Directory of Open Access Journals (Sweden)
Vicari Kristin J
2012-04-01
Full Text Available Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. Results We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS in the biomass slurries. Conclusions We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of
Development of Property Models with Uncertainty Estimate for Process Design under Uncertainty
DEFF Research Database (Denmark)
Hukkerikar, Amol; Sarup, Bent; Abildskov, Jens
more reliable predictions with a new and improved set of model parameters for GC (group contribution) based and CI (atom connectivity index) based models and to quantify the uncertainties in the estimated property values from a process design point-of-view. This includes: (i) parameter estimation using....... The comparison of model prediction uncertainties with reported range of measurement uncertainties is presented for the properties with related available data. The application of the developed methodology to quantify the effect of these uncertainties on the design of different unit operations (distillation column......, the developed methodology can be used to quantify the sensitivity of process design to uncertainties in property estimates; obtain rationally the risk/safety factors in process design; and identify additional experimentation needs in order to reduce most critical uncertainties....
Experimental uncertainty estimation and statistics for data having interval uncertainty.
Energy Technology Data Exchange (ETDEWEB)
Kreinovich, Vladik (Applied Biomathematics, Setauket, New York); Oberkampf, William Louis (Applied Biomathematics, Setauket, New York); Ginzburg, Lev (Applied Biomathematics, Setauket, New York); Ferson, Scott (Applied Biomathematics, Setauket, New York); Hajagos, Janos (Applied Biomathematics, Setauket, New York)
2007-05-01
This report addresses the characterization of measurements that include epistemic uncertainties in the form of intervals. It reviews the application of basic descriptive statistics to data sets which contain intervals rather than exclusively point estimates. It describes algorithms to compute various means, the median and other percentiles, variance, interquartile range, moments, confidence limits, and other important statistics and summarizes the computability of these statistics as a function of sample size and characteristics of the intervals in the data (degree of overlap, size and regularity of widths, etc.). It also reviews the prospects for analyzing such data sets with the methods of inferential statistics such as outlier detection and regressions. The report explores the tradeoff between measurement precision and sample size in statistical results that are sensitive to both. It also argues that an approach based on interval statistics could be a reasonable alternative to current standard methods for evaluating, expressing and propagating measurement uncertainties.
The uncertainties in estimating measurement uncertainties
International Nuclear Information System (INIS)
Clark, J.P.; Shull, A.H.
1994-01-01
All measurements include some error. Whether measurements are used for accountability, environmental programs or process support, they are of little value unless accompanied by an estimate of the measurements uncertainty. This fact is often overlooked by the individuals who need measurements to make decisions. This paper will discuss the concepts of measurement, measurements errors (accuracy or bias and precision or random error), physical and error models, measurement control programs, examples of measurement uncertainty, and uncertainty as related to measurement quality. Measurements are comparisons of unknowns to knowns, estimates of some true value plus uncertainty; and are no better than the standards to which they are compared. Direct comparisons of unknowns that match the composition of known standards will normally have small uncertainties. In the real world, measurements usually involve indirect comparisons of significantly different materials (e.g., measuring a physical property of a chemical element in a sample having a matrix that is significantly different from calibration standards matrix). Consequently, there are many sources of error involved in measurement processes that can affect the quality of a measurement and its associated uncertainty. How the uncertainty estimates are determined and what they mean is as important as the measurement. The process of calculating the uncertainty of a measurement itself has uncertainties that must be handled correctly. Examples of chemistry laboratory measurement will be reviewed in this report and recommendations made for improving measurement uncertainties
Estimates of bias and uncertainty in recorded external dose
International Nuclear Information System (INIS)
Fix, J.J.; Gilbert, E.S.; Baumgartner, W.V.
1994-10-01
A study is underway to develop an approach to quantify bias and uncertainty in recorded dose estimates for workers at the Hanford Site based on personnel dosimeter results. This paper focuses on selected experimental studies conducted to better define response characteristics of Hanford dosimeters. The study is more extensive than the experimental studies presented in this paper and includes detailed consideration and evaluation of other sources of bias and uncertainty. Hanford worker dose estimates are used in epidemiologic studies of nuclear workers. A major objective of these studies is to provide a direct assessment of the carcinogenic risk of exposure to ionizing radiation at low doses and dose rates. Considerations of bias and uncertainty in the recorded dose estimates are important in the conduct of this work. The method developed for use with Hanford workers can be considered an elaboration of the approach used to quantify bias and uncertainty in estimated doses for personnel exposed to radiation as a result of atmospheric testing of nuclear weapons between 1945 and 1962. This approach was first developed by a National Research Council (NRC) committee examining uncertainty in recorded film badge doses during atmospheric tests (NRC 1989). It involved quantifying both bias and uncertainty from three sources (i.e., laboratory, radiological, and environmental) and then combining them to obtain an overall assessment. Sources of uncertainty have been evaluated for each of three specific Hanford dosimetry systems (i.e., the Hanford two-element film dosimeter, 1944-1956; the Hanford multi-element film dosimeter, 1957-1971; and the Hanford multi-element TLD, 1972-1993) used to estimate personnel dose throughout the history of Hanford operations. Laboratory, radiological, and environmental sources of bias and uncertainty have been estimated based on historical documentation and, for angular response, on selected laboratory measurements
Uncertainty Estimates: A New Editorial Standard
International Nuclear Information System (INIS)
Drake, Gordon W.F.
2014-01-01
Full text: The objective of achieving higher standards for uncertainty estimates in the publication of theoretical data for atoms and molecules requires a concerted effort by both the authors of papers and the editors who send them out for peer review. In April, 2011, the editors of Physical Review A published an Editorial announcing a new standard that uncertainty estimates would be required whenever practicable, and in particular in the following circumstances: 1. If the authors claim high accuracy, or improvements on the accuracy of previous work. 2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental measurements. 3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements. The new policy means that papers that do not meet these standards are not sent out for peer review until they have been suitably revised, and the authors are so notified immediately upon receipt. The policy has now been in effect for three years. (author
A comparative experimental evaluation of uncertainty estimation methods for two-component PIV
Boomsma, Aaron; Bhattacharya, Sayantan; Troolin, Dan; Pothos, Stamatios; Vlachos, Pavlos
2016-09-01
Uncertainty quantification in planar particle image velocimetry (PIV) measurement is critical for proper assessment of the quality and significance of reported results. New uncertainty estimation methods have been recently introduced generating interest about their applicability and utility. The present study compares and contrasts current methods, across two separate experiments and three software packages in order to provide a diversified assessment of the methods. We evaluated the performance of four uncertainty estimation methods, primary peak ratio (PPR), mutual information (MI), image matching (IM) and correlation statistics (CS). The PPR method was implemented and tested in two processing codes, using in-house open source PIV processing software (PRANA, Purdue University) and Insight4G (TSI, Inc.). The MI method was evaluated in PRANA, as was the IM method. The CS method was evaluated using DaVis (LaVision, GmbH). Utilizing two PIV systems for high and low-resolution measurements and a laser doppler velocimetry (LDV) system, data were acquired in a total of three cases: a jet flow and a cylinder in cross flow at two Reynolds numbers. LDV measurements were used to establish a point validation against which the high-resolution PIV measurements were validated. Subsequently, the high-resolution PIV measurements were used as a reference against which the low-resolution PIV data were assessed for error and uncertainty. We compared error and uncertainty distributions, spatially varying RMS error and RMS uncertainty, and standard uncertainty coverages. We observed that qualitatively, each method responded to spatially varying error (i.e. higher error regions resulted in higher uncertainty predictions in that region). However, the PPR and MI methods demonstrated reduced uncertainty dynamic range response. In contrast, the IM and CS methods showed better response, but under-predicted the uncertainty ranges. The standard coverages (68% confidence interval) ranged from
A comparative experimental evaluation of uncertainty estimation methods for two-component PIV
International Nuclear Information System (INIS)
Boomsma, Aaron; Troolin, Dan; Pothos, Stamatios; Bhattacharya, Sayantan; Vlachos, Pavlos
2016-01-01
Uncertainty quantification in planar particle image velocimetry (PIV) measurement is critical for proper assessment of the quality and significance of reported results. New uncertainty estimation methods have been recently introduced generating interest about their applicability and utility. The present study compares and contrasts current methods, across two separate experiments and three software packages in order to provide a diversified assessment of the methods. We evaluated the performance of four uncertainty estimation methods, primary peak ratio (PPR), mutual information (MI), image matching (IM) and correlation statistics (CS). The PPR method was implemented and tested in two processing codes, using in-house open source PIV processing software (PRANA, Purdue University) and Insight4G (TSI, Inc.). The MI method was evaluated in PRANA, as was the IM method. The CS method was evaluated using DaVis (LaVision, GmbH). Utilizing two PIV systems for high and low-resolution measurements and a laser doppler velocimetry (LDV) system, data were acquired in a total of three cases: a jet flow and a cylinder in cross flow at two Reynolds numbers. LDV measurements were used to establish a point validation against which the high-resolution PIV measurements were validated. Subsequently, the high-resolution PIV measurements were used as a reference against which the low-resolution PIV data were assessed for error and uncertainty. We compared error and uncertainty distributions, spatially varying RMS error and RMS uncertainty, and standard uncertainty coverages. We observed that qualitatively, each method responded to spatially varying error (i.e. higher error regions resulted in higher uncertainty predictions in that region). However, the PPR and MI methods demonstrated reduced uncertainty dynamic range response. In contrast, the IM and CS methods showed better response, but under-predicted the uncertainty ranges. The standard coverages (68% confidence interval) ranged from
Estimating uncertainty of inference for validation
Energy Technology Data Exchange (ETDEWEB)
Booker, Jane M [Los Alamos National Laboratory; Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [UNM
2010-09-30
We present a validation process based upon the concept that validation is an inference-making activity. This has always been true, but the association has not been as important before as it is now. Previously, theory had been confirmed by more data, and predictions were possible based on data. The process today is to infer from theory to code and from code to prediction, making the role of prediction somewhat automatic, and a machine function. Validation is defined as determining the degree to which a model and code is an accurate representation of experimental test data. Imbedded in validation is the intention to use the computer code to predict. To predict is to accept the conclusion that an observable final state will manifest; therefore, prediction is an inference whose goodness relies on the validity of the code. Quantifying the uncertainty of a prediction amounts to quantifying the uncertainty of validation, and this involves the characterization of uncertainties inherent in theory/models/codes and the corresponding data. An introduction to inference making and its associated uncertainty is provided as a foundation for the validation problem. A mathematical construction for estimating the uncertainty in the validation inference is then presented, including a possibility distribution constructed to represent the inference uncertainty for validation under uncertainty. The estimation of inference uncertainty for validation is illustrated using data and calculations from Inertial Confinement Fusion (ICF). The ICF measurements of neutron yield and ion temperature were obtained for direct-drive inertial fusion capsules at the Omega laser facility. The glass capsules, containing the fusion gas, were systematically selected with the intent of establishing a reproducible baseline of high-yield 10{sup 13}-10{sup 14} neutron output. The deuterium-tritium ratio in these experiments was varied to study its influence upon yield. This paper on validation inference is the
Huang, Hening
2018-01-01
This paper is the second (Part II) in a series of two papers (Part I and Part II). Part I has quantitatively discussed the fundamental limitations of the t-interval method for uncertainty estimation with a small number of measurements. This paper (Part II) reveals that the t-interval is an ‘exact’ answer to a wrong question; it is actually misused in uncertainty estimation. This paper proposes a redefinition of uncertainty, based on the classical theory of errors and the theory of point estimation, and a modification of the conventional approach to estimating measurement uncertainty. It also presents an asymptotic procedure for estimating the z-interval. The proposed modification is to replace the t-based uncertainty with an uncertainty estimator (mean- or median-unbiased). The uncertainty estimator method is an approximate answer to the right question to uncertainty estimation. The modified approach provides realistic estimates of uncertainty, regardless of whether the population standard deviation is known or unknown, or if the sample size is small or large. As an application example of the modified approach, this paper presents a resolution to the Du-Yang paradox (i.e. Paradox 2), one of the three paradoxes caused by the misuse of the t-interval in uncertainty estimation.
Energy Technology Data Exchange (ETDEWEB)
Bruschewski, Martin; Schiffer, Heinz-Peter [Technische Universitaet Darmstadt, Institute of Gas Turbines and Aerospace Propulsion, Darmstadt (Germany); Freudenhammer, Daniel [Technische Universitaet Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, Darmstadt (Germany); Buchenberg, Waltraud B. [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Grundmann, Sven [University of Rostock, Institute of Fluid Mechanics, Rostock (Germany)
2016-05-15
Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75% is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented. (orig.)
Bruschewski, Martin; Freudenhammer, Daniel; Buchenberg, Waltraud B.; Schiffer, Heinz-Peter; Grundmann, Sven
2016-05-01
Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75 % is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented.
Impact of measurement uncertainty from experimental load distribution factors on bridge load rating
Gangone, Michael V.; Whelan, Matthew J.
2018-03-01
Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.
The Uncertainty estimation of Alanine/ESR dosimetry
International Nuclear Information System (INIS)
Kim, Bo Rum; An, Jin Hee; Choi, Hoon; Kim, Young Ki
2008-01-01
Machinery, tools and cable etc are in the nuclear power plant which environment is very severe. By measuring actual dose, it needs for extending life expectancy of the machinery and tools and the cable. Therefore, we estimated on dose (gamma ray) of Wolsong nuclear power division 1 by dose estimation technology for three years. The dose estimation technology was secured by ESR(Electron Spin Resonance) dose estimation using regression analysis. We estimate uncertainty for secure a reliability of results. The uncertainty estimation will be able to judge the reliability of measurement results. The estimation of uncertainty referred the international unified guide in order; GUM(Guide to the Expression of Uncertainty in Measurement). It was published by International Standardization for Organization (ISO) in 1993. In this study the uncertainty of e-scan and EMX those are ESR equipment were evaluated and compared. Base on these results, it will improve the reliability of measurement
International Nuclear Information System (INIS)
Pourgol-Mohamad, Mohammad; Modarres, Mohammad; Mosleh, Ali
2013-01-01
This paper discusses an approach called Integrated Methodology for Thermal-Hydraulics Uncertainty Analysis (IMTHUA) to characterize and integrate a wide range of uncertainties associated with the best estimate models and complex system codes used for nuclear power plant safety analyses. Examples of applications include complex thermal hydraulic and fire analysis codes. In identifying and assessing uncertainties, the proposed methodology treats the complex code as a 'white box', thus explicitly treating internal sub-model uncertainties in addition to the uncertainties related to the inputs to the code. The methodology accounts for uncertainties related to experimental data used to develop such sub-models, and efficiently propagates all uncertainties during best estimate calculations. Uncertainties are formally analyzed and probabilistically treated using a Bayesian inference framework. This comprehensive approach presents the results in a form usable in most other safety analyses such as the probabilistic safety assessment. The code output results are further updated through additional Bayesian inference using any available experimental data, for example from thermal hydraulic integral test facilities. The approach includes provisions to account for uncertainties associated with user-specified options, for example for choices among alternative sub-models, or among several different correlations. Complex time-dependent best-estimate calculations are computationally intense. The paper presents approaches to minimize computational intensity during the uncertainty propagation. Finally, the paper will report effectiveness and practicality of the methodology with two applications to a complex thermal-hydraulics system code as well as a complex fire simulation code. In case of multiple alternative models, several techniques, including dynamic model switching, user-controlled model selection, and model mixing, are discussed. (authors)
Sampling of systematic errors to estimate likelihood weights in nuclear data uncertainty propagation
International Nuclear Information System (INIS)
Helgesson, P.; Sjöstrand, H.; Koning, A.J.; Rydén, J.; Rochman, D.; Alhassan, E.; Pomp, S.
2016-01-01
In methodologies for nuclear data (ND) uncertainty assessment and propagation based on random sampling, likelihood weights can be used to infer experimental information into the distributions for the ND. As the included number of correlated experimental points grows large, the computational time for the matrix inversion involved in obtaining the likelihood can become a practical problem. There are also other problems related to the conventional computation of the likelihood, e.g., the assumption that all experimental uncertainties are Gaussian. In this study, a way to estimate the likelihood which avoids matrix inversion is investigated; instead, the experimental correlations are included by sampling of systematic errors. It is shown that the model underlying the sampling methodology (using univariate normal distributions for random and systematic errors) implies a multivariate Gaussian for the experimental points (i.e., the conventional model). It is also shown that the likelihood estimates obtained through sampling of systematic errors approach the likelihood obtained with matrix inversion as the sample size for the systematic errors grows large. In studied practical cases, it is seen that the estimates for the likelihood weights converge impractically slowly with the sample size, compared to matrix inversion. The computational time is estimated to be greater than for matrix inversion in cases with more experimental points, too. Hence, the sampling of systematic errors has little potential to compete with matrix inversion in cases where the latter is applicable. Nevertheless, the underlying model and the likelihood estimates can be easier to intuitively interpret than the conventional model and the likelihood function involving the inverted covariance matrix. Therefore, this work can both have pedagogical value and be used to help motivating the conventional assumption of a multivariate Gaussian for experimental data. The sampling of systematic errors could also
Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings.
Directory of Open Access Journals (Sweden)
Elise Payzan-LeNestour
Full Text Available Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating.
Uncertainty estimation of ultrasonic thickness measurement
International Nuclear Information System (INIS)
Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain
2009-01-01
The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)
Estimation of Uncertainty in Aerosol Concentration Measured by Aerosol Sampling System
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Chan; Song, Yong Jae; Jung, Woo Young; Lee, Hyun Chul; Kim, Gyu Tae; Lee, Doo Yong [FNC Technology Co., Yongin (Korea, Republic of)
2016-10-15
FNC Technology Co., Ltd has been developed test facilities for the aerosol generation, mixing, sampling and measurement under high pressure and high temperature conditions. The aerosol generation system is connected to the aerosol mixing system which injects SiO{sub 2}/ethanol mixture. In the sampling system, glass fiber membrane filter has been used to measure average mass concentration. Based on the experimental results using main carrier gas of steam and air mixture, the uncertainty estimation of the sampled aerosol concentration was performed by applying Gaussian error propagation law. FNC Technology Co., Ltd. has been developed the experimental facilities for the aerosol measurement under high pressure and high temperature. The purpose of the tests is to develop commercial test module for aerosol generation, mixing and sampling system applicable to environmental industry and safety related system in nuclear power plant. For the uncertainty calculation of aerosol concentration, the value of the sampled aerosol concentration is not measured directly, but must be calculated from other quantities. The uncertainty of the sampled aerosol concentration is a function of flow rates of air and steam, sampled mass, sampling time, condensed steam mass and its absolute errors. These variables propagate to the combination of variables in the function. Using operating parameters and its single errors from the aerosol test cases performed at FNC, the uncertainty of aerosol concentration evaluated by Gaussian error propagation law is less than 1%. The results of uncertainty estimation in the aerosol sampling system will be utilized for the system performance data.
Estimates of Uncertainty around the RBA's Forecasts
Peter Tulip; Stephanie Wallace
2012-01-01
We use past forecast errors to construct confidence intervals and other estimates of uncertainty around the Reserve Bank of Australia's forecasts of key macroeconomic variables. Our estimates suggest that uncertainty about forecasts is high. We find that the RBA's forecasts have substantial explanatory power for the inflation rate but not for GDP growth.
Uncertainty estimation of uranium determination in urine by fluorometry
International Nuclear Information System (INIS)
Shakhashiro, A.; Al-Khateeb, S.
2003-11-01
In this study an applicable mathematical model is proposed for the estimation of uncertainty in uranium determination by fluorometry in urine sample. The study based on EURACHEM guide for uncertainty estimation. This model was tested on a sample containing 0.02 μg/ml uranium, where calculated uncertainty was 0.007 μg/ml. The sources of uncertainty were shown on fish-bone plane as the following: In addition, the weight of each uncertainty parameter was shown in a histogram: Finally, it was found that the estimated uncertainty by the proposed model was 3 to 4 time more that the usually reported standard deviation. (author)
Estimation of uncertainty in pKa values determined by potentiometric titration.
Koort, Eve; Herodes, Koit; Pihl, Viljar; Leito, Ivo
2004-06-01
A procedure is presented for estimation of uncertainty in measurement of the pK(a) of a weak acid by potentiometric titration. The procedure is based on the ISO GUM. The core of the procedure is a mathematical model that involves 40 input parameters. A novel approach is used for taking into account the purity of the acid, the impurities are not treated as inert compounds only, their possible acidic dissociation is also taken into account. Application to an example of practical pK(a) determination is presented. Altogether 67 different sources of uncertainty are identified and quantified within the example. The relative importance of different uncertainty sources is discussed. The most important source of uncertainty (with the experimental set-up of the example) is the uncertainty of pH measurement followed by the accuracy of the burette and the uncertainty of weighing. The procedure gives uncertainty separately for each point of the titration curve. The uncertainty depends on the amount of titrant added, being lowest in the central part of the titration curve. The possibilities of reducing the uncertainty and interpreting the drift of the pK(a) values obtained from the same curve are discussed.
International Nuclear Information System (INIS)
Petruzzi, A.; D'Auria, F.; Cacuci, D.G.
2009-01-01
Nuclear Power Plant (NPP) technology has been developed based on the traditional defense in depth philosophy supported by deterministic and overly conservative methods for safety analysis. In the 1970s [1], conservative hypotheses were introduced for safety analyses to address existing uncertainties. Since then, intensive thermal-hydraulic experimental research has resulted in a considerable increase in knowledge and consequently in the development of best-estimate codes able to provide more realistic information about the physical behaviour and to identify the most relevant safety issues allowing the evaluation of the existing actual margins between the results of the calculations and the acceptance criteria. However, the best-estimate calculation results from complex thermal-hydraulic system codes (like Relap5, Cathare, Athlet, Trace, etc..) are affected by unavoidable approximations that are un-predictable without the use of computational tools that account for the various sources of uncertainty. Therefore the use of best-estimate codes (BE) within the reactor technology, either for design or safety purposes, implies understanding and accepting the limitations and the deficiencies of those codes. Taking into consideration the above framework, a comprehensive approach for utilizing quantified uncertainties arising from Integral Test Facilities (ITFs, [2]) and Separate Effect Test Facilities (SETFs, [3]) in the process of calibrating complex computer models for the application to NPP transient scenarios has been developed. The methodology proposed is capable of accommodating multiple SETFs and ITFs to learn as much as possible about uncertain parameters, allowing for the improvement of the computer model predictions based on the available experimental evidences. The proposed methodology constitutes a major step forward with respect to the generally used expert judgment and statistical methods as it permits a) to establish the uncertainties of any parameter
Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities
International Nuclear Information System (INIS)
Benjamin, Serge; Descures, Sylvain; Du Pasquier, Louis; Francois, Patrice; Buonarotti, Stefano; Mariotti, Giovanni; Tarakonov, Jurij; Daniska, Vladimir; Bergh, Niklas; Carroll, Simon; AaSTRoeM, Annika; Cato, Anna; De La Gardie, Fredrik; Haenggi, Hannes; Rodriguez, Jose; Laird, Alastair; Ridpath, Andy; La Guardia, Thomas; O'Sullivan, Patrick; ); Weber, Inge; )
2017-01-01
The cost estimation process of decommissioning nuclear facilities has continued to evolve in recent years, with a general trend towards demonstrating greater levels of detail in the estimate and more explicit consideration of uncertainties, the latter of which may have an impact on decommissioning project costs. The 2012 report on the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, a joint recommendation by the Nuclear Energy Agency (NEA), the International Atomic Energy Agency (IAEA) and the European Commission, proposes a standardised structure of cost items for decommissioning projects that can be used either directly for the production of cost estimates or for mapping of cost items for benchmarking purposes. The ISDC, however, provides only limited guidance on the treatment of uncertainty when preparing cost estimates. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities, prepared jointly by the NEA and IAEA, is intended to complement the ISDC, assisting cost estimators and reviewers in systematically addressing uncertainties in decommissioning cost estimates. Based on experiences gained in participating countries and projects, the report describes how uncertainty and risks can be analysed and incorporated in decommissioning cost estimates, while presenting the outcomes in a transparent manner
Uncertainties in Organ Burdens Estimated from PAS
International Nuclear Information System (INIS)
La Bone, T.R.
2004-01-01
To calculate committed effective dose equivalent, one needs to know the quantity of the radionuclide in all significantly irradiated organs (the organ burden) as a function of time following the intake. There are two major sources of uncertainty in an organ burden estimated from personal air sampling (PAS) data: (1) The uncertainty in going from the exposure measured with the PAS to the quantity of aerosol inhaled by the individual, and (2) The uncertainty in going from the intake to the organ burdens at any given time, taking into consideration the biological variability of the biokinetic models from person to person (interperson variability) and in one person over time (intra-person variability). We have been using biokinetic modeling methods developed by researchers at the University of Florida to explore the impact of inter-person variability on the uncertainty of organ burdens estimated from PAS data. These initial studies suggest that the uncertainties are so large that PAS might be considered to be a qualitative (rather than quantitative) technique. These results indicate that more studies should be performed to properly classify the reliability and usefulness of using PAS monitoring data to estimate organ burdens, organ dose, and ultimately CEDE
Uncertainty estimation and risk prediction in air quality
International Nuclear Information System (INIS)
Garaud, Damien
2011-01-01
This work is about uncertainty estimation and risk prediction in air quality. Firstly, we build a multi-model ensemble of air quality simulations which can take into account all uncertainty sources related to air quality modeling. Ensembles of photochemical simulations at continental and regional scales are automatically generated. Then, these ensemble are calibrated with a combinatorial optimization method. It selects a sub-ensemble which is representative of uncertainty or shows good resolution and reliability for probabilistic forecasting. This work shows that it is possible to estimate and forecast uncertainty fields related to ozone and nitrogen dioxide concentrations or to improve the reliability of threshold exceedance predictions. The approach is compared with Monte Carlo simulations, calibrated or not. The Monte Carlo approach appears to be less representative of the uncertainties than the multi-model approach. Finally, we quantify the observational error, the representativeness error and the modeling errors. The work is applied to the impact of thermal power plants, in order to quantify the uncertainty on the impact estimates. (author) [fr
Estimation of the uncertainties considered in NPP PSA level 2
International Nuclear Information System (INIS)
Kalchev, B.; Hristova, R.
2005-01-01
The main approaches of the uncertainties analysis are presented. The sources of uncertainties which should be considered in PSA level 2 for WWER reactor such as: uncertainties propagated from level 1 PSA; uncertainties in input parameters; uncertainties related to the modelling of physical phenomena during the accident progression and uncertainties related to the estimation of source terms are defined. The methods for estimation of the uncertainties are also discussed in this paper
Evaluating uncertainty in 7Be-based soil erosion estimates: an experimental plot approach
Blake, Will; Taylor, Alex; Abdelli, Wahid; Gaspar, Leticia; Barri, Bashar Al; Ryken, Nick; Mabit, Lionel
2014-05-01
Soil erosion remains a major concern for the international community and there is a growing need to improve the sustainability of agriculture to support future food security. High resolution soil erosion data are a fundamental requirement for underpinning soil conservation and management strategies but representative data on soil erosion rates are difficult to achieve by conventional means without interfering with farming practice and hence compromising the representativeness of results. Fallout radionuclide (FRN) tracer technology offers a solution since FRN tracers are delivered to the soil surface by natural processes and, where irreversible binding can be demonstrated, redistributed in association with soil particles. While much work has demonstrated the potential of short-lived 7Be (half-life 53 days), particularly in quantification of short-term inter-rill erosion, less attention has focussed on sources of uncertainty in derived erosion measurements and sampling strategies to minimise these. This poster outlines and discusses potential sources of uncertainty in 7Be-based soil erosion estimates and the experimental design considerations taken to quantify these in the context of a plot-scale validation experiment. Traditionally, gamma counting statistics have been the main element of uncertainty propagated and reported but recent work has shown that other factors may be more important such as: (i) spatial variability in the relaxation mass depth that describes the shape of the 7Be depth distribution for an uneroded point; (ii) spatial variability in fallout (linked to rainfall patterns and shadowing) over both reference site and plot; (iii) particle size sorting effects; (iv) preferential mobility of fallout over active runoff contributing areas. To explore these aspects in more detail, a plot of 4 x 35 m was ploughed and tilled to create a bare, sloped soil surface at the beginning of winter 2013/2014 in southwest UK. The lower edge of the plot was bounded by
Instrument uncertainty predictions
International Nuclear Information System (INIS)
Coutts, D.A.
1991-07-01
The accuracy of measurements and correlations should normally be provided for most experimental activities. The uncertainty is a measure of the accuracy of a stated value or equation. The uncertainty term reflects a combination of instrument errors, modeling limitations, and phenomena understanding deficiencies. This report provides several methodologies to estimate an instrument's uncertainty when used in experimental work. Methods are shown to predict both the pretest and post-test uncertainty
Uncertainty relations for approximation and estimation
Energy Technology Data Exchange (ETDEWEB)
Lee, Jaeha, E-mail: jlee@post.kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsutsui, Izumi, E-mail: izumi.tsutsui@kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)
2016-05-27
We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.
Uncertainty relations for approximation and estimation
International Nuclear Information System (INIS)
Lee, Jaeha; Tsutsui, Izumi
2016-01-01
We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.
Assessing concentration uncertainty estimates from passive microwave sea ice products
Meier, W.; Brucker, L.; Miller, J. A.
2017-12-01
Sea ice concentration is an essential climate variable and passive microwave derived estimates of concentration are one of the longest satellite-derived climate records. However, until recently uncertainty estimates were not provided. Numerous validation studies provided insight into general error characteristics, but the studies have found that concentration error varied greatly depending on sea ice conditions. Thus, an uncertainty estimate from each observation is desired, particularly for initialization, assimilation, and validation of models. Here we investigate three sea ice products that include an uncertainty for each concentration estimate: the NASA Team 2 algorithm product, the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) product, and the NOAA/NSIDC Climate Data Record (CDR) product. Each product estimates uncertainty with a completely different approach. The NASA Team 2 product derives uncertainty internally from the algorithm method itself. The OSI-SAF uses atmospheric reanalysis fields and a radiative transfer model. The CDR uses spatial variability from two algorithms. Each approach has merits and limitations. Here we evaluate the uncertainty estimates by comparing the passive microwave concentration products with fields derived from the NOAA VIIRS sensor. The results show that the relationship between the product uncertainty estimates and the concentration error (relative to VIIRS) is complex. This may be due to the sea ice conditions, the uncertainty methods, as well as the spatial and temporal variability of the passive microwave and VIIRS products.
Adult head CT scans: the uncertainties of effective dose estimates
International Nuclear Information System (INIS)
Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.
2008-01-01
Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ
Experimental data bases useful for quantification of model uncertainties in best estimate codes
International Nuclear Information System (INIS)
Wilson, G.E.; Katsma, K.R.; Jacobson, J.L.; Boodry, K.S.
1988-01-01
A data base is necessary for assessment of thermal hydraulic codes within the context of the new NRC ECCS Rule. Separate effect tests examine particular phenomena that may be used to develop and/or verify models and constitutive relationships in the code. Integral tests are used to demonstrate the capability of codes to model global characteristics and sequence of events for real or hypothetical transients. The nuclear industry has developed a large experimental data base of fundamental nuclear, thermal-hydraulic phenomena for code validation. Given a particular scenario, and recognizing the scenario's important phenomena, selected information from this data base may be used to demonstrate applicability of a particular code to simulate the scenario and to determine code model uncertainties. LBLOCA experimental data bases useful to this objective are identified in this paper. 2 tabs
Statistical approach for uncertainty quantification of experimental modal model parameters
DEFF Research Database (Denmark)
Luczak, M.; Peeters, B.; Kahsin, M.
2014-01-01
Composite materials are widely used in manufacture of aerospace and wind energy structural components. These load carrying structures are subjected to dynamic time-varying loading conditions. Robust structural dynamics identification procedure impose tight constraints on the quality of modal models...... represent different complexity levels ranging from coupon, through sub-component up to fully assembled aerospace and wind energy structural components made of composite materials. The proposed method is demonstrated on two application cases of a small and large wind turbine blade........ This paper aims at a systematic approach for uncertainty quantification of the parameters of the modal models estimated from experimentally obtained data. Statistical analysis of modal parameters is implemented to derive an assessment of the entire modal model uncertainty measure. Investigated structures...
Neglect Of Parameter Estimation Uncertainty Can Significantly Overestimate Structural Reliability
Directory of Open Access Journals (Sweden)
Rózsás Árpád
2015-12-01
Full Text Available Parameter estimation uncertainty is often neglected in reliability studies, i.e. point estimates of distribution parameters are used for representative fractiles, and in probabilistic models. A numerical example examines the effect of this uncertainty on structural reliability using Bayesian statistics. The study reveals that the neglect of parameter estimation uncertainty might lead to an order of magnitude underestimation of failure probability.
Lahiri, B. B.; Ranoo, Surojit; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the
International Nuclear Information System (INIS)
Lahiri, B B; Ranoo, Surojit; Philip, John
2017-01-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and
Impact of dose-distribution uncertainties on rectal ntcp modeling I: Uncertainty estimates
International Nuclear Information System (INIS)
Fenwick, John D.; Nahum, Alan E.
2001-01-01
A trial of nonescalated conformal versus conventional radiotherapy treatment of prostate cancer has been carried out at the Royal Marsden NHS Trust (RMH) and Institute of Cancer Research (ICR), demonstrating a significant reduction in the rate of rectal bleeding reported for patients treated using the conformal technique. The relationship between planned rectal dose-distributions and incidences of bleeding has been analyzed, showing that the rate of bleeding falls significantly as the extent of the rectal wall receiving a planned dose-level of more than 57 Gy is reduced. Dose-distributions delivered to the rectal wall over the course of radiotherapy treatment inevitably differ from planned distributions, due to sources of uncertainty such as patient setup error, rectal wall movement and variation in the absolute rectal wall surface area. In this paper estimates of the differences between planned and treated rectal dose-distribution parameters are obtained for the RMH/ICR nonescalated conformal technique, working from a distribution of setup errors observed during the RMH/ICR trial, movement data supplied by Lebesque and colleagues derived from repeat CT scans, and estimates of rectal circumference variations extracted from the literature. Setup errors and wall movement are found to cause only limited systematic differences between mean treated and planned rectal dose-distribution parameter values, but introduce considerable uncertainties into the treated values of some dose-distribution parameters: setup errors lead to 22% and 9% relative uncertainties in the highly dosed fraction of the rectal wall and the wall average dose, respectively, with wall movement leading to 21% and 9% relative uncertainties. Estimates obtained from the literature of the uncertainty in the absolute surface area of the distensible rectal wall are of the order of 13%-18%. In a subsequent paper the impact of these uncertainties on analyses of the relationship between incidences of bleeding
Estimating Coastal Digital Elevation Model (DEM) Uncertainty
Amante, C.; Mesick, S.
2017-12-01
Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.
Uncertainty Evaluation of Best Estimate Calculation Results
International Nuclear Information System (INIS)
Glaeser, H.
2006-01-01
Efforts are underway in Germany to perform analysis using best estimate computer codes and to include uncertainty evaluation in licensing. The German Reactor Safety Commission (RSK) issued a recommendation to perform uncertainty analysis in loss of coolant accident safety analyses (LOCA), recently. A more general requirement is included in a draft revision of the German Nuclear Regulation which is an activity of the German Ministry of Environment and Reactor Safety (BMU). According to the recommendation of the German RSK to perform safety analyses for LOCA in licensing the following deterministic requirements have still to be applied: Most unfavourable single failure, Unavailability due to preventive maintenance, Break location, Break size and break type, Double ended break, 100 percent through 200 percent, Large, medium and small break, Loss of off-site power, Core power (at accident initiation the most unfavourable conditions and values have to be assumed which may occur under normal operation taking into account the set-points of integral power and power density control. Measurement and calibration errors can be considered statistically), Time of fuel cycle. Analysis using best estimate codes with evaluation of uncertainties is the only way to quantify conservatisms with regard to code models and uncertainties of plant, fuel parameters and decay heat. This is especially the case for approaching licensing limits, e.g. due to power up-rates, higher burn-up and higher enrichment. Broader use of best estimate analysis is therefore envisaged in the future. Since some deterministic unfavourable assumptions regarding availability of NPP systems are still used, some conservatism in best-estimate analyses remains. Methods of uncertainty analyses have been developed and applied by the vendor Framatome ANP as well as by GRS in Germany. The GRS development was sponsored by the German Ministry of Economy and Labour (BMWA). (author)
Estimating uncertainty of data limited stock assessments
DEFF Research Database (Denmark)
Kokkalis, Alexandros; Eikeset, Anne Maria; Thygesen, Uffe Høgsbro
2017-01-01
-limited. Particular emphasis is put on providing uncertainty estimates of the data-limited assessment. We assess four cod stocks in the North-East Atlantic and compare our estimates of stock status (F/Fmsy) with the official assessments. The estimated stock status of all four cod stocks followed the established stock...
Sediment Curve Uncertainty Estimation Using GLUE and Bootstrap Methods
Directory of Open Access Journals (Sweden)
aboalhasan fathabadi
2017-02-01
Full Text Available Introduction: In order to implement watershed practices to decrease soil erosion effects it needs to estimate output sediment of watershed. Sediment rating curve is used as the most conventional tool to estimate sediment. Regarding to sampling errors and short data, there are some uncertainties in estimating sediment using sediment curve. In this research, bootstrap and the Generalized Likelihood Uncertainty Estimation (GLUE resampling techniques were used to calculate suspended sediment loads by using sediment rating curves. Materials and Methods: The total drainage area of the Sefidrood watershed is about 560000 km2. In this study uncertainty in suspended sediment rating curves was estimated in four stations including Motorkhane, Miyane Tonel Shomare 7, Stor and Glinak constructed on Ayghdamosh, Ghrangho, GHezelOzan and Shahrod rivers, respectively. Data were randomly divided into a training data set (80 percent and a test set (20 percent by Latin hypercube random sampling.Different suspended sediment rating curves equations were fitted to log-transformed values of sediment concentration and discharge and the best fit models were selected based on the lowest root mean square error (RMSE and the highest correlation of coefficient (R2. In the GLUE methodology, different parameter sets were sampled randomly from priori probability distribution. For each station using sampled parameter sets and selected suspended sediment rating curves equation suspended sediment concentration values were estimated several times (100000 to 400000 times. With respect to likelihood function and certain subjective threshold, parameter sets were divided into behavioral and non-behavioral parameter sets. Finally using behavioral parameter sets the 95% confidence intervals for suspended sediment concentration due to parameter uncertainty were estimated. In bootstrap methodology observed suspended sediment and discharge vectors were resampled with replacement B (set to
Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes
Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.
2017-12-01
Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.
Uncertainty Measures of Regional Flood Frequency Estimators
DEFF Research Database (Denmark)
Rosbjerg, Dan; Madsen, Henrik
1995-01-01
Regional flood frequency models have different assumptions regarding homogeneity and inter-site independence. Thus, uncertainty measures of T-year event estimators are not directly comparable. However, having chosen a particular method, the reliability of the estimate should always be stated, e...
DEFF Research Database (Denmark)
Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan
Process safety studies and assessments rely on accurate property data. Flammability data like the lower and upper flammability limit (LFL and UFL) play an important role in quantifying the risk of fire and explosion. If experimental values are not available for the safety analysis due to cost...... or time constraints, property prediction models like group contribution (GC) models can estimate flammability data. The estimation needs to be accurate, reliable and as less time consuming as possible. However, GC property prediction methods frequently lack rigorous uncertainty analysis. Hence....... In this study, the MG-GC-factors are estimated using a systematic data and model evaluation methodology in the following way: 1) Data. Experimental flammability data is used from AIChE DIPPR 801 Database. 2) Initialization and sequential parameter estimation. An approximation using linear algebra provides...
Uncertainty Estimation Cheat Sheet for Probabilistic Risk Assessment
Britton, Paul T.; Al Hassan, Mohammad; Ring, Robert W.
2017-01-01
"Uncertainty analysis itself is uncertain, therefore, you cannot evaluate it exactly," Source Uncertain Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This paper will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.
Uncertainty Estimate in Resources Assessment: A Geostatistical Contribution
International Nuclear Information System (INIS)
Souza, Luis Eduardo de; Costa, Joao Felipe C. L.; Koppe, Jair C.
2004-01-01
For many decades the mining industry regarded resources/reserves estimation and classification as a mere calculation requiring basic mathematical and geological knowledge. Most methods were based on geometrical procedures and spatial data distribution. Therefore, uncertainty associated with tonnages and grades either were ignored or mishandled, although various mining codes require a measure of confidence in the values reported. Traditional methods fail in reporting the level of confidence in the quantities and grades. Conversely, kriging is known to provide the best estimate and its associated variance. Among kriging methods, Ordinary Kriging (OK) probably is the most widely used one for mineral resource/reserve estimation, mainly because of its robustness and its facility in uncertainty assessment by using the kriging variance. It also is known that OK variance is unable to recognize local data variability, an important issue when heterogeneous mineral deposits with higher and poorer grade zones are being evaluated. Alternatively, stochastic simulation are used to build local or global uncertainty about a geological attribute respecting its statistical moments. This study investigates methods capable of incorporating uncertainty to the estimates of resources and reserves via OK and sequential gaussian and sequential indicator simulation The results showed that for the type of mineralization studied all methods classified the tonnages similarly. The methods are illustrated using an exploration drill hole data sets from a large Brazilian coal deposit
International Nuclear Information System (INIS)
Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson
2007-01-01
The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties
DEFF Research Database (Denmark)
Luczak, Marcin; Peeters, Bart; Kahsin, Maciej
2014-01-01
for uncertainty evaluation in experimentally estimated models. Investigated structures are plates, fuselage panels and helicopter main rotor blades as they represent different complexity levels ranging from coupon, through sub-component up to fully assembled structures made of composite materials. To evaluate......Aerospace and wind energy structures are extensively using components made of composite materials. Since these structures are subjected to dynamic environments with time-varying loading conditions, it is important to model their dynamic behavior and validate these models by means of vibration...
Uncertainty estimates for theoretical atomic and molecular data
International Nuclear Information System (INIS)
Chung, H-K; Braams, B J; Bartschat, K; Császár, A G; Drake, G W F; Kirchner, T; Kokoouline, V; Tennyson, J
2016-01-01
Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structures and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering. (topical review)
Stereo-particle image velocimetry uncertainty quantification
International Nuclear Information System (INIS)
Bhattacharya, Sayantan; Vlachos, Pavlos P; Charonko, John J
2017-01-01
Particle image velocimetry (PIV) measurements are subject to multiple elemental error sources and thus estimating overall measurement uncertainty is challenging. Recent advances have led to a posteriori uncertainty estimation methods for planar two-component PIV. However, no complete methodology exists for uncertainty quantification in stereo PIV. In the current work, a comprehensive framework is presented to quantify the uncertainty stemming from stereo registration error and combine it with the underlying planar velocity uncertainties. The disparity in particle locations of the dewarped images is used to estimate the positional uncertainty of the world coordinate system, which is then propagated to the uncertainty in the calibration mapping function coefficients. Next, the calibration uncertainty is combined with the planar uncertainty fields of the individual cameras through an uncertainty propagation equation and uncertainty estimates are obtained for all three velocity components. The methodology was tested with synthetic stereo PIV data for different light sheet thicknesses, with and without registration error, and also validated with an experimental vortex ring case from 2014 PIV challenge. Thorough sensitivity analysis was performed to assess the relative impact of the various parameters to the overall uncertainty. The results suggest that in absence of any disparity, the stereo PIV uncertainty prediction method is more sensitive to the planar uncertainty estimates than to the angle uncertainty, although the latter is not negligible for non-zero disparity. Overall the presented uncertainty quantification framework showed excellent agreement between the error and uncertainty RMS values for both the synthetic and the experimental data and demonstrated reliable uncertainty prediction coverage. This stereo PIV uncertainty quantification framework provides the first comprehensive treatment on the subject and potentially lays foundations applicable to volumetric
Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient
Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.
2018-04-01
The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.
Uncertainty estimation in nuclear power plant probabilistic safety assessment
International Nuclear Information System (INIS)
Guarro, S.B.; Cummings, G.E.
1989-01-01
Probabilistic Risk Assessment (PRA) was introduced in the nuclear industry and the nuclear regulatory process in 1975 with the publication of the Reactor Safety Study by the U.S. Nuclear Regulatory Commission. Almost fifteen years later, the state-of-the-art in this field has been expanded and sharpened in many areas, and about thirty-five plant-specific PRAs (Probabilistic Risk Assessments) have been performed by the nuclear utility companies or by the U.S. Nuclear Regulatory commission. Among the areas where the most evident progress has been made in PRA and PSA (Probabilistic Safety Assessment, as these studies are more commonly referred to in the international community outside the U.S.) is the development of a consistent framework for the identification of sources of uncertainty and the estimation of their magnitude as it impacts various risk measures. Techniques to propagate uncertainty in reliability data through the risk models and display its effect on the top level risk estimates were developed in the early PRAs. The Seismic Safety Margin Research Program (SSMRP) study was the first major risk study to develop an approach to deal explicitly with uncertainty in risk estimates introduced not only by uncertainty in component reliability data, but by the incomplete state of knowledge of the assessor(s) with regard to basic phenomena that may trigger and drive a severe accident. More recently NUREG-1150, another major study of reactor risk sponsored by the NRC, has expanded risk uncertainty estimation and analysis into the realm of model uncertainty related to the relatively poorly known post-core-melt phenomena which determine the behavior of the molten core and of the rector containment structures
The estimation of uncertainty of radioactivity measurement on gamma counters in radiopharmacy
International Nuclear Information System (INIS)
Jovanovic, M.S.; Orlic, M.; Vranjes, S.; Stamenkovic, Lj. . E-mail address of corresponding author: nikijov@vin.bg.ac.yu; Jovanovic, M.S.)
2005-01-01
In this paper the estimation of uncertainty of measurement of radioactivity on gamma counter in Laboratory for radioisotopes is presented. The uncertainty components, which are important for these measurements, are identified and taken into account while estimating the uncertainty of measurement.(author)
Estimating uncertainty in multivariate responses to selection.
Stinchcombe, John R; Simonsen, Anna K; Blows, Mark W
2014-04-01
Predicting the responses to natural selection is one of the key goals of evolutionary biology. Two of the challenges in fulfilling this goal have been the realization that many estimates of natural selection might be highly biased by environmentally induced covariances between traits and fitness, and that many estimated responses to selection do not incorporate or report uncertainty in the estimates. Here we describe the application of a framework that blends the merits of the Robertson-Price Identity approach and the multivariate breeder's equation to address these challenges. The approach allows genetic covariance matrices, selection differentials, selection gradients, and responses to selection to be estimated without environmentally induced bias, direct and indirect selection and responses to selection to be distinguished, and if implemented in a Bayesian-MCMC framework, statistically robust estimates of uncertainty on all of these parameters to be made. We illustrate our approach with a worked example of previously published data. More generally, we suggest that applying both the Robertson-Price Identity and the multivariate breeder's equation will facilitate hypothesis testing about natural selection, genetic constraints, and evolutionary responses. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Directory of Open Access Journals (Sweden)
Dengsheng Lu
2012-01-01
Full Text Available Landsat Thematic mapper (TM image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM’s shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data.
Uncertainty estimation of core safety parameters using cross-correlations of covariance matrix
International Nuclear Information System (INIS)
Yamamoto, A.; Yasue, Y.; Endo, T.; Kodama, Y.; Ohoka, Y.; Tatsumi, M.
2012-01-01
An uncertainty estimation method for core safety parameters, for which measurement values are not obtained, is proposed. We empirically recognize the correlations among the prediction errors among core safety parameters, e.g., a correlation between the control rod worth and assembly relative power of corresponding position. Correlations of uncertainties among core safety parameters are theoretically estimated using the covariance of cross sections and sensitivity coefficients for core parameters. The estimated correlations among core safety parameters are verified through the direct Monte-Carlo sampling method. Once the correlation of uncertainties among core safety parameters is known, we can estimate the uncertainty of a safety parameter for which measurement value is not obtained. Furthermore, the correlations can be also used for the reduction of uncertainties of core safety parameters. (authors)
On the uncertainties in effective dose estimates of adult CT head scans
International Nuclear Information System (INIS)
Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.
2008-01-01
Estimates of the effective dose to adult patients from computed tomography (CT) head scanning can be calculated using a number of different methods. These estimates can be used for a variety of purposes, such as improving scanning protocols, comparing different CT imaging centers, and weighing the benefits of the scan against the risk of radiation-induced cancer. The question arises: What is the uncertainty in these effective dose estimates? This study calculates the uncertainty of effective dose estimates produced by three computer programs (CT-EXPO, CTDosimetry, and ImpactDose) and one method that makes use of dose-length product (DLP) values. Uncertainties were calculated in accordance with an internationally recognized uncertainty analysis guide. For each of the four methods, the smallest and largest overall uncertainties (stated at the 95% confidence interval) were: 20%-31% (CT-EXPO), 15%-28% (CTDosimetry), 20%-36% (ImpactDose), and 22%-32% (DLP), respectively. The overall uncertainties for each method vary due to differences in the uncertainties of factors used in each method. The smallest uncertainties apply when the CT dose index for the scanner has been measured using a calibrated pencil ionization chamber
Estimating the uncertainty in thermochemical calculations for oxygen-hydrogen combustors
Sims, Joseph David
The thermochemistry program CEA2 was combined with the statistical thermodynamics program PAC99 in a Monte Carlo simulation to determine the uncertainty in several CEA2 output variables due to uncertainty in thermodynamic reference values for the reactant and combustion species. In all, six typical performance parameters were examined, along with the required intermediate calculations (five gas properties and eight stoichiometric coefficients), for three hydrogen-oxygen combustors: a main combustor, an oxidizer preburner and a fuel preburner. The three combustors were analyzed in two different modes: design mode, where, for the first time, the uncertainty in thermodynamic reference values---taken from the literature---was considered (inputs to CEA2 were specified and so had no uncertainty); and data reduction mode, where inputs to CEA2 did have uncertainty. The inputs to CEA2 were contrived experimental measurements that were intended to represent the typical combustor testing facility. In design mode, uncertainties in the performance parameters were on the order of 0.1% for the main combustor, on the order of 0.05% for the oxidizer preburner and on the order of 0.01% for the fuel preburner. Thermodynamic reference values for H2O were the dominant sources of uncertainty, as was the assigned enthalpy for liquid oxygen. In data reduction mode, uncertainties in performance parameters increased significantly as a result of the uncertainties in experimental measurements compared to uncertainties in thermodynamic reference values. Main combustor and fuel preburner theoretical performance values had uncertainties of about 0.5%, while the oxidizer preburner had nearly 2%. Associated experimentally-determined performance values for all three combustors were 3% to 4%. The dominant sources of uncertainty in this mode were the propellant flowrates. These results only apply to hydrogen-oxygen combustors and should not be generalized to every propellant combination. Species for
Incorporation of various uncertainties in dependent failure-probability estimation
International Nuclear Information System (INIS)
Samanta, P.K.; Mitra, S.P.
1982-01-01
This paper describes an approach that allows the incorporation of various types of uncertainties in the estimation of dependent failure (common mode failure) probability. The types of uncertainties considered are attributable to data, modeling and coupling. The method developed is applied to a class of dependent failures, i.e., multiple human failures during testing, maintenance and calibration. Estimation of these failures is critical as they have been shown to be significant contributors to core melt probability in pressurized water reactors
Triangular and Trapezoidal Fuzzy State Estimation with Uncertainty on Measurements
Directory of Open Access Journals (Sweden)
Mohammad Sadeghi Sarcheshmah
2012-01-01
Full Text Available In this paper, a new method for uncertainty analysis in fuzzy state estimation is proposed. The uncertainty is expressed in measurements. Uncertainties in measurements are modelled with different fuzzy membership functions (triangular and trapezoidal. To find the fuzzy distribution of any state variable, the problem is formulated as a constrained linear programming (LP optimization. The viability of the proposed method would be verified with the ones obtained from the weighted least squares (WLS and the fuzzy state estimation (FSE in the 6-bus system and in the IEEE-14 and 30 bus system.
Sensitivity and uncertainty analysis for the annual phosphorus loss estimator model.
Bolster, Carl H; Vadas, Peter A
2013-07-01
Models are often used to predict phosphorus (P) loss from agricultural fields. Although it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study we assessed the effect of model input error on predictions of annual P loss by the Annual P Loss Estimator (APLE) model. Our objectives were (i) to conduct a sensitivity analyses for all APLE input variables to determine which variables the model is most sensitive to, (ii) to determine whether the relatively easy-to-implement first-order approximation (FOA) method provides accurate estimates of model prediction uncertainties by comparing results with the more accurate Monte Carlo simulation (MCS) method, and (iii) to evaluate the performance of the APLE model against measured P loss data when uncertainties in model predictions and measured data are included. Our results showed that for low to moderate uncertainties in APLE input variables, the FOA method yields reasonable estimates of model prediction uncertainties, although for cases where manure solid content is between 14 and 17%, the FOA method may not be as accurate as the MCS method due to a discontinuity in the manure P loss component of APLE at a manure solid content of 15%. The estimated uncertainties in APLE predictions based on assumed errors in the input variables ranged from ±2 to 64% of the predicted value. Results from this study highlight the importance of including reasonable estimates of model uncertainty when using models to predict P loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Hughes, J. D.; Metz, P. A.
2014-12-01
Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss
REDD+ emissions estimation and reporting: dealing with uncertainty
International Nuclear Information System (INIS)
Pelletier, Johanne; Potvin, Catherine; Martin, Davy
2013-01-01
The United Nations Framework Convention on Climate Change (UNFCCC) defined the technical and financial modalities of policy approaches and incentives to reduce emissions from deforestation and forest degradation in developing countries (REDD+). Substantial technical challenges hinder precise and accurate estimation of forest-related emissions and removals, as well as the setting and assessment of reference levels. These challenges could limit country participation in REDD+, especially if REDD+ emission reductions were to meet quality standards required to serve as compliance grade offsets for developed countries’ emissions. Using Panama as a case study, we tested the matrix approach proposed by Bucki et al (2012 Environ. Res. Lett. 7 024005) to perform sensitivity and uncertainty analysis distinguishing between ‘modelling sources’ of uncertainty, which refers to model-specific parameters and assumptions, and ‘recurring sources’ of uncertainty, which refers to random and systematic errors in emission factors and activity data. The sensitivity analysis estimated differences in the resulting fluxes ranging from 4.2% to 262.2% of the reference emission level. The classification of fallows and the carbon stock increment or carbon accumulation of intact forest lands were the two key parameters showing the largest sensitivity. The highest error propagated using Monte Carlo simulations was caused by modelling sources of uncertainty, which calls for special attention to ensure consistency in REDD+ reporting which is essential for securing environmental integrity. Due to the role of these modelling sources of uncertainty, the adoption of strict rules for estimation and reporting would favour comparability of emission reductions between countries. We believe that a reduction of the bias in emission factors will arise, among other things, from a globally concerted effort to improve allometric equations for tropical forests. Public access to datasets and methodology
REDD+ emissions estimation and reporting: dealing with uncertainty
Pelletier, Johanne; Martin, Davy; Potvin, Catherine
2013-09-01
The United Nations Framework Convention on Climate Change (UNFCCC) defined the technical and financial modalities of policy approaches and incentives to reduce emissions from deforestation and forest degradation in developing countries (REDD+). Substantial technical challenges hinder precise and accurate estimation of forest-related emissions and removals, as well as the setting and assessment of reference levels. These challenges could limit country participation in REDD+, especially if REDD+ emission reductions were to meet quality standards required to serve as compliance grade offsets for developed countries’ emissions. Using Panama as a case study, we tested the matrix approach proposed by Bucki et al (2012 Environ. Res. Lett. 7 024005) to perform sensitivity and uncertainty analysis distinguishing between ‘modelling sources’ of uncertainty, which refers to model-specific parameters and assumptions, and ‘recurring sources’ of uncertainty, which refers to random and systematic errors in emission factors and activity data. The sensitivity analysis estimated differences in the resulting fluxes ranging from 4.2% to 262.2% of the reference emission level. The classification of fallows and the carbon stock increment or carbon accumulation of intact forest lands were the two key parameters showing the largest sensitivity. The highest error propagated using Monte Carlo simulations was caused by modelling sources of uncertainty, which calls for special attention to ensure consistency in REDD+ reporting which is essential for securing environmental integrity. Due to the role of these modelling sources of uncertainty, the adoption of strict rules for estimation and reporting would favour comparability of emission reductions between countries. We believe that a reduction of the bias in emission factors will arise, among other things, from a globally concerted effort to improve allometric equations for tropical forests. Public access to datasets and methodology
DEFF Research Database (Denmark)
Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.
2011-01-01
Distributed weather radar precipitation measurements are used as rainfall input for an urban drainage model, to simulate the runoff from a small catchment of Denmark. It is demonstrated how the Generalized Likelihood Uncertainty Estimation (GLUE) methodology can be implemented and used to estimate...
Estimation of the uncertainty in wind power forecasting
International Nuclear Information System (INIS)
Pinson, P.
2006-03-01
WIND POWER experiences a tremendous development of its installed capacities in Europe. Though, the intermittence of wind generation causes difficulties in the management of power systems. Also, in the context of the deregulation of electricity markets, wind energy is penalized by its intermittent nature. It is recognized today that the forecasting of wind power for horizons up to 2/3-day ahead eases the integration of wind generation. Wind power forecasts are traditionally provided in the form of point predictions, which correspond to the most-likely power production for a given horizon. That sole information is not sufficient for developing optimal management or trading strategies. Therefore, we investigate on possible ways for estimating the uncertainty of wind power forecasts. The characteristics of the prediction uncertainty are described by a thorough study of the performance of some of the state-of-the-art approaches, and by underlining the influence of some variables e.g. level of predicted power on distributions of prediction errors. Then, a generic method for the estimation of prediction intervals is introduced. This statistical method is non-parametric and utilizes fuzzy logic concepts for integrating expertise on the prediction uncertainty characteristics. By estimating several prediction intervals at once, one obtains predictive distributions of wind power output. The proposed method is evaluated in terms of its reliability, sharpness and resolution. In parallel, we explore the potential use of ensemble predictions for skill forecasting. Wind power ensemble forecasts are obtained either by converting meteorological ensembles (from ECMWF and NCEP) to power or by applying a poor man's temporal approach. A proposal for the definition of prediction risk indices is given, reflecting the disagreement between ensemble members over a set of successive look-ahead times. Such prediction risk indices may comprise a more comprehensive signal on the expected level
Uncertainty of feedback and state estimation determines the speed of motor adaptation
Directory of Open Access Journals (Sweden)
Kunlin Wei
2010-05-01
Full Text Available Humans can adapt their motor behaviors to deal with ongoing changes. To achieve this, the nervous system needs to estimate central variables for our movement based on past knowledge and new feedback, both of which are uncertain. In the Bayesian framework, rates of adaptation characterize how noisy feedback is in comparison to the uncertainty of the state estimate. The predictions of Bayesian models are intuitive: the nervous system should adapt slower when sensory feedback is more noisy and faster when its state estimate is more uncertain. Here we want to quantitatively understand how uncertainty in these two factors affects motor adaptation. In a hand reaching experiment we measured trial-by-trial adaptation to a randomly changing visual perturbation to characterize the way the nervous system handles uncertainty in state estimation and feedback. We found both qualitative predictions of Bayesian models confirmed. Our study provides evidence that the nervous system represents and uses uncertainty in state estimate and feedback during motor adaptation.
Uncertainty estimation in nuclear material weighing
Energy Technology Data Exchange (ETDEWEB)
Thaure, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, (France)
2011-12-15
The assessment of nuclear material quantities located in nuclear plants requires knowledge of additions and subtractions of amounts of different types of materials. Most generally, the quantity of nuclear material held is deduced from 3 parameters: a mass (or a volume of product); a concentration of nuclear material in the product considered; and an isotopic composition. Global uncertainties associated with nuclear material quantities depend upon the confidence level of results obtained in the measurement of every different parameter. Uncertainties are generally estimated by considering five influencing parameters (ISHIKAWA's rule): the material itself; the measurement system; the applied method; the environmental conditions; and the operator. A good practice guide, to be used to deal with weighing errors and problems encountered, is presented in the paper.
Uncertainties in fatal cancer risk estimates used in radiation protection
International Nuclear Information System (INIS)
Kai, Michiaki
1999-01-01
Although ICRP and NCRP had not described the details of uncertainties in cancer risk estimates in radiation protection, NCRP, in 1997, firstly reported the results of uncertainty analysis (NCRP No.126) and which is summarized in this paper. The NCRP report pointed out that there are following five factors which uncertainty possessing: uncertainty in epidemiological studies, in dose assessment, in transforming the estimates to risk assessment, in risk prediction and in extrapolation to the low dose/dose rate. These individual factors were analyzed statistically to obtain the relationship between the probability of cancer death in the US population and life time risk coefficient (% per Sv), which showed that, for the latter, the mean value was 3.99 x 10 -2 /Sv, median, 3.38 x 10 -2 /Sv, GSD (geometrical standard deviation), 1.83 x 10 -2 /Sv and 95% confidential limit, 1.2-8.84 x 10 -2 /Sv. The mean value was smaller than that of ICRP recommendation (5 x 10 -2 /Sv), indicating that the value has the uncertainty factor of 2.5-3. Moreover, the most important factor was shown to be the uncertainty in DDREF (dose/dose rate reduction factor). (K.H.)
Ali, E. S. M.; Spencer, B.; McEwen, M. R.; Rogers, D. W. O.
2015-02-01
In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy—i.e. 100 keV (orthovoltage) to 25 MeV—using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ˜0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative ‘envelope of uncertainty’ of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22).
A statistical methodology for quantification of uncertainty in best estimate code physical models
International Nuclear Information System (INIS)
Vinai, Paolo; Macian-Juan, Rafael; Chawla, Rakesh
2007-01-01
A novel uncertainty assessment methodology, based on a statistical non-parametric approach, is presented in this paper. It achieves quantification of code physical model uncertainty by making use of model performance information obtained from studies of appropriate separate-effect tests. Uncertainties are quantified in the form of estimated probability density functions (pdf's), calculated with a newly developed non-parametric estimator. The new estimator objectively predicts the probability distribution of the model's 'error' (its uncertainty) from databases reflecting the model's accuracy on the basis of available experiments. The methodology is completed by applying a novel multi-dimensional clustering technique based on the comparison of model error samples with the Kruskall-Wallis test. This takes into account the fact that a model's uncertainty depends on system conditions, since a best estimate code can give predictions for which the accuracy is affected by the regions of the physical space in which the experiments occur. The final result is an objective, rigorous and accurate manner of assigning uncertainty to coded models, i.e. the input information needed by code uncertainty propagation methodologies used for assessing the accuracy of best estimate codes in nuclear systems analysis. The new methodology has been applied to the quantification of the uncertainty in the RETRAN-3D void model and then used in the analysis of an independent separate-effect experiment. This has clearly demonstrated the basic feasibility of the approach, as well as its advantages in yielding narrower uncertainty bands in quantifying the code's accuracy for void fraction predictions
Directory of Open Access Journals (Sweden)
Eleanor S Devenish Nelson
Full Text Available BACKGROUND: Demographic models are widely used in conservation and management, and their parameterisation often relies on data collected for other purposes. When underlying data lack clear indications of associated uncertainty, modellers often fail to account for that uncertainty in model outputs, such as estimates of population growth. METHODOLOGY/PRINCIPAL FINDINGS: We applied a likelihood approach to infer uncertainty retrospectively from point estimates of vital rates. Combining this with resampling techniques and projection modelling, we show that confidence intervals for population growth estimates are easy to derive. We used similar techniques to examine the effects of sample size on uncertainty. Our approach is illustrated using data on the red fox, Vulpes vulpes, a predator of ecological and cultural importance, and the most widespread extant terrestrial mammal. We show that uncertainty surrounding estimated population growth rates can be high, even for relatively well-studied populations. Halving that uncertainty typically requires a quadrupling of sampling effort. CONCLUSIONS/SIGNIFICANCE: Our results compel caution when comparing demographic trends between populations without accounting for uncertainty. Our methods will be widely applicable to demographic studies of many species.
Parameter estimation techniques and uncertainty in ground water flow model predictions
International Nuclear Information System (INIS)
Zimmerman, D.A.; Davis, P.A.
1990-01-01
Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs
Bayesian analysis for uncertainty estimation of a canopy transpiration model
Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.
2007-04-01
A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.
Estimation of a multivariate mean under model selection uncertainty
Directory of Open Access Journals (Sweden)
Georges Nguefack-Tsague
2014-05-01
Full Text Available Model selection uncertainty would occur if we selected a model based on one data set and subsequently applied it for statistical inferences, because the "correct" model would not be selected with certainty. When the selection and inference are based on the same dataset, some additional problems arise due to the correlation of the two stages (selection and inference. In this paper model selection uncertainty is considered and model averaging is proposed. The proposal is related to the theory of James and Stein of estimating more than three parameters from independent normal observations. We suggest that a model averaging scheme taking into account the selection procedure could be more appropriate than model selection alone. Some properties of this model averaging estimator are investigated; in particular we show using Stein's results that it is a minimax estimator and can outperform Stein-type estimators.
International Nuclear Information System (INIS)
1989-10-01
Studies of underground miners provide the principal basis for assessing the risk from radon daughter exposure. An important problem in all epidemiological studies of underground miners is the reliability of the estimates of the miners' exposures. This study examines the various sources of uncertainty in exposure estimation for the principal epidemiologic studies reported in the literature including the temporal and spatial variability of radon sources and, with the passage of time, changes to both mining methods and ventilation conditions. Uncertainties about work histories and the role of other hard rock mining experience are also discussed. The report also describes two statistical approaches, both based on Bayesian methods, by which the effects on the estimated risk coefficient of uncertainty in exposure (WLM) can be examined. One approach requires only an estimate of the cumulative WLM exposure of a group of miners, an estimate of the number of (excess) lung cancers potentially attributable to that exposure, and a specification of the uncertainty about the cumulative exposure of the group. The second approach is based on a linear regression model which incorporates errors (uncertainty) in the independent variable (WLM) and allows the dependent variable (cases) to be Poisson distributed. The method permits the calculation of marginal probability distributions for either slope (risk coefficient) or intercept. The regression model approach is applied to several published data sets from epidemiological studies of miners. Specific results are provided for each data set and apparent differences in risk coefficients are discussed. The studies of U.S. uranium miners, Ontario uranium miners and Czechoslovakian uranium miners are argued to provide the best basis for risk estimation at this time. In general terms, none of the analyses performed are inconsistent with a linear exposure-effect relation. Based on analyses of the overall miner groups, the most likely ranges
Uncertainty and validation. Effect of user interpretation on uncertainty estimates
International Nuclear Information System (INIS)
Kirchner, G.; Peterson, R.
1996-11-01
Uncertainty in predictions of environmental transfer models arises from, among other sources, the adequacy of the conceptual model, the approximations made in coding the conceptual model, the quality of the input data, the uncertainty in parameter values, and the assumptions made by the user. In recent years efforts to quantify the confidence that can be placed in predictions have been increasing, but have concentrated on a statistical propagation of the influence of parameter uncertainties on the calculational results. The primary objective of this Working Group of BIOMOVS II was to test user's influence on model predictions on a more systematic basis than has been done before. The main goals were as follows: To compare differences between predictions from different people all using the same model and the same scenario description with the statistical uncertainties calculated by the model. To investigate the main reasons for different interpretations by users. To create a better awareness of the potential influence of the user on the modeling results. Terrestrial food chain models driven by deposition of radionuclides from the atmosphere were used. Three codes were obtained and run with three scenarios by a maximum of 10 users. A number of conclusions can be drawn some of which are general and independent of the type of models and processes studied, while others are restricted to the few processes that were addressed directly: For any set of predictions, the variation in best estimates was greater than one order of magnitude. Often the range increased from deposition to pasture to milk probably due to additional transfer processes. The 95% confidence intervals about the predictions calculated from the parameter distributions prepared by the participants did not always overlap the observations; similarly, sometimes the confidence intervals on the predictions did not overlap. Often the 95% confidence intervals of individual predictions were smaller than the
Uncertainty and validation. Effect of user interpretation on uncertainty estimates
Energy Technology Data Exchange (ETDEWEB)
Kirchner, G. [Univ. of Bremen (Germany); Peterson, R. [AECL, Chalk River, ON (Canada)] [and others
1996-11-01
Uncertainty in predictions of environmental transfer models arises from, among other sources, the adequacy of the conceptual model, the approximations made in coding the conceptual model, the quality of the input data, the uncertainty in parameter values, and the assumptions made by the user. In recent years efforts to quantify the confidence that can be placed in predictions have been increasing, but have concentrated on a statistical propagation of the influence of parameter uncertainties on the calculational results. The primary objective of this Working Group of BIOMOVS II was to test user's influence on model predictions on a more systematic basis than has been done before. The main goals were as follows: To compare differences between predictions from different people all using the same model and the same scenario description with the statistical uncertainties calculated by the model. To investigate the main reasons for different interpretations by users. To create a better awareness of the potential influence of the user on the modeling results. Terrestrial food chain models driven by deposition of radionuclides from the atmosphere were used. Three codes were obtained and run with three scenarios by a maximum of 10 users. A number of conclusions can be drawn some of which are general and independent of the type of models and processes studied, while others are restricted to the few processes that were addressed directly: For any set of predictions, the variation in best estimates was greater than one order of magnitude. Often the range increased from deposition to pasture to milk probably due to additional transfer processes. The 95% confidence intervals about the predictions calculated from the parameter distributions prepared by the participants did not always overlap the observations; similarly, sometimes the confidence intervals on the predictions did not overlap. Often the 95% confidence intervals of individual predictions were smaller than the
International Nuclear Information System (INIS)
Delforge, J.; Syrota, A.; Mazoyer, B.M.
1989-01-01
General framework and various criteria for experimental design optimisation are presented. The methodology is applied to estimation of receptor-ligand reaction model parameters with dynamic positron emission tomography data. The possibility of improving parameter estimation using a new experimental design combining an injection of the β + -labelled ligand and an injection of the cold ligand is investigated. Numerical simulations predict remarkable improvement in the accuracy of parameter estimates with this new experimental design and particularly the possibility of separate estimations of the association constant (k +1 ) and of receptor density (B' max ) in a single experiment. Simulation predictions are validated using experimental PET data in which parameter uncertainties are reduced by factors ranging from 17 to 1000. (author)
Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint
Energy Technology Data Exchange (ETDEWEB)
Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.
2014-11-01
Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.
Uncertainty estimation of shape and roughness measurement
Morel, M.A.A.
2006-01-01
One of the most common techniques to measure a surface or form is mechanical probing. Although used since the early 30s of the 20th century, a method to calculate a task specific uncertainty budget was not yet devised. Guidelines and statistical estimates are common in certain cases but an
International Nuclear Information System (INIS)
Endah Damastuti; Muhayatun; Diah Dwiana L
2009-01-01
Beside to complished the requirements of international standard of ISO/IEC 17025:2005, uncertainty estimation should be done to increase quality and confidence of analysis results and also to establish traceability of the analysis results to SI unit. Neutron activation analysis is a major technique used by Radiometry technique analysis laboratory and is included as scope of accreditation under ISO/IEC 17025:2005, therefore uncertainty estimation of neutron activation analysis is needed to be carried out. Sample and standard preparation as well as, irradiation and measurement using gamma spectrometry were the main activities which could give contribution to uncertainty. The components of uncertainty sources were specifically explained. The result of expanded uncertainty was 4,0 mg/kg with level of confidence 95% (coverage factor=2) and Zn concentration was 25,1 mg/kg. Counting statistic of cuplikan and standard were the major contribution of combined uncertainty. The uncertainty estimation was expected to increase the quality of the analysis results and could be applied further to other kind of samples. (author)
Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty.
Lee, Jun Hyung; Choi, Jee-Hye; Youn, Jae Saeng; Cha, Young Joo; Song, Woonheung; Park, Ae Ja
2015-06-01
Measurement uncertainty is a metrological concept to quantify the variability of measurement results. There are two approaches to estimate measurement uncertainty. In this study, we sought to provide practical and detailed examples of the two approaches and compare the bottom-up and top-down approaches to estimating measurement uncertainty. We estimated measurement uncertainty of the concentration of glucose according to CLSI EP29-A guideline. Two different approaches were used. First, we performed a bottom-up approach. We identified the sources of uncertainty and made an uncertainty budget and assessed the measurement functions. We determined the uncertainties of each element and combined them. Second, we performed a top-down approach using internal quality control (IQC) data for 6 months. Then, we estimated and corrected systematic bias using certified reference material of glucose (NIST SRM 965b). The expanded uncertainties at the low glucose concentration (5.57 mmol/L) by the bottom-up approach and top-down approaches were ±0.18 mmol/L and ±0.17 mmol/L, respectively (all k=2). Those at the high glucose concentration (12.77 mmol/L) by the bottom-up and top-down approaches were ±0.34 mmol/L and ±0.36 mmol/L, respectively (all k=2). We presented practical and detailed examples for estimating measurement uncertainty by the two approaches. The uncertainties by the bottom-up approach were quite similar to those by the top-down approach. Thus, we demonstrated that the two approaches were approximately equivalent and interchangeable and concluded that clinical laboratories could determine measurement uncertainty by the simpler top-down approach.
Hydrological model uncertainty due to spatial evapotranspiration estimation methods
Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub
2016-05-01
Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.
Estimating the measurement uncertainty in forensic blood alcohol analysis.
Gullberg, Rod G
2012-04-01
For many reasons, forensic toxicologists are being asked to determine and report their measurement uncertainty in blood alcohol analysis. While understood conceptually, the elements and computations involved in determining measurement uncertainty are generally foreign to most forensic toxicologists. Several established and well-documented methods are available to determine and report the uncertainty in blood alcohol measurement. A straightforward bottom-up approach is presented that includes: (1) specifying the measurand, (2) identifying the major components of uncertainty, (3) quantifying the components, (4) statistically combining the components and (5) reporting the results. A hypothetical example is presented that employs reasonable estimates for forensic blood alcohol analysis assuming headspace gas chromatography. These computations are easily employed in spreadsheet programs as well. Determining and reporting measurement uncertainty is an important element in establishing fitness-for-purpose. Indeed, the demand for such computations and information from the forensic toxicologist will continue to increase.
Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2017-11-01
Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with
International Nuclear Information System (INIS)
Chilenski, M.A.; Greenwald, M.; Howard, N.T.; White, A.E.; Rice, J.E.; Walk, J.R.; Marzouk, Y.
2015-01-01
The need to fit smooth temperature and density profiles to discrete observations is ubiquitous in plasma physics, but the prevailing techniques for this have many shortcomings that cast doubt on the statistical validity of the results. This issue is amplified in the context of validation of gyrokinetic transport models (Holland et al 2009 Phys. Plasmas 16 052301), where the strong sensitivity of the code outputs to input gradients means that inadequacies in the profile fitting technique can easily lead to an incorrect assessment of the degree of agreement with experimental measurements. In order to rectify the shortcomings of standard approaches to profile fitting, we have applied Gaussian process regression (GPR), a powerful non-parametric regression technique, to analyse an Alcator C-Mod L-mode discharge used for past gyrokinetic validation work (Howard et al 2012 Nucl. Fusion 52 063002). We show that the GPR techniques can reproduce the previous results while delivering more statistically rigorous fits and uncertainty estimates for both the value and the gradient of plasma profiles with an improved level of automation. We also discuss how the use of GPR can allow for dramatic increases in the rate of convergence of uncertainty propagation for any code that takes experimental profiles as inputs. The new GPR techniques for profile fitting and uncertainty propagation are quite useful and general, and we describe the steps to implementation in detail in this paper. These techniques have the potential to substantially improve the quality of uncertainty estimates on profile fits and the rate of convergence of uncertainty propagation, making them of great interest for wider use in fusion experiments and modelling efforts. (paper)
Uncertainty in estimating and mitigating industrial related GHG emissions
International Nuclear Information System (INIS)
El-Fadel, M.; Zeinati, M.; Ghaddar, N.; Mezher, T.
2001-01-01
Global climate change has been one of the challenging environmental concerns facing policy makers in the past decade. The characterization of the wide range of greenhouse gas emissions sources and sinks as well as their behavior in the atmosphere remains an on-going activity in many countries. Lebanon, being a signatory to the Framework Convention on Climate Change, is required to submit and regularly update a national inventory of greenhouse gas emissions sources and removals. Accordingly, an inventory of greenhouse gases from various sectors was conducted following the guidelines set by the United Nations Intergovernmental Panel on Climate Change (IPCC). The inventory indicated that the industrial sector contributes about 29% to the total greenhouse gas emissions divided between industrial processes and energy requirements at 12 and 17%, respectively. This paper describes major mitigation scenarios to reduce emissions from this sector based on associated technical, economic, environmental, and social characteristics. Economic ranking of these scenarios was conducted and uncertainty in emission factors used in the estimation process was emphasized. For this purpose, theoretical and experimental emission factors were used as alternatives to default factors recommended by the IPCC and the significance of resulting deviations in emission estimation is presented. (author)
Rigo-Bonnin, Raül; Blanco-Font, Aurora; Canalias, Francesca
2018-05-08
Values of mass concentration of tacrolimus in whole blood are commonly used by the clinicians for monitoring the status of a transplant patient and for checking whether the administered dose of tacrolimus is effective. So, clinical laboratories must provide results as accurately as possible. Measurement uncertainty can allow ensuring reliability of these results. The aim of this study was to estimate measurement uncertainty of whole blood mass concentration tacrolimus values obtained by UHPLC-MS/MS using two top-down approaches: the single laboratory validation approach and the proficiency testing approach. For the single laboratory validation approach, we estimated the uncertainties associated to the intermediate imprecision (using long-term internal quality control data) and the bias (utilizing a certified reference material). Next, we combined them together with the uncertainties related to the calibrators-assigned values to obtain a combined uncertainty for, finally, to calculate the expanded uncertainty. For the proficiency testing approach, the uncertainty was estimated in a similar way that the single laboratory validation approach but considering data from internal and external quality control schemes to estimate the uncertainty related to the bias. The estimated expanded uncertainty for single laboratory validation, proficiency testing using internal and external quality control schemes were 11.8%, 13.2%, and 13.0%, respectively. After performing the two top-down approaches, we observed that their uncertainty results were quite similar. This fact would confirm that either two approaches could be used to estimate the measurement uncertainty of whole blood mass concentration tacrolimus values in clinical laboratories. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Leaf area index uncertainty estimates for model-data fusion applications
Andrew D. Richardson; D. Bryan Dail; D.Y. Hollinger
2011-01-01
Estimates of data uncertainties are required to integrate different observational data streams as model constraints using model-data fusion. We describe an approach with which random and systematic uncertainties in optical measurements of leaf area index [LAI] can be quantified. We use data from a measurement campaign at the spruce-dominated Howland Forest AmeriFlux...
Effect of Uncertainties in Physical Property Estimates on Process Design - Sensitivity Analysis
DEFF Research Database (Denmark)
Hukkerikar, Amol; Jones, Mark Nicholas; Sin, Gürkan
for performing sensitivity of process design subject to uncertainties in the property estimates. To this end, first uncertainty analysis of the property models of pure components and their mixtures was performed in order to obtain the uncertainties in the estimated property values. As a next step, sensitivity......Chemical process design calculations require accurate and reliable physical and thermodynamic property data and property models of pure components and their mixtures in order to obtain reliable design parameters which help to achieve desired specifications. The uncertainties in the property values...... can arise from the experiments itself or from the property models employed. It is important to consider the effect of these uncertainties on the process design in order to assess the quality and reliability of the final design. The main objective of this work is to develop a systematic methodology...
International Nuclear Information System (INIS)
Li, Yanwen; Wang, Chao; Gong, Jinfeng
2016-01-01
An accurate battery State of Charge estimation plays an important role in battery electric vehicles. This paper makes two contributions to the existing literature. (1) A recursive least squares method with fuzzy adaptive forgetting factor has been presented to update the model parameters close to the real value more quickly. (2) The statistical information of the innovation sequence obeying chi-square distribution has been introduced to identify model uncertainty, and a novel combination algorithm of strong tracking unscented Kalman filter and adaptive unscented Kalman filter has been developed to estimate SOC (State of Charge). Experimental results indicate that the novel algorithm has a good performance in estimating the battery SOC against initial SOC errors and voltage sensor drift. A comparison with the unscented Kalman filter-based algorithms and adaptive unscented Kalman filter-based algorithms shows that the proposed SOC estimation method has better accuracy, robustness and convergence behavior. - Highlights: • Recursive least squares method with fuzzy adaptive forgetting factor is presented. • The innovation obeying chi-square distribution is used to identify uncertainty. • A combination Karman filter approach for State of Charge estimation is presented. • The performance of the proposed method is verified by comparison results.
Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process
Directory of Open Access Journals (Sweden)
Janet L. Rachlow
2013-08-01
Full Text Available United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1 if a current population size was given, (2 if a measure of uncertainty or variance was associated with current estimates of population size and (3 if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.
Assessment of uncertainties of external dose estimation after the Chernobyl accident
International Nuclear Information System (INIS)
Kruk, Julianna
2008-01-01
Full text: In the remote period of time after the Chernobyl accident the estimation of an external exposure with using of direct dose rate measurements or individual monitoring of inhabitants is rationally only for settlements where the preliminary estimation makes the range equal or greater 1.0 mSv per year. For inhabitancies of settlements where the preliminary estimation makes the range less 1.0 mSv per year the external dose is correctly to estimate by calculation. For the last cases the uncertainty should be assessed. The most accessible initial parameter for calculation of a dose of an external exposure is the average ground deposition of Cs-137 for the settlements. The character of density distribution of Cs-137 deposition in an area of one settlement is well enough studied. The best agreement of distribution of this parameter is reached with log-normal distribution practically for all settlements of the investigated territories with factor of a variation 0.3-0.6 and the standard geometrical deviation lying within the limits of 1.4-1.7. The dose factors which correspond to the structure of an available housing of settlement (type of apartment houses: wooden, stone, multi-storey) and age structure of the population are bring the main contribution into uncertainty of the external dose estimation. The situations with a different level of known information have been considered for the estimation of influence of those parameters on the general uncertainty. Thus the estimation of the uncertainty of the external dose was done for two variant: optimistic and pessimistic. In the optimistic case the estimation of external doses will be spent for specific settlement with known structure of housing and according to a known share of the living population in houses of the certain type. In that case, variability value dose factor will be limited to the chosen type of a residential building (for example - the one-storied wooden house), and a share of the living population
Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.
2012-04-01
Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from
Uncertainty analysis methods for estimation of reliability of passive system of VHTR
International Nuclear Information System (INIS)
Han, S.J.
2012-01-01
An estimation of reliability of passive system for the probabilistic safety assessment (PSA) of a very high temperature reactor (VHTR) is under development in Korea. The essential approach of this estimation is to measure the uncertainty of the system performance under a specific accident condition. The uncertainty propagation approach according to the simulation of phenomenological models (computer codes) is adopted as a typical method to estimate the uncertainty for this purpose. This presentation introduced the uncertainty propagation and discussed the related issues focusing on the propagation object and its surrogates. To achieve a sufficient level of depth of uncertainty results, the applicability of the propagation should be carefully reviewed. For an example study, Latin-hypercube sampling (LHS) method as a direct propagation was tested for a specific accident sequence of VHTR. The reactor cavity cooling system (RCCS) developed by KAERI was considered for this example study. This is an air-cooled type passive system that has no active components for its operation. The accident sequence is a low pressure conduction cooling (LPCC) accident that is considered as a design basis accident for the safety design of VHTR. This sequence is due to a large failure of the pressure boundary of the reactor system such as a guillotine break of coolant pipe lines. The presentation discussed the obtained insights (benefit and weakness) to apply an estimation of reliability of passive system
Uncertainties in effective dose estimates of adult CT head scans: The effect of head size
International Nuclear Information System (INIS)
Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.
2009-01-01
Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.
Uncertainties in effective dose estimates of adult CT head scans: The effect of head size
Energy Technology Data Exchange (ETDEWEB)
Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E. [Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia 5000 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Division of Medical Imaging, Women' s and Children' s Hospital, North Adelaide, South Australia 5006 (Australia) and School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia); School of Electrical and Information Engineering (Applied Physics), University of South Australia, Mawson Lakes, South Australia 5095 (Australia)
2009-09-15
Purpose: This study is an extension of a previous study where the uncertainties in effective dose estimates from adult CT head scans were calculated using four CT effective dose estimation methods, three of which were computer programs (CT-EXPO, CTDOSIMETRY, and IMPACTDOSE) and one that involved the dose length product (DLP). However, that study did not include the uncertainty contribution due to variations in head sizes. Methods: The uncertainties due to head size variations were estimated by first using the computer program data to calculate doses to small and large heads. These doses were then compared with doses calculated for the phantom heads used by the computer programs. An uncertainty was then assigned based on the difference between the small and large head doses and the doses of the phantom heads. Results: The uncertainties due to head size variations alone were found to be between 4% and 26% depending on the method used and the patient gender. When these uncertainties were included with the results of the previous study, the overall uncertainties in effective dose estimates (stated at the 95% confidence interval) were 20%-31% (CT-EXPO), 15%-30% (CTDOSIMETRY), 20%-36% (IMPACTDOSE), and 31%-40% (DLP). Conclusions: For the computer programs, the lower overall uncertainties were still achieved when measured values of CT dose index were used rather than tabulated values. For DLP dose estimates, head size variations made the largest (for males) and second largest (for females) contributions to effective dose uncertainty. An improvement in the uncertainty of the DLP method dose estimates will be achieved if head size variation can be taken into account.
DEFF Research Database (Denmark)
Thomsen, Nanna Isbak; Troldborg, Mads; McKnight, Ursula S.
2012-01-01
site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level...... the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We...... propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same...
Quantifying phenomenological importance in best-estimate plus uncertainty analyses
International Nuclear Information System (INIS)
Martin, Robert P.
2009-01-01
This paper describes a general methodology for quantifying the importance of specific phenomenological elements to analysis measures evaluated from non-parametric best-estimate plus uncertainty evaluation methodologies. The principal objective of an importance analysis is to reveal those uncertainty contributors having the greatest influence on key analysis measures. This characterization supports the credibility of the uncertainty analysis, the applicability of the analytical tools, and even the generic evaluation methodology through the validation of the engineering judgments that guided the evaluation methodology development. A demonstration of the importance analysis is provided using data from a sample problem considered in the development of AREVA's Realistic LBLOCA methodology. The results are presented against the original large-break LOCA Phenomena Identification and Ranking Table developed by the Technical Program Group responsible for authoring the Code Scaling, Applicability and Uncertainty methodology. (author)
Epistemic uncertainties when estimating component failure rate
International Nuclear Information System (INIS)
Jordan Cizelj, R.; Mavko, B.; Kljenak, I.
2000-01-01
A method for specific estimation of a component failure rate, based on specific quantitative and qualitative data other than component failures, was developed and is described in the proposed paper. The basis of the method is the Bayesian updating procedure. A prior distribution is selected from a generic database, whereas likelihood is built using fuzzy logic theory. With the proposed method, the component failure rate estimation is based on a much larger quantity of information compared to the presently used classical methods. Consequently, epistemic uncertainties, which are caused by lack of knowledge about a component or phenomenon are reduced. (author)
MacIntosh, C. R.; Merchant, C. J.; von Schuckmann, K.
2017-01-01
This article presents a review of current practice in estimating steric sea level change, focussed on the treatment of uncertainty. Steric sea level change is the contribution to the change in sea level arising from the dependence of density on temperature and salinity. It is a significant component of sea level rise and a reflection of changing ocean heat content. However, tracking these steric changes still remains a significant challenge for the scientific community. We review the importance of understanding the uncertainty in estimates of steric sea level change. Relevant concepts of uncertainty are discussed and illustrated with the example of observational uncertainty propagation from a single profile of temperature and salinity measurements to steric height. We summarise and discuss the recent literature on methodologies and techniques used to estimate steric sea level in the context of the treatment of uncertainty. Our conclusions are that progress in quantifying steric sea level uncertainty will benefit from: greater clarity and transparency in published discussions of uncertainty, including exploitation of international standards for quantifying and expressing uncertainty in measurement; and the development of community "recipes" for quantifying the error covariances in observations and from sparse sampling and for estimating and propagating uncertainty across spatio-temporal scales.
Statistical Methods for Estimating the Uncertainty in the Best Basis Inventories
International Nuclear Information System (INIS)
WILMARTH, S.R.
2000-01-01
This document describes the statistical methods used to determine sample-based uncertainty estimates for the Best Basis Inventory (BBI). For each waste phase, the equation for the inventory of an analyte in a tank is Inventory (Kg or Ci) = Concentration x Density x Waste Volume. the total inventory is the sum of the inventories in the different waste phases. Using tanks sample data: statistical methods are used to obtain estimates of the mean concentration of an analyte the density of the waste, and their standard deviations. The volumes of waste in the different phases, and their standard deviations, are estimated based on other types of data. The three estimates are multiplied to obtain the inventory estimate. The standard deviations are combined to obtain a standard deviation of the inventory. The uncertainty estimate for the Best Basis Inventory (BBI) is the approximate 95% confidence interval on the inventory
Estimation of Model Uncertainties in Closed-loop Systems
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Poulsen, Niels Kjølstad
2008-01-01
This paper describe a method for estimation of parameters or uncertainties in closed-loop systems. The method is based on an application of the dual YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all systems stabilized by a given controller. The dual YJBK transfer function...
Review of best estimate plus uncertainty methods of thermal-hydraulic safety analysis
International Nuclear Information System (INIS)
Prosek, A.; Mavko, B.
2003-01-01
In 1988 United States Nuclear Regulatory Commission approved the revised rule on the acceptance of emergency core cooling system (ECCS) performance. Since that there has been significant interest in the development of codes and methodologies for best-estimate loss-of-coolant accident (LOCAs) analyses. Several new best estimate plus uncertainty methods (BEPUs) were developed in the world. The purpose of the paper is to review the developments in the direction of best estimate approaches with uncertainty quantification and to discuss the problems in practical applications of BEPU methods. In general, the licensee methods are following original methods. The study indicated that uncertainty analysis with random sampling of input parameters and the use of order statistics for desired tolerance limits of output parameters is today commonly accepted and mature approach. (author)
International Nuclear Information System (INIS)
Banks, H T; Davis, Jimena L; Ernstberger, Stacey L; Hu, Shuhua; Artimovich, Elena; Dhar, Arun K
2009-01-01
We discuss inverse problem results for problems involving the estimation of probability distributions using aggregate data for growth in populations. We begin with a mathematical model describing variability in the early growth process of size-structured shrimp populations and discuss a computational methodology for the design of experiments to validate the model and estimate the growth-rate distributions in shrimp populations. Parameter-estimation findings using experimental data from experiments so designed for shrimp populations cultivated at Advanced BioNutrition Corporation are presented, illustrating the usefulness of mathematical and statistical modeling in understanding the uncertainty in the growth dynamics of such populations
Schwabe, O.; Shehab, E.; Erkoyuncu, J.
2015-08-01
The lack of defensible methods for quantifying cost estimate uncertainty over the whole product life cycle of aerospace innovations such as propulsion systems or airframes poses a significant challenge to the creation of accurate and defensible cost estimates. Based on the axiomatic definition of uncertainty as the actual prediction error of the cost estimate, this paper provides a comprehensive overview of metrics used for the uncertainty quantification of cost estimates based on a literature review, an evaluation of publicly funded projects such as part of the CORDIS or Horizon 2020 programs, and an analysis of established approaches used by organizations such NASA, the U.S. Department of Defence, the ESA, and various commercial companies. The metrics are categorized based on their foundational character (foundations), their use in practice (state-of-practice), their availability for practice (state-of-art) and those suggested for future exploration (state-of-future). Insights gained were that a variety of uncertainty quantification metrics exist whose suitability depends on the volatility of available relevant information, as defined by technical and cost readiness level, and the number of whole product life cycle phases the estimate is intended to be valid for. Information volatility and number of whole product life cycle phases can hereby be considered as defining multi-dimensional probability fields admitting various uncertainty quantification metric families with identifiable thresholds for transitioning between them. The key research gaps identified were the lacking guidance grounded in theory for the selection of uncertainty quantification metrics and lacking practical alternatives to metrics based on the Central Limit Theorem. An innovative uncertainty quantification framework consisting of; a set-theory based typology, a data library, a classification system, and a corresponding input-output model are put forward to address this research gap as the basis
On the predictivity of pore-scale simulations: estimating uncertainties with multilevel Monte Carlo
Icardi, Matteo
2016-02-08
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [2015. https://bitbucket.org/micardi/porescalemc.], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers
Uncertainty estimation of Intensity-Duration-Frequency relationships: A regional analysis
Mélèse, Victor; Blanchet, Juliette; Molinié, Gilles
2018-03-01
We propose in this article a regional study of uncertainties in IDF curves derived from point-rainfall maxima. We develop two generalized extreme value models based on the simple scaling assumption, first in the frequentist framework and second in the Bayesian framework. Within the frequentist framework, uncertainties are obtained i) from the Gaussian density stemming from the asymptotic normality theorem of the maximum likelihood and ii) with a bootstrap procedure. Within the Bayesian framework, uncertainties are obtained from the posterior densities. We confront these two frameworks on the same database covering a large region of 100, 000 km2 in southern France with contrasted rainfall regime, in order to be able to draw conclusion that are not specific to the data. The two frameworks are applied to 405 hourly stations with data back to the 1980's, accumulated in the range 3 h-120 h. We show that i) the Bayesian framework is more robust than the frequentist one to the starting point of the estimation procedure, ii) the posterior and the bootstrap densities are able to better adjust uncertainty estimation to the data than the Gaussian density, and iii) the bootstrap density give unreasonable confidence intervals, in particular for return levels associated to large return period. Therefore our recommendation goes towards the use of the Bayesian framework to compute uncertainty.
Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.
Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji
2015-07-17
Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.
Krishnan Kutty, S.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Bandyopadhyay, S.; Buis, S.; Guerif, M.; Gascuel-odoux, C.
2012-12-01
Groundwater recharge in a semi-arid region is generally low, but could exhibit high spatial variability depending on the soil type and plant cover. The potential recharge (the drainage flux just beneath the root zone) is found to be sensitive to water holding capacity and rooting depth (Rushton, 2003). Simple water balance approaches for recharge estimation often fail to consider the effect of plant cover, growth phases and rooting depth. Hence a crop model based approach might be better suited to assess sensitivity of recharge for various crop-soil combinations in agricultural catchments. Martinez et al. (2009) using a root zone modelling approach to estimate groundwater recharge stressed that future studies should focus on quantifying the uncertainty in recharge estimates due to uncertainty in soil water parameters such as soil layers, field capacity, rooting depth etc. Uncertainty in the parameters may arise due to the uncertainties in retrieved variables (surface soil moisture and leaf area index) from satellite. Hence a good estimate of parameters as well as their uncertainty is essential for a reliable estimate of the potential recharge. In this study we focus on assessing the sensitivity of crop and soil types on the potential recharge by using a generic crop model STICS. The effect of uncertainty in the soil parameters on the estimates of recharge and its uncertainty is investigated. The multi-layer soil water parameters and their uncertainty is estimated by inversion of STICS model using the GLUE approach. Surface soil moisture and LAI either retrieved from microwave remote sensing data or measured in field plots (Sreelash et al., 2012) were found to provide good estimates of the soil water properties and therefore both these data sets were used in this study to estimate the parameters and the potential recharge for a combination of soil-crop systems. These investigations were made in two field experimental catchments. The first one is in the tropical semi
International Nuclear Information System (INIS)
Reventos, F.
2008-01-01
One of the goals of computer code models of Nuclear Power Plants (NPP) is to demonstrate that these are designed to respond safely at postulated accidents. Models and codes are an approximation of the real physical behaviour occurring during a hypothetical transient and the data used to build these models are also known with certain accuracy. Therefore code predictions are uncertain. The BEMUSE programme is focussed on the application of uncertainty methodologies to large break LOCAs. The programme intends to evaluate the practicability, quality and reliability of best-estimate methods including uncertainty evaluations in applications relevant to nuclear reactor safety, to develop common understanding and to promote/facilitate their use by the regulator bodies and the industry. In order to fulfil its objectives BEMUSE is organized in to steps and six phases. The first step is devoted to the complete analysis of a LB-LOCA (L2-5) in an experimental facility (LOFT) while the second step refers to an actual Nuclear Power Plant. Both steps provide results on thermalhydraulic Best Estimate simulation as well as Uncertainty and sensitivity evaluation. At the time this paper is prepared, phases I, II and III are fully completed and the corresponding reports have been issued. Phase IV draft report is by now being reviewed while participants are working on Phase V developments. Phase VI consists in preparing the final status report which will summarizes the most relevant results of the whole programme.
Gaussian Process Interpolation for Uncertainty Estimation in Image Registration
Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William
2014-01-01
Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127
The Uncertainty of Measurement Results
Energy Technology Data Exchange (ETDEWEB)
Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)
2009-07-15
Factors affecting the uncertainty of measurement are explained, basic statistical formulae given, and the theoretical concept explained in the context of pesticide formulation analysis. Practical guidance is provided on how to determine individual uncertainty components within an analytical procedure. An extended and comprehensive table containing the relevant mathematical/statistical expressions elucidates the relevant underlying principles. Appendix I provides a practical elaborated example on measurement uncertainty estimation, above all utilizing experimental repeatability and reproducibility laboratory data. (author)
The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.
Energy Technology Data Exchange (ETDEWEB)
Poppeliers, Christian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In this report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.
Uncertainties estimation in surveying measurands: application to lengths, perimeters and areas
Covián, E.; Puente, V.; Casero, M.
2017-10-01
The present paper develops a series of methods for the estimation of uncertainty when measuring certain measurands of interest in surveying practice, such as points elevation given a planimetric position within a triangle mesh, 2D and 3D lengths (including perimeters enclosures), 2D areas (horizontal surfaces) and 3D areas (natural surfaces). The basis for the proposed methodology is the law of propagation of variance-covariance, which, applied to the corresponding model for each measurand, allows calculating the resulting uncertainty from known measurement errors. The methods are tested first in a small example, with a limited number of measurement points, and then in two real-life measurements. In addition, the proposed methods have been incorporated to commercial software used in the field of surveying engineering and focused on the creation of digital terrain models. The aim of this evolution is, firstly, to comply with the guidelines of the BIPM (Bureau International des Poids et Mesures), as the international reference agency in the field of metrology, in relation to the determination and expression of uncertainty; and secondly, to improve the quality of the measurement by indicating the uncertainty associated with a given level of confidence. The conceptual and mathematical developments for the uncertainty estimation in the aforementioned cases were conducted by researchers from the AssIST group at the University of Oviedo, eventually resulting in several different mathematical algorithms implemented in the form of MATLAB code. Based on these prototypes, technicians incorporated the referred functionality to commercial software, developed in C++. As a result of this collaboration, in early 2016 a new version of this commercial software was made available, which will be the first, as far as the authors are aware, that incorporates the possibility of estimating the uncertainty for a given level of confidence when computing the aforementioned surveying
Results from the Application of Uncertainty Methods in the CSNI Uncertainty Methods Study (UMS)
International Nuclear Information System (INIS)
Glaeser, H.
2008-01-01
Within licensing procedures there is the incentive to replace the conservative requirements for code application by a - best estimate - concept supplemented by an uncertainty analysis to account for predictive uncertainties of code results. Methods have been developed to quantify these uncertainties. The Uncertainty Methods Study (UMS) Group, following a mandate from CSNI, has compared five methods for calculating the uncertainty in the predictions of advanced -best estimate- thermal-hydraulic codes. Most of the methods identify and combine input uncertainties. The major differences between the predictions of the methods came from the choice of uncertain parameters and the quantification of the input uncertainties, i.e. the wideness of the uncertainty ranges. Therefore, suitable experimental and analytical information has to be selected to specify these uncertainty ranges or distributions. After the closure of the Uncertainty Method Study (UMS) and after the report was issued comparison calculations of experiment LSTF-SB-CL-18 were performed by University of Pisa using different versions of the RELAP 5 code. It turned out that the version used by two of the participants calculated a 170 K higher peak clad temperature compared with other versions using the same input deck. This may contribute to the differences of the upper limit of the uncertainty ranges.
Estimating annual bole biomass production using uncertainty analysis
Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell
2007-01-01
Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...
Collaborative framework for PIV uncertainty quantification: the experimental database
International Nuclear Information System (INIS)
Neal, Douglas R; Sciacchitano, Andrea; Scarano, Fulvio; Smith, Barton L
2015-01-01
The uncertainty quantification of particle image velocimetry (PIV) measurements has recently become a topic of great interest as shown by the recent appearance of several different methods within the past few years. These approaches have different working principles, merits and limitations, which have been speculated upon in subsequent studies. This paper reports a unique experiment that has been performed specifically to test the efficacy of PIV uncertainty methods. The case of a rectangular jet, as previously studied by Timmins et al (2012) and Wilson and Smith (2013b), is used. The novel aspect of the experiment is simultaneous velocity measurements using two different time-resolved PIV systems and a hot-wire anemometry (HWA) system. The first PIV system, called the PIV measurement system (‘PIV-MS’), is intended for nominal measurements of which the uncertainty is to be evaluated. It is based on a single camera and features a dynamic velocity range (DVR) representative of typical PIV experiments. The second PIV system, called the ‘PIV-HDR’ (high dynamic range) system, features a significantly higher DVR obtained with a higher digital imaging resolution. The hot-wire is placed in close proximity to the PIV measurement domain. The three measurement systems were carefully set to simultaneously measure the flow velocity at the same time and location. The comparison between the PIV-HDR system and the HWA provides an estimate of the measurement precision of the reference velocity for evaluation of the instantaneous error in the measurement system. The discrepancy between the PIV-MS and the reference data provides the measurement error, which is later used to assess the different uncertainty quantification methods proposed in the literature. A detailed comparison of the uncertainty estimation methods based on the present datasets is presented in a second paper from Sciacchitano et al (2015). Furthermore, this database offers the potential to be used for
Rivera, Diego; Rivas, Yessica; Godoy, Alex
2015-02-01
Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an agricultural watershed in central Chile under strong interannual variability (coefficient of variability of 25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January 1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to improve the identification of relevant hydrological processes. The water balance model for Chillan River exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model) in agreement with observational and soft data (calculation of areal precipitation over the watershed using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for the simulation period decreased from 50 to 20 m3s-1 after fixing the parameter controlling the areal precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification of critical parameters.
International Nuclear Information System (INIS)
Burr, T.; Croft, S.; Krieger, T.; Martin, K.; Norman, C.; Walsh, S.
2016-01-01
One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors
Uncertainties Involved in the Iopospheric Conductivity Estimation
Directory of Open Access Journals (Sweden)
Young-Sil Kwak
2002-12-01
Full Text Available Various uncertainties involved in ionospheric conductivity estimation utilizing the electron density profile obtained from the Sondrestrom incoherent scatter radar are examined. First, we compare the conductivity which is based on raw electron density and the one based on corrected electron density that takes into account the effects of the difference between the electron and ion temperatures and the Debye length. The corrected electron density yields higher Pedersen and Hall conductivities than the raw electron density does. Second, the dependence of collision frequency model on the conductivity estimation is examined. Below 110 km conductivity does not depend significantly on collision frequency models. Above 110 km, however, the collision models affect the conductivity estimation. Third, the influence of the electron and ion temperatures on the conductivity estimation is examined. Electron and ion temperatures carrying an error of about 10% do not seem to affect significantly the conductivity estimation. Fourth, also examined is the effect of the choice of the altitude range of integration in calculating the height-integrated conductivity, conductance. It has been demonstrated that the lower and upper boundaries of the integration are quite sensitive to the estimation of the Hall and Pedersen conductances, respectively.
Added Value of uncertainty Estimates of SOurce term and Meteorology (AVESOME)
DEFF Research Database (Denmark)
Sørensen, Jens Havskov; Schönfeldt, Fredrik; Sigg, Robert
In the early phase of a nuclear accident, two large sources of uncertainty exist: one related to the source term and one associated with the meteorological data. Operational methods are being developed in AVESOME for quantitative estimation of uncertainties in atmospheric dispersion prediction.......g. at national meteorological services, the proposed methodology is feasible for real-time use, thereby adding value to decision support. In the recent NKS-B projects MUD, FAUNA and MESO, the implications of meteorological uncertainties for nuclear emergency preparedness and management have been studied...... uncertainty in atmospheric dispersion model forecasting stemming from both the source term and the meteorological data is examined. Ways to implement the uncertainties of forecasting in DSSs, and the impacts on real-time emergency management are described. The proposed methodology allows for efficient real...
Uncertainty estimation of the velocity model for the TrigNet GPS network
Hackl, Matthias; Malservisi, Rocco; Hugentobler, Urs; Wonnacott, Richard
2010-05-01
Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is quite demanding and are usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies.
Wang, Z.
2015-12-01
For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.
Uncertainty estimates for predictions of the impact of breeder-reactor radionuclide releases
International Nuclear Information System (INIS)
Miller, C.W.; Little, C.A.
1982-01-01
This paper summarizes estimates, compiled in a larger report, of the uncertainty associated with models and parameters used to assess the impact on man radionuclide releases to the environment by breeder reactor facilities. These estimates indicate that, for many sites, generic models and representative parameter values may reasonably be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under such circumstances. However, even using site-specific information, inherent natural variability within human receptors, and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose following short-term releases
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute
International Nuclear Information System (INIS)
Charonko, John J; Vlachos, Pavlos P
2013-01-01
Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost. (paper)
Uncertainty related to Environmental Data and Estimated Extreme Events
DEFF Research Database (Denmark)
Burcharth, H. F.
The design loads on rubble mound breakwaters are almost entirely determined by the environmental conditions, i.e. sea state, water levels, sea bed characteristics, etc. It is the objective of sub-group B to identify the most important environmental parameters and evaluate the related uncertainties...... including those corresponding to extreme estimates typically used for design purposes. Basically a design condition is made up of a set of parameter values stemming from several environmental parameters. To be able to evaluate the uncertainty related to design states one must know the corresponding joint....... Consequently this report deals mainly with each parameter separately. Multi parameter problems are briefly discussed in section 9. It is important to notice that the quantified uncertainties reported in section 7.7 represent what might be regarded as typical figures to be used only when no more qualified...
Eigenspace perturbations for structural uncertainty estimation of turbulence closure models
Jofre, Lluis; Mishra, Aashwin; Iaccarino, Gianluca
2017-11-01
With the present state of computational resources, a purely numerical resolution of turbulent flows encountered in engineering applications is not viable. Consequently, investigations into turbulence rely on various degrees of modeling. Archetypal amongst these variable resolution approaches would be RANS models in two-equation closures, and subgrid-scale models in LES. However, owing to the simplifications introduced during model formulation, the fidelity of all such models is limited, and therefore the explicit quantification of the predictive uncertainty is essential. In such scenario, the ideal uncertainty estimation procedure must be agnostic to modeling resolution, methodology, and the nature or level of the model filter. The procedure should be able to give reliable prediction intervals for different Quantities of Interest, over varied flows and flow conditions, and at diametric levels of modeling resolution. In this talk, we present and substantiate the Eigenspace perturbation framework as an uncertainty estimation paradigm that meets these criteria. Commencing from a broad overview, we outline the details of this framework at different modeling resolution. Thence, using benchmark flows, along with engineering problems, the efficacy of this procedure is established. This research was partially supported by NNSA under the Predictive Science Academic Alliance Program (PSAAP) II, and by DARPA under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).
Wallace, Jack
2010-05-01
While forensic laboratories will soon be required to estimate uncertainties of measurement for those quantitations reported to the end users of the information, the procedures for estimating this have been little discussed in the forensic literature. This article illustrates how proficiency test results provide the basis for estimating uncertainties in three instances: (i) For breath alcohol analyzers the interlaboratory precision is taken as a direct measure of uncertainty. This approach applies when the number of proficiency tests is small. (ii) For blood alcohol, the uncertainty is calculated from the differences between the laboratory's proficiency testing results and the mean quantitations determined by the participants; this approach applies when the laboratory has participated in a large number of tests. (iii) For toxicology, either of these approaches is useful for estimating comparability between laboratories, but not for estimating absolute accuracy. It is seen that data from proficiency tests enable estimates of uncertainty that are empirical, simple, thorough, and applicable to a wide range of concentrations.
Resolving uncertainty in chemical speciation determinations
Smith, D. Scott; Adams, Nicholas W. H.; Kramer, James R.
1999-10-01
Speciation determinations involve uncertainty in system definition and experimentation. Identification of appropriate metals and ligands from basic chemical principles, analytical window considerations, types of species and checking for consistency in equilibrium calculations are considered in system definition uncertainty. A systematic approach to system definition limits uncertainty in speciation investigations. Experimental uncertainty is discussed with an example of proton interactions with Suwannee River fulvic acid (SRFA). A Monte Carlo approach was used to estimate uncertainty in experimental data, resulting from the propagation of uncertainties in electrode calibration parameters and experimental data points. Monte Carlo simulations revealed large uncertainties present at high (>9-10) and low (monoprotic ligands. Least-squares fit the data with 21 sites, whereas linear programming fit the data equally well with 9 sites. Multiresponse fitting, involving simultaneous fluorescence and pH measurements, improved model discrimination. Deconvolution of the excitation versus emission fluorescence surface for SRFA establishes a minimum of five sites. Diprotic sites are also required for the five fluorescent sites, and one non-fluorescent monoprotic site was added to accommodate the pH data. Consistent with greater complexity, the multiresponse method had broader confidence limits than the uniresponse methods, but corresponded better with the accepted total carboxylic content for SRFA. Overall there was a 40% standard deviation in total carboxylic content for the multiresponse fitting, versus 10% and 1% for least-squares and linear programming, respectively.
Estimating and managing uncertainties in order to detect terrestrial greenhouse gas removals
International Nuclear Information System (INIS)
Rypdal, Kristin; Baritz, Rainer
2002-01-01
Inventories of emissions and removals of greenhouse gases will be used under the United Nations Framework Convention on Climate Change and the Kyoto Protocol to demonstrate compliance with obligations. During the negotiation process of the Kyoto Protocol it has been a concern that uptake of carbon in forest sinks can be difficult to verify. The reason for large uncertainties are high temporal and spatial variability and lack of representative estimation parameters. Additional uncertainties will be a consequence of definitions made in the Kyoto Protocol reporting. In the Nordic countries the national forest inventories will be very useful to estimate changes in carbon stocks. The main uncertainty lies in the conversion from changes in tradable timber to changes in total carbon biomass. The uncertainties in the emissions of the non-CO 2 carbon from forest soils are particularly high. On the other hand the removals reported under the Kyoto Protocol will only be a fraction of the total uptake and are not expected to constitute a high share of the total inventory. It is also expected that the Nordic countries will be able to implement a high tier methodology. As a consequence total uncertainties may not be extremely high. (Author)
Van Uffelen, Lora J; Nosal, Eva-Marie; Howe, Bruce M; Carter, Glenn S; Worcester, Peter F; Dzieciuch, Matthew A; Heaney, Kevin D; Campbell, Richard L; Cross, Patrick S
2013-10-01
Four acoustic Seagliders were deployed in the Philippine Sea November 2010 to April 2011 in the vicinity of an acoustic tomography array. The gliders recorded over 2000 broadband transmissions at ranges up to 700 km from moored acoustic sources as they transited between mooring sites. The precision of glider positioning at the time of acoustic reception is important to resolve the fundamental ambiguity between position and sound speed. The Seagliders utilized GPS at the surface and a kinematic model below for positioning. The gliders were typically underwater for about 6.4 h, diving to depths of 1000 m and traveling on average 3.6 km during a dive. Measured acoustic arrival peaks were unambiguously associated with predicted ray arrivals. Statistics of travel-time offsets between received arrivals and acoustic predictions were used to estimate range uncertainty. Range (travel time) uncertainty between the source and the glider position from the kinematic model is estimated to be 639 m (426 ms) rms. Least-squares solutions for glider position estimated from acoustically derived ranges from 5 sources differed by 914 m rms from modeled positions, with estimated uncertainty of 106 m rms in horizontal position. Error analysis included 70 ms rms of uncertainty due to oceanic sound-speed variability.
Report on the uncertainty methods study
International Nuclear Information System (INIS)
1998-06-01
The Uncertainty Methods Study (UMS) Group, following a mandate from CSNI, has compared five methods for calculating the uncertainty in the predictions of advanced 'best estimate' thermal-hydraulic codes: the Pisa method (based on extrapolation from integral experiments) and four methods identifying and combining input uncertainties. Three of these, the GRS, IPSN and ENUSA methods, use subjective probability distributions, and one, the AEAT method, performs a bounding analysis. Each method has been used to calculate the uncertainty in specified parameters for the LSTF SB-CL-18 5% cold leg small break LOCA experiment in the ROSA-IV Large Scale Test Facility (LSTF). The uncertainty analysis was conducted essentially blind and the participants did not use experimental measurements from the test as input apart from initial and boundary conditions. Participants calculated uncertainty ranges for experimental parameters including pressurizer pressure, primary circuit inventory and clad temperature (at a specified position) as functions of time
Improved linear least squares estimation using bounded data uncertainty
Ballal, Tarig
2015-04-01
This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.
Improved linear least squares estimation using bounded data uncertainty
Ballal, Tarig; Al-Naffouri, Tareq Y.
2015-01-01
This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.
Iso-uncertainty control in an experimental fluoroscopy system
International Nuclear Information System (INIS)
Siddique, S.; Fiume, E.; Jaffray, D. A.
2014-01-01
Purpose: X-ray fluoroscopy remains an important imaging modality in a number of image-guided procedures due to its real-time nature and excellent spatial detail. However, the radiation dose delivered raises concerns about its use particularly in lengthy treatment procedures (>0.5 h). The authors have previously presented an algorithm that employs feedback of geometric uncertainty to control dose while maintaining a desired targeting uncertainty during fluoroscopic tracking of fiducials. The method was tested using simulations of motion against controlled noise fields. In this paper, the authors embody the previously reported method in a physical prototype and present changes to the controller required to function in a practical setting. Methods: The metric for feedback used in this study is based on the trace of the covariance of the state of the system, tr(C). The state is defined here as the 2D location of a fiducial on a plane parallel to the detector. A relationship between this metric and the tube current is first developed empirically. This relationship is extended to create a manifold that incorporates a latent variable representing the estimated background attenuation. The manifold is then used within the controller to dynamically adjust the tube current and maintain a specified targeting uncertainty. To evaluate the performance of the proposed method, an acrylic sphere (1.6 mm in diameter) was tracked at tube currents ranging from 0.5 to 0.9 mA (0.033 s) at a fixed energy of 80 kVp. The images were acquired on a Varian Paxscan 4030A (2048 × 1536 pixels, ∼100 cm source-to-axis distance, ∼160 cm source-to-detector distance). The sphere was tracked using a particle filter under two background conditions: (1) uniform sheets of acrylic and (2) an acrylic wedge. The measured tr(C) was used in conjunction with a learned manifold to modulate the tube current in order to maintain a specified uncertainty as the sphere traversed regions of varying thickness
International Nuclear Information System (INIS)
Shimada, Yoko; Morisawa, Shinsuke
1998-01-01
Most of model estimation of the environmental contamination includes some uncertainty associated with the parameter uncertainty in the model. In this study, the uncertainty was analyzed in a model for evaluating the ingestion of radionuclide caused by the long-term global low-level radioactive contamination by using various uncertainty analysis methods: the percentile estimate, the robustness analysis and the fuzzy estimate. The model is mainly composed of five sub-models, which include their own uncertainty; we also analyzed the uncertainty. The major findings obtained in this study include that the possibility of the discrepancy between predicted value by the model simulation and the observed data is less than 10%; the uncertainty of the predicted value is higher before 1950 and after 1980; the uncertainty of the predicted value can be reduced by decreasing the uncertainty of some environmental parameters in the model; the reliability of the model can definitively depend on the following environmental factors: direct foliar absorption coefficient, transfer factor of radionuclide from stratosphere down to troposphere, residual rate by food processing and cooking, transfer factor of radionuclide in ocean and sedimentation in ocean. (author)
Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy
DEFF Research Database (Denmark)
Laugaard Lorenzen, Ebbe; Brink, Carsten; Taylor, Carolyn W.
2016-01-01
BACKGROUND AND PURPOSE: We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. MATERIAL AND METHODS: Three tangential radiotherapy regimens were reconstructed using CT......-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. RESULTS: For left-sided breast cancer, mean...... to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always
Uncertainty estimation of core safety parameters using cross-correlations of covariance matrix
International Nuclear Information System (INIS)
Yamamoto, Akio; Yasue, Yoshihiro; Endo, Tomohiro; Kodama, Yasuhiro; Ohoka, Yasunori; Tatsumi, Masahiro
2013-01-01
An uncertainty reduction method for core safety parameters, for which measurement values are not obtained, is proposed. We empirically recognize that there exist some correlations among the prediction errors of core safety parameters, e.g., a correlation between the control rod worth and the assembly relative power at corresponding position. Correlations of errors among core safety parameters are theoretically estimated using the covariance of cross sections and sensitivity coefficients of core parameters. The estimated correlations of errors among core safety parameters are verified through the direct Monte Carlo sampling method. Once the correlation of errors among core safety parameters is known, we can estimate the uncertainty of a safety parameter for which measurement value is not obtained. (author)
Yang, Ming; Zhu, X. Ronald; Park, Peter C.; Titt, Uwe; Mohan, Radhe; Virshup, Gary; Clayton, James E.; Dong, Lei
2012-07-01
The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0-3.4%, primarily because soft tissue is the dominant tissue type in the human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction.
Uncertainty analysis for results of thermal hydraulic codes of best-estimate-type
International Nuclear Information System (INIS)
Alva N, J.
2010-01-01
In this thesis, some fundamental knowledge is presented about uncertainty analysis and about diverse methodologies applied in the study of nuclear power plant transient event analysis, particularly related to thermal hydraulics phenomena. These concepts and methodologies mentioned in this work come from a wide bibliographical research in the nuclear power subject. Methodologies for uncertainty analysis have been developed by quite diverse institutions, and they have been widely used worldwide for application to results from best-estimate-type computer codes in nuclear reactor thermal hydraulics and safety analysis. Also, the main uncertainty sources, types of uncertainties, and aspects related to best estimate modeling and methods are introduced. Once the main bases of uncertainty analysis have been set, and some of the known methodologies have been introduced, it is presented in detail the CSAU methodology, which will be applied in the analyses. The main objective of this thesis is to compare the results of an uncertainty and sensibility analysis by using the Response Surface Technique to the application of W ilks formula, apply through a loss coolant experiment and an event of rise in a BWR. Both techniques are options in the part of uncertainty and sensibility analysis of the CSAU methodology, which was developed for the analysis of transients and accidents at nuclear power plants, and it is the base of most of the methodologies used in licensing of nuclear power plants practically everywhere. Finally, the results of applying both techniques are compared and discussed. (Author)
On the evaluation of uncertainties for state estimation with the Kalman filter
International Nuclear Information System (INIS)
Eichstädt, S; Makarava, N; Elster, C
2016-01-01
The Kalman filter is an established tool for the analysis of dynamic systems with normally distributed noise, and it has been successfully applied in numerous areas. It provides sequentially calculated estimates of the system states along with a corresponding covariance matrix. For nonlinear systems, the extended Kalman filter is often used. This is derived from the Kalman filter by linearization around the current estimate. A key issue in metrology is the evaluation of the uncertainty associated with the Kalman filter state estimates. The ‘Guide to the Expression of Uncertainty in Measurement’ (GUM) and its supplements serve as the de facto standard for uncertainty evaluation in metrology. We explore the relationship between the covariance matrix produced by the Kalman filter and a GUM-compliant uncertainty analysis. In addition, the results of a Bayesian analysis are considered. For the case of linear systems with known system matrices, we show that all three approaches are compatible. When the system matrices are not precisely known, however, or when the system is nonlinear, this equivalence breaks down and different results can then be reached. For precisely known nonlinear systems, though, the result of the extended Kalman filter still corresponds to the linearized uncertainty propagation of the GUM. The extended Kalman filter can suffer from linearization and convergence errors. These disadvantages can be avoided to some extent by applying Monte Carlo procedures, and we propose such a method which is GUM-compliant and can also be applied online during the estimation. We illustrate all procedures in terms of a 2D dynamic system and compare the results with those obtained by particle filtering, which has been proposed for the approximate calculation of a Bayesian solution. Finally, we give some recommendations based on our findings. (paper)
Shimansky, Y P
2011-05-01
It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.
Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul
2012-11-26
The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application
Directory of Open Access Journals (Sweden)
K. J. Franz
2011-11-01
Full Text Available The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE, and the Shuffle Complex Evolution Metropolis (SCEM. Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.
Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate
Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.
2013-01-01
There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable
International Nuclear Information System (INIS)
Johnson, David R.; Willis, Henry H.; Curtright, Aimee E.; Samaras, Constantine; Skone, Timothy
2011-01-01
Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.
Uncertainties of predictions from parton distributions 1, experimental errors
Martin, A D; Stirling, William James; Thorne, R S; CERN. Geneva
2003-01-01
We determine the uncertainties on observables arising from the errors on the experimental data that are fitted in the global MRST2001 parton analysis. By diagonalizing the error matrix we produce sets of partons suitable for use within the framework of linear propagation of errors, which is the most convenient method for calculating the uncertainties. Despite the potential limitations of this approach we find that it can be made to work well in practice. This is confirmed by our alternative approach of using the more rigorous Lagrange multiplier method to determine the errors on physical quantities directly. As particular examples we determine the uncertainties on the predictions of the charged-current deep-inelastic structure functions, on the cross-sections for W production and for Higgs boson production via gluon--gluon fusion at the Tevatron and the LHC, on the ratio of W-minus to W-plus production at the LHC and on the moments of the non-singlet quark distributions. We discuss the corresponding uncertain...
Estimating and managing uncertainties in order to detect terrestrial greenhouse gas removals
Energy Technology Data Exchange (ETDEWEB)
Rypdal, Kristin; Baritz, Rainer
2002-07-01
Inventories of emissions and removals of greenhouse gases will be used under the United Nations Framework Convention on Climate Change and the Kyoto Protocol to demonstrate compliance with obligations. During the negotiation process of the Kyoto Protocol it has been a concern that uptake of carbon in forest sinks can be difficult to verify. The reason for large uncertainties are high temporal and spatial variability and lack of representative estimation parameters. Additional uncertainties will be a consequence of definitions made in the Kyoto Protocol reporting. In the Nordic countries the national forest inventories will be very useful to estimate changes in carbon stocks. The main uncertainty lies in the conversion from changes in tradable timber to changes in total carbon biomass. The uncertainties in the emissions of the non-CO{sub 2} carbon from forest soils are particularly high. On the other hand the removals reported under the Kyoto Protocol will only be a fraction of the total uptake and are not expected to constitute a high share of the total inventory. It is also expected that the Nordic countries will be able to implement a high tier methodology. As a consequence total uncertainties may not be extremely high. (Author)
Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.
2009-12-01
Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.
Lach, Zbigniew T.
2017-08-01
A possibility is shown of a non-disruptive estimation of chromatic dispersion in a fiber of an intensity modulation communication line under work conditions. Uncertainty of the chromatic dispersion estimates is analyzed and quantified with the use of confidence intervals.
Linear minimax estimation for random vectors with parametric uncertainty
Bitar, E
2010-06-01
In this paper, we take a minimax approach to the problem of computing a worst-case linear mean squared error (MSE) estimate of X given Y , where X and Y are jointly distributed random vectors with parametric uncertainty in their distribution. We consider two uncertainty models, PA and PB. Model PA represents X and Y as jointly Gaussian whose covariance matrix Λ belongs to the convex hull of a set of m known covariance matrices. Model PB characterizes X and Y as jointly distributed according to a Gaussian mixture model with m known zero-mean components, but unknown component weights. We show: (a) the linear minimax estimator computed under model PA is identical to that computed under model PB when the vertices of the uncertain covariance set in PA are the same as the component covariances in model PB, and (b) the problem of computing the linear minimax estimator under either model reduces to a semidefinite program (SDP). We also consider the dynamic situation where x(t) and y(t) evolve according to a discrete-time LTI state space model driven by white noise, the statistics of which is modeled by PA and PB as before. We derive a recursive linear minimax filter for x(t) given y(t).
Statistical characterization of roughness uncertainty and impact on wind resource estimation
Directory of Open Access Journals (Sweden)
M. Kelly
2017-04-01
Full Text Available In this work we relate uncertainty in background roughness length (z0 to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty arising from differing wind-observation and turbine-prediction sites; this is done for the case of roughness bias as well as for the general case. For estimation of uncertainty in annual energy production (AEP, we also develop a generalized analytical turbine power curve, from which we derive a relation between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.
Estimate of the uncertainty in measurement for the determination of mercury in seafood by TDA AAS.
Torres, Daiane Placido; Olivares, Igor R B; Queiroz, Helena Müller
2015-01-01
An approach for the estimate of the uncertainty in measurement considering the individual sources related to the different steps of the method under evaluation as well as the uncertainties estimated from the validation data for the determination of mercury in seafood by using thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) is proposed. The considered method has been fully optimized and validated in an official laboratory of the Ministry of Agriculture, Livestock and Food Supply of Brazil, in order to comply with national and international food regulations and quality assurance. The referred method has been accredited under the ISO/IEC 17025 norm since 2010. The approach of the present work in order to reach the aim of estimating of the uncertainty in measurement was based on six sources of uncertainty for mercury determination in seafood by TDA AAS, following the validation process, which were: Linear least square regression, Repeatability, Intermediate precision, Correction factor of the analytical curve, Sample mass, and Standard reference solution. Those that most influenced the uncertainty in measurement were sample weight, repeatability, intermediate precision and calibration curve. The obtained result for the estimate of uncertainty in measurement in the present work reached a value of 13.39%, which complies with the European Regulation EC 836/2011. This figure represents a very realistic estimate of the routine conditions, since it fairly encompasses the dispersion obtained from the value attributed to the sample and the value measured by the laboratory analysts. From this outcome, it is possible to infer that the validation data (based on calibration curve, recovery and precision), together with the variation on sample mass, can offer a proper estimate of uncertainty in measurement.
Supporting qualified database for V and V and uncertainty evaluation of best-estimate system codes
International Nuclear Information System (INIS)
Petruzzi, A.; D'Auria, F.
2014-01-01
Uncertainty evaluation constitutes a key feature of BEPU (Best Estimate Plus Uncertainty) process. The uncertainty can be the result of a Monte Carlo type analysis involving input uncertainty parameters or the outcome of a process involving the use of experimental data and connected code calculations. Those uncertainty methods are discussed in several papers and guidelines (IAEA-SRS- 52, OECD/NEA BEMUSE reports). The present paper aims at discussing the role and the depth of the analysis required for merging from one side suitable experimental data and on the other side qualified code calculation results. This aspect is mostly connected with the second approach for uncertainty mentioned above, but it can be used also in the framework of the first approach. Namely, the paper discusses the features and structure of the database that includes the following kinds of documents: 1. The' RDS-facility' (Reference Data Set for the selected facility): this includes the description of the facility, the geometrical characterization of any component of the facility, the instrumentations, the data acquisition system, the evaluation of pressure losses, the physical properties of the material and the characterization of pumps, valves and heat losses; 2. The 'RDS-test' (Reference Data Set for the selected test of the facility): this includes the description of the main phenomena investigated during the test, the configuration of the facility for the selected test (possible new evaluation of pressure and heat losses if needed) and the specific boundary and initial conditions; 3. The 'QP' (Qualification Report) of the code calculation results: this includes the description of the nodalization developed following a set of homogeneous techniques, the achievement of the steady state conditions and the qualitative and quantitative analysis of the transient with the characterization of the Relevant Thermal-Hydraulics Aspects (RTA); 4. The EH (Engineering
International Nuclear Information System (INIS)
Amendola, A.; Astolfi, M.; Lisanti, B.
1983-01-01
The report describes the how-to-use of the codes: MUP (Monte Carlo Uncertainty Propagation) for uncertainty analysis by Monte Carlo simulation, including correlation analysis, extreme value identification and study of selected ranges of the variable space; CEC-DES (Central Composite Design) for building experimental matrices according to the requirements of Central Composite and Factorial Experimental Designs; and, STRADE (Stratified Random Design) for experimental designs based on the Latin Hypercube Sampling Techniques. Application fields, of the codes are probabilistic risk assessment, experimental design, sensitivity analysis and system identification problems
International Nuclear Information System (INIS)
Wilson, G.E.; Boyack, B.E.; Duffey, R.B.; Griffith, P.; Katsma, K.R.; Lellouche, G.S.; Rohatgi, U.S.; Wulff, W.; Zuber, N.
1988-01-01
Issue of a revised rule for loss of coolant accident/emergency core cooling system (LOCA/ECCS) analysis of light water reactors will allow the use of best estimate (BE) computer codes in safety analysis, with uncertainty analysis. This paper describes a systematic methodology, CSAU (Code Scaling, Applicability and Uncertainty), which will provide uncertainty bounds in a cost effective, auditable, rational and practical manner. 8 figs., 2 tabs
Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly
Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.
2013-01-01
Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…
International Nuclear Information System (INIS)
Kristof, Marian; Kliment, Tomas; Petruzzi, Alessandro; Lipka, Jozef
2009-01-01
Licensing calculations in a majority of countries worldwide still rely on the application of combined approach using best estimate computer code without evaluation of the code models uncertainty and conservative assumptions on initial and boundary, availability of systems and components and additional conservative assumptions. However best estimate plus uncertainty (BEPU) approach representing the state-of-the-art in the area of safety analysis has a clear potential to replace currently used combined approach. There are several applications of BEPU approach in the area of licensing calculations, but some questions are discussed, namely from the regulatory point of view. In order to find a proper solution to these questions and to support the BEPU approach to become a standard approach for licensing calculations, a broad comparison of both approaches for various transients is necessary. Results of one of such comparisons on the example of the VVER-440/213 NPP pressurizer surge line break event are described in this paper. A Kv-scaled simulation based on PH4-SLB experiment from PMK-2 integral test facility applying its volume and power scaling factor is performed for qualitative assessment of the RELAP5 computer code calculation using the VVER-440/213 plant model. Existing hardware differences are identified and explained. The CIAU method is adopted for performing the uncertainty evaluation. Results using combined and BEPU approaches are in agreement with the experimental values in PMK-2 facility. Only minimal difference between combined and BEPU approached has been observed in the evaluation of the safety margins for the peak cladding temperature. Benefits of the CIAU uncertainty method are highlighted.
A super-resolution approach for uncertainty estimation of PIV measurements
Sciacchitano, A.; Wieneke, B.; Scarano, F.
2012-01-01
A super-resolution approach is proposed for the a posteriori uncertainty estimation of PIV measurements. The measured velocity field is employed to determine the displacement of individual particle images. A disparity set is built from the residual distance between paired particle images of
Comparison of two perturbation methods to estimate the land surface modeling uncertainty
Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.
2007-12-01
In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.
Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.
2018-01-01
Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.
A Best-Estimate Reactor Core Monitor Using State Feedback Strategies to Reduce Uncertainties
International Nuclear Information System (INIS)
Martin, Robert P.; Edwards, Robert M.
2000-01-01
The development and demonstration of a new algorithm to reduce modeling and state-estimation uncertainty in best-estimate simulation codes has been investigated. Demonstration is given by way of a prototype reactor core monitor. The architecture of this monitor integrates a control-theory-based, distributed-parameter estimation technique into a production-grade best-estimate simulation code. The Kalman Filter-Sequential Least-Squares (KFSLS) parameter estimation algorithm has been extended for application into the computational environment of the best-estimate simulation code RELAP5-3D. In control system terminology, this configuration can be thought of as a 'best-estimate' observer. The application to a distributed-parameter reactor system involves a unique modal model that approximates physical components, such as the reactor, by describing both states and parameters by an orthogonal expansion. The basic KFSLS parameter estimation is used to dynamically refine a spatially varying (distributed) parameter. The application of the distributed-parameter estimator is expected to complement a traditional nonlinear best-estimate simulation code by providing a mechanism for reducing both code input (modeling) and output (state-estimation) uncertainty in complex, distributed-parameter systems
Estimation of sampling error uncertainties in observed surface air temperature change in China
Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun
2017-08-01
This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.
Sensitivity of Process Design due to Uncertainties in Property Estimates
DEFF Research Database (Denmark)
Hukkerikar, Amol; Jones, Mark Nicholas; Sarup, Bent
2012-01-01
The objective of this paper is to present a systematic methodology for performing analysis of sensitivity of process design due to uncertainties in property estimates. The methodology provides the following results: a) list of properties with critical importance on design; b) acceptable levels of...... in chemical processes. Among others vapour pressure accuracy for azeotropic mixtures is critical and needs to be measured or estimated with a ±0.25% accuracy to satisfy acceptable safety levels in design....
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.
2014-01-01
Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.
International Nuclear Information System (INIS)
Miller, C.; Little, C.A.
1982-08-01
The purpose is to summarize estimates based on currently available data of the uncertainty associated with radiological assessment models. The models being examined herein are those recommended previously for use in breeder reactor assessments. Uncertainty estimates are presented for models of atmospheric and hydrologic transport, terrestrial and aquatic food-chain bioaccumulation, and internal and external dosimetry. Both long-term and short-term release conditions are discussed. The uncertainty estimates presented in this report indicate that, for many sites, generic models and representative parameter values may be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, especially those from breeder reactors located in sites dominated by complex terrain and/or coastal meteorology, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under these circumstances to reduce this uncertainty. However, even using site-specific information, natural variability and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose or concentration in environmental media following shortterm releases
Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.
Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A
2004-12-01
Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.
Learning about Measurement Uncertainties in Secondary Education: A Model of the Subject Matter
Priemer, Burkhard; Hellwig, Julia
2018-01-01
Estimating measurement uncertainties is important for experimental scientific work. However, this is very often neglected in school curricula and teaching practice, even though experimental work is seen as a fundamental part of teaching science. In order to call attention to the relevance of measurement uncertainties, we developed a comprehensive…
Uncertainty estimation of the velocity model for stations of the TrigNet GPS network
Hackl, M.; Malservisi, R.; Hugentobler, U.
2010-12-01
Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that error models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is computationally expensive and is usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies, which allows for a reliable estimation of the velocity error. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Small differences may originate from non-normal distribution of the noise.
Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation
Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G.
2018-02-01
The increasing availability of earth observations necessitates mathematical methods to optimally combine such data with hydrologic models. Several algorithms exist for such purposes, under the umbrella of data assimilation (DA). However, DA methods are often applied in a suboptimal fashion for complex real-world problems, due largely to several practical implementation issues. One such issue is error characterization, which is known to be critical for a successful assimilation. Mischaracterized errors lead to suboptimal forecasts, and in the worst case, to degraded estimates even compared to the no assimilation case. Model uncertainty characterization has received little attention relative to other aspects of DA science. Traditional methods rely on subjective, ad hoc tuning factors or parametric distribution assumptions that may not always be applicable. We propose a novel data-driven approach (named SDMU) to model uncertainty characterization for DA studies where (1) the system states are partially observed and (2) minimal prior knowledge of the model error processes is available, except that the errors display state dependence. It includes an approach for estimating the uncertainty in hidden model states, with the end goal of improving predictions of observed variables. The SDMU is therefore suited to DA studies where the observed variables are of primary interest. Its efficacy is demonstrated through a synthetic case study with low-dimensional chaotic dynamics and a real hydrologic experiment for one-day-ahead streamflow forecasting. In both experiments, the proposed method leads to substantial improvements in the hidden states and observed system outputs over a standard method involving perturbation with Gaussian noise.
Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio
2018-03-01
To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Estimation of uncertainty of measurements of 3D mechanisms after kinematic calibration
International Nuclear Information System (INIS)
Takamasu, K; Sato, O; Shimojima, K; Takahashi, S; Furutani, R
2005-01-01
Calibration methods for 3D mechanisms are necessary to use the mechanisms as coordinate measuring machines. The calibration method of coordinate measuring machine using artifacts, the artifact calibration method, is proposed in taking account of traceability of the mechanism. There are kinematic parameters and form-deviation parameters in geometric parameters for describing the forward kinematic of the mechanism. In this article, the estimation methods of uncertainties using the calibrated coordinate measuring machine after the calibration are formulated. Firstly, the calculation method which takes out the values of kinematic parameters using least squares method is formulated. Secondly, the estimation value of uncertainty of the measuring machine is calculated using the error propagation method
Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.
2017-12-01
Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability
Estimation of spatial uncertainties of tomographic velocity models
Energy Technology Data Exchange (ETDEWEB)
Jordan, M.; Du, Z.; Querendez, E. [SINTEF Petroleum Research, Trondheim (Norway)
2012-12-15
This research project aims to evaluate the possibility of assessing the spatial uncertainties in tomographic velocity model building in a quantitative way. The project is intended to serve as a test of whether accurate and specific uncertainty estimates (e.g., in meters) can be obtained. The project is based on Monte Carlo-type perturbations of the velocity model as obtained from the tomographic inversion guided by diagonal and off-diagonal elements of the resolution and the covariance matrices. The implementation and testing of this method was based on the SINTEF in-house stereotomography code, using small synthetic 2D data sets. To test the method the calculation and output of the covariance and resolution matrices was implemented, and software to perform the error estimation was created. The work included the creation of 2D synthetic data sets, the implementation and testing of the software to conduct the tests (output of the covariance and resolution matrices which are not implicitly provided by stereotomography), application to synthetic data sets, analysis of the test results, and creating the final report. The results show that this method can be used to estimate the spatial errors in tomographic images quantitatively. The results agree with' the known errors for our synthetic models. However, the method can only be applied to structures in the model, where the change of seismic velocity is larger than the predicted error of the velocity parameter amplitudes. In addition, the analysis is dependent on the tomographic method, e.g., regularization and parameterization. The conducted tests were very successful and we believe that this method could be developed further to be applied to third party tomographic images.
Measuring Cross-Section and Estimating Uncertainties with the fissionTPC
Energy Technology Data Exchange (ETDEWEB)
Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manning, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangiorgio, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seilhan, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-01-30
The purpose of this document is to outline the prescription for measuring fission cross-sections with the NIFFTE fissionTPC and estimating the associated uncertainties. As such it will serve as a work planning guide for NIFFTE collaboration members and facilitate clear communication of the procedures used to the broader community.
Quantifying uncertainty in NDSHA estimates due to earthquake catalogue
Magrin, Andrea; Peresan, Antonella; Vaccari, Franco; Panza, Giuliano
2014-05-01
The procedure for the neo-deterministic seismic zoning, NDSHA, is based on the calculation of synthetic seismograms by the modal summation technique. This approach makes use of information about the space distribution of large magnitude earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g., morphostructural features and ongoing deformation processes identified by earth observations). Hence the method does not make use of attenuation models (GMPE), which may be unable to account for the complexity of the product between seismic source tensor and medium Green function and are often poorly constrained by the available observations. NDSHA defines the hazard from the envelope of the values of ground motion parameters determined considering a wide set of scenario earthquakes; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In NDSHA uncertainties are not statistically treated as in PSHA, where aleatory uncertainty is traditionally handled with probability density functions (e.g., for magnitude and distance random variables) and epistemic uncertainty is considered by applying logic trees that allow the use of alternative models and alternative parameter values of each model, but the treatment of uncertainties is performed by sensitivity analyses for key modelling parameters. To fix the uncertainty related to a particular input parameter is an important component of the procedure. The input parameters must account for the uncertainty in the prediction of fault radiation and in the use of Green functions for a given medium. A key parameter is the magnitude of sources used in the simulation that is based on catalogue informations, seismogenic zones and seismogenic nodes. Because the largest part of the existing catalogues is based on macroseismic intensity, a rough estimate
Top-down instead of bottom-up estimates of uncertainty in INAA results?
International Nuclear Information System (INIS)
Bode, P.; De Nadai Fernandes, E.A.
2005-01-01
The initial publication of the ISO Guide to the Expression of Uncertainty in Measurement (GUM) and many related documents has resulted in a worldwide awareness of the importance of a realistic estimate of the value reported after the +/- sign. The evaluation of uncertainty in measurement, as introduced by the GUM, is derived from the principles applied in physical measurements. Many testing laboratories have already experienced large problems in applying these principles in e.g. (bio)chemical measurements, resulting in time-consuming evaluations and costly additional experiments. Other, more pragmatic and less costly approaches have been proposed to obtain a realistic estimate of the range in which the true value of the measurement may be found with a certain degree of probability. One of these approaches, the 'top-down method', is based on the standard deviation in the results of intercomparison data. This approach is much easier for tests for which it is either difficult to establish a full measurement equation, or if e.g. matrix-matching reference materials are absent. It has been demonstrated that the GUM 'bottom-up' approach of evaluating uncertainty in measurement can easily be applied in instrumental neutron activation analysis (INAA) as all significant sources of uncertainty can be evaluated. INAA is therefore a valuable technique to test the validity of the top-down approach. In this contribution, examples of the top-down evaluation of uncertainty in INAA derived from participation in intercomparison rounds and proficiency testing schemes will be presented. The results will be compared with the bottom-up evaluation of uncertainty, and ease of applicability, validity and usefullness of both approaches will be discussed.
Freni, G; La Loggia, G; Notaro, V
2010-01-01
Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly
Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates
International Nuclear Information System (INIS)
Grassi, Giacomo; Monni, Suvi; Achard, Frederic; Mollicone, Danilo; Federici, Sandro
2008-01-01
A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data-i.e., area change and C stock change/area-may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools-already existing in UNFCCC decisions and IPCC guidance documents-may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation
Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates
Energy Technology Data Exchange (ETDEWEB)
Grassi, Giacomo; Monni, Suvi; Achard, Frederic [Institute for Environment and Sustainability, Joint Research Centre of the European Commission, I-21020 Ispra (Italy); Mollicone, Danilo [Department of Geography, University of Alcala de Henares, Madrid (Spain); Federici, Sandro
2008-07-15
A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data-i.e., area change and C stock change/area-may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools-already existing in UNFCCC decisions and IPCC guidance documents-may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation.
Odman, M. T.; Hu, Y.; Russell, A. G.
2016-12-01
Prescribed burning is practiced throughout the US, and most widely in the Southeast, for the purpose of maintaining and improving the ecosystem, and reducing the wildfire risk. However, prescribed burn emissions contribute significantly to the of trace gas and particulate matter loads in the atmosphere. In places where air quality is already stressed by other anthropogenic emissions, prescribed burns can lead to major health and environmental problems. Air quality modeling efforts are under way to assess the impacts of prescribed burn emissions. Operational forecasts of the impacts are also emerging for use in dynamic management of air quality as well as the burns. Unfortunately, large uncertainties exist in the process of estimating prescribed burn emissions and these uncertainties limit the accuracy of the burn impact predictions. Prescribed burn emissions are estimated by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels, their consumption amounts, and the progression of the fire, ground-based estimates are more accurate. In the absence of such information satellites remain as the only reliable source for emission estimation. To determine the level of uncertainty in prescribed burn emissions, we compared estimates derived from a burn permit database and other ground-based information to the estimates by the Biomass Burning Emissions Product derived from a constellation of NOAA and NASA satellites. Using these emissions estimates we conducted simulations with the Community Multiscale Air Quality (CMAQ) model and predicted trace gas and particulate matter concentrations throughout the Southeast for two consecutive burn seasons (2015 and 2016). In this presentation, we will compare model predicted concentrations to measurements at monitoring stations and evaluate if the differences are commensurate with our emission uncertainty estimates. We will also investigate if
International Nuclear Information System (INIS)
Koch, J.; Peterson, S-R.
1995-10-01
Models used to simulate environmental transfer of radionuclides typically include many parameters, the values of which are uncertain. An estimation of the uncertainty associated with the predictions is therefore essential. Difference methods to quantify the uncertainty in the prediction parameter uncertainties are reviewed. A statistical approach using random sampling techniques is recommended for complex models with many uncertain parameters. In this approach, the probability density function of the model output is obtained from multiple realizations of the model according to a multivariate random sample of the different input parameters. Sampling efficiency can be improved by using a stratified scheme (Latin Hypercube Sampling). Sample size can also be restricted when statistical tolerance limits needs to be estimated. Methods to rank parameters according to their contribution to uncertainty in the model prediction are also reviewed. Recommended are measures of sensitivity, correlation and regression coefficients that can be calculated on values of input and output variables generated during the propagation of uncertainties through the model. A parameter uncertainty analysis is performed for the CHERPAC food chain model which estimates subjective confidence limits and intervals on the predictions at a 95% confidence level. A sensitivity analysis is also carried out using partial rank correlation coefficients. This identified and ranks the parameters which are the main contributors to uncertainty in the predictions, thereby guiding further research efforts. (author). 44 refs., 2 tabs., 4 figs
Energy Technology Data Exchange (ETDEWEB)
Koch, J. [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center; Peterson, S-R.
1995-10-01
Models used to simulate environmental transfer of radionuclides typically include many parameters, the values of which are uncertain. An estimation of the uncertainty associated with the predictions is therefore essential. Difference methods to quantify the uncertainty in the prediction parameter uncertainties are reviewed. A statistical approach using random sampling techniques is recommended for complex models with many uncertain parameters. In this approach, the probability density function of the model output is obtained from multiple realizations of the model according to a multivariate random sample of the different input parameters. Sampling efficiency can be improved by using a stratified scheme (Latin Hypercube Sampling). Sample size can also be restricted when statistical tolerance limits needs to be estimated. Methods to rank parameters according to their contribution to uncertainty in the model prediction are also reviewed. Recommended are measures of sensitivity, correlation and regression coefficients that can be calculated on values of input and output variables generated during the propagation of uncertainties through the model. A parameter uncertainty analysis is performed for the CHERPAC food chain model which estimates subjective confidence limits and intervals on the predictions at a 95% confidence level. A sensitivity analysis is also carried out using partial rank correlation coefficients. This identified and ranks the parameters which are the main contributors to uncertainty in the predictions, thereby guiding further research efforts. (author). 44 refs., 2 tabs., 4 figs.
International Nuclear Information System (INIS)
Wattanapongskorn, Naruemon; Coit, David W.
2007-01-01
In this paper, we model embedded system design and optimization, considering component redundancy and uncertainty in the component reliability estimates. The systems being studied consist of software embedded in associated hardware components. Very often, component reliability values are not known exactly. Therefore, for reliability analysis studies and system optimization, it is meaningful to consider component reliability estimates as random variables with associated estimation uncertainty. In this new research, the system design process is formulated as a multiple-objective optimization problem to maximize an estimate of system reliability, and also, to minimize the variance of the reliability estimate. The two objectives are combined by penalizing the variance for prospective solutions. The two most common fault-tolerant embedded system architectures, N-Version Programming and Recovery Block, are considered as strategies to improve system reliability by providing system redundancy. Four distinct models are presented to demonstrate the proposed optimization techniques with or without redundancy. For many design problems, multiple functionally equivalent software versions have failure correlation even if they have been independently developed. The failure correlation may result from faults in the software specification, faults from a voting algorithm, and/or related faults from any two software versions. Our approach considers this correlation in formulating practical optimization models. Genetic algorithms with a dynamic penalty function are applied in solving this optimization problem, and reasonable and interesting results are obtained and discussed
An estimation of uncertainties in containment P/T analysis using CONTEMPT/LT code
International Nuclear Information System (INIS)
Kang, Y.M.; Park, G.C.; Lee, U.C.; Kang, C.S.
1991-01-01
In a nuclear power plant, the containment design pressure and temperature (P/T) have been established based on the unrealistic conservatism with suffering from a drawback in the economics. Thus, it is necessary that the uncertainties of design P/T values have to be well defined through an extensive uncertainty analysis with plant-specific input data and or models used in the computer code. This study is to estimate plant-specific uncertainties of containment design P/T using the Monte Carlo method in Kori-3 reactor. Kori-3 plant parameters and Uchida heat transfer coefficient are selected to be treated statistically after the sensitivity study. The Monte Carlo analysis has performed based on the response surface method with the CONTEMPT/LT code and Latin Hypercube sampling technique. Finally, the design values based on 95 %/95 % probability are compared with worst estimated values to assess the design margin. (author)
International Nuclear Information System (INIS)
DeMuth, S.
1998-01-01
Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author's previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B ± $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author's engineering judgment
Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence.
Hadwin, Paul J; Sipkens, Timothy A; Thomson, Kevin A; Liu, Fengshan; Daun, Kyle J
2018-03-01
Time-resolved laser-induced incandescence (TiRe-LII) data can be used to infer spatially and temporally resolved volume fractions and primary particle size distributions of soot-laden aerosols, but these estimates are corrupted by measurement noise as well as uncertainties in the spectroscopic and heat transfer submodels used to interpret the data. Estimates of the temperature, concentration, and size distribution of soot primary particles within a sample aerosol are typically made by nonlinear regression of modeled spectral incandescence decay, or effective temperature decay, to experimental data. In this work, we employ nonstationary Bayesian estimation techniques to infer aerosol properties from simulated and experimental LII signals, specifically the extended Kalman filter and Schmidt-Kalman filter. These techniques exploit the time-varying nature of both the measurements and the models, and they reveal how uncertainty in the estimates computed from TiRe-LII data evolves over time. Both techniques perform better when compared with standard deterministic estimates; however, we demonstrate that the Schmidt-Kalman filter produces more realistic uncertainty estimates.
Dengsheng Lu; Qi Chen; Guangxing Wang; Emilio Moran; Mateus Batistella; Maozhen Zhang; Gaia Vaglio Laurin; David Saah
2012-01-01
Landsat Thematic mapper (TM) image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonst...
Estimation of sedimentary proxy records together with associated uncertainty
Goswami, B.; Heitzig, J.; Rehfeld, K.; Marwan, N.; Anoop, A.; Prasad, S.; Kurths, J.
2014-01-01
Sedimentary proxy records constitute a significant portion of the recorded evidence that allows us to investigate paleoclimatic conditions and variability. However, uncertainties in the dating of proxy archives limit our ability to fix the timing of past events and interpret proxy record intercomparisons. While there are various age-modeling approaches to improve the estimation of the age–depth relations of archives, relatively little focus has been placed on the propagation...
Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties
International Nuclear Information System (INIS)
Ke, Jing; McNeil, Michael; Price, Lynn; Khanna, Nina Zheng; Zhou, Nan
2013-01-01
In 2010, China’s cement output was 1.9 Gt, which accounted for 56% of world cement production. Total carbon dioxide (CO 2 ) emissions from Chinese cement production could therefore exceed 1.2 Gt. The magnitude of emissions from this single industrial sector in one country underscores the need to understand the uncertainty of current estimates of cement emissions in China. This paper compares several methodologies for calculating CO 2 emissions from cement production, including the three main components of emissions: direct emissions from the calcination process for clinker production, direct emissions from fossil fuel combustion and indirect emissions from electricity consumption. This paper examines in detail the differences between common methodologies for each emission component, and considers their effect on total emissions. We then evaluate the overall level of uncertainty implied by the differences among methodologies according to recommendations of the Joint Committee for Guides in Metrology. We find a relative uncertainty in China’s cement-related emissions in the range of 10 to 18%. This result highlights the importance of understanding and refining methods of estimating emissions in this important industrial sector. - Highlights: ► CO 2 emission estimates are critical given China’s cement production scale. ► Methodological differences for emission components are compared. ► Results show relative uncertainty in China’s cement-related emissions of about 10%. ► IPCC Guidelines and CSI Cement CO 2 and Energy Protocol are recommended
International Nuclear Information System (INIS)
Attivissimo, F; Giaquinto, N; Savino, M; Cataldo, A
2012-01-01
This paper deals with the assessment of the uncertainty due to systematic errors, particularly in A/D conversion-based instruments. The problem of defining and assessing systematic errors is briefly discussed, and the conceptual scheme of gauge repeatability and reproducibility is adopted. A practical example regarding the evaluation of the uncertainty caused by the systematic offset error is presented. The experimental results, obtained under various ambient conditions, show that modelling the variability of systematic errors is more problematic than suggested by the ISO 5725 norm. Additionally, the paper demonstrates the substantial difference between the type B uncertainty evaluation, obtained via the maximum entropy principle applied to manufacturer's specifications, and the type A (experimental) uncertainty evaluation, which reflects actually observable reality. Although it is reasonable to assume a uniform distribution of the offset error, experiments demonstrate that the distribution is not centred and that a correction must be applied. In such a context, this work motivates a more pragmatic and experimental approach to uncertainty, with respect to the directions of supplement 1 of GUM. (paper)
Uncertainty Estimates in Cold Critical Eigenvalue Predictions
International Nuclear Information System (INIS)
Karve, Atul A.; Moore, Brian R.; Mills, Vernon W.; Marrotte, Gary N.
2005-01-01
A recent cycle of a General Electric boiling water reactor performed two beginning-of-cycle local cold criticals. The eigenvalues estimated by the core simulator were 0.99826 and 1.00610. The large spread in them (= 0.00784) is a source of concern, and it is studied here. An analysis process is developed using statistical techniques, where first a transfer function relating the core observable Y (eigenvalue) to various factors (X's) is established. Engineering judgment is used to recognize the best candidates for X's. They are identified as power-weighted assembly k ∞ 's of selected assemblies around the withdrawn rods. These are a small subset of many X's that could potentially influence Y. However, the intention here is not to do a comprehensive study by accounting for all the X's. Rather, the scope is to demonstrate that the process developed is reasonable and to show its applicability to performing detailed studies. Variability in X's is obtained by perturbing nodal k ∞ 's since they directly influence the buckling term in the quasi-two-group diffusion equation model of the core simulator. Any perturbations introduced in them are bounded by standard well-established uncertainties. The resulting perturbations in the X's may not necessarily be directly correlated to physical attributes, but they encompass numerous biases and uncertainties credited to input and modeling uncertainties. The 'vital few' from the 'unimportant many' X's are determined, and then they are subgrouped according to assembly type, location, exposure, and control rod insertion. The goal is to study how the subgroups influence Y in order to have a better understanding of the variability observed in it
Uncertainty in reliability estimation : when do we know everything we know?
Houben, M.J.H.A.; Sonnemans, P.J.M.; Newby, M.J.; Bris, R.; Guedes Soares, C.; Martorell, S.
2009-01-01
In this paperwe demonstrate the use of an adapted GroundedTheory approach through interviews and their analysis to determine explicit uncertainty (known unknowns) for reliability estimation in the early phases of product development.We have applied the adapted Grounded Theory approach in a case
Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates
Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry
2018-01-01
Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ ∑ NEE) for the different ensemble members from ˜ 2 to 3 g C m-2 yr-1 (with uncertain parameters) to ˜ 45 g C m-2 yr-1 (C3 grass) and ˜ 75 g C m-2 yr-1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ ∑ NEE ˜ 4.0-13.5 g C
Analysis of uncertainties in a probabilistic seismic hazard estimation, example for France
International Nuclear Information System (INIS)
Beauval, C.
2003-12-01
This thesis proposes a new methodology that allows to pinpoint the key parameters that control probabilistic seismic hazard assessment (PSHA) and at the same time to quantify the impact of these parameters uncertainties on hazard estimates. Cornell-McGuire's method is used here. First, uncertainties on magnitude and location determinations are modeled and quantified: resulting variability on hazard estimates ranges between 5% and 25% (=COV), depending on the site and the return period. An impact study is then performed, in order to determine the hierarchy between the impacts on hazard of the choices of four other parameters: intensity-magnitude correlation, minimum and maximum magnitudes, the truncation of the attenuation relationship. The results at 34 Hz (PGA) indicate that the maximum magnitude is the less influent parameter (from 100 to 10000 years); whereas the intensity-magnitude correlation and the truncation of ground motion predictions (>2σ) are the controlling parameters at all return periods (up to 30% decrease each at 10000 years). An increase in the minimum magnitude contributing to the hazard, from 3.5 to 4.5, can also produce non-negligible impacts at small return periods (up to 20% decrease of hazard results at 475 years). Finally, the overall variability on hazard estimates due to the combined choices of the four parameters can reach up to 30% (COV, at 34 Hz). For lower frequencies (<5 Hz), the overall variability increases and maximum magnitude becomes a controlling parameter. Therefore, variability of estimates due to catalog uncertainties and to the choices of these four parameters must be taken into account in all probabilistic seismic hazard studies in France. To reduce variability in hazard estimates, future research should concentrate on the elaboration of an appropriate intensity- magnitude correlation, as well as on a more realistic way of taking into account ground motion dispersion. (author)
International Nuclear Information System (INIS)
Küng, Alain; Meli, Felix; Nicolet, Anaïs; Thalmann, Rudolf
2014-01-01
Tactile ultra-precise coordinate measuring machines (CMMs) are very attractive for accurately measuring optical components with high slopes, such as aspheres. The METAS µ-CMM, which exhibits a single point measurement repeatability of a few nanometres, is routinely used for measurement services of microparts, including optical lenses. However, estimating the measurement uncertainty is very demanding. Because of the many combined influencing factors, an analytic determination of the uncertainty of parameters that are obtained by numerical fitting of the measured surface points is almost impossible. The application of numerical simulation (Monte Carlo methods) using a parametric fitting algorithm coupled with a virtual CMM based on a realistic model of the machine errors offers an ideal solution to this complex problem: to each measurement data point, a simulated measurement variation calculated from the numerical model of the METAS µ-CMM is added. Repeated several hundred times, these virtual measurements deliver the statistical data for calculating the probability density function, and thus the measurement uncertainty for each parameter. Additionally, the eventual cross-correlation between parameters can be analyzed. This method can be applied for the calibration and uncertainty estimation of any parameter of the equation representing a geometric element. In this article, we present the numerical simulation model of the METAS µ-CMM and the application of a Monte Carlo method for the uncertainty estimation of measured asphere parameters. (paper)
Best-estimate reactor core monitor using state feedback strategies to resolve uncertainties
International Nuclear Information System (INIS)
Martin, R.P.
1997-01-01
The development and demonstration of a new algorithm for quantifying uncertainty in best-estimate simulation codes has been investigated. Demonstration is given by way of a prototype reactor core monitor. The architecture of this monitor integrates a distributed parameter estimation technique and the infrastructure required to support this control theory-based algorithm into a production-grade best-estimate simulation code. The Kalman filter with the sequential least-squares parameter estimation algorithm has been extended for application into the computational environment of a best-estimate simulation code, i.e., RELAP5/DOE. In control system terminology this configuration can be thought of as a best-estimate observer
Estimation of uncertainty bounds for the future performance of a power plant
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Stoustrup, Jakob
2009-01-01
on recent data and the other is based on operating points as well. The third proposed scheme uses dynamical models of the prediction uncertainties, like in H-infinity-control. The proposed schemes are subsequently applied to experimental data from a coal-fired power plant. {Two sets of data from an actual......} the future performance of these plants is that available models of the plants are uncertain. In this paper three schemes for predicting uncertain dynamical systems are presented. The schemes estimate upper and lower bounds on the system performance. Two of the schemes are statistically based, one only based......Prediction of the future performance of large-scale power plants can be very relevant for the operators of these plants, as the predictions can indicate possible problems or failures due to current operating conditions and/or future possible operating conditions. {A problem in predicting...
Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki
2017-08-01
Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.
Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements
Ulrich, Thomas
2013-08-01
Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.
International Nuclear Information System (INIS)
Orellana Salas, A.; Melgar Perez, J.; Arrocha Acevedo, J. F.
2013-01-01
The determination of the activity to prescribe the hyperthyroid patients presented difficult consideration uncertainties. The uncertainties associated with the experimental design can exceed 20%, so it should be valued to customize activity therapy of 1 31 I. (Author)
Directory of Open Access Journals (Sweden)
Gunter eSpöck
2015-05-01
Full Text Available Recently, Spock and Pilz [38], demonstratedthat the spatial sampling design problem forthe Bayesian linear kriging predictor can betransformed to an equivalent experimentaldesign problem for a linear regression modelwith stochastic regression coefficients anduncorrelated errors. The stochastic regressioncoefficients derive from the polar spectralapproximation of the residual process. Thus,standard optimal convex experimental designtheory can be used to calculate optimal spatialsampling designs. The design functionals ̈considered in Spock and Pilz [38] did nottake into account the fact that kriging isactually a plug-in predictor which uses theestimated covariance function. The resultingoptimal designs were close to space-fillingconfigurations, because the design criteriondid not consider the uncertainty of thecovariance function.In this paper we also assume that thecovariance function is estimated, e.g., byrestricted maximum likelihood (REML. Wethen develop a design criterion that fully takesaccount of the covariance uncertainty. Theresulting designs are less regular and space-filling compared to those ignoring covarianceuncertainty. The new designs, however, alsorequire some closely spaced samples in orderto improve the estimate of the covariancefunction. We also relax the assumption ofGaussian observations and assume that thedata is transformed to Gaussianity by meansof the Box-Cox transformation. The resultingprediction method is known as trans-Gaussiankriging. We apply the Smith and Zhu [37]approach to this kriging method and show thatresulting optimal designs also depend on theavailable data. We illustrate our results witha data set of monthly rainfall measurementsfrom Upper Austria.
International Nuclear Information System (INIS)
Lassahn, G.D.; Taylor, D.J.N.
1982-08-01
Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading
Directory of Open Access Journals (Sweden)
Robert J. Andres
2014-07-01
Full Text Available Three uncertainty assessments associated with the global total of carbon dioxide emitted from fossil fuel use and cement production are presented. Each assessment has its own strengths and weaknesses and none give a full uncertainty assessment of the emission estimates. This approach grew out of the lack of independent measurements at the spatial and temporal scales of interest. Issues of dependent and independent data are considered as well as the temporal and spatial relationships of the data. The result is a multifaceted examination of the uncertainty associated with fossil fuel carbon dioxide emission estimates. The three assessments collectively give a range that spans from 1.0 to 13% (2 σ. Greatly simplifying the assessments give a global fossil fuel carbon dioxide uncertainty value of 8.4% (2 σ. In the largest context presented, the determination of fossil fuel emission uncertainty is important for a better understanding of the global carbon cycle and its implications for the physical, economic and political world.
ON THE ESTIMATION OF RANDOM UNCERTAINTIES OF STAR FORMATION HISTORIES
Energy Technology Data Exchange (ETDEWEB)
Dolphin, Andrew E., E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ, 85734 (United States)
2013-09-20
The standard technique for measurement of random uncertainties of star formation histories (SFHs) is the bootstrap Monte Carlo, in which the color-magnitude diagram (CMD) is repeatedly resampled. The variation in SFHs measured from the resampled CMDs is assumed to represent the random uncertainty in the SFH measured from the original data. However, this technique systematically and significantly underestimates the uncertainties for times in which the measured star formation rate is low or zero, leading to overly (and incorrectly) high confidence in that measurement. This study proposes an alternative technique, the Markov Chain Monte Carlo (MCMC), which samples the probability distribution of the parameters used in the original solution to directly estimate confidence intervals. While the most commonly used MCMC algorithms are incapable of adequately sampling a probability distribution that can involve thousands of highly correlated dimensions, the Hybrid Monte Carlo algorithm is shown to be extremely effective and efficient for this particular task. Several implementation details, such as the handling of implicit priors created by parameterization of the SFH, are discussed in detail.
ON THE ESTIMATION OF RANDOM UNCERTAINTIES OF STAR FORMATION HISTORIES
International Nuclear Information System (INIS)
Dolphin, Andrew E.
2013-01-01
The standard technique for measurement of random uncertainties of star formation histories (SFHs) is the bootstrap Monte Carlo, in which the color-magnitude diagram (CMD) is repeatedly resampled. The variation in SFHs measured from the resampled CMDs is assumed to represent the random uncertainty in the SFH measured from the original data. However, this technique systematically and significantly underestimates the uncertainties for times in which the measured star formation rate is low or zero, leading to overly (and incorrectly) high confidence in that measurement. This study proposes an alternative technique, the Markov Chain Monte Carlo (MCMC), which samples the probability distribution of the parameters used in the original solution to directly estimate confidence intervals. While the most commonly used MCMC algorithms are incapable of adequately sampling a probability distribution that can involve thousands of highly correlated dimensions, the Hybrid Monte Carlo algorithm is shown to be extremely effective and efficient for this particular task. Several implementation details, such as the handling of implicit priors created by parameterization of the SFH, are discussed in detail
Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops
Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said
2017-11-01
The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.
Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb
2017-10-01
In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.
Milne, Alice E.; Glendining, Margaret J.; Bellamy, Pat; Misselbrook, Tom; Gilhespy, Sarah; Rivas Casado, Monica; Hulin, Adele; van Oijen, Marcel; Whitmore, Andrew P.
2014-01-01
The UK's greenhouse gas inventory for agriculture uses a model based on the IPCC Tier 1 and Tier 2 methods to estimate the emissions of methane and nitrous oxide from agriculture. The inventory calculations are disaggregated at country level (England, Wales, Scotland and Northern Ireland). Before now, no detailed assessment of the uncertainties in the estimates of emissions had been done. We used Monte Carlo simulation to do such an analysis. We collated information on the uncertainties of each of the model inputs. The uncertainties propagate through the model and result in uncertainties in the estimated emissions. Using a sensitivity analysis, we found that in England and Scotland the uncertainty in the emission factor for emissions from N inputs (EF1) affected uncertainty the most, but that in Wales and Northern Ireland, the emission factor for N leaching and runoff (EF5) had greater influence. We showed that if the uncertainty in any one of these emission factors is reduced by 50%, the uncertainty in emissions of nitrous oxide reduces by 10%. The uncertainty in the estimate for the emissions of methane emission factors for enteric fermentation in cows and sheep most affected the uncertainty in methane emissions. When inventories are disaggregated (as that for the UK is) correlation between separate instances of each emission factor will affect the uncertainty in emissions. As more countries move towards inventory models with disaggregation, it is important that the IPCC give firm guidance on this topic.
Directory of Open Access Journals (Sweden)
Gurkan eSin
2015-02-01
Full Text Available Capital investment, next to the product demand, sales and production costs, is one of the key metrics commonly used for project evaluation and feasibility assessment. Estimating the investment costs of a new product/process alternative during early stage design is a challenging task. This is especially important in biorefinery research, where available information and experiences with new technologies is limited. A systematic methodology for uncertainty analysis of cost data is proposed that employs (a Bootstrapping as a regression method when cost data is available and (b the Monte Carlo technique as an error propagation method based on expert input when cost data is not available. Four well-known models for early stage cost estimation are reviewed an analyzed using the methodology. The significance of uncertainties of cost data for early stage process design is highlighted using the synthesis and design of a biorefinery as a case study. The impact of uncertainties in cost estimation on the identification of optimal processing paths is found to be profound. To tackle this challenge, a comprehensive techno-economic risk analysis framework is presented to enable robust decision making under uncertainties. One of the results using an order-of-magnitude estimate shows that the production of diethyl ether and 1,3-butadiene are the most promising with economic risks of 0.24 MM$/a and 4.6 MM$/a due to uncertainties in cost estimations, respectively.
Alonso, Ariel; Laenen, Annouschka
2013-05-01
Laenen, Alonso, and Molenberghs (2007) and Laenen, Alonso, Molenberghs, and Vangeneugden (2009) proposed a method to assess the reliability of rating scales in a longitudinal context. The methodology is based on hierarchical linear models, and reliability coefficients are derived from the corresponding covariance matrices. However, finding a good parsimonious model to describe complex longitudinal data is a challenging task. Frequently, several models fit the data equally well, raising the problem of model selection uncertainty. When model uncertainty is high one may resort to model averaging, where inferences are based not on one but on an entire set of models. We explored the use of different model building strategies, including model averaging, in reliability estimation. We found that the approach introduced by Laenen et al. (2007, 2009) combined with some of these strategies may yield meaningful results in the presence of high model selection uncertainty and when all models are misspecified, in so far as some of them manage to capture the most salient features of the data. Nonetheless, when all models omit prominent regularities in the data, misleading results may be obtained. The main ideas are further illustrated on a case study in which the reliability of the Hamilton Anxiety Rating Scale is estimated. Importantly, the ambit of model selection uncertainty and model averaging transcends the specific setting studied in the paper and may be of interest in other areas of psychometrics. © 2012 The British Psychological Society.
International Nuclear Information System (INIS)
Tanaka, Yohei; Momma, Akihiko; Kato, Ken; Negishi, Akira; Takano, Kiyonami; Nozaki, Ken; Kato, Tohru
2009-01-01
Uncertainty of electrical efficiency measurement was investigated for a 10 kW-class SOFC system using town gas. Uncertainty of heating value measured by the gas chromatography method on a mole base was estimated as ±0.12% at 95% level of confidence. Micro-gas chromatography with/without CH 4 quantification may be able to reduce uncertainty of measurement. Calibration and uncertainty estimation methods are proposed for flow-rate measurement of town gas with thermal mass-flow meters or controllers. By adequate calibrations for flowmeters, flow rate of town gas or natural gas at 35 standard litters per minute can be measured within relative uncertainty ±1.0% at 95 % level of confidence. Uncertainty of power measurement can be as low as ±0.14% when a precise wattmeter is used and calibrated properly. It is clarified that electrical efficiency for non-pressurized 10 kW-class SOFC systems can be measured within ±1.0% relative uncertainty at 95% level of confidence with the developed techniques when the SOFC systems are operated relatively stably
Uncertainty in CH4 and N2O emission estimates from a managed fen meadow using EC measurements
International Nuclear Information System (INIS)
Kroon, P.S.; Hensen, A.; Van 't Veen, W.H.; Vermeulen, A.T.; Jonker, H.
2009-02-01
The overall uncertainty in annual flux estimates derived from chamber measurements may be as high as 50% due to the temporal and spatial variability in the fluxes. As even a large number of chamber plots still cover typically less than 1% of the total field area, the field-scale integrated emission necessarily remains a matter of speculation. High frequency micrometeorological methods are a good option for obtaining integrated estimates on a hectare scale with a continuous coverage in time. Instrumentation is now becoming available that meets the requirements for CH4 and N2O eddy covariance (EC) measurements. A system consisting of a quantum cascade laser (QCL) spectrometer and a sonic anemometer has recently been proven to be suitable for performing EC measurements. This study analyses the EC flux measurements of CH4 and N2O and its corrections, like calibration, Webb-correction, and corrections for high and low frequency losses, and assesses the magnitude of the uncertainties associated with the precision of the measurement instruments, measurement set-up and the methodology. The uncertainty of one single EC flux measurement, a daily, monthly and 3-monthly average EC flux is estimated. In addition, the cumulative emission of C-CH4 and N-N2O and their uncertainties are determined over several fertilizing events at a dairy farm site in the Netherlands. These fertilizing events are selected from the continuously EC flux measurements from August 2006 to September 2008. The EC flux uncertainties are compared by the overall uncertainty in annual flux estimates derived from chamber measurements. It will be shown that EC flux measurements can decrease the overall uncertainty in annual flux estimates
Uncertainty in CH4 and N2O emission estimates from a managed fen meadow using EC measurements
Energy Technology Data Exchange (ETDEWEB)
Kroon, P.S.; Hensen, A.; Van ' t Veen, W.H.; Vermeulen, A.T. [ECN Biomass, Coal and Environment, Petten (Netherlands); Jonker, H. [Delft University of Technology, Delft (Netherlands)
2009-02-15
The overall uncertainty in annual flux estimates derived from chamber measurements may be as high as 50% due to the temporal and spatial variability in the fluxes. As even a large number of chamber plots still cover typically less than 1% of the total field area, the field-scale integrated emission necessarily remains a matter of speculation. High frequency micrometeorological methods are a good option for obtaining integrated estimates on a hectare scale with a continuous coverage in time. Instrumentation is now becoming available that meets the requirements for CH4 and N2O eddy covariance (EC) measurements. A system consisting of a quantum cascade laser (QCL) spectrometer and a sonic anemometer has recently been proven to be suitable for performing EC measurements. This study analyses the EC flux measurements of CH4 and N2O and its corrections, like calibration, Webb-correction, and corrections for high and low frequency losses, and assesses the magnitude of the uncertainties associated with the precision of the measurement instruments, measurement set-up and the methodology. The uncertainty of one single EC flux measurement, a daily, monthly and 3-monthly average EC flux is estimated. In addition, the cumulative emission of C-CH4 and N-N2O and their uncertainties are determined over several fertilizing events at a dairy farm site in the Netherlands. These fertilizing events are selected from the continuously EC flux measurements from August 2006 to September 2008. The EC flux uncertainties are compared by the overall uncertainty in annual flux estimates derived from chamber measurements. It will be shown that EC flux measurements can decrease the overall uncertainty in annual flux estimates.
Souverijns, Niels; Gossart, Alexandra; Lhermitte, Stef; Gorodetskaya, Irina; Kneifel, Stefan; Maahn, Maximilian; Bliven, Francis; van Lipzig, Nicole
2017-04-01
The Antarctic Ice Sheet (AIS) is the largest ice body on earth, having a volume equivalent to 58.3 m global mean sea level rise. Precipitation is the dominant source term in the surface mass balance of the AIS. However, this quantity is not well constrained in both models and observations. Direct observations over the AIS are also not coherent, as they are sparse in space and time and acquisition techniques differ. As a result, precipitation observations stay mostly limited to continent-wide averages based on satellite radar observations. Snowfall rate (SR) at high temporal resolution can be derived from the ground-based radar effective reflectivity factor (Z) using information about snow particle size and shape. Here we present reflectivity snowfall rate relations (Z = aSRb) for the East Antarctic escarpment region using the measurements at the Princess Elisabeth (PE) station and an overview of their uncertainties. A novel technique is developed by combining an optical disdrometer (NASA's Precipitation Imaging Package; PIP) and a vertically pointing 24 GHz FMCW micro rain radar (Metek's MRR) in order to reduce the uncertainty in SR estimates. PIP is used to obtain information about snow particle characteristics and to get an estimate of Z, SR and the Z-SR relation. For PE, located 173 km inland, the relation equals Z = 18SR1.1. The prefactor (a) of the relation is sensitive to the median diameter of the particles. Larger particles, found closer to the coast, lead to an increase of the value of the prefactor. More inland locations, where smaller snow particles are found, obtain lower values for the prefactor. The exponent of the Z-SR relation (b) is insensitive to the median diameter of the snow particles. This dependence of the prefactor of the Z-SR relation to the particle size needs to be taken into account when converting radar reflectivities to snowfall rates over Antarctica. The uncertainty on the Z-SR relations is quantified using a bootstrapping approach
Directory of Open Access Journals (Sweden)
George Maldonado
2009-09-01
Full Text Available Abstract: In a follow-up study of mortality among North American synthetic rubber industry workers, cumulative exposure to 1,3-butadiene was positively associated with leukemia. Problems with historical exposure estimation, however, may have distorted the association. To evaluate the impact of potential inaccuracies in exposure estimation, we conducted uncertainty analyses of the relation between cumulative exposure to butadiene and leukemia. We created the 1,000 sets of butadiene estimates using job-exposure matrices consisting of exposure values that corresponded to randomly selected percentiles of the approximate probability distribution of plant-, work area/job group-, and year specific butadiene ppm. We then analyzed the relation between cumulative exposure to butadiene and leukemia for each of the 1,000 sets of butadiene estimates. In the uncertainty analysis, the point estimate of the RR for the first non zero exposure category (>0–<37.5 ppm-years was most likely to be about 1.5. The rate ratio for the second exposure category (37.5–<184.7 ppm-years was most likely to range from 1.5 to 1.8. The RR for category 3 of exposure (184.7–<425.0 ppm-years was most likely between 2.1 and 3.0. The RR for the highest exposure category (425.0+ ppm-years was likely to be between 2.9 and 3.7. This range off RR point estimates can best be interpreted as a probability distribution that describes our uncertainty in RR point estimates due to uncertainty in exposure estimation. After considering the complete probability distributions of butadiene exposure estimates, the exposure-response association of butadiene and leukemia was maintained. This exercise was a unique example of how uncertainty analyses can be used to investigate and support an observed measure of effect when occupational exposure estimates are employed in the absence of direct exposure measurements.
Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu
2012-04-01
The estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically. The reward probabilities of the left and right holes were chosen from six settings (high, 100% vs. 66%; mid, 66% vs. 33%; low, 33% vs. 0% for the left vs. right holes, and the opposites) in every 20-549 trials. We used Bayesian Q-learning models to estimate the time course of the probability distribution of action values and tested if they better explain the behaviors of rats than standard Q-learning models that estimate only the mean of action values. Model comparison by cross-validation revealed that a Bayesian Q-learning model with an asymmetric update for reward and non-reward outcomes fit the choice time course of the rats best. In the action-choice equation of the Bayesian Q-learning model, the estimated coefficient for the variance of action value was positive, meaning that rats were uncertainty seeking. Further analysis of the Bayesian Q-learning model suggested that the uncertainty facilitated the effective learning rate. These results suggest that the rats consider uncertainty in action-value estimation and that they have an uncertainty-seeking action policy and uncertainty-dependent modulation of the effective learning rate. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Energy Technology Data Exchange (ETDEWEB)
Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)
2013-07-01
The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than
Estimating Uncertainties of Ship Course and Speed in Early Navigations using ICOADS3.0
Chan, D.; Huybers, P. J.
2017-12-01
Information on ship position and its uncertainty is potentially important for mapping out climatologists and changes in SSTs. Using the 2-hourly ship reports from the International Comprehensive Ocean Atmosphere Dataset 3.0 (ICOADS 3.0), we estimate the uncertainties of ship course, ship speed, and latitude/longitude corrections during 1870-1900. After reviewing the techniques used in early navigations, we build forward navigation model that uses dead reckoning technique, celestial latitude corrections, and chronometer longitude corrections. The modeled ship tracks exhibit jumps in longitude and latitude, when a position correction is applied. These jumps are also seen in ICOADS3.0 observations. In this model, position error at the end of each day increases following a 2D random walk; the latitudinal/longitude errors are reset when a latitude/longitude correction is applied.We fit the variance of the magnitude of latitude/longitude corrections in the observation against model outputs, and estimate that the standard deviation of uncertainty is 5.5 degree for ship course, 32% for ship speed, 22km for latitude correction, and 27km for longitude correction. The estimates here are informative priors for Bayesian methods that quantify position errors of individual tracks.
Directory of Open Access Journals (Sweden)
Il Young Song
2015-01-01
Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.
On the influence of uncertainties in estimating risk aversion and working interest
International Nuclear Information System (INIS)
MacKay, J.A.; Lerche, I.
1996-01-01
The influence of uncertainties in costs, value, success probability, risk tolerance and mandated working interest are evaluated for their impact on assessing probable ranges of uncertainty on risk adjusted value, RAV, using different models. The relative importance of different factors in contributing to the uncertainty in RAV is analyzed, as is the influence of different probability distributions for the intrinsic variables entering the RAV model formulae. Numerical illustrations indicate how the RAV probabilities depend not only on the model functions (Cozzolino, hyperbolic tangent) used to provide RAV estimates, but also on the intrinsic shapes of the probability distributions from which are drawn input parameter values for Monte Carlo simulations. In addition, a mandated range of working interest can be addressed as an extra variable contributing to the probabilistic range of RAV; while negative RAV values for high-cost project can be used to assess the probable buy-out amount one should be prepared to pay depending on corporate risk philosophy. Also, the procedures illustrate how the relative contributions of scientific factors influence uncertainty of reserve assessments, allowing one to determine where to concentrate effort to improve the ranges of uncertainty. (Author)
SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging
Energy Technology Data Exchange (ETDEWEB)
Yan, H [Capital Medical University, Beijing, Beijing (China); Chen, Z [Yale New Haven Hospital, New Haven, CT (United States); Nath, R; Liu, W [Yale University School of Medicine, New Haven, CT (United States)
2016-06-15
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the
SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging
International Nuclear Information System (INIS)
Yan, H; Chen, Z; Nath, R; Liu, W
2016-01-01
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the
A new Method for the Estimation of Initial Condition Uncertainty Structures in Mesoscale Models
Keller, J. D.; Bach, L.; Hense, A.
2012-12-01
The estimation of fast growing error modes of a system is a key interest of ensemble data assimilation when assessing uncertainty in initial conditions. Over the last two decades three methods (and variations of these methods) have evolved for global numerical weather prediction models: ensemble Kalman filter, singular vectors and breeding of growing modes (or now ensemble transform). While the former incorporates a priori model error information and observation error estimates to determine ensemble initial conditions, the latter two techniques directly address the error structures associated with Lyapunov vectors. However, in global models these structures are mainly associated with transient global wave patterns. When assessing initial condition uncertainty in mesoscale limited area models, several problems regarding the aforementioned techniques arise: (a) additional sources of uncertainty on the smaller scales contribute to the error and (b) error structures from the global scale may quickly move through the model domain (depending on the size of the domain). To address the latter problem, perturbation structures from global models are often included in the mesoscale predictions as perturbed boundary conditions. However, the initial perturbations (when used) are often generated with a variant of an ensemble Kalman filter which does not necessarily focus on the large scale error patterns. In the framework of the European regional reanalysis project of the Hans-Ertel-Center for Weather Research we use a mesoscale model with an implemented nudging data assimilation scheme which does not support ensemble data assimilation at all. In preparation of an ensemble-based regional reanalysis and for the estimation of three-dimensional atmospheric covariance structures, we implemented a new method for the assessment of fast growing error modes for mesoscale limited area models. The so-called self-breeding is development based on the breeding of growing modes technique
International Nuclear Information System (INIS)
Van Berkel, M; Hogeweij, G M D; Van den Brand, H; De Baar, M R; Zwart, H J; Vandersteen, G
2014-01-01
In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements are added) or have an unnecessarily large uncertainty. This will be shown by modeling a plasma using only diffusion as heat transport mechanism and measurement noise based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier coefficients distributed according to a CCND, it is shown that the resulting probability density function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal diffusivity that is found by sampling this distribution will always be biased, and averaging of multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds are constructed to illustrate the uncertainty in the diffusivity using several formulas that are equivalent in the noiseless case. Finally, a different method of averaging, that reduces the uncertainty significantly, is suggested. The methodology is also extended to the case where damping is included, and it is explained how to include the cylindrical geometry. (paper)
Masterlark, Timothy; Donovan, Theodore; Feigl, Kurt L.; Haney, Matt; Thurber, Clifford H.; Tung, Sui
2016-01-01
The eruption cycle of a volcano is controlled in part by the upward migration of magma. The characteristics of the magma flux produce a deformation signature at the Earth's surface. Inverse analyses use geodetic data to estimate strategic controlling parameters that describe the position and pressurization of a magma chamber at depth. The specific distribution of material properties controls how observed surface deformation translates to source parameter estimates. Seismic tomography models describe the spatial distributions of material properties that are necessary for accurate models of volcano deformation. This study investigates how uncertainties in seismic tomography models propagate into variations in the estimates of volcano deformation source parameters inverted from geodetic data. We conduct finite element model-based nonlinear inverse analyses of interferometric synthetic aperture radar (InSAR) data for Okmok volcano, Alaska, as an example. We then analyze the estimated parameters and their uncertainties to characterize the magma chamber. Analyses are performed separately for models simulating a pressurized chamber embedded in a homogeneous domain as well as for a domain having a heterogeneous distribution of material properties according to seismic tomography. The estimated depth of the source is sensitive to the distribution of material properties. The estimated depths for the homogeneous and heterogeneous domains are 2666 ± 42 and 3527 ± 56 m below mean sea level, respectively (99% confidence). A Monte Carlo analysis indicates that uncertainties of the seismic tomography cannot account for this discrepancy at the 99% confidence level. Accounting for the spatial distribution of elastic properties according to seismic tomography significantly improves the fit of the deformation model predictions and significantly influences estimates for parameters that describe the location of a pressurized magma chamber.
Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment
Sankey, Temuulen; Shrestha, Rupesh; Sankey, Joel B.; Hardgree, Stuart; Strand, Eva
2013-01-01
Woody encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p 2. Uncertainty in carbon storage estimates was examined with a Monte Carlo approach that addressed major error sources. Ranges predicted with uncertainty analysis in the mean, individual tree, aboveground woody C, and associated standard deviation were 0.35 – 143.6 kg and 0.5 – 1.25 kg, respectively. Later successional phases of woody encroachment had, on average, twice the aboveground carbon relative to earlier phases. Woody encroachment might be more successfully managed and balanced with carbon storage goals by identifying priority areas in earlier phases of encroachment where intensive treatments are most effective.
Energy Technology Data Exchange (ETDEWEB)
Heath, Garvin [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Warner, Ethan [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Steinberg, Daniel [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Brandt, Adam [Stanford Univ., CA (United States)
2015-08-01
A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH_{4}) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH_{4} emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH_{4}) emissions from fugitives and venting along the natural gas (NG) supply chain.
AUTHOR|(INSPIRE)INSPIRE-00534683; The ATLAS collaboration
2016-01-01
The jet energy scale (JES) uncertainty is estimated using different methods at different pT ranges. In situ techniques exploiting the pT balance between a jet and a reference object (e.g. Z or gamma) are used at lower pT, but at very high pT (> 2.5 TeV) there is not enough statistics for in-situ techniques. The JES uncertainty at high-pT is important in several searches for new phenomena, e.g. the dijet resonance and angular searches. In the highest pT range, the JES uncertainty is estimated using the calorimeter response to single hadrons. In this method, jets are treated as a superposition of energy depositions of single particles. An uncertainty is applied to each energy depositions belonging to the particles within the jet, and propagated to the final jet energy scale. This poster presents the JES uncertainty found with this method at sqrt(s) = 8 TeV and its developments.
DEFF Research Database (Denmark)
Jones, Mark Nicholas; Hukkerikar, Amol; Sin, Gürkan
thermodynamic and thermo-physical models is critical to obtain a feasible and operable process design and many guidelines pertaining to this can be found in the literature. But even if appropriate models have been chosen, the user needs to keep in mind that these models contain uncertainties which may propagate...... through the calculation steps to such an extent that the final design might not be feasible or lead to poor performance. Therefore it is necessary to evaluate the sensitivity of process design to the uncertainties in property estimates obtained from thermo-physical property models. Uncertainty...... of the methodology is illustrated using a case study of extractive distillation in which acetone is separated from methanol using water as a solvent. Among others, the vapour pressure of acetone and water was found to be the most critical and even small uncertainties from -0.25 % to +0.75 % in vapour pressure data...
Uncertainty and validation. Effect of model complexity on uncertainty estimates
Energy Technology Data Exchange (ETDEWEB)
Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)] [ed.
1996-09-01
In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root
International Nuclear Information System (INIS)
Chen, G.; Ferryman, T.A.; Remund, K.M.
1998-02-01
The exact physical and chemical nature of 55 million gallons of toxic waste held in 177 underground waste tanks at the Hanford Site is not known with sufficient detail to support the safety, retrieval, and immobilization missions presented to Hanford. The Hanford Best Basis team has made point estimates of the inventories in each tank. The purpose of this study is to estimate probability distributions for each of the 71 analytes and 177 tanks that the Hanford Best Basis team has made point estimates for. This will enable uncertainty intervals to be calculated for the Best Basis inventories and should facilitate the safety, retrieval, and immobilization missions. Section 2 of this document describes the overall approach used to estimate tank inventory uncertainties. Three major components are considered in this approach: chemical concentration, density, and waste volume. Section 2 also describes the two different methods used to evaluate the tank wastes in terms of sludges and in terms of supernatant or saltcakes. Sections 3 and 4 describe in detail the methodology to assess the probability distributions for each of the three components, as well as the data sources for implementation. The conclusions are given in Section 5
Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B
2016-04-01
Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.
Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.
2016-01-01
Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354
Directory of Open Access Journals (Sweden)
Douglas A. Fynan
2016-06-01
Full Text Available The Gaussian process model (GPM is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU and Level 1 probabilistic safety assessment (PSA success criteria definitions while dealing with a large number of uncertainties.
Best estimate analysis of LOFT L2-5 with CATHARE: uncertainty and sensitivity analysis
Energy Technology Data Exchange (ETDEWEB)
JOUCLA, Jerome; PROBST, Pierre [Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); FOUET, Fabrice [APTUS, Versailles (France)
2008-07-01
The revision of the 10 CFR50.46 in 1988 has made possible the use of best-estimate codes. They may be used in safety demonstration and licensing, provided that uncertainties are added to the relevant output parameters before comparing them with the acceptance criteria. In the safety analysis of the large break loss of coolant accident, it was agreed that the 95. percentile estimated with a high degree of confidence should be lower than the acceptance criteria. It appeared necessary to IRSN, technical support of the French Safety Authority, to get more insight into these strategies which are being developed not only in thermal-hydraulics but in other fields such as in neutronics. To estimate the 95. percentile with a high confidence level, we propose to use rank statistics or bootstrap. Toward the objective of assessing uncertainty, it is useful to determine and to classify the main input parameters. We suggest approximating the code by a surrogate model, the Kriging model, which will be used to make a sensitivity analysis with the SOBOL methodology. This paper presents the application of two new methodologies of how to make the uncertainty and sensitivity analysis on the maximum peak cladding temperature of the LOFT L2-5 test with the CATHARE code. (authors)
Uncertainties of estimating average radon and radon decay product concentrations in occupied houses
International Nuclear Information System (INIS)
Ronca-Battista, M.; Magno, P.; Windham, S.
1986-01-01
Radon and radon decay product measurements made in up to 68 Butte, Montana homes over a period of 18 months were used to estimate the uncertainty in estimating long-term average radon and radon decay product concentrations from a short-term measurement. This analysis was performed in support of the development of radon and radon decay product measurement protocols by the Environmental Protection Agency (EPA). The results of six measurement methods were analyzed: continuous radon and working level monitors, radon progeny integrating sampling units, alpha-track detectors, and grab radon and radon decay product techniques. Uncertainties were found to decrease with increasing sampling time and to be smaller when measurements were conducted during the winter months. In general, radon measurements had a smaller uncertainty than radon decay product measurements. As a result of this analysis, the EPA measurements protocols specify that all measurements be made under closed-house (winter) conditions, and that sampling times of at least a 24 hour period be used when the measurement will be the basis for a decision about remedial action or long-term health risks. 13 references, 3 tables
Despax, Aurélien; Perret, Christian; Garçon, Rémy; Hauet, Alexandre; Belleville, Arnaud; Le Coz, Jérôme; Favre, Anne-Catherine
2016-02-01
Streamflow time series provide baseline data for many hydrological investigations. Errors in the data mainly occur through uncertainty in gauging (measurement uncertainty) and uncertainty in the determination of the stage-discharge relationship based on gaugings (rating curve uncertainty). As the velocity-area method is the measurement technique typically used for gaugings, it is fundamental to estimate its level of uncertainty. Different methods are available in the literature (ISO 748, Q + , IVE), all with their own limitations and drawbacks. Among the terms forming the combined relative uncertainty in measured discharge, the uncertainty component relating to the limited number of verticals often includes a large part of the relative uncertainty. It should therefore be estimated carefully. In ISO 748 standard, proposed values of this uncertainty component only depend on the number of verticals without considering their distribution with respect to the depth and velocity cross-sectional profiles. The Q + method is sensitive to a user-defined parameter while it is questionable whether the IVE method is applicable to stream-gaugings performed with a limited number of verticals. To address the limitations of existing methods, this paper presents a new methodology, called FLow Analog UnceRtainty Estimation (FLAURE), to estimate the uncertainty component relating to the limited number of verticals. High-resolution reference gaugings (with 31 and more verticals) are used to assess the uncertainty component through a statistical analysis. Instead of subsampling purely randomly the verticals of these reference stream-gaugings, a subsampling method is developed in a way that mimicks the behavior of a hydrometric technician. A sampling quality index (SQI) is suggested and appears to be a more explanatory variable than the number of verticals. This index takes into account the spacing between verticals and the variation of unit flow between two verticals. To compute the
Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review
Energy Technology Data Exchange (ETDEWEB)
Anderson, Steven T., E-mail: sanderson@usgs.gov [National Center, U.S. Geological Survey (United States)
2017-04-15
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the
Best-estimate analysis and decision making under uncertainty
International Nuclear Information System (INIS)
Orechwa, Y.
2004-01-01
In many engineering analyses of system safety the traditional reliance on conservative evaluation model calculations is being replaced with so called best-estimate analysis. These best-estimate analyses differentiate themselves from the traditional conservative analyses through two ingredients, namely realistic models and an account of the residual uncertainty associated with the model calculations. Best-estimate analysis, in the context of this paper, refers to the numerical evaluation of system properties of interest in situations where direct confirmatory measurements are not feasible. A decision with regard to the safety of the system is then made based on the computed numerical values of the system properties of interest. These situations generally arise in the design of systems that require computed and generally nontrivial extrapolations from the available data. In the case of nuclear reactors, examples are criticality of spent fuel pools, neutronic parameters of new advanced designs where insufficient material is available for mockup critical experiments and, the large break loss of coolant accident (LOCA). In this paper the case of LOCA, is taken to discuss the best-estimate analysis and decision making. Central to decision making is information. Thus, of interest is the source, quantity and quality of the information obtained in a best-estimate analysis, and used to define the acceptance criteria and to formulate a decision rule. This in effect expands the problem from the calculation of a conservative margin to a predefined acceptance criterion, to the formulation of a consistent decision rule and the computation of a test statistic for application of the decision rule. The latter view is a necessary condition for developing risk informed decision rules, and, thus, the relation between design basis analysis criteria and probabilistic risk assessment criteria is key. The discussion is in the context of making a decision under uncertainty for a reactor
Effects of uncertainty in model predictions of individual tree volume on large area volume estimates
Ronald E. McRoberts; James A. Westfall
2014-01-01
Forest inventory estimates of tree volume for large areas are typically calculated by adding model predictions of volumes for individual trees. However, the uncertainty in the model predictions is generally ignored with the result that the precision of the large area volume estimates is overestimated. The primary study objective was to estimate the effects of model...
Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment
Sankey, Temuulen; Shrestha, Rupesh; Sankey, Joel B.; Hardegree, Stuart; Strand, Eva
2013-07-01
encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p < 0.001, RMSE = 0.58 kg). The predicted mean aboveground woody carbon storage for the study area was 677 g/m2. Uncertainty in carbon storage estimates was examined with a Monte Carlo approach that addressed major error sources. Ranges predicted with uncertainty analysis in the mean, individual tree, aboveground woody C, and associated standard deviation were 0.35 - 143.6 kg and 0.5 - 1.25 kg, respectively. Later successional phases of woody encroachment had, on average, twice the aboveground carbon relative to earlier phases. Woody encroachment might be more successfully managed and balanced with carbon storage goals by identifying priority areas in earlier phases of encroachment where intensive treatments are most effective.
Ershadi, Ali
2013-05-01
The influence of uncertainty in land surface temperature, air temperature, and wind speed on the estimation of sensible heat flux is analyzed using a Bayesian inference technique applied to the Surface Energy Balance System (SEBS) model. The Bayesian approach allows for an explicit quantification of the uncertainties in input variables: a source of error generally ignored in surface heat flux estimation. An application using field measurements from the Soil Moisture Experiment 2002 is presented. The spatial variability of selected input meteorological variables in a multitower site is used to formulate the prior estimates for the sampling uncertainties, and the likelihood function is formulated assuming Gaussian errors in the SEBS model. Land surface temperature, air temperature, and wind speed were estimated by sampling their posterior distribution using a Markov chain Monte Carlo algorithm. Results verify that Bayesian-inferred air temperature and wind speed were generally consistent with those observed at the towers, suggesting that local observations of these variables were spatially representative. Uncertainties in the land surface temperature appear to have the strongest effect on the estimated sensible heat flux, with Bayesian-inferred values differing by up to ±5°C from the observed data. These differences suggest that the footprint of the in situ measured land surface temperature is not representative of the larger-scale variability. As such, these measurements should be used with caution in the calculation of surface heat fluxes and highlight the importance of capturing the spatial variability in the land surface temperature: particularly, for remote sensing retrieval algorithms that use this variable for flux estimation.
International Nuclear Information System (INIS)
Andres, T.H.
2002-05-01
This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)
Energy Technology Data Exchange (ETDEWEB)
Andres, T.H
2002-05-01
This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)
DEFF Research Database (Denmark)
Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo
2005-01-01
This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...
Ametova, Evelina; Ferrucci, Massimiliano; Chilingaryan, Suren; Dewulf, Wim
2018-06-01
The recent emergence of advanced manufacturing techniques such as additive manufacturing and an increased demand on the integrity of components have motivated research on the application of x-ray computed tomography (CT) for dimensional quality control. While CT has shown significant empirical potential for this purpose, there is a need for metrological research to accelerate the acceptance of CT as a measuring instrument. The accuracy in CT-based measurements is vulnerable to the instrument geometrical configuration during data acquisition, namely the relative position and orientation of x-ray source, rotation stage, and detector. Consistency between the actual instrument geometry and the corresponding parameters used in the reconstruction algorithm is critical. Currently available procedures provide users with only estimates of geometrical parameters. Quantification and propagation of uncertainty in the measured geometrical parameters must be considered to provide a complete uncertainty analysis and to establish confidence intervals for CT dimensional measurements. In this paper, we propose a computationally inexpensive model to approximate the influence of errors in CT geometrical parameters on dimensional measurement results. We use surface points extracted from a computer-aided design (CAD) model to model discrepancies in the radiographic image coordinates assigned to the projected edges between an aligned system and a system with misalignments. The efficacy of the proposed method was confirmed on simulated and experimental data in the presence of various geometrical uncertainty contributors.
Directory of Open Access Journals (Sweden)
Jaewook Lee
2015-06-01
Full Text Available This paper presents an efficient method for estimating capacity-fade uncertainty in lithium-ion batteries (LIBs in order to integrate them into the battery-management system (BMS of electric vehicles, which requires simple and inexpensive computation for successful application. The study uses the pseudo-two-dimensional (P2D electrochemical model, which simulates the battery state by solving a system of coupled nonlinear partial differential equations (PDEs. The model parameters that are responsible for electrode degradation are identified and estimated, based on battery data obtained from the charge cycles. The Bayesian approach, with parameters estimated by probability distributions, is employed to account for uncertainties arising in the model and battery data. The Markov Chain Monte Carlo (MCMC technique is used to draw samples from the distributions. The complex computations that solve a PDE system for each sample are avoided by employing a polynomial-based metamodel. As a result, the computational cost is reduced from 5.5 h to a few seconds, enabling the integration of the method into the vehicle BMS. Using this approach, the conservative bound of capacity fade can be determined for the vehicle in service, which represents the safety margin reflecting the uncertainty.
Importance of tree basic density in biomass estimation and associated uncertainties
DEFF Research Database (Denmark)
Njana, Marco Andrew; Meilby, Henrik; Eid, Tron
2016-01-01
Key message Aboveground and belowground tree basic densities varied between and within the three mangrove species. If appropriately determined and applied, basic density may be useful in estimation of tree biomass. Predictive accuracy of the common (i.e. multi-species) models including aboveground...... of sustainable forest management, conservation and enhancement of carbon stocks (REDD+) initiatives offer an opportunity for sustainable management of forests including mangroves. In carbon accounting for REDD+, it is required that carbon estimates prepared for monitoring reporting and verification schemes...... and examine uncertainties in estimation of tree biomass using indirect methods. Methods This study focused on three dominant mangrove species (Avicennia marina (Forssk.) Vierh, Sonneratia alba J. Smith and Rhizophora mucronata Lam.) in Tanzania. A total of 120 trees were destructively sampled for aboveground...
Experimental Realization of Popper's Experiment: Violation of Uncertainty Principle?
Kim, Yoon-Ho; Yu, Rong; Shih, Yanhua
An entangled pair of photon 1 and 2 are emitted in opposite directions along the positive and negative x-axis. A narrow slit is placed in the path of photon 1 which provides precise knowledge about its position along the y-axis and because of the quantum entanglement this in turn provides precise knowledge of the position y of its twin, photon 2. Does photon 2 experience a greater uncertainty in its momentum, i.e., a greater Δpy, due to the precise knowledge of its position y? This is the historical thought experiment of Sir Karl Popper which was aimed to undermine the Copenhagen interpretation in favor of a realistic viewpoint of quantum mechanics. Thispaper reports an experimental realization of the Popper's experiment. One may not agree with Popper's position on quantum mechanics; however, it calls for a correct understanding and interpretation of the experimental results.
Inferring uncertainty from interval estimates: Effects of alpha level and numeracy
Directory of Open Access Journals (Sweden)
Luke F. Rinne
2013-05-01
Full Text Available Interval estimates are commonly used to descriptively communicate the degree of uncertainty in numerical values. Conventionally, low alpha levels (e.g., .05 ensure a high probability of capturing the target value between interval endpoints. Here, we test whether alpha levels and individual differences in numeracy influence distributional inferences. In the reported experiment, participants received prediction intervals for fictitious towns' annual rainfall totals (assuming approximately normal distributions. Then, participants estimated probabilities that future totals would be captured within varying margins about the mean, indicating the approximate shapes of their inferred probability distributions. Results showed that low alpha levels (vs. moderate levels; e.g., .25 more frequently led to inferences of over-dispersed approximately normal distributions or approximately uniform distributions, reducing estimate accuracy. Highly numerate participants made more accurate estimates overall, but were more prone to inferring approximately uniform distributions. These findings have important implications for presenting interval estimates to various audiences.
Ndambiri, H.; Brouwer, R.; Mungatana, E.
2016-01-01
The effect of preference uncertainty on estimated willingness to pay (WTP) is examined using identical payment cards and alternative uncertainty elicitation procedures in three split samples, focusing on air quality improvement in Nairobi. The effect of the stochastic payment card (SPC) and
Ciurean, R. L.; Glade, T.
2012-04-01
Decision under uncertainty is a constant of everyday life and an important component of risk management and governance. Recently, experts have emphasized the importance of quantifying uncertainty in all phases of landslide risk analysis. Due to its multi-dimensional and dynamic nature, (physical) vulnerability is inherently complex and the "degree of loss" estimates imprecise and to some extent even subjective. Uncertainty analysis introduces quantitative modeling approaches that allow for a more explicitly objective output, improving the risk management process as well as enhancing communication between various stakeholders for better risk governance. This study presents a review of concepts for uncertainty analysis in vulnerability of elements at risk to landslides. Different semi-quantitative and quantitative methods are compared based on their feasibility in real-world situations, hazard dependency, process stage in vulnerability assessment (i.e. input data, model, output), and applicability within an integrated landslide hazard and risk framework. The resulted observations will help to identify current gaps and future needs in vulnerability assessment, including estimation of uncertainty propagation, transferability of the methods, development of visualization tools, but also address basic questions like what is uncertainty and how uncertainty can be quantified or treated in a reliable and reproducible way.
Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty
Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon
2006-01-01
Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions
Energy Technology Data Exchange (ETDEWEB)
Lee, Kyung Hoon; Park, Ho Jin; Lee, Chung Chan; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The purpose of this paper is to study the effect on output parameters in the lattice physics calculation due to the last input uncertainty such as manufacturing deviations from nominal value for material composition and geometric dimensions. In a nuclear design and analysis, the lattice physics calculations are usually employed to generate lattice parameters for the nodal core simulation and pin power reconstruction. These lattice parameters which consist of homogenized few-group cross-sections, assembly discontinuity factors, and form-functions can be affected by input uncertainties which arise from three different sources: 1) multi-group cross-section uncertainties, 2) the uncertainties associated with methods and modeling approximations utilized in lattice physics codes, and 3) fuel/assembly manufacturing uncertainties. In this paper, data provided by the light water reactor (LWR) uncertainty analysis in modeling (UAM) benchmark has been used as the manufacturing uncertainties. First, the effect of each input parameter has been investigated through sensitivity calculations at the fuel assembly level. Then, uncertainty in prediction of peaking factor due to the most sensitive input parameter has been estimated using the statistical sampling method, often called the brute force method. For our analysis, the two-dimensional transport lattice code DeCART2D and its ENDF/B-VII.1 based 47-group library were used to perform the lattice physics calculation. Sensitivity calculations have been performed in order to study the influence of manufacturing tolerances on the lattice parameters. The manufacturing tolerance that has the largest influence on the k-inf is the fuel density. The second most sensitive parameter is the outer clad diameter.
Uncertainties in the proton lifetime
International Nuclear Information System (INIS)
Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.
1980-04-01
We discuss the masses of the leptoquark bosons m(x) and the proton lifetime in Grand Unified Theories based principally on SU(5). It is emphasized that estimates of m(x) based on the QCD coupling and the fine structure constant are probably more reliable than those using the experimental value of sin 2 theta(w). Uncertainties in the QCD Λ parameter and the correct value of α are discussed. We estimate higher order effects on the evolution of coupling constants in a momentum space renormalization scheme. It is shown that increasing the number of generations of fermions beyond the minimal three increases m(X) by almost a factor of 2 per generation. Additional uncertainties exist for each generation of technifermions that may exist. We discuss and discount the possibility that proton decay could be 'Cabibbo-rotated' away, and a speculation that Lorentz invariance may be violated in proton decay at a detectable level. We estimate that in the absence of any substantial new physics beyond that in the minimal SU(5) model the proton lifetimes is 8 x 10 30+-2 years
Uncertainty of Volatility Estimates from Heston Greeks
Directory of Open Access Journals (Sweden)
Oliver Pfante
2018-01-01
Full Text Available Volatility is a widely recognized measure of market risk. As volatility is not observed it has to be estimated from market prices, i.e., as the implied volatility from option prices. The volatility index VIX making volatility a tradeable asset in its own right is computed from near- and next-term put and call options on the S&P 500 with more than 23 days and less than 37 days to expiration and non-vanishing bid. In the present paper we quantify the information content of the constituents of the VIX about the volatility of the S&P 500 in terms of the Fisher information matrix. Assuming that observed option prices are centered on the theoretical price provided by Heston's model perturbed by additive Gaussian noise we relate their Fisher information matrix to the Greeks in the Heston model. We find that the prices of options contained in the VIX basket allow for reliable estimates of the volatility of the S&P 500 with negligible uncertainty as long as volatility is large enough. Interestingly, if volatility drops below a critical value of roughly 3%, inferences from option prices become imprecise because Vega, the derivative of a European option w.r.t. volatility, and thereby the Fisher information nearly vanishes.
Directory of Open Access Journals (Sweden)
Adamczak Stanisław
2014-08-01
Full Text Available The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.
Uncertainty and conservatism in safety evaluations based on a BEPU approach
International Nuclear Information System (INIS)
Yamaguchi, A.; Mizokami, S.; Kudo, Y.; Hotta, A.
2009-01-01
Atomic Energy Society of Japan has published 'Standard Method for Safety Evaluation using Best Estimate Code Based on Uncertainty and Scaling Analyses with Statistical Approach' to be applied to accidents and AOOs in the safety evaluation of LWRs. In this method, hereafter named as the AESJ-SSE (Statistical Safety Evaluation) method, identification and quantification of uncertainties will be performed and then a combination of the best estimate code and the evaluation of uncertainty propagation will be performed. Uncertainties are categorized into bias and variability. In general, bias is related to our state-of-knowledge on uncertainty objects (modeling, scaling, input data, etc.) while variability reflects stochastic features involved in these objects. Considering many kinds of uncertainties in thermal-hydraulics models and experimental databases show variabilities that will be strongly influenced by our state of knowledge, it seems reasonable that these variabilities are also related to state-of-knowledge. The design basis events (DBEs) that are employed for licensing analyses form a main part of the given or prior conservatism. The regulatory acceptance criterion is also regarded as the prior conservatism. In addition to these prior conservatisms, a certain amount of the posterior conservatism is added with maintaining intimate relationships with state-of-knowledge. In the AESJ-SSE method, this posterior conservatism can be incorporated into the safety evaluation in a combination of the following three ways, (1) broadening ranges of variability relevant to uncertainty objects, (2) employing more disadvantageous biases relevant to uncertainty objects and (3) adding an extra bias to the safety evaluation results. Knowing implemented quantitative bases of uncertainties and conservatism, the AESJ-SSE method provides a useful ground for rational decision-making. In order to seek for 'the best estimation' as well as reasonably setting the analytical margin, a degree
Uncertainty and validation. Effect of model complexity on uncertainty estimates
International Nuclear Information System (INIS)
Elert, M.
1996-09-01
In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root
Directory of Open Access Journals (Sweden)
Kelly C. Chang
2017-11-01
Full Text Available The Comprehensive in vitro Proarrhythmia Assay (CiPA is a global initiative intended to improve drug proarrhythmia risk assessment using a new paradigm of mechanistic assays. Under the CiPA paradigm, the relative risk of drug-induced Torsade de Pointes (TdP is assessed using an in silico model of the human ventricular action potential (AP that integrates in vitro pharmacology data from multiple ion channels. Thus, modeling predictions of cardiac risk liability will depend critically on the variability in pharmacology data, and uncertainty quantification (UQ must comprise an essential component of the in silico assay. This study explores UQ methods that may be incorporated into the CiPA framework. Recently, we proposed a promising in silico TdP risk metric (qNet, which is derived from AP simulations and allows separation of a set of CiPA training compounds into Low, Intermediate, and High TdP risk categories. The purpose of this study was to use UQ to evaluate the robustness of TdP risk separation by qNet. Uncertainty in the model parameters used to describe drug binding and ionic current block was estimated using the non-parametric bootstrap method and a Bayesian inference approach. Uncertainty was then propagated through AP simulations to quantify uncertainty in qNet for each drug. UQ revealed lower uncertainty and more accurate TdP risk stratification by qNet when simulations were run at concentrations below 5× the maximum therapeutic exposure (Cmax. However, when drug effects were extrapolated above 10× Cmax, UQ showed that qNet could no longer clearly separate drugs by TdP risk. This was because for most of the pharmacology data, the amount of current block measured was <60%, preventing reliable estimation of IC50-values. The results of this study demonstrate that the accuracy of TdP risk prediction depends both on the intrinsic variability in ion channel pharmacology data as well as on experimental design considerations that preclude an
Validation uncertainty of MATRA code for subchannel void distributions
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dae-Hyun; Kim, S. J.; Kwon, H.; Seo, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
To extend code capability to the whole core subchannel analysis, pre-conditioned Krylov matrix solvers such as BiCGSTAB and GMRES are implemented in MATRA code as well as parallel computing algorithms using MPI and OPENMP. It is coded by fortran 90, and has some user friendly features such as graphic user interface. MATRA code was approved by Korean regulation body for design calculation of integral-type PWR named SMART. The major role subchannel code is to evaluate core thermal margin through the hot channel analysis and uncertainty evaluation for CHF predictions. In addition, it is potentially used for the best estimation of core thermal hydraulic field by incorporating into multiphysics and/or multi-scale code systems. In this study we examined a validation process for the subchannel code MATRA specifically in the prediction of subchannel void distributions. The primary objective of validation is to estimate a range within which the simulation modeling error lies. The experimental data for subchannel void distributions at steady state and transient conditions was provided on the framework of OECD/NEA UAM benchmark program. The validation uncertainty of MATRA code was evaluated for a specific experimental condition by comparing the simulation result and experimental data. A validation process should be preceded by code and solution verification. However, quantification of verification uncertainty was not addressed in this study. The validation uncertainty of the MATRA code for predicting subchannel void distribution was evaluated for a single data point of void fraction measurement at a 5x5 PWR test bundle on the framework of OECD UAM benchmark program. The validation standard uncertainties were evaluated as 4.2%, 3.9%, and 2.8% with the Monte-Carlo approach at the axial levels of 2216 mm, 2669 mm, and 3177 mm, respectively. The sensitivity coefficient approach revealed similar results of uncertainties but did not account for the nonlinear effects on the
International Nuclear Information System (INIS)
Thomas, R.E.
1982-03-01
An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software
The role of uncertainty analysis in dose reconstruction and risk assessment
International Nuclear Information System (INIS)
Hoffman, F.O.; Simon, S.L.; Thiessen. K.M.
1996-01-01
Dose reconstruction and risk assessment rely heavily on the use of mathematical models to extrapolate information beyond the realm of direct observation. Because models are merely approximations of real systems, their predictions are inherently uncertain. As a result, full disclosure of uncertainty in dose and risk estimates is essential to achieve scientific credibility and to build public trust. The need for formal analysis of uncertainty in model predictions was presented during the nineteenth annual meeting of the NCRP. At that time, quantitative uncertainty analysis was considered a relatively new and difficult subject practiced by only a few investigators. Today, uncertainty analysis has become synonymous with the assessment process itself. When an uncertainty analysis is used iteratively within the assessment process, it can guide experimental research to refine dose and risk estimates, deferring potentially high cost or high consequence decisions until uncertainty is either acceptable or irreducible. Uncertainty analysis is now mandated for all ongoing dose reconstruction projects within the United States, a fact that distinguishes dose reconstruction from other types of exposure and risk assessments. 64 refs., 6 figs., 1 tab
Reservoir capacity estimates in shale plays based on experimental adsorption data
Ngo, Tan
from different measurement techniques using representative fluids (such as CH4 and CO2) at elevated pressures, and the adsorbed density can range anywhere between the liquid and the solid state of the adsorbate. Whether these discrepancies are associated with the inherent heterogeneity of mudrocks and/or with poor data quality requires more experiments under well-controlled conditions. Nevertheless, it has been found in this study that methane GIP estimates can vary between 10-45% and 10-30%, respectively, depending on whether the free or the total amount of gas is considered. Accordingly, CO2 storage estimates range between 30-90% and 15-50%, due to the larger adsorption capacity and gas density at similar pressure and temperature conditions. A manometric system has been designed and built that allows measuring the adsorption of supercritical fluids in microporous materials. Preliminary adsorption tests have been performed using a microporous 13X zeolite and CO 2 as an adsorbing gas at a temperature of 25oC and 35oC and at pressures up to 500 psi. Under these conditions, adsorption is quantified with a precision of +/- 3%. However, relative differences up to 15-20% have been observed with respect to data published in the literature on the same adsorbent and at similar experimental conditions. While it cannot be fully explained with uncertainty analysis, this discrepancy can be reduced by improving experiment practice, thus including the application of a higher adsorbent's regeneration temperature, of longer equilibrium times and of a careful flushing of the system between the various experimental steps. Based on the results on 13X zeolite, virtual tests have been conducted to predict the performance of the manometric system to measure adsorption on less adsorbing materials, such as mudrocks. The results show that uncertainties in the estimated adsorbed amount are much more significant in shale material and they increase with increasing pressure. In fact, relative
Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances
Energy Technology Data Exchange (ETDEWEB)
Sigeti, David Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, D. Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-18
Algorithms and software have been developed for producing variations in plutonium-239 neutron cross sections based on experimental uncertainties and covariances. The varied cross-section sets may be produced as random samples from the multi-variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin-Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances do not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.
DEFF Research Database (Denmark)
Frutiger, Jerome; Marcarie, Camille; Abildskov, Jens
2016-01-01
regression and outlier treatment have been applied to achieve high accuracy. Furthermore, linear error propagation based on covariance matrix of estimated parameters was performed. Therefore, every estimated property value of the flammability-related properties is reported together with its corresponding 95......%-confidence interval of the prediction. Compared to existing models the developed ones have a higher accuracy, are simple to apply and provide uncertainty information on the calculated prediction. The average relative error and correlation coefficient are 11.5% and 0.99 for LFL, 15.9% and 0.91 for UFL, 2...
Maboudi Afkham, Heydar; Qiu, Xuanbin; The, Matthew; Käll, Lukas
2017-02-15
Liquid chromatography is frequently used as a means to reduce the complexity of peptide-mixtures in shotgun proteomics. For such systems, the time when a peptide is released from a chromatography column and registered in the mass spectrometer is referred to as the peptide's retention time . Using heuristics or machine learning techniques, previous studies have demonstrated that it is possible to predict the retention time of a peptide from its amino acid sequence. In this paper, we are applying Gaussian Process Regression to the feature representation of a previously described predictor E lude . Using this framework, we demonstrate that it is possible to estimate the uncertainty of the prediction made by the model. Here we show how this uncertainty relates to the actual error of the prediction. In our experiments, we observe a strong correlation between the estimated uncertainty provided by Gaussian Process Regression and the actual prediction error. This relation provides us with new means for assessment of the predictions. We demonstrate how a subset of the peptides can be selected with lower prediction error compared to the whole set. We also demonstrate how such predicted standard deviations can be used for designing adaptive windowing strategies. lukas.kall@scilifelab.se. Our software and the data used in our experiments is publicly available and can be downloaded from https://github.com/statisticalbiotechnology/GPTime . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Estimation of uncertainty in TLD calibration
International Nuclear Information System (INIS)
Hasabelrasoul, H. A.
2013-07-01
In this study thermoluminescence dosimeter TLD was use of individual control devices to make sure the quality assurance and quality control in individual monitoring. The uncertainty measured in reader calibration coefficients for tow reader and uncertainty in radiation dose after irradiate in SSDL laboratory. Fifty sample was selected for the study was placed in the oven at a temperature of 400 for an hour to get zero or background and took zero count by or background and took zero count by reader (1) and reader (2) and then irradiate in SSDL by cesium-137 at a dose of 5 mGy and laid back in the oven at degrees 100 and degrees 10 minutes, to 10 chips for calibration and readout count by reader one and reader two. The RCF was found for each reader above 1.47 and 1.11, respectively, and found the uncertainty RCF was found for each reader above 1.47 and 1.11, respectively, and found the uncertainly RCF 0.430629 and 0.431973. Radiation dose was measured for fifty samples irradiate to dose of 5 mGy and read the count by reader 1 and reader 2 the uncertainty was found for each reader 0.490446 and 0.587602.(Author)
Uncertainties in neural network model based on carbon dioxide concentration for occupancy estimation
Energy Technology Data Exchange (ETDEWEB)
Alam, Azimil Gani; Rahman, Haolia; Kim, Jung-Kyung; Han, Hwataik [Kookmin University, Seoul (Korea, Republic of)
2017-05-15
Demand control ventilation is employed to save energy by adjusting airflow rate according to the ventilation load of a building. This paper investigates a method for occupancy estimation by using a dynamic neural network model based on carbon dioxide concentration in an occupied zone. The method can be applied to most commercial and residential buildings where human effluents to be ventilated. An indoor simulation program CONTAMW is used to generate indoor CO{sub 2} data corresponding to various occupancy schedules and airflow patterns to train neural network models. Coefficients of variation are obtained depending on the complexities of the physical parameters as well as the system parameters of neural networks, such as the numbers of hidden neurons and tapped delay lines. We intend to identify the uncertainties caused by the model parameters themselves, by excluding uncertainties in input data inherent in measurement. Our results show estimation accuracy is highly influenced by the frequency of occupancy variation but not significantly influenced by fluctuation in the airflow rate. Furthermore, we discuss the applicability and validity of the present method based on passive environmental conditions for estimating occupancy in a room from the viewpoint of demand control ventilation applications.
A real-time assessment of measurement uncertainty in the experimental characterization of sprays
International Nuclear Information System (INIS)
Panão, M R O; Moreira, A L N
2008-01-01
This work addresses the estimation of the measurement uncertainty of discrete probability distributions used in the characterization of sprays. A real-time assessment of this measurement uncertainty is further investigated, particularly concerning the informative quality of the measured distribution and the influence of acquiring additional information on the knowledge retrieved from statistical analysis. The informative quality is associated with the entropy concept as understood in information theory (Shannon entropy), normalized by the entropy of the most informative experiment. A new empirical correlation is derived between the error accuracy of a discrete cumulative probability distribution and the normalized Shannon entropy. The results include case studies using: (i) spray impingement measurements to study the applicability of the real-time assessment of measurement uncertainty, and (ii) the simulation of discrete probability distributions of unknown shape or function to test the applicability of the new correlation
Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv
2018-04-01
High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.
Dosso, S. E.; Molnar, S.; Cassidy, J.
2010-12-01
Bayesian inversion of microtremor array dispersion data is applied, with evaluation of data errors and model parameterization, to produce the most-probable shear-wave velocity (VS) profile together with quantitative uncertainty estimates. Generally, the most important property characterizing earthquake site response is the subsurface VS structure. The microtremor array method determines phase velocity dispersion of Rayleigh surface waves from multi-instrument recordings of urban noise. Inversion of dispersion curves for VS structure is a non-unique and nonlinear problem such that meaningful evaluation of confidence intervals is required. Quantitative uncertainty estimation requires not only a nonlinear inversion approach that samples models proportional to their probability, but also rigorous estimation of the data error statistics and an appropriate model parameterization. A Bayesian formulation represents the solution of the inverse problem in terms of the posterior probability density (PPD) of the geophysical model parameters. Markov-chain Monte Carlo methods are used with an efficient implementation of Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute parameter uncertainties and inter-relationships. Nonparametric estimation of a data error covariance matrix from residual analysis is applied with rigorous a posteriori statistical tests to validate the covariance estimate and the assumption of a Gaussian error distribution. The most appropriate model parameterization is determined using the Bayesian information criterion (BIC), which provides the simplest model consistent with the resolving power of the data. Parameter uncertainties are found to be under-estimated when data error correlations are neglected and when compressional-wave velocity and/or density (nuisance) parameters are fixed in the inversion. Bayesian inversion of microtremor array data is applied at two sites in British Columbia, the area of highest seismic risk in
International Nuclear Information System (INIS)
Sunardi; Samin Prihatin
2010-01-01
Validation and uncertainty estimation of Fast Neutron Activation Analysis (FNAA) method for Cu, Fe, Al, Si elements in sediment samples has been conduced. The aim of the research is to confirm whether FNAA method is still matches to ISO/lEC 17025-2005 standard. The research covered the verification, performance, validation of FNM and uncertainty estimation. Standard of SRM 8704 and sediments were weighted for certain weight and irradiated with 14 MeV fast neutron and then counted using gamma spectrometry. The result of validation method for Cu, Fe, Al, Si element showed that the accuracy were in the range of 95.89-98.68 %, while the precision were in the range 1.13-2.29 %. The result of uncertainty estimation for Cu, Fe, Al, and Si were 2.67, 1.46, 1.71 and 1.20 % respectively. From this data, it can be concluded that the FNM method is still reliable and valid for element contents analysis in samples, because the accuracy is up to 95 % and the precision is under 5 %, while the uncertainty are relatively small and suitable for the range 95 % level of confidence where the uncertainty maximum is 5 %. (author)
International Nuclear Information System (INIS)
Cheali, Peam; Gernaey, Krist V.; Sin, Gürkan
2015-01-01
Capital investment, next to the product demand, sales, and production costs, is one of the key metrics commonly used for project evaluation and feasibility assessment. Estimating the investment costs of a new product/process alternative during early-stage design is a challenging task, which is especially relevant in biorefinery research where information about new technologies and experience with new technologies is limited. A systematic methodology for uncertainty analysis of cost data is proposed that employs: (a) bootstrapping as a regression method when cost data are available; and, (b) the Monte Carlo technique as an error propagation method based on expert input when cost data are not available. Four well-known models for early-stage cost estimation are reviewed and analyzed using the methodology. The significance of uncertainties of cost data for early-stage process design is highlighted using the synthesis and design of a biorefinery as a case study. The impact of uncertainties in cost estimation on the identification of optimal processing paths is indeed found to be profound. To tackle this challenge, a comprehensive techno-economic risk analysis framework is presented to enable robust decision-making under uncertainties. One of the results using order-of-magnitude estimates shows that the production of diethyl ether and 1,3-butadiene are the most promising with the lowest economic risks (among the alternatives considered) of 0.24 MM$/a and 4.6 MM$/a, respectively.
Energy Technology Data Exchange (ETDEWEB)
Cheali, Peam; Gernaey, Krist V.; Sin, Gürkan, E-mail: gsi@kt.dtu.dk [Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby (Denmark)
2015-02-06
Capital investment, next to the product demand, sales, and production costs, is one of the key metrics commonly used for project evaluation and feasibility assessment. Estimating the investment costs of a new product/process alternative during early-stage design is a challenging task, which is especially relevant in biorefinery research where information about new technologies and experience with new technologies is limited. A systematic methodology for uncertainty analysis of cost data is proposed that employs: (a) bootstrapping as a regression method when cost data are available; and, (b) the Monte Carlo technique as an error propagation method based on expert input when cost data are not available. Four well-known models for early-stage cost estimation are reviewed and analyzed using the methodology. The significance of uncertainties of cost data for early-stage process design is highlighted using the synthesis and design of a biorefinery as a case study. The impact of uncertainties in cost estimation on the identification of optimal processing paths is indeed found to be profound. To tackle this challenge, a comprehensive techno-economic risk analysis framework is presented to enable robust decision-making under uncertainties. One of the results using order-of-magnitude estimates shows that the production of diethyl ether and 1,3-butadiene are the most promising with the lowest economic risks (among the alternatives considered) of 0.24 MM$/a and 4.6 MM$/a, respectively.
International Nuclear Information System (INIS)
Sathyabama, N.
2014-01-01
It is now widely recognized that, when all of the known or suspected components of errors have been evaluated and corrected, there still remains an uncertainty, that is, a doubt about how well the result of the measurement represents the value of the quantity being measured. Evaluation of measurement data - Guide to the expression of Uncertainty in Measurement (GUM) is a guidance document, the purpose of which is to promote full information on how uncertainty statements are arrived at and to provide a basis for the international comparison of measurement results. In this paper, uncertainty estimations following GUM guidelines have been made for the measured values of online thoron concentrations using Lucas scintillation cell to prove that the correction for disequilibrium between 220 Rn and 216 Po is significant in online 220 Rn measurements
Procedure for statistical analysis of one-parameter discrepant experimental data
International Nuclear Information System (INIS)
Badikov, Sergey A.; Chechev, Valery P.
2012-01-01
A new, Mandel–Paule-type procedure for statistical processing of one-parameter discrepant experimental data is described. The procedure enables one to estimate a contribution of unrecognized experimental errors into the total experimental uncertainty as well as to include it in analysis. A definition of discrepant experimental data for an arbitrary number of measurements is introduced as an accompanying result. In the case of negligible unrecognized experimental errors, the procedure simply reduces to the calculation of the weighted average and its internal uncertainty. The procedure was applied to the statistical analysis of half-life experimental data; Mean half-lives for 20 actinides were calculated and results were compared to the ENSDF and DDEP evaluations. On the whole, the calculated half-lives are consistent with the ENSDF and DDEP evaluations. However, the uncertainties calculated in this work essentially exceed the ENSDF and DDEP evaluations for discrepant experimental data. This effect can be explained by adequately taking into account unrecognized experimental errors. - Highlights: ► A new statistical procedure for processing one-parametric discrepant experimental data has been presented. ► Procedure estimates a contribution of unrecognized errors in the total experimental uncertainty. ► Procedure was applied for processing half-life discrepant experimental data. ► Results of the calculations are compared to the ENSDF and DDEP evaluations.
Energy Technology Data Exchange (ETDEWEB)
Freixa, Jordi, E-mail: jordi.freixa-terradas@upc.edu; Alfonso, Elsa de, E-mail: elsa.de.alfonso@upc.edu; Reventós, Francesc, E-mail: francesc.reventos@upc.edu
2016-08-15
Highlights: • Uncertainty of physical models are a key issue in Best estimate plus uncertainty analysis. • Estimation of uncertainties of physical models of thermal hydraulics system codes. • Comparison of CIRCÉ and FFTBM methodologies. • Simulation of reflood experiments in order to evaluate uncertainty of physical models related to the reflood scenario. - Abstract: The increasing importance of Best-Estimate Plus Uncertainty (BEPU) analyses in nuclear safety and licensing processes have lead to several international activities. The latest findings highlighted the uncertainties of physical models as one of the most controversial aspects of BEPU. This type of uncertainties is an important contributor to the total uncertainty of NPP BE calculations. Due to the complexity of estimating this uncertainty, it is often assessed solely by engineering judgment. The present study comprises a comparison of two different state-of-the-art methodologies CIRCÉ and IPREM (FFTBM) capable of quantifying the uncertainty of physical models. Similarities and differences of their results are discussed through the observation of probability distribution functions and envelope calculations. In particular, the analyzed scenario is core reflood. Experimental data from the FEBA and PERICLES test facilities is employed while the thermal hydraulic simulations are carried out with RELAP5/mod3.3. This work is undertaken under the framework of PREMIUM (Post-BEMUSE Reflood Model Input Uncertainty Methods) benchmark.
Peña, Carlos; Espeland, Marianne
2015-01-01
The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution. PMID:25830910
Directory of Open Access Journals (Sweden)
Carlos Peña
Full Text Available The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.
Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations
French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.
2015-12-01
Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.
Estimation of uncertainty in tracer gas measurement of air change rates.
Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio
2010-12-01
Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements.
Directory of Open Access Journals (Sweden)
Douglas Domingues Bueno
2008-01-01
Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.
Developing first time-series of land surface temperature from AATSR with uncertainty estimates
Ghent, Darren; Remedios, John
2013-04-01
Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3
Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.
International Nuclear Information System (INIS)
Sousa, C.H.S.; Teixeira, G.J.; Peixoto, J.G.P.
2014-01-01
Activimeters should undergo performance for verifying the functionality tests as technical recommendations. This study estimated the associated expanded uncertainties uncorrelated to the results conducted on three instruments, two detectors with ionization chamber and one with Geiger Mueller tubes. For this we used a standard reference source and screened certified by the National Institute of Technology and Standardization. The methodology of this research was based on the protocols listed in the technical document of the International Atomic Energy Agency. Later two quantities were correlated presenting real correlation and improving expanded uncertainty 3.7%. (author)
DEFF Research Database (Denmark)
Hukkerikar, Amol; Kalakul, Sawitree; Sarup, Bent
2012-01-01
The aim of this work is to develop group-3 contribution+ (GC+)method (combined group-contribution (GC) method and atom connectivity index (CI)) based 15 property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated...... property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality......, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22...
International Nuclear Information System (INIS)
Kaul, Dean C.; Egbert, Stephen D.; Woolson, William A.
2005-01-01
In order to avoid the pitfalls that so discredited DS86 and its uncertainty estimates, and to provide DS02 uncertainties that are both defensible and credible, this report not only presents the ensemble uncertainties assembled from uncertainties in individual computational elements and radiation dose components but also describes how these relate to comparisons between observed and computed quantities at critical intervals in the computational process. These comparisons include those between observed and calculated radiation free-field components, where observations include thermal- and fast-neutron activation and gamma-ray thermoluminescence, which are relevant to the estimated systematic uncertainty for DS02. The comparisons also include those between calculated and observed survivor shielding, where the observations consist of biodosimetric measurements for individual survivors, which are relevant to the estimated random uncertainty for DS02. (J.P.N.)
Uncertainty estimation with bias-correction for flow series based on rating curve
Shao, Quanxi; Lerat, Julien; Podger, Geoff; Dutta, Dushmanta
2014-03-01
Streamflow discharge constitutes one of the fundamental data required to perform water balance studies and develop hydrological models. A rating curve, designed based on a series of concurrent stage and discharge measurements at a gauging location, provides a way to generate complete discharge time series with a reasonable quality if sufficient measurement points are available. However, the associated uncertainty is frequently not available even though it has a significant impact on hydrological modelling. In this paper, we identify the discrepancy of the hydrographers' rating curves used to derive the historical discharge data series and proposed a modification by bias correction which is also in the form of power function as the traditional rating curve. In order to obtain the uncertainty estimation, we propose a further both-side Box-Cox transformation to stabilize the regression residuals as close to the normal distribution as possible, so that a proper uncertainty can be attached for the whole discharge series in the ensemble generation. We demonstrate the proposed method by applying it to the gauging stations in the Flinders and Gilbert rivers in north-west Queensland, Australia.
Balancing uncertainty of context in ERP project estimation: an approach and a case study
Daneva, Maia
2010-01-01
The increasing demand for Enterprise Resource Planning (ERP) solutions as well as the high rates of troubled ERP implementations and outright cancellations calls for developing effort estimation practices to systematically deal with uncertainties in ERP projects. This paper describes an approach -
Lau, William K. M. (Technical Monitor); Bell, Thomas L.; Steiner, Matthias; Zhang, Yu; Wood, Eric F.
2002-01-01
The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multi-year radar data set covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100 km, 200 km, and 500 km space domains, 1 day, 5 day, and 30 day rainfall accumulations, and regular sampling time intervals of 1 h, 3 h, 6 h, 8 h, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and non-parametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.
2015-04-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere
International Nuclear Information System (INIS)
Byung Ryul Jung; Ho Cheol Jang; Byung Jin Lee; Se Jin Baik; Woo Hyun Jang
2005-01-01
Most of Pressurized Water Reactors (PWRs) utilize the venturi meters (VMs) to measure the feedwater (FW) flow rate to the steam generator in the calorimetric measurement, which is used in the reactor thermal power (RTP) estimation. However, measurement drifts have been experienced due to some anomalies on the venturi meter (generally called the venturi meter fouling). The VM's fouling tends to increase the measured pressure drop across the meter, which results in indication of increased feedwater flow rate. Finally, the reactor thermal power is overestimated and the actual reactor power is to be reduced to remain within the regulatory limits. To overcome this VM's fouling problem, the Ultrasonic Flow Meter (UFM) has recently been gaining attention in the measurement of the feedwater flow rate. This paper presents the applicability of a UFM based feedwater flow rate in the estimation of reactor thermal power uncertainty. The FW and RTP uncertainties are compared in terms of sensitivities between the VM- and UFM-based feedwater flow rates. Data from typical Optimized Power Reactor 1000 (OPR1000) plants are used to estimate the uncertainty. (authors)
UNCERTAINTY ON RADIATION DOSES ESTIMATED BY BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS.
Ainsbury, Elizabeth A; Samaga, Daniel; Della Monaca, Sara; Marrale, Maurizio; Bassinet, Celine; Burbidge, Christopher I; Correcher, Virgilio; Discher, Michael; Eakins, Jon; Fattibene, Paola; Güçlü, Inci; Higueras, Manuel; Lund, Eva; Maltar-Strmecki, Nadica; McKeever, Stephen; Rääf, Christopher L; Sholom, Sergey; Veronese, Ivan; Wieser, Albrecht; Woda, Clemens; Trompier, Francois
2018-03-01
Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.
Faris, A M; Wang, H-H; Tarone, A M; Grant, W E
2016-05-31
Estimates of insect age can be informative in death investigations and, when certain assumptions are met, can be useful for estimating the postmortem interval (PMI). Currently, the accuracy and precision of PMI estimates is unknown, as error can arise from sources of variation such as measurement error, environmental variation, or genetic variation. Ecological models are an abstract, mathematical representation of an ecological system that can make predictions about the dynamics of the real system. To quantify the variation associated with the pre-appearance interval (PAI), we developed an ecological model that simulates the colonization of vertebrate remains by Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae), a primary colonizer in the southern United States. The model is based on a development data set derived from a local population and represents the uncertainty in local temperature variability to address PMI estimates at local sites. After a PMI estimate is calculated for each individual, the model calculates the maximum, minimum, and mean PMI, as well as the range and standard deviation for stadia collected. The model framework presented here is one manner by which errors in PMI estimates can be addressed in court when no empirical data are available for the parameter of interest. We show that PAI is a potential important source of error and that an ecological model is one way to evaluate its impact. Such models can be re-parameterized with any development data set, PAI function, temperature regime, assumption of interest, etc., to estimate PMI and quantify uncertainty that arises from specific prediction systems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Shifei Yuan
2015-07-01
Full Text Available Accurate estimation of model parameters and state of charge (SoC is crucial for the lithium-ion battery management system (BMS. In this paper, the stability of the model parameters and SoC estimation under measurement uncertainty is evaluated by three different factors: (i sampling periods of 1/0.5/0.1 s; (ii current sensor precisions of ±5/±50/±500 mA; and (iii voltage sensor precisions of ±1/±2.5/±5 mV. Firstly, the numerical model stability analysis and parametric sensitivity analysis for battery model parameters are conducted under sampling frequency of 1–50 Hz. The perturbation analysis is theoretically performed of current/voltage measurement uncertainty on model parameter variation. Secondly, the impact of three different factors on the model parameters and SoC estimation was evaluated with the federal urban driving sequence (FUDS profile. The bias correction recursive least square (CRLS and adaptive extended Kalman filter (AEKF algorithm were adopted to estimate the model parameters and SoC jointly. Finally, the simulation results were compared and some insightful findings were concluded. For the given battery model and parameter estimation algorithm, the sampling period, and current/voltage sampling accuracy presented a non-negligible effect on the estimation results of model parameters. This research revealed the influence of the measurement uncertainty on the model parameter estimation, which will provide the guidelines to select a reasonable sampling period and the current/voltage sensor sampling precisions in engineering applications.
State Estimation for Sensor Monitoring System with Uncertainty and Disturbance
Directory of Open Access Journals (Sweden)
Jianhong Sun
2014-10-01
Full Text Available This paper considers the state estimation problem for the sensor monitoring system which contains system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information transmission in the system is also time consuming. All mentioned above may arouse in unstable of the monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each other. By establishing proper Lyapunov– Krasovskii functional, sufficient conditions are acquired by solving linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. Finally, an illustrated example is given to show that system observed value tracks system states well, which fully demonstrate the effectiveness of our result.
Density meter algorithm and system for estimating sampling/mixing uncertainty
International Nuclear Information System (INIS)
Shine, E.P.
1986-01-01
The Laboratories Department at the Savannah River Plant (SRP) has installed a six-place density meter with an automatic sampling device. This paper describes the statistical software developed to analyze the density of uranyl nitrate solutions using this automated system. The purpose of this software is twofold: to estimate the sampling/mixing and measurement uncertainties in the process and to provide a measurement control program for the density meter. Non-uniformities in density are analyzed both analytically and graphically. The mean density and its limit of error are estimated. Quality control standards are analyzed concurrently with process samples and used to control the density meter measurement error. The analyses are corrected for concentration due to evaporation of samples waiting to be analyzed. The results of this program have been successful in identifying sampling/mixing problems and controlling the quality of analyses
Density meter algorithm and system for estimating sampling/mixing uncertainty
International Nuclear Information System (INIS)
Shine, E.P.
1986-01-01
The Laboratories Department at the Savannah River Plant (SRP) has installed a six-place density meter with an automatic sampling device. This paper describes the statisical software developed to analyze the density of uranyl nitrate solutions using this automated system. The purpose of this software is twofold: to estimate the sampling/mixing and measurement uncertainties in the process and to provide a measurement control program for the density meter. Non-uniformities in density are analyzed both analytically and graphically. The mean density and its limit of error are estimated. Quality control standards are analyzed concurrently with process samples and used to control the density meter measurement error. The analyses are corrected for concentration due to evaporation of samples waiting to be analyzed. The results of this program have been successful in identifying sampling/mixing problems and controlling the quality of analyses
Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions
Jung, J. Y.; Niemann, J. D.; Greimann, B. P.
2016-12-01
Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.
Nonlinear parameter estimation in inviscid compressible flows in presence of uncertainties
International Nuclear Information System (INIS)
Jemcov, A.; Mathur, S.
2004-01-01
The focus of this paper is on the formulation and solution of inverse problems of parameter estimation using algorithmic differentiation. The inverse problem formulated here seeks to determine the input parameters that minimize a least squares functional with respect to certain target data. The formulation allows for uncertainty in the target data by considering the least squares functional in a stochastic basis described by the covariance of the target data. Furthermore, to allow for robust design, the formulation also accounts for uncertainties in the input parameters. This is achieved using the method of propagation of uncertainties using the directional derivatives of the output parameters with respect to unknown parameters. The required derivatives are calculated simultaneously with the solution using generic programming exploiting the template and operator overloading features of the C++ language. The methodology described here is general and applicable to any numerical solution procedure for any set of governing equations but for the purpose of this paper we consider a finite volume solution of the compressible Euler equations. In particular, we illustrate the method for the case of supersonic flow in a duct with a wedge. The parameter to be determined is the inlet Mach number and the target data is the axial component of velocity at the exit of the duct. (author)
Directory of Open Access Journals (Sweden)
S. Swarnkar
2018-04-01
Full Text Available High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE and the sediment delivery ratio (SDR equations are used to estimate the spatial pattern of soil erosion (SE and sediment yield (SY in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha−1 yr−1 with higher values in the upper mountainous region (92 ± 15.2 t ha−1 yr−1 compared to the lower alluvial plains (19.3 ± 4 t ha−1 yr−1. Furthermore, the topographic steepness (LS and crop practice (CP factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin – Nanak Sagar Dam (NSD for the period 1962–2008 and Husepur gauging station (HGS for 1987–2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr−1 and 6.7 ± 1.4 × 106 t yr−1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr−1 and 7.2 × 106 t yr−1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and
Pun, Betty Kong-Ling
1998-12-01
Uncertainty is endemic in modeling. This thesis is a two- phase program to understand the uncertainties in urban air pollution model predictions and in field data used to validate them. Part I demonstrates how to improve atmospheric models by analyzing the uncertainties in these models and using the results to guide new experimentation endeavors. Part II presents an experiment designed to characterize atmospheric fluctuations, which have significant implications towards the model validation process. A systematic study was undertaken to investigate the effects of uncertainties in the SAPRC mechanism for gas- phase chemistry in polluted atmospheres. The uncertainties of more than 500 parameters were compiled, including reaction rate constants, product coefficients, organic composition, and initial conditions. Uncertainty propagation using the Deterministic Equivalent Modeling Method (DEMM) revealed that the uncertainties in ozone predictions can be up to 45% based on these parametric uncertainties. The key parameters found to dominate the uncertainties of the predictions include photolysis rates of NO2, O3, and formaldehyde; the rate constant for nitric acid formation; and initial amounts of NOx and VOC. Similar uncertainty analysis procedures applied to two other mechanisms used in regional air quality models led to the conclusion that in the presence of parametric uncertainties, the mechanisms cannot be discriminated. Research efforts should focus on reducing parametric uncertainties in photolysis rates, reaction rate constants, and source terms. A new tunable diode laser (TDL) infrared spectrometer was designed and constructed to measure multiple pollutants simultaneously in the same ambient air parcels. The sensitivities of the one hertz measurements were 2 ppb for ozone, 1 ppb for NO, and 0.5 ppb for NO2. Meteorological data were also collected for wind, temperature, and UV intensity. The field data showed clear correlations between ozone, NO, and NO2 in the one
International Nuclear Information System (INIS)
Baxter, A.M.; Lane, R.K.; Hettergott, E.; Lefler, W.
1991-01-01
The important, safety-related, physics parameters for the low-enriched Modular High-Temperature gas-Cooled Reactor (MHTGR) such as control rod worth, shutdown margins, temperature coefficients, and reactivity worths, are considered, and estimates are presented of the uncertainties in the calculated values of these parameters. The basis for the uncertainty estimate in several of the important calculated parameters is reviewed, including the available experimental data used in obtaining these estimates. Based on this review, the additional experimental data needed to complete the validation of the methods used to calculate these parameters is presented. The role of benchmark calculations in validating MHTGR reactor physics data is also considered. (author). 10 refs, 5 figs, 3 tabs
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2016-08-31
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesian inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.
Estimates of uncertainties in analysis of positron lifetime spectra for metals
International Nuclear Information System (INIS)
Eldrup, M.; Huang, Y.M.; McKee, B.T.A.
1978-01-01
The effects of uncertainties and errors in various constraints used in the analysis of multi-component life-time spectra of positrons annihilating in metals containing defects have been investigated in detail using computer simulated decay spectra and subsequent analysis. It is found that the errors in the fitted values of the main component lifetimes and intensities introduced from incorrect values of the instrumental resolution function and off the source-surface components can easily exceed the statistic uncertainties. The effect of an incorrect resolution function may be reduced by excluding the peak regions of the spectra from the analysis. The influence of using incorrect source-surface components in the analysis may on the other hand be reduced by including the peak regions of the spectra. A main conclusion of the work is that extreme caution should be exercised to avoid introducing large errors through the constraints used in the analysis of experimental lifetime data. (orig.) [de
Giambelluca, Thomas W.; Loague, Keith; Green, Richard E.; Nullet, Michael A.
1996-06-01
In this paper, uncertainty in recharge estimates is investigated relative to its impact on assessments of groundwater contamination vulnerability using a relatively simple pesticide mobility index, attenuation factor (AF). We employ a combination of first-order uncertainty analysis (FOUA) and sensitivity analysis to investigate recharge uncertainties for agricultural land on the island of O'ahu, Hawai'i, that is currently, or has been in the past, under sugarcane or pineapple cultivation. Uncertainty in recharge due to recharge component uncertainties is 49% of the mean for sugarcane and 58% of the mean for pineapple. The components contributing the largest amounts of uncertainty to the recharge estimate are irrigation in the case of sugarcane and precipitation in the case of pineapple. For a suite of pesticides formerly or currently used in the region, the contribution to AF uncertainty of recharge uncertainty was compared with the contributions of other AF components: retardation factor (RF), a measure of the effects of sorption; soil-water content at field capacity (ΘFC); and pesticide half-life (t1/2). Depending upon the pesticide, the contribution of recharge to uncertainty ranks second or third among the four AF components tested. The natural temporal variability of recharge is another source of uncertainty in AF, because the index is calculated using the time-averaged recharge rate. Relative to the mean, recharge variability is 10%, 44%, and 176% for the annual, monthly, and daily time scales, respectively, under sugarcane, and 31%, 112%, and 344%, respectively, under pineapple. In general, uncertainty in AF associated with temporal variability in recharge at all time scales exceeds AF. For chemicals such as atrazine or diuron under sugarcane, and atrazine or bromacil under pineapple, the range of AF uncertainty due to temporal variability in recharge encompasses significantly higher levels of leaching potential at some locations than that indicated by the
Experimental Estimation of Journal Bearing Stiffness for Damage Detection in Large Hydrogenerators
Directory of Open Access Journals (Sweden)
Geraldo Carvalho Brito
2017-01-01
Full Text Available Based on experimental pieces of evidence collected in a set of twenty healthy large hydrogenerators, this article shows that the operating conditions of the tilting pad journal bearings of these machines may have unpredictable and significant changes. This behavior prevents the theoretical determination of bearing stiffness and damping coefficients with an adequate accuracy and makes damage detection difficult. Considering that dynamic coefficients have similar sensitivity to damage and considering that it is easier to monitor bearing stiffness than bearing damping, this article discusses a method to estimate experimentally the effective stiffness coefficients of hydrogenerators journal bearings, using only the usually monitored vibrations, with damage detection purposes. Validated using vibration signals synthesized by a simplified mathematical model that simulates the dynamic behavior of large hydrogenerators, the method was applied to a journal bearing of a 700 MW hydrogenerator, using two different excitations, the generator rotor unbalance and the vortices formed in the turbine rotor when this machine operates at partial loads. The experimental bearing stiffnesses obtained using both excitations were similar, but they were also much lower than the theoretical predictions. The article briefly discusses the causes of these discrepancies, the method’s uncertainties, and the possible improvements in its application.
International Nuclear Information System (INIS)
Wilson, Brandon M; Smith, Barton L
2013-01-01
Uncertainties are typically assumed to be constant or a linear function of the measured value; however, this is generally not true. Particle image velocimetry (PIV) is one example of a measurement technique that has highly nonlinear, time varying local uncertainties. Traditional uncertainty methods are not adequate for the estimation of the uncertainty of measurement statistics (mean and variance) in the presence of nonlinear, time varying errors. Propagation of instantaneous uncertainty estimates into measured statistics is performed allowing accurate uncertainty quantification of time-mean and statistics of measurements such as PIV. It is shown that random errors will always elevate the measured variance, and thus turbulent statistics such as u'u'-bar. Within this paper, nonlinear, time varying errors are propagated from instantaneous measurements into the measured mean and variance using the Taylor-series method. With these results and knowledge of the systematic and random uncertainty of each measurement, the uncertainty of the time-mean, the variance and covariance can be found. Applicability of the Taylor-series uncertainty equations to time varying systematic and random errors and asymmetric error distributions are demonstrated with Monte-Carlo simulations. The Taylor-series uncertainty estimates are always accurate for uncertainties on the mean quantity. The Taylor-series variance uncertainty is similar to the Monte-Carlo results for cases in which asymmetric random errors exist or the magnitude of the instantaneous variations in the random and systematic errors is near the ‘true’ variance. However, the Taylor-series method overpredicts the uncertainty in the variance as the instantaneous variations of systematic errors are large or are on the same order of magnitude as the ‘true’ variance. (paper)
Plurality of Type A evaluations of uncertainty
Possolo, Antonio; Pintar, Adam L.
2017-10-01
The evaluations of measurement uncertainty involving the application of statistical methods to measurement data (Type A evaluations as specified in the Guide to the Expression of Uncertainty in Measurement, GUM) comprise the following three main steps: (i) developing a statistical model that captures the pattern of dispersion or variability in the experimental data, and that relates the data either to the measurand directly or to some intermediate quantity (input quantity) that the measurand depends on; (ii) selecting a procedure for data reduction that is consistent with this model and that is fit for the purpose that the results are intended to serve; (iii) producing estimates of the model parameters, or predictions based on the fitted model, and evaluations of uncertainty that qualify either those estimates or these predictions, and that are suitable for use in subsequent uncertainty propagation exercises. We illustrate these steps in uncertainty evaluations related to the measurement of the mass fraction of vanadium in a bituminous coal reference material, including the assessment of the homogeneity of the material, and to the calibration and measurement of the amount-of-substance fraction of a hydrochlorofluorocarbon in air, and of the age of a meteorite. Our goal is to expose the plurality of choices that can reasonably be made when taking each of the three steps outlined above, and to show that different choices typically lead to different estimates of the quantities of interest, and to different evaluations of the associated uncertainty. In all the examples, the several alternatives considered represent choices that comparably competent statisticians might make, but who differ in the assumptions that they are prepared to rely on, and in their selection of approach to statistical inference. They represent also alternative treatments that the same statistician might give to the same data when the results are intended for different purposes.
International Nuclear Information System (INIS)
Jin Danqing; Andrec, Michael; Montelione, Gaetano T.; Levy, Ronald M.
1998-01-01
In this paper we make use of the graphical procedure previously described [Jin, D. et al. (1997) J. Am. Chem. Soc., 119, 6923-6924] to analyze NMR relaxation data using the Lipari-Szabo model-free formalism. The graphical approach is advantageous in that it allows the direct visualization of the experimental uncertainties in the motional parameter space. Some general 'rules' describing the relationship between the precision of the relaxation measurements and the precision of the model-free parameters and how this relationship changes with the overall tumbling time (τm) are summarized. The effect of the precision in the relaxation measurements on the detection of internal motions not close to the extreme narrowing limit is analyzed. We also show that multiple timescale internal motions may be obscured by experimental uncertainty, and that the collection of relaxation data at very high field strength can improve the ability to detect such deviations from the simple Lipari-Szabo model
Sebacher, B.; Hanea, R.G.; Heemink, A.
2013-01-01
In the past years, many applications of historymatching methods in general and ensemble Kalman filter in particular have been proposed, especially in order to estimate fields that provide uncertainty in the stochastic process defined by the dynamical system of hydrocarbon recovery. Such fields can
Evaluation of uncertainties in the calibration of radiation survey meter
International Nuclear Information System (INIS)
Potiens, M.P.A.; Santos, G.P.
2006-01-01
In order to meet the requirements of ISO 17025, the quantification of the expanded uncertainties of experimental data in the calibration of survey meters must be carried out using well defined concepts, like those expressed in the 'ISO-Guide to the Expression of Uncertainty in Measurement'. The calibration procedure of gamma ray survey meters involves two values that have to get their uncertainties clearly known: measurements of the instrument under calibration and the conventional true values of a quantity. Considering the continuous improvement of the calibration methods and set-ups, it is necessary to evaluate periodically the involved uncertainties in the procedures. In this work it is shown how the measurement uncertainties of an individual calibration can be estimated and how it can be generalized to be valid for others radiation survey meters. (authors)
Local conditions and uncertainty bands for Semiscale Test S-02-9
International Nuclear Information System (INIS)
Varacalle, D.J. Jr.
1979-01-01
Analysis was performed to derive local conditions heat transfer parameters and their uncertainties using computer codes and experimentally derived boundary conditions for the Semiscale core for LOCA Test S-02-9. Calculations performed consisted of nominal code cases using best-estimate input parameters and cases where the specified input parameters were perturbed in accordance with the response surface method of uncertainty analysis. The output parameters of interest were those that are used in film boiling heat transfer correlations including enthalpy, pressure, quality, and coolant flow rate. Large uncertainty deviations occurred during low core mass flow periods where the relative flow uncertainties were large. Utilizing the derived local conditions and their associated uncertainties, a study was then made which showed the uncertainty in film boiling heat transfer coefficient varied between 5 and 250%
Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling
Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.
2017-12-01
Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model
International Nuclear Information System (INIS)
Kugo, Teruhiko; Mori, Takamasa; Kojima, Kensuke; Takeda, Toshikazu
2007-01-01
We have carried out the critical experiments for the MOX fueled tight lattice LWR cores using FCA facility and constructed the XXII-1 series cores. Utilizing the critical experiments carried out at FCA, we have evaluated the reduction of prediction uncertainty in the coolant void reactivity worth of the breeding LWR core based on the bias factor method with focusing on the prediction uncertainty due to cross section errors. In the present study, we have introduced a concept of a virtual experimental value into the conventional bias factor method to overcome a problem caused by the conventional bias factor method in which the prediction uncertainty increases in the case that the experimental core has the opposite reactivity worth and the consequent opposite sensitivity coefficients to the real core. To extend the applicability of the bias factor method, we have adopted an exponentiated experimental value as the virtual experimental value and formulated the prediction uncertainty reduction by the use of the bias factor method extended by the concept of the virtual experimental value. From the numerical evaluation, it has been shown that the prediction uncertainty due to cross section errors has been reduced by the use of the concept of the virtual experimental value. It is concluded that the introduction of virtual experimental value can effectively utilize experimental data and extend applicability of the bias factor method. (author)
Simplified propagation of standard uncertainties
International Nuclear Information System (INIS)
Shull, A.H.
1997-01-01
An essential part of any measurement control program is adequate knowledge of the uncertainties of the measurement system standards. Only with an estimate of the standards'' uncertainties can one determine if the standard is adequate for its intended use or can one calculate the total uncertainty of the measurement process. Purchased standards usually have estimates of uncertainty on their certificates. However, when standards are prepared and characterized by a laboratory, variance propagation is required to estimate the uncertainty of the standard. Traditional variance propagation typically involves tedious use of partial derivatives, unfriendly software and the availability of statistical expertise. As a result, the uncertainty of prepared standards is often not determined or determined incorrectly. For situations meeting stated assumptions, easier shortcut methods of estimation are now available which eliminate the need for partial derivatives and require only a spreadsheet or calculator. A system of simplifying the calculations by dividing into subgroups of absolute and relative uncertainties is utilized. These methods also incorporate the International Standards Organization (ISO) concepts for combining systematic and random uncertainties as published in their Guide to the Expression of Measurement Uncertainty. Details of the simplified methods and examples of their use are included in the paper
A Bayesian framework for parameter estimation in dynamical models.
Directory of Open Access Journals (Sweden)
Flávio Codeço Coelho
Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.
Varouchakis, Emmanouil; Hristopulos, Dionissios
2015-04-01
Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs
Reducing uncertainty of Monte Carlo estimated fatigue damage in offshore wind turbines using FORM
DEFF Research Database (Denmark)
H. Horn, Jan-Tore; Jensen, Jørgen Juncher
2016-01-01
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue...
Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S
2015-07-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling
DEFF Research Database (Denmark)
Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov
2018-01-01
amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...
Padoan, Andrea; Antonelli, Giorgia; Aita, Ada; Sciacovelli, Laura; Plebani, Mario
2017-10-26
The present study was prompted by the ISO 15189 requirements that medical laboratories should estimate measurement uncertainty (MU). The method used to estimate MU included the: a) identification of quantitative tests, b) classification of tests in relation to their clinical purpose, and c) identification of criteria to estimate the different MU components. Imprecision was estimated using long-term internal quality control (IQC) results of the year 2016, while external quality assessment schemes (EQAs) results obtained in the period 2015-2016 were used to estimate bias and bias uncertainty. A total of 263 measurement procedures (MPs) were analyzed. On the basis of test purpose, in 51 MPs imprecision only was used to estimate MU; in the remaining MPs, the bias component was not estimable for 22 MPs because EQAs results did not provide reliable statistics. For a total of 28 MPs, two or more MU values were calculated on the basis of analyte concentration levels. Overall, results showed that uncertainty of bias is a minor factor contributing to MU, the bias component being the most relevant contributor to all the studied sample matrices. The model chosen for MU estimation allowed us to derive a standardized approach for bias calculation, with respect to the fitness-for-purpose of test results. Measurement uncertainty estimation could readily be implemented in medical laboratories as a useful tool in monitoring the analytical quality of test results since they are calculated using a combination of both the long-term imprecision IQC results and bias, on the basis of EQAs results.
Criteria of the validation of experimental and evaluated covariance data
International Nuclear Information System (INIS)
Badikov, S.
2008-01-01
The criteria of the validation of experimental and evaluated covariance data are reviewed. In particular: a) the criterion of the positive definiteness for covariance matrices, b) the relationship between the 'integral' experimental and estimated uncertainties, c) the validity of the statistical invariants, d) the restrictions imposed to correlations between experimental errors, are described. Applying these criteria in nuclear data evaluation was considered and 4 particular points have been examined. First preserving positive definiteness of covariance matrices in case of arbitrary transformation of a random vector was considered, properties of the covariance matrices in operations widely used in neutron and reactor physics (splitting and collapsing energy groups, averaging the physical values over energy groups, estimation parameters on the basis of measurements by means of generalized least squares method) were studied. Secondly, an algorithm for comparison of experimental and estimated 'integral' uncertainties was developed, square root of determinant of a covariance matrix is recommended for use in nuclear data evaluation as a measure of 'integral' uncertainty for vectors of experimental and estimated values. Thirdly, a set of statistical invariants-values which are preserved in statistical processing was presented. And fourthly, the inequality that signals a correlation between experimental errors that leads to unphysical values is given. An application is given concerning the cross-section of the (n,t) reaction on Li 6 with a neutron incident energy comprised between 1 and 100 keV
CSIR Research Space (South Africa)
Bidgood, Peter M
2017-01-01
Full Text Available The estimation of balance uncertainty using conventional statistical and error propagation methods has been found to be both approximate and laborious to the point of being untenable. Direct Simulation by Monte Carlo (DSMC) has been shown...
Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar
2012-05-01
Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.
Estimation of Uncertainty in Tracer Gas Measurement of Air Change Rates
Directory of Open Access Journals (Sweden)
Atsushi Iizuka
2010-12-01
Full Text Available Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of
Estimation of uncertainties from missing higher orders in perturbative calculations
International Nuclear Information System (INIS)
Bagnaschi, E.
2015-05-01
In this proceeding we present the results of our recent study (hep-ph/1409.5036) of the statistical performances of two different approaches, Scale Variation (SV) and the Bayesian model of Cacciari and Houdeau (CH)(hep-ph/1105.5152) (which we also extend to observables with initial state hadrons), to the estimation of Missing Higher-Order Uncertainties (MHOUs)(hep-ph/1307.1843) in perturbation theory. The behavior of the models is determined by analyzing, on a wide set of observables, how the MHOU intervals they produce are successful in predicting the next orders. We observe that the Bayesian model behaves consistently, producing intervals at 68% Degree of Belief (DoB) comparable with the scale variation intervals with a rescaling factor r larger than 2 and closer to 4. Concerning SV, our analysis allows the derivation of a heuristic Confidence Level (CL) for the intervals. We find that assigning a CL of 68% to the intervals obtained with the conventional choice of varying the scales within a factor of two with respect to the central scale could potentially lead to an underestimation of the uncertainties in the case of observables with initial state hadrons.
The impact of a and b value uncertainty on loss estimation in the reinsurance industry
Directory of Open Access Journals (Sweden)
R. Streit
2000-06-01
Full Text Available In the reinsurance industry different probabilistic models are currently used for seismic risk analysis. A credible loss estimation of the insured values depends on seismic hazard analysis and on the vulnerability functions of the given structures. Besides attenuation and local soil amplification, the earthquake occurrence model (often represented by the Gutenberg and Richter relation is a key element in the analysis. However, earthquake catalogues are usually incomplete, the time of observation is too short and the data themselves contain errors. Therefore, a and b values can only be estimated with uncertainties. The knowledge of their variation provides a valuable input for earthquake risk analysis, because they allow the probability distribution of expected losses (expressed by Average Annual Loss (AAL to be modelled. The variations of a and b have a direct effect on the estimated exceeding probability and consequently on the calculated loss level. This effect is best illustrated by exceeding probability versus loss level and AAL versus magnitude graphs. The sensitivity of average annual losses due to different a to b ratios and magnitudes is obvious. The estimation of the variation of a and b and the quantification of the sensitivity of calculated losses are fundamental for optimal earthquake risk management. Ignoring these uncertainties means that risk management decisions neglect possible variations of the earthquake loss estimations.
Analysis of uncertainties of thermal hydraulic calculations
International Nuclear Information System (INIS)
Macek, J.; Vavrin, J.
2002-12-01
In 1993-1997 it was proposed, within OECD projects, that a common program should be set up for uncertainty analysis by a probabilistic method based on a non-parametric statistical approach for system computer codes such as RELAP, ATHLET and CATHARE and that a method should be developed for statistical analysis of experimental databases for the preparation of the input deck and statistical analysis of the output calculation results. Software for such statistical analyses would then have to be processed as individual tools independent of the computer codes used for the thermal hydraulic analysis and programs for uncertainty analysis. In this context, a method for estimation of a thermal hydraulic calculation is outlined and selected methods of statistical analysis of uncertainties are described, including methods for prediction accuracy assessment based on the discrete Fourier transformation principle. (author)
International Nuclear Information System (INIS)
Santana, L V; Sarkis, J E S; Ulrich, J C; Hortellani, M A
2015-01-01
We provide an uncertainty estimates for homogeneity and stability studies of reference material used in proficiency test for determination of total mercury in fish fresh muscle tissue. Stability was estimated by linear regression and homogeneity by ANOVA. The results indicate that the reference material is both homogeneous and chemically stable over the short term. Total mercury concentration of the muscle tissue, with expanded uncertainty, was 0.294 ± 0.089 μg g −1
The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, andParameter Estimation (UA/SA/PE API) (also known as Calibration, Optimization and Sensitivity and Uncertainty (CUSO)) was developed in a joint effort between several members of both ...
International Nuclear Information System (INIS)
Mallet, Vivien
2005-01-01
The thesis deals with the evaluation of a chemistry-transport model, not primarily with classical comparisons to observations, but through the estimation of its a priori uncertainties due to input data, model formulation and numerical approximations. These three uncertainty sources are studied respectively on the basis of Monte Carlos simulations, multi-models simulations and numerical schemes inter-comparisons. A high uncertainty is found, in output ozone concentrations. In order to overtake the limitations due to the uncertainty, a solution is ensemble forecast. Through combinations of several models (up to forty-eight models) on the basis of past observations, the forecast can be significantly improved. The achievement of this work has also led to develop the innovative modelling-system Polyphemus. (author) [fr
Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.
2018-03-01
Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.
Justification for recommended uncertainties
International Nuclear Information System (INIS)
Pronyaev, V.G.; Badikov, S.A.; Carlson, A.D.
2007-01-01
The uncertainties obtained in an earlier standards evaluation were considered to be unrealistically low by experts of the US Cross Section Evaluation Working Group (CSEWG). Therefore, the CSEWG Standards Subcommittee replaced the covariance matrices of evaluated uncertainties by expanded percentage errors that were assigned to the data over wide energy groups. There are a number of reasons that might lead to low uncertainties of the evaluated data: Underestimation of the correlations existing between the results of different measurements; The presence of unrecognized systematic uncertainties in the experimental data can lead to biases in the evaluated data as well as to underestimations of the resulting uncertainties; Uncertainties for correlated data cannot only be characterized by percentage uncertainties or variances. Covariances between evaluated value at 0.2 MeV and other points obtained in model (RAC R matrix and PADE2 analytical expansion) and non-model (GMA) fits of the 6 Li(n,t) TEST1 data and the correlation coefficients are presented and covariances between the evaluated value at 0.045 MeV and other points (along the line or column of the matrix) as obtained in EDA and RAC R matrix fits of the data available for reactions that pass through the formation of the 7 Li system are discussed. The GMA fit with the GMA database is shown for comparison. The following diagrams are discussed: Percentage uncertainties of the evaluated cross section for the 6 Li(n,t) reaction and the for the 235 U(n,f) reaction; estimation given by CSEWG experts; GMA result with full GMA database, including experimental data for the 6 Li(n,t), 6 Li(n,n) and 6 Li(n,total) reactions; uncertainties in the GMA combined fit for the standards; EDA and RAC R matrix results, respectively. Uncertainties of absolute and 252 Cf fission spectrum averaged cross section measurements, and deviations between measured and evaluated values for 235 U(n,f) cross-sections in the neutron energy range 1
A NEW METHOD FOR PREDICTING SURVIVAL AND ESTIMATING UNCERTAINTY IN TRAUMA PATIENTS
Directory of Open Access Journals (Sweden)
V. G. Schetinin
2017-01-01
Full Text Available The Trauma and Injury Severity Score (TRISS is the current “gold” standard of screening patient’s condition for purposes of predicting survival probability. More than 40 years of TRISS practice revealed a number of problems, particularly, 1 unexplained fluctuation of predicted values caused by aggregation of screening tests, and 2 low accuracy of uncertainty intervals estimations. We developed a new method made it available for practitioners as a web calculator to reduce negative effect of factors given above. The method involves Bayesian methodology of statistical inference which, being computationally expensive, in theory provides most accurate predictions. We implemented and tested this approach on a data set including 571,148 patients registered in the US National Trauma Data Bank (NTDB with 1–20 injuries. These patients were distributed over the following categories: (1 174,647 with 1 injury, (2 381,137 with 2–10 injuries, and (3 15,364 with 11–20 injuries. Survival rates in each category were 0.977, 0.953, and 0.831, respectively. The proposed method has improved prediction accuracy by 0.04%, 0.36%, and 3.64% (p-value <0.05 in the categories 1, 2, and 3, respectively. Hosmer-Lemeshow statistics showed a significant improvement of the new model calibration. The uncertainty 2σ intervals were reduced from 0.628 to 0.569 for patients of the second category and from 1.227 to 0.930 for patients of the third category, both with p-value <0.005. The new method shows the statistically significant improvement (p-value <0.05 in accuracy of predicting survival and estimating the uncertainty intervals. The largest improvement has been achieved for patients with 11–20 injuries. The method is available for practitioners as a web calculator http://www.traumacalc.org.
International Nuclear Information System (INIS)
Park, Inseok; Grandhi, Ramana V.
2014-01-01
Apart from parametric uncertainty, model form uncertainty as well as prediction error may be involved in the analysis of engineering system. Model form uncertainty, inherently existing in selecting the best approximation from a model set cannot be ignored, especially when the predictions by competing models show significant differences. In this research, a methodology based on maximum likelihood estimation is presented to quantify model form uncertainty using the measured differences of experimental and model outcomes, and is compared with a fully Bayesian estimation to demonstrate its effectiveness. While a method called the adjustment factor approach is utilized to propagate model form uncertainty alone into the prediction of a system response, a method called model averaging is utilized to incorporate both model form uncertainty and prediction error into it. A numerical problem of concrete creep is used to demonstrate the processes for quantifying model form uncertainty and implementing the adjustment factor approach and model averaging. Finally, the presented methodology is applied to characterize the engineering benefits of a laser peening process
Lash, Timothy L
2007-11-26
The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is
Directory of Open Access Journals (Sweden)
Lash Timothy L
2007-11-01
Full Text Available Abstract Background The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. Methods For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. Results The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Conclusion Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a
PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties.
Borrel, Alexandre; Regad, Leslie; Xhaard, Henri; Petitjean, Michel; Camproux, Anne-Claude
2015-04-27
Predicting protein druggability is a key interest in the target identification phase of drug discovery. Here, we assess the pocket estimation methods' influence on druggability predictions by comparing statistical models constructed from pockets estimated using different pocket estimation methods: a proximity of either 4 or 5.5 Å to a cocrystallized ligand or DoGSite and fpocket estimation methods. We developed PockDrug, a robust pocket druggability model that copes with uncertainties in pocket boundaries. It is based on a linear discriminant analysis from a pool of 52 descriptors combined with a selection of the most stable and efficient models using different pocket estimation methods. PockDrug retains the best combinations of three pocket properties which impact druggability: geometry, hydrophobicity, and aromaticity. It results in an average accuracy of 87.9% ± 4.7% using a test set and exhibits higher accuracy (∼5-10%) than previous studies that used an identical apo set. In conclusion, this study confirms the influence of pocket estimation on pocket druggability prediction and proposes PockDrug as a new model that overcomes pocket estimation variability.
Uncertainty quantification applied to the radiological characterization of radioactive waste.
Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P
2017-09-01
This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low-sampling-rate ultra-wideband channel estimation using a bounded-data-uncertainty approach
Ballal, Tarig
2014-01-01
This paper proposes a low-sampling-rate scheme for ultra-wideband channel estimation. In the proposed scheme, P pulses are transmitted to produce P observations. These observations are exploited to produce channel impulse response estimates at a desired sampling rate, while the ADC operates at a rate that is P times less. To avoid loss of fidelity, the interpulse interval, given in units of sampling periods of the desired rate, is restricted to be co-prime with P. This condition is affected when clock drift is present and the transmitted pulse locations change. To handle this situation and to achieve good performance without using prior information, we derive an improved estimator based on the bounded data uncertainty (BDU) model. This estimator is shown to be related to the Bayesian linear minimum mean squared error (LMMSE) estimator. The performance of the proposed sub-sampling scheme was tested in conjunction with the new estimator. It is shown that high reduction in sampling rate can be achieved. The proposed estimator outperforms the least squares estimator in most cases; while in the high SNR regime, it also outperforms the LMMSE estimator. © 2014 IEEE.
International Nuclear Information System (INIS)
Ohnishi, S.; Thornton, B.; Kamada, S.; Hirao, Y.; Ura, T.; Odano, N.
2016-01-01
Factors to convert the count rate of a NaI(Tl) scintillation detector to the concentration of radioactive cesium in marine sediments are estimated for a towed gamma-ray detector system. The response of the detector against a unit concentration of radioactive cesium is calculated by Monte Carlo radiation transport simulation considering the vertical profile of radioactive material measured in core samples. The conversion factors are acquired by integrating the contribution of each layer and are normalized by the concentration in the surface sediment layer. At the same time, the uncertainty of the conversion factors are formulated and estimated. The combined standard uncertainty of the radioactive cesium concentration by the towed gamma-ray detector is around 25 percent. The values of uncertainty, often referred to as relative root mean squat errors in other works, between sediment core sampling measurements and towed detector measurements were 16 percent in the investigation made near the Abukuma River mouth and 5.2 percent in Sendai Bay, respectively. Most of the uncertainty is due to interpolation of the conversion factors between core samples and uncertainty of the detector's burial depth. The results of the towed measurements agree well with laboratory analysed sediment samples. Also, the concentrations of radioactive cesium at the intersection of each survey line are consistent. The consistency with sampling results and between different lines' transects demonstrate the availability and reproducibility of towed gamma-ray detector system.
Energy Technology Data Exchange (ETDEWEB)
Ohnishi, S., E-mail: ohnishi@nmri.go.jp [National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka, Tokyo 181-0004 (Japan); Thornton, B. [Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Kamada, S.; Hirao, Y.; Ura, T.; Odano, N. [National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka, Tokyo 181-0004 (Japan)
2016-05-21
Factors to convert the count rate of a NaI(Tl) scintillation detector to the concentration of radioactive cesium in marine sediments are estimated for a towed gamma-ray detector system. The response of the detector against a unit concentration of radioactive cesium is calculated by Monte Carlo radiation transport simulation considering the vertical profile of radioactive material measured in core samples. The conversion factors are acquired by integrating the contribution of each layer and are normalized by the concentration in the surface sediment layer. At the same time, the uncertainty of the conversion factors are formulated and estimated. The combined standard uncertainty of the radioactive cesium concentration by the towed gamma-ray detector is around 25 percent. The values of uncertainty, often referred to as relative root mean squat errors in other works, between sediment core sampling measurements and towed detector measurements were 16 percent in the investigation made near the Abukuma River mouth and 5.2 percent in Sendai Bay, respectively. Most of the uncertainty is due to interpolation of the conversion factors between core samples and uncertainty of the detector's burial depth. The results of the towed measurements agree well with laboratory analysed sediment samples. Also, the concentrations of radioactive cesium at the intersection of each survey line are consistent. The consistency with sampling results and between different lines' transects demonstrate the availability and reproducibility of towed gamma-ray detector system.
Uncertainty of Modal Parameters Estimated by ARMA Models
DEFF Research Database (Denmark)
Jensen, Jakob Laigaard; Brincker, Rune; Rytter, Anders
In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the param...
International Nuclear Information System (INIS)
Xue, Zhenyu; Charonko, John J; Vlachos, Pavlos P
2014-01-01
In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, U 68.5 uncertainties are estimated at the 68.5% confidence level while U 95 uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements. (paper)
Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.
2014-11-01
In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.
Conclusions on measurement uncertainty in microbiology.
Forster, Lynne I
2009-01-01
Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.
Strain gauge measurement uncertainties on hydraulic turbine runner blade
International Nuclear Information System (INIS)
Arpin-Pont, J; Gagnon, M; Tahan, S A; Coutu, A; Thibault, D
2012-01-01
Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 με to 165 με. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from −36 to 36 με. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.
International Nuclear Information System (INIS)
Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J
2015-01-01
The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data. (paper)
Energy Technology Data Exchange (ETDEWEB)
Secchi, Piercesare [MOX, Department of Mathematics, Polytechnic of Milan (Italy); Zio, Enrico [Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)], E-mail: enrico.zio@polimi.it; Di Maio, Francesco [Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milano (Italy)
2008-12-15
For licensing purposes, safety cases of Nuclear Power Plants (NPPs) must be presented at the Regulatory Authority with the necessary confidence on the models used to describe the plant safety behavior. In principle, this requires the repetition of a large number of model runs to account for the uncertainties inherent in the model description of the true plant behavior. The present paper propounds the use of bootstrapped Artificial Neural Networks (ANNs) for performing the numerous model output calculations needed for estimating safety margins with appropriate confidence intervals. Account is given both to the uncertainties inherent in the plant model and to those introduced by the ANN regression models used for performing the repeated safety parameter evaluations. The proposed framework of analysis is first illustrated with reference to a simple analytical model and then to the estimation of the safety margin on the maximum fuel cladding temperature reached during a complete group distribution header blockage scenario in a RBMK-1500 nuclear reactor. The results are compared with those obtained by a traditional parametric approach.
Zonta, Zivko J; Flotats, Xavier; Magrí, Albert
2014-08-01
The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.
The Findings from the OECD/NEA/CSNI UMS (Uncertainty Method Study)
International Nuclear Information System (INIS)
D'Auria, F.; Glaeser, H.
2013-01-01
Within licensing procedures there is the incentive to replace the conservative requirements for code application by a 'best estimate' concept supplemented by an uncertainty analysis to account for predictive uncertainties of code results. Methods have been developed to quantify these uncertainties. The Uncertainty Methods Study (UMS) Group, following a mandate from CSNI (Committee on the Safety of Nuclear Installations) of OECD/NEA (Organization for Economic Cooperation and Development / Nuclear Energy Agency), has compared five methods for calculating the uncertainty in the predictions of advanced 'best estimate' thermal-hydraulic codes. Most of the methods identify and combine input uncertainties. The major differences between the predictions of the methods came from the choice of uncertain parameters and the quantification of the input uncertainties, i.e. the wideness of the uncertainty ranges. Therefore, suitable experimental and analytical information has to be selected to specify these uncertainty ranges or distributions. After the closure of the Uncertainty Method Study (UMS) and after the report was issued comparison calculations of experiment LSTF-SB-CL-18 were performed by University of Pisa using different versions of the RELAP 5 code. It turned out that the version used by two of the participants calculated a 170 K higher peak clad temperature compared with other versions using the same input deck. This may contribute to the differences of the upper limit of the uncertainty ranges. A 'bifurcation' analysis was also performed by the same research group also providing another way of interpreting the high temperature peak calculated by two of the participants. (authors)
Predictive Uncertainty Estimation in Water Demand Forecasting Using the Model Conditional Processor
Directory of Open Access Journals (Sweden)
Amos O. Anele
2018-04-01
Full Text Available In a previous paper, a number of potential models for short-term water demand (STWD prediction have been analysed to find the ones with the best fit. The results obtained in Anele et al. (2017 showed that hybrid models may be considered as the accurate and appropriate forecasting models for STWD prediction. However, such best single valued forecast does not guarantee reliable and robust decisions, which can be properly obtained via model uncertainty processors (MUPs. MUPs provide an estimate of the full predictive densities and not only the single valued expected prediction. Amongst other MUPs, the purpose of this paper is to use the multi-variate version of the model conditional processor (MCP, proposed by Todini (2008, to demonstrate how the estimation of the predictive probability conditional to a number of relatively good predictive models may improve our knowledge, thus reducing the predictive uncertainty (PU when forecasting into the unknown future. Through the MCP approach, the probability distribution of the future water demand can be assessed depending on the forecast provided by one or more deterministic forecasting models. Based on an average weekly data of 168 h, the probability density of the future demand is built conditional on three models’ predictions, namely the autoregressive-moving average (ARMA, feed-forward back propagation neural network (FFBP-NN and hybrid model (i.e., combined forecast from ARMA and FFBP-NN. The results obtained show that MCP may be effectively used for real-time STWD prediction since it brings out the PU connected to its forecast, and such information could help water utilities estimate the risk connected to a decision.
Monte Carlo approaches for uncertainty quantification of criticality for system dimensions
International Nuclear Information System (INIS)
Kiedrowski, B.C.; Brown, F.B.
2013-01-01
One of the current challenges in nuclear engineering computations is the issue of performing uncertainty analysis for either calculations or experimental measurements. This paper specifically focuses on the issue of estimating the uncertainties arising from geometric tolerances. For this paper, two techniques for uncertainty quantification are studied. The first is the forward propagation technique, which can be thought of as a 'brute force' approach; uncertain system parameters are randomly sampled, the calculation is run, and uncertainties are found from the empirically obtained distribution of results. This approach need make no approximations in principle, but is very computationally expensive. The other approach investigated is the adjoint-based approach; system sensitivities are computed via a single Monte Carlo calculation and those are used with a covariance matrix to provide a linear estimate of the uncertainty. Demonstration calculations are performed with the MCNP6 code for both techniques. The 2 techniques are tested on 2 cases: the first case is a solid, bare cylinder of Pu-metal while the second case is a can of plutonium nitrate solution. The results show that the forward and adjoint approaches appear to agree in some cases where the responses are not non-linearly correlated. In other cases, the uncertainties in the effective multiplication k disagree for reasons not yet known
Uncertainty in relative energy resolution measurements
International Nuclear Information System (INIS)
Volkovitsky, P.; Yen, J.; Cumberland, L.
2007-01-01
We suggest a new method for the determination of the detector relative energy resolution and its uncertainty based on spline approximation of experimental spectra and a statistical bootstrapping procedure. The proposed method is applied to the spectra obtained with NaI(Tl) scintillating detectors and 137 Cs sources. The spectrum histogram with background subtracted channel-by-channel is modeled by cubic spline approximation. The relative energy resolution (which is also known as pulse height resolution and energy resolution), defined as the full-width at half-maximum (FWHM) divided by the value of peak centroid, is calculated using the intercepts of the spline curve with the line of the half peak height. The value of the peak height is determined as the point where the value of the derivative goes to zero. The residuals, which are normalized over the square root of counts in a given bin (y-coordinate), obey the standard Gaussian distribution. The values of these residuals are randomly re-assigned to a different set of y-coordinates where a new 'pseudo-experimental' data set is obtained after 'de-normalization' of the old values. For this new data set a new spline approximation is found and the whole procedure is repeated several hundred times, until the standard deviation of relative energy resolution becomes stabilized. The standard deviation of relative energy resolutions calculated for each 'pseudo-experimental' data set (bootstrap uncertainty) is considered to be an estimate for relative energy resolution uncertainty. It is also shown that the relative bootstrap uncertainty is proportional to, and generally only two to three times bigger than, 1/√(N tot ), which is the relative statistical count uncertainty (N tot is the total number of counts under the peak). The newly suggested method is also applicable to other radiation and particle detectors, not only for relative energy resolution, but also for any of the other parameters in a measured spectrum, like
Uncertainties in scaling factors for ab initio vibrational zero-point energies
Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger
2009-03-01
Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.
International Nuclear Information System (INIS)
Pasanisi, Alberto; Keller, Merlin; Parent, Eric
2012-01-01
In the context of risk analysis under uncertainty, we focus here on the problem of estimating a so-called quantity of interest of an uncertainty analysis problem, i.e. a given feature of the probability distribution function (pdf) of the output of a deterministic model with uncertain inputs. We will stay here in a fully probabilistic setting. A common problem is how to account for epistemic uncertainty tainting the parameter of the probability distribution of the inputs. In the standard practice, this uncertainty is often neglected (plug-in approach). When a specific uncertainty assessment is made, under the basis of the available information (expertise and/or data), a common solution consists in marginalizing the joint distribution of both observable inputs and parameters of the probabilistic model (i.e. computing the predictive pdf of the inputs), then propagating it through the deterministic model. We will reinterpret this approach in the light of Bayesian decision theory, and will put into evidence that this practice leads the analyst to adopt implicitly a specific loss function which may be inappropriate for the problem under investigation, and suboptimal from a decisional perspective. These concepts are illustrated on a simple numerical example, concerning a case of flood risk assessment.
Verification of uncertainty budgets
DEFF Research Database (Denmark)
Heydorn, Kaj; Madsen, B.S.
2005-01-01
, and therefore it is essential that the applicability of the overall uncertainty budget to actual measurement results be verified on the basis of current experimental data. This should be carried out by replicate analysis of samples taken in accordance with the definition of the measurand, but representing...... the full range of matrices and concentrations for which the budget is assumed to be valid. In this way the assumptions made in the uncertainty budget can be experimentally verified, both as regards sources of variability that are assumed negligible, and dominant uncertainty components. Agreement between...
International Nuclear Information System (INIS)
Hong, Kee Jeung; Kim, Jee Sang
2009-01-01
As concrete ages, the surrounding environment is expected to have growing influences on the concrete. As all the impacts of the environment cannot be considered in the strength-estimating model of a nondestructive concrete test, the increase in concrete age leads to growing uncertainty in the strength-estimating model. Therefore, the variation of the model error increases. It is necessary to include those impacts in the probability model of concrete strength attained from the nondestructive tests so as to build a more accurate reliability model for structural performance evaluation. This paper reviews and categorizes the existing strength-estimating statistical models of nondestructive concrete test, and suggests a new form of the strength-estimating statistical models to properly reflect the model uncertainty due to aging of the concrete. This new form of the statistical models will lay foundation for more accurate structural performance evaluation.
Uncertainty of Modal Parameters Estimated by ARMA Models
DEFF Research Database (Denmark)
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
1990-01-01
In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore......, it is shown that the model errors may also contribute significantly to the uncertainty....
Koch, Michael
Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.
International Nuclear Information System (INIS)
Arpaia, Pasquale; De Vito, Luca; Kazazi, Mario
2016-01-01
In the uncertainty assessment of magnetic flux measurements in axially symmetric magnets by the translating coil method, the Guide to the Uncertainty in Measurement and its supplement cannot be applied: the voltage variation at the coil terminals, which is the actual measured quantity, affects the flux estimate and its uncertainty. In this paper, a particle filter, implementing a sequential Monte-Carlo method based on Bayesian inference, is applied. At this aim, the main uncertainty sources are analyzed and a model of the measurement process is defined. The results of the experimental validation point out the transport system and the acquisition system as the main contributions to the uncertainty budget. (authors)
Verhulst, Kristal R.; Karion, Anna; Kim, Jooil; Salameh, Peter K.; Keeling, Ralph F.; Newman, Sally; Miller, John; Sloop, Christopher; Pongetti, Thomas; Rao, Preeti; Wong, Clare; Hopkins, Francesca M.; Yadav, Vineet; Weiss, Ray F.; Duren, Riley M.; Miller, Charles E.
2017-07-01
We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four extra-urban sites including two marine sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one continental site located in Victorville (VIC), in the high desert northeast of LA, and one continental/mid-troposphere site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within ˜ 1 ppm CO2 and ˜ 10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. Urban and suburban sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of ˜ 20 ppm CO2 and ˜ 150 ppb CH4 during 2015 as well as ˜ 15 ppm CO2 and ˜ 80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine
Ciriello, V.; Lauriola, I.; Bonvicini, S.; Cozzani, V.; Di Federico, V.; Tartakovsky, Daniel M.
2017-11-01
Ubiquitous hydrogeological uncertainty undermines the veracity of quantitative predictions of soil and groundwater contamination due to accidental hydrocarbon spills from onshore pipelines. Such predictions, therefore, must be accompanied by quantification of predictive uncertainty, especially when they are used for environmental risk assessment. We quantify the impact of parametric uncertainty on quantitative forecasting of temporal evolution of two key risk indices, volumes of unsaturated and saturated soil contaminated by a surface spill of light nonaqueous-phase liquids. This is accomplished by treating the relevant uncertain parameters as random variables and deploying two alternative probabilistic models to estimate their effect on predictive uncertainty. A physics-based model is solved with a stochastic collocation method and is supplemented by a global sensitivity analysis. A second model represents the quantities of interest as polynomials of random inputs and has a virtually negligible computational cost, which enables one to explore any number of risk-related contamination scenarios. For a typical oil-spill scenario, our method can be used to identify key flow and transport parameters affecting the risk indices, to elucidate texture-dependent behavior of different soils, and to evaluate, with a degree of confidence specified by the decision-maker, the extent of contamination and the correspondent remediation costs.
Directory of Open Access Journals (Sweden)
Enrico Zio
2008-01-01
Full Text Available In the present work, the uncertainties affecting the safety margins estimated from thermal-hydraulic code calculations are captured quantitatively by resorting to the order statistics and the bootstrap technique. The proposed framework of analysis is applied to the estimation of the safety margin, with its confidence interval, of the maximum fuel cladding temperature reached during a complete group distribution blockage scenario in a RBMK-1500 nuclear reactor.
Blanchard, J-B.; Damblin, G.; Martinez, J-M.; Arnaud, G.; Gaudier, F.
2018-01-01
The high-performance computing resources and the constant improvement of both numerical simulation accuracy and the experimental measurements with which they are confronted, bring a new compulsory step to strengthen the credence given to the simulation results: uncertainty quantification. This can have different meanings, according to the requested goals (rank uncertainty sources, reduce them, estimate precisely a critical threshold or an optimal working point) and it could request mathematic...
Uncertainty in Forest Net Present Value Estimations
Directory of Open Access Journals (Sweden)
Ilona Pietilä
2010-09-01
Full Text Available Uncertainty related to inventory data, growth models and timber price fluctuation was investigated in the assessment of forest property net present value (NPV. The degree of uncertainty associated with inventory data was obtained from previous area-based airborne laser scanning (ALS inventory studies. The study was performed, applying the Monte Carlo simulation, using stand-level growth and yield projection models and three alternative rates of interest (3, 4 and 5%. Timber price fluctuation was portrayed with geometric mean-reverting (GMR price models. The analysis was conducted for four alternative forest properties having varying compartment structures: (A a property having an even development class distribution, (B sapling stands, (C young thinning stands, and (D mature stands. Simulations resulted in predicted yield value (predicted NPV distributions at both stand and property levels. Our results showed that ALS inventory errors were the most prominent source of uncertainty, leading to a 5.1–7.5% relative deviation of property-level NPV when an interest rate of 3% was applied. Interestingly, ALS inventory led to significant biases at the property level, ranging from 8.9% to 14.1% (3% interest rate. ALS inventory-based bias was the most significant in mature stand properties. Errors related to the growth predictions led to a relative standard deviation in NPV, varying from 1.5% to 4.1%. Growth model-related uncertainty was most significant in sapling stand properties. Timber price fluctuation caused the relative standard deviations ranged from 3.4% to 6.4% (3% interest rate. The combined relative variation caused by inventory errors, growth model errors and timber price fluctuation varied, depending on the property type and applied rates of interest, from 6.4% to 12.6%. By applying the methodology described here, one may take into account the effects of various uncertainty factors in the prediction of forest yield value and to supply the
Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise
West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.
2015-01-01
The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.
Climate Projections and Uncertainty Communication.
Joslyn, Susan L; LeClerc, Jared E
2016-01-01
Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. Copyright © 2015 Cognitive Science Society, Inc.
Estimating real-time predictive hydrological uncertainty
Verkade, J.S.
2015-01-01
Flood early warning systems provide a potentially highly effective flood risk reduction measure. The effectiveness of early warning, however, is affected by forecasting uncertainty: the impossibility of knowing, in advance, the exact future state of hydrological systems. Early warning systems
International Nuclear Information System (INIS)
Leray, O.; Hudelot, J.P.; Doederlein, C.; Vaglio-Gaudard, C.; Antony, M.; Santamarina, A.; Bernard, D.
2012-01-01
The new European material testing Jules Horowitz Reactor (JHR), currently under construction in Cadarache center (CEA France), will use LEU (20% enrichment in 235 U) fuels (U 3 Si 2 for the start up and UMoAl in the future) which are quite different from the industrial oxide fuel, for which an extensive neutronics experimental validation database has been established. The HORUS3D/N neutronics calculation scheme, used for the design and safety studies of the JHR, is being developed within the framework of a rigorous verification-numerical validation-experimental validation methodology. In this framework, the experimental VALMONT (Validation of Aluminium Molybdenum uranium fuel for Neutronics) program has been performed in the MINERVE facility of CEA Cadarache (France), in order to qualify the capability of HORUS3D/N to accurately calculate the reactivity of the JHR reactor. The MINERVE facility using the oscillation technique provides accurate measurements of reactivity effect of samples. The VALMONT program includes oscillations of samples of UAl ∞ /Al and UMo/Al with enrichments ranging from 0.2% to 20% and Uranium densities from 2.2 to 8 g/cm 3 . The geometry of the samples and the pitch of the experimental lattice ensure maximum representativeness with the neutron spectrum expected for JHR. By comparing the effect of the sample with the one of a known fuel specimen, the reactivity effect can be measured in absolute terms and be compared to computational results. Special attention was paid to the rigorous determination and reduction of the experimental uncertainties. The calculational analysis of the VALMONT results was performed with the French deterministic code APOLLO2. A comparison of the impact of the different calculation methods, data libraries and energy meshes that were tested is presented. The interpretation of the VALMONT experimental program allowed the experimental validation of JHR fuel UMoAl8 (with an enrichment of 19.75% 235 U) by the Minerve
Examples of measurement uncertainty evaluations in accordance with the revised GUM
Runje, B.; Horvatic, A.; Alar, V.; Medic, S.; Bosnjakovic, A.
2016-11-01
The paper presents examples of the evaluation of uncertainty components in accordance with the current and revised Guide to the expression of uncertainty in measurement (GUM). In accordance with the proposed revision of the GUM a Bayesian approach was conducted for both type A and type B evaluations.The law of propagation of uncertainty (LPU) and the law of propagation of distribution applied through the Monte Carlo method, (MCM) were used to evaluate associated standard uncertainties, expanded uncertainties and coverage intervals. Furthermore, the influence of the non-Gaussian dominant input quantity and asymmetric distribution of the output quantity y on the evaluation of measurement uncertainty was analyzed. In the case when the probabilistically coverage interval is not symmetric, the coverage interval for the probability P is estimated from the experimental probability density function using the Monte Carlo method. Key highlights of the proposed revision of the GUM were analyzed through a set of examples.
International Nuclear Information System (INIS)
McClure, P.; Unal, C.; Boyack, B.
2010-01-01
Closing the fuel cycle is one of the major technical challenges to expanding the use of nuclear energy to meet the world's need for benign, environmentally safe electrical power. 'Closing the fuel cycle ' means getting the maximum amount of energy possible out of uranium fuel while minimizing the amount of high-level waste that must be stored. The U.S. Dept. of Energy's Fuel Cycle Research and Development (FCRD) program is investigating the recycling of transuranic isotopes contained in spent nuclear fuel. Recycling minimizes the amount of high-level waste that would require storage in repositories. Developing new fuels and the advanced reactors that burn them is a long process typically spanning two decades from concept to final licensing. A unique challenge to meeting the FCRD objectives in this area is the fact that the experimental database is incomplete. Thus, using a traditional, heavily empirical approach to develop and qualify fuels for an advanced reactor plant will be very challenging. To address this concern, FCRD has launched an advanced modeling and simulation (M and S) approach to revolutionize fuel development and advanced reactor design. This new approach depends on transferring recent advances in the computational sciences and computer technologies into the development of these program elements. The licensing process that historically has been used by the U.S. Nuclear Regulatory Commission (NRC) for fuels qualification is based on using a large body of experimental work to qualify and license a new fuel. If an M and S approach with more directed experimentation is to be considered as an alternative approach for licensing, a framework needs to be developed early in the process. Using M and S with limited experiments as a basis for demonstrating that a design can meet NRC requirements is not new and has precedence in the NRC. The method is generically referred to as a 'Best Estimate plus Uncertainty' (BE+U) approach because the goal of the
Energy Technology Data Exchange (ETDEWEB)
Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.
2007-07-30
This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow
Wang, Lei; Xiong, Chuang; Wang, Xiaojun; Li, Yunlong; Xu, Menghui
2018-04-01
Considering that multi-source uncertainties from inherent nature as well as the external environment are unavoidable and severely affect the controller performance, the dynamic safety assessment with high confidence is of great significance for scientists and engineers. In view of this, the uncertainty quantification analysis and time-variant reliability estimation corresponding to the closed-loop control problems are conducted in this study under a mixture of random, interval, and convex uncertainties. By combining the state-space transformation and the natural set expansion, the boundary laws of controlled response histories are first confirmed with specific implementation of random items. For nonlinear cases, the collocation set methodology and fourth Rounge-Kutta algorithm are introduced as well. Enlightened by the first-passage model in random process theory as well as by the static probabilistic reliability ideas, a new definition of the hybrid time-variant reliability measurement is provided for the vibration control systems and the related solution details are further expounded. Two engineering examples are eventually presented to demonstrate the validity and applicability of the methodology developed.
Kenneth E. Skog; Kim Pingoud; James E. Smith
2004-01-01
A method is suggested for estimating additions to carbon stored in harvested wood products (HWP) and for evaluating uncertainty. The method uses data on HWP production and trade from several decades and tracks annual additions to pools of HWP in use, removals from use, additions to solid waste disposal sites (SWDS), and decay from SWDS. The method is consistent with...
Quantification of Safety-Critical Software Test Uncertainty
International Nuclear Information System (INIS)
Khalaquzzaman, M.; Cho, Jaehyun; Lee, Seung Jun; Jung, Wondea
2015-01-01
The method, conservatively assumes that the failure probability of a software for the untested inputs is 1, and the failure probability turns in 0 for successful testing of all test cases. However, in reality the chance of failure exists due to the test uncertainty. Some studies have been carried out to identify the test attributes that affect the test quality. Cao discussed the testing effort, testing coverage, and testing environment. Management of the test uncertainties was discussed in. In this study, the test uncertainty has been considered to estimate the software failure probability because the software testing process is considered to be inherently uncertain. A reliability estimation of software is very important for a probabilistic safety analysis of a digital safety critical system of NPPs. This study focused on the estimation of the probability of a software failure that considers the uncertainty in software testing. In our study, BBN has been employed as an example model for software test uncertainty quantification. Although it can be argued that the direct expert elicitation of test uncertainty is much simpler than BBN estimation, however the BBN approach provides more insights and a basis for uncertainty estimation
A Bootstrap Approach to Computing Uncertainty in Inferred Oil and Gas Reserve Estimates
International Nuclear Information System (INIS)
Attanasi, Emil D.; Coburn, Timothy C.
2004-01-01
This study develops confidence intervals for estimates of inferred oil and gas reserves based on bootstrap procedures. Inferred reserves are expected additions to proved reserves in previously discovered conventional oil and gas fields. Estimates of inferred reserves accounted for 65% of the total oil and 34% of the total gas assessed in the U.S. Geological Survey's 1995 National Assessment of oil and gas in US onshore and State offshore areas. When the same computational methods used in the 1995 Assessment are applied to more recent data, the 80-year (from 1997 through 2076) inferred reserve estimates for pre-1997 discoveries located in the lower 48 onshore and state offshore areas amounted to a total of 39.7 billion barrels of oil (BBO) and 293 trillion cubic feet (TCF) of gas. The 90% confidence interval about the oil estimate derived from the bootstrap approach is 22.4 BBO to 69.5 BBO. The comparable 90% confidence interval for the inferred gas reserve estimate is 217 TCF to 413 TCF. The 90% confidence interval describes the uncertainty that should be attached to the estimates. It also provides a basis for developing scenarios to explore the implications for energy policy analysis
Directory of Open Access Journals (Sweden)
Jalid Abdelilah
2016-01-01
Full Text Available In engineering industry, control of manufactured parts is usually done on a coordinate measuring machine (CMM, a sensor mounted at the end of the machine probes a set of points on the surface to be inspected. Data processing is performed subsequently using software, and the result of this measurement process either validates or not the conformity of the part. Measurement uncertainty is a crucial parameter for making the right decisions, and not taking into account this parameter can, therefore, sometimes lead to aberrant decisions. The determination of the uncertainty measurement on CMM is a complex task for the variety of influencing factors. Through this study, we aim to check if the uncertainty propagation model developed according to the guide to the expression of uncertainty in measurement (GUM approach is valid, we present here a comparison of the GUM and Monte Carlo methods. This comparison is made to estimate a flatness deviation of a surface belonging to an industrial part and the uncertainty associated to the measurement result.
The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates
Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.
2018-02-01
We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.
Som, Nicholas A.; Goodman, Damon H.; Perry, Russell W.; Hardy, Thomas B.
2016-01-01
Previous methods for constructing univariate habitat suitability criteria (HSC) curves have ranged from professional judgement to kernel-smoothed density functions or combinations thereof. We present a new method of generating HSC curves that applies probability density functions as the mathematical representation of the curves. Compared with previous approaches, benefits of our method include (1) estimation of probability density function parameters directly from raw data, (2) quantitative methods for selecting among several candidate probability density functions, and (3) concise methods for expressing estimation uncertainty in the HSC curves. We demonstrate our method with a thorough example using data collected on the depth of water used by juvenile Chinook salmon (Oncorhynchus tschawytscha) in the Klamath River of northern California and southern Oregon. All R code needed to implement our example is provided in the appendix. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Evaluation and uncertainty estimates of Charpy-impact data
International Nuclear Information System (INIS)
Stallman, F.W.
1982-01-01
Shifts in transition temperature and upper-shelf energy from Charpy tests are used to determine the extent of radiation embrittlement in steels. In order to determine these parameters reliably and to obtain uncertainty estimates, curve fitting procedures need to be used. The hyperbolic tangent or similar models have been proposed to fit the temperature-impact-energy curve. These models are not based on the actual fracture mechanics and are indeed poorly suited in many applications. The results may be falsified by forcing an inflexible curve through too many data points. The nonlinearity of the fit poses additional problems. In this paper, a simple linear fit is proposed. By eliminating data which are irrelevant for the determination of a given parameter, better reliability and accuracy can be achieved. Additional input parameters like fluence and irradiation temperature can be included. This is important if there is a large variation of fluence and temperature in different test specimens. The method has been tested with Charpy specimens from the NRC-HSST experiments
Ershadi, Ali; McCabe, Matthew; Evans, Jason P.; Mariethoz, Gregoire; Kavetski, Dmitri
2013-01-01
The influence of uncertainty in land surface temperature, air temperature, and wind speed on the estimation of sensible heat flux is analyzed using a Bayesian inference technique applied to the Surface Energy Balance System (SEBS) model
Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J
2017-06-01
In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision
Uncertainty Analysis of the Temperature–Resistance Relationship of Temperature Sensing Fabric
Directory of Open Access Journals (Sweden)
Muhammad Dawood Husain
2016-11-01
Full Text Available This paper reports the uncertainty analysis of the temperature–resistance (TR data of the newly developed temperature sensing fabric (TSF, which is a double-layer knitted structure fabricated on an electronic flat-bed knitting machine, made of polyester as a basal yarn, and embedded with fine metallic wire as sensing element. The measurement principle of the TSF is identical to temperature resistance detector (RTD; that is, change in resistance due to change in temperature. The regression uncertainty (uncertainty within repeats and repeatability uncertainty (uncertainty among repeats were estimated by analysing more than 300 TR experimental repeats of 50 TSF samples. The experiments were performed under dynamic heating and cooling environments on a purpose-built test rig within the temperature range of 20–50 °C. The continuous experimental data was recorded through LabVIEW-based graphical user interface. The result showed that temperature and resistance values were not only repeatable but reproducible, with only minor variations. The regression uncertainty was found to be less than ±0.3 °C; the TSF sample made of Ni and W wires showed regression uncertainty of <±0.13 °C in comparison to Cu-based TSF samples (>±0.18 °C. The cooling TR data showed considerably reduced values (±0.07 °C of uncertainty in comparison with the heating TR data (±0.24 °C. The repeatability uncertainty was found to be less than ±0.5 °C. By increasing the number of samples and repeats, the uncertainties may be reduced further. The TSF could be used for continuous measurement of the temperature profile on the surface of the human body.
OECD/CSNI Workshop on Best Estimate Methods and Uncertainty Evaluations - Workshop Proceedings
International Nuclear Information System (INIS)
2013-01-01
Best-Estimate Methods plus Uncertainty Evaluation are gaining increased interest in the licensing process. On the other hand, lessons learnt from the BEMUSE (NEA/CSNI/R(2011)3) and SM2A (NEA/CSNI/R(2011)3) benchmarks, progress of UAM benchmark, and answers to the WGAMA questionnaire on the Use of Best-Estimate Methodologies show that improvements of the present methods are necessary and new applications appear. The objective of this workshop is to provide a forum for a wide range of experts to exchange information in the area of best estimate analysis and uncertainty evaluation methods and address issues drawn-up from BEMUSE, UAM and SM2A activities. Both, improvement of existing methods and recent new developments are included. As a result of the workshop development, a set of recommendations, including lines for future activities were proposed. The organisation of the Workshop was divided into three parts: Opening session including key notes from OECD and IAEA representatives, Technical sessions, and a Wrap-up session. All sessions included a debate with participation from the audience constituted by 71 attendees. The workshop consisted of four technical sessions: a) Development achievements of BEPU methods and State of the Art: The objective of this session was to present the different approaches to deal with Best Estimate codes and uncertainties evaluations. A total of six papers were presented. One initial paper summarized the existing methods; the following open papers were focused on specific methods stressing their bases, peculiarities and advantages. As a result of the session a picture of the current State of the Art was obtained. b) International comparative activities: This session reviewed the set of international activities around the subject of BEPU methods benchmarking and development. From each of the activities a description of the objectives, development, main results, conclusions and recommendations (in case it is finalized) was presented. This
Handling uncertainty and networked structure in robot control
Tamás, Levente
2015-01-01
This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer...
Antineutrinos from Earth: A reference model and its uncertainties
International Nuclear Information System (INIS)
Mantovani, Fabio; Carmignani, Luigi; Fiorentini, Gianni; Lissia, Marcello
2004-01-01
We predict geoneutrino fluxes in a reference model based on a detailed description of Earth's crust and mantle and using the best available information on the abundances of uranium, thorium, and potassium inside Earth's layers. We estimate the uncertainties of fluxes corresponding to the uncertainties of the element abundances. In addition to distance integrated fluxes, we also provide the differential fluxes as a function of distance from several sites of experimental interest. Event yields at several locations are estimated and their dependence on the neutrino oscillation parameters is discussed. At Kamioka we predict N(U+Th)=35±6 events for 10 32 proton yr and 100% efficiency assuming sin 2 (2θ)=0.863 and δm 2 =7.3x10 -5 eV 2 . The maximal prediction is 55 events, obtained in a model with fully radiogenic production of the terrestrial heat flow
Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs
Watt, G.
2012-01-01
We investigate the Monte Carlo approach to propagation of experimental uncertainties within the context of the established 'MSTW 2008' global analysis of parton distribution functions (PDFs) of the proton at next-to-leading order in the strong coupling. We show that the Monte Carlo approach using replicas of the original data gives PDF uncertainties in good agreement with the usual Hessian approach using the standard Delta(chi^2) = 1 criterion, then we explore potential parameterisation bias by increasing the number of free parameters, concluding that any parameterisation bias is likely to be small, with the exception of the valence-quark distributions at low momentum fractions x. We motivate the need for a larger tolerance, Delta(chi^2) > 1, by making fits to restricted data sets and idealised consistent or inconsistent pseudodata. Instead of using data replicas, we alternatively produce PDF sets randomly distributed according to the covariance matrix of fit parameters including appropriate tolerance values,...
Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†
Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia
2015-01-01
Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144
Schwarz, L.K.; Runge, M.C.
2009-01-01
Age estimation of individuals is often an integral part of species management research, and a number of ageestimation techniques are commonly employed. Often, the error in these techniques is not quantified or accounted for in other analyses, particularly in growth curve models used to describe physiological responses to environment and human impacts. Also, noninvasive, quick, and inexpensive methods to estimate age are needed. This research aims to provide two Bayesian methods to (i) incorporate age uncertainty into an age-length Schnute growth model and (ii) produce a method from the growth model to estimate age from length. The methods are then employed for Florida manatee (Trichechus manatus) carcasses. After quantifying the uncertainty in the aging technique (counts of ear bone growth layers), we fit age-length data to the Schnute growth model separately by sex and season. Independent prior information about population age structure and the results of the Schnute model are then combined to estimate age from length. Results describing the age-length relationship agree with our understanding of manatee biology. The new methods allow us to estimate age, with quantified uncertainty, for 98% of collected carcasses: 36% from ear bones, 62% from length.
Cost uncertainty for different levels of technology maturity
International Nuclear Information System (INIS)
DeMuth, S.F.; Franklin, A.L.
1996-01-01
It is difficult at best to apply a single methodology for estimating cost uncertainties related to technologies of differing maturity. While highly mature technologies may have significant performance and manufacturing cost data available, less well developed technologies may be defined in only conceptual terms. Regardless of the degree of technical maturity, often a cost estimate relating to application of the technology may be required to justify continued funding for development. Yet, a cost estimate without its associated uncertainty lacks the information required to assess the economic risk. For this reason, it is important for the developer to provide some type of uncertainty along with a cost estimate. This study demonstrates how different methodologies for estimating uncertainties can be applied to cost estimates for technologies of different maturities. For a less well developed technology an uncertainty analysis of the cost estimate can be based on a sensitivity analysis; whereas, an uncertainty analysis of the cost estimate for a well developed technology can be based on an error propagation technique from classical statistics. It was decided to demonstrate these uncertainty estimation techniques with (1) an investigation of the additional cost of remediation due to beyond baseline, nearly complete, waste heel retrieval from underground storage tanks (USTs) at Hanford; and (2) the cost related to the use of crystalline silico-titanate (CST) rather than the baseline CS100 ion exchange resin for cesium separation from UST waste at Hanford
International Nuclear Information System (INIS)
Monni, S.; Savolainen, I.; Peltoniemi, M.; Lehtonen, A.; Makipaa, R.; Palosuo, T.
2007-01-01
Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions
Statistical analysis of correlated experimental data and neutron cross section evaluation
International Nuclear Information System (INIS)
Badikov, S.A.
1998-01-01
The technique for evaluation of neutron cross sections on the basis of statistical analysis of correlated experimental data is presented. The most important stages of evaluation beginning from compilation of correlation matrix for measurement uncertainties till representation of the analysis results in the ENDF-6 format are described in details. Special attention is paid to restrictions (positive uncertainty) on covariation matrix of approximate parameters uncertainties generated within the method of least square fit which is derived from physical reasons. The requirements for source experimental data assuring satisfaction of the restrictions mentioned above are formulated. Correlation matrices of measurement uncertainties in particular should be also positively determined. Variants of modelling the positively determined correlation matrices of measurement uncertainties in a situation when their consequent calculation on the basis of experimental information is impossible are discussed. The technique described is used for creating the new generation of estimates of dosimetric reactions cross sections for the first version of the Russian dosimetric file (including nontrivial covariation information)
Using interpolation to estimate system uncertainty in gene expression experiments.
Directory of Open Access Journals (Sweden)
Lee J Falin
Full Text Available The widespread use of high-throughput experimental assays designed to measure the entire complement of a cell's genes or gene products has led to vast stores of data that are extremely plentiful in terms of the number of items they can measure in a single sample, yet often sparse in the number of samples per experiment due to their high cost. This often leads to datasets where the number of treatment levels or time points sampled is limited, or where there are very small numbers of technical and/or biological replicates. Here we introduce a novel algorithm to quantify the uncertainty in the unmeasured intervals between biological measurements taken across a set of quantitative treatments. The algorithm provides a probabilistic distribution of possible gene expression values within unmeasured intervals, based on a plausible biological constraint. We show how quantification of this uncertainty can be used to guide researchers in further data collection by identifying which samples would likely add the most information to the system under study. Although the context for developing the algorithm was gene expression measurements taken over a time series, the approach can be readily applied to any set of quantitative systems biology measurements taken following quantitative (i.e. non-categorical treatments. In principle, the method could also be applied to combinations of treatments, in which case it could greatly simplify the task of exploring the large combinatorial space of future possible measurements.
International Nuclear Information System (INIS)
Monte, Luigi; Hakanson, Lars; Bergstroem, Ulla; Brittain, John; Heling, Rudie
1996-01-01
The principles of Empirically Based Uncertainty Analysis (EBUA) are described. EBUA is based on the evaluation of 'performance indices' that express the level of agreement between the model and sets of empirical independent data collected in different experimental circumstances. Some of these indices may be used to evaluate the confidence limits of the model output. The method is based on the statistical analysis of the distribution of the index values and on the quantitative relationship of these values with the ratio 'experimental data/model output'. Some performance indices are described in the present paper. Among these, the so-called 'functional distance' (d) between the logarithm of model output and the logarithm of the experimental data, defined as d 2 =Σ n 1 ( ln M i - ln O i ) 2 /n where M i is the i-th experimental value, O i the corresponding model evaluation and n the number of the couplets 'experimental value, predicted value', is an important tool for the EBUA method. From the statistical distribution of this performance index, it is possible to infer the characteristics of the distribution of the ratio 'experimental data/model output' and, consequently to evaluate the confidence limits for the model predictions. This method was applied to calculate the uncertainty level of a model developed to predict the migration of radiocaesium in lacustrine systems. Unfortunately, performance indices are affected by the uncertainty of the experimental data used in validation. Indeed, measurement results of environmental levels of contamination are generally associated with large uncertainty due to the measurement and sampling techniques and to the large variability in space and time of the measured quantities. It is demonstrated that this non-desired effect, in some circumstances, may be corrected by means of simple formulae
Barth, Timothy J.
2014-01-01
This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.
International Nuclear Information System (INIS)
Napier, Bruce A.; Shagina, N B.; Degteva, M O.; Tolstykh, E I.; Vorobiova, M I.; Anspaugh, L R.
2000-01-01
The Mayak Production Association (MPA) was the first facility in the former Soviet Union for the production of plutonium. As a result of failures in the technological processes in the late 1940's and early 1950's, members of the public were exposed via discharge of about 1017 Bq of liquid wastes into the Techa River (1949-1956). Residents of many villages downstream on the Techa River were exposed via a variety of pathways; the more significant included drinking of water from the river and external gamma exposure due to proximity to sediments and shoreline. The specific aim of this project is to enhance the reconstruction of external and internal radiation doses for individuals in the Extended Techa River Cohort. The purpose of this paper is to present the approaches being used to evaluate the uncertainty in the calculated individual doses and to provide example and representative results of the uncertainty analyses. The magnitude of the uncertainties varies depending on location and time of individual exposure, but the results from reference-individual calculations indicate that for external doses, the range of uncertainty is about factors of four to five. For internal doses, the range of uncertainty depends on village of residence, which is actually a surrogate for source of drinking water. For villages with single sources of drinking water (river or well), the ratio of the 97.5th percentile-to 2.5th percentile estimates can be a factor of 20 to 30. For villages with mixed sources of drinking water (river and well), the ratio of the range can be over two orders of magnitude
A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty
Kewlani, Gaurav; Crawford, Justin; Iagnemma, Karl
2012-05-01
The ability of ground vehicles to quickly and accurately analyse their dynamic response to a given input is critical to their safety and efficient autonomous operation. In field conditions, significant uncertainty is associated with terrain and/or vehicle parameter estimates, and this uncertainty must be considered in the analysis of vehicle motion dynamics. Here, polynomial chaos approaches that explicitly consider parametric uncertainty during modelling of vehicle dynamics are presented. They are shown to be computationally more efficient than the standard Monte Carlo scheme, and experimental results compared with the simulation results performed on ANVEL (a vehicle simulator) indicate that the method can be utilised for efficient and accurate prediction of vehicle motion in realistic scenarios.
Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model
Wang, Shitao
2016-05-27
Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model\\'s estimates of the plume\\'s trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate\\'s contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.
Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model
Wang, Shitao; Iskandarani, Mohamed; Srinivasan, Ashwanth; Thacker, W. Carlisle; Winokur, Justin; Knio, Omar
2016-01-01
Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model's estimates of the plume's trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate's contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.
International Nuclear Information System (INIS)
Vinai, P.
2007-10-01
For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under operational and transient conditions. Such studies are based on detailed computer simulations. With the progresses achieved in computer technology and the greater availability of experimental and plant data, the use of best estimate codes for safety evaluations has gained increasing acceptance. The application of best estimate safety analysis has raised new problems that need to be addressed: it has become more crucial to assess as to how reliable code predictions are, especially when they need to be compared against safety limits that must not be crossed. It becomes necessary to identify and quantify the various possible sources of uncertainty that affect the reliability of the results. Currently, such uncertainty evaluations are generally based on experts' opinion. In the present research, a novel methodology based on a non-parametric statistical approach has been developed for objective quantification of best-estimate code uncertainties related to the physical models used in the code. The basis is an evaluation of the accuracy of a given physical model achieved by comparing its predictions with experimental data from an appropriate set of separate-effect tests. The differences between measurements and predictions can be considered stochastically distributed, and thus a statistical approach can be employed. The first step was the development of a procedure for investigating the dependence of a given physical model's accuracy on the experimental conditions. Each separate-effect test effectively provides a random sample of discrepancies between measurements and predictions, corresponding to a location in the state space defined by a certain number of independent system variables. As a consequence, the samples of 'errors', achieved from analysis of the entire database, are
Farrance, Ian; Frenkel, Robert
2014-01-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through the functional
Farrance, Ian; Frenkel, Robert
2014-02-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship
Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal
2016-07-01
Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.
Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal
2016-07-08
Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.
Barazzetti Barbieri, Cristina; de Souza Sarkis, Jorge Eduardo
2018-07-01
The forensic interpretation of environmental analytical data is usually challenging due to the high geospatial variability of these data. The measurements' uncertainty includes contributions from the sampling and from the sample handling and preparation processes. These contributions are often disregarded in analytical techniques results' quality assurance. A pollution crime investigation case was used to carry out a methodology able to address these uncertainties in two different environmental compartments, freshwater sediments and landfill leachate. The methodology used to estimate the uncertainty was the duplicate method (that replicates predefined steps of the measurement procedure in order to assess its precision) and the parameters used to investigate the pollution were metals (Cr, Cu, Ni, and Zn) in the leachate, the suspect source, and in the sediment, the possible sink. The metal analysis results were compared to statutory limits and it was demonstrated that Cr and Ni concentrations in sediment samples exceeded the threshold levels at all sites downstream the pollution sources, considering the expanded uncertainty U of the measurements and a probability of contamination >0.975, at most sites. Cu and Zn concentrations were above the statutory limits at two sites, but the classification was inconclusive considering the uncertainties of the measurements. Metal analyses in leachate revealed that Cr concentrations were above the statutory limits with a probability of contamination >0.975 in all leachate ponds while the Cu, Ni and Zn probability of contamination was below 0.025. The results demonstrated that the estimation of the sampling uncertainty, which was the dominant component of the combined uncertainty, is required for a comprehensive interpretation of the environmental analyses results, particularly in forensic cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Deterministic uncertainty analysis
International Nuclear Information System (INIS)
Worley, B.A.
1987-01-01
Uncertainties of computer results are of primary interest in applications such as high-level waste (HLW) repository performance assessment in which experimental validation is not possible or practical. This work presents an alternate deterministic approach for calculating uncertainties that has the potential to significantly reduce the number of computer runs required for conventional statistical analysis. 7 refs., 1 fig
Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr
2012-01-01
Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry
2016-04-01
Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in
Characterizing Epistemic Uncertainty for Launch Vehicle Designs
Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad
2016-01-01
NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.
International Nuclear Information System (INIS)
Schneiders, Jan F G; Sciacchitano, Andrea
2017-01-01
The track benchmarking method (TBM) is proposed for uncertainty quantification of particle tracking velocimetry (PTV) data mapped onto a regular grid. The method provides statistical uncertainty for a velocity time-series and can in addition be used to obtain instantaneous uncertainty at increased computational cost. Interpolation techniques are typically used to map velocity data from scattered PTV (e.g. tomographic PTV and Shake-the-Box) measurements onto a Cartesian grid. Recent examples of these techniques are the FlowFit and VIC+ methods. The TBM approach estimates the random uncertainty in dense velocity fields by performing the velocity interpolation using a subset of typically 95% of the particle tracks and by considering the remaining tracks as an independent benchmarking reference. In addition, also a bias introduced by the interpolation technique is identified. The numerical assessment shows that the approach is accurate when particle trajectories are measured over an extended number of snapshots, typically on the order of 10. When only short particle tracks are available, the TBM estimate overestimates the measurement error. A correction to TBM is proposed and assessed to compensate for this overestimation. The experimental assessment considers the case of a jet flow, processed both by tomographic PIV and by VIC+. The uncertainty obtained by TBM provides a quantitative evaluation of the measurement accuracy and precision and highlights the regions of high error by means of bias and random uncertainty maps. In this way, it is possible to quantify the uncertainty reduction achieved by advanced interpolation algorithms with respect to standard correlation-based tomographic PIV. The use of TBM for uncertainty quantification and comparison of different processing techniques is demonstrated. (paper)
Reliability analysis under epistemic uncertainty
International Nuclear Information System (INIS)
Nannapaneni, Saideep; Mahadevan, Sankaran
2016-01-01
This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.
Summary of uncertainty estimation results for Hanford tank chemical and radionuclide inventories
International Nuclear Information System (INIS)
Ferryman, T.A.; Amidan, B.G.; Chen, G.
1998-09-01
The exact physical and chemical nature of 55 million gallons of radioactive waste held in 177 underground waste tanks at the Hanford Site is not known in sufficient detail to support safety, retrieval, and immobilization missions. The Hanford Engineering Analysis Best-Basis team has made point estimates of the inventories in each tank. The purpose of this study is to estimate probability distributions for each of the analytes and tanks for which the Hanford Best-Basis team has made point estimates. Uncertainty intervals can then be calculated for the Best-Basis inventories and should facilitate the cleanup missions. The methodology used to generate the results published in the Tank Characterization Database (TCD) and summarized in this paper is based on scientific principles, sound technical knowledge of the realities associated with the Hanford waste tanks, the chemical analysis of actual samples from the tanks, the Hanford Best-Basic research, and historical data records. The methodology builds on research conducted by Pacific Northwest National Laboratory (PNNL) over the last few years. Appendix A of this report summarizes the results of the study. The full set of results (in percentiles, 1--99) is available through the TCD, (http://twins.pnl.gov:8001)
Summary of uncertainty estimation results for Hanford tank chemical and radionuclide inventories
Energy Technology Data Exchange (ETDEWEB)
Ferryman, T.A.; Amidan, B.G.; Chen, G. [and others
1998-09-01
The exact physical and chemical nature of 55 million gallons of radioactive waste held in 177 underground waste tanks at the Hanford Site is not known in sufficient detail to support safety, retrieval, and immobilization missions. The Hanford Engineering Analysis Best-Basis team has made point estimates of the inventories in each tank. The purpose of this study is to estimate probability distributions for each of the analytes and tanks for which the Hanford Best-Basis team has made point estimates. Uncertainty intervals can then be calculated for the Best-Basis inventories and should facilitate the cleanup missions. The methodology used to generate the results published in the Tank Characterization Database (TCD) and summarized in this paper is based on scientific principles, sound technical knowledge of the realities associated with the Hanford waste tanks, the chemical analysis of actual samples from the tanks, the Hanford Best-Basic research, and historical data records. The methodology builds on research conducted by Pacific Northwest National Laboratory (PNNL) over the last few years. Appendix A of this report summarizes the results of the study. The full set of results (in percentiles, 1--99) is available through the TCD, (http://twins.pnl.gov:8001).
Nuclear Physical Uncertainties in Modeling X-Ray Bursts
Regis, Eric; Amthor, A. Matthew
2017-09-01
Type I x-ray bursts occur when a neutron star accretes material from the surface of another star in a compact binary star system. For certain accretion rates and material compositions, much of the nuclear material is burned in short, explosive bursts. Using a one-dimensional stellar model, Kepler, and a comprehensive nuclear reaction rate library, ReacLib, we have simulated chains of type I x-ray bursts. Unfortunately, there are large remaining uncertainties in the nuclear reaction rates involved, since many of the isotopes reacting are unstable and have not yet been studied experimentally. Some individual reactions, when varied within their estimated uncertainty, alter the light curves dramatically. This limits our ability to understand the structure of the neutron star. Previous studies have looked at the effects of individual reaction rate uncertainties. We have applied a Monte Carlo method ``-simultaneously varying a set of reaction rates'' -in order to probe the expected uncertainty in x-ray burst behaviour due to the total uncertainty in all nuclear reaction rates. Furthermore, we aim to discover any nonlinear effects due to the coupling between different reaction rates. Early results show clear non-linear effects. This research was made possible by NSF-DUE Grant 1317446, BUScholars Program.
Statistical characterization of roughness uncertainty and impact on wind resource estimation
DEFF Research Database (Denmark)
Kelly, Mark C.; Ejsing Jørgensen, Hans
2017-01-01
In this work we relate uncertainty in background roughness length (z0) to uncertainty in wind speeds, where the latter are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to roughness is derived analytically for the industry...... between mean wind speed and AEP. Following our developments, we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and we also find that sites with larger background roughness incur relatively larger uncertainties.......-standard European Wind Atlas method, which is based on the geostrophic drag law. We statistically consider roughness and its corresponding uncertainty, in terms of both z0 derived from measured wind speeds as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty...
Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan
2012-07-01
Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7 W m-2 (out of 345 W m-2) and 4 W m-2 (out of 192 W m-2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3 W m-2 (out of 398 W m-2) and 3 W m-2 (out of 23 W m-2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12 W m-2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106 W m-2 and 130 W m-2.
The deuteron-radius puzzle is alive: A new analysis of nuclear structure uncertainties
Hernandez, O. J.; Ekström, A.; Nevo Dinur, N.; Ji, C.; Bacca, S.; Barnea, N.
2018-03-01
To shed light on the deuteron radius puzzle we analyze the theoretical uncertainties of the nuclear structure corrections to the Lamb shift in muonic deuterium. We find that the discrepancy between the calculated two-photon exchange correction and the corresponding experimentally inferred value by Pohl et al. [1] remain. The present result is consistent with our previous estimate, although the discrepancy is reduced from 2.6 σ to about 2 σ. The error analysis includes statistic as well as systematic uncertainties stemming from the use of nucleon-nucleon interactions derived from chiral effective field theory at various orders. We therefore conclude that nuclear theory uncertainty is more likely not the source of the discrepancy.
Proof of concept and dose estimation with binary responses under model uncertainty.
Klingenberg, B
2009-01-30
This article suggests a unified framework for testing Proof of Concept (PoC) and estimating a target dose for the benefit of a more comprehensive, robust and powerful analysis in phase II or similar clinical trials. From a pre-specified set of candidate models, we choose the ones that best describe the observed dose-response. To decide which models, if any, significantly pick up a dose effect, we construct the permutation distribution of the minimum P-value over the candidate set. This allows us to find critical values and multiplicity adjusted P-values that control the familywise error rate of declaring any spurious effect in the candidate set as significant. Model averaging is then used to estimate a target dose. Popular single or multiple contrast tests for PoC, such as the Cochran-Armitage, Dunnett or Williams tests, are only optimal for specific dose-response shapes and do not provide target dose estimates with confidence limits. A thorough evaluation and comparison of our approach to these tests reveal that its power is as good or better in detecting a dose-response under various shapes with many more additional benefits: It incorporates model uncertainty in PoC decisions and target dose estimation, yields confidence intervals for target dose estimates and extends to more complicated data structures. We illustrate our method with the analysis of a Phase II clinical trial. Copyright (c) 2008 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Ingemansson, Tor [ALARA Engineering AB, Skultuna (Sweden)
2000-04-01
SFR-1 is a facility for disposal of low and intermediate level radioactive waste. The uncertainty in estimation of the activity accumulated in different cleaning filters, originating in the Swedish BWR-, PWR-reactors and CLAB - the Central interim storage facility for spent nuclear fuel - has been analyzed to be 10 - 14%, depending on the methods used for measuring the activity at the power plants. Other waste or scrap contribute with approx. 1.5% of the total amount of actinides and {sup 90}Sr. The uncertainty in this fraction is about 20%. The uncertainties are surprisingly small, and explain the good agreement between estimates made with different methods.
Estimation of plant sampling uncertainty: an example based on chemical analysis of moss samples.
Dołęgowska, Sabina
2016-11-01
In order to estimate the level of uncertainty arising from sampling, 54 samples (primary and duplicate) of the moss species Pleurozium schreberi (Brid.) Mitt. were collected within three forested areas (Wierna Rzeka, Piaski, Posłowice Range) in the Holy Cross Mountains (south-central Poland). During the fieldwork, each primary sample composed of 8 to 10 increments (subsamples) was taken over an area of 10 m 2 whereas duplicate samples were collected in the same way at a distance of 1-2 m. Subsequently, all samples were triple rinsed with deionized water, dried, milled, and digested (8 mL HNO 3 (1:1) + 1 mL 30 % H 2 O 2 ) in a closed microwave system Multiwave 3000. The prepared solutions were analyzed twice for Cu, Fe, Mn, and Zn using FAAS and GFAAS techniques. All datasets were checked for normality and for normally distributed elements (Cu from Piaski, Zn from Posłowice, Fe, Zn from Wierna Rzeka). The sampling uncertainty was computed with (i) classical ANOVA, (ii) classical RANOVA, (iii) modified RANOVA, and (iv) range statistics. For the remaining elements, the sampling uncertainty was calculated with traditional and/or modified RANOVA (if the amount of outliers did not exceed 10 %) or classical ANOVA after Box-Cox transformation (if the amount of outliers exceeded 10 %). The highest concentrations of all elements were found in moss samples from Piaski, whereas the sampling uncertainty calculated with different statistical methods ranged from 4.1 to 22 %.
Uncertainties in the Norwegian greenhouse gas emission inventory
Energy Technology Data Exchange (ETDEWEB)
Flugsrud, Ketil; Hoem, Britta
2011-11-15
The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and from direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements.Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC tier 2 method, as described in the IPCC Good Practice Guidance (IPCC 2000) (IPCC 2000). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry). The uncertainty analysis performed in 2011 is an update of the uncertainty analyses performed for the greenhouse gas inventory in 2006 and 2000. During the project we have been in contact with experts, and have collected information about uncertainty from them. Main focus has been on the source categories where changes have occured since the last uncertainty analysis was performed in 2006. This includes new methodology for several source categories (for example for solvents and road traffic) as well as revised uncertainty estimates. For the installations included in the emission trading system, new information from the annual ETS reports about uncertainty in activity data and CO2 emission factor (and N2O emission factor for nitric acid production) has been used. This has improved the quality of the uncertainty estimates for the energy and manufacturing sectors. The results show that the uncertainty level in the total calculated greenhouse gas emissions for 2009 is around 4 per cent. When including the LULUCF sector, the total uncertainty is around 17 per cent in 2009. The uncertainty estimate is lower now than previous analyses have shown. This is partly due to a considerable work made to improve
Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty
International Nuclear Information System (INIS)
Iezzi, F; Todisco, M T
2015-01-01
The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable
Directory of Open Access Journals (Sweden)
Simon van Mourik
2014-06-01
Full Text Available Multi-parameter models in systems biology are typically ‘sloppy’: some parameters or combinations of parameters may be hard to estimate from data, whereas others are not. One might expect that parameter uncertainty automatically leads to uncertain predictions, but this is not the case. We illustrate this by showing that the prediction uncertainty of each of six sloppy models varies enormously among different predictions. Statistical approximations of parameter uncertainty may lead to dramatic errors in prediction uncertainty estimation. We argue that prediction uncertainty assessment must therefore be performed on a per-prediction basis using a full computational uncertainty analysis. In practice this is feasible by providing a model with a sample or ensemble representing the distribution of its parameters. Within a Bayesian framework, such a sample may be generated by a Markov Chain Monte Carlo (MCMC algorithm that infers the parameter distribution based on experimental data. Matlab code for generating the sample (with the Differential Evolution Markov Chain sampler and the subsequent uncertainty analysis using such a sample, is supplied as Supplemental Information.
Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.
2013-09-01
This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.
Scaling Factor Estimation Using Optimized Mass Change Strategy, Part 2: Experimental Results
DEFF Research Database (Denmark)
Fernández, Pelayo Fernández; Aenlle, Manuel López; Garcia, Luis M. Villa
2007-01-01
The mass change method is used to estimate the scaling factors, the uncertainty is reduced when, for each mode, the frequency shift is maximized and the changes in the mode shapes are minimized, which in turn, depends on the mass change strategy chosen to modify the dynamic behavior of the struct...
Supporting Qualified Database for Uncertainty Evaluation
International Nuclear Information System (INIS)
Petruzzi, A.; Fiori, F.; Kovtonyuk, A.; Lisovyy, O.; D'Auria, F.
2013-01-01
Uncertainty evaluation constitutes a key feature of BEPU (Best Estimate Plus Uncertainty) process. The uncertainty can be the result of a Monte Carlo type analysis involving input uncertainty parameters or the outcome of a process involving the use of experimental data and connected code calculations. Those uncertainty methods are discussed in several papers and guidelines (IAEA-SRS-52, OECD/NEA BEMUSE reports). The present paper aims at discussing the role and the depth of the analysis required for merging from one side suitable experimental data and on the other side qualified code calculation results. This aspect is mostly connected with the second approach for uncertainty mentioned above, but it can be used also in the framework of the first approach. Namely, the paper discusses the features and structure of the database that includes the following kinds of documents: 1. The 'RDS-facility' (Reference Data Set for the selected facility): this includes the description of the facility, the geometrical characterization of any component of the facility, the instrumentations, the data acquisition system, the evaluation of pressure losses, the physical properties of the material and the characterization of pumps, valves and heat losses; 2. The 'RDS-test' (Reference Data Set for the selected test of the facility): this includes the description of the main phenomena investigated during the test, the configuration of the facility for the selected test (possible new evaluation of pressure and heat losses if needed) and the specific boundary and initial conditions; 3. The 'QP' (Qualification Report) of the code calculation results: this includes the description of the nodalization developed following a set of homogeneous techniques, the achievement of the steady state conditions and the qualitative and quantitative analysis of the transient with the characterization of the Relevant Thermal-Hydraulics Aspects (RTA); 4. The EH (Engineering Handbook) of the input nodalization
Supporting qualified database for uncertainty evaluation
Energy Technology Data Exchange (ETDEWEB)
Petruzzi, A.; Fiori, F.; Kovtonyuk, A.; D' Auria, F. [Nuclear Research Group of San Piero A Grado, Univ. of Pisa, Via Livornese 1291, 56122 Pisa (Italy)
2012-07-01
Uncertainty evaluation constitutes a key feature of BEPU (Best Estimate Plus Uncertainty) process. The uncertainty can be the result of a Monte Carlo type analysis involving input uncertainty parameters or the outcome of a process involving the use of experimental data and connected code calculations. Those uncertainty methods are discussed in several papers and guidelines (IAEA-SRS-52, OECD/NEA BEMUSE reports). The present paper aims at discussing the role and the depth of the analysis required for merging from one side suitable experimental data and on the other side qualified code calculation results. This aspect is mostly connected with the second approach for uncertainty mentioned above, but it can be used also in the framework of the first approach. Namely, the paper discusses the features and structure of the database that includes the following kinds of documents: 1. The' RDS-facility' (Reference Data Set for the selected facility): this includes the description of the facility, the geometrical characterization of any component of the facility, the instrumentations, the data acquisition system, the evaluation of pressure losses, the physical properties of the material and the characterization of pumps, valves and heat losses; 2. The 'RDS-test' (Reference Data Set for the selected test of the facility): this includes the description of the main phenomena investigated during the test, the configuration of the facility for the selected test (possible new evaluation of pressure and heat losses if needed) and the specific boundary and initial conditions; 3. The 'QR' (Qualification Report) of the code calculation results: this includes the description of the nodalization developed following a set of homogeneous techniques, the achievement of the steady state conditions and the qualitative and quantitative analysis of the transient with the characterization of the Relevant Thermal-Hydraulics Aspects (RTA); 4. The EH (Engineering
Section summary: Uncertainty and design considerations
Stephen Hagen
2013-01-01
Well planned sampling designs and robust approaches to estimating uncertainty are critical components of forest monitoring. The importance of uncertainty estimation increases as deforestation and degradation issues become more closely tied to financing incentives for reducing greenhouse gas emissions in the forest sector. Investors like to know risk and risk is tightly...
Ziemann, Astrid; Starke, Manuela; Schütze, Claudia
2017-11-01
An imbalance of surface energy fluxes using the eddy covariance (EC) method is observed in global measurement networks although all necessary corrections and conversions are applied to the raw data. Mainly during nighttime, advection can occur, resulting in a closing gap that consequently should also affect the CO2 balances. There is the crucial need for representative concentration and wind data to measure advective fluxes. Ground-based remote sensing techniques are an ideal tool as they provide the spatially representative CO2 concentration together with wind components within the same voxel structure. For this purpose, the presented SQuAd (Spatially resolved Quantification of the Advection influence on the balance closure of greenhouse gases) approach applies an integrated method combination of acoustic and opt