L/E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2⁡2θ13=0.1. If the energy resolution of the neutrino detector is less than 0.04/Eν and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48–53 km from the reactor(s to measure the energy spectrum of ν¯e. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  10. Bias determination for space accelerometers using the ZARM Catapult system - experimental setup and data analysis

    Science.gov (United States)

    Selig, Hanns; Santos Rodrigues, Manuel; Touboul, Pierre; Liorzou, Françoise

    2012-07-01

    Accelerometers for space applications - like the electrostatic differential accelrometer for the MICROSCOPE mission for testing the equivalence principle in space - have to be tested and qualified in μg-conditions in order to demonstrate the system operation and to determine the characteristic sensor parameters. One important characteristic property is the sensor bias. In principle one can determine the sensor bias directly by using the ZARM catapult system as test platform. Even in the evacuated drop tube the residual air pressure results in an air friction that depends on the capsule velocity. At the apex (highest point of the capsule trajectory) the acceleration (relative to the gravitational acceleration g) becomes zero due to the zero velocity at the apex. The direct measurement of the vertical linear acceleration sensor bias is affected by some additional effects that have to be understood in order to be able to determine the sensor bias. Two catapult campaigns have been carried out to demonstrate the principles of the bias determination using a SuperStar accelerometer (Onera). The presentation gives an overview on the experimental setup and on the corresponding data analysis.

  11. Experimental determination of optimal clamping torque for AB-PEM Fuel cell

    Directory of Open Access Journals (Sweden)

    Noor Ul Hassan

    2016-04-01

    Full Text Available Polymer electrolyte Membrane (PEM fuel cell is an electrochemical device producing electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell stack is provided with an appropriate clamping torque to prevent leakage of reactant gases and to minimize the contact resistance between gas diffusion media (GDL and bipolar plates. GDL porous structure and gas permeability is directly affected by the compaction pressure which, consequently, drastically change the fuel cell performance. Various efforts were made to determine the optimal compaction pressure and pressure distributions through simulations and experimentation. Lower compaction pressure results in increase of contact resistance and also chances of leakage. On the other hand, higher compaction pressure decreases the contact resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers, consequently, lowering cell performance. The optimal cell performance is related to the gasket thickness and compression pressure on GDL. Every stack has a unique assembly pressure due to differences in fuel cell components material and stack design. Therefore, there is still need to determine the optimal torque value for getting the optimal cell performance. This study has been carried out in continuation of deve­lopment of Air breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV application. Compaction pressure at minimum contact resistance was determined and clamping torque value was calcu­la­ted accordingly. Single cell performance tests were performed at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving optimal cell per­formance. Clamping pressure distribution tests were also performed at these torque values to verify uniform pressure distribution at optimal torque value. Experimental and theoretical results were compared for making inferences about optimal cell perfor­man­ce. A

  12. Development of a novel variable stiffness and damping magnetorheological fluid damper

    Science.gov (United States)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel

    2015-08-01

    This paper reports a novel magnetorheological fluid (MRF)-based damper, which synergizes the attributes of variable stiffness and damping through the compact assembly of two MRF damping units and a spring. The magnetic field densities of the two damping units were analyzed. After the prototype of the new MRF damper, a hydraulically actuated MTS machine was used to test the damper’s performance, including stiffness variability and damping variability, amplitude-dependent responses and frequency-dependent responses. A new mathematical model was developed to describe the variable stiffness and damping MRF damper. The successful development, experimental testing and modeling of this innovative variable stiffness and damping MRF damper make the true design and implementation of the concept of variable stiffness and damping feasible.

  13. MR elastography: Spleen stiffness measurements in healthy volunteers--preliminary experience.

    Science.gov (United States)

    Mannelli, Lorenzo; Godfrey, Edmund; Joubert, Ilse; Patterson, Andrew J; Graves, Martin J; Gallagher, Ferdia A; Lomas, David J

    2010-08-01

    The purpose of this article is to establish the range of normal splenic stiffness in healthy volunteers using MR elastography (MRE) and to investigate any correlation with physiologic parameters and driver position. Sixteen volunteers (mean [+/- SD] age, 37 +/- 9 years) with no history of gastrointestinal, hepatobiliary, or cardiovascular disease were recruited. The MRI protocol included T2-weighted axial and gradient-echo MRE sequences using steady-state 60-Hz excitation. Two MRE acquisitions were performed, one with the driver placed on the right side of the abdomen and the other with the driver placed on the left side. Volunteers' body mass index (BMI), arterial mean blood pressure, age, spleen volume, and liver stiffness were also determined. Two radiologists independently measured the spleen stiffness on the MRE inversion images. The correlations between spleen stiffness and BMI, arterial mean blood pressure, age, spleen volume, and liver stiffness were quantified. Sixteen volunteers underwent MRE. With the driver placed on the right side of the abdomen, the mean splenic stiffness was 3,565 +/- 586 Pa (range, 2,353-4,442 Pa); with the driver on the left side of the abdomen, the mean splenic stiffness was significantly (p 0.05) These preliminary results in a small number of healthy volunteers show that spleen stiffness is not significantly correlated with BMI, arterial mean blood pressure, spleen volume, or liver stiffness. A significant difference was observed using different driver positions.

  14. Stiffness control of balance in quiet standing.

    Science.gov (United States)

    Winter, D A; Patla, A E; Prince, F; Ishac, M; Gielo-Perczak, K

    1998-09-01

    Our goal was to provide some insights into how the CNS controls and maintains an upright standing posture, which is an integral part of activities of daily living. Although researchers have used simple performance measures of maintenance of this posture quite effectively in clinical decision making, the mechanisms and control principles involved have not been clear. We propose a relatively simple control scheme for regulation of upright posture that provides almost instantaneous corrective response and reduces the operating demands on the CNS. The analytic model is derived and experimentally validated. A stiffness model was developed for quiet standing. The model assumes that muscles act as springs to cause the center-of-pressure (COP) to move in phase with the center-of-mass (COM) as the body sways about some desired position. In the sagittal plane this stiffness control exists at the ankle plantarflexors, in the frontal plane by the hip abductors/adductors. On the basis of observations that the COP-COM error signal continuously oscillates, it is evident that the inverted pendulum model is severely underdamped, approaching the undamped condition. The spectrum of this error signal is seen to match that of a tuned mass, spring, damper system, and a curve fit of this "tuned circuit" yields omega n the undamped natural frequency of the system. The effective stiffness of the system, Ke, is then estimated from Ke = I omega n2, and the damping B is estimated from B = BW X I, where BW is the bandwidth of the tuned response (in rad/s), and I is the moment of inertia of the body about the ankle joint. Ten adult subjects were assessed while standing quietly at three stance widths: 50% hip-to-hip distance, 100 and 150%. Subjects stood for 2 min in each position with eyes open; the 100% stance width was repeated with eyes closed. In all trials and in both planes, the COP oscillated virtually in phase (within 6 ms) with COM, which was predicted by a simple 0th order spring

  15. Prices need no preferences: social trends determine decisions in experimental markets for pain relief.

    Science.gov (United States)

    Vlaev, Ivo; Seymour, Ben; Chater, Nick; Winston, Joel S; Yoshida, Wako; Wright, Nicholas; Symmonds, Mkael; Dolan, Ray

    2014-01-01

    A standard view in health economics is that, although there is no market that determines the "prices" for health states, people can nonetheless associate health states with monetary values (or other scales, such as quality adjusted life year [QALYs] and disability adjusted life year [DALYs]). Such valuations can be used to shape health policy, and a major research challenge is to elicit such values from people; creating experimental "markets" for health states is a theoretically attractive way to address this. We explore the possibility that this framework may be fundamentally flawed-because there may not be any stable values to be revealed. Instead, perhaps people construct ad hoc values, influenced by contextual factors, such as the observed decisions of others. The participants bid to buy relief from equally painful electrical shocks to the leg and arm in an experimental health market based on an interactive second-price auction. Thirty subjects were randomly assigned to two experimental conditions where the bids by "others" were manipulated to follow increasing or decreasing price trends for one, but not the other, pain. After the auction, a preference test asked the participants to choose which pain they prefer to experience for a longer duration. Players remained indifferent between the two pain-types throughout the auction. However, their bids were differentially attracted toward what others bid for each pain, with overbidding during decreasing prices and underbidding during increasing prices. Health preferences are dissociated from market prices, which are strongly referenced to others' choices. This suggests that the price of health care in a free-market has the capacity to become critically detached from people's underlying preferences. 2014 APA, all rights reserved

  16. Experimentally determined subsolidus metal-olivine element partitioning with applications to pallasites

    Science.gov (United States)

    Donohue, Patrick H.; Hill, Eddy; Huss, Gary R.

    2018-02-01

    Pallasite meteorites, which consist primarily of olivine and metal, may be remnants of disrupted core-mantle boundaries of differentiated asteroids or planetesimals. The early thermal histories of pallasites are potentially recorded by minor- and trace-element zonation in olivine. However, constraining this history requires knowledge of element behavior under the conditions of pallasite formation, which is lacking for many of the main elements of interest (e.g., Co, Cr, Mn). In this study, we experimentally determined metal/olivine partition coefficients for Fe, Ni, Co, Cr, and Mn in a pallasite analogue at subsolidus temperatures. Metal/olivine partition coefficients (KM) increase in the order KMn < KCr < 1 < KFe < KCo < KNi, with five orders of magnitude separating KMn from KNi. Transition metals also become more siderophile with increasing experimental temperature (900-1550 °C). The experiments incidentally produced diffusion profiles in olivine for these elements; our results suggest they diffuse through olivine at similar rates. Core compositions of pallasite olivines are consistent with high-temperature equilibration with FeNi-metal. Olivine zonation toward crystal rims varies significantly for the investigated transition metals. We suggest rim zonation results from partial re-equilibration during late stage crystallization of minor phases (e.g., chromite, phosphates). This re-equilibration occurred over short timescales relative to overall pallasite cooling, likely tied to initial cooling rates on the order of 100-300 °C/Myr.

  17. Generalized sample size determination formulas for experimental research with hierarchical data.

    Science.gov (United States)

    Usami, Satoshi

    2014-06-01

    Hierarchical data sets arise when the data for lower units (e.g., individuals such as students, clients, and citizens) are nested within higher units (e.g., groups such as classes, hospitals, and regions). In data collection for experimental research, estimating the required sample size beforehand is a fundamental question for obtaining sufficient statistical power and precision of the focused parameters. The present research extends previous research from Heo and Leon (2008) and Usami (2011b), by deriving closed-form formulas for determining the required sample size to test effects in experimental research with hierarchical data, and by focusing on both multisite-randomized trials (MRTs) and cluster-randomized trials (CRTs). These formulas consider both statistical power and the width of the confidence interval of a standardized effect size, on the basis of estimates from a random-intercept model for three-level data that considers both balanced and unbalanced designs. These formulas also address some important results, such as the lower bounds of the needed units at the highest levels.

  18. Active machine learning-driven experimentation to determine compound effects on protein patterns

    Science.gov (United States)

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-01-01

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049

  19. Prediction and experimental determination of the solubility of exotic scales at high temperatures - Zinc sulfide

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2016-01-01

    at extreme conditions. The aim of this work is to include ZnS into the group of scale materials that can be modeled with the Extended UNIQUAC model. Solubility data for ZnS are scarce in the open literature. In order to improve the available data, we study the experimental behavior of ZnS solubility at high...... temperatures. The determination of the solubility of ZnS is carried out at temperatures up to 250°C. Zinc sulfide (99.99%) and ultra-pure water are placed in a vial in a reduced oxygen atmosphere. The sample is placed in a controlled bath and stirred until equilibrium is attained. The suspension is filtered...... at the same process temperature and diluted immediately. Afterwards the aqueous solution is analyzed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) as analytical technique. The concentrations of Zn2+ and S2- ions are analyzed. The experimental data are used for parameter estimation...

  20. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Jens Wickert

    2013-03-01

    Full Text Available The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO, five Inclined Geosynchronous Orbit (IGSO satellites and four Medium Earth Orbit (MEO satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  1. Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters

    Science.gov (United States)

    Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.

  2. Experimental validation of analytical models for a rapid determination of cycle parameters in thermoplastic injection molding

    Science.gov (United States)

    Pignon, Baptiste; Sobotka, Vincent; Boyard, Nicolas; Delaunay, Didier

    2017-10-01

    Two different analytical models were presented to determine cycle parameters of thermoplastics injection process. The aim of these models was to provide quickly a first set of data for mold temperature and cooling time. The first model is specific to amorphous polymers and the second one is dedicated to semi-crystalline polymers taking the crystallization into account. In both cases, the nature of the contact between the polymer and the mold could be considered as perfect or not (thermal contact resistance was considered). Results from models are compared with experimental data obtained with an instrumented mold for an acrylonitrile butadiene styrene (ABS) and a polypropylene (PP). Good agreements were obtained for mold temperature variation and for heat flux. In the case of the PP, the analytical crystallization times were compared with those given by a coupled model between heat transfer and crystallization kinetics.

  3. Experimental determination of the x-ray atomic fundamental parameters of nickel

    Science.gov (United States)

    Ménesguen, Y.; Lépy, M.-C.; Hönicke, P.; Müller, M.; Unterumsberger, R.; Beckhoff, B.; Hoszowska, J.; Dousse, J.-Cl; Błachucki, W.; Ito, Y.; Yamashita, M.; Fukushima, S.

    2018-02-01

    The x-ray atomic properties of nickel (Ni) were investigated in a unique approach combining different experimental techniques to obtain new, useful and reliable values of atomic fundamental parameters for x-ray spectrometric purposes and for comparison with theoretical predictions. We determined the mass attenuation coefficients in an energy range covering the L- and K-absorption edges, the K-shell fluorescence yield and the Kβ/Kα and Kβ1, 3/Kα1, 2 transition probability ratios. The obtained line profiles and linewidths of the Kα and Kβ transitions in Ni can be considered as the contribution of the satellite lines arising from the [KM] shake processes suggested by Deutsch et al (1995 Phys. Rev. A 51 283) and Ito et al (2016 Phys. Rev. A 94 042506). Comparison of the new data with several databases showed good agreement, but also discrepancies were found with existing tabulated values.

  4. Building a substitute model of a bolster based on experimentally determined deflection

    Science.gov (United States)

    Zgoll, F.; Götze, T.; Volk, W.

    2017-09-01

    The high design requirements in the production of car body parts necessitate an exact closure of the forming tools in deep drawing processes. The tool closure is directly related to the machine elastic behaviour. To significantly reduce efforts and save time during ramp up of new forming tools, knowledge of the expected machine behaviour should be considered during the virtual development process of the tools. A prerequisite for that is building a validated machine-specific substitute model of the forming press composed of bolster, ram and drawing cushion. In this contribution, a substitute model with the help of finite element analysis (FEA) based on experimentally determined deflection is presented. The deflection measurements are performed by means of a multifunctional press measuring system from Volkswagen.

  5. Improved morphed potentials for Ar-HBr including scaling to the experimentally determined dissociation energy.

    Science.gov (United States)

    Wang, Z; McIntosh, A L; McElmurry, B A; Walton, J R; Lucchese, R R; Bevan, J W

    2005-09-15

    A lead salt diode infrared laser spectrometer has been employed to investigate the rotational predissociation in Ar-HBr for transitions up to J' = 79 in the v(1) HBr stretching vibration of the complex using a slit jet and static gas phase. Line-shape analysis and modeling of the predissociation lifetimes have been used to determine a ground-state dissociation energy D(0) of 130(1) cm(-1). In addition, potential energy surfaces based on ab initio calculations are scaled, shifted, and dilated to generate three-dimensional morphed potentials for Ar-HBr that reproduce the measured value of D(0) and that have predictive capabilities for spectroscopic data with nearly experimental uncertainty. Such calculations also provide a basis for making a comprehensive comparison of the different morphed potentials generated using the methodologies applied.

  6. Experimental determination of isotope enrichment factors – bias from mass removal by repetitive sampling

    DEFF Research Database (Denmark)

    Buchner, Daniel; Jin, Biao; Ebert, Karin

    2017-01-01

    Application of compound-specific stable isotope approaches often involves comparisons of isotope enrichment factors (ε). Experimental determination of ε-values is based on the Rayleigh equation, which relates the change in measured isotope ratios to the decreasing substrate fractions and is valid...... for closed systems. Even in well-controlled batch experiments, however, this requirement is not necessarily fulfilled, since repetitive sampling can remove a significant fraction of the analyte. For volatile compounds the need for appropriate corrections is most evident and various methods have been proposed....... Application of inappropriate methods may lead to incorrect and inconsistent ε-values entailing misinterpretations regarding the processes underlying isotope fractionation. In fact, our results suggest that artifacts arising from inappropriate data evaluation might contribute to the variability of published ε...

  7. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yapici, R.; Ersoy, H.K.; Aktoprakoglu, A.; Halkaci, H.S. [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Selcuk University, Alaeddin Campus, 42075 Konya (Turkey); Yigit, O. [Karsiyaka Mah, 16. Sk 8/5, Ankara (Turkey)

    2008-11-15

    The performance of the ejector refrigeration system using ejectors with cylindrical mixing chamber is studied at operating conditions with choking in the mixing chamber. The condenser pressure is chosen so that the secondary flow choking can occur even in the ejector with the smallest area ratio. In the present study, the performance of the constructed system is determined by using six configurations of ejector and R-123 as working fluid in the system. The study is performed over a range of the ejector area ratio from 6.5 to 11.5 at the compression ratio 2.47. In the studied range, the experimental coefficient of performance of the system rises from 0.29 to 0.41, as the optimum generator temperature increases from 83 to 103 C. Similar results were also found in the parametric study when the efficiencies of the nozzle and diffuser are taken as 0.90. (author)

  8. Ternary critical point determination of experimental demixion curve: calculation method, relevance and limits

    Directory of Open Access Journals (Sweden)

    Goutaudier C.

    2013-07-01

    Full Text Available In many cases of miscibility gap in ternary systems, one critical point at least, stable or metastable, can be observed under isobaric and isothermal conditions. The experimental determination of this invariant point is difficult but its knowledge is essential. The authors propose a method for calculating the composition of the invariant solution starting from the composition of the liquid phases in equilibrium. The computing method is based on the barycentric properties of the conjugate solutions (binodal points and an extension of the straight diameter method. A systematic study was carried out on a large number of ternary systems involving diverse constituents (230 sets ternary systems at various temperatures. Thus the results are presented and analyzed by means of consistency tests.

  9. Research on Detection of Machine Stiffness

    OpenAIRE

    Wang Li-Jie; Shi Wei-Chao; Xu De-Kai

    2015-01-01

    Machine tool stiffness is a principal factor affecting machine tool precision, traditional methods can only be used to detect limited categories of machine tools. The paper introduces a new scheme to detect machine tool stiffness on the basis of dynamic detection of machine tool stiffness considering its characteristics and stress state during processing. An experiment conducted in turn-milling machining center CH7516GS indicated by comparison that statics analysis of finite elements matched ...

  10. Estimation of quasi-stiffness of the human knee in the stance phase of walking.

    Directory of Open Access Journals (Sweden)

    Kamran Shamaei

    Full Text Available Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75-2.63 m/s across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R(2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking.

  11. Estimation of quasi-stiffness of the human knee in the stance phase of walking.

    Science.gov (United States)

    Shamaei, Kamran; Sawicki, Gregory S; Dollar, Aaron M

    2013-01-01

    Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75-2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R(2) > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking.

  12. On the development of planar actuators for variable stiffness devices

    Science.gov (United States)

    Henke, Markus; Gerlach, Gerald

    2013-04-01

    This contribution describes the development, the potential and the limitations of planar actuators for controlling bending devices with variable stiffness. Such structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. To realize a proper stiffness control, it is necessary to develop reliable actuators with high actuation capabilities based on smart materials. Several actuator designs driven by electroactive polymers (EAPs) are presented and discussed regarding to their applicability in such structures. To investigate the actuators, variable-flexural stiffness devices based on the control of its area moment of inertia were developed. The devices consist of a multi-layer stack of thin, individual plates. Stiffness variation is caused by planar actuators which control the sliding behavior between the layers by form closure structures. Previous investigations have shown that actuators with high actuation potential are needed to ensure reliable connections between the layers. For that reason, two kinds of EAPs Danfoss PolyPower and VHB 4905 by 3M, have been studied as driving unit. These EAP-driven actuators will be compared based on experimental measurements and finite element analyses.

  13. Design of a Variable Stiffness Soft Dexterous Gripper

    Science.gov (United States)

    Nefti-Meziani, Samia; Davis, Steve

    2017-01-01

    Abstract This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs. PMID:29062630

  14. Experimental Determination of the Hamiltonian for Synchrotron Motion with RF Phase Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko

    2003-07-11

    Synchrotron motion with rf phase modulation was studied experimentally. Poincare maps in the resonant processing frame were obtained from the experimental data and compared with the tori of the resonant Hamiltonian. The experimental data revealed island structure in longitudinal phase space. Experimental results for synchrotron motion excited by phase modulation at the third harmonic of the synchrotron frequency are also reported.

  15. Betel nut chewing associated with increased risk of arterial stiffness.

    Science.gov (United States)

    Wei, Yu-Ting; Chou, Yu-Tsung; Yang, Yi-Ching; Chou, Chieh-Ying; Lu, Feng-Hwa; Chang, Chih-Jen; Wu, Jin-Shang

    2017-11-01

    Betel nut chewing is associated with certain cardiovascular outcomes. Subclinical atherosclerosis may be one link between betel nut chewing and cardiovascular risk. Few studies have examined the association between chewing betel nut and arterial stiffness. The aim of this study was thus to determine the relationship between betel nut chewing and arterial stiffness in a Taiwanese population. We enrolled 7540 eligible subjects in National Cheng Kung University Hospital from October 2006 to August 2009. The exclusion criteria included history of cerebrovascular events, coronary artery disease, and taking lipid-lowering drugs, antihypertensives, and hypoglycemic agents. Increased arterial stiffness was defined as brachial-ankle pulse wave velocity (baPWV) ≥1400cm/s. According to their habit of betel nut use, the subjects were categorized into non-, ex-, and current chewers. The prevalence of increased arterial stiffness was 32.7, 43.3, and 43.2% in non-, ex- and current chewers, respectively (p=0.011). Multiple logistic regression analysis revealed that ex-chewers (odds ratio [OR] 1.69, 95% confidence interval (CI)=1.08-2.65) and current chewers (OR 2.29, 95% CI=1.05-4.99) had elevated risks of increased arterial stiffness after adjustment for co-variables. Both ex- and current betel nut chewing were associated with a higher risk of increased arterial stiffness. Stopping betel nut chewing may thus potentially be beneficial to reduce cardiovascular risk, based on the principals of preventive medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies...... stiffness. I introduce how to evaluate and distinguish between passive muscle stiffness and reflex-mediated stiffness in research and in clinical practice. Furthermore, I present ”the Portable Spasticity Assessment Device”, which was developed as a part of the PhD study. I discuss the validity...

  17. Task dependency of grip stiffness--a study of human grip force and grip stiffness dependency during two different tasks with same grip forces.

    Directory of Open Access Journals (Sweden)

    Hannes Höppner

    Full Text Available It is widely known that the pinch-grip forces of the human hand are linearly related to the weight of the grasped object. Less is known about the relationship between grip force and grip stiffness. We set out to determine variations to these dependencies in different tasks with and without visual feedback. In two different settings, subjects were asked to (a grasp and hold a stiffness-measuring manipulandum with a predefined grip force, differing from experiment to experiment, or (b grasp and hold this manipulandum of which we varied the weight between trials in a more natural task. Both situations led to grip forces in comparable ranges. As the measured grip stiffness is the result of muscle and tendon properties, and since muscle/tendon stiffness increases more-or-less linearly as a function of muscle force, we found, as might be predicted, a linear relationship between grip force and grip stiffness. However, the measured stiffness ranges and the increase of stiffness with grip force varied significantly between the two tasks. Furthermore, we found a strong correlation between regression slope and mean stiffness for the force task which we ascribe to a force stiffness curve going through the origin. Based on a biomechanical model, we attributed the difference between both tasks to changes in wrist configuration, rather than to changes in cocontraction. In a new set of experiments where we prevent the wrist from moving by fixing it and resting it on a pedestal, we found subjects exhibiting similar stiffness/force characteristics in both tasks.

  18. A Laplace method for under-determined Bayesian optimal experimental designs

    KAUST Repository

    Long, Quan

    2014-12-17

    In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities of interest in the Bayesian framework. A closed-form asymptotic approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general case where the model parameters cannot be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the Jacobian matrix of the data model with respect to the parameters, so that the information gain can be reduced to an integration against the marginal density of the transformed parameters that are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the posterior covariance matrix projected over the aforementioned orthogonal directions. To deal with the issue of dimensionality in a complex problem, we use either Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under-determined test cases. They include the designs of the scalar parameter in a one dimensional cubic polynomial function with two unidentifiable parameters forming a linear manifold, and the boundary source locations for impedance tomography in a square domain, where the unknown parameter is the conductivity, which is represented as a random field.

  19. Arterial stiffness results from eccentrically biased downhill running exercise.

    Science.gov (United States)

    Burr, J F; Boulter, M; Beck, K

    2015-03-01

    There is increasing evidence that select forms of exercise are associated with vascular changes that are in opposition to the well-accepted beneficial effects of moderate intensity aerobic exercise. To determine if alterations in arterial stiffness occur following eccentrically accentuated aerobic exercise, and if changes are associated with measures of muscle soreness. Repeated measures experimental cohort. Twelve (m=8/f=4) moderately trained (VO₂max=52.2 ± 7.4 ml kg(-1)min(-1)) participants performed a downhill run at -12° grade using a speed that elicited 60% VO₂max for 40 min. Cardiovascular and muscle soreness measures were collected at baseline and up to 72 h post-running. Muscle soreness peaked at 48 h (p=running is associated with arterial stiffening in the absence of an extremely prolonged duration or fast pace. The timing of alterations coincides with the well-documented inflammatory response that occurs from the muscular insult of downhill running, but whether the observed changes are a result of either systemic or local inflammation is yet unclear. These findings may help to explain evidence of arterial stiffening in long-term runners and following prolonged duration races wherein cumulative eccentric loading is high. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  1. Experimentally induced states of mind determine abstinent smokers' level of craving in reaction to smoking-cues

    Directory of Open Access Journals (Sweden)

    Arie Dijkstra

    2015-06-01

    Conclusions: The present studies provide experimental evidence that levels of craving can be determined by momentary states of mind. This theoretical perspective can be integrated in existing conditioning and social cognitive learning perspectives on craving and substance use.

  2. Experimental determination about thermal comfort conditions in buildings; Determinacion experimental de las condiciones de confort termico en edificaciones

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz Garcia, Juan Jose; Garcia Chavez, Jose Roberto; Paredes Rubio, Hernando Romero [Universidad Autonoma Metropolitana (Mexico)]. E-mail: agj@xanum.uam.mx; jgc@correo.azc.uam.mx; hrp@xanum.uam.mx

    2006-04-15

    This paper analyzes the thermal comfort importance in a building. And the influence it exerts on quality of life as well as the efficiency of people work activities. There are comments about some models which better help to estimate the recommended temperature levels. The experimental evaluation results from a Mexico City population sampler are presented. This work was done in a Controlled Environment Laboratory; the obtained outcomes proved the preferences occupants exceed the comfort zone greatest limit accepted in the reference international standards. The meaning of this conclusion is thermal comfort can be reached with higher temperatures and consequently an energy consumption and an environment impact decrease. [Spanish] En este trabajo se analiza la importancia que tiene el confort termico en la calidad de vida de las personas que ocupan una edificacion y en la eficiencia de sus actividades. Se comentan algunos modelos con los cuales se estiman los niveles de temperatura recomendados y se presentan los resultados de una evaluacion experimental realizada en un Laboratorio de Ambiente Controlado con una muestra de la poblacion del Distrito Federal. Los resultados que se obtuvieron demuestran que los ocupantes tienen preferencias que rebasan el limite superior de la zona de confort comunmente aceptada en los estandares internacionales de referencia. Esto quiere decir que el confort puede lograrse con mayores temperaturas, lo que se traduce en menor consumo de energia y menor impacto en el ambiente.

  3. Experimental determination of acetylene and ethylene solubility in liquid methane and ethane: Implications to Titan's surface

    Science.gov (United States)

    Singh, S.; Combe, J.-Ph.; Cordier, D.; Wagner, A.; Chevrier, V. F.; McMahon, Z.

    2017-07-01

    In this study, the solubility of acetylene (or ethyne, C2H2) and ethylene (or ethene, C2H4) in liquid methane (CH4) and ethane (C2H6) has been experimentally determined at Titan surface temperature (90 K) and pressure (1.5 bars). As predicted by theoretical models, the solubilities of acetylene and ethylene are very large at Titan temperature and these species are most likely to be abundantly present in the lakes and as evaporites on the shores or dry lake beds. Our results indicate the solubility of 4.9 × 10-2 mole fraction for acetylene in methane and 48 × 10-2 mole fraction in ethane; for ethylene, 5.6 × 10-1 mole fraction in methane and 4.8 × 10-1 mole fraction in ethane. Assuming the mole fractions from atmospheric models in the lower stratosphere and equilibrium with the surface, we determined that the lakes on Titan that cover ∼400,000 km2 are not saturated. The liquid lakes on Titan act as an important reservoir for both acetylene and ethylene. Assuming difference of methane and ethane content in the lakes at different latitudes, the difference in solubility in liquid methane and ethane, solutes in lakes may change with the temporal evolution (such as; evaporation and condensation) over seasons and geological time scales.

  4. Computational tools for experimental determination and theoretical prediction of protein structure

    Energy Technology Data Exchange (ETDEWEB)

    O`Donoghue, S.; Rost, B.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

  5. Determination of IgG avidity in BALB/c mice experimentally infected with Toxocara canis.

    Science.gov (United States)

    Schoenardie, Elizandra Roselaine; Scaini, Carlos James; Avila, Luciana Farias da Costa de; Sperotto, Rita Leal; Borsuk, Sibele; Felicetti, Cristine Dias Pires; Pepe, Michele; Berne, Maria Elisabeth Aires

    2014-01-01

    Toxocariasis is a zoonotic disease in that IgM titers can remain high for long periods making difficult to determine the stage of the disease. The aim of this study is to investigate the applicability of indirect ELISA, associated with urea, to discriminate between the acute and chronic toxocariasis. IgG avidity was evaluated in 25 BALB/c mice experimentally infected with 1000 Toxocara canis eggs. Blood samples were collected, and sera treated with 6 M urea and assayed by ELISA every two weeks. The percent IgG avidity was determined using the mean absorbance of sera treated with urea, divided by the mean absorbance of untreated sera. In the first 15 days post-inoculation, was observed a low percentage, between 7.25 and 27.5%, IgG avidity, characteristic of an acute infection. After 60 days of infection, all the mice showed between 31.4 and 58% IgG avidity, indicating a chronic infection.

  6. Migration of oligomers from PET: determination of diffusion coefficients and comparison of experimental versus modelled migration.

    Science.gov (United States)

    Hoppe, Maria; Fornari, Roberta; de Voogt, Pim; Franz, Roland

    2017-07-01

    Polyethylene terephthalate (PET) is increasingly used as food-contact material in, for example, containers for beverage such as bottles for soft drinks, mineral water, juices and beer. Mass transport of substances present in packaging materials into the packed food and beverages is monitored to verify the food law compliance of the materials. PET is known to contain or give rise to migrants that are oligomers derived from the polymeric material. Until now their actual migration potential has been investigated only poorly. A convenient way to determine their migration would be by using models. To verify existing models with experimental data, a migration kinetic study of PET oligomers was conducted. PET bottle material was submerged in 50% ethanol at 80°C for 15 h. The oligomer content in the migration solutions was determined every hour using LC-MS with the first-series cyclic PET trimer as standard. Diffusion coefficients of five PET oligomers (first-series dimer and trimer, second-series dimer and trimer, and third-series dimer) were calculated from the obtained data and compared with the calculated diffusion coefficients using the models of Welle and Piringer. This is the first study to provide diffusion characteristics of oligomers in PET other than the first-series cyclic trimer.

  7. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron Sn or two-neutron S2n separation energy of neutron-rich isotopes. Relationships between Sn (S2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. Sn, S2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between Sn, S2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  8. Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow

    Science.gov (United States)

    Taher, R.; Abid, C.

    2017-12-01

    This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.

  9. Degradation of shear stiffness of Nomex honeycomb sandwich panel in laser irradiation

    Science.gov (United States)

    Wang, Jiawei; Jiang, Houman; Wu, Lixiong; Zhu, Yongxiang; Wei, Chenghua; Ma, Zhiliang; Wang, Lijun

    2017-05-01

    Based on the overhanging beam three-point bending method, the experimental system was set up to measure the variety of shear stiffness of Nomex honeycomb sandwich panel in laser irradiation. The shear stiffness of the specimens under different laser power density was measured. The result shows that the thermal effect during the laser irradiation leads to the degradation of mechanical properties of Nomex honeycomb sandwich panel. High temperature rise rate in the specimen is another main reason for the shear stiffness degeneration. This research provides a reference for the degradation of mechanical properties of composite materials in laser irradiation and proposes a new method for the study of laser interaction with matter.

  10. Determination of equivalent breast phantoms for different age groups of Taiwanese women: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shang-Lung; Chu, Tieh-Chi; Lin, Yung-Chien; Lan, Gong-Yau; Yeh, Yu-Hsiu; Chen, Sharon; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Department of Radiology, Cheng Hsin General Hospital, 45 Cheng Hsin Street, Pai-Tou District, Taipei 11220, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2011-07-15

    Purpose: Polymethylmethacrylate (PMMA) slab is one of the mostly used phantoms for studying breast dosimetry in mammography. The purpose of this study was to evaluate the equivalence between exposure factors acquired from PMMA slabs and patient cases of different age groups of Taiwanese women in mammography. Methods: This study included 3910 craniocaudal screen/film mammograms on Taiwanese women acquired on one mammographic unit. The tube loading, compressed breast thickness (CBT), compression force, tube voltage, and target/filter combination for each mammogram were collected for all patients. The glandularity and the equivalent thickness of PMMA were determined for each breast using the exposure factors of the breast in combination with experimental measurements from breast-tissue-equivalent attenuation slabs. Equivalent thicknesses of PMMA to the breasts of Taiwanese women were then estimated. Results: The average {+-} standard deviation CBT and breast glandularity in this study were 4.2 {+-} 1.0 cm and 54% {+-} 23%, respectively. The average equivalent PMMA thickness was 4.0 {+-} 0.7 cm. PMMA slabs producing equivalent exposure factors as in the breasts of Taiwanese women were determined for the age groups 30-49 yr and 50-69 yr. For the 4-cm PMMA slab, the CBT and glandularity values of the equivalent breast were 4.1 cm and 65%, respectively, for the age group 30-49 yr and 4.4 cm and 44%, respectively, for the age group 50-69 yr. Conclusions: The average thickness of PMMA slabs producing the same exposure factors as observed in a large group of Taiwanese women is less than that reported for American women. The results from this study can provide useful information for determining a suitable thickness of PMMA for mammographic dose survey in Taiwan. The equivalence of PMMA slabs and the breasts of Taiwanese women is provided to allow average glandular dose assessment in clinical practice.

  11. Load to Failure and Stiffness

    Science.gov (United States)

    Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.

    2015-01-01

    Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P sutures in the repair should be considered to judge the strength of the repair. Clinical Relevance: Previous in vitro studies have shown the double-row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053

  12. Determination of Experimental Fuel Rod Parameters using 3D Modelling of PCMI with MPS Defect

    Energy Technology Data Exchange (ETDEWEB)

    Casagranda, Albert [Idaho National Laboratory; Spencer, Benjamin Whiting [Idaho National Laboratory; Pastore, Giovanni [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Hales, Jason Dean [Idaho National Laboratory; Williamson, Richard L [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2016-05-01

    An in-reactor experiment is being designed in order to validate the pellet-cladding mechanical interaction (PCMI) behavior of the BISON fuel performance code. The experimental parameters for the test rod being placed in the Halden Research Reactor are being determined using BISON simulations. The 3D model includes a missing pellet surface (MPS) defect to generate large local cladding deformations, which should be measureable after typical burnup times. The BISON fuel performance code is being developed at Idaho National Laboratory (INL) and is built on the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework. BISON supports both 2D and 3D finite elements and solves the fully coupled equations for solid mechanics, heat conduction and species diffusion. A number of fuel performance effects are included using models for swelling, densification, creep, relocation and fission gas production & release. In addition, the mechanical and thermal contact between the fuel and cladding is explicitly modelled using a master-slave based contact algorithm. In order to accurately predict PCMI effects, the BISON code includes the relevant physics involved and provides a scalable and robust solution procedure. The depth of the proposed MPS defect is being varied in the BISON model to establish an optimum value for the experiment. The experiment will be interrupted approximately every 6 months to measure cladding radial deformation and provide data to validate BISON. The complete rodlet (~20 discrete pellets) is being simulated using a 180° half symmetry 3D model with MPS defects at two axial locations. In addition, annular pellets will be used at the top and bottom of the pellet stack to allow thermocouples within the rod to measure the fuel centerline temperature. Simulation results will be presented to illustrate the expected PCMI behavior and support the chosen experimental design parameters.

  13. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage

    Science.gov (United States)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  14. Deformation and stiffness of spur gear teeth and their influence on gear noise

    Directory of Open Access Journals (Sweden)

    Silvia MEDVECKÁ-BEŇOVÁ

    2015-12-01

    Full Text Available Gear teeth are deformed due to the load. The deformation of gear teeth is causing some negative as well as positive effects. A tooth has a complex shape and due to the complex shape of the teeth, a theoretical determination of the deformation is difficult. The existing experimental techniques are based on static deflection measurements gearing loaded of constant force or seismic measurement deviations at slow rotation. Recently, at ever faster evolving computer technology and the available literature, we can encounter modern numerical methods, such as finite element method (FEM, which can serve as methods for the determination of teeth of gearing. The article is devoted to the problems of gearing stiffness analysis. The problem is solved for spur gears. Deformation analysis solved by FEM is used for calculations of the gearing stiffness. There are many influences that cause vibrations in the gearbox and that have to be taken into account already in the phase of design, manufacture, installation and operation. Detailed analysis of gearboxes manufacturers have shown that improving of the gear accuracy cannot reduce the transmission unit noise to the desired level. Only fundamental changes to the shape of the tooth and changes in production technology can achieve stronger noise reduction of gear mechanism.

  15. Experimental determination and chemical modelling of radiolytic processes at the spent fuel/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Jordi; Cera, Esther; Grive, Mireia [QuantiSci SL, Barcelona (Spain); Eklund, Ulla-Britt [Studsvik Nuclear AB, Nykoeping (Sweden); Eriksen, Trygve [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear Chemistry

    1999-11-01

    The spent fuel matrix in contact with water constitutes a dynamic redox system due to the time dependent radiolytic generation of oxidants and reductants at the fuel interface. In this context it is important to understand the main processes and mechanisms that control the impact of radiolytically generated reactants on the stability of the UO{sub 2}-matrix and release of radionuclides. A series of carefully controlled time resolved experiments have been carried out in order to determine the radiolyticalgeneration of hydrogen, hydrogen peroxide and oxygen and the release of radionuclides in an initially anoxic system containing fuel fragments in contact with distilled water and NaHCO{sub 3} solutions. The experimental data, being quite reproducible and consistent, indicate that it is possible to define a bulk redox potential for the main redox pairs in the solution and that the experimentally determined radionuclide concentrations can be rationalised in terms of this potential. Mass balance calculations indicate that consumption of radiolytically produced oxidants by the fuel corresponds to the formation of an oxidised UO{sub 2+x} surface layer in distilled water and the formation and release of soluble U(VI)- carbonate complexes in bicarbonate media. Uranium release at early contact times is controlled by oxidative dissolution of the fuel matrix. This process also controls the release of Sr, Np and Pu. The measured concentrations of the actinides appear to be limited by the solubility of Ac(IV) hydroxide phases. The release of Tc and Mo appears to be controlled by oxidative dissolution of their metallic phases, Mo showing higher oxygen affinity than Tc in accordance with their thermodynamic properties. The behaviour of the lanthanides Nd and Y gives no evidence of congruent release with the fuel matrix. Cs is preferentially dissolved in agreement with earlier observations. Long time experiments indicate that some elements reach saturation with respect to secondary

  16. Curvature dependent modulation of fish fin stiffness

    Science.gov (United States)

    Nguyen, Khoi; Yu, Ning; Bandi, Mahesh; Venkadesan, Madhusudhan; Mandre, Shreyas

    Propulsion and maneuvering ability of fishes depends on the stiffness of their fins. However, increasing stiffness by simply adding material to thicken the fin would incur a substantial energetic cost associated with flapping the fin. We propose that fishes increase stiffness of the fin not by building thicker fins, but by geometrically coupling out-of-plane bending of the fin's rays with in-plane stretching of a stiff membrane that connects the rays. We present a model of fin elasticity for ray-finned fish, where we decompose the fin into a series of elastic beams (rays) with springy interconnections (membrane). In one limit, where the membranes are infinitely extensible, the fin's stiffness is no more than the sum of the stiffness of individual rays. At the other limit of an inextensible membrane, fin stiffness reaches an asymptotic maximum. The asymptote value increases monotonically with curvature. We propose that musculature at the base of the fin controls fin curvature, and thereby modulates stiffness.

  17. Stiffness and damping in mechanical design

    National Research Council Canada - National Science Library

    Rivin, Eugene I

    1999-01-01

    ... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...

  18. Knee stiffness and viscosity: New implementation and perspectives in prosthesis development

    Directory of Open Access Journals (Sweden)

    Klemen Bohinc

    2017-05-01

    Full Text Available The pendulum test is a method applied to measure passive resistance of the knee. A new and simple pendulum test with instrumentation based on infrared camera was used to evaluate knee stiffness and viscosity on a female human cadaver. The stiffness and viscosity were calculated based on the kinetic data. During the measurements, the periarticular and intraarticular soft tissue of the knee was gradually removed to determine the stiffness and viscosity as a function of the tissue removal rate. The measurements showed that the removal of tissue around the joint reduces the damping of leg oscillation, and therefore decreases the stiffness and viscosity. The contribution to knee joint damping was 10% for the skin, 20% for ligaments, and 40% for muscles and tendons. Tissue removal has a very large impact on the knee stiffness and viscosity.

  19. The effect of fixation technique on the stiffness of comminuted Vancouver B1 periprosthetic femur fractures.

    Science.gov (United States)

    Choi, Jung Keun; Gardner, Thomas R; Yoon, Ed; Morrison, Todd A; Macaulay, William B; Geller, Jeffrey A

    2010-09-01

    The purpose of this study was to evaluate the stiffness of 3 different constructs for the fixation of comminuted Vancouver B1 periprosthetic femoral shaft fractures: a single lateral locking plate, a single lateral locking plate plus an anterior strut allograft, and a lateral locking plate plus an anterior locking plate. The axial stiffness, lateral bending stiffness, and torsional stiffness of 10 synthetic periprosthetic femur fracture models were tested. Differences in stiffness between constructs were determined with a 1-way repeated-measures analysis of variance. Fixation technique was found to have a significant effect for all loading modalities (P < .0001). A lateral locked plate plus an anterior locked plate was significantly stiffer than the allograft that in turn was significantly stiffer than the single plate (P < .0001). Copyright 2010. Published by Elsevier Inc.

  20. Sabot Front Borerider Stiffness vs. Dispersion: Finding the Knee in the Curve

    Directory of Open Access Journals (Sweden)

    Alan F. Hathaway

    2001-01-01

    Full Text Available In the design of armor piercing, fin-stabilized, discarding sabot projectiles, the radial stiffness of the sabot front borerider has a significant impact on the projectile's dispersion and is, therefore, an important design consideration. Whether designing a new projectile or trying to improve an existing design, projectile designers can achieve front borerider stiffness without understanding its affect on dispersion characteristics. There is a knee in the stiffness vs. dispersion curve at which a change in the sabot front borerider stiffness will have a significant impact on dispersion or no impact at all depending on whether the stiffness is increased or decreased. The subject of this paper is an analytical approach to quantitatively determine the knee in the curve. Results from using this approach on the M865 APFSDS projectile are also presented.

  1. Foil Bearing Stiffness Estimation with Pseudospectral Scheme

    Directory of Open Access Journals (Sweden)

    Sankar Balaji

    2016-01-01

    Full Text Available Compliant foil gas lubricated bearings are used for the support of light loads in the order of few kilograms at high speeds, in the order of 50,000 RPM. The stiffness of the foil bearings depends both on the stiffness of the compliant foil and on the lubricating gas film. The stiffness of the bearings plays a crucial role in the stable operation of the supported rotor over a range of speeds. This paper describes a numerical approach to estimate the stiffness of the bearings using pseudo spectral scheme. Methodology to obtain the stiffness of the foil bearing as a function of weight of the shaft is given and the results are presented.

  2. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    Directory of Open Access Journals (Sweden)

    Anna Eliane Müller

    2014-11-01

    Full Text Available Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT and PEVK (increases PT. Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively, and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively. Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length ranging from 1.9-2.4µm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.

  3. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    Energy Technology Data Exchange (ETDEWEB)

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S. [Sandia National Labs., Albuquerque, NM (United States); Connolly, J.R. [New Mexico Univ., Albuquerque, NM (United States)

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.

  4. Test spectra experimental construction for evaluating gamma-spectrometry computer codes for the 235U determination

    Directory of Open Access Journals (Sweden)

    Karfopoulos Konstantinos L.

    2014-01-01

    Full Text Available The determination of 235U in environmental samples from its 185.72 keV photons may require the deconvolution of the multiplet photopeak at ~186 keV, due to the co-existence of the 186.25 keV photons of 226Ra in the spectrum. Successful deconvolution depends on many parameters, such as the detector characteristics, the activity concentration of the 235U and 226Ra in the sample, the background continuum in the 186 keV energy region and the gamma-spectrometry computer code used. In this work two sets of experimental test spectra were constructed for examining the deconvolution of the multiplet photopeak performed by different codes. For the construction of the test spectra, a high-resolution low energy germanium detector was used. The first series consists of 140 spectra and simulates environmental samples containing various activity concentration levels of 235U and 226Ra. The second series consists of 280 spectra and has been derived by adding 137Cs, corresponding to various activity concentration levels, to specific first series test spectra. As the 137Cs backscatter edge is detected in the energy region of the multiplet photopeak at ~186 keV, this second series of test spectra tests the analysis of the multiplet photopeak in high background continuum conditions. The analysis of the test spectra is performed by two different g-spectrometry analysis codes: (a spectrum unix analysis code, a computer code developed in-house and (b analysis of germanium detector spectra, a program freely available from the IAEA. The results obtained by the two programs are compared in terms of photopeak detection and photopeak area determination.

  5. Association between human cartilage glycoprotein 39 (YKL-40 and arterial stiffness in essential hypertension

    Directory of Open Access Journals (Sweden)

    Ma Wei-hong

    2012-05-01

    Full Text Available Abstract Background YKL-40, a proposed marker of inflammation and endothelial dysfunction, is associated with atherosclerosis and an increased cardiovascular mortality in the general population. However, the relationship between YKL-40 and arterial stiffness in hypertensive patients has not been adequately assessed. Methods The relationship between serum levels of YKL-40 and arterial stiffness was evaluated in 93 essential hypertensive subjects and 80 normal subjects. Essential hypertensive subjects were divided into two groups based upon urinary albumin-to-creatinine ratio (ACR: nonmicroalbuminuric group, (ACR n = 50 and microalbuminuric group (ACR ≥30 mg/g, n = 43. Large artery wall stiffness was assessed by measuring femoral arterial stiffness and carotid-femoral pulse wave velocity (cf-PWV. Serum levels of YKL-40 were determined by enzyme-linked immunosorbent assay (ELISA. Results The study demonstrated that YKL-40,cf-PWV and femoral arterial stiffness were increased significantly (PPr = 0.44, P = 0.000 and femoral arterial stiffness ( r = 0.42, P =0.001. Multiple linear stepwise regression analysis showed that YKL-40 was the impact factor of arterial stiffness ( P Conclusion YKL-40 levels are elevated in essential hypertension subjects with an independent association between increasing YKL-40 levels and increasing arterial stiffness. The study suggests it played a positive role of YKL-40 in the progressing vascular complications in patients with essential hypertension.

  6. Passive and active muscle stiffness in plantar flexors of long distance runners.

    Science.gov (United States)

    Kubo, Keitaro; Miyazaki, Daisuke; Yamada, Kenji; Yata, Hideaki; Shimoju, Shozo; Tsunoda, Naoya

    2015-07-16

    The aim of the present study was to compare passive and active muscle stiffness and tendon stiffness between long distance runners and untrained men. Twenty long distance runners and 24 untrained men participated in this study. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions. Passive muscle stiffness was also calculated from estimated passive muscle force and fascicle length during slow passive stretching. Tendon stiffness was determined during isometric plantar flexion by ultrasonography. Passive muscle stiffness of long distance runners was significantly higher than that of untrained men (prunners was also significantly higher than that of untrained men (prunners and untrained men (p=0.869). These results suggested that passive and active muscle stiffness were higher in long distance runners than in untrained men, whereas no significant difference was observed in tendon stiffness between the two groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The effects of cycling shoe stiffness on forefoot pressure.

    Science.gov (United States)

    Jarboe, Nathan Edward; Quesada, Peter M

    2003-10-01

    Plantar pressure data were recorded in two different shoe types to determine the effect of cycling shoe stiffness on peak plantar forefoot pressure in cyclists. Two pairs of shoes of the same size and manufacturer, identical except for outsole material and stiffness, were tested. Shoe stiffness measurements were collected under controlled conditions and in two different configurations using a dynamic hydraulic tensile testing machine. Measurements of plantar pressure were done using Pedar capacitive-based sensor insoles while subjects pedaled in a seated position at a controlled power output. Power output was set at a constant value of 400 W across all subjects by a magnetic resistance trainer unit. The pressure distribution in carbon-fiber-composite shoes during cycling was compared to cycling shoes made with plastic soles. Carbon fiber shoes presented stiffness values 42% and 550% higher than plastic shoes in longitudinal bending and three-point bending, respectively. The shoes made with carbon fiber produced peak plantar pressures 18% higher than those of plastic design (121 kPa vs. 103 kPa, p = .005). Competitive or professional cyclists suffering from metatarsalgia or ischemia should be especially careful when using carbon fiber cycling shoes because the shoes increase peak plantar pressure, which may aggravate these foot conditions.

  8. A Multiscale Mechanical Model for Plant Tissue Stiffness

    Directory of Open Access Journals (Sweden)

    Damiano Pasini

    2013-06-01

    Full Text Available Plant petioles and stems are hierarchical cellular structures, displaying structuralfeatures defined at multiple length scales. The current work focuses on the multi-scalemodelling of plant tissue, considering two orders of structural hierarchy, cell wall and tissue.The stiffness of plant tissue is largely governed by the geometry of the tissue cells, thecomposition of the cell wall and the structural properties of its constituents. The cell wallis analogous to a fiber reinforced composite, where the cellulose microfibril (CMF is theload bearing component. For multilayered cell wall, the microfibril angle (MFA in themiddle layer of the secondary cell wall (S2 layer largely affects the longitudinal stiffnessfor values up to 40o. The MFA in turn influences the overall wall stiffness. In this work,the effective stiffness of a model system based on collenchyma cell wall of a dicotyledonousplant, the Rheum rhabarbarum, is computed considering generic MFA and volume fractions.At the cellular level, a 2-D Finite Edge Centroidal Voronoi tessellation (FECVT has beendeveloped and implemented to generate the non-periodic microstructure of the plant tissue.The effective elastic properties of the cellular tissue are obtained through finite elementanalysis (FEA of the Voronoi model coupled with the cell wall properties. The stiffness ofthe hierarchically modeled tissue is critically important in determining the overall structuralproperties of plant petioles and stems.

  9. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia, E-mail: ematoso@hotmail.com [Centro Tecnológico da Marinha em São Paulo (CEA/CTMSP), Iperó, SP (Brazil). Centro Experimental Aramar

    2017-07-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  10. Using an experimental manipulation to determine the effectiveness of a stock enhancement program

    Science.gov (United States)

    Stewart, David R.; Long, James M.

    2015-01-01

    We used an experimental manipulation to determine the impact of stocking 178 mm channel catfish Ictalurus punctatus in six impoundments. The study design consisted of equal numbers (two) of control, ceased-stock, and stocked treatments that were sampled one year before and two years after stocking. Relative abundance, growth, size structure, and average weight significantly changed over time based on samples collected with hoop nets. Catch rates decreased at both ceased-stock lakes and increased for one stocked lake, while growth rates changed for at least one ceased-stock and stocked lake. The average weight of channel catfish in the ceased-stock treatment increased by 6% and 25%, whereas weight decreased by 28% and 78% in both stocked lakes. The variability in observed responses between lakes in both ceased-stock and stocked treatments indicates that a one-size-fits-all stocking agenda is impractical, suggesting lake specific and density-dependent mechanisms affect channel catfish population dynamics.

  11. Experimental determination of chosen document elements parameters from raster graphics sources

    Directory of Open Access Journals (Sweden)

    Jiří Rybička

    2010-01-01

    Full Text Available Visual appearance of documents and their formal quality is considered to be as important as the content quality. Formal and typographical quality of documents can be evaluated by an automated system that processes raster images of documents. A document is described by a formal model that treats a page as an object and also as a set of elements, whereas page elements include text and graphic object. All elements are described by their parameters depending on elements’ type. For future evaluation, mainly text objects are important. This paper describes the experimental determination of chosen document elements parameters from raster images. Techniques for image processing are used, where an image is represented as a matrix of dots and parameter values are extracted. Algorithms for parameter extraction from raster images were designed and were aimed mainly at typographical parameters like indentation, alignment, font size or spacing. Algorithms were tested on a set of 100 images of paragraphs or pages and provide very good results. Extracted parameters can be directly used for typographical quality evaluation.

  12. EXPERIMENTAL DETERMINATION OF PARAMETERS OF THE LAW GOVERNING DISTRIBUTION OF TIME PROBABILITIES BY PRECISE OPERATION OF AN ELECTRONIC APPARATUS,

    Science.gov (United States)

    For experimental determination of parameters of the law of time probability distribution of correct operation the demarcation of failures by causes...shows practically no effect on reliability. Parameters of the law of probabilities distribution, determined by numerical values of dispersion and

  13. Association between arterial stiffness and the deformability of red blood cells (RBCs)

    NARCIS (Netherlands)

    Lee, S. S.; Kim, N. J.; Sun, K.; Dobbe, J. G.; Hardeman, M. R.; Antaki, J. F.; Ahn, K. H.; Lee, S. J.

    2006-01-01

    The relationship between the flexibility of atherosclerotic vessels and RBC deformability has been investigated. A significant difference of RBC deformability was found among the arterial stiffness groups classified by oscillometric measurement of blood pressure. The deformability was determined by

  14. Experimental determination of thermal conductivities of dielectric thin films; Determination experimentale des conductivites thermiques de couches minces dielectriques

    Energy Technology Data Exchange (ETDEWEB)

    Scudeller, Y.; Hmina, N.; Lahmar, J.; Bardon, J.P. [Nantes Univ., 44 (France)

    1996-12-31

    This paper presents a method of measurement of thermal conductivity of sub-micron dielectric films in a direction perpendicular to the substrate. These films (oxides, nitrides, diamond..) are mainly used for the electrical insulation of semiconductor circuits and in optical treatments of high energy lasers. The principle of the method used and the experimental device are described. The results obtained with silicon oxides are discussed. (J.S.) 13 refs.

  15. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may be calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the

  16. Mortality risk in hemodialysis patients with increased arterial stiffness is reduced by attainment of classical clinical performance measures

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Thies, Christina; Cheikhalfraj, Mohamed

    2009-01-01

    We determined whether attainment of classical clinical performance measures for hemodialysis care improves survival in hemodialysis patients with increased arterial stiffness.......We determined whether attainment of classical clinical performance measures for hemodialysis care improves survival in hemodialysis patients with increased arterial stiffness....

  17. Experimental determination of vertical uprooting resistance for grass species used in flume experiments

    Science.gov (United States)

    Edmaier, K.; Crouzy, B.; Ennos, R.; Burlando, P.; Perona, P.

    2012-12-01

    Vegetation affects river morphodynamics by contributing to the stabilization of alluvial sediment via the root system. The survival and establishment of riparian pioneer vegetation on river bars and islands is determined by timescales of vegetation growth and flood interarrival times. Several laboratory experiments have investigated the role of vegetation in river morphodynamics but none of those has quantied the forces involved to produce uprooting of growing plants. Thus, parallel analyses on root resistance to uprooting are needed. In this work we investigate the uprooting resistance of young vegetation in laboratory experiments, where we vertically uprooted seedlings of Avena sativa and Medicago sativa. Uprooting force and work were related to the root structure (root length, number of roots, root tortuosity) and environmental conditions (grain size, saturation). We found the uprooting work of both species to follow a power law relation with the total root length which was found to be the main driving factor of the process. In addition, the number of roots was found to increase uprooting work. For similar total root length, the multi-root system of Avena sativa shows greater uprooting resistance in terms of work than the single-root system of Medicago sativa. Less sediment saturation produces higher uprooting forces and favors root breaking. Smaller sediment sizes lead to a higher uprooting resistance than bigger ones. Nevertheless, both saturation and grain size showed minor influence on the uprooting process compared to root characteristics. From measured uprooting forces of Avena sativa grown on sediment with a grain size distribution similar to that used in the flume experiments of Perona et al. (2012) we computed the ensemble probability of Avena sativa being uprooted by a particular drag force at certain growth stages, allowing us to compute a probability distribution of being uprooted in dependence of the root length and thus experimentally assess the

  18. In vivo bone remodeling rates determination and compressive stiffness variations before, during 60 days bed rest and two years follow up: A micro-FE-analysis from HR-pQCT measurements of the berlin Bed Rest Study-2

    Science.gov (United States)

    Ritter, Zully; Belavy, Daniel; Baumann, Wolfgang W.; Felsenberg, Dieter

    2017-03-01

    Bed rest studies are used for simulation and study of physiological changes as observed in unloading/non-gravity environments. Amongst others, bone mass reduction, similar as occurring due to aging osteoporosis, combined with bio-fluids redistribution and muscle atrophy have been observed and analyzed. Advanced radiological methods of high resolution such as HR-pQCT (XtremeCT) allow 3D-visualizing in vivo bone remodeling processes occurring during absence/reduction of mechanical stimuli (0 to Induced bone micro-structure (e.g. trabecular number, cortical thickness, porosity) and density variations can be quantified. However, these parameters are average values of each sample and important information regarding bone mass distribution and within bone mechanical behaviour is lost. Finite element models with hexa-elements of identical size as the HR-pQCT measurements (0.082 mm×0.082 mm×0.082 mm, ca. 7E6 elements/sample) can be used for subject-specific in vivo stiffness calculation. This technique also allows quantifying if bone microstructural changes represent a risk of mechanical bone collapse (fracture).

  19. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.

    Science.gov (United States)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew T; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-06-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1-2 cycles produced by 345-kHz, 500-kHz, 1.5-MHz and 3-MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured versus pressure amplitude. The results revealed that the intrinsic threshold (the negative pressure at which probability = 0.5) is independent of stiffness for Young's moduli (E) <1 MPa, with only a small increase (∼2-3 MPa) in the intrinsic threshold for tendon (E = 380 MPa). Additionally, results for all samples revealed only a small increase of ∼2-3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7 and 30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly affected by tissue stiffness or ultrasound frequency in the hundreds of kilohertz to megahertz range. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier

  20. Experimental Setup for Determining Ammonia-Salt Adsorption and Desorption Behavior Under Typical Heat Pump Conditions. Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Veldhuis, J.B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    For the aim of obtaining a better understanding of the performance of a salt-ammonia sorption reactor/heat exchanger a new test-rig was developed. This test-rig enables the measurement of the performance in adsorption and desorption mode of different sorption reactor designs. It measures the speed of uptake and release of ammonia gas of various salt-ammonia reactions under well-controlled and well-monitored process conditions, similar to the heat pump conditions. The test-rig measures the ammonia uptake and release under controlled pressure and temperature conditions. Temperatures of the salt reactor can be varied from ambient temperature up to 200{sup o}C and the ammonia pressure can be varied between 0.02 to 2 MPa. These conditions can be set independently and repeated at regular time-intervals. Besides NH3-mass-flow meters, pressure and temperature sensors, the setup also contains an endoscope to observe any macroscopic structural changes in the material during uptake and release of ammonia. Measurements so far have shown a liquid phase of LiCl.3NH3 at pressures of 0.5 MPa and temperatures exceeding 90{sup o}C. Voilent foaming is observed at 120{sup o}C resulting in salt losses. A correlation was determined between the reaction rate of MgCl{sub 2}(2-6)NH3 and the relative pressure gradient yielding a reaction time of about 1500 seconds for a relative pressure difference of 1. Multiple sorption cycles of the CaCl{sub 2}(2-4)NH3 reaction, showed a reduced activity from 85% of the theoretical maximum sorbed mass at the first sorption cycle, to 15% after 300+ cycles.

  1. Carotid and Aortic Stiffness in Patients with Heterozygous Familial Hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Alexandra I Ershova

    Full Text Available The role of plasma cholesterol in impairing arterial function and elasticity remains unclear. We evaluated arterial stiffness, measured locally in the common carotid artery by high-resolution echo-tracking, and aortic stiffness, using carotid-femoral pulse wave velocity (PWV (the "gold-standard" measurement of arterial stiffness, in treatment-naive patients with heterozygous familial hypercholesterolemia (FH.The study included 66 patients with FH (10-66 years old and 57 first-degree relatives without FH (11-61 years old. Carotid-femoral PWV was determined by SphygmoCor (AtCor, Australia. The parameters of carotid stiffness β-index, Peterson elastic modulus and local PWV were assessed with regard to the common carotid artery at a distance of 1cm from the bifurcation (AlokaProsound Alpha7, Japan.FH patients showed significantly higher β-index (6.3(4.8-8.2 vs. 5.2(4.2-6.4, p = 0.005, Ep (78(53-111 kPa vs. 62(48-79 kPa, p = 0.006, local PWV (5.4(4.5-6.4 m/c vs. 4.7(4.2-5.4 m/c, p = 0.005, but comparable values of carotid-femoral PWV (6.76(7.0-7.92 m/c vs. 6.48(6.16-7.12 m/c, p = 0.138. Carotid arteries and the aorta stiffened with age in patients with FH, but after 30 years, carotid arteries stiffened more significantly than the aorta.Our study demonstrated that treatment-naive patients with FH had stiffer carotid arteries than their relatives, but showed no difference in aortic stiffness. We also found out that the rate of reduction of elasticity of the aorta and carotid arteries in FH patients varies: it is observed earlier in carotid arteries than in the aorta.

  2. Experimental and Computational Method for Determining Parameters of Stress-Strain State from the Data Obtainable by Interference Optical Techniques

    Directory of Open Access Journals (Sweden)

    Razumovsky I.

    2010-06-01

    Full Text Available Experimental and computational method for determining parameters of stress-strain state is proposed which is based on estimation of compliance between the data sets obtained experimentally and the results of numerical calculations of the boundary problems in formulation of which all distinctive features of area geometry, character of the loads being considered and deformation characteristics of materials are taken into account. The procedure proposed was checked at a number of practically important problems.

  3. Determination of factors affecting relapse of vaginitis among reproductive-aged women: An experimental study.

    Science.gov (United States)

    Parsapour, Roxana; Majlessi, Fereshteh; Rahimiforoushani, Abbas; Sadeghi, Roya

    2017-01-01

    Vaginitis is a common problem for women, especially in reproductive-aged women. It is a worldwide health problem with many side effects but could be prevented by a health-promoting lifestyle related to vagina health. The aim of this study was to determine the factors affecting relapse of vaginitis. In this experimental study, 350 reproductive-aged women with vaginitis were selected from 10 health centers in Kermanshah (Iran) during 2015 and were equally included in the intervention and control groups. To collect data, a researcher-created questionnaire, which included sociodemographic and health-promoting lifestyle questions, was used. The educational intervention was performed over 20 sessions, each lasting 25-35 minutes. An intervention group was educated by face-to-face education, pamphlets, phone contacts, text messages, and social media. Another group continued the routine clinic education and treatment without contacting the intervention group. Data were analyzed through chi-square and a logistics regression model using IBM-SPSS version 20. The results of the study indicated a significant relation between sociodemographic characteristics such as women and their husbands' literacy, job, family size, income, area for each member of family, tendency of pregnancy, body mass index (BMI), and caesarean experience (prelationships between health-promoting lifestyle dimensions and prevention of vaginitis were identified. Relapse after intervention in the intervention group was 27.7% and 72.3% in the control group. According to the logistic regression analysis, chance for relapse of vaginitis in the group that did not receive intervention was more than the same chance in the intervention group (OR=5.14). Health-promoting lifestyle intervention influences prevention of vaginitis. Health-promoting lifestyle, literacy promotion, prevention of caesarian, and obesity are beneficial to improvement in lifestyle dimensions associated with vagina health could be implemented as

  4. CCDC 713130: Experimental Crystal Structure Determination : bis(2,5-Dihydrobenzylammonium) hexachloro-osmium(iv)

    KAUST Repository

    Reiner, T.

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. CCDC 721712: Experimental Crystal Structure Determination : (N-(2-Aminoethyl)-4-methylbenzenesulfonamidato)-(phenylalaninato)-ruthenium dimethylsulfoxide solvate

    KAUST Repository

    Reiner, Thomas

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. CCDC 844302: Experimental Crystal Structure Determination : N-1-Naphthyl-P,P-diphenylphosphinoselenoic amide

    KAUST Repository

    Al-Masri, H.T.

    2012-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  8. CCDC 887968: Experimental Crystal Structure Determination : Dichloro-bis(tricyclohexylphosphine)-(3-phenylindenylidene)-ruthenium tetrahydrofuran solvate

    KAUST Repository

    Urbina-Blanco, C.A.

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  9. CCDC 713129: Experimental Crystal Structure Determination : (eta^6^-Benzylammonium)-dichloro-(dimethylsulfoxide-S)-ruthenium(ii) chloride

    KAUST Repository

    Reiner, T.

    2011-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 1477679: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-indium

    KAUST Repository

    Wu, Melissa M.

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. CCDC 1427126: Experimental Crystal Structure Determination : bis(1,10-Phenanthroline)-copper pentafluoropropanoate

    KAUST Repository

    Huang, Yangjie

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. CCDC 1427127: Experimental Crystal Structure Determination : bis(1,10-Phenanthroline)-copper heptafluorobutanoate benzene solvate

    KAUST Repository

    Huang, Yangjie

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 870534: Experimental Crystal Structure Determination : Dichloro-trimethyl-tantalum(v)

    KAUST Repository

    Chen, Yin

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 721713: Experimental Crystal Structure Determination : Dichloro-(ethyl phenylalaninate)-tris(pyridine)-ruthenium(ii)

    KAUST Repository

    Reiner, Thomas

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1420580: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium acetylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1420581: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethylene

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1420582: Experimental Crystal Structure Determination : catena-[(mu-4,4'-sulfonyldibenzoato)-calcium ethane

    KAUST Repository

    Plonka, Anna M.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. CCDC 1024814: Experimental Crystal Structure Determination : 1,3-Dimesitylimidazolidine-2-selenone

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. CCDC 1011330: Experimental Crystal Structure Determination : 1,3,6,8-tetrakis(4-fluorophenyl)pyrene

    KAUST Repository

    El-Assaad, Tarek H.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  4. CCDC 1477678: Experimental Crystal Structure Determination : (1,3-dimesitylimidazolidin-2-ylidene)-trimethyl-gallium

    KAUST Repository

    Wu, Melissa M.

    2017-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. CCDC 1015953: Experimental Crystal Structure Determination : 1,3,6,8-tetrakis(4-phenoxyphenyl)pyrene

    KAUST Repository

    El-Assaad, Tarek H.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  6. CCDC 1010350: Experimental Crystal Structure Determination : dichloro-(methylenebis(di-t-butylphosphine))-palladium(ii)

    KAUST Repository

    Roesle, Philipp

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  7. CCDC 1446070: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-boron

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  8. CCDC 933273: Experimental Crystal Structure Determination : Chloro-(1-cyclododecyl-3-mesitylimidazol-2-ylidene)-gold

    KAUST Repository

    Queval, Pierre

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  9. CCDC 1429311: Experimental Crystal Structure Determination : N-(5-Bromoquinolin-8-yl)benzamide

    KAUST Repository

    Xu, Jun

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 1419731: Experimental Crystal Structure Determination : dodecakis(mu-2-phenylethanethiolato)-hexa-nickel dichloromethane solvate

    KAUST Repository

    Joya, Khurram S.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. CCDC 844303: Experimental Crystal Structure Determination : 1,1,3,3-Tetraphenyldiphosphoxane 1,3-disulfide

    KAUST Repository

    Al-Masri, H.T.

    2012-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. CCDC 930139: Experimental Crystal Structure Determination : Chloro-(1-cyclododecyl-3-mesitylimidazol-2-ylidene)-silver

    KAUST Repository

    Queval, Pierre

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 951636: Experimental Crystal Structure Determination : bis(tetra-n-butylammonium) trichloro-(nitrosyl)-(oxalato)-ruthenium

    KAUST Repository

    Kuhn, Paul-Steffen

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1048729: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)-3-phenylpropanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. CCDC 1059905: Experimental Crystal Structure Determination : 7,13-dimesitylindeno[1,2-b]thioxanthene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  16. CCDC 1048727: Experimental Crystal Structure Determination : bis(2-(hydroxyimino)propanoato)-tin(ii)

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  17. CCDC 963856: Experimental Crystal Structure Determination : catena-[bis(mu2-2-methylimidazole)-zinc

    KAUST Repository

    Shekhah, Osama

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. CCDC 1048728: Experimental Crystal Structure Determination : ammonium tris(2-(methoxyimino)propanoato)-tin(ii) dihydrate

    KAUST Repository

    Khanderi, Jayaprakash

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  19. CCDC 1446069: Experimental Crystal Structure Determination : tris(Pentafluorophenyl)-(triethylsilyl formate)-aluminium

    KAUST Repository

    Chen, Jiawei

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1436717: Experimental Crystal Structure Determination : 2-bromo-4,5-diiodo-1,3-thiazole

    KAUST Repository

    Shi, Qinqin

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1436716: Experimental Crystal Structure Determination : 5-fluoro-4-iodo-2,1,3-benzothiadiazole

    KAUST Repository

    Shi, Qinqin

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

    Directory of Open Access Journals (Sweden)

    Jana Vlachová

    2015-03-01

    Full Text Available The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0–20 nm. The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM, where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate (PMMA. The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model. This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor, which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting

  3. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body; Modelisation de la fissuration pour l'evaluation de la perte d'etancheite des structures en beton arme sous chargements mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Bongue Boma, M

    2007-12-15

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  4. Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft x-ray scattering

    Science.gov (United States)

    Zhang, S. L.; van der Laan, G.; Hesjedal, T.

    2017-09-01

    Long-wavelength spin spiral structures are ubiquitous in a large variety of magnetic materials. The detailed magnetic structure can take many variations owing to their different physical origins. Therefore, the unambiguous structural determination is crucial for understanding these spin systems, though such a task is experimentally challenging. Here, we show that ordered spin spiral structures can be fully determined in a single measurement by dichroic resonant elastic x-ray scattering using circularly polarized light. It is found that at certain geometrical conditions, the circular dichroism of the diffraction vanishes completely, revealing a one-to-one correspondence with the spin structure. We demonstrate both theoretically and experimentally this experimental principle, which allows for unambiguous structure determination immediately from the measured signal, whereby no modeling-based data refinement is needed. This largely expands the capabilities of conventional magnetic characterization techniques.

  5. How to determine a boundary condition for diffusion at a thin membrane from experimental data

    Science.gov (United States)

    Kosztołowicz, Tadeusz; WÄ sik, Sławomir; Lewandowska, Katarzyna D.

    2017-07-01

    We present a method of deriving a boundary condition for diffusion at a thin membrane from experimental data. Based on experimental results obtained for normal diffusion of ethanol in water, we show that the derived boundary condition at a membrane contains a term with a Riemann-Liouville fractional time derivative of order 1/2 . Such a form of the boundary condition shows that a transfer of particles through a thin membrane is a "long-memory process." The presented method is an example that an important part of the mathematical model of physical processes may be derived directly from experimental data.

  6. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2017-10-01

    Full Text Available The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δz or Δx, for example, 1 or 2 mm, can be generally caused a large deviation.

  7. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    Science.gov (United States)

    Yang, Yong; Li, Chengshan

    2017-10-01

    The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS) magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx) varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm) are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δ z or Δ x, for example, 1 or 2 mm, can be generally caused a large deviation.

  8. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    DEFF Research Database (Denmark)

    Moreno, Angel J; Bacova, Petra; Lo Verso, Federica

    2018-01-01

    of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness......Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer...

  9. Direct Determination of Absolute Configuration of Methyl-Substituted Phenyloxiranes: A Combined Experimental and Theoretical Approach

    DEFF Research Database (Denmark)

    Fristrup, Peter; Lassen, Peter Rygaard; Johannessen, Christian

    2006-01-01

    Three possible methyl-substituted phenyloxiranes have been synthesized in enantioenriched form (89-99% enantiomeric excess (ee)), and their vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra have been recorded. The experimental spectra are compared to theoretical spectra...... by comparing experimental and theoretical spectra. In addition, we have been able to document the changes that occur both in structures and in the VA and VCD spectra due to substituent effects on the oxirane ring....

  10. Stiff Neck, Torticollis, and Pseudotumor Cerebri

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-05-01

    Full Text Available Three prepubertal children diagnosed with pseudotumor cerebri and presenting with stiff neck and torticollis are reported from Schneider Children’s Medical Center, Sackler School of Medicine, Tel Aviv, Israel.

  11. Strength and stiffness of engineering systems

    CERN Document Server

    Leckie, Frederick A

    2009-01-01

    This book on the stiffness and strength of engineering systems integrates a wide array of topics into a unified text, including plasticity, fracture, composite materials, energy approaches, and mechanics of microdevices (MEMs)..

  12. Macroscopic stiffness of breast tumors predicts metastasis.

    Science.gov (United States)

    Fenner, Joseph; Stacer, Amanda C; Winterroth, Frank; Johnson, Timothy D; Luker, Kathryn E; Luker, Gary D

    2014-07-01

    Mechanical properties of tumors differ substantially from normal cells and tissues. Changes in stiffness or elasticity regulate pro-metastatic behaviors of cancer cells, but effects have been documented predominantly in isolated cells or in vitro cell culture systems. To directly link relative stiffness of tumors to cancer progression, we combined a mouse model of metastatic breast cancer with ex vivo measurements of bulk moduli of freshly excised, intact tumors. We found a high, inverse correlation between bulk modulus of resected tumors and subsequent local recurrence and metastasis. More compliant tumors were associated with more frequent, larger local recurrences and more extensive metastases than mice with relatively stiff tumors. We found that collagen content of resected tumors correlated with bulk modulus values. These data establish that relative differences in tumor stiffness correspond with tumor progression and metastasis, supporting further testing and development of tumor compliance as a prognostic biomarker in breast cancer.

  13. Wearable Vibrotactile Haptic Device for Stiffness Discrimination during Virtual Interactions

    Directory of Open Access Journals (Sweden)

    Andualem Tadesse Maereg

    2017-09-01

    Full Text Available In this paper, we discuss the development of cost effective, wireless, and wearable vibrotactile haptic device for stiffness perception during an interaction with virtual objects. Our experimental setup consists of haptic device with five vibrotactile actuators, virtual reality environment tailored in Unity 3D integrating the Oculus Rift Head Mounted Display (HMD and the Leap Motion controller. The virtual environment is able to capture touch inputs from users. Interaction forces are then rendered at 500 Hz and fed back to the wearable setup stimulating fingertips with ERM vibrotactile actuators. Amplitude and frequency of vibrations are modulated proportionally to the interaction force to simulate the stiffness of a virtual object. A quantitative and qualitative study is done to compare the discrimination of stiffness on virtual linear spring in three sensory modalities: visual only feedback, tactile only feedback, and their combination. A common psychophysics method called the Two Alternative Forced Choice (2AFC approach is used for quantitative analysis using Just Noticeable Difference (JND and Weber Fractions (WF. According to the psychometric experiment result, average Weber fraction values of 0.39 for visual only feedback was improved to 0.25 by adding the tactile feedback.

  14. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3.

    Science.gov (United States)

    Zhang, S L; van der Laan, G; Hesjedal, T

    2017-02-24

    The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.

  15. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  16. Capillary zone electrophoresis determination of galanthamine in biological fluids and pharmaceutical preparatives: experimental design and artificial neural network optimization.

    Science.gov (United States)

    Pokorná, L; Revilla, A; Havel, J; Patocka, J

    1999-07-01

    Galanthamine is a third-generation cholinesterase inhibitor used against Alzheimer's disease. New analytical methods for the determination of galanthamine in pharmaceutical preparatives and biological fluids, such as urine and serum, were developed. An experimental design and artificial neural network approach were used for method optimization. Thirty-five ppb of galanthamine were determined in serum samples (with addition of 10 mM magnesium chloride and using solid-phase preconcentration).

  17. Experimental determination of organic liquid fuels heating value as function of the humidity; Determinacao experimental do poder calorifico de combustiveis organicos liquidos em funcao da umidade

    Energy Technology Data Exchange (ETDEWEB)

    Lyrio, Aristoteles Alves; Dalvi, Elias Antonio; Vieira, Renata da Cruz Araujo [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Engenharia Mecanica

    1998-07-01

    This work presents experimental results for higher heating value (HHV) and lower heating value (LHV) of organic liquid fuels sold in gas stations situated at Vitoria Metropolitan Area in the state of Espirito Santo, Brazil. Experiments were conduced showing the influence of fuel water contents on the HHV and LHV such as gasoline, diesel oil, kerosene and alcohol, covering a wide range of humidity (0 to 70%). A correlation between higher heating value and the water content in the fuel was determined for the experimental data obtained. The main conclusion of the present work has shown that the content of water in the fuel makes its higher heating value to decrease in the same proportion as the value of the humidity (ratio between mass of water and mass of fuel mass of water), and so, it is very important to control the level of humidity in the fuel in order to avoid significant losses of heat released during the fuel combustion. (author)

  18. Experimental support for multiple-locus complementary sex determination in the parasitoid Cotesia vestalis

    NARCIS (Netherlands)

    Boer, de J.G.; Ode, P.J.; Rendahl, A.K.; Vet, L.E.M.; Whitfield, J.B.; Heimpel, G.E.

    2008-01-01

    Despite its fundamental role in development, sex determination is highly diverse among animals. Approximately 20% of all animals are haplodiploid, with haploid males and diploid females. Haplodiploid species exhibit diverse but poorly understood mechanisms of sex determination. Some hymenopteran

  19. Experimental Support for Multiple-Locus Complementary Sex Determination in the Parasitoid Cotesia vestalis

    NARCIS (Netherlands)

    de Boer, Jetske G.; Ode, Paul J.; Rendahl, Aaron K.; Vet, Louise E. M.; Whitfield, James B.; Heimpel, George E.

    2008-01-01

    Despite its fundamental role in development, sex determination is highly diverse among animals. Approximately 20% of all animals are haplodiploid, With haploid males and diploid females. Haplodiploid species exhibit diverse but poorly understood mechanisms of sex determination. Some hymenopteran

  20. THE RELATIONSHIP BETWEEN STIFFNESS LOSSES AND LOSSES IN BEARINGS OF ROPE BLOCKS

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2017-08-01

    Full Text Available Purpose. To determine the efficiency of rope blocks, it is necessary to determine the stiffness coefficient of the ropes of blocks, taking into account the classification group of the mechanism and the wrapping angle of a block by a rope. At this one should use well-tested values of the efficiency coefficients of the rope blocks, taking into account the wrapping angle of a block by a rope and the analytically found friction coefficients of the rolling bearings given to the trunnion. Methodology. The work presents the analytical method of determining the coefficient of bearing resistance of the block when it is rotated by both the inner and outer cages, as well as the design scheme of the bearing of the block. Findings. The analysis of the lubrication method effect, the operating mode of the mechanism and the wrapping angle of a block by a rope on losses in bearings was carried out for rope blocks. The corresponding comparative tables of losses are given. Analysis of the obtained calculation results allows us to establish: 1 the main resistance affecting the cable blocks efficiency is the resistance in bearings; 2 the second largest component is the stiffness losses, depending on the operating mode, the wrapping angle of a block by a rope, the type of bearing lubrication; 3 the block efficiency when rotating the inner cage is higher than rotating the outer one by about 3% with thick lubrication and 1M mode; 4 in the sequential location of assemblies with a rolling bearing, it is necessary to strive for the design of the assembly in which the inner cage rotates; 5 with the number of blocks up to 5, one can use the recommended definitions of block bearings in the literature with an error in the efficiency value of up to 10%. Originality. The authors obtained values of resistances in the rolling bearings of the rope blocks and stiffness losses due to the girth of the block by the rope. In this case, dependences were used to determine the coefficient

  1. Mechanism of regulation of stem cell differentiation by matrix stiffness.

    Science.gov (United States)

    Lv, Hongwei; Li, Lisha; Sun, Meiyu; Zhang, Yin; Chen, Li; Rong, Yue; Li, Yulin

    2015-05-27

    Stem cell behaviors are regulated by multiple microenvironmental cues. As an external signal, mechanical stiffness of the extracellular matrix is capable of governing stem cell fate determination, but how this biophysical cue is translated into intracellular signaling remains elusive. Here, we elucidate mechanisms by which stem cells respond to microenvironmental stiffness through the dynamics of the cytoskeletal network, leading to changes in gene expression via biophysical transduction signaling pathways in two-dimensional culture. Furthermore, a putative rapid shift from original mechanosensing to de novo cell-derived matrix sensing in more physiologically relevant three-dimensional culture is pointed out. A comprehensive understanding of stem cell responses to this stimulus is essential for designing biomaterials that mimic the physiological environment and advancing stem cell-based clinical applications for tissue engineering.

  2. Comparison of the axial stiffness of carbon composite and aluminium alloy circular external skeletal fixator rings.

    Science.gov (United States)

    Gauthier, C M; Kowaleski, M P; Gerard, P D; Rovesti, G L

    2013-01-01

    The purpose of this study was to compare the axial stiffness of aluminium alloy and carbon composite single-ring constructs. Single-ring constructs were made with rings of different material compositions (aluminium alloy and carbon composite), diameters (55 mm, 85 mm, and 115 mm), and thicknesses (6 mm for the single-ring, 12 mm for the double-ring) with all other components remaining constant. Stiffness of each construct was determined under loading in axial compression with a materials testing machine. The axial stiffness of each group was compared using a three-factor factorial analysis of variance investigating all main effects and interactions between ring diameter, ring thickness, and ring material composition; p <0.05 was considered significant. Carbon composite constructs were 16-55% as stiff as corresponding aluminium alloy constructs. Within each combination of ring material composition and ring diameter, stiffness did not significantly increase when the ring thickness was doubled. Within each combination of ring material composition and ring thickness, stiffness significantly decreased with increased ring diameter. Aluminium alloy rings were found to be significantly stiffer than carbon composite rings. Although the carbon composite rings were considerably less stiff, clinical recommendations cannot be made from a single-ring in vitro analysis. Further studies are needed to evaluate the behaviour of these rings in vivo.

  3. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during...

  4. Model-Based Estimation of Ankle Joint Stiffness

    Directory of Open Access Journals (Sweden)

    Berno J. E. Misgeld

    2017-03-01

    Full Text Available We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  5. Reaction from Dimethyl Carbonate to Diphenyl Carbonate. 1. Experimental Determination of the Chemical Equilibria

    NARCIS (Netherlands)

    Haubrock, J.; Raspe, M.; Versteeg, G.F.; Kooijman, H.A.; Taylor, R.; Hogendoorn, J.A.

    2008-01-01

    New experimental equilibrium data of the reaction of dimethyl carbonate (DMC) and phenol to methyl phenyl carbonate (MPC) and the subsequent disproportion and transesterification reaction of MPC to diphenyl carbonate (DPC) are presented and interpreted in terms of the reaction equilibrium

  6. Reaction from dimethyl carbonate to diphenyl carbonate. 1: Experimental determination of the chemical equilibria

    NARCIS (Netherlands)

    Haubrock, J.; Raspe, M.; Versteeg, Geert; Kooijman, H.A.; Taylor, R.; Hogendoorn, Kees

    2008-01-01

    New experimental equilibrium data of the reaction of dimethyl carbonate (DMC) and phenol to methyl phenyl carbonate (MPC) and the subsequent disproportion and transesterification reaction of MPC to diphenyl carbonate (DPC) are presented and interpreted in terms of the reaction equilibrium

  7. Experimental Determination of the Formation Enthalpy of Calcium Cobaltate from Sol–Gel Precursors

    DEFF Research Database (Denmark)

    Holgate, Tim C.; Wu, NingYu; Van Nong, Ngo

    2017-01-01

    for thermoelectric efficiency, there remains a gap in the knowledge, both experimental and theoretical, of the thermodynamics of the system. Presented herein is an analysis of the heat of formation of the Ca3Co4O9 phase from sol–gel precursors using a highly sensitive differential scanning calorimeter, as well...

  8. A Direct Experimental Determination of the Elastic Contribution of Chain Entangling in a Tightly Crosslinked Elastomer

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Kramer, O.

    1982-01-01

    The experimental result, that the equilibrium force is nearly equal to the pseudoequilibrium force immediately prior to quenching and irradiation, allows the following conclusions: (1) Chain scission during crosslinking is not a serious problem. (2) The network of highly entangled linear chains i...

  9. Determinants for swine mycoplasmal pneumonia reproduction under experimental conditions: A systematic review and recursive partitioning analysis.

    Directory of Open Access Journals (Sweden)

    Beatriz Garcia-Morante

    Full Text Available One of the main Mycoplasma hyopneumoniae (M. hyopneumoniae swine experimental model objectives is to reproduce mycoplasmal pneumonia (MP. Unfortunately, experimental validated protocols to maximize the chance to successfully achieve lung lesions induced by M. hyopneumoniae are not available at the moment. Thus, the objective of this work was to identify those factors that might have a major influence on the effective development of MP, measured as macroscopic lung lesions, under experimental conditions. Data from 85 studies describing M. hyopneumoniae inoculation experiments were compiled by means of a systematic review and analyzed thereafter. Several variables were considered in the analyses such as the number of pigs in the experiment, serological status against M. hyopneumoniae, source of the animals, age at inoculation, type of inoculum, strain of M. hyopneumoniae, route, dose and times of inoculation, study duration and co-infection with other swine pathogens. Descriptive statistics were used to depict M. hyopneumoniae experimental model main characteristics whereas a recursive partitioning approach, using regression trees, assessed the importance of the abovementioned experimental variables as MP triggering factors. A strong link between the time period between challenge and necropsies and lung lesion severity was observed. Results indicated that the most important factors to explain the observed lung lesion score variability were: (1 study duration, (2 M. hyopneumoniae strain, (3 age at inoculation, (4 co-infection with other swine pathogens and (5 animal source. All other studied variables were not relevant to explain the variability on M. hyopneumoniae lung lesions. The results provided in the present work may serve as a basis for debate in the search for a universally accepted M. hyopneumoniae challenge model.

  10. Determinants for swine mycoplasmal pneumonia reproduction under experimental conditions: A systematic review and recursive partitioning analysis.

    Science.gov (United States)

    Garcia-Morante, Beatriz; Segalés, Joaquim; Serrano, Emmanuel; Sibila, Marina

    2017-01-01

    One of the main Mycoplasma hyopneumoniae (M. hyopneumoniae) swine experimental model objectives is to reproduce mycoplasmal pneumonia (MP). Unfortunately, experimental validated protocols to maximize the chance to successfully achieve lung lesions induced by M. hyopneumoniae are not available at the moment. Thus, the objective of this work was to identify those factors that might have a major influence on the effective development of MP, measured as macroscopic lung lesions, under experimental conditions. Data from 85 studies describing M. hyopneumoniae inoculation experiments were compiled by means of a systematic review and analyzed thereafter. Several variables were considered in the analyses such as the number of pigs in the experiment, serological status against M. hyopneumoniae, source of the animals, age at inoculation, type of inoculum, strain of M. hyopneumoniae, route, dose and times of inoculation, study duration and co-infection with other swine pathogens. Descriptive statistics were used to depict M. hyopneumoniae experimental model main characteristics whereas a recursive partitioning approach, using regression trees, assessed the importance of the abovementioned experimental variables as MP triggering factors. A strong link between the time period between challenge and necropsies and lung lesion severity was observed. Results indicated that the most important factors to explain the observed lung lesion score variability were: (1) study duration, (2) M. hyopneumoniae strain, (3) age at inoculation, (4) co-infection with other swine pathogens and (5) animal source. All other studied variables were not relevant to explain the variability on M. hyopneumoniae lung lesions. The results provided in the present work may serve as a basis for debate in the search for a universally accepted M. hyopneumoniae challenge model.

  11. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles.

    Science.gov (United States)

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-12-23

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m(-1), 123.4700 GPa, 0.3000 and 0.0693 V·m·N(-1), respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m(-1) and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  12. Effect of long-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin C Y; McGill, Stuart M

    2015-06-01

    Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  13. The Effect of Long Term Isometric Training on Core/Torso Stiffness.

    Science.gov (United States)

    Lee, Benjamin; McGill, Stuart

    2015-03-23

    While core stiffness enhances athletic performance traits controversy exists regarding the effectiveness of isometric vs dynamic core training methods. This study aimed to determine if long term changes in stiffness can be trained, and if so, what is the most effective method. Twenty four healthy male subjects (23 ± 3 years, 1.8 ± 0.06 m, 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a six week core training intervention. Twelve subjects (22 ± 2 years, 1.8 ± 0.08 m, 78.3 ± 12.3 kg) were considered naïve to physical and core exercise. The other twelve subjects (24 ± 3 years, 1.8 ± 0.05 m, 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated measures design compared core training methods (Isometric vs. Dynamic, with a Control group) and subject training experience (naïve vs. savvy) before and after a six week training period. Passive stiffness was assessed on a 'frictionless' bending apparatus and active stiffness assessed via a quick release mechanism. Passive stiffness increased following the isometric training protocol. Dynamic training produced a smaller effect and as expected there was no change in the Control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  14. Comparison of experimental methods for determination of moisture in floor screeds

    OpenAIRE

    Bekrić, Vedran

    2008-01-01

    In the diploma work different floor screeds and demands regarding the screeds are given first. Then the test methods for determination of moisture in porous materials, such as gravimetric method, method with calcium carbide and measurements with GANN equipment, are described and tested mortar or concrete mixes for floor screeds are presented. Beside tests for moisture determination also additional tests carried out on fresh (flow table test and w/c ratio test) and hardened (determination of c...

  15. L X-ray fluorescence cross sections experimentally determined for elements with 45

    Energy Technology Data Exchange (ETDEWEB)

    Bonzi, Edgardo V., E-mail: bonzie@famaf.unc.edu.ar [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria-5010, Cordoba (Argentina); Badiger, Nagappa M. [Departments of Physics, Karnatak University, Dharwad 580 003, Karnataka (India); Grad, Gabriela B. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria-5010, Cordoba (Argentina); Barrea, Raul A. [The Biophysics Collaborative Access Team (BioCAT), Dept of Biological Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616 (United States); Figueroa, Rodolo G. [Departamento de Cs. Fisicas, Universidad de La Frontera, Temuco (Chile)

    2012-04-15

    Experimental determination of L fluorescence cross-sections for elements with 45determined at 9 keV using Synchrotron radiation. This work is part of an investigation we did at low energies in the same group of elements. The individual L X-ray photons, Ll, L{alpha}, L{beta}{sub I}, L{beta}{sub II}, L{gamma}{sub {Iota}} and L{gamma}{sub {Iota}{Iota}} produced in the target were measured using a Si(Li) detector. The experimental set-up provided a low background by using linearly polarized monoenergetic photon beam, improving the signal-to-noise ratio. The experimental cross sections obtained in this work were compared with data calculated using coefficients from , , and Scofield and Puri et al. (1993, 1995) - Highlights: Black-Right-Pointing-Pointer Experimental data of L fluorescence cross-sections with 45determined at 9 keV by Synchrotron radiation. Black-Right-Pointing-Pointer The cross sections Ll, L{alpha}, L{beta}{sub I}, L{beta}{sub II}, L{gamma}{sub {Iota}} and L{gamma}{sub {Iota}{Iota}} obtained, were compared with calculated data. Black-Right-Pointing-Pointer The Hypermet function was used to fit the data, because it considers a tail on the left side of the peak. Black-Right-Pointing-Pointer The tail is relevant when a small peak has another one on the right side with a big area.

  16. A convenient method and numerical tables for sample size determination in longitudinal-experimental research using multilevel models.

    Science.gov (United States)

    Usami, Satoshi

    2014-12-01

    Recent years have shown increased awareness of the importance of sample size determination in experimental research. Yet effective and convenient methods for sample size determination, especially in longitudinal experimental design, are still under development, and application of power analysis in applied research remains limited. This article presents a convenient method for sample size determination in longitudinal experimental research using a multilevel model. A fundamental idea of this method is transformation of model parameters (level 1 error variance [σ(2)], level 2 error variances [τ 00, τ 11] and its covariance [τ 01, τ 10], and a parameter representing experimental effect [δ]) into indices (reliability of measurement at the first time point [ρ 1], effect size at the last time point [Δ T ], proportion of variance of outcomes between the first and the last time points [k], and level 2 error correlation [r]) that are intuitively understandable and easily specified. To foster more convenient use of power analysis, numerical tables are constructed that refer to ANOVA results to investigate the influence on statistical power by respective indices.

  17. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: overcoming the difficulty in experimental determination.

    Science.gov (United States)

    Li, Chao; Xie, Hong-Bin; Chen, Jingwen; Yang, Xianhai; Zhang, Yifei; Qiao, Xianliang

    2014-12-02

    Short chain chlorinated paraffins (SCCPs) are under evaluation for inclusion in the Stockholm Convention on persistent organic pollutants. However, information on their reaction rate constants with gaseous ·OH (kOH) is unavailable, limiting the evaluation of their persistence in the atmosphere. Experimental determination of kOH is confined by the unavailability of authentic chemical standards for some SCCP congeners. In this study, we evaluated and selected density functional theory (DFT) methods to predict kOH of SCCPs, by comparing the experimental kOH values of six polychlorinated alkanes (PCAs) with those calculated by the different theoretical methods. We found that the M06-2X/6-311+G(3df,2pd)//B3LYP/6-311 +G(d,p) method is time-effective and can be used to predict kOH of PCAs. Moreover, based on the calculated kOH of nine SCCPs and available experimental kOH values of 22 PCAs with low carbon chain, a quantitative structure-activity relationship (QSAR) model was developed. The molecular structural characteristics determining the ·OH reaction rate were discussed. logkOH was found to negatively correlate with the percentage of chlorine substitutions (Cl%). The DFT calculation method and the QSAR model are important alternatives to the conventional experimental determination of kOH for SCCPs, and are prospective in predicting their persistence in the atmosphere.

  18. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    Science.gov (United States)

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The usefulness of measuring liver stiffness by transient elastography for assessing hepatic fibrosis in patients with various chronic liver diseases.

    Science.gov (United States)

    Tamano, Masaya; Kojima, Kazuo; Akima, Takashi; Murohisa, Toshimitsu; Hashimoto, Takashi; Uetake, Chizu; Sugaya, Takeshi; Nakano, Masakazu; Hiraishi, Hideyuki; Yoneda, Masashi

    2012-05-01

    The degree of hepatic fibrosis is an important factor for prognosis and management of patients with chronic liver disease; however, liver biopsy is an invasive method of measuring fibrosis. Here, we investigated the diagnostic utility of liver stiffness, as measured by transient elastography in assessing hepatic fibrosis of viral chronic liver disease and nonalcoholic fatty liver disease (NAFLD). Four hundred and nine eligible patients underwent transient elastography to measure liver stiffness. Liver biopsy for histopathological assessment of fibrosis (F0-F4) was performed in 71 of these patients. Serum levels of hyaluronic acid were determined in 110 patients. We assessed liver stiffness in several chronic liver diseases and compared correlations among liver stiffness, hepatic fibrosis stage and serum hyaluronic acid levels. A steady stepwise increase in liver stiffness was observed with progressing severity of hepatic fibrosis (pliver biopsy. In 32 chronic viral hepatitis patients, measuring liver stiffness was useful for differentiating between F1, or F2, or F3 and F4, while in 32 NAFLD liver stiffness can differentiate between F0 and F1, F2, or F3, F1 and F3 or F4 and F2 and F4. There was no significant correlation between liver fibrotic stages and serum hyaluronic levels. The present data advocates measuring liver stiffness for assessing hepatic fibrosis is more sensitive in NAFLD than viral chronic diseases, and liver stiffness is useful compared to serum hyaluronic acid level in estimating hepatic fibrosis.

  20. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped...

  1. MRT letter: Experimental verification of vectorial theory to determine field at the geometrical focus of a cylindrical lens.

    Science.gov (United States)

    Mohan, Kavya; Mondal, Partha Pratim

    2014-02-01

    We provide experimental evidence supporting the vectorial theory for determining electric field at and near the geometrical focus of a cylindrical lens. This theory provides precise distribution of field and its polarization effects. Experimental results show a close match (≈ 95% using χ(2)-test) with the simulation results (obtained using vectorial theory). Light-sheet generated both at low and high NA cylindrical lens shows the importance of vectorial theory for further development of light-sheet techniques. Potential applications are in planar imaging systems (such as, SPIM, IML-SPIM, imaging cytometry) and spectroscopy. Copyright © 2014 Wiley Periodicals, Inc.

  2. Neuromorphic Vibrotactile Stimulation of Fingertips for Encoding Object Stiffness in Telepresence Sensory Substitution and Augmentation Applications

    Directory of Open Access Journals (Sweden)

    Francesca Sorgini

    2018-01-01

    Full Text Available We present a tactile telepresence system for real-time transmission of information about object stiffness to the human fingertips. Experimental tests were performed across two laboratories (Italy and Ireland. In the Italian laboratory, a mechatronic sensing platform indented different rubber samples. Information about rubber stiffness was converted into on-off events using a neuronal spiking model and sent to a vibrotactile glove in the Irish laboratory. Participants discriminated the variation of the stiffness of stimuli according to a two-alternative forced choice protocol. Stiffness discrimination was based on the variation of the temporal pattern of spikes generated during the indentation of the rubber samples. The results suggest that vibrotactile stimulation can effectively simulate surface stiffness when using neuronal spiking models to trigger vibrations in the haptic interface. Specifically, fractional variations of stiffness down to 0.67 were significantly discriminated with the developed neuromorphic haptic interface. This is a performance comparable, though slightly worse, to the threshold obtained in a benchmark experiment evaluating the same set of stimuli naturally with the own hand. Our paper presents a bioinspired method for delivering sensory feedback about object properties to human skin based on contingency–mimetic neuronal models, and can be useful for the design of high performance haptic devices.

  3. Measurements of the weak bonding interfacial stiffness by using air-coupled ultrasound

    Science.gov (United States)

    Wu, Wen-Lin; Wang, Xing-Guo; Huang, Zhi-Cheng; Wu, Nan-Xing

    2017-12-01

    An air-coupled ultrasonic method, focusing on the problem that weak bonding interface is difficult to accurately measure using conventional nondestructive testing technique, is proposed to evaluate the bond integrity. Based on the spring model and the potential function theory, a theoretical model is established to predict the through-transmission spectrum in double-layer adhesive structure. The result of a theoretical algorithm shows that all the resonant transmission peaks move towards higher frequency with the increase of the interfacial stiffness. The reason for these movements is related to either the normal stiffness (KN) or the transverse stiffness (KT). A method to optimize the measurement parameters (i.e. the incident angle and testing frequency) is put forward through analyzing the relationship between the resonant transmission peaks and the interfacial spring stiffness at the frequency below 1MHz. The air-coupled ultrasonic testing experiments at the normal and oblique incident angle respectively are carried out to verify the theoretical analysis and to accurately measure the interfacial stiffness of double-layer adhesive composite plate. The experimental results are good agreement with the results from the theoretical algorithm, and the relationship between bonding time and interfacial stiffness is presented at the end of this paper.

  4. An Experimental Approach to Determine the Flight Dynamics of NASA’s Mars Science Lab Capsule

    Science.gov (United States)

    2014-01-01

    Transducer Module ( PTM ) packages and performed the free-flight experiments at ARL’s Transonic Experimental Facility at Aberdeen Proving Ground, MD...trajectory of the MSL capsule with instrumented MSL- PTM models, and recording flight data used for subsequent trajectory reconstruction. The method...tracking radar for lifting MSL-6 flight body. ...........................11 Figure 14. MSL- PTM CAD model assembly shown in exploded view

  5. Experimental Determination of System Outage Probability Due to First-Order and Second-Order PMD

    Science.gov (United States)

    Yaffe, Henry H.; Peterson, Daniel L., Jr.

    2006-11-01

    In this paper, a polarization-mode dispersion (PMD) tolerance testing procedure for transponders and transmission systems is described. This method exploits programmable PMD sources for testing the first- and second-order joint probability density function to estimate the total PMD network outage. Experimental data show that first-order-only PMD testing is insufficient to quantify the tolerance of a transponder and may falsely underestimate network outage.

  6. Computational and experimental determinations of the UV adsorption of polyvinylsilsesquioxane-silica and titanium dioxide hybrids.

    Science.gov (United States)

    Wang, Haiyan; Lin, Derong; Wang, Di; Hu, Lijiang; Huang, Yudong; Liu, Li; Loy, Douglas A

    2014-01-01

    Sunscreens that absorb UV light without photodegradation could reduce skin cancer. Polyvinyl silsesquioxanes are known to have greater thermal and photochemical stability than organic compounds, such as those in sunscreens. This paper evaluates the UV transparency of vinyl silsesquioxanes (VS) and its hybrids with SiO2(VSTE) and TiO2(VSTT) experimentally and computationally. Based on films of VS prepared by sol-gel polymerization, using benzoyl peroxide as an initiator, vinyltrimethoxysilane (VMS) formulated oligomer through thermal curing. Similarly, VSTE films were prepared from VMS and 5-25 wt-% tetraethoxysilane (TEOS) and VSTT films were prepared from VMS and 5-25 wt-% titanium tetrabutoxide (TTB). Experimental average transparencies of the modified films were found to be about 9-14% between 280-320 nm, 67-73% between 320-350nm, and 86-89% between 350-400nm. Computation of the band gap was absorption edges for the hybrids in excellent agreement with experimental data. VS, VSTE and VSTT showed good absorption in UV-C and UV-B range, but absorbed virtually no UV-A. Addition of SiO2 or TiO2 does not improve UV-B absorption, but on the opposite increases transparency of thin films to UV. This increase was validated with molecular simulations. Results show computational design can predict better sunscreens and reduce the effort of creating sunscreens that are capable of absorbing more UV-B and UV-A.

  7. Development of a Stiffness-Angle Law for Simplifying the Measurement of Human Hair Stiffness.

    Science.gov (United States)

    Jung, I K; Park, S C; Lee, Y R; Bin, S A; Hong, Y D; Eun, D; Lee, J H; Roh, Y S; Kim, B M

    2018-01-25

    This research examines the benefits of caffeine absorption on hair stiffness. In order to test hair stiffness, we have developed an evaluation method that is not only accurate, but also inexpensive. Our evaluation method for measuring hair stiffness culminated in a model, called the Stiffness-Angle Law, which describes the elastic properties of hair and can be widely applied to the development of hair care products. Small molecules (≤ 500 g/mol) such as caffeine can be absorbed into hair. A common shampoo containing 4% caffeine was formulated and applied to hair 10 times, after which the hair stiffness was measured. The caffeine absorption of the treated hair was observed using Fourier Transform Infrared Spectroscopy (FTIR) with a Focal Plane Array (FPA) detector. Our evaluation method for measuring hair stiffness consists of a regular camera and a support for single strands of hair. After attaching the hair to the support, the bending angle of the hair was observed with a camera and measured. Then the hair strand was weighed. The stiffness of the hair was calculated based on our proposed Stiffness-Angle law using three variables: angle, weight of hair, and the distance the hair was pulled across the support. The caffeine absorption was confirmed by FTIR analysis. The concentration of amide bond in the hair certainly increased due to caffeine absorption. After caffeine was absorbed into the hair, the bending angle and weight of the hair changed. Applying these measured changes to the Stiffness-Angle law, it was confirmed that the hair stiffness increased by 13.2% due to caffeine absorption. The theoretical results using the Stiffness-Angle law agree with the visual examinations of hair exposed to caffeine, and also the known results of hair stiffness from a previous report. Our evaluation method combined with our proposed Stiffness-Angle Law effectively provides an accurate and inexpensive evaluation technique for measuring bending stiffness of human hair. This

  8. Achilles tendon stiffness is unchanged one hour after a marathon.

    Science.gov (United States)

    Peltonen, Jussi; Cronin, Neil J; Stenroth, Lauri; Finni, Taija; Avela, Janne

    2012-10-15

    Overuse-induced injuries have been proposed as a predisposing factor for Achilles tendon (AT) ruptures. If tendons can be overloaded, their mechanical properties should change during exercise. Because there data are lacking on the effects of a single bout of long-lasting exercise on AT mechanical properties, the present study measured AT stiffness before and after a marathon. AT stiffness was determined as the slope of the force-elongation curve between 10 and 80% of maximum voluntary force. AT force-elongation characteristics were measured in an ankle dynamometer using simultaneous motion-capture-assisted ultrasonography. Oxygen consumption and ankle kinematics were also measured on a treadmill at the marathon pace. All measurements were performed before and after the marathon. AT stiffness did not change significantly from the pre-race value of 197±62 N mm(-1) (mean ± s.d.) to the post-race value of 206±59 N mm(-1) (N=12, P=0.312). Oxygen consumption increased after the race by 7±10% (Pmarathon induced a change in their foot strike technique. The AT of the physically active individuals seems to be able to resist mechanical changes under physiological stress. We therefore suggest that natural loading, like in running, may not overstress the AT or predispose it to injury. In addition, decreased running economy, as well as altered foot strike technique, was probably attributable to muscle fatigue.

  9. Experimental determination of the heat transfer coefficient in shell-and-tube condensers using the Wilson plot method

    Science.gov (United States)

    Havlik, Jan; Dlouhy, Tomas

    This article deals with the experimental determination of heat transfer coefficients. The calculation of heat transfer coefficients constitutes a crucial issue in design and sizing of heat exchangers. The Wilson plot method and its modifications based on measured experimental data utilization provide an appropriate tool for the analysis of convection heat transfer processes and the determination of convection coefficients in complex cases. A modification of the Wilson plot method for shell-and-tube condensers is proposed. The original Wilson plot method considers a constant value of thermal resistance on the condensation side. The heat transfer coefficient on the cooling side is determined based on the change in thermal resistance for different conditions (fluid velocity and temperature). The modification is based on the validation of the Nusselt theory for calculating the heat transfer coefficient on the condensation side. A change of thermal resistance on the condensation side is expected and the value is part of the calculation. It is possible to improve the determination accuracy of the criterion equation for calculation of the heat transfer coefficient using the proposed modification. The criterion equation proposed by this modification for the tested shell-and-tube condenser achieves good agreement with the experimental results and also with commonly used theoretical methods.

  10. Determination of bleb capsule porosity with an experimental glaucoma drainage device and measurement system.

    Science.gov (United States)

    Ross, Craig; Pandav, Surinder Singh; Li, Yu Qin; Nguyen, Dan Q; Beirne, Stephen; Wallace, Gordon G; Shaarawy, Tarek; Crowston, Jonathan G; Coote, Michael

    2015-05-01

    Control of intraocular pressure after implantation of a glaucoma drainage device (GDD) depends on the porosity of the capsule that forms around the plate of the GDD. To compare capsular porosity after insertion of 2 different GDDs using a novel implant and measurement system. We performed an experimental interventional study at an eye research facility in a tertiary eye care center. Testing was performed on 22 adult New Zealand white rabbits that received the experimental GDD or an existing GDD. A new experimental GDD, the Center for Eye Research Australia (CERA) implant, was created using computer-aided design and a 3-dimensional printer. The CERA GDDs were implanted in the eyes of rabbits randomized into 1 of the following 3 groups: with no connection to the anterior chamber (n = 7), with connection to the anterior chamber for 1 week (n = 5), and with connection to the anterior chamber for 4 weeks (n = 5). In a control group (n = 5), a pediatric GDD was implanted without connection to the anterior chamber. We measured the capsular porosity using a pressure-gated picoliter pump at a driving pressure of 12 mm Hg. The animals were killed humanely for histologic study. Porosity of the fibrous capsule around the implant. We found no difference in mean (SEM) capsular porosity between the CERA (3.39 [0.76; 95% CI, 1.43-5.48] µL/min) and pediatric (4.52 [0.52; 95% CI, 3.19-5.95] µL/min) GDDs (P = .28, unpaired t test) at 4 weeks without aqueous exposure. Mean (SEM) capsular porosity of CERA GDDs connected to the anterior chamber at 1 week was 2.46 (0.36; 95% CI, 1.55-3.44) µL/min but decreased to 0.67 (0.07; 95% CI, 0.49-0.86) µL/min at 4 weeks (P = .001, unpaired t test). Our experimental method permits direct measurement of capsular porosity of an in situ GDD. In a comparison between an experimental (CERA) and an existing GDD, no differences were identified in capsular porosity or histologic reaction between the implants. These results suggest that the CERA GDD

  11. Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry.

    Science.gov (United States)

    Omanović, Dario; Garnier, Cédric; Louis, Yoann; Lenoble, Véronique; Mounier, Stéphane; Pizeta, Ivanka

    2010-04-07

    Different procedures of voltammetric peak intensities determination, as well as various experimental setups were systematically tested on simulated and real experimental data in order to identify critical points in the determination of copper complexation parameters (ligand concentration and conditional stability constant) by anodic stripping voltammetry (ASV). Varieties of titration data sets (Cu(measured)vs. Cu(total)) were fitted by models encompassing discrete sites distribution of one-class and two-class of binding ligands (by PROSECE software). Examination of different procedures for peak intensities determination applied on voltammograms with known preset values revealed that tangent fit (TF) routine should be avoided, as for both simulated and experimental titration data it produced an additional class of strong ligand (actually not present). Peak intensities determination by fitting of the whole voltammogram was found to be the most appropriate, as it provided most reliable complexation parameters. Tests performed on real seawater samples under different experimental conditions revealed that in addition to importance of proper peak intensities determination, an accumulation time (control of the sensitivity) and an equilibration time needed for complete complexation of added copper during titration (control of complexation kinetics) are the keypoints to obtain reliable results free of artefacts. The consequence of overestimation and underestimation of complexing parameters is supported and illustrated by the example of free copper concentrations (the most bioavailable/toxic specie) calculated for all studied cases. Errors up to 80% of underestimation of free copper concentration and almost two orders of magnitude overestimation of conditional stability constant were registered for the simulated case with two ligands. Copyright 2010 Elsevier B.V. All rights reserved.

  12. The role of cable stiffness in the dynamic behaviours of submerged floating tunnel

    Directory of Open Access Journals (Sweden)

    Muhammad Naik

    2017-01-01

    Full Text Available Submerged floating tunnel (SFT is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters and can be a good alternative to long span suspension bridges and immersed tunnels. The mooring cables/anchors are main structural components to provide restoring capacity to the SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic analysis of SFT subjected to hydrodynamic and seismic excitations is performed. As the cable stiffness determines the deformation ability of SFT, therefore it becomes crucial to evaluate the effect of mooring cable stiffness on the response of SFT. The displacements and internal forces of SFT clearly specify that the vertical/tension leg mooring cables provide very small stiffness as compared to inclined mooring cables. In order to keep the SFT displacements within an acceptable limit, the effect of cable stiffness should be properly evaluated for practical design of SFT.

  13. The Effects of Barefoot and Shod Running on Limb and Joint Stiffness Characteristics in Recreational Runners.

    Science.gov (United States)

    Sinclair, Jonathan; Atkins, Stephen; Taylor, Paul J

    2016-01-01

    The authors aimed to determine the effects of barefoot (BF) and several commercially available barefoot-inspired (BFIS) footwear models on limb and joint stiffness characteristics compared with conventional footwear (CF). Fifteen male participants ran over a force platform at 4.0 m.s(-1), in BF, BFIS, and CF conditions. Measures of limb and joint stiffness were calculated for each footwear. The results indicate that limb and knee stiffness were greater in BF and minimalist BFIS than in CF. CF and more structured BFIS were associated with a greater ankle stiffness compared with BF and minimalist BFIS. These findings serve to provide further insight into the susceptibility of runners to different injury mechanisms as a function of footwear.

  14. [An investigation on the trend and related determinants of cigarette smoking on experimental smokers among undergraduate students in Changsha].

    Science.gov (United States)

    Yang, Liu; Chen, Feng-lei; Shi, Xiang-yu; Chen, Hao; Lin, Dan; Tan, Hong-zhuan

    2011-12-01

    To investigate the trend and related determinants of cigarette smoking on experimental smokers among undergraduate students in Changsha. Stratified sampling method was adopted and 3600 undergraduate students from grade 1 to 3 in Changsha city were investigated through a self-administered questionnaire. All the experimental smokers during the last month were selected and divided into two groups based on the present smoking status. χ(2) test and logistic regression analysis were used to compare the differences of cigarette smoking among subpopulations and to explore the determinants. Among the 1550 experimental smokers of undergraduate students, the prevalence of cigarette smoking was 30.8% (95%CI: 28.5 - 33.1). Students from the second-class (OR = 2.367) or the third-class universities (OR = 2.562) were more likely to adopt smoking behavior than those from top universities. Students majored in sports or arts (OR = 2.456) were significantly more inclined to smoke than the liberal arts students. Students whose father were cadres (OR = 1.602) were more likely to become smokers than those whose fathers were workers. Students being males (OR = 7.386), having high monthly expenses (OR = 1.139), with positive attitude to smoking benefits (OR = 1.140) were risk factors for smoking. Number of smoking members in the family (OR = 1.801) was significantly associated with the prevalence of cigarette smoking. Knowledge on diseases caused by smoking (OR = 0.806) was protecting factor to smoking among the experimental smokers. Those experimental smokers among undergraduate students might become smokers and the determinants of cigarette smoking behavior would include: ranking of universities, students' major, gender, father's occupation, amount of pocket money, number of smoking members in the family, knowledge about smoking, the attitude to the benefit of smoking.

  15. Modal Analysis and Experimental Determination of Optimum Tool Shank Overhang of a Lathe Machine

    Directory of Open Access Journals (Sweden)

    Nabin SARDAR

    2008-12-01

    Full Text Available Vibration of Tool Shank of a cutting tool has large influence on tolerances and surface finish of products. Frequency and amplitude of vibrations depend on the overhang of the shank of the cutting tool. In turning operations, when the tool overhang is about 2 times of the tool height, the amplitude of the vibration is almost zero and dimensional tolerances and surface finish of the product becomes high. In this paper, the above statement is verified firstly by using a finite element analysis of the cutting tool with ANSYS software package and secondly, with experimental verification with a piezoelectric sensor.

  16. Arterial stiffness in normotensive and hypertensive subjects: Frequency in community pharmacies.

    Science.gov (United States)

    Rodilla Sala, Enrique; Adell Alegre, Manuel; Giner Galvañ, Vicente; Perseguer Torregrosa, Zeneida; Pascual Izuel, Jose Maria; Climent Catalá, María Teresa

    2017-07-11

    Arterial stiffness (AS) is a well-recognized target organ lesion. This study aims to determine: 1) the frequency of AS in community pharmacies; 2) if stiffened subjects identified by brachial oscillometry have more CV risk factors than normal subjects, and 3) the dependence of stiffness on using either age-adjusted values or a fixed threshold. Observational, cross-sectional study in 32 community pharmacies of the Valencia Community, between November/2015 and April/2016. Stiffness was as pulse wave velocity (PWV) measured with a semi-automatic, validated device (Mobil-O-Graph(®), IEM), followed by a 10-item questionnaire. Mean age of the 1,427 consecutive recruited patients was 56.6 years. Overall proportion of patients with AS was 17.4% with age-adjusted PWV (9.4% in normotensives, 28.3% in hypertensives). Multivariate logistic regression showed independent association of stiffness in normotensives with male gender, obesity, higher pulse pressure and heart rate, in hypertensives, with higher pulse pressure and lower age. AS was globally found in 20.5% of subjects, defining stiffness by PWV>10m/s (6.2% in normotensives, 40.2% in hypertensives). It was associated with higher age and pulse pressure in both groups. Concordance in classifying stiffness was 74.6%. Frequency of AS varied between 17.4-20.5%. Age-adjusted stiffness is associated in normotensives with male gender, pulse pressure, obesity and heart rate, in hypertensives with pulse pressure and inversely to age. Stiffness by 10m/s is determined by higher pulse pressure and higher age. Both definitions of PWV are not interchangeable. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  17. Abnormal pulmonary artery stiffness in pulmonary arterial hypertension: in vivo study with intravascular ultrasound.

    Directory of Open Access Journals (Sweden)

    Edmund M T Lau

    Full Text Available BACKGROUND: There is increasing recognition that pulmonary artery stiffness is an important determinant of right ventricular (RV afterload in pulmonary arterial hypertension (PAH. We used intravascular ultrasound (IVUS to evaluate the mechanical properties of the elastic pulmonary arteries (PA in subjects with PAH, and assessed the effects of PAH-specific therapy on indices of arterial stiffness. METHOD: Using IVUS and simultaneous right heart catheterisation, 20 pulmonary segments in 8 PAH subjects and 12 pulmonary segments in 8 controls were studied to determine their compliance, distensibility, elastic modulus and stiffness index β. PAH subjects underwent repeat IVUS examinations after 6-months of bosentan therapy. RESULTS: AT BASELINE, PAH SUBJECTS DEMONSTRATED GREATER STIFFNESS IN ALL MEASURED INDICES COMPARED TO CONTROLS: compliance (1.50±0.11×10(-2 mm(2/mmHg vs 4.49±0.43×10(-2 mm(2/mmHg, p<0.0001, distensibility (0.32±0.03%/mmHg vs 1.18±0.13%/mmHg, p<0.0001, elastic modulus (720±64 mmHg vs 198±19 mmHg, p<0.0001, and stiffness index β (15.0±1.4 vs 11.0±0.7, p = 0.046. Strong inverse exponential associations existed between mean pulmonary artery pressure and compliance (r(2 = 0.82, p<0.0001, and also between mean PAP and distensibility (r(2 = 0.79, p = 0.002. Bosentan therapy, for 6-months, was not associated with any significant changes in all indices of PA stiffness. CONCLUSION: Increased stiffness occurs in the proximal elastic PA in patients with PAH and contributes to the pathogenesis RV failure. Bosentan therapy may not be effective at improving PA stiffness.

  18. Electrochemical stiffness in lithium-ion batteries

    Science.gov (United States)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  19. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Eder Paduan Alves

    2012-03-01

    Full Text Available The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materials: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained using a system called Thermocouple Data-Logger, which allowed monitoring and recording data in real-time operation. In the graph temperature versus time obtained, the heating rates, cooling were analyzed, and the maximum temperature was determined that occurred during welding, and characterized every phases of the process. The efficiency of this system demonstrated by experimental tests and the knowledge of the temperature at the bonding interface open new lines of research to understand the process of friction welding.

  20. Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Musko, Nikolai E.; Baiker, Alfons

    2013-01-01

    This study focuses on the investigation of the phase behavior of mixtures relevant to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The bubble points of corresponding quaternary mixtures of varying composition were experimentally determined. The Cubic-Plus-Associati......This study focuses on the investigation of the phase behavior of mixtures relevant to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The bubble points of corresponding quaternary mixtures of varying composition were experimentally determined. The Cubic....... The results reveal P–T regions where the system can exist in one single phase and where it is multiphase, which can be used for further optimization not only of the chemical reaction itself but also subsequent product separation processes....

  1. Does structural complexity determine the morphology of assemblages? An experimental test on three continents.

    Directory of Open Access Journals (Sweden)

    Heloise Gibb

    Full Text Available Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure.

  2. Dynamic strength and failure of 430F stainless steel determined by combined experimental-numerical method

    Science.gov (United States)

    Paris, Vitaly; Cohen, Amitay; Porat, Elkana; Fridman, Pinhas; Harpenes, Zvi; Yosef-Hai, Arnon; Levi-Hevroni, David

    2017-06-01

    Dynamic flow stress of metals is well known to depend significantly on the strain rate. Strain to failure behavior of ductile metals can be influenced by both the stress triaxiality and the strain rate. While either compressive or tensile Split Hopkinson Pressure Bar system (SHPB) are commonly used to obtain flow stress and failure data for metals, experimental methodologies to obtain such data under conditions of shear loading are less based. In the present study we have investigated the effect of strain rate on the flow stress and strain to failure of 430F stainless steel at strain rates ranging from 400 to 16000 1/sec using shear disc specimens (SDS) incorporated into standard SHPB system. The SDS sample is a disc having axisymmetric slits on its both flat faces which is sheared during the test by ring and cylinder-shaped adaptors mounted between the bars. The analysis of the data was performed by matching the experimental signals with results of numerical modeling of the tests. The obtained flow stress versus strain rate data were fitted with Cowper-Symonds model. The results indicate strong dependence of flow stress of 430F steel on strain rate in the investigated range of rates. The strain to failure data demonstrates a noticeable decrease with increase of the strain rate.

  3. Urban artificial light emission function determined experimentally using night sky images

    Science.gov (United States)

    Solano Lamphar, Héctor Antonio; Kocifaj, Miroslav

    2016-09-01

    To date, diverse approximations have been developed to interpret the radiance of a night sky due to light emissions from ground-based light sources. The radiant intensity distribution as a function of zenith angle is one of the most unknown properties because of the collective effects of all artificial, private and public lights. The emission function (EF) is, however, a key property in modeling the skyglow under arbitrary conditions, and thus it is equally required by modelers, light pollution researchers, and also experimentalists who are using specialized devices to study the diffuse light of a night sky. In this paper, we present the second generation of a dedicated measuring system intended for routine monitoring of a night sky in any region. The experimental technology we have developed is used to interpret clear sky radiance data recorded at a set of discrete distances from a town (or city) with the aim to infer the fraction of upwardly emitted light (F), that is a parameter scaling the bulk EF. The retrieval of the direct upward emissions has been improved by introducing a weighting factor that is used to eliminate imperfections of experimental data and thus to make the computation of F more stable when processing the radiance data taken at two adjacent measuring points. The field experiments made in three Mexican cities are analyzed and the differences found are discussed.

  4. A New Hybrid Gyroscope with Electrostatic Negative Stiffness Tuning

    Directory of Open Access Journals (Sweden)

    Xian Chu

    2013-05-01

    Full Text Available A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG which combines the traditional Dynamically Tuned Gyroscope (DTG with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.

  5. A new hybrid gyroscope with electrostatic negative stiffness tuning.

    Science.gov (United States)

    Yang, Bo; Guan, Yumei; Wang, Shourong; Zou, Qi; Chu, Xian; Xue, Haiyan

    2013-05-30

    A variety of gyroscopes have been extensively studied due to their capability of precision detection of rotation rates and extensive applications in navigation, guidance and motion control. In this work, a new Hybrid Gyroscope (HG) which combines the traditional Dynamically Tuned Gyroscope (DTG) with silicon micromachined technology is investigated. The HG not only has the potentiality of achieving the same high precision as the traditional DTG, but also features a small size and low cost. The theoretical mechanism of the HG with a capacitance transducer and an electrostatic torquer is derived and the influence of the installation errors from the capacitance plate and the disc rotor module is investigated. A new tuning mechanism based on negative stiffness rather than the traditional dynamic tuning is proposed. The experimental results prove that the negative stiffness tuning is practicable and a tuning voltage of as high as 63 V is demonstrated. Due to the decreased installation error, the non-linearity of the scale factor is reduced significantly from 11.78% to 0.64%, as well as the asymmetry from 93.3% to 1.56% in the open loop condition. The rebalancing close-loop control is simulated and achieved experimentally, which proves that the fundamental principle of the HG is feasible.

  6. Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Hattel, Jesper Henri; Løgstrup Andersen, Tom

    2012-01-01

    In this work, a cure hardening instantaneous linear elastic (CHILE) model and a path dependent (PD) constitutive approach are compared, for the case of modelling strain build-up during curing of a thick composite laminate part. The PD approach is a limiting case of viscoelasticity with path...... dependency on temperature and cure degree. Model predictions are compared to experimentally determined in-situ strains, determined using FBG sensors. It was found that both models offer good approximations of internal strain build-up. A general shortcoming is the lack of capturing rate-dependent effects...

  7. [Experimental determination of radiation scattering and absorption coefficients in a homogeneous layer of highly-dispersive biological medium].

    Science.gov (United States)

    Danilov, A A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A

    2006-01-01

    A method for experimental determination of optical characteristics of a highly-dispersive medium (radiation scattering and absorption coefficients) is described. The method is based on two mathematical models of ultrashort laser pulse propagation through a highly-dispersive medium (HDM), an axial model and a diffusion model. Milk dissolved in water was used as HDM. Dependences of optical characteristics of HDM on the concentration of milk in water are obtained. The limits of applicability of the axial and diffusion models to media with different scattering and absorption characteristics are determined.

  8. Elastic stiffness of a Skyrmion crystal.

    Science.gov (United States)

    Nii, Y; Kikkawa, A; Taguchi, Y; Tokura, Y; Iwasa, Y

    2014-12-31

    We observe the elastic stiffness and ultrasonic absorption of a Skyrmion crystal in the chiral-lattice magnet MnSi. The Skyrmion crystal lattice exhibits a stiffness 3 orders of magnitude smaller than that of the atomic lattice of MnSi, being as soft as the flux line lattice in type-II superconductors. The observed anisotropic elastic responses are consistent with the cylindrical shape of the Skyrmion spin texture. Phenomenological analysis reveals that the spin-orbit coupling is responsible for the emergence of anisotropic elasticity in the Skyrmion lattice.

  9. A Two-Degree of Freedom Variable Stiffness Actuator Based on the MACCEPA Concept

    Directory of Open Access Journals (Sweden)

    Maarten Weckx

    2014-04-01

    Full Text Available The current state-of-the-art of variable stiffness actuators consists mostly of different concepts for single-degree of freedom joints. However, in bio-inspired robotic applications, multiple degrees of freedom variable stiffness actuators are often desired. Currently, this is usually achieved by cascading single-degree of freedom actuators. The innovation presented in this work is a two-degree of freedom variable stiffness actuator using the mechanically adjustable and controllable equilibrium position actuator (MACCEPA concept. The presented actuator is not a cascade of two single-degree of freedom actuators, but centralizes the two degrees of freedom in one single joint. Equilibrium position and stiffness of the actuator are, furthermore, independently controllable in both degrees of freedom. The design and experimental validation of the actuator are discussed in this work. The independence of adjusting the equilibrium position and stiffness of the actuator are experimentally validated. The results show that the measured characteristics of the actuator sufficiently match the theoretically calculated ones. Future work includes implementing the presented two-degree of freedom actuator in an application, like a bipedal robot or a robotic arm.

  10. Numerical and experimental determination of the minimum and maximum measuring times for the hot wire parallel technique

    Directory of Open Access Journals (Sweden)

    Santos W. N. dos

    2003-01-01

    Full Text Available The hot wire technique is considered to be an effective and accurate means of determining the thermal conductivity of ceramic materials. However, specifically for materials of high thermal diffusivity, the appropriate time interval to be considered in calculations is a decisive factor for getting accurate and consistent results. In this work, a numerical simulation model is proposed with the aim of determining the minimum and maximum measuring time for the hot wire parallel technique. The temperature profile generated by this model is in excellent agreement with that one experimentally obtained by this technique, where thermal conductivity, thermal diffusivity and specific heat are simultaneously determined from the same experimental temperature transient. Eighteen different specimens of refractory materials and polymers, with thermal diffusivities ranging from 1x10-7 to 70x10-7 m²/s, in shape of rectangular parallelepipeds, and with different dimensions were employed in the experimental programme. An empirical equation relating minimum and maximum measuring times and the thermal diffusivity of the sample is also obtained.

  11. Equilibrium phase experimental determination of petroleum + gas systems at supercritical condition using ultrasonic technology; Estudo experimental do equilibrio de fases de sistemas de fracoes de petroleo e gases em condicoes supercriticas utilizando tecnicas de ultra-som: aparato experimental

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, Ana; Pessoa, Fernando L.P.; Silva, Silvia M.C. da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Feiteira, Jose F. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Engenharia

    2008-07-01

    In separation process of multicomponent systems based on phase equilibrium is essential know the phase behavior and the critical points of the system for determination and optimization of the operational conditions. The experimental apparatus presents the challenge of determine the equilibrium phase dates of a system composed by petroleum residua and supercritical solvent. The used method, named acoustic method, allows the composition identification of the phases in equilibrium also in cloudy systems as they are the systems formed by residues of crude oil. For this reason, the acoustic methodology, based on the ultra-sound technology will be used in the study of the phase equilibrium and experimental characterization of the system, in benches scale, operating in severe conditions of temperature and pressure.The acoustic method is one not invasive and not subjective technique, what becomes the work in high pressures safer. (author)

  12. Experimentally determined biomediated Sr partition coefficient for dolomite : Significance and implication for natural dolomite

    NARCIS (Netherlands)

    Sánchez-Román, Mónica; McKenzie, Judith A.; de Luca Rebello Wagener, Angela; Romanek, Christopher S.; Sánchez-Navas, Antonio; Vasconcelos, Crisógono

    2011-01-01

    Two strains of moderately halophilic bacteria were grown in aerobic culture experiments containing gel medium to determine the Sr partition coefficient between dolomite and the medium from which it precipitates at 15 to 45°C. The results demonstrate that Sr incorporation in dolomite does occur not

  13. A new experimental method to determine the saturation voltage of a small-geometry MOSFET

    Science.gov (United States)

    Jang, Wen-Yueh; Wu, Chung-Yu; Wu, Hong-Jen

    1988-09-01

    A new extraction method which determines the saturation voltage of a small-geometry MOSFET directly from the measured data is proposed and investigated. In this method, a special function G is formed and the drain-source saturation voltage is identified as the voltage of the peak point in a plot of G vs the drain-source voltage. Since the method is based on a general device theory, it is virtually independent of any device model and quite versatile and applicable for all MOSFETs. In addition, no given device parameters or iterations are required in the method. To verify the new method, SPICE MOS models are used as a calculation example. Moreover, the method is also applied to various fabricated MOSFETs to determine the saturation voltage. It is found that the saturation voltage can be definitely determined without ambiguity and the determined saturation voltage is quite close to that from the optimal extractions. Thus the method can be incorporated into the parameter extraction and the device modeling for small-geometry MOSFETs.

  14. Experimental Determination of Unknown Masses and Their Positions in a Mechanical Black Box

    Science.gov (United States)

    Chakrabarti, Bhupati; Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura

    2013-01-01

    An experiment with a mechanical black box containing unknown masses is presented. The experiment involves the determination of these masses and their locations by performing some nondestructive tests. The set-ups are inexpensive and easy to fabricate. They are very useful to gain an understanding of some well-known principles of mechanics.

  15. Experimental application of contour method for determination of residual stress in subsurface layers of milled sample

    Directory of Open Access Journals (Sweden)

    Karel Horák

    2012-01-01

    Full Text Available Determination of residual stress close to the sample surface is in the most cases performed by hole-drilling method, X-Ray diffraction or neutron diffraction. Each of these methods has its benefits and disadvantages. In case of diffraction methods the measurement speed is the main disadvantage. It is also very problematic to apply diffraction method in case of sample with mechanically deformed surface, for example by standard machining operations. Therefore, determined results are very often confusing and hard to interpret. On the other side, hole drilling method is less sensitive to quality of sample surface than diffraction methods, but measurement realization is quite expensive and equipment demanding (strain gage rosettes, miniature milling cutter, high speed milling machine, pc equipment,….Recently introduce contour method used for determination of residual stress inside the sample is very fast, can be performed with almost common laboratory equipment and combines traditional stance with modern numerical methods by FEM. Contour method was selected for determination of residual stress below the milled surface and the dependency of milling process quality on residual stress value is demonstrated.

  16. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type

    NARCIS (Netherlands)

    Kettler, Katja; Veltman, Karin; van de Meent, Dik; van Wezel, Annemarie|info:eu-repo/dai/nl/141376074; Hendriks, A. Jan

    2014-01-01

    The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present

  17. Experimental determination of solubility parameters of oils as a function of pressure

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Duong, Diep; Andersen, Simon Ivar

    2005-01-01

    In this work, the solubility parameter of dead and live crude oils was measured at 303.15 K and up to 300 bar, using the internal pressure approach. An indirect technique was chosen, using thermal expansivities (determined from microcalorimetric measurements) and isothermal compressibilities...

  18. Experimental determination of the impact of polysilicon LER on sub-100-nm transistor performance

    Science.gov (United States)

    Patterson, Kyle; Sturtevant, John L.; Alvis, John R.; Benavides, Nancy; Bonser, Douglas; Cave, Nigel; Nelson-Thomas, Carla; Taylor, William D.; Turnquest, Karen L.

    2001-08-01

    Photoresist line edge roughness (LER) has long been feared as a potential limitation to the application of various patterning technologies to actual devices. While this concern seems reasonable, experimental verification has proved elusive and thus LER specifications are typically without solid parametric rationale. We report here the transistor device performance impact of deliberate variations of polysilicon gate LER. LER magnitude was attenuated by more than a factor of 5 by altering the photoresist type and thickness, substrate reflectivity, masking approach, and etch process. The polysilicon gate LER for nominally 70 - 150 nm devices was quantified using digital image processing of SEM images, and compared to gate leakage and drive current for variable length and width transistors. With such comparisons, realistic LER specifications can be made for a given transistor. It was found that subtle cosmetic LER differences are often not discernable electrically, thus providing hope that LER will not limit transistor performance as the industry migrates to sub-100 nm patterning.

  19. Experimental and Numerical Determination of Hot Forming Limit Curve of Advanced High-Strength Steel

    Science.gov (United States)

    Ma, B. L.; Wan, M.; Liu, Z. G.; Li, X. J.; Wu, X. D.; Diao, K. S.

    2017-07-01

    This paper studied the hot formability of the advanced high-strength steel B1500HS. The hot Nakazima tests were conducted to obtain the forming limit curve (FLC), and the sheet temperatures were recorded to analyze temperature distributions during deformation. Meanwhile, the numerical simulations of hot Nakazima tests were performed to compare with the experimental ones. By utilizing the commercial software, Abaqus, the punch force-displacement curve, sheet temperature distribution at the time of the maximum punch load and temperature path of the necked element were investigated from both of experiments and numerical simulations. The FLCs from experiment and numerical simulation showed a good agreement. The temperature path of the necked element on each FLC specimen was different due to the numerical stretching time and stress state. This study demonstrated the predictive capability of finite element simulation on hot stamping.

  20. Experimental determination of LR-115 detector efficiency for exposure to alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, D.D.; Bochicchio, F.F. E-mail: bochicchio@iss.infn.it

    2001-06-01

    The alpha particle detection efficiency of LR-115 detectors has been measured against alpha particle energy E and incidence angle {theta} (with respect to the normal to the detector surface), using an experimental apparatus with an {sup 241}Am alpha source and air in a pressure-controlled chamber as the degrading medium, and a spark-counter for counting tracks. About 200 LR-115 detectors were exposed to alpha particles with E from 0.5 to 4.5 MeV (0.5 MeV step) and with {theta} from 0 deg. to 60 deg. (10 deg. step). Estimates of the critical angle {theta}{sub c} (the incidence angle above which no tracks were detected) as a function of E, and of E{sub min} and E{sub max} (energies, respectively, below which and above which no tracks were detected) against {theta} were obtained and compared with the results obtained by other authors.

  1. Experimental determination of cross section of alpha-induced reactions on natPd

    Science.gov (United States)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Shubin, Yu. N.

    2005-04-01

    Alpha-particle induced nuclear reactions that result in the generation of several Ag (mass numbers 103, 104g, 105, 106m, 110m, 111, 112) and Cd (mass numbers 104, 105, 111m) radionuclides were investigated using the stacked-foil activation technique on natural palladium targets up to Eα = 37 MeV. Excitation functions are reported for the first time for reactions of the type natPd(α, pxn)*Ag (x = 1-5) and natPd(α, xn)*Cd (x = 1-5). The experimental results are compared with model calculations performed with the ALICE-IPPE code. For selected radionuclides useful in medical practice a comparison of possible production routes for α, p and d induced reactions on natPd is discussed.

  2. Experimental determination of activation cross section of alpha-induced nuclear reactions on natPt

    Science.gov (United States)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Shubin, Yu. N.; Kovalev, S.

    2006-10-01

    Alpha-particle induced nuclear reactions that result in the generation of several Hg (mass numbers 192, 193m, 193g, 195m, 195g, 197m, 197g, 199m) and Au (mass numbers 194, 195m, 195g, 196n, 196g, 198m, 198g, 199, 200m) radionuclides were investigated. The stacked-foil activation technique on natural platinum targets was used. Excitation functions are reported for Eα from threshold up to 37 MeV. Cross sections are reported for the first time for reactions of the type natPt(α, xn) ∗Hg ( x = 1-5) and natPd(α,p xn) ∗Au ( x = 1-5). The experimental results are compared with literature values and with model calculations performed with the ALICE-IPPE code. Use of the data for possible applications in comparison with our earlier results for proton and deuteron induced reactions is discussed.

  3. Keeping the golden mean: plant stiffness and anatomy as proximal factors driving endophytic oviposition site selection in a dragonfly.

    Science.gov (United States)

    Matushkina, Natalia; Lambret, Philippe; Gorb, Stanislav

    2016-12-01

    Oviposition site selection is a crucial component of habitat selection in dragonflies. The presence of appropriate oviposition plants at breeding waters is considered to be one of the key habitat determinants for species laying eggs endophytically. Thus, Lestes macrostigma, a species which is regarded as threatened in Europe because of its highly disjunct distribution, typically prefers to lay eggs in the sea club rush Bolboschoenus maritimus. However, little is known about how the anatomical and mechanical properties of plant tissues determine the choice of L. macrostigma females. We examined green shoots of six plant species used by L. macrostigma for oviposition, either in the field (actual oviposition plants) or under experimental conditions (potential oviposition plants), to analyse anatomical and mechanical properties of shoots in a framework of known preferences regarding plant substrates for oviposition. As expected, the anatomy of shoots differed between representatives of two plant families, Cyperaceae and Juncaceae, most essentially in the distribution of supporting bundles and the presence of large aeriferous cavities that may affect egg placing within a shoot. The force necessary to puncture the tested plant samples ranged from 360 to 3298 mN, and their local stiffness ranged from 777 to 3363N/m. We show that the shoots of B. maritimus, the plant most preferred by L. macrostigma, have intermediate characteristics regarding both the stiffness and specific anatomical characteristics. The bending stiffness of the ovipositor in L. macrostigma was estimated as 1414N/m, one of the highest values recorded for zygopteran dragonflies so far. The ecological and behavioural implications of plant choice mechanisms in L. macrostigma are discussed in the context of the disjunct distribution of this species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Experimental and numerical determination of the mechanical response of teeth with reinforced posts.

    Science.gov (United States)

    Papadopoulos, Triantafillos; Papadogiannis, Dimitris; Mouzakis, Dionysios E; Giannadakis, Konstantinos; Papanicolaou, George

    2010-06-01

    The aim of this study was to evaluate the mechanical behavior of endodontically treated teeth restored with fiber reinforced composite posts versus titanium posts, by both experimental testing and numerical simulation (finite element analysis (FEA)). Forty maxillary central incisors were endodontically treated to a size 45 file and then obturated using gutta-percha points and sealer with the lateral condensation technique. The teeth were divided into four groups of ten teeth each. All the posts were of similar dimensions. The first group was restored using carbon fiber reinforced posts (CB), the second and third groups were restored using glass fiber reinforced posts (DP and FW, respectively), and the fourth group (control group) was restored using conventional titanium posts (PP). Half of the specimens of every group were submitted to hydrothermal cycling (2000 cycles, at 5 °C and 55 °C, respectively). All specimens were loaded until failure at a 45° angle with respect to the longitudinal axis at a cross head speed of 0.5 mm min(-1). A two-dimensional finite element model was designed in order to simulate the experimentally obtained results. Mechanical testing revealed that teeth restored with titanium posts exhibited the highest fracture strength. Debonding of the core was the main failure mode observed in glass fiber posts, whereas vertical root fractures were observed in the titanium posts. FEA revealed that the maximum stresses were developed at the interface between the post, dentin and the composite core critical regions in all three cases. Hydrothermal cycling had no significant effect on the fracture behavior of fiber reinforced composite posts.

  5. Determination of critical micelle concentration of cetyltrimethylammonium bromide: Different procedures for analysis of experimental data

    Directory of Open Access Journals (Sweden)

    Goronja Jelena M.

    2016-01-01

    Full Text Available Conductivity of two micellar systems was measured in order to determine critical micelle concentration (CMC of cetyltrimethylammonium bromide (CTAB. Those systems were: CTin water and CTin binary mixture acetonitrile (ACN-water. Conductivity (κ-concentration (c data were treated by four different methods: conventional method, differential methods (first and second derivative and method of integration (methods A-D, respectively. As CTin water micellar system shows a sharp transition between premicellar and postmicellar part of the κ/c curve, any of the applied methods gives reliable CMC values and there is no statistically significant difference between them. However, for CTin ACN-water mixture micellar system the integration method for CMC determination is recommended due to a weak curvature of κ/c plot.

  6. Experimental determination of the filling coefficient for an aspirated spark-ignition engine

    Science.gov (United States)

    Raţiu, S.; Alexa, V.; Kiss, I.; Cioată, V.

    2017-01-01

    This study aims at determining, by experiment, the filling coefficient of a spark-ignition, normal aspirated engine, with carburettor. For this purpose, a pilot plant was designed for measuring the pressure at various points on the route, simulating a stationary air flow regime by means of a vacuum pump. Measurements were made for various lifting heights of the intake valve and various opening positions of the throttle body, thus highlighting how their influence on the pressure loss and on the filling coefficient.

  7. Experimental determination of detonation parameters of explosives based on ammonium nitrate

    Science.gov (United States)

    Utkin, Alexander; Lavrov, Vladimir; Mochalova, Valentina

    2012-03-01

    Laser interferometer VISAR was used for investigation of the reaction zone structure and determination of detonation parameters in two different kinds of explosives based on ammonium nitrate: emulsion explosives and composite explosives with plastic binder. The influence of ammonium particles size, structure and charge diameter on detonation velocity and distribution of parameters inside of the reaction zone has been investigated for composite explosives. The effect of aging time of emulsion matrix with different storage time was found.

  8. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  9. A quasi-experimental approach to determining success criteria for ICT projects

    OpenAIRE

    MILIS, Koen; Meulder, M.; MERCKEN, Roger

    2003-01-01

    Since the 1960's many authors accepted the triple constraints (time, cost, specification) as a standard measure of success and this still appears to be extremely important in evaluating the success of ICT projects. However, a project cannot always be seen as a complete success or a complete failure. Moreover, the parties involved may perceive the terms "success" or "failure" differently. The authors have set up a quasiexperiment (gaming) in order to determine the criteria used by the differen...

  10. Experimentally Determined Overall Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    Science.gov (United States)

    Bue, Grant; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vogel, Matt; Vonaue, Walt; Conger, Bruce; Stein, James

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the overall heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flow rate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  11. Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography

    Directory of Open Access Journals (Sweden)

    Keitaro Yamashita

    2017-09-01

    Full Text Available Serial femtosecond crystallography (SFX using X-ray free-electron lasers (XFELs holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA, Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD phasing using X-rays of less than 1 Å wavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000. It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.

  12. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  13. Monte Carlo and experimental determination of correction factors for gamma knife perfexion small field dosimetry measurements

    Science.gov (United States)

    Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.

    2017-09-01

    Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of

  14. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.

    Science.gov (United States)

    Rosenberger, Matthew R; Chen, Sihan; Prater, Craig B; King, William P

    2017-01-27

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m(-1). To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  15. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki

    2017-08-08

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  16. Effects of passive ankle dorsiflexion stiffness on ankle mechanics during drop landings.

    Science.gov (United States)

    Whitting, J W; Steele, J R; McGhee, D E; Munro, B J

    2012-09-01

    Vertical landing tasks strain the Achilles tendon and plantar-flexors, increasing acute and overuse strain injury risk. This study aimed to determine how passive ankle dorsiflexion stiffness affected ankle mechanics during single limb drop landings at different vertical descent velocities. Cross-sectional study. Passive ankle dorsiflexion stiffness and passive weight-bearing dorsiflexion range of motion (DROM) were quantified for 42 men. Participants were then grouped as having low (LPS: 0.94±0.15 Nm°⁻¹; n=16) or high (HPS: 2.05±0.36 Nm°⁻¹; n=16; pdorsiflexion stiffness. Three-dimensional ankle joint kinematics was quantified while participants performed drop landings onto a force platform at two vertical descent velocities (slow: 2.25±0.16 ms⁻¹; fast: 3.21±0.17 ms⁻¹). Although affected by landing velocity, there were no significant effects of passive ankle dorsiflexion stiffness, nor any significant ankle dorsiflexion stiffness×vertical descent velocity interactions on any outcome variables characterising ankle mechanics during drop landings. Furthermore, there was no significant difference between the groups for passive weight-bearing DROM (LPS: 43.9±4.1°; HPS: 42.5±5.7°), indicating that the results were not confounded by between-group differences in ankle range of motion. Neither high nor low passive ankle dorsiflexion stiffness was found to influence ankle biomechanics during drop landings at different descent velocities. Landing strategies were moderated more by the demands of the task than by passive ankle dorsiflexion stiffness, indicating that passive ankle dorsiflexion stiffness may not affect plantar-flexor strain during a drop landing. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  18. Determination of radiative widths of scalar mesons from experimental results on γ γ ->π π

    Science.gov (United States)

    Boglione, M.; Pennington, M. R.

    1999-06-01

    The scalar mesons in the 1 GeV region constitute the Higgs sector of the strong interactions. They are responsible for the masses of all light flavour hadrons. However, the composition of these scalar states is far from clear, despite decades of experimental effort. The two photon couplings of the f0's are a guide to their structure. Two photon results from Mark II, Crystal Ball and CELLO prompt a new Amplitude Analysis of γγtoπ^+π^-, π^0π^0 cross-sections. Despite their currently limited angular coverage and lack of polarized photons, we use a methodology that provides the nearest one can presently achieve to a model-independent partial wave separation. We find two distinct classes of solutions. Both have very similar two photon couplings for the f_0(980) and f_0(400-1200). Hopefully these definitive results will be a spur to dynamical calculations that will bring us a better understanding of these important states.

  19. Determination of effective miRNAs in wound healing in an experimental Rat Model.

    Science.gov (United States)

    Coskunpinar, E; Arkan, H; Dedeoglu, B G; Aksoz, I; Polat, E; Araz, T; Aydos, A; Oztemur, Y; Akbas, F; Onaran, I

    2015-12-24

    The larvae of Lucilia sericata have been used for centuries as medicinal maggots in the healing of wounds. The present study aimed to screen potential microRNAs related to ES-induced wound healing in rat skin wounds and to investigate the potential mechanisms contributing to accelerated wound healing. Healthy, male, 12 weeks old Wistar albino rats weighing 250-300 g were supplied by the Animal Experimental Center. All animal studies were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Wistar albino rats were treated by ES after post wounding and the differentially expressed miRNAs in wound biopsies were screened by microarray analysis at the end of treatments for 4,7 and 10 days. In addition, bioinformatics approaches were used to identify the potential target genes of differentially expressed miRNAs and the functions of their target genes. We found a significant up-regulation of rno-miR-99a* and rno-mir-877 in response to ES treatment. Further investigation of rno-miR-99a* and rno-mir-877 and their target genes (TGFa, TNF, TAGLN, MAPK1, MMP-9) implicated in present study could provide new insight for an understanding lead to the development of new treatment strategies. The identified miRNAs can be new biomarkers for ES- induced wound healing.

  20. Determining heat loss from the surface of polymer films via modeling of experimental fluorescence thermometry

    Science.gov (United States)

    Firestone, Gabriel; Bochinski, Jason; Meth, Jeffrey; Clarke, Laura

    Understanding of the heat transfer characteristics of a polymer during processing is critical to predicting and controlling the resulting properties and has been studied extensively in injection molding. As new methodologies for polymer processing are developed, such as photothermal heating, it is important to build an understanding of how heat transfer properties change under these novel conditions. By combining theoretical and experimental approaches, the thermal properties of photothermally heated polymer films were measured. The key idea is that by measuring the steady state temperature profile of a spot heated polymer film via a fluorescence probe (the temperature versus distance from the heated region) and fitting to a theoretical model, heat transfer coefficients can be extracted. We apply this approach to three different polymer systems, crosslinked epoxy, poly(methyl methacrylate) and poly(ethylene oxide) thin films with a range of thicknesses, under different heating laser intensities and with different resultant temperatures. We will discuss the resultant trends and extension of the model beyond a simple spot heating configuration. Support from National Science Foundation CMMI-1069108 and CMMI-1462966.

  1. Determining host metabolic limitations on viral replication via integrated modeling and experimental perturbation.

    Directory of Open Access Journals (Sweden)

    Elsa W Birch

    Full Text Available Viral replication relies on host metabolic machinery and precursors to produce large numbers of progeny - often very rapidly. A fundamental example is the infection of Escherichia coli by bacteriophage T7. The resource draw imposed by viral replication represents a significant and complex perturbation to the extensive and interconnected network of host metabolic pathways. To better understand this system, we have integrated a set of structured ordinary differential equations quantifying T7 replication and an E. coli flux balance analysis metabolic model. Further, we present here an integrated simulation algorithm enforcing mutual constraint by the models across the entire duration of phage replication. This method enables quantitative dynamic prediction of virion production given only specification of host nutritional environment, and predictions compare favorably to experimental measurements of phage replication in multiple environments. The level of detail of our computational predictions facilitates exploration of the dynamic changes in host metabolic fluxes that result from viral resource consumption, as well as analysis of the limiting processes dictating maximum viral progeny production. For example, although it is commonly assumed that viral infection dynamics are predominantly limited by the amount of protein synthesis machinery in the host, our results suggest that in many cases metabolic limitation is at least as strict. Taken together, these results emphasize the importance of considering viral infections in the context of host metabolism.

  2. Detonation capturing for stiff combustion chemistry

    NARCIS (Netherlands)

    Berkenbosch, A.C.; Kaasschieter, E.F.; Klein, R.

    1998-01-01

    This paper contributes to the topic of unphysical one-cell-per-time-step travelling combustion wave solutions in numerical computations of detonation waves in the presence of stiff chemical source terms. These false weak detonation solutions appear when a gas-dynamics-chemistry operator-splitting

  3. Alcohol consumption and arterial stiffness in men

    NARCIS (Netherlands)

    Sierksma, A.; Muller, M.; Schouw, Y.T. van der; Grobbee, D.E.; Hendriks, H.F.J.; Bots, M.L.

    2004-01-01

    Objective: Moderate alcohol consumption has been proposed to be anti-atherogenic and protect against coronary heart disease. Arterial stiffness provides a summary measure of atherosclerotic arterial damage and cardiovascular risk. A vascular protective effect of moderate alcohol consumption would be

  4. Bipedal walking gait with variable stiffness knees

    NARCIS (Netherlands)

    Roozing, W.; Carloni, Raffaella

    The Segmented Spring-Loaded Inverted Pendulum model is analysed, and it is shown that it exhibits walking gait. We propose a control architecture that exploits control of the knee stiffness to provide robustness of the system with respect to changes in gait. This controller is extended for a

  5. Robust Bipedal Walking with Variable Leg Stiffness

    NARCIS (Netherlands)

    Visser, L.C.; Stramigioli, Stefano; Carloni, Raffaella

    The bipedal spring-mass model embodies important characteristics of human walking, and therefore serves as an important starting point in studying human-like walking for robots. In this paper, we propose to extend the bipedal spring-mass model with variable leg stiffness and exploit the potential of

  6. Experimental determination of the 17O(n_th,alpha)14C reaction cross section

    OpenAIRE

    Wagemans, Jan; Wagemans, Cyriel; Bieber, Ronald; Geltenbort, Peter

    1999-01-01

    The 17O(n_th,alpha)14C reaction cross section was determined at the high flux reactor of the ILL in Grenoble relative to the known 14N(n_th,p)14C cross section. The 17O(n_th,alpha)14C measurements were performed with several highly enriched oxygen gas samples and the flux calibration was done with 14N_2 from the air. This resulted in a precise value of (244+/-7)mb for the 17O(n_th,alpha)14C cross section.

  7. Experimental determination of B R-12 attenuation coefficients utilizing photon spectrometry;Deteminacao experimental de coeficientes de atenuacao de BR-12 atraves de espectrometria de fotons

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Junior, Jose N.; Terini, Ricardo A. [Pontificia Universidade Catolica de Sao Paulo (PUC-SP), Sao Paulo, SP (Brazil). Dept. de Fisica; Herdade, Silvio B. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia (IEE). Secao Tecnica de Desenvolvimento Tecnologico em Saude

    2009-07-01

    In tests for quality assurance in mammography, it is common to use breast phantoms, with different compositions. One of the most used is the BR-12 phantom. There are few published experimental data on the attenuation of BR-12. Generally, the available attenuation coefficients are calculated from the composition of the coefficients determined for its components. In this work, the spectrometric method was used, with a CdTe detector, for X- and {gamma}-rays from radioactive sources of {sup 133}Ba and {sup 241}Am. The spectra of direct and attenuated by 0.5 cm of BR-12 beams were measured. From the ratio of intensities obtained for these radiations, it was possible to determine values of the attenuation coefficients from Beer's law. Results show coherence with previous data. The values of such coefficients are useful, for example, for calculations of absorbed dose (in BR-12), which have been made on other research activities of this group. (author)

  8. Determinación experimental de los coeficientes locales de transporte de humedad en almacenes soterrados. // Experimental determination of local humidity transport coefficients in underground warehouses.

    Directory of Open Access Journals (Sweden)

    Ma. D. Andrade Gregori

    2006-05-01

    Full Text Available En el trabajo se fundamentan los mecanismos de transporte de humedad que tienen lugar en almacenes soterrados dadas lascaracterísticas climáticas y geohidrològicas de Cuba. Se establece una analogía con la ley de Fick y se propone un modeloteórico que describe este mecanismo de transporte hacia las cavidades. Se determinó experimentalmente los coeficienteslocales de transporte de humedad para diferentes tipos de recubrimiento en paredes y diferentes formas geométricas de losalmacenes.Palabras claves: Almacenes, soterrado, humedad, conservación, coeficientes._______________________________________________________________________________Abstract.In this paper the mechanisms of humidity transport are explained. These mechanisms have place in underground warehousesaccording to the climatic and geohydrological characteristics of Cuba. An analogy with the Fick´s law is stated and it intends atheoretical model that describes this mechanism of transport toward the cavities. It was determined the local coefficients oftransport of humidity experimentally for different recover types in walls and different geometric forms of the warehouses.Key words: Store, buried, humidity, conservation, and coefficients.

  9. Dynamic stiffness and damping of foundations for jacket structures

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara; Johannesson, Björn

    2015-01-01

    resistance as defined by Nogami & Novak (1977) is determined, considering 3D wave propagation within linear soil layer with hysteretic damping. Thereafter, the dynamic response of the pile is estimated assuming soil pressure equal to the soil resistance and imposing displacement compatibility. A parametric...... study clarifies the role of the parameters involved i.e. the depth of the soil layer, the pile diameter and the soil layer shear wave velocity. Results are presented in terms of dimensionless graphs which highlight the frequency dependency of the dynamic stiffness and damping....

  10. Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation

    Science.gov (United States)

    Mossahebi, Sina

    Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy

  11. Ultrasound Determination of Gestational Age Using Placental Thickness in Female Dogs: An Experimental Study

    Directory of Open Access Journals (Sweden)

    André Luiz Louzada Maldonado

    2012-01-01

    Full Text Available Objective. To verify if the placental thickness allows determining the gestational age, evaluating the correlation between the referred gestational age with the studied one, and the accuracy of the placental thickness measurement (biometry with fetal morphologic parameters in bitches. Methods. The placental thickness of 336 bitches of diverse breeds was evaluated. Bitches were divided in three groups by body weight: small, medium, and big large size. The gestations pregnancies were evaluated by ultrasound from the third week of gestation. An analysis was performed between the mean values of the gestational age obtained of placental thickness by adjustment of curves and the reported gestational age. Student's t-test was applied to compare the mean of reported and placental thickness gestational age. Significance was defined as P<0.05. Results. A positive and statistically significant correlation exists between the placental thickness and gestational age. The expression that presents the best correlation coefficient and explanation was thickness of placenta = 0.021x gestational age −0.314. Conclusion. It is possible to determine the gestational age in relation to the placental thickness measured by ultrasound in bitches with a satisfactory accuracy in relation to fetal morphologic parameters as gestational vesicle, ribs, or kidneys.

  12. Ultrasound determination of gestational age using placental thickness in female dogs: an experimental study.

    Science.gov (United States)

    Maldonado, André Luiz Louzada; Araujo Júnior, Edward; Mendonça, Débora Sartori; Nardozza, Luciano Marcondes Machado; Moron, Antonio Fernandes; Ajzen, Sérgio Aron

    2012-01-01

    Objective. To verify if the placental thickness allows determining the gestational age, evaluating the correlation between the referred gestational age with the studied one, and the accuracy of the placental thickness measurement (biometry) with fetal morphologic parameters in bitches. Methods. The placental thickness of 336 bitches of diverse breeds was evaluated. Bitches were divided in three groups by body weight: small, medium, and big large size. The gestations pregnancies were evaluated by ultrasound from the third week of gestation. An analysis was performed between the mean values of the gestational age obtained of placental thickness by adjustment of curves and the reported gestational age. Student's t-test was applied to compare the mean of reported and placental thickness gestational age. Significance was defined as P < 0.05. Results. A positive and statistically significant correlation exists between the placental thickness and gestational age. The expression that presents the best correlation coefficient and explanation was thickness of placenta = 0.021x gestational age -0.314. Conclusion. It is possible to determine the gestational age in relation to the placental thickness measured by ultrasound in bitches with a satisfactory accuracy in relation to fetal morphologic parameters as gestational vesicle, ribs, or kidneys.

  13. Determination of the maximum tolerated dose and the safety index of an experimental fasciolicide in cattle.

    Science.gov (United States)

    Vera, Y; Ibarra, F; Cantó, G J; Soria, O; Castillo, R; Hernández, A

    2006-04-01

    The aim of the present study was to determine the maximum tolerated dose (MTD) and the safety index (SI) of 5-chloro-2-methylthio-6-(1-napthyloxy)1H-benzimidazole, called compound alpha, in cattle. In addition, to search for possible adverse effects after treatment, the measurement of some biochemical, haematological and physiological parameters were also analysed. Eighteen crossbred heifers were divided into six groups of three animals each. Groups 1-5 received a single oral dose of 12, 36, 60, 120 and 180 mg/kg of body weight (bw) of compound alpha. Group 6 served as an untreated control. To determine the biochemical, haematological and enzymatic parameters, sera and blood samples were individually taken at 0, 4, 8, 16, 32, 128, and 720 h after treatment. Physiological parameters such as rectal temperature, heart rate (HR), respiration rate (RR) and ruminal motility were measured at the time intervals mentioned above. Estimation of the MTD and SI was obtained by using the formula reported by the Food and Drug Administration (FDA), the results showing an MTD of 180 mg/kg/bw and an SI of 15 times the recommended clinical dose. Some statistical differences were observed in a few of the biochemical, haematological and enzymatic parameters, the adverse effects being not highly representative. Alterations on HR and RR were statistically different (P<0.05) only in heifers treated with 180 mg.

  14. Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs.

    Science.gov (United States)

    Hohaus, Thorsten; Gensch, Iulia; Kimmel, Joel; Worsnop, Douglas R; Kiendler-Scharr, Astrid

    2015-06-14

    The composition of secondary organic aerosols (SOAs) formed by β-pinene ozonolysis was experimentally investigated in the Juelich aerosol chamber. Partitioning of oxidation products between gas and particles was measured through concurrent concentration measurements in both phases. Partitioning coefficients (Kp) of 2.23 × 10(-5) ± 3.20 × 10(-6) m(3) μg(-1) for nopinone, 4.86 × 10(-4) ± 1.80 × 10(-4) m(3) μg(-1) for apoverbenone, 6.84 × 10(-4) ± 1.52 × 10(-4) m(3) μg(-1) for oxonopinone and 2.00 × 10(-3) ± 1.13 × 10(-3) m(3) μg(-1) for hydroxynopinone were derived, showing higher values for more oxygenated species. The observed Kp values were compared with values predicted using two different semi-empirical approaches. Both methods led to an underestimation of the partitioning coefficients with systematic differences between the methods. Assuming that the deviation between the experiment and the model is due to non-ideality of the mixed solution in particles, activity coefficients of 4.82 × 10(-2) for nopinone, 2.17 × 10(-3) for apoverbenone, 3.09 × 10(-1) for oxonopinone and 7.74 × 10(-1) for hydroxynopinone would result using the vapour pressure estimation technique that leads to higher Kp. We discuss that such large non-ideality for nopinone could arise due to particle phase processes lowering the effective nopinone vapour pressure such as diol- or dimer formation. The observed high partitioning coefficients compared to modelled results imply an underestimation of SOA mass by applying equilibrium conditions.

  15. Experimental Determination of Bending Resonances of Millimeter Size PVF2 Cantilevers

    Directory of Open Access Journals (Sweden)

    David F. Thompson

    2003-07-01

    Full Text Available The polymer piezoelectric polvinylidene fluoride has found widespread use in sensors and actuators. The bending mode of piezoelectricity offers very high sensitivities and low mechanical input impedance, but has not been studied in as much detail for sensor applications. We report the dynamic electromechanical properties of millimeter size cantilevers made from electroded films of PVF2. All devices tested had a single polymer layer. Several resonances are found below 1 kHz and the experimentally observed resonance frequency dependence on cantilever thickness and length are seen to agree well with published models which take the properties of the electrodes into account. It is found that bending resonances are also modulated by the width of the cantilever. Therefore, though the length and thickness control the resonance frequency most strongly, the actual realized value can be fine-tuned by changing cantilever width and the electrode material and its thickness. Further, all resonances display high piezoelectric coupling coefficients (keff, ranging between 0.2 - 0.35. The data presented here will be extremely useful in the design of sensors and actuators for a number of applications, since the combination of millimeter size scales and high piezoelectric sensitivities in the low audio range can be realized with this marriage of polymeric materials and cantilever geometries. Such an array of sensors can be used in cochlear implant applications, and when integrated with a resonance interrogation circuit can be used for the detection of low frequency vibrations of large structures. If appropriate mass/elasticity sensitive layers are coated on the electrodes, such a sensor can be used for the detection of a wide range of chemicals and biochemicals.

  16. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions.

    Science.gov (United States)

    Ruiz, J; Kaiser, A S; Lucas, M

    2017-11-01

    Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM10, emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Experimental determination of the MHD-EMP effects on power distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, B.W.; Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States))

    1991-01-01

    It is a well-established fact that geomagnetic storms influence electrical power transmission and distribution systems. Previous cases of such storms in the northern latitudes have resulted in occasional power disruptions, and in some cases, damage to transformers. These effects are caused by a time variation of the earth's magnetic field creating an induced electric field along the surface of the earth. This E-field acts as a voltage source along long power transmission or distribution lines, and if the line is connected to the earth at both ends, a quasi-dc current can flow. This current can cause unwanted saturation in the magnetic cores of transformers in the power system, and this, in turn produces harmonic distortion and transformer heating. This can lead to system upset (shutdown) and possibly transformer burn-out. The detonation of a high altitude nuclear explosion is also known to affect the magnetosphere, producing late-time variations of the earth's magnetic field for several hundreds of seconds. Known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), or E{sub 3}, this environment is of particular concern to electrical power systems in the event of a nuclear attack. Although the MHD-EMP induced currents can be significantly larger in magnitude, they last for a shorter period of time than do those from a geomagnetic storm. The effect of this environment compounds the adverse effects of the early-time high altitude EMP (HEMP) environment, posing a potentially serious threat to the electrical system. The present paper documents an experimental program designed to better understand the behavior of distribution-class transformers subjected to quasi-dc current excitation. Given the knowledge of the MHD-EMP-induced current flowing in a long power line, and the transformer response characteristics obtained in this program, it will be possible to make more accurate assessments of the behavior of the overall power system to EMP. 7 refs., 5 figs.

  18. Experimental and theoretical determination of the magnetic susceptibility of C60 and C70

    Science.gov (United States)

    Haddon, R. C.; Schneemeyer, L. F.; Waszczak, J. V.; Glarum, S. H.; Tycko, R.; Dabbagh, G.; Kortan, A. R.; Muller, A. J.; Mujsce, A. M.; Rosseinsky, M. J.; Zahurak, S. M.; Makhija, A. V.; Thiel, F. A.; Raghavachari, K.; Cockayne, E.; Elser, V.

    1991-03-01

    THE magnetic susceptibility of C60 and the possibility of magnetic-field-induced π-electron ring currents in this carbon spheroid have been of interest since the initial experiments on carbon clusters1. If the molecule is regarded as a sphere with a radius of 3.5 Å, on which 60 electrons are free to move, the Pauling ring-current model predicts a ring-current diamagnetic susceptibility 41 times the π-electron ring-current magnetic susceptibility of benzene with the field normal to the plane of the six-membered ring2,3. London theory predicts, however, that the π-electron ring currents in C60 should be weakly paramagnetic or diamagnetic, depending on the relative bond strengths used in the calculation2,3. With the availability of macroscopic quantities of C60 (ref. 4), it is now possible to study experimentally the magnetic properties of the molecule. Here we report on such measurements. We find that the diamagnetism of C60 is small, a result that we attribute to excited-state paramagnetic contributions to the π-electron ring-current magnetic susceptibility. Thus C60 seems to be an aromatic molecule with a vanishingly small π-electron ring-current magnetic susceptibility. We have performed similar measurements on C70, which indicate an appreciable π-electron diamagnetism, consistent with theoretical calculations. We attribute the differences in magnetic properties of these two molecules to their different fractions of five-membered ring structures. The fullerenes may thus constitute a class of compounds of 'ambiguous' aromatic character, traditional measures of which will not provide an adequate classification.

  19. Stiff person syndrome in South Asia.

    Science.gov (United States)

    Chang, Thashi; Lang, Bethan; Vincent, Angela

    2016-10-18

    Stiff person syndrome is a highly disabling, progressive autoimmune disorder of the central nervous system characterized by muscle rigidity and spasms. Stiff person syndrome is rare, but is believed to be under diagnosed with only 14 cases been reported among a 1.7 billion population in South Asia. We report the first authenticated case from Sri Lanka. A 55-year-old Sri Lankan female presented with difficulty in walking and recurrent falls due to progressive muscular rigidity in her lower limbs and trunk with superimposed muscle spasms that occurred in response to unexpected noise, startle or emotional upset. She had anxiety and specific phobias to open spaces, walking unaided and being among crowds of people. She had insulin-dependent diabetes mellitus and was on thyroxine replacement. On examination, she had hyperlordosis combined with board-like rigidity of her anterior abdomen and rigidity of her lower limbs bilaterally. Upper limbs were normal. Magnetic resonance imaging of her neuraxis was normal. Electromyography showed continuous motor unit activity at rest. Glutamic acid decarboxylase antibodies were detected in her serum at a titre of 15,500 IU/ml (normal <5). She showed a remarkable and sustained improvement to treatment with intravenous immunoglobulins, immunosuppressive and muscle relaxant medications, regaining independent ambulation. Diagnosis of stiff person syndrome remains clinical, supported by electromyography and serology for glutamic acid decarboxylase antibodies, facilitated by a high index of clinical suspicion. An autoimmune basis lends stiff person syndrome amenable to treatment highlighting the importance of diagnosis. This case adds to map the worldwide distribution of stiff person syndrome.

  20. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation

    Science.gov (United States)

    Mao, Dachao; Yang, Wenlong; Du, Zhijiang

    2017-06-01

    This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.

  1. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    Science.gov (United States)

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  2. Simulation and Experimental Determination of Technological Liquid Molding Parameters of Tubing Basalt Insulation

    Directory of Open Access Journals (Sweden)

    Yu. V. Badanina

    2015-01-01

    Full Text Available The article is dedicated to one of the most important and urgent tasks in mechanical engineering development - the creation of low-density and environmentally-friendly thermoinsulation from available cheap basalt fibers for products to operate at temperatures up to 700°C.One of the most effective applications of such thermo-insulation is to develop and provide highly porous coatings from short basalt fibers by liquid filtration for tubing (T to supply superheated up to 420° C steam under pressure of 35 MPa in the deep layers with severe highviscosity oil. Tubing with the short low-density basalt insulation can be used for a greater depth than the vacuum-insulated tubing, which are also called "thermo-cases", and do not fully meet business needs for long-term reliability of oil vacuum tubes, too large mass per unit length of their design and, as a consequence, the impossibility to use such pipes for deep wells.The aim of the work is to simulate a liquid filtration process of short fibers and determine technological parameters of producing thermal insulation coatings of tubing pipes from basalt fibers and mineral binder shaped as cylinders and cylindrical shells. The paper proposes a mathematical model of free filtration deposition of short fibers from liquid slurry, which describes dynamics of creating thermal insulation products and allows us to determine the rational parameters of their manufacturing process. It shows methods to improve the products quality while forming the thermal insulation by filtration through additional vacuum deposition of a filtrate chamber and the final prepressing of sediment layer, giving dimensions and shape to the final product.The paper defines a prescription hydro mass composition. It shows that to increase the compressive strength of highly fibrous rings and cylindrical shells it is necessary to use based on oxide А12O3 5-7% by weight mineral binder, which fixes basalt fibers in places of their contacts. It

  3. Experimental Determination of Ballistic Performance of Composite Material Kevlar 29 and Alumina Powder/ Epoxy by Spherical Projectile

    Directory of Open Access Journals (Sweden)

    Luay Hashem Abbud

    2016-12-01

    Full Text Available In this study, a response of hybrid composite laminate woven fiber Kevlar29 – Al2O3 Powder/ Epoxy subjected to high velocity impact loading is presented. The energy absorbed due to impact of small rigid projectile on composite materials targets is determined experimentally. The energy absorbed due to impact of hemispherical projectiles on the developed composite laminates is investigated. The results revealed the maximum ballistic limit at impact velocity is found to be 390.87 ± 6 m/s for an the 18 mm target thickness. The ballistic limit velocity predictions are based on the theoretical method presented from another article. The initial velocity and residual velocity results showed good is agreement compared with the predicted results of Ipson and Recht equations. With 5.4 % of accuracy based on the experimental value for the theoretical model for ballistic limit velocity.

  4. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk

    2011-01-01

    –benzaldehyde–water ternary mixtures were experimentally determined. The cubic plus association (CPA) equation of state was used to model the phase behavior of the experimentally investigated systems as well as the phase behavior of relevant mixtures that can exist inside the reactor during the reaction time....... In this direction, the CPA binary interaction parameters were estimated from the corresponding binary systems and the phase behavior of two ternary systems, i.e. CO2–benzyl alcohol–O2 (reacting mixture) and CO2–benzaldehyde–water (mixture of products) as well as the phase behavior of multicomponent mixtures...... containing both reactants and products were predicted. CPA was proved to be a versatile model that can predict the complex phase behavior of the aforementioned systems. The results reveal that the ternary mixture of products (CO2–benzaldehyde–water) and the intermediate multicomponent mixtures containing...

  5. Theoretical and experimental approach to determine pollutant levels in an urban area

    Energy Technology Data Exchange (ETDEWEB)

    Solisio, C.; Cecco, I. de; Ferraiolo, G. [Genoa Univ. (Italy). Inst. of Chemical Engineering Science and Technology; Ruaro, R.

    1995-12-31

    Simulative techniques, carried out by means of scale physical models, prove to be particularly useful because they allow to optimize those prevention and protection measures aimed at the undesired effect reduction. Among the various scale models, the wind tunnel is one of the most common physical models used to simulate real environmental conditions, reproduced in suitable reduced scale by dimensional analysis. Physical modeling, mainly wind tunnel, is typically employed to study plants in complex terrain or to determine how building turbulence can affect dispersion from staks. Moreover, simulative techniques set-up is not simple and it needs particular careful regarding to define its capable to simulate real environmental conditions. The present article deals with the scale simulative technique through wind tunnel, applied to the study about dispersion atmospheric phenomenon. Set-up procedures are discussed, then preliminary results about pollutant dispersion in a street of Genoa (Italy) characterized by great traffic vehicular traffic are showed too. (author)

  6. Experimental Studies for Determining Gas Flow Rate Accidental Release on Linear Part of Pipeline

    Science.gov (United States)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.

    2017-10-01

    The method of determining the flow rate of gas in the gas-dynamic resistance of a medium gas stream with high linear speed was studied. The reduction of the density of the gas is a result of its expansion. Multiple calculations of gas losses were evaluated. Calculation is set by loss of gas depending on the area of the pipeline damage. A comparative analysis was done. In order to establish a functional empirical dependence of the flow rate on the whole on the parameters of the leakage process, a series of experiments was conducted on a test bench and their processing was carried out. In experiments conducted, the effect of pressure and temperature in the receiver was evaluated, the physical properties of the gas and the diameter of the hole were predetermined by the limits of the amount of the whole flow rate in critical conditions, as well as the critical regime of gas leakage.

  7. Experimental approach to determining subsurface leakage from a surface impoundment using a radioisotope tracer

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, T.L.; Story, J.D.; Larsen, I.L.; Schultz, F.J.

    1986-01-01

    Bromine-82, a 35.3-h half-life radionuclide, was used as a tracer to determine the paths and rates of leakage from an unlined, 1,000,000-gal (3,785,000 L), surface impoundment at the Oak Ridge National Laboratory. Since the impoundment is underlain and surrounded by storm sewer and sanitary sewer lines (most of them predating the impoundment), known and suspected leak sites in storm drain catch basins and sanitary sewer manholes were sampled periodically and analyzed for /sup 82/Br. A series of four ground water monitoring wells - three downgradient and one upgradient from the impoundment - were also sampled for /sup 82/Br. Although the catch basin and manhole samples picked up /sup 82/Br in leakage from the impoundment less than 5 h after application of the tracer, the monitoring well samples did not contain detectable levels of the radionuclide. It was concluded that the monitoring wells were sampling groundwater moving through the formation, whereas the storm drains and manholes were sampling water leaking rapidly through secondary porosity and along preferred pathways. The decline in tracer concentration as a function of time was used to determine the residence time of water in the pond and hence the flow rate through the pond. This flow rate, when compared with the known outflow rate, indicated that the leakage flow was small. Hence, the main value of the test was to identify rapid leakage pathways. The experiment demonstrates the need for sampling subsurface drain systems as part of an integrated monitoring system for leak detection. The effectiveness of /sup 82/Br as a tracer for rapid leaks was also shown.

  8. Renal microvascular disease determines the responses to revascularization in experimental renovascular disease.

    Science.gov (United States)

    Chade, Alejandro R; Kelsen, Silvia

    2010-08-01

    Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 microg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.

  9. Computational identification and experimental characterization of substrate binding determinants of nucleotide pyrophosphatase/phosphodiesterase 7

    Directory of Open Access Journals (Sweden)

    Parrill Abby L

    2011-12-01

    Full Text Available Abstract Background Nucleotide pyrophosphatase/phosphodiesterase 7 (NPP7 is the only member of the mammalian NPP enzyme family that has been confirmed to act as a sphingomyelinase, hydrolyzing sphingomyelin (SM to form phosphocholine and ceramide. NPP7 additionally hydrolyzes lysophosphatidylcholine (LPC, a substrate preference shared with the NPP2/autotaxin(ATX and NPP6 mammalian family members. This study utilizes a synergistic combination of molecular modeling validated by experimental site-directed mutagenesis to explore the molecular basis for the unique ability of NPP7 to hydrolyze SM. Results The catalytic function of NPP7 against SM, LPC, platelet activating factor (PAF and para-nitrophenylphosphorylcholine (pNPPC is impaired in the F275A mutant relative to wild type NPP7, but different impacts are noted for mutations at other sites. These results are consistent with a previously described role of F275 to interact with the choline headgroup, where all substrates share a common functionality. The L107F mutation showed enhanced hydrolysis of LPC, PAF and pNPPC but reduced hydrolysis of SM. Modeling suggests this difference can be explained by the gain of cation-pi interactions with the choline headgroups of all four substrates, opposed by increased steric crowding against the sphingoid tail of SM. Modeling also revealed that the long and flexible hydrophobic tails of substrates exhibit considerable dynamic flexibility in the binding pocket, reducing the entropic penalty that might otherwise be incurred upon substrate binding. Conclusions Substrate recognition by NPP7 includes several important contributions, ranging from cation-pi interactions between F275 and the choline headgroup of all substrates, to tail-group binding pockets that accommodate the inherent flexibility of the lipid hydrophobic tails. Two contributions to the unique ability of NPP7 to hydrolyze SM were identified. First, the second hydrophobic tail of SM occupies a second

  10. Experimental setup for the determination of exchangeable hydrogen in environmental samples using deuterium and tritium

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, L.; Siclet, F. [EDF R et D (France); Peron, O.; Gegout, C.; Montavon, G.; Landesman, C. [Laboratoire SUBATECH, IN2P3/CNRS, EMN, Universite de Nantes (France); Fourre, E.; Jean-Baptiste, P. [LSCE, UMR 8112 CEA-CNRS-UVSQ/IPSL (France)

    2014-07-01

    Tritium ({sup 3}H or T) is a radioactive isotope of the element hydrogen with a half-life of 12.32 yrs. It is naturally produced in the upper atmosphere, but also by the nuclear industry. It is used in many fields like medical research and watch making. It is thus released in the environment on gaseous and liquid form by these facilities and is currently the major released radionuclide in liquid effluent from French nuclear power plants (in HTO form). Current studies dealing with the fate and behavior of tritium in the environment focus mainly on its organic form, i.e. the organically bound tritium (OBT). It is indeed more resilient in the environment than the tritiated water (HTO) as it is part of the organic matter cycle. There is nevertheless a distinction to be made between the exchangeable and the non-exchangeable fraction of OBT. When hydrogen is linked to nitrogen, sulfur or oxygen, it is considered to be exchangeable with the H contained in the surrounding solution or in the atmospheric water phase. Thus, its residence time within the molecule will be reduced and closely linked to the surrounding parameters. When hydrogen is linked to carbon, it is assumed that the link is more stable and thus the residence time in the molecule will be enhanced. It is thus important to know the fraction of exchangeable OBT when addressing the residence time of tritium in the environment. The present study aims at assessing this fraction in different environmental matrixes using deuterium and/or tritium. Compared to several others studies on exchangeable hydrogen where experiments were conducted at high temperature and/or high pressure, this study follows a different approach with experiments conducted at ambient temperature and atmospheric pressure (natural conditions) with a controlled hygrometric value within the system. The system itself consists in a glove box modified to fulfill the requirements for an efficient control on the experimental parameters (temperature

  11. Experimental Determination of Major Element Diffusivity in Natural High-K Calc-alkaline Melts

    Science.gov (United States)

    González-García, D.; Behrens, H.; Vetere, F. P.; Petrelli, M.; Zezza, A.; Morgavi, D.; Perugini, D.

    2016-12-01

    Chemical diffusion is of major importance in several magmatic processes and, as a time dependent process, can be used as a timescale indicator. In particular, the study of diffusive exchange in magma mixing events leading to explosive volcanic eruptions has the potential shed light on timescales involved in such processes. To achieve this, a basic knowledge of diffusion rates in different natural silicate melts with a variety of conditions is mandatory. We use a set of diffusion couple experiments to quantify the influence of dissolved water content in the interdiffusion of major elements between two natural high-K calc-alkaline end-members: a shoshonite and a rhyolite from Vulcano island (Aeolian archipelago, Italy). Experiments are run using AuPd alloy capsules at 1200 °C and pressures of 0.5, 1 and 3 kbar, with variable added water content (`nominally dry', 1wt. % and 2 wt.% H2O), and finished by a rapid quench in order to avoid crystal formation. Run products are analyzed by FTIR spectroscopy and electron microprobe, and final diffusion coefficients are obtained from the evaluation of composition-distance profiles by a modified Boltzmann-Matano analysis. Among measured major elements (Si, Ti, Al, Fe, Mg, Ca, K), dissolved H2O content in the melt has the highest influence in diffusivity in our experimental setup: a difference of up to 1.4 orders of magnitude is observed between 0.3 and 2 wt. % H2O bearing glasses. In the investigated range, enhancement of diffusion is higher in the lower water contents and slightly diminishes to 2 wt. %. Compositional gradients result in a 0.4 to 0.8 log units increase of diffusivity in the mafic terms relative to the silicic ones. Si and Ti are the slowest diffusing components. Al is also a slow diffusing component and displays uphill diffusion. The diffusivities of the other elements follow similar behavior, suggesting a strong influence of crossed diffusion and coupling.

  12. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    Science.gov (United States)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  13. Chain stiffness and attachment-dependent attraction between polyelectrolyte-grafted colloids.

    Science.gov (United States)

    Arya, Gaurav

    2010-12-09

    We report here the effects of chain stiffness and surface attachment on the effective interactions between polyelectrolyte-grafted colloidal particles in monovalent salt obtained using Monte Carlo simulations. Our approach involves computation of the distance-dependent potential of mean force between two polyelectrolyte-grafted colloidal particles treated at a coarse-grained resolution. Two chain stiffnesses, flexible and stiff, and two surface attachment modes, free and constrained, at low grafting densities are examined. PMF calculations across a range of surface and polyelectrolyte charge allows us to map out the strength and extent of the attractive and repulsive regime in the two-dimensional charge space. We observe striking differences in the effects of chain stiffness between the two modes of attachment. When the chains are freely attached, the stiff-chains colloids exhibit a marginal reduction in the attraction compared to their flexible-chain counterparts. In contrast, when the chains are attached in a constrained manner, the colloids with stiff chains exhibit a significantly stronger attraction and a broader attractive regime compared to flexible-chain colloids. These differences in the effects of stiffness between the two attachment modes are explained in terms of differences in the energetic and entropic forces balancing adsorption of chains at their own surface versus chain extension to mediate bridging interactions across two particles. Our results thus underscore the importance of surface attachment of chains and its proper accounting in computational and experimental studies and suggests the mode of chain attachment as an additional control parameter for modulating intercolloid interactions for applications such as stabilization of colloidal systems and bottom-up self-assembly of nanostructures.

  14. Experimental determination of the dynamic properties of screw compressors; Die experimentelle Bestimmung der dynamischen Eigenschaften von Schraubenkompressoren

    Energy Technology Data Exchange (ETDEWEB)

    Rinder, L. [Technische Univ., Wien (Austria). Abt. Maschinenelemente; Svigler, J.; Pasek, M.; Albl, P. [Westboehmische Univ., Pilsen (Czech Republic). Lehrstuhl fuer Mechanik

    1998-12-31

    The demand for continuing improvements of screw machines leads to a vibration research of these machines. The presented paper deals with the experimental measurement of screw compressor operational vibrations and the determination of vibration sources. The measuring of operational vibrations, modal analysis and the determination of mode shape forms of a screw compressor were performed. The main sources of the operational vibrations were determined and the screw compressor eigenfrequencies were found in the frequency spectrum. This contribution forms a basis for the comparison of the theoretical and experimental results. This work was done in cooperation between the University of West Bohemia Pilsen and the Technical University Vienna. (orig.) [Deutsch] Staendig steigende Anforderungen an die Laufruhe von Schraubenkompressoren machen Schwingungsuntersuchungen an diesen Maschinen notwendig. Die vorliegende Arbeit beschreibt Messungen des Betriebs-Schwingungszustandes und die Bestimmung der Erregerquellen an einem oeleingespritzten Schraubenverdichter. Es wird der Schwingungszustand mit Beschleunigungsaufnehmern gemessen, eine Modalanalyse beider Rotoren durchgefuehrt und es werden die Eigenformen der Laeufer bestimmt. Die Haupterregerquellen fuer die Schwingungen koennen ermittelt werden. Die Eigenfrequenzen des Kompressors sind im Frequenzspektrum festzustellen. Die Ergebnisse dienen als Basis fuer den Vergleich zwischen experimenteller Schwingungsanalyse und theoretischen Schwingungsuntersuchungen. Ueber theoretische Ergebnisse soll in naechster Zukunft berichtet werden. Die Arbeit entstand im Rahmen einer Zusammenarbeit zwischen der Westboehmischen Universitaet Pilsen und der Technischen Universitaet Wien. Die Schwingungsmessungen wurden am Schraubenverdichterpruefstand des Instituts fuer Maschinenelemente der TU Wien durchgefuehrt. (orig.)

  15. Air-water Henry's law constants for PCB congeners: Experimental determination and modeling of structure-property relationship.

    Science.gov (United States)

    Fang, Fu; Chu, Shaogang; Hong, Chia-Swee

    2006-08-01

    A modified gas-purging technique was used for the determination of Henry's law constants (HLCs) for four non-ortho- and eight mono-ortho-substituted polychlorinated biphenyls (PCBs). The method involves measurement of a compound's concentration in only the water phase while that compound is being stripped isothermally from the solution at a known gas flow rate. HLCs were calculated from the slope of a plot of ln(Cn) versus (1/V)n, where (Sigma 1/V)n = 1/V0 + 1/V1 + ... + 1/V(n-1). The HLCs ranged from 5.6 to 21.8 Pa m3/mol, with an average precision of 13%, and they are comparable to values in the literature. Meta-analysis technique and principal component regression (PCR) were applied to model the relationship between experimentally determined HLC values of 94 PCB congeners and the congeners' structures. Cross-validation yields an optimal model with two principal components. Statistical analysis suggests that HLCs of PCBs are primarily affected by meta-chlorine substitution, a relationship which has never been discussed in the literature. The substitution of chlorines on the biphenyl rings generally leads to smaller HLCs. The predicted HLCs are in good agreement with the experimentally determined values.

  16. Is chronic obstructive pulmonary disease associated with increased arterial stiffness?

    DEFF Research Database (Denmark)

    Janner, Julie H; McAllister, David A; Godtfredsen, Nina S

    2012-01-01

    We hypothesize that airflow limitation is associated with increasing arterial stiffness and that having COPD increases a non-invasive measure of arterial stiffness - the aortic augmentation index (AIx) - independently of other CVD risk factors....

  17. Nondiabetic Glucometabolic Status and Progression of Aortic Stiffness

    DEFF Research Database (Denmark)

    McEniery, Carmel M; Wilkinson, Ian B; Johansen, Nanna B

    2017-01-01

    OBJECTIVE Aortic stiffness is an important predictor of futuremorbidity andmortality. Diabetes is associated with increased aortic stiffness, but the importance of nondiabetic glucometabolic status for accelerated aortic stiffening is unclear. We tested the hypothesis that adverse glucometabolic ...

  18. Experimental results for the rapid determination of the freezing point of fuels

    Science.gov (United States)

    Mathiprakasam, B.

    1984-01-01

    Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.

  19. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Dietrich; Rossaint, Rolf [University Hospital, RWTH Aachen, Anesthesiology Department, Aachen (Germany); Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W. [University Hospital of the RWTH Aachen, Clinic of Diagnostic Radiology, Aachen (Germany); Kuhlen, Ralf [University Hospital of the RWTH Aachen, Operative Intensive Care Department, Aachen (Germany)

    2006-06-15

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V{sub HYP}), normally (V{sub NORM}), poorly (V{sub POOR}) and nonaerated (V{sub NON}) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V{sub POOR} and the less in V{sub NORM}. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V{sub NON} (from 62{+-}18 ml to 43{+-}26 ml, P=0.114), and in V{sub NORM} (from 216{+-}51 ml to 251{+-}37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  20. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.

    Science.gov (United States)

    Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina

    2013-05-01

    The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.

  1. Study on an improved variable stiffness tuned mass damper based on conical magnetorheological elastomer isolators

    Science.gov (United States)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2017-10-01

    Use of a variable stiffness tuned mass damper (VSTMD) is an effective approach to reduce the dynamic responses of a structure with shifting natural frequencies. Magnetorheological elastomer (MRE) isolators can be used to build VSTMD due to their tunable stiffness by applying a magnetic field. However, conventional MRE isolators show deformation limits, huge energy consumption and uneconomic production. Focused on developing a MRE VSTMD system to improve this situation, a conical MRE isolator has been proposed and tested. Compared to conventional MRE isolators, the conical isolator shows much higher efficiency, better overall stability, greater deformability and a larger tunable range. The experimental results indicate that the prototype can provide a 46.29% increase in frequency and a 75 N control force range with a 25 W power source. The quick responding MRE VSTMD system has the potential to accurately provide the desired stiffness in two directions to achieve a better structure control.

  2. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  3. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers.

    Science.gov (United States)

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung

    2015-06-11

    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  4. Stiffness Control of Variable Serial Elastic Actuators: Energy Efficiency through Exploitation of Natural Dynamics

    Directory of Open Access Journals (Sweden)

    Philipp Beckerle

    2017-09-01

    Full Text Available Variable elastic actuators are very promising for applications in physical human–robot interaction. Besides enabling human safety, such actuators can support energy efficiency, especially if the natural behavior of the system is exploited. In this paper, the power and energy consumption of variable stiffness actuators with serial elasticity is investigated analytically and experimentally. Besides the fundamental mechanics, the influence of friction and electrical losses is discussed. A simple but effective stiffness control method is used to exploit the corresponding knowledge of natural dynamics by tuning the system to antiresonance operation. Despite nonlinear friction effects and additional electrical dynamics, the consideration of the ideal mechanical dynamics is completely sufficient for stiffness control. Simulations and experiments show that this yields a distinct reduction in power and energy consumption, which underlines the suitability of the control strategy.

  5. Estimation of axial stiffness of plant fibres from compaction of non-woven mats

    Science.gov (United States)

    Gamstedt, E. K.; Bommier, E.; Madsen, B.

    2014-03-01

    Plant fibres are known to show a large variability in stiffness, which makes it time-consuming to experimentally characterize this property by conventional tensile testing. In this work, an alternative method is used, where the average fibre stiffness is back-calculated from compaction tests of in-plane randomly oriented fibre mats. The model by Toll is used to relate the load-displacement curve from the test to the Young modulus of the fibre, taking into account the natural variability in fibre cross section. Several tests have been performed on hemp fibre mats and compared with results from single-fibre tensile testing. The average back-calculated Young's modulus of the fibres was 45 GPa, whereas the average value from tensile testing ranged from 30 to 60 GPa. The straightforward compaction test can be useful in ranking of fibre stiffness, provided that the mat is composed of well-separated fibres and not of twisted yarns.

  6. Determination of micronutrients and oxidative stress status in the blood of STZ-induced experimental diabetic rat models.

    Science.gov (United States)

    Ragbetli, Cennet; Dede, Semiha; Tanritanir, Pinar; Yoruk, Ibrahim Hakki; Ragbetli, Murat Cetin

    2014-11-01

    This study aims to research the effect of streptozotocin (STZ) at different doses on the serum micronutrients and oxidative stress status in diabetic rat models. Twenty male rats averaged 250 g and 3-4 months old were used as experimental models. They were put in four groups composed of five rats each. Diabetic was induced by administering STZ 55 and 65 mg/kg intraperitonally. The serum micronutrients including minerals and vitamins (Cu, Zn, Mg, Fe, vitamins D, E, and C) and oxidative stress (malondialdehyde, MDA) were determined. Cu, Zn, and Vitamin D3 levels were found to increase significantly in STZ groups (p micronutrients were affected significantly.

  7. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  8. Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds.

    Science.gov (United States)

    Engelmayr, George C; Sacks, Michael S

    2008-08-01

    The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold-ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175-187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold-ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold-ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610-622, 2006), nonwoven scaffold-ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold-ECM composites is an increase in the number fiber-fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time

  9. The passive stiffness of the wrist and forearm

    Science.gov (United States)

    Charles, Steven K.; Zollo, Loredana; Guglielmelli, Eugenio; Hogan, Neville; Krebs, Hermano I.

    2012-01-01

    Because wrist rotation dynamics are dominated by stiffness (Charles SK, Hogan N. J Biomech 44: 614–621, 2011), understanding how humans plan and execute coordinated wrist rotations requires knowledge of the stiffness characteristics of the wrist joint. In the past, the passive stiffness of the wrist joint has been measured in 1 degree of freedom (DOF). Although these 1-DOF measurements inform us of the dynamics the neuromuscular system must overcome to rotate the wrist in pure flexion-extension (FE) or pure radial-ulnar deviation (RUD), the wrist rarely rotates in pure FE or RUD. Instead, understanding natural wrist rotations requires knowledge of wrist stiffness in combinations of FE and RUD. The purpose of this report is to present measurements of passive wrist stiffness throughout the space spanned by FE and RUD. Using a rehabilitation robot designed for the wrist and forearm, we measured the passive stiffness of the wrist joint in 10 subjects in FE, RUD, and combinations. For comparison, we measured the passive stiffness of the forearm (in pronation-supination), as well. Our measurements in pure FE and RUD agreed well with previous 1-DOF measurements. We have linearized the 2-DOF stiffness measurements and present them in the form of stiffness ellipses and as stiffness matrices useful for modeling wrist rotation dynamics. We found that passive wrist stiffness was anisotropic, with greater stiffness in RUD than in FE. We also found that passive wrist stiffness did not align with the anatomical axes of the wrist; the major and minor axes of the stiffness ellipse were rotated with respect to the FE and RUD axes by ∼20°. The direction of least stiffness was between ulnar flexion and radial extension, a direction used in many natural movements (known as the “dart-thrower's motion”), suggesting that the nervous system may take advantage of the direction of least stiffness for common wrist rotations. PMID:22649208

  10. Impact of ankle foot orthosis stiffness on Achilles tendon and gastrocnemius function during unimpaired gait.

    Science.gov (United States)

    Choi, Hwan; Peters, Keshia M; MacConnell, Michael B; Ly, Katie K; Eckert, Eric S; Steele, Katherine M

    2017-11-07

    Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25Nm/°, 1Nm/°, 2Nm/°, and 3.7Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test.

    Science.gov (United States)

    Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman

    2015-03-01

    Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Non-experimental, cross-sectional, case-control design. An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Not applicable. Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects.

  12. How Crouch Gait Can Dynamically Induce Stiff-Knee Gait

    NARCIS (Netherlands)

    Van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.; Collins, S.H.

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on

  13. How Crouch Gait Can Dynamically Induce Stiff-Knee Gait

    NARCIS (Netherlands)

    van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.

    2010-01-01

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on

  14. A 2-DOF joint with coupled variable output stiffness

    NARCIS (Netherlands)

    Tan, Daniel J.; Brouwer, Dannis Michel; Fumagalli, Matteo; Carloni, Raffaella

    This paper presents a 2-degree-of-freedom (DOF) joint with coupled variable output stiffness that makes use of three actuators, i.e., two for the 2-D joint motions and one for the joint stiffness adjustment. By base-mounting the actuators and the variable stiffness module that contains the passive

  15. Experimental determination of cascade parameters of a hearing-aid microphone via the two-load method.

    Science.gov (United States)

    Egolf, D P; Haley, B T; Bauer, K M; Howell, H C; Larson, V D

    1988-06-01

    Presented in this article is a computer-aided experimental method for obtaining the cascade parameters of the two-port model of a miniature hearing-aid microphone. The method is an adaptation of the "two-load" method [D.P. Egolf and R.G. Leonard, J. Acoust. Soc. Am. 62, 1013-1023 (1977)] to acoustoelectric, rather than electroacoustic, transducers. The cascade parameters of a particular microphone, determined by this method, were within 2.5 dB of the manufacturer's published open-circuit sensitivity data. In an attempt to further verify the numerical cascade-parameter data, a two-port model of the microphone was used to simulate experimental voltages developed across two different complex electrical load impedances attached to the microphone. The results showed experimental/simulation differences of no greater than 3.0 dB at any frequency. The two-port microphone model and associated cascade parameters are currently being incorporated into a computer-based plan for mathematical simulation of an entire in situ hearing aid.

  16. Electron tunneling through molecule-electrode contacts of single alkane molecular junctions: experimental determination and a practical barrier model.

    Science.gov (United States)

    Wang, Kun; Xu, Bingqian

    2016-04-14

    An advanced understanding of the molecule-electrode contact interfaces of single-molecule junctions is a necessity for real world application of future single-molecule devices. This study aims to elucidate the change in the contact tunnelling barrier induced by junction extension and how this change affects the resulting junction conductance. The contact barrier of Au-octanedithiol/octanediamine-Au junctions was studied under triangle (TRI) mechanical modulations using the modified scanning tunneling microscopy (STM) break junction technique. The experimental results reveal that as the junction separation extends, the contact barrier of octanedithiol follows a unique trend, a linear increase followed by a plateau in barrier height, which is in contrast to that of octanediamine, a nearly rectangle barrier. We propose a modified contact barrier model for the unique barrier shape of octanedithiol, based on which the calculation agrees well with the experimental data. This study shows unprecedented experimental features of the molecule-electrode contact barrier of single-molecule junctions and provides new insights into the nature of contact effect in determining electron transport through single-molecule junctions.

  17. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  18. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    Science.gov (United States)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  19. The effect of application site of spinal manipulative therapy (SMT) on spinal stiffness.

    Science.gov (United States)

    Edgecombe, Tiffany L; Kawchuk, Greg N; Long, Cynthia R; Pickar, Joel G

    2015-06-01

    Like other factors that can influence treatment efficacy (eg, dosage, frequency, time of day), the site of treatment application is known to affect various physical interventions such as topical anesthetics and cardiopulmonary resuscitation. Like these examples, spinal manipulative therapy (SMT) is a physical intervention that may exhibit maximal benefit when directed to a specific site. Whereas numerous studies of SMT efficacy have produced mixed results, few studies have taken into account the site of SMT application. To determine if the site of SMT application modulates the effect of SMT in an anesthetized feline model. Spinal manipulative therapy applied to specific anatomic locations randomized in a Latin square design with a no-SMT control. Physiologic measures (spinal stiffness). Simulated SMT was delivered by a validated mechanical apparatus to the intact lumbar spine of eight anesthetized felines at four unique sites: L6 spinous process, left L6 lamina, left L6 mammillary process, and L7 spinous process. To measure spinal stiffness, a separate indentation load was applied mechanically to the L6 spinous process before and after each SMT application. Spinal stiffness was calculated from the resulting force-displacement curve as the average stiffness (k) and terminal instantaneous stiffness (TIS). Relative to the no-SMT control, significant decreases in spinal stiffness followed the SMT when L6 spinous and L6 lamina were used as the contact site. Terminal instantaneous stiffness significantly decreased -0.48 N/mm (upper, lower 95% confidence interval [-0.86, -0.09]) with L6 spinous as the contact site and decreased -0.44 N/mm (-0.82, -0.05), with the L6 lamina as the contact site. k increased 0.44 N/mm (-0.01, 088), using L6 spinous as the contact site. Decreases in terminal spinal stiffness were observed after SMT delivered at some application sites but not the others. The results suggest that SMT contact site modulates SMT's effect on spinal stiffness in a

  20. Music decreases aortic stiffness and wave reflections.

    Science.gov (United States)

    Vlachopoulos, Charalambos; Aggelakas, Angelos; Ioakeimidis, Nikolaos; Xaplanteris, Panagiotis; Terentes-Printzios, Dimitrios; Abdelrasoul, Mahmoud; Lazaros, George; Tousoulis, Dimitris

    2015-05-01

    Music has been related to cardiovascular health and used as adjunct therapy in patients with cardiovascular disease. Aortic stiffness and wave reflections are predictors of cardiovascular risk. We investigated the short-term effect of classical and rock music on arterial stiffness and wave reflections. Twenty healthy individuals (22.5±2.5 years) were studied on three different occasions and listened to a 30-min music track compilation (classical, rock, or no music for the sham procedure). Both classical and rock music resulted in a decrease of carotid-femoral pulse wave velocity (PWV) immediately after the end of music listening (all pclassical or rock music in a more sustained way (nadir by 6.0% and 5.8%, respectively, at time zero post-music listening, all pmusic preference was taken into consideration, both classical and rock music had a more potent effect on PWV in classical aficionados (by 0.20 m/s, p=0.003 and 0.13 m/s, p=0.015, respectively), whereas there was no effect in rock aficionados (all p=NS). Regarding wave reflections, classical music led to a more potent response in classical aficionados (AIx decrease by 9.45%), whereas rock led to a more potent response to rock aficionados (by 10.7%, all pMusic, both classical and rock, decreases aortic stiffness and wave reflections. Effect on aortic stiffness lasts for as long as music is listened to, while classical music has a sustained effect on wave reflections. These findings may have important implications, extending the spectrum of lifestyle modifications that can ameliorate arterial function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.