WorldWideScience

Sample records for experimental transport benchmarks

  1. A computer code package for Monte Carlo photon-electron transport simulation Comparisons with experimental benchmarks

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    2000-01-01

    A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented

  2. Benchmarking & European Sustainable Transport Policies

    DEFF Research Database (Denmark)

    Gudmundsson, H.

    2003-01-01

    , Benchmarking is one of the management tools that have recently been introduced in the transport sector. It is rapidly being applied to a wide range of transport operations, services and policies. This paper is a contribution to the discussion of the role of benchmarking in the future efforts to...... contribution to the discussions within the Eusponsored BEST Thematic Network (Benchmarking European Sustainable Transport) which ran from 2000 to 2003....

  3. A heat transport benchmark problem for predicting the impact of measurements on experimental facility design

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2016-01-01

    Highlights: • Predictive Modeling of Coupled Multi-Physics Systems (PM_CMPS) methodology is used. • Impact of measurements for reducing predicted uncertainties is highlighted. • Presented thermal-hydraulics benchmark illustrates generally applicable concepts. - Abstract: This work presents the application of the “Predictive Modeling of Coupled Multi-Physics Systems” (PM_CMPS) methodology conceived by Cacuci (2014) to a “test-section benchmark” problem in order to quantify the impact of measurements for reducing the uncertainties in the conceptual design of a proposed experimental facility aimed at investigating the thermal-hydraulics characteristics expected in the conceptual design of the G4M reactor (GEN4ENERGY, 2012). This “test-section benchmark” simulates the conditions experienced by the hottest rod within the conceptual design of the facility's test section, modeling the steady-state conduction in a rod heated internally by a cosinus-like heat source, as typically encountered in nuclear reactors, and cooled by forced convection to a surrounding coolant flowing along the rod. The PM_CMPS methodology constructs a prior distribution using all of the available computational and experimental information, by relying on the maximum entropy principle to maximize the impact of all available information and minimize the impact of ignorance. The PM_CMPS methodology then constructs the posterior distribution using Bayes’ theorem, and subsequently evaluates it via saddle-point methods to obtain explicit formulas for the predicted optimal temperature distributions and predicted optimal values for the thermal-hydraulics model parameters that characterized the test-section benchmark. In addition, the PM_CMPS methodology also yields reduced uncertainties for both the model parameters and responses. As a general rule, it is important to measure a quantity consistently with, and more accurately than, the information extant prior to the measurement. For

  4. Benchmarking and Sustainable Transport Policy

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Wyatt, Andrew; Gordon, Lucy

    2004-01-01

    Order to learn from the best. In 2000 the European Commission initiated research to explore benchmarking as a tool to promote policies for ‘sustainable transport’. This paper reports findings and recommendations on how to address this challenge. The findings suggest that benchmarking is a valuable...... tool that may indeed help to move forward the transport policy agenda. However, there are major conditions and limitations. First of all it is not always so straightforward to delimit, measure and compare transport services in order to establish a clear benchmark. Secondly ‘sustainable transport......’ evokes a broad range of concerns that are hard to address fully at the level of specific practices. Thirdly policies are not directly comparable across space and context. For these reasons attempting to benchmark ‘sustainable transport policies’ against one another would be a highly complex task, which...

  5. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  6. Experimental and computational benchmark tests

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Briesmeister, J.F.

    1994-01-01

    A program involving principally NIST, LANL, and ORNL has been in progress for about four years now to establish a series of benchmark measurements and calculations related to the moderation and leakage of 252 Cf neutrons from a source surrounded by spherical aqueous moderators of various thicknesses and compositions. The motivation for these studies comes from problems in criticality calculations concerning arrays of multiplying components, where the leakage from one component acts as a source for the other components. This talk compares experimental and calculated values for the fission rates of four nuclides - 235 U, 239 Pu, 238 U, and 237 Np - in the leakage spectrum from moderator spheres of diameters 76.2 mm, 101.6 mm, and 127.0 mm, with either pure water or enriched B-10 solutions as the moderator. Very detailed Monte Carlo calculations were done with the MCNP code, using a open-quotes light waterclose quotes S(α,β) scattering kernel

  7. Numerical methods: Analytical benchmarking in transport theory

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1988-01-01

    Numerical methods applied to reactor technology have reached a high degree of maturity. Certainly one- and two-dimensional neutron transport calculations have become routine, with several programs available on personal computer and the most widely used programs adapted to workstation and minicomputer computational environments. With the introduction of massive parallelism and as experience with multitasking increases, even more improvement in the development of transport algorithms can be expected. Benchmarking an algorithm is usually not a very pleasant experience for the code developer. Proper algorithmic verification by benchmarking involves the following considerations: (1) conservation of particles, (2) confirmation of intuitive physical behavior, and (3) reproduction of analytical benchmark results. By using today's computational advantages, new basic numerical methods have been developed that allow a wider class of benchmark problems to be considered

  8. Benchmarking

    OpenAIRE

    Meylianti S., Brigita

    1999-01-01

    Benchmarking has different meaning to different people. There are five types of benchmarking, namely internal benchmarking, competitive benchmarking, industry / functional benchmarking, process / generic benchmarking and collaborative benchmarking. Each type of benchmarking has its own advantages as well as disadvantages. Therefore it is important to know what kind of benchmarking is suitable to a specific application. This paper will discuss those five types of benchmarking in detail, includ...

  9. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland; Köberl, Oliver

    2014-01-01

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the 235 U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  10. Experimental Benchmarking of Fire Modeling Simulations. Final Report

    International Nuclear Information System (INIS)

    Greiner, Miles; Lopez, Carlos

    2003-01-01

    A series of large-scale fire tests were performed at Sandia National Laboratories to simulate a nuclear waste transport package under severe accident conditions. The test data were used to benchmark and adjust the Container Analysis Fire Environment (CAFE) computer code. CAFE is a computational fluid dynamics fire model that accurately calculates the heat transfer from a large fire to a massive engulfed transport package. CAFE will be used in transport package design studies and risk analyses

  11. Collection of experimental data for fusion neutronics benchmark

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Yamamoto, Junji; Ichihara, Chihiro; Ueki, Kotaro; Ikeda, Yujiro.

    1994-02-01

    During the recent ten years or more, many benchmark experiments for fusion neutronics have been carried out at two principal D-T neutron sources, FNS at JAERI and OKTAVIAN at Osaka University, and precious experimental data have been accumulated. Under an activity of Fusion Reactor Physics Subcommittee of Reactor Physics Committee, these experimental data are compiled in this report. (author)

  12. MoMaS reactive transport benchmark using PFLOTRAN

    Science.gov (United States)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  13. Benchmarks with diffusion theory and transport theory

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Souza, A.L. de.

    1984-01-01

    The multiplication factor and some spectral indices for five critical assemblies (ZPR-6-7, ZPR-3-11, GODIVA, BIG-TEN and FLATTOP) are calculated by Diffusion and Transport Theory, with group constants generated by MC 2 (for diffusion calculations) and by NJOY (for transport calculations). The discrepancies encountered in the ZPR-6-7 spectra, can be tracked to the large differences in the elastic cross section for Iron, calculated by MC 2 and NJOY. (Author) [pt

  14. 2009 South American benchmarking study: natural gas transportation companies

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Nathalie [Gas TransBoliviano S.A. (Bolivia); Walter, Juliana S. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In the current business environment large corporations are constantly seeking to adapt their strategies. Benchmarking is an important tool for continuous improvement and decision-making. Benchmarking is a methodology that determines which aspects are the most important to be improved upon, and it proposes establishing a competitive parameter in an analysis of the best practices and processes, applying continuous improvement driven by the best organizations in their class. At the beginning of 2008, GTB (Gas TransBoliviano S.A.) contacted several South American gas transportation companies to carry out a regional benchmarking study in 2009. In this study, the key performance indicators of the South American companies, whose reality is similar, for example, in terms of prices, availability of labor, and community relations, will be compared. Within this context, a comparative study of the results, the comparative evaluation among natural gas transportation companies, is becoming an essential management instrument to help with decision-making. (author)

  15. Transport benchmarks for one-dimensional binary Markovian mixtures revisited

    International Nuclear Information System (INIS)

    Malvagi, F.

    2013-01-01

    The classic benchmarks for transport through a binary Markovian mixture are revisited to look at the probability distribution function of the chosen 'results': reflection, transmission and scalar flux. We argue that the knowledge of the ensemble averaged results is not sufficient for reliable predictions: a measure of the dispersion must also be obtained. An algorithm to estimate this dispersion is tested. (author)

  16. Benchmark calculations in multigroup and multidimensional time-dependent transport

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Musso, E.; Ravetto, P.; Sumini, M.

    1990-01-01

    It is widely recognized that reliable benchmarks are essential in many technical fields in order to assess the response of any approximation to the physics of the problem to be treated and to verify the performance of the numerical methods used. The best possible benchmarks are analytical solutions to paradigmatic problems where no approximations are actually introduced and the only error encountered is connected to the limitations of computational algorithms. Another major advantage of analytical solutions is that they allow a deeper understanding of the physical features of the model, which is essential for the intelligent use of complicated codes. In neutron transport theory, the need for benchmarks is particularly great. In this paper, the authors propose to establish accurate numerical solutions to some problems concerning the migration of neutron pulses. Use will be made of the space asymptotic theory, coupled with a Laplace transformation inverted by a numerical technique directly evaluating the inversion integral

  17. Benchmarking NNWSI flow and transport codes: COVE 1 results

    International Nuclear Information System (INIS)

    Hayden, N.K.

    1985-06-01

    The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of the codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs

  18. Analytical Radiation Transport Benchmarks for The Next Century

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    2005-01-01

    Verification of large-scale computational algorithms used in nuclear engineering and radiological applications is an essential element of reliable code performance. For this reason, the development of a suite of multidimensional semi-analytical benchmarks has been undertaken to provide independent verification of proper operation of codes dealing with the transport of neutral particles. The benchmarks considered cover several one-dimensional, multidimensional, monoenergetic and multigroup, fixed source and critical transport scenarios. The first approach, called the Green's Function. In slab geometry, the Green's function is incorporated into a set of integral equations for the boundary fluxes. Through a numerical Fourier transform inversion and subsequent matrix inversion for the boundary fluxes, a semi-analytical benchmark emerges. Multidimensional solutions in a variety of infinite media are also based on the slab Green's function. In a second approach, a new converged SN method is developed. In this method, the SN solution is ''minded'' to bring out hidden high quality solutions. For this case multigroup fixed source and criticality transport problems are considered. Remarkably accurate solutions can be obtained with this new method called the Multigroup Converged SN (MGCSN) method as will be demonstrated

  19. Experimental constraints on transport

    International Nuclear Information System (INIS)

    Luce, T.C.; Petty, K.H.; Burrell, K.H.; Forest, C.B.; Gohil, P.; Groebner, R.J.; De Haas, J.C.M.; James, R.A.; Makowski, M.A.

    1994-12-01

    Characterization of the cross-field energy transport in magnetic confinement experiments in a manner applicable to the accurate assessment of future machine performance continues to be a challenging goal. Experimental results from the DIII-D tokamak in the areas of dimensionless scaling and non-diffusive transport represent progress toward this goal. Dimensionless scaling shows how beneficial the increase in machine size and magnetic field is for future devices. The experiments on DIII-D are the first to determine separately the electron and ion scaling with normalized gyroradius ρ * ; the electrons scale as expected from gyro-Bohm class theories, while the ions scale consistent with the Goldston empirical scaling. This result predicts an increase in transport relative to Bohm diffusion as ρ * decreases in future devices. The existence of distinct ρ * scalings for ions and electrons cautions against a physical interpretation of one-fluid or global analysis. The second class of experiments reported here are the first to demonstrate the existence of non-diffusive energy transport. Electron cyclotron heating was applied at the half radius; the electron temperature profile remains substantially peaked. Power balance analysis indicates that heat must flow in the direction of increasing temperature, which is inconsistent with purely diffusive transport. The dynamics of electron temperature perturbations indicate the presence in the heat flux of a term dependent on temperature rather than its gradient. These two observations strongly constrain the types of models which can be applied to cross-field heat transport

  20. Experimental benchmark for piping system dynamic response analyses

    International Nuclear Information System (INIS)

    Schott, G.A.; Mallett, R.H.

    1981-01-01

    The scope and status of a piping system dynamics test program are described. A 0.20-m nominal diameter test piping specimen is designed to be representative of main heat transport system piping of LMFBR plants. Attention is given to representing piping restraints. Applied loadings consider component-induced vibration as well as seismic excitation. The principal objective of the program is to provide a benchmark for verification of piping design methods by correlation of predicted and measured responses. Pre-test analysis results and correlation methods are discussed. 3 refs

  1. Experimental benchmark for piping system dynamic-response analyses

    International Nuclear Information System (INIS)

    1981-01-01

    This paper describes the scope and status of a piping system dynamics test program. A 0.20 m(8 in.) nominal diameter test piping specimen is designed to be representative of main heat transport system piping of LMFBR plants. Particular attention is given to representing piping restraints. Applied loadings consider component-induced vibration as well as seismic excitation. The principal objective of the program is to provide a benchmark for verification of piping design methods by correlation of predicted and measured responses. Pre-test analysis results and correlation methods are discussed

  2. A three-dimensional neutron transport benchmark solution

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    1993-01-01

    For one-group neutron transport theory in one dimension, several powerful analytical techniques have been developed to solve the neutron transport equation, including Caseology, Wiener-Hopf factorization, and Fourier and Laplace transform methods. In addition, after a Fourier transform in the transverse plane and formulation of a pseudo problem, two-dimensional (2-D) and three-dimensional (3-D) problems can be solved using the techniques specifically developed for the one-dimensional (1-D) case. Numerical evaluation of the resulting expressions requiring an inversion in the transverse plane have been successful for 2-D problems but becomes exceedingly difficult in the 3-D case. In this paper, we show that by using the symmetry along the beam direction, a 2-D problem can be transformed into a 3-D problem in an infinite medium. The numerical solution to the 3-D problem is then demonstrated. Thus, a true 3-D transport benchmark solution can be obtained from a well-established numerical solution to a 2-D problem

  3. Benchmarking

    OpenAIRE

    Beretta Sergio; Dossi Andrea; Grove Hugh

    2000-01-01

    Due to their particular nature, the benchmarking methodologies tend to exceed the boundaries of management techniques, and to enter the territories of managerial culture. A culture that is also destined to break into the accounting area not only strongly supporting the possibility of fixing targets, and measuring and comparing the performance (an aspect that is already innovative and that is worthy of attention), but also questioning one of the principles (or taboos) of the accounting or...

  4. Benchmarking of a Markov multizone model of contaminant transport.

    Science.gov (United States)

    Jones, Rachael M; Nicas, Mark

    2014-10-01

    A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimentalbenchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  6. Analytical benchmarks for nuclear engineering applications. Case studies in neutron transport theory

    International Nuclear Information System (INIS)

    2008-01-01

    The developers of computer codes involving neutron transport theory for nuclear engineering applications seldom apply analytical benchmarking strategies to ensure the quality of their programs. A major reason for this is the lack of analytical benchmarks and their documentation in the literature. The few such benchmarks that do exist are difficult to locate, as they are scattered throughout the neutron transport and radiative transfer literature. The motivation for this benchmark compendium, therefore, is to gather several analytical benchmarks appropriate for nuclear engineering applications under one cover. We consider the following three subject areas: neutron slowing down and thermalization without spatial dependence, one-dimensional neutron transport in infinite and finite media, and multidimensional neutron transport in a half-space and an infinite medium. Each benchmark is briefly described, followed by a detailed derivation of the analytical solution representation. Finally, a demonstration of the evaluation of the solution representation includes qualified numerical benchmark results. All accompanying computer codes are suitable for the PC computational environment and can serve as educational tools for courses in nuclear engineering. While this benchmark compilation does not contain all possible benchmarks, by any means, it does include some of the most prominent ones and should serve as a valuable reference. (author)

  7. Benchmarking Benchmarks

    NARCIS (Netherlands)

    D.C. Blitz (David)

    2011-01-01

    textabstractBenchmarking benchmarks is a bundle of six studies that are inspired by the prevalence of benchmarking in academic finance research as well as in investment practice. Three studies examine if current benchmark asset pricing models adequately describe the cross-section of stock returns.

  8. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  9. Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Ronningen, Reginald Martin [Michigan State University; Remec, Igor [Oak Ridge National Laboratory; Heilbronn, Lawrence H. [University of Tennessee-Knoxville

    2013-06-07

    Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS that could be used for design simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the Report of the 2003 RIA R&D Workshop".

  10. Benchmarking of electrolyte mass transport in next generation lithium batteries

    Directory of Open Access Journals (Sweden)

    Jonas Lindberg

    2017-12-01

    Full Text Available Beyond conductivity and viscosity, little is often known about the mass transport properties of next generation lithium battery electrolytes, thus, making performance estimation uncertain when concentration gradients are present, as conductivity only describes performance in the absence of these gradients. This study experimentally measured the diffusion resistivity, originating from voltage loss due to a concentration gradient, together with the ohmic resistivity, obtained from ionic conductivity measurements, hence, evaluating electrolytes both with and without the presence of concentration gradients. Under galvanostatic conditions, the concentration gradients, of all electrolytes examined, developed quickly and the diffusion resistivity rapidly dominated the ohmic resistivity. The electrolytes investigated consisted of lithium salt in: room temperature ionic liquids (RTIL, RTIL mixed organic carbonates, dimethyl sulfoxide (DMSO, and a conventional Li-ion battery electrolyte. At steady state the RTIL electrolytes displayed a diffusion resistivity ~ 20 times greater than the ohmic resistivity. The DMSO-based electrolyte showed mass transport properties similar to the conventional Li-ion battery electrolyte. In conclusion, the results presented in this study show that the diffusion polarization must be considered in applications where high energy and power density are desired.

  11. The VENUS-7 benchmarks. Results from state-of-the-art transport codes and nuclear data

    International Nuclear Information System (INIS)

    Zwermann, Winfried; Pautz, Andreas; Timm, Wolf

    2010-01-01

    For the validation of both nuclear data and computational methods, comparisons with experimental data are necessary. Most advantageous are assemblies where not only the multiplication factors or critical parameters were measured, but also additional quantities like reactivity differences or pin-wise fission rate distributions have been assessed. Currently there is a comprehensive activity to evaluate such measure-ments and incorporate them in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. A large number of such experiments was performed at the VENUS zero power reactor at SCK/CEN in Belgium in the sixties and seventies. The VENUS-7 series was specified as an international benchmark within the OECD/NEA Working Party on Scientific Issues of Reactor Systems (WPRS), and results obtained with various codes and nuclear data evaluations were summarized. In the present paper, results of high-accuracy transport codes with full spatial resolution with up-to-date nuclear data libraries from the JEFF and ENDF/B evaluations are presented. The comparisons of the results, both code-to-code and with the measured data are augmented by uncertainty and sensitivity analyses with respect to nuclear data uncertainties. For the multiplication factors, these are performed with the TSUNAMI-3D code from the SCALE system. In addition, uncertainties in the reactivity differences are analyzed with the TSAR code which is available from the current SCALE-6 version. (orig.)

  12. DRAGON solutions to the 3D transport benchmark over a range in parameter space

    International Nuclear Information System (INIS)

    Martin, Nicolas; Hebert, Alain; Marleau, Guy

    2010-01-01

    DRAGON solutions to the 'NEA suite of benchmarks for 3D transport methods and codes over a range in parameter space' are discussed in this paper. A description of the benchmark is first provided, followed by a detailed review of the different computational models used in the lattice code DRAGON. Two numerical methods were selected for generating the required quantities for the 729 configurations of this benchmark. First, S N calculations were performed using fully symmetric angular quadratures and high-order diamond differencing for spatial discretization. To compare S N results with those of another deterministic method, the method of characteristics (MoC) was also considered for this benchmark. Comparisons between reference solutions, S N and MoC results illustrate the advantages and drawbacks of each methods for this 3-D transport problem.

  13. Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy; Benchmark-Experiment zur Verifikation von Strahlungstransportrechnungen fuer die Dosimetrie in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Franziska [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2016-11-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide.

  14. Experimental Test for Benchmark 1--Deck Lid Inner Panel

    International Nuclear Information System (INIS)

    Xu Siguang; Lanker, Terry; Zhang, Jimmy; Wang Chuantao

    2005-01-01

    The Benchmark 1 deck lid inner is designed for both aluminum and steel based on a General Motor Corporation's current vehicle product. The die is constructed with a soft tool material. The die successfully produced aluminum and steel panels without splits and wrinkles. Detailed surface strains and thickness measurement were made at selected sections to include a wide range of deformation patterns from uniaxial tension mode to bi-axial tension mode. The springback measurements were done by using CMM machine along the part's hem edge which is critical to correct dimensional accuracy. It is expected that the data obtained will provide a useful source for forming and springback study on future automotive panels

  15. Nonisothermal hydrologic transport experimental plan

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1992-09-01

    A field heater experimental plan is presented for investigating hydrologic transport processes in unsaturated fractured rock related to the disposal of high-level radioactive waste (HLW) in an underground repository. The experimental plan provides a methodology for obtaining data required for evaluating conceptual and computer models related to HLW isolation in an environment where significant heat energy is produced. Coupled-process models are currently limited by the lack of validation data appropriate for field scales that incorporate relevant transport processes. Presented in this document is a discussion of previous nonisothermal experiments. Processes expected to dominate heat-driven liquid, vapor, gas, and solute flow during the experiment are explained, and the conceptual model for nonisothermal flow and transport in unsaturated, fractured rock is described. Of particular concern is the ability to confirm the hypothesized conceptual model specifically, the establishment of higher water saturation zones within the host rock around the heat source, and the establishment of countercurrent flow conditions within the host rock near the heat source. Field experimental plans are presented using the Apache Leap Tuff Site to illustrate the implementation of the proposed methodology. Both small-scale preliminary experiments and a long-term experiment are described

  16. The reactive transport benchmark proposed by GdR MoMaS: presentation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Carrayrou, J. [Institut de Mecanique des Fluides et des Solides, UMR ULP-CNRS 7507, 67 - Strasbourg (France); Lagneau, V. [Ecole des Mines de Paris, Centre de Geosciences, 77 - Fontainebleau (France)

    2007-07-01

    We present here the actual context of reactive transport modelling and the major numerical challenges. GdR MoMaS proposes a benchmark on reactive transport. We present this benchmark and some results obtained on it by two reactive transport codes HYTEC and SPECY. (authors)

  17. The reactive transport benchmark proposed by GdR MoMaS: presentation and first results

    International Nuclear Information System (INIS)

    Carrayrou, J.; Lagneau, V.

    2007-01-01

    We present here the actual context of reactive transport modelling and the major numerical challenges. GdR MoMaS proposes a benchmark on reactive transport. We present this benchmark and some results obtained on it by two reactive transport codes HYTEC and SPECY. (authors)

  18. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    1997-01-01

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green's function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade

  19. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  20. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-01-01

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Some specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results

  1. ADS experimental benchmarks of VENUS-1 in China

    International Nuclear Information System (INIS)

    Xia Haihong; Xia Pu; Han Yinlu

    2013-01-01

    The present report describes here are the calculation of four nuclear data libraries on China ADS Venus-1 sub critical facility, using same calculation code: the Monte Carlo code MCNP-5. The libraries are ENDF/B-VI.6, ENDF/B-7, CENDL 3.1 and Library ADS 2.0. The results of k eff , K p , Λ, l p and β eff for four thermal fuel configurations and the total neutron flux, the neutron flux distributions, neutron spectra in experimental channel for two thermal fuel configurations which driven by external neutron source (D-D and D-T source) are evaluated. (J.P.N.)

  2. Benchmark thermodynamic properties of methylanisoles: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Emel’yanenko, Vladimir N.; Zaitseva, Ksenia V.; Agapito, Filipe; Martinho Simões, José A.; Verevkin, Sergey P.

    2015-01-01

    Highlights: • Thermochemistry of 2-, 3-, and 4-methylanisoles was studied. • Liquid state enthalpies of formation were measured by calorimetry. • Vaporisation enthalpies were derived from by transpiration method. • Ab initio enthalpies of formation are in excellent agreement with experiment. • A new paradigm for obtaining thermochemistry of liquid compounds was suggested. - Abstract: Accurate standard molar enthalpy of formation values in the liquid phase can be obtained by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporisation. The procedure is illustrated for 2-, 3-, and 4-methyl-anisoles. Using the W1-F12 and G4 quantum-chemical methods, the gas-phase enthalpies of formation of these compounds at T = 298.15 K were computed. Molar enthalpies of vaporisation for these isomers were measured by the transpiration method. Combining the experimental and the high-level ab initio values, the standard molar enthalpies of formation in the liquid phase for all three isomers were derived and compared with those determined for 2- and 4-methyl-anisoles by using combustion calorimetry

  3. Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking

    CERN Document Server

    Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria

    One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...

  4. Studies of thermal-reactor benchmark-data interpretation: experimental corrections

    International Nuclear Information System (INIS)

    Sher, R.; Fiarman, S.

    1976-10-01

    Experimental values of integral parameters of the lattices studied in this report, i.e., the MIT(D 2 O) and TRX benchmark lattices have been re-examined and revised. The revisions correct several systematic errors that have been previously ignored or considered insignificant. These systematic errors are discussed in detail. The final corrected values are presented

  5. Radiation transport benchmarks for simple geometries with void regions using the spherical harmonics method

    International Nuclear Information System (INIS)

    Kobayashi, K.

    2009-01-01

    In 2001, an international cooperation on the 3D radiation transport benchmarks for simple geometries with void region was performed under the leadership of E. Sartori of OECD/NEA. There were contributions from eight institutions, where 6 contributions were by the discrete ordinate method and only two were by the spherical harmonics method. The 3D spherical harmonics program FFT3 by the finite Fourier transformation method has been improved for this presentation, and benchmark solutions for the 2D and 3D simple geometries with void region by the FFT2 and FFT3 are given showing fairly good accuracy. (authors)

  6. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  7. Benchmark studies of BOUT++ code and TPSMBI code on neutral transport during SMBI

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Z.H., E-mail: zhwang@swip.ac.cn [Southwestern Institute of Physics, Chengdu 610041 (China); Guo, W., E-mail: wfguo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Ren, Q.L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, A.P.; Xu, M.; Wang, A.K. [Southwestern Institute of Physics, Chengdu 610041 (China); Xiang, N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-06-09

    SMBI (supersonic molecule beam injection) plays an important role in tokamak plasma fuelling, density control and ELM mitigation in magnetic confinement plasma physics, which has been widely used in many tokamaks. The trans-neut module of BOUT++ code is the only large-scale parallel 3D fluid code used to simulate the SMBI fueling process, while the TPSMBI (transport of supersonic molecule beam injection) code is a recent developed 1D fluid code of SMBI. In order to find a method to increase SMBI fueling efficiency in H-mode plasma, especially for ITER, it is significant to first verify the codes. The benchmark study between the trans-neut module of BOUT++ code and the TPSMBI code on radial transport dynamics of neutral during SMBI has been first successfully achieved in both slab and cylindrical coordinates. The simulation results from the trans-neut module of BOUT++ code and TPSMBI code are consistent very well with each other. Different upwind schemes have been compared to deal with the sharp gradient front region during the inward propagation of SMBI for the code stability. The influence of the WENO3 (weighted essentially non-oscillatory) and the third order upwind schemes on the benchmark results has also been discussed. - Highlights: • A 1D model of SMBI has developed. • Benchmarks of BOUT++ and TPSMBI codes have first been finished. • The influence of the WENO3 and the third order upwind schemes on the benchmark results has also been discussed.

  8. Criticality benchmark guide for light-water-reactor fuel in transportation and storage packages

    International Nuclear Information System (INIS)

    Lichtenwalter, J.J.; Bowman, S.M.; DeHart, M.D.; Hopper, C.M.

    1997-03-01

    This report is designed as a guide for performing criticality benchmark calculations for light-water-reactor (LWR) fuel applications. The guide provides documentation of 180 criticality experiments with geometries, materials, and neutron interaction characteristics representative of transportation packages containing LWR fuel or uranium oxide pellets or powder. These experiments should benefit the U.S. Nuclear Regulatory Commission (NRC) staff and licensees in validation of computational methods used in LWR fuel storage and transportation concerns. The experiments are classified by key parameters such as enrichment, water/fuel volume, hydrogen-to-fissile ratio (H/X), and lattice pitch. Groups of experiments with common features such as separator plates, shielding walls, and soluble boron are also identified. In addition, a sample validation using these experiments and a statistical analysis of the results are provided. Recommendations for selecting suitable experiments and determination of calculational bias and uncertainty are presented as part of this benchmark guide

  9. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Abanades, Alberto; Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto; Bornos, Victor; Kiyavitskaya, Anna; Carta, Mario; Janczyszyn, Jerzy; Maiorino, Jose; Pyeon, Cheolho; Stanculescu, Alexander; Titarenko, Yury; Westmeier, Wolfram

    2008-01-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  10. The suite of analytical benchmarks for neutral particle transport in infinite isotropically scattering media

    International Nuclear Information System (INIS)

    Kornreich, D.E.; Ganapol, B.D.

    1997-01-01

    The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating benchmark-quality evaluations of solutions for homogeneous infinite media. In all cases, the problems are stationary, of one energy group, and the scattering is isotropic. The solutions are generally obtained through the use of Fourier transform methods with the numerical inversions constructed from standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, and convergence acceleration. Consideration of the suite of benchmarks in infinite homogeneous media begins with the standard one-dimensional problems: an isotropic point source, an isotropic planar source, and an isotropic infinite line source. The physical and mathematical relationships between these source configurations are investigated. The progression of complexity then leads to multidimensional problems with source configurations that also emit particles isotropically: the finite line source, the disk source, and the rectangular source. The scalar flux from the finite isotropic line and disk sources will have a two-dimensional spatial variation, whereas a finite rectangular source will have a three-dimensional variation in the scalar flux. Next, sources emitting particles anisotropically are considered. The most basic such source is the point beam giving rise to the Green's function, which is physically the most fundamental transport problem, yet may be constructed from the isotropic point source solution. Finally, the anisotropic plane and anisotropically emitting infinite line sources are considered. Thus, a firm theoretical and numerical base is established for the most fundamental neutral particle benchmarks in infinite homogeneous media

  11. IAEA coordinated research project on 'analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Ait-Abderrahim, H.; Stanculescu, A.

    2006-01-01

    This paper provides the general background and the main specifications of the benchmark exercises performed within the framework of the IAEA Coordinated Research Project (CRP) on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWG-FR) of IAEA's Nuclear Energy Dept., is to contribute to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e. heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. (authors)

  12. Shielding Benchmark Computational Analysis

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-01-01

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC)

  13. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Science.gov (United States)

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  14. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance.

    Science.gov (United States)

    Jiang, Min; Wu, Teng; Blanchard, John W; Feng, Guanru; Peng, Xinhua; Budker, Dmitry

    2018-06-01

    Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13 C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.

  15. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    International Nuclear Information System (INIS)

    Baldacchino, D; Ferreira, C; Florentie, L; Timmer, N; Van Zuijlen, A; Manolesos, M; Chaviaropoulos, T; Diakakis, K; Papadakis, G; Voutsinas, S; González Salcedo, Á; Aparicio, M; García, N R.; Sørensen, N N.; Troldborg, N

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30% thick DU97W300 and an 18% thick NTUA T18 have been used for benchmarking several simulation tools. These tools span low-to-high complexity, ranging from engineering-level integral boundary layer tools to fully-resolved computational fluid dynamics codes. Results indicate that with appropriate calibration, engineering-type tools can capture the effects of vortex generators and outperform more complex tools. Fully resolved CFD comes at a much higher computational cost and does not necessarily capture the increased lift due to the VGs. However, in lieu of the limited experimental data available for calibration, high fidelity tools are still required for assessing the effect of vortex generators on airfoil performance. (paper)

  16. Reevaluation of the case, de Hoffman, and Placzek one-group neutron transport benchmark solution in plane geometry

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1986-01-01

    In a course on neutron transport theory and also in the analytical neutron transport theory literature, the pioneering work of Case et al. (CdHP) is often referenced. This work was truly a monumental effort in that it treated the fundamental mathematical properties of the one-group neutron Boltzmann equation in detail as well as the numerical evaluation of most of the resulting solutions. Many mathematically and numerically oriented dissertations were based on this classic monograph. In light of the considerable advances made both in numerical methods and computer technology since 1953, when the historic CdHP monograph first appeared, it seems appropriate to reevaluate the numerical benchmark solutions found therein with present-day computational technology. In most transport theory courses, the subject of proper benchmarking of numerical algorithms and transport codes is seldom addressed at any great length. This may be the reason that the benchmarking procedure is so rarely practiced in the nuclear community and when practiced is improperly applied. In this presentation, the development of a new benchmark for the one-group neutron flux in an infinite medium will be detailed with emphasis placed on the educational aspects of the benchmarking activity

  17. Electric transport in the Netherlands in an international perspective. Benchmark electric driving 2012

    International Nuclear Information System (INIS)

    Kroon, P.; Weeda, M.; Appels, D.

    2012-07-01

    This international benchmark on electric mobility has been conducted to compare the Dutch governmental efforts and developments in the field of electric road transport. The countries that have been considered in this benchmark are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles compared to other countries without a large car industry. As for the envisaged number of charging points, the Netherlands is one of the prominent leaders. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the benchmark has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. However, regarding general market penetration, the Netherlands is one of the leading countries, next to Norway, based on the relative number of passenger cars and commercial vehicles on the road. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure, but also in this field the Netherlands has a prominent position in the group of countries that follow. In the current pre-commercial phase, the introduction of electric transportation in the Netherlands is supported by a high-level advisory group, the so-called Formula E-Team. This group consists of representatives and experts from industry and (scientific) society, and acts as a figurehead for electric transport. The group advises on coordination of actions to stimulate not only electro- mobility, but also innovation which should lead to new economic activities. Currently, about two hundred companies are already active in the field of electro-mobility in the Netherlands, including some top players and many SMEs (Small Medium Enterprises). The

  18. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    Science.gov (United States)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  19. Comparison of typical inelastic analysis predictions with benchmark problem experimental results

    International Nuclear Information System (INIS)

    Clinard, J.A.; Corum, J.M.; Sartory, W.K.

    1975-01-01

    The results of exemplary inelastic analyses are presented for a series of experimental benchmark problems. Consistent analytical procedures and constitutive relations were used in each of the analyses, and published material behavior data were used in all cases. Two finite-element inelastic computer programs were employed. These programs implement the analysis procedures and constitutive equations for Type 304 stainless steel that are currently used in many analyses of elevated-temperature nuclear reactor system components. The analysis procedures and constitutive relations are briefly discussed, and representative analytical results are presented and compared to the test data. The results that are presented demonstrate the feasibility of performing inelastic analyses, and they are indicative of the general level of agreement that the analyst might expect when using conventional inelastic analysis procedures. (U.S.)

  20. Comparison of typical inelastic analysis predictions with benchmark problem experimental results

    International Nuclear Information System (INIS)

    Clinard, J.A.; Corum, J.M.; Sartory, W.K.

    1975-01-01

    The results of exemplary inelastic analyses for experimental benchmark problems on reactor components are presented. Consistent analytical procedures and constitutive relations were used in each of the analyses, and the material behavior data presented in the Appendix were used in all cases. Two finite-element inelastic computer programs were employed. These programs implement the analysis procedures and constitutive equations for type 304 stainless steel that are currently used in many analyses of elevated-temperature nuclear reactor system components. The analysis procedures and constitutive relations are briefly discussed, and representative analytical results are presented and compared to the test data. The results that are presented demonstrate the feasibility of performing inelastic analyses for the types of problems discussed, and they are indicative of the general level of agreement that the analyst might expect when using conventional inelastic analysis procedures. (U.S.)

  1. Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations

    International Nuclear Information System (INIS)

    Satake, S.; Sugama, H.; Watanabe, T.-H.; Idomura, Yasuhiro

    2009-09-01

    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic δf Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter ν * = 0.01 - 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field. (author)

  2. Experimental benchmark data for PWR rod bundle with spacer-grids

    International Nuclear Information System (INIS)

    Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.; Conner, Michael E.; Karoutas, Zeses

    2012-01-01

    In numerical simulations of fuel rod bundle flow fields, the unsteady Navier–Stokes equations have to be solved in order to determine the time (phase) dependent characteristics of the flow. In order to validate the simulations results, detailed comparison with experimental data must be done. Experiments investigating complex flows in rod bundles with spacer grids that have mixing devices (such as flow mixing vanes) have mostly been performed using single-point measurements. In order to obtain more details and insight on the discrepancies between experimental and numerical data as well as to obtain a global understanding of the causes of these discrepancies, comparisons of the distributions of complete phase-averaged velocity and turbulence fields for various locations near spacer-grids should be performed. The experimental technique Particle Image Velocimetry (PIV) is capable of providing such benchmark data. This paper describes an experimental database obtained using two-dimensional Time Resolved Particle Image Velocimetry (TR-PIV) measurements within a 5 × 5 PWR rod bundle with spacer-grids that have flow mixing vanes. One of the unique characteristic of this set-up is the use of the Matched Index of Refraction technique employed in this investigation to allow complete optical access to the rod bundle. This unique feature allows flow visualization and measurement within the bundle without rod obstruction. This approach also allows the use of high temporal and spatial non-intrusive dynamic measurement techniques namely TR-PIV to investigate the flow evolution below and immediately above the spacer. The experimental data presented in this paper includes explanation of the various cases tested such as test rig dimensions, measurement zones, the test equipment and the boundary conditions in order to provide appropriate data for comparison with Computational Fluid Dynamics (CFD) simulations. Turbulence parameters of the obtained data are presented in order to gain

  3. Analysis of the pool critical assembly benchmark using raptor-M3G, a parallel deterministic radiation transport code - 289

    International Nuclear Information System (INIS)

    Fischer, G.A.

    2010-01-01

    The PCA Benchmark is analyzed using RAPTOR-M3G, a parallel SN radiation transport code. A variety of mesh structures, angular quadrature sets, cross section treatments, and reactor dosimetry cross sections are presented. The results show that RAPTOR-M3G is generally suitable for PWR neutron dosimetry applications. (authors)

  4. The new deterministic 3-D radiation transport code Multitrans: C5G7 MOX fuel assembly benchmark

    International Nuclear Information System (INIS)

    Kotiluoto, P.

    2003-01-01

    The novel deterministic three-dimensional radiation transport code MultiTrans is based on combination of the advanced tree multigrid technique and the simplified P3 (SP3) radiation transport approximation. In the tree multigrid technique, an automatic mesh refinement is performed on material surfaces. The tree multigrid is generated directly from stereo-lithography (STL) files exported by computer-aided design (CAD) systems, thus allowing an easy interface for construction and upgrading of the geometry. The deterministic MultiTrans code allows fast solution of complicated three-dimensional transport problems in detail, offering a new tool for nuclear applications in reactor physics. In order to determine the feasibility of a new code, computational benchmarks need to be carried out. In this work, MultiTrans code is tested for a seven-group three-dimensional MOX fuel assembly transport benchmark without spatial homogenization (NEA C5G7 MOX). (author)

  5. C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL

    2011-01-01

    The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.

  6. Experimental verification of boundary conditions for numerical simulation of airflow in a benchmark ventilation channel

    Directory of Open Access Journals (Sweden)

    Lizal Frantisek

    2016-01-01

    Full Text Available Correct definition of boundary conditions is crucial for the appropriate simulation of a flow. It is a common practice that simulation of sufficiently long upstream entrance section is performed instead of experimental investigation of the actual conditions at the boundary of the examined area, in the case that the measurement is either impossible or extremely demanding. We focused on the case of a benchmark channel with ventilation outlet, which models a regular automotive ventilation system. At first, measurements of air velocity and turbulence intensity were performed at the boundary of the examined area, i.e. in the rectangular channel 272.5 mm upstream the ventilation outlet. Then, the experimentally acquired results were compared with results obtained by numerical simulation of further upstream entrance section defined according to generally approved theoretical suggestions. The comparison showed that despite the simple geometry and general agreement of average axial velocity, certain difference was found in the shape of the velocity profile. The difference was attributed to the simplifications of the numerical model and the isotropic turbulence assumption of the used turbulence model. The appropriate recommendations were stated for the future work.

  7. Modernization at the Y-12 National Security Complex: A Case for Additional Experimental Benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Thornbury, M. L. [Y-12 National Security Complex, Oak Ridge, TN (United States); Juarez, C. [Y-12 National Security Complex, Oak Ridge, TN (United States); Krass, A. W. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-08-14

    Efforts are underway at the Y-12 National Security Complex (Y-12) to modernize the recovery, purification, and consolidation of un-irradiated, highly enriched uranium metal. Successful integration of advanced technology such as Electrorefining (ER) eliminates many of the intermediate chemistry systems and processes that are the current and historical basis of the nuclear fuel cycle at Y-12. The cost of operations, the inventory of hazardous chemicals, and the volume of waste are significantly reduced by ER. It also introduces unique material forms and compositions related to the chemistry of chloride salts for further consideration in safety analysis and engineering. The work herein briefly describes recent investigations of nuclear criticality for 235UO2Cl2 (uranyl chloride) and 6LiCl (lithium chloride) in aqueous solution. Of particular interest is the minimum critical mass of highly enriched uranium as a function of the molar ratio of 6Li to 235U. The work herein also briefly describes recent investigations of nuclear criticality for 235U metal reflected by salt mixtures of 6LiCl or 7LiCl (lithium chloride), KCl (potassium chloride), and 235UCl3 or 238UCl3 (uranium tri-chloride). Computational methods for analysis of nuclear criticality safety and published nuclear data are employed in the absence of directly relevant experimental criticality benchmarks.

  8. Electric transport in the Netherlands in an international perspective. Benchmark electric driving 2012; Elektrisch vervoer in Nederland in internationaal perspectief. Benchmark elektrisch rijden 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P.; Weeda, M. [ECN Beleidsstudies, Petten (Netherlands); Appels, D. [Agentschap NL, Utrecht (Netherlands)

    2012-07-15

    This international benchmark on electric mobility has been conducted to compare the Dutch governmental efforts and developments in the field of electric road transport. The countries that have been considered in this benchmark are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles compared to other countries without a large car industry. As for the envisaged number of charging points, the Netherlands is one of the prominent leaders. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the benchmark has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. However, regarding general market penetration, the Netherlands is one of the leading countries, next to Norway, based on the relative number of passenger cars and commercial vehicles on the road. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure, but also in this field the Netherlands has a prominent position in the group of countries that follow. In the current pre-commercial phase, the introduction of electric transportation in the Netherlands is supported by a high-level advisory group, the so-called Formula E-Team. This group consists of representatives and experts from industry and (scientific) society, and acts as a figurehead for electric transport. The group advises on coordination of actions to stimulate not only electro- mobility, but also innovation which should lead to new economic activities. Currently, about two hundred companies are already active in the field of electro-mobility in the Netherlands, including some top players and many SMEs (Small Medium Enterprises). The

  9. Effects of uncertainties of experimental data in the benchmarking of a computer code

    International Nuclear Information System (INIS)

    Meulemeester, E. de; Bouffioux, P.; Demeester, J.

    1980-01-01

    Fuel rod performance modelling is sometimes taken in an academical way. The experience of the COMETHE code development since 1967 has clearly shown that benchmarking was the most important part of modelling development. Unfortunately, it requires well characterized data. Although, the two examples presented here were not intended for benchmarking, as the COMETHE calculations were only performed for an interpretation of the results, they illustrate the effects of a lack of fuel characterization and of the power history uncertainties

  10. Benchmarking numerical codes for tracer transport with the aid of laboratory-scale experiments in 2D heterogeneous porous media.

    Science.gov (United States)

    Maina, Fadji Hassane; Ackerer, Philippe; Younes, Anis; Guadagnini, Alberto; Berkowitz, Brian

    2017-06-07

    We present a combined experimental and numerical modeling study that addresses two principal questions: (i) is any particular Eulerian-based method used to solve the classical advection-dispersion equation (ADE) clearly superior (relative to the others), in terms of yielding solutions that reproduce BTCs of the kind that are typically sampled at the outlet of a laboratory cell? and (ii) in the presence of matches of comparable quality against such BTCs, do any of these methods render different (or similar) numerical BTCs at locations within the domain? To address these questions, we obtained measurements from carefully controlled laboratory experiments, and employ them as a reference against which numerical results are benchmarked and compared. The experiments measure solute transport breakthrough curves (BTCs) through a square domain containing various configurations of coarse, medium, and fine quartz sand. The approaches to solve the ADE involve Eulerian-Lagrangian and Eulerian (finite volume, finite elements, mixed and discontinuous finite elements) numerical methods. Model calibration is not examined; permeability and porosity of each sand were determined previously through separate, standard laboratory tests, while dispersivities are assigned values proportional to mean grain size. We find that the spatial discretization of the flow field is of critical importance, due to the non-uniformity of the domain. Although simulated BTCs at the system outlet are observed to be very similar for these various numerical methods, computed local (point-wise, inside the domain) BTCs can be very different. We find that none of the numerical methods is able to fully reproduce the measured BTCs. The impact of model parameter uncertainty on the calculated BTCs is characterized through a set of numerical Monte Carlo simulations; in cases where the impact is significant, assessment of simulation matches to the experimental data can be ambiguous. Copyright © 2017 Elsevier B.V. All

  11. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Alberto [Universidad Politecnica de Madrid (Spain); Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto [ANL, Argonne (United States); Bornos, Victor; Kiyavitskaya, Anna [Joint Institute of Power Eng. and Nucl. Research ' Sosny' , Minsk (Belarus); Carta, Mario [ENEA, Casaccia (Italy); Janczyszyn, Jerzy [AGH-University of Science and Technology, Krakow (Poland); Maiorino, Jose [IPEN, Sao Paulo (Brazil); Pyeon, Cheolho [Kyoto University (Japan); Stanculescu, Alexander [IAEA, Vienna (Austria); Titarenko, Yury [ITEP, Moscow (Russian Federation); Westmeier, Wolfram [Wolfram Westmeier GmbH, Ebsdorfergrund (Germany)

    2008-07-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  12. EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING

    Energy Technology Data Exchange (ETDEWEB)

    Samuel J. Miller; Hakan Ozaltun

    2012-11-01

    This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

  13. Validation of neutron-transport calculations in benchmark facilities for improved damage-fluence predictions

    International Nuclear Information System (INIS)

    Williams, M.L.; Stallmann, F.W.; Maerker, R.E.; Kam, F.B.K.

    1983-01-01

    An accurate determination of damage fluence accumulated by reactor pressure vessels (RPV) as a function of time is essential in order to evaluate the vessel integrity for both pressurized thermal shock (PTS) transients and end-of-life considerations. The desired accuracy for neutron exposure parameters such as displacements per atom or fluence (E > 1 MeV) is of the order of 20 to 30%. However, these types of accuracies can only be obtained realistically by validation of nuclear data and calculational methods in benchmark facilities. The purposes of this paper are to review the needs and requirements for benchmark experiments, to discuss the status of current benchmark experiments, to summarize results and conclusions obtained so far, and to suggest areas where further benchmarking is needed

  14. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States)

    2017-03-31

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding is likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.

  15. 239Pu prompt fission neutron spectra impact on a set of criticality and experimental reactor benchmarks

    International Nuclear Information System (INIS)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-01-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239 Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239 Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  16. Summary Report of Consultants' Meeting on Accuracy of Experimental and Theoretical Nuclear Cross-Section Data for Ion Beam Analysis and Benchmarking

    International Nuclear Information System (INIS)

    Abriola, Daniel; Dimitriou, Paraskevi; Gurbich, Alexander F.

    2013-11-01

    A summary is given of a Consultants' Meeting assembled to assess the accuracy of experimental and theoretical nuclear cross-section data for Ion Beam Analysis and the role of benchmarking experiments. The participants discussed the different approaches to assigning uncertainties to evaluated data, and presented results of benchmark experiments performed in their laboratories. They concluded that priority should be given to the validation of cross- section data by benchmark experiments, and recommended that an experts meeting be held to prepare the guidelines, methodology and work program of a future coordinated project on benchmarking.

  17. Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results

    NARCIS (Netherlands)

    Sachs, Ulrich; Akkerman, Remko; Fetfatsidis, K.; Vidal-Sallé, E.; Schumacher, J.; Ziegmann, G.; Allaoui, S.; Hivet, G.; Maron, B.; Vanclooster, K.; Lomov, S.V.

    2014-01-01

    A benchmark exercise was conducted to compare various friction test set-ups with respect to the measured coefficients of friction. The friction was determined between Twintex®PP, a fabric of commingled yarns of glass and polypropylene filaments, and a metal surface. The same material was supplied to

  18. Radiation Detection Computational Benchmark Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  19. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ; Tang, Y.; Liu, H.; Yoon, Hongkyu; Kang, Qinjun; Joekar Niasar, Vahid; Balhoff, Matthew; Dewers, T.; Tartakovsky, Guzel D.; Leist, Emily AE; Hess, Nancy J.; Perkins, William A.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Werth, Charles J.; Valocchi, Albert J.; Wietsma, Thomas W.; Zhang, Changyong

    2016-08-01

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.

  20. MCNP neutron benchmarks

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Whalen, D.J.; Cardon, D.A.; Uhle, J.L.

    1991-01-01

    Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems

  1. Benchmark studies of computer prediction techniques for equilibrium chemistry and radionuclide transport in groundwater flow

    International Nuclear Information System (INIS)

    Broyd, T.W.

    1988-01-01

    A brief review of two recent benchmark exercises is presented. These were separately concerned with the equilibrium chemistry of groundwater and the geosphere migration of radionuclides, and involved the use of a total of 19 computer codes by 11 organisations in Europe and Canada. A similar methodology was followed for each exercise, in that series of hypothetical test cases were used to explore the limits of each code's application, and so provide an overview of current modelling potential. Aspects of the user-friendliness of individual codes were also considered. The benchmark studies have benefited participating organisations by providing a means of verifying current codes, and have provided problem data sets by which future models may be compared. (author)

  2. Benchmarking passenger air transport marketing activities in Vietnam : case company: Etihad Airways

    OpenAIRE

    Kim Nga Nguyen, Thi

    2015-01-01

    Marketing strategy is crucial for businesses operating in highly competitive environments. Especially with the intense competition over international flights in the Vietnamese air travel market, it is important for airlines to adopt superior strategy, in order to incorporate brand presence in the market. Hence, performing benchmarking on marketing strategy for Etihad Airways is timely and necessary. The thesis adopts the combination of inductive and deductive approaches, with the assistan...

  3. Two-group k-eigenvalue benchmark calculations for planar geometry transport in a binary stochastic medium

    International Nuclear Information System (INIS)

    Davis, I.M.; Palmer, T.S.

    2005-01-01

    Benchmark calculations are performed for neutron transport in a two material (binary) stochastic multiplying medium. Spatial, angular, and energy dependence are included. The problem considered is based on a fuel assembly of a common pressurized water reactor. The mean chord length through the assembly is determined and used as the planar geometry system length. According to assumed or calculated material distributions, this system length is populated with alternating fuel and moderator segments of random size. Neutron flux distributions are numerically computed using a discretized form of the Boltzmann transport equation employing diffusion synthetic acceleration. Average quantities (group fluxes and k-eigenvalue) and variances are calculated from an ensemble of realizations of the mixing statistics. The effects of varying two parameters in the fuel, two different boundary conditions, and three different sets of mixing statistics are assessed. A probability distribution function (PDF) of the k-eigenvalue is generated and compared with previous research. Atomic mix solutions are compared with these benchmark ensemble average flux and k-eigenvalue solutions. Mixing statistics with large standard deviations give the most widely varying ensemble solutions of the flux and k-eigenvalue. The shape of the k-eigenvalue PDF qualitatively agrees with previous work. Its overall shape is independent of variations in fuel cross-sections for the problems considered, but its width is impacted by these variations. Statistical distributions with smaller standard deviations alter the shape of this PDF toward a normal distribution. The atomic mix approximation yields large over-predictions of the ensemble average k-eigenvalue and under-predictions of the flux. Qualitatively correct flux shapes are obtained in some cases. These benchmark calculations indicate that a model which includes higher statistical moments of the mixing statistics is needed for accurate predictions of binary

  4. Benchmark analysis of MCNP trademark ENDF/B-VI iron

    International Nuclear Information System (INIS)

    Court, J.D.; Hendricks, J.S.

    1994-12-01

    The MCNP ENDF/B-VI iron cross-section data was subjected to four benchmark studies as part of the Hiroshima/Nagasaki dose re-evaluation for the National Academy of Science and the Defense Nuclear Agency. The four benchmark studies were: (1) the iron sphere benchmarks from the Lawrence Livermore Pulsed Spheres; (2) the Oak Ridge National Laboratory Fusion Reactor Shielding Benchmark; (3) a 76-cm diameter iron sphere benchmark done at the University of Illinois; (4) the Oak Ridge National Laboratory Benchmark for Neutron Transport through Iron. MCNP4A was used to model each benchmark and computational results from the ENDF/B-VI iron evaluations were compared to ENDF/B-IV, ENDF/B-V, the MCNP Recommended Data Set (which includes Los Alamos National Laboratory Group T-2 evaluations), and experimental data. The results show that the ENDF/B-VI iron evaluations are as good as, or better than, previous data sets

  5. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  6. Cross section and method uncertainties: the application of sensitivity analysis to study their relationship in radiation transport benchmark problems

    International Nuclear Information System (INIS)

    Weisbi, C.R.; Oblow, E.M.; Ching, J.; White, J.E.; Wright, R.Q.; Drischler, J.

    1975-08-01

    Sensitivity analysis is applied to the study of an air transport benchmark calculation to quantify and distinguish between cross-section and method uncertainties. The boundary detector response was converged with respect to spatial and angular mesh size, P/sub l/ expansion of the scattering kernel, and the number and location of energy grid boundaries. The uncertainty in the detector response due to uncertainties in nuclear data is 17.0 percent (one standard deviation, not including uncertainties in energy and angular distribution) based upon the ENDF/B-IV ''error files'' including correlations in energy and reaction type. Differences of approximately 6 percent can be attributed exclusively to differences in processing multigroup transfer matrices. Formal documentation of the PUFF computer program for the generation of multigroup covariance matrices is presented. (47 figures, 14 tables) (U.S.)

  7. experimental investigation of sand minimum transport velocity

    African Journals Online (AJOL)

    user

    The production of reservoir fluid through long tiebacks/pipelines has emerged as one of ... transport in multiphase flows, the investigation of the ... Nigerian Journal of Technology ... associated with water-gas-oil-solid flow in pipeline in ... The mixture was well agitated using a .... operational conditions the limit deposit velocity.

  8. Experimental benchmark of the NINJA code for application to the Linac4 H- ion source plasma

    Science.gov (United States)

    Briefi, S.; Mattei, S.; Rauner, D.; Lettry, J.; Tran, M. Q.; Fantz, U.

    2017-10-01

    For a dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators, a detailed assessment of the plasma processes is required. Due to the compact design of these sources, diagnostic access is typically limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to allow for a spatially resolved investigation, the electromagnetic particle-in-cell Monte Carlo collision code NINJA has been developed for the Linac4 ion source at CERN. This code considers the RF field generated by the ICP coil as well as the external static magnetic fields and calculates self-consistently the resulting discharge properties. NINJA is benchmarked at the diagnostically well accessible lab experiment CHARLIE (Concept studies for Helicon Assisted RF Low pressure Ion sourcEs) at varying RF power and gas pressure. A good general agreement is observed between experiment and simulation although the simulated electron density trends for varying pressure and power as well as the absolute electron temperature values deviate slightly from the measured ones. This can be explained by the assumption of strong inductive coupling in NINJA, whereas the CHARLIE discharges show the characteristics of loosely coupled plasmas. For the Linac4 plasma, this assumption is valid. Accordingly, both the absolute values of the accessible plasma parameters and their trends for varying RF power agree well in measurement and simulation. At varying RF power, the H- current extracted from the Linac4 source peaks at 40 kW. For volume operation, this is perfectly reflected by assessing the processes in front of the extraction aperture based on the simulation results where the highest H- density is obtained for the same power level. In surface operation, the production of negative hydrogen ions at the converter surface can only be considered by specialized beam formation codes, which require plasma parameters as input. It has been demonstrated that

  9. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  10. Benchmarking Experimental and Computational Thermochemical Data: A Case Study of the Butane Conformers.

    Science.gov (United States)

    Barna, Dóra; Nagy, Balázs; Csontos, József; Császár, Attila G; Tasi, Gyula

    2012-02-14

    Due to its crucial importance, numerous studies have been conducted to determine the enthalpy difference between the conformers of butane. However, it is shown here that the most reliable experimental values are biased due to the statistical model utilized during the evaluation of the raw experimental data. In this study, using the appropriate statistical model, both the experimental expectation values and the associated uncertainties are revised. For the 133-196 and 223-297 K temperature ranges, 668 ± 20 and 653 ± 125 cal mol(-1), respectively, are recommended as reference values. Furthermore, to show that present-day quantum chemistry is a favorable alternative to experimental techniques in the determination of enthalpy differences of conformers, a focal-point analysis, based on coupled-cluster electronic structure computations, has been performed that included contributions of up to perturbative quadruple excitations as well as small correction terms beyond the Born-Oppenheimer and nonrelativistic approximations. For the 133-196 and 223-297 K temperature ranges, in exceptional agreement with the corresponding revised experimental data, our computations yielded 668 ± 3 and 650 ± 6 cal mol(-1), respectively. The most reliable enthalpy difference values for 0 and 298.15 K are also provided by the computational approach, 680.9 ± 2.5 and 647.4 ± 7.0 cal mol(-1), respectively.

  11. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    Science.gov (United States)

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  12. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    DEFF Research Database (Denmark)

    Baldacchino, D.; Manolesos, M.; Ferreira, Célia Maria Dias

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30...

  13. Nernst-Planck Based Description of Transport, Coulombic Interactions and Geochemical Reactions in Porous Media: Modeling Approach and Benchmark Experiments

    DEFF Research Database (Denmark)

    Rolle, Massimo; Sprocati, Riccardo; Masi, Matteo

    2018-01-01

    ‐ but also under advection‐dominated flow regimes. To accurately describe charge effects in flow‐through systems, we propose a multidimensional modeling approach based on the Nernst‐Planck formulation of diffusive/dispersive fluxes. The approach is implemented with a COMSOL‐PhreeqcRM coupling allowing us......, and high‐resolution experimental datasets. The latter include flow‐through experiments that have been carried out in this study to explore the effects of electrostatic interactions in fully three‐dimensional setups. The results of the simulations show excellent agreement for all the benchmarks problems...... the quantification and visualization of the specific contributions to the diffusive/dispersive Nernst‐Planck fluxes, including the Fickian component, the term arising from the activity coefficient gradients, and the contribution due to electromigration....

  14. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  15. Criticality safety benchmarking of PASC-3 and ECNJEF1.1

    International Nuclear Information System (INIS)

    Li, J.

    1992-09-01

    To validate the code system PASC-3 and the multigroup cross section library ECNJEF1.1 on various applications many benchmarks are required. This report presents the results of critically safety benchmarking for five calculational and four experimental benchmarks. These benchmarks are related to the transport package of fissile materials such as spent fuel. The fissile nuclides in these benchmarks are 235 U and 239 Pu. The modules of PASC-3 which have been used for the calculations are BONAMI, NITAWL and KENO.5A. The final results for the experimental benchmarks do agree well with experimental data. For the calculational benchmarks the results presented here are in reasonable agreement with the results from other investigations. (author). 8 refs.; 20 figs.; 5 tabs

  16. Deterministic 3D transport, sensitivity and uncertainty analysis of TPR and reaction rate measurements in HCPB Breeder Blanket mock-up benchmark

    International Nuclear Information System (INIS)

    Kodeli, I.

    2006-01-01

    The Helium-Cooled Pebble Bed (HCPB) Breeder Blanket mock-up benchmark experiment was analysed using the deterministic transport, sensitivity and uncertainty code system in order to determine the Tritium Production Rate (TPR) in the ceramic breeder and the neutron reaction rates in beryllium, both nominal values and the corresponding uncertainties. The experiment, performed in 2005 to validate the HCPB concept, consists of a metallic beryllium set-up with two double layers of breeder material (Li 2 CO 3 powder). The reaction rate measurements include the Li 2 CO 3 pellets for the tritium breeding monitoring and activation foils, inserted at several axial and lateral locations in the block. In addition to the well established and validated procedure based on the 2-dimensional (2D) code DORT, a new approach for the 3D modelling was validated based on the TORT/GRTUNCL3D transport codes. The SUSD3D code, also in 3D geometry, was used for the cross-section sensitivity and uncertainty calculations. These studies are useful for the interpretation of the experimental measurements, in particular to assess the uncertainties linked to the basic nuclear data. The TPR, the neutron activation rates and the associated uncertainties were determined using the EFF-3.0 9 Be nuclear cross section and covariance data, and compared with those from other evaluations, like FENDL-2.1. Sensitivity profiles and nuclear data uncertainties of the TPR and detector reaction rates with respect to the cross-sections of 9 Be, 6 Li, 7 Li, O and C were determined at different positions in the experimental block. (author)

  17. OECD/NRC Benchmark Based on NUPEC PWR Sub-channel and Bundle Test (PSBT). Volume I: Experimental Database and Final Problem Specifications

    International Nuclear Information System (INIS)

    Rubin, A.; Schoedel, A.; Avramova, M.; Utsuno, H.; Bajorek, S.; Velazquez-Lozada, A.

    2012-01-01

    The need to refine models for best-estimate calculations, based on good-quality experimental data, has been expressed in many recent meetings in the field of nuclear applications. The needs arising in this respect should not be limited to the currently available macroscopic methods but should be extended to next-generation analysis techniques that focus on more microscopic processes. One of the most valuable databases identified for the thermal-hydraulics modelling was developed by the Nuclear Power Engineering Corporation (NUPEC), Japan, which includes sub-channel void fraction and departure from nucleate boiling (DNB) measurements in a representative Pressurised Water Reactor (PWR) fuel assembly. Part of this database has been made available for this international benchmark activity entitled 'NUPEC PWR Sub-channel and Bundle Tests (PSBT) benchmark'. This international project has been officially approved by the Japanese Ministry of Economy, Trade, and Industry (METI), the US Nuclear Regulatory Commission (NRC) and endorsed by the OECD/NEA. The benchmark team has been organised based on the collaboration between Japan and the USA. A large number of international experts have agreed to participate in this programme. The fine-mesh high-quality sub-channel void fraction and departure from nucleate boiling data encourages advancement in understanding and modelling complex flow behaviour in real bundles. Considering that the present theoretical approach is relatively immature, the benchmark specification is designed so that it will systematically assess and compare the participants' analytical models on the prediction of detailed void distributions and DNB. The development of truly mechanistic models for DNB prediction is currently underway. The benchmark problem includes both macroscopic and microscopic measurement data. In this context, the sub-channel grade void fraction data are regarded as the macroscopic data and the digitised computer graphic images are the

  18. Research coordination meeting of the coordinated research project on analytical and experimental benchmark analyses of accelerator driven systems. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Technical Meeting hosted at the Belarus National Academy of Sciences in Minsk by the Joint Institute of Power Engineering and Nuclear Research 'SOSNY' from 5-9 December 2005 was the kick-off Research Coordination Meeting (RCM) of the IAEA Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems (ADS)'. The CRP had received proposals for research agreements and contracts from scientists representing the following 25 institutions: Centro Atomico Bariloche, SCK CEN Mol, Instituto de Pesquisas Energeticas e Nucleares Sao Paulo, Joint Institute of Power Engineering and Nuclear Research SOSNY Minsk, China Institute of Atomic Energy, CEA Cadarache, CNRS Paris, FZ Rossendorf, FZ Karlsruhe, Budapest University of Technology and Economics, Politecnico di Torino, Japan Atomic Energy Agency, Nuclear Research and Consultancy Group (NRG) Petten, Pakistan Institute of Nuclear Science and Technology, AGH-University of Science and Technology Krakow, Institute of Atomic Energy Otwock/Swierk, ITEP Moscow, MEPHI Moscow, Kurchatov Institute, JINR Dubna, Universidad Politecnica de Madrid, CIEMAT Madrid, Royal Institute of Technology Stockholm, National Science Center 'Kharkov Institute and Technology', and Argonne National Laboratory). These institutions represent 18 IAEA Member States (i.e., Argentina, Belarus, Belgium, Brazil, China, France, Germany, Hungary, Italy, Japan, Netherlands, Pakistan, Poland, Russia, Spain, Sweden, Ukraine, USA), and one International Organization (JINR Dubna). The overall objective of the CRP is contributing to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e., heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. Ultimately, the CRP

  19. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  20. Processing and benchmarking of evaluated nuclear data file/b-viii.0β4 cross-section library by analysis of a series of critical experimental benchmark using the monte carlo code MCNP(X and NJOY2016

    Directory of Open Access Journals (Sweden)

    Kabach Ouadie

    2017-12-01

    Full Text Available To validate the new Evaluated Nuclear Data File (ENDF/B-VIII.0β4 library, 31 different critical cores were selected and used for a benchmark test of the important parameter keff. The four utilized libraries are processed using Nuclear Data Processing Code (NJOY2016. The results obtained with the ENDF/B-VIII.0β4 library were compared against those calculated with ENDF/B-VI.8, ENDF/B-VII.0, and ENDF/B-VII.1 libraries using the Monte Carlo N-Particle (MCNP(X code. All the MCNP(X calculations of keff values with these four libraries were compared with the experimentally measured results, which are available in the International Critically Safety Benchmark Evaluation Project. The obtained results are discussed and analyzed in this paper.

  1. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes

    International Nuclear Information System (INIS)

    Nagels-Silvert, V.

    2004-09-01

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  2. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    International Nuclear Information System (INIS)

    Malin, Wahlberg; Imre, Pazsit

    2005-01-01

    The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)

  3. Two-dimensional full-core transport theory Benchmarks for the WWER reactors

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2002-01-01

    Several two-dimensional full-core real geometry many-group steady-state problems for the WWER-440 and WWER-1000 reactors have been solved by the MARIKO code, based on the method of characteristics. The reference transport theory solutions include assembly-wise and pin-wise power distributions. Homogenized two-group diffusion parameters and discontinuity factors have been calculated by MARIKO for each assembly type both for the whole assembly and for each cell in the smallest sector of symmetry, using the B1 method for calculation of the critical spectrum. Accurate albedo-type boundary conditions have been calculated by MARIKO for the core-reflector and core-absorber boundaries, both for each outer assembly face and for each outer cell face. Comparison with the reference solutions of the two-group nodal diffusion code SPPS-1.6 and the few-group fine-mesh diffusion codes HEX2DA and HEX2DB are presented (Authors)

  4. Experimental benchmarks and simulation of GAMMA-T for overcooling and undercooling transients in HTGRs coupled with MED desalination plants

    International Nuclear Information System (INIS)

    Kim, Ho Sik; Kim, In Hun; NO, Hee Cheon; Jin, Hyung Gon

    2013-01-01

    Highlights: ► The GAMMA-T code was well validated through benchmark experiments. ► Based on the KAIST coupling scheme, the GTHTR300 + MED systems were made. ► Safety analysis was performed for overcooling and undercooling accidents. ► In all accidents, maximum peak fuel temperatures were well below than 1600 °C. ► In all accidents, the HTGR + MED system could be operated continuously. -- Abstracts: The nuclear desalination based on the high temperature gas-cooled reactor (HTGR) with gas turbomachinery and multi-effect distillation (MED) is attracting attention because the coupling system can utilize the waste heat of the nuclear power system for the MED desalination system. In previous work, KAIST proposed the new HTGR + MED coupling scheme, evaluated desalination performance, and performed cost analysis for the system. In this paper, in order to confirm the safety and the performance of the coupling system, we performed the transient analysis with GAMMA-T (GAs Multidimensional Multicomponent mixture Analysis–Turbomachinery) code for the KAIST HTGR + MED systems. The experimental benchmarks of GAMMA-T code were set up before the transient analysis for several accident scenarios. The GAMMA-T code was well validated against steady state and transient scenarios of the He–Water test loop such as changes in water mass flow rate and water inlet temperatures. Then, for transient analysis, the GTHTR300 was chosen as a reference plant. The GTHTR300 + MED systems were made, based on the KAIST HTGR + MED coupling scheme. Transient analysis was performed for three kinds of accidents scenarios: (1) loss of heat rejection through MED plant, (2) loss of heat rejection through heat sink, and (3) overcooling due to abnormal cold temperature of seawater. In all kinds of accident scenarios, maximum peak fuel temperatures were well below than the fuel failure criterion, 1600 °C and the GTHTR300 + MED system could be operated continuously and safely. Specially, in the

  5. Interior beam searchlight semi-analytical benchmark

    International Nuclear Information System (INIS)

    Ganapol, Barry D.; Kornreich, Drew E.

    2008-01-01

    Multidimensional semi-analytical benchmarks to provide highly accurate standards to assess routine numerical particle transport algorithms are few and far between. Because of the well-established 1D theory for the analytical solution of the transport equation, it is sometimes possible to 'bootstrap' a 1D solution to generate a more comprehensive solution representation. Here, we consider the searchlight problem (SLP) as a multidimensional benchmark. A variation of the usual SLP is the interior beam SLP (IBSLP) where a beam source lies beneath the surface of a half space and emits directly towards the free surface. We consider the establishment of a new semi-analytical benchmark based on a new FN formulation. This problem is important in radiative transfer experimental analysis to determine cloud absorption and scattering properties. (authors)

  6. Experimental Challenges to Stiffness as a Transport Paradigm

    Science.gov (United States)

    Luce, T. C.

    2017-10-01

    Transport in plasmas is treated experimentally as a relationship between gradients and fluxes in analogy to the random-walk problem. Gyrokinetic models often predict strong increases in local flux for small increases in local gradient when above a threshold, holding all other parameters fixed. This has been named `stiffness'. The radial scalelength is then expected to vary little with source strength as a result of high stiffness. To probe the role of ExB shearing on stiffness in the DIII-D tokamak, two neutral beam injection power scans in H-mode plasmas were specially crafted-one with constant, low torque and one with increasing torque. The ion heat, electron heat, and ion toroidal momentum transport do not show expected signatures of stiffness, while the ion particle transport does. The ion heat transport shows the clearest discrepancy; the normalized heat flux drops with increasing inverse ion temperature scalelength. ExB shearing affects the transport magnitude, but not the scalelength dependence. Linear gyrofluid (TGLF) and nonlinear gyrokinetic (GYRO) predictions show stiff ion heat transport around the experimental profiles. The ion temperature gradient required to match the ion heat flux with increasing auxiliary power is not correctly described by TGLF, even when parameters are varied within the experimental uncertainties. TGLF also underpredicts transport at smaller radii, but overpredicts transport at larger radii. Independent of the theory/experiment comparison, it is not clear that the theoretical definition of stiffness yields any prediction about parameter scans such as the power scans here, because the quantities that must be held fixed to quantify stiffness are varied. A survey of recent literature indicated that profile resilience is routinely attributed to stiffness, but simple model calculations show profile resilience does not imply stiffness. Taken together, these observations challenge the use of local stiffness as a paradigm for explaining

  7. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  8. Experimental study of the longitudinal instability for beam transport

    International Nuclear Information System (INIS)

    Reiser, M.; Wang, J.G.; Guo, W.M.; Wang, D.X.

    1990-01-01

    Theoretical model for beam longitudinal instability in a transport pipe with general wall impedance is considered. The result shows that a capacitive wall tends to stabilize the beam. The experimental study of the instability for a pure resistive-wall is presented, including the design parameters, setup and components for the experiment. 6 refs., 3 figs

  9. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  10. Experimental transport phenomena and optimization strategies for thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, A C; Gillespie, D J

    1997-07-01

    When a new and promising thermoelectric material is discovered, an effort is undertaken to improve its figure of merit. If the effort is to be more efficient than one of trial and error with perhaps some rule of thumb guidance then it is important to be able to make the connection between experimental data and the underlying material characteristics, electronic and phononic, that influence the figure of merit. Transport and fermiology experimental data can be used to evaluate these material characteristics and thus establish trends as a function of some controllable parameter, such as composition. In this paper some of the generic-materials characteristics, generally believed to be required for a high figure of merit, will be discussed in terms of the experimental approach to their evaluation and optimization. Transport and fermiology experiments will be emphasized and both will be outlined in what they can reveal and what can be obscured by the simplifying assumptions generally used in their interpretation.

  11. Experimental observations of Lagrangian sand grain kinematics under bedload transport: statistical description of the step and rest regimes

    Science.gov (United States)

    Guala, M.; Liu, M.

    2017-12-01

    The kinematics of sediment particles is investigated by non-intrusive imaging methods to provide a statistical description of bedload transport in conditions near the threshold of motion. In particular, we focus on the cyclic transition between motion and rest regimes to quantify the waiting time statistics inferred to be responsible for anomalous diffusion, and so far elusive. Despite obvious limitations in the spatio-temporal domain of the observations, we are able to identify the probability distributions of the particle step time and length, velocity, acceleration, waiting time, and thus distinguish which quantities exhibit well converged mean values, based on the thickness of their respective tails. The experimental results shown here for four different transport conditions highlight the importance of the waiting time distribution and represent a benchmark dataset for the stochastic modeling of bedload transport.

  12. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  13. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  14. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William L.; Trucano, Timothy G.

    2008-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  15. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.

    1998-02-01

    The scalings of heat transport with safety factor (q), normalized collisionality (v), plasma beta (β), and relative gyroradius (ρ*) have been measured on the DIII-D tokamak. The measured ρ* β and v scalings of heat transport indicate that E x B transport from drive wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝ q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝ q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝ q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ*, β, v and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensionless) parameters with the exception of weaker power degradation

  16. Experimental constraints on transport from dimensionless parameter scaling studies

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.; Ballet, B.; Carlstrom, T.N.; Cordey, J.G.; DeBoo, J.C.; Gohil, P.; Groebner, R.J.; Rice, B.W.; Thomas, D.M.; Wade, M.R.; Waltz, R.E.

    1998-01-01

    The scalings of heat transport with safety factor (q), normalized collisionality (ν), plasma beta (β), and relative gyroradius (ρ * ) have been measured on the DIII-D tokamak [Fusion Technol. 8, 441 (1985)]. The measured ρ * , β and ν scalings of heat transport indicate that ExB transport from drift wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χ eff ∝q 2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τ th ∝q -2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q 0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τ th ∝q 95 -1.43±0.23 . This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ * , β , ν and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensional) parameters with the exception of weaker power degradation. copyright 1998 American Institute of Physics

  17. Library Benchmarking

    Directory of Open Access Journals (Sweden)

    Wiji Suwarno

    2017-02-01

    Full Text Available The term benchmarking has been encountered in the implementation of total quality (TQM or in Indonesian termed holistic quality management because benchmarking is a tool to look for ideas or learn from the library. Benchmarking is a processof measuring and comparing for continuous business process of systematic and continuous measurement, the process of measuring and comparing for continuous business process of an organization to get information that can help these organization improve their performance efforts.

  18. Complementary numerical–experimental benchmarking for shape optimization and validation of structures subjected to wave and current forces

    DEFF Research Database (Denmark)

    Markus, D.; Ferri, Francesco; Wüchner, R.

    2015-01-01

    A new benchmark problem is proposed and evaluated targeting fluid related shape optimization problems, motivated by design related ocean engineering tasks. The analyzed test geometry is a bottom mounted, polygonal structure in a channel flow. The aim of the study is to analyze the effect of shape...

  19. Interactive benchmarking

    DEFF Research Database (Denmark)

    Lawson, Lartey; Nielsen, Kurt

    2005-01-01

    We discuss individual learning by interactive benchmarking using stochastic frontier models. The interactions allow the user to tailor the performance evaluation to preferences and explore alternative improvement strategies by selecting and searching the different frontiers using directional...... in the suggested benchmarking tool. The study investigates how different characteristics on dairy farms influences the technical efficiency....

  20. RUNE benchmarks

    DEFF Research Database (Denmark)

    Peña, Alfredo

    This report contains the description of a number of benchmarks with the purpose of evaluating flow models for near-shore wind resource estimation. The benchmarks are designed based on the comprehensive database of observations that the RUNE coastal experiment established from onshore lidar...

  1. Benchmark selection

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2002-01-01

    Within a production theoretic framework, this paper considers an axiomatic approach to benchmark selection. It is shown that two simple and weak axioms; efficiency and comprehensive monotonicity characterize a natural family of benchmarks which typically becomes unique. Further axioms are added...... in order to obtain a unique selection...

  2. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish

    2015-01-01

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  3. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  4. Consistency check of iron and sodium cross sections with integral benchmark experiments using a large amount of experimental information

    International Nuclear Information System (INIS)

    Baechle, R.-D.; Hehn, G.; Pfister, G.; Perlini, G.; Matthes, W.

    1984-01-01

    Single material benchmark experiments are designed to check neutron and gamma cross-sections of importance for deep penetration problems. At various penetration depths a large number of activation detectors and spectrometers are placed to measure the radiation field as completely as possible. The large amount of measured data in benchmark experiments can be evaluated best by the global detector concept applied to nuclear data adjustment. A new iteration procedure is presented for adjustment of a large number of multigroup cross sections, which has been implemented now in the modular adjustment code ADJUST-EUR. A theoretical test problem has been deviced to check the total program system with high precision. The method and code are going to be applied for validating the new European Data Files (JEF and EFF) in progress. (Auth.)

  5. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  6. OECD/NEA burnup credit criticality benchmarks phase IIIA: Criticality calculations of BWR spent fuel assemblies in storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ando, Yoshihira [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-09-01

    The report describes the final results of Phase IIIA Benchmarks conducted by the Burnup Credit Criticality Calculation Working Group under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The benchmarks are intended to confirm the predictive capability of the current computer code and data library combinations for the neutron multiplication factor (k{sub eff}) of a layer of irradiated BWR fuel assembly array model. In total 22 benchmark problems are proposed for calculations of k{sub eff}. The effects of following parameters are investigated: cooling time, inclusion/exclusion of FP nuclides and axial burnup profile, and inclusion of axial profile of void fraction or constant void fractions during burnup. Axial profiles of fractional fission rates are further requested for five cases out of the 22 problems. Twenty-one sets of results are presented, contributed by 17 institutes from 9 countries. The relative dispersion of k{sub eff} values calculated by the participants from the mean value is almost within the band of {+-}1%{delta}k/k. The deviations from the averaged calculated fission rate profiles are found to be within {+-}5% for most cases. (author)

  7. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  8. WLUP benchmarks

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2002-01-01

    The IAEA-WIMS Library Update Project (WLUP) is on the end stage. The final library will be released on 2002. It is a result of research and development made by more than ten investigators during 10 years. The organization of benchmarks for testing and choosing the best set of data has been coordinated by the author of this paper. It is presented the organization, name conventions, contents and documentation of WLUP benchmarks, and an updated list of the main parameters for all cases. First, the benchmarks objectives and types are given. Then, comparisons of results from different WIMSD libraries are included. Finally it is described the program QVALUE for analysis and plot of results. Some examples are given. The set of benchmarks implemented on this work is a fundamental tool for testing new multigroup libraries. (author)

  9. CEC thermal-hydraulic benchmark exercise on Fiploc verification experiment F2 in Battelle model containment. Experimental phases 2, 3 and 4. Results of comparisons

    International Nuclear Information System (INIS)

    Fischer, K.; Schall, M.; Wolf, L.

    1993-01-01

    The present final report comprises the major results of Phase II of the CEC thermal-hydraulic benchmark exercise on Fiploc verification experiment F2 in the Battelle model containment, experimental phases 2, 3 and 4, which was organized and sponsored by the Commission of the European Communities for the purpose of furthering the understanding and analysis of long-term thermal-hydraulic phenomena inside containments during and after severe core accidents. This benchmark exercise received high European attention with eight organizations from six countries participating with eight computer codes during phase 2. Altogether 18 results from computer code runs were supplied by the participants and constitute the basis for comparisons with the experimental data contained in this publication. This reflects both the high technical interest in, as well as the complexity of, this CEC exercise. Major comparison results between computations and data are reported on all important quantities relevant for containment analyses during long-term transients. These comparisons comprise pressure, steam and air content, velocities and their directions, heat transfer coefficients and saturation ratios. Agreements and disagreements are discussed for each participating code/institution, conclusions drawn and recommendations provided. The phase 2 CEC benchmark exercise provided an up-to-date state-of-the-art status review of the thermal-hydraulic capabilities of present computer codes for containment analyses. This exercise has shown that all of the participating codes can simulate the important global features of the experiment correctly, like: temperature stratification, pressure and leakage, heat transfer to structures, relative humidity, collection of sump water. Several weaknesses of individual codes were identified, and this may help to promote their development. As a general conclusion it may be said that while there is still a wide area of necessary extensions and improvements, the

  10. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  11. Consultancy Meeting on Preparation of the Final Technical Document of the IAEA CRP on Analytical and Experimental Benchmark Analysis of Accelerator Driven Systems

    International Nuclear Information System (INIS)

    2014-01-01

    With the objective to study the major physics phenomena of the spallation source and its coupling to a subcritical system, between 2005 and 2010 the IAEA carried out a Coordinated Research Project (CRP) called “Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems (ADS)”. The CRP was contributed by 27 institutions from 18 Member States (Argentina, Belarus, Belgium, Brazil, China, France, Germany, Greece, Hungary, Italy, Japan, Netherlands, Poland, Russian Federation, Spain, Sweden, Ukraine and the USA), which performed a number of analytical and experimental benchmark activities. The main objective of the CRP was to develop, verify and validate calculation tools able to perform detailed ADS calculations, from the high energy proton beam to thermal neutron energies. The purpose of this meeting was to: - Collect and review all the available contributions produced by the CRP participants; - Define structure and content of the final TECDOC; - Assemble the first draft of the TECDOC; - Identify important missing parts; - Distribute tasks and responsibilities for drafting and editing the different sections and sub-sections of the TECDOC; - Agree on the time schedule for the TECDOC finalization, review and publication. The participants were requested to contribute to all the foreseen tasks

  12. Experimental studies and computational benchmark on heavy liquid metal natural circulation in a full height-scale test loop for small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Jaehyun [Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jueun; Ju, Heejae; Sohn, Sungjune; Kim, Yeji; Noh, Hyunyub; Hwang, Il Soon [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of)

    2017-05-15

    Highlights: • Experimental studies on natural circulation for lead-bismuth eutectic were conducted. • Adiabatic wall boundaries conditions were established by compensating heat loss. • Computational benchmark with a system thermal-hydraulics code was performed. • Numerical simulation and experiment showed good agreement in mass flow rate. • An empirical relation was formulated for mass flow rate with experimental data. - Abstract: In order to test the enhanced safety of small lead-cooled fast reactors, lead-bismuth eutectic (LBE) natural circulation characteristics have been studied. We present results of experiments with LBE non-isothermal natural circulation in a full-height scale test loop, HELIOS (heavy eutectic liquid metal loop for integral test of operability and safety of PEACER), and the validation of a system thermal-hydraulics code. The experimental studies on LBE were conducted under steady state as a function of core power conditions from 9.8 kW to 33.6 kW. Local surface heaters on the main loop were activated and finely tuned by trial-and-error approach to make adiabatic wall boundary conditions. A thermal-hydraulic system code MARS-LBE was validated by using the well-defined benchmark data. It was found that the predictions were mostly in good agreement with the experimental data in terms of mass flow rate and temperature difference that were both within 7%, respectively. With experiment results, an empirical relation predicting mass flow rate at a non-isothermal, adiabatic condition in HELIOS was derived.

  13. OECD/NEA burnup credit criticality benchmarks phase IIIB: Burnup calculations of BWR fuel assemblies for storage and transport

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155 Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k ∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  14. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  15. Computational modeling and experimental characterization of indoor aerosol transport

    International Nuclear Information System (INIS)

    Konecni, Snezana; Whicker, Jeffrey J.; Martin, Richard A.

    2002-01-01

    When a hazardous aerosol or gas is inadvertently or deliberately released in an occupied facility, the airborne material presents a hazard to people. Inadvertent accidents and exposures continue to occur in Los Alamos and other nuclear facilities despite state-of-art engineering and administrative controls, and heightened diligence. Despite the obvious need in occupational settings and for homeland defense, the body of research in hazardous aerosol dispersion and control in large, complex, ventilated enclosures is extremely limited. The science governing generation, transport, inhalation, and detection of airborne hazards is lacking and must be developed to where it can be used by engineers or safety professionals in the prediction of worker exposure, in the prevention of accidents, or in the mitigation of terrorist actions. In this study, a commercial computational fluid dynamics (CFD) code, CFX5.4, and experiments were used to assess flow field characteristics, and to investigate aerosol release and transport in a large, ventilated workroom in a facility at Savannah River Site. Steady state CFD results illustrating a complex, ventilation-induced, flow field with vortices, velocity gradients, and quiet zones are presented, as are time-dependent CFD and experimental aerosol dispersion results. The comparison of response times between CFD and experimental results was favorable. It is believed that future applications of CFD and experiments can have a favorable impact on the design of ventilation (HVAC) systems and worker safety with consideration to facility costs. Ultimately, statistical methods will be used in conjunction with CFD calculations to determine the optimal number and location of detectors, as well as optimal egress routes in event of a release.

  16. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure.

    Directory of Open Access Journals (Sweden)

    Wilco P Pulskens

    Full Text Available Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD, yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+ and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+ excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5, calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b, whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a and type 3 (PIT2 were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.

  17. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of bench-marking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  18. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  19. Charge Transport in LDPE Nanocomposites Part I—Experimental Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available This work presents results of bulk conductivity and surface potential decay measurements on low-density polyethylene and its nanocomposites filled with uncoated MgO and Al2O3, with the aim to highlight the effect of the nanofillers on charge transport processes. Material samples at various filler contents, up to 9 wt %, were prepared in the form of thin films. The performed measurements show a significant impact of the nanofillers on reduction of material’s direct current (dc conductivity. The investigations thus focused on the nanocomposites having the lowest dc conductivity. Various mechanisms of charge generation and transport in solids, including space charge limited current, Poole-Frenkel effect and Schottky injection, were utilized for examining the experimental results. The mobilities of charge carriers were deduced from the measured surface potential decay characteristics and were found to be at least two times lower for the nanocomposites. The temperature dependencies of the mobilities were compared for different materials.

  20. Experimental study of fast electron transport in dense plasmas

    International Nuclear Information System (INIS)

    Vaisseau, Xavier

    2014-01-01

    The framework of this PhD thesis is the inertial confinement fusion for energy production, in the context of the electron fast ignition scheme. The work consists in a characterization of the transport mechanisms of fast electrons, driven by intense laser pulses (10 19 - 10 20 W/cm 2 ) in both cold-solid and warm-dense matter. The first goal was to study the propagation of a fast electron beam, characterized by a current density ≥ 10 11 A/cm 2 , in aluminum targets initially heated close to the Fermi temperature by a counter-propagative planar shock. The planar compression geometry allowed us to discriminate the energy losses due to the resistive mechanisms from collisional ones by comparing solid and compressed targets of the same initial areal densities. We observed for the first time a significant increase of resistive energy losses in heated aluminum samples. The confrontation of the experimental data with the simulations, including a complete characterization of the electron source, of the target compression and of the fast electron transport, allowed us to study the time-evolution of the material resistivity. The estimated resistive electron stopping power in a warm-compressed target is of the same order as the collisional one. We studied the transport of the fast electrons generated in the interaction of a high-contrast laser pulse with a hollow copper cone, buried into a carbon layer, compressed by a counter-propagative planar shock. A X-ray imaging system allowed us to visualize the coupling of the laser pulse with the cone at different moments of the compression. This diagnostic, giving access to the fast electron spatial distribution, showed a fast electron generation in the entire volume of the cone for late times of compression, after shock breakout from the inner cone tip. For earlier times, the interaction at a high-contrast ensured that the source was contained within the cone tip, and the fast electron beam was collimated into the target depth by

  1. Code-To-Code Benchmarking Of The Porflow And GoldSim Contaminant Transport Models Using A Simple 1-D Domain - 11191

    International Nuclear Information System (INIS)

    Hiergesell, R.; Taylor, G.

    2010-01-01

    An investigation was conducted to compare and evaluate contaminant transport results of two model codes, GoldSim and Porflow, using a simple 1-D string of elements in each code. Model domains were constructed to be identical with respect to cell numbers and dimensions, matrix material, flow boundary and saturation conditions. One of the codes, GoldSim, does not simulate advective movement of water; therefore the water flux term was specified as a boundary condition. In the other code, Porflow, a steady-state flow field was computed and contaminant transport was simulated within that flow-field. The comparisons were made solely in terms of the ability of each code to perform contaminant transport. The purpose of the investigation was to establish a basis for, and to validate follow-on work that was conducted in which a 1-D GoldSim model developed by abstracting information from Porflow 2-D and 3-D unsaturated and saturated zone models and then benchmarked to produce equivalent contaminant transport results. A handful of contaminants were selected for the code-to-code comparison simulations, including a non-sorbing tracer and several long- and short-lived radionuclides exhibiting both non-sorbing to strongly-sorbing characteristics with respect to the matrix material, including several requiring the simulation of in-growth of daughter radionuclides. The same diffusion and partitioning coefficients associated with each contaminant and the half-lives associated with each radionuclide were incorporated into each model. A string of 10-elements, having identical spatial dimensions and properties, were constructed within each code. GoldSim's basic contaminant transport elements, Mixing cells, were utilized in this construction. Sand was established as the matrix material and was assigned identical properties (e.g. bulk density, porosity, saturated hydraulic conductivity) in both codes. Boundary conditions applied included an influx of water at the rate of 40 cm/yr at one

  2. Benchmarking Using Basic DBMS Operations

    Science.gov (United States)

    Crolotte, Alain; Ghazal, Ahmad

    The TPC-H benchmark proved to be successful in the decision support area. Many commercial database vendors and their related hardware vendors used these benchmarks to show the superiority and competitive edge of their products. However, over time, the TPC-H became less representative of industry trends as vendors keep tuning their database to this benchmark-specific workload. In this paper, we present XMarq, a simple benchmark framework that can be used to compare various software/hardware combinations. Our benchmark model is currently composed of 25 queries that measure the performance of basic operations such as scans, aggregations, joins and index access. This benchmark model is based on the TPC-H data model due to its maturity and well-understood data generation capability. We also propose metrics to evaluate single-system performance and compare two systems. Finally we illustrate the effectiveness of this model by showing experimental results comparing two systems under different conditions.

  3. On the development and benchmarking of an approach to model gas transport in fractured media with immobile water storage

    Science.gov (United States)

    Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.

    2017-12-01

    In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.

  4. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Morita, S.; Sanin, A.; Michael, C.; Kawahata, K.; Yamada, H.; Miyazawa, J.; Tokuzawa, T.; Akiyama, T.; Goto, M.; Ida, K.; Yoshinuma, M.; Narihara, K.; Yamada, I.; Yokoyama, M.; Masuzaki, S.; Morisaki, T.; Sakamoto, R.; Funaba, H.; Komori, A.; Vyacheslavov, L.N.; Murakami, S.; Wakasa, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained from density modulation experiments in the standard configuration. The values of D and V are estimated separately at the core and edge. The diffusion coefficients are strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in core and T e 1.1±0.14 in edge. And edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in edge is close to gyro-Bohm-like in nature. The existence of non-zero V is observed. It is observed that the electron temperature (T e ) gradient can drive particle convection. This is particularly clear in the core region. The convection velocity in the core region reverses direction from inward to outward as the T e gradient increases. In the edge, the convection is inward directed in the most of the case of the present data set. And it shows modest tendency, whose value is proportional to T e gradient keeping inward direction. However, the toroidal magnetic field also significantly affects value and direction of V. The spectrum of density fluctuation changes at different heating power suggesting that it has an influence on particle transport. The peak wavenumber is around 0.1 times the inversed ion Larmor radius, as is expected from gyro-Bohm diffusion. The peaks of fluctuation intensity are localized at the plasma edge, where density gradient becomes negative and diffusion contributes most to the particle flux. These results suggest a qualitative correlation of fluctuations with particle diffusion. (author)

  5. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Sanin, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained in the standard configuration from density modulation experiments. The values of D and V are estimated separately in the core and edge. The diffusion coefficients are found to be a strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in the core and T e 1.1±0.14 in the edge. Edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in the edge is close to gyro-Bohm-like in nature. Non-zero V is observed and it is found that the electron temperature gradient can drive particle convection, particularly in the core region. The convection velocity in the core reverses direction from inward to outward as the T e gradient increases. In the edge, convection is inward directed in most cases of the present data set. It shows a modest tendency, being proportional to T e gradient and remaining inward directed. However, the toroidal magnetic field also significantly affects the value and direction of V. The density fluctuation spectrum varies with heating power suggesting that it has an influence on particle transport. The value of K sub(perpendicular) ρ i is around 0.1, as expected for gyro-Bohm diffusion. Fluctuations are localized in both positive and negative density gradient regions of the hollow density profiles. The fluctuation power in each region is clearly distinguished having different phase velocity profiles. (author)

  6. SU-F-T-152: Experimental Validation and Calculation Benchmark for a Commercial Monte Carlo Pencil BeamScanning Proton Therapy Treatment Planning System in Heterogeneous Media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L; Huang, S; Kang, M; Ainsley, C; Simone, C; McDonough, J; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Eclipse AcurosPT 13.7, the first commercial Monte Carlo pencil beam scanning (PBS) proton therapy treatment planning system (TPS), was experimentally validated for an IBA dedicated PBS nozzle in the CIRS 002LFC thoracic phantom. Methods: A two-stage procedure involving the use of TOPAS 1.3 simulations was performed. First, Geant4-based TOPAS simulations in this phantom were experimentally validated for single and multi-spot profiles at several depths for 100, 115, 150, 180, 210 and 225 MeV proton beams, using the combination of a Lynx scintillation detector and a MatriXXPT ionization chamber array. Second, benchmark calculations were performed with both AcurosPT and TOPAS in a phantom identical to the CIRS 002LFC, with the exception that the CIRS bone/mediastinum/lung tissues were replaced with similar tissues that are predefined in AcurosPT (a limitation of this system which necessitates the two stage procedure). Results: Spot sigmas measured in tissue were in agreement within 0.2 mm of TOPAS simulation for all six energies, while AcurosPT was consistently found to have larger spot sigma (<0.7 mm) than TOPAS. Using absolute dose calibration by MatriXXPT, the agreements between profiles measurements and TOPAS simulation, and calculation benchmarks are over 97% except near the end of range using 2 mm/2% gamma criteria. Overdosing and underdosing were observed at the low and high density side of tissue interfaces, respectively, and these increased with increasing depth and decreasing energy. Near the mediastinum/lung interface, the magnitude can exceed 5 mm/10%. Furthermore, we observed >5% quenching effect in the conversion of Lynx measurements to dose. Conclusion: We recommend the use of an ionization chamber array in combination with the scintillation detector to measure absolute dose and relative PBS spot characteristics. We also recommend the use of an independent Monte Carlo calculation benchmark for the commissioning of a commercial TPS. Partially

  7. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Laboratory; Reimus, Paul W. [Los Alamos National Laboratory

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  8. Experimental study of tungsten transport properties in T-10 plasma

    Science.gov (United States)

    Krupin, V. A.; Nurgaliev, M. R.; Klyuchnikov, L. A.; Nemets, A. R.; Zemtsov, I. A.; Dnestrovskij, A. Yu.; Sarychev, D. V.; Lisitsa, V. S.; Shurygin, V. A.; Leontiev, D. S.; Borschegovskij, A. A.; Grashin, S. A.; Ryjakov, D. V.; Sergeev, D. S.; Mustafin, N. A.; Trukhin, V. M.; Solomatin, R. Yu.; Tugarinov, S. N.; Naumenko, N. N.

    2017-06-01

    First experimental results of tungsten transport investigation in OH and ECRH plasmas in the T-10 tokamak with W-limiter and movable Li-limiter are presented. It is shown that tungsten tends to accumulate (a joint process of cumulation and peaking) near the plasma axis in ohmic regimes. The cumulation of W is enhanced in discharges with high values of the parameter γ ={{\\bar{n}}\\text{e}}\\centerdot {{\\bar{Z}}\\text{eff}}\\centerdot I\\text{pl}-1.5 that coincides with accumulation conditions of light and medium impurities in T-10 plasmas. Experiments with Li-limiter show the immeasurable level of Li3+ (0.3-0.5% of n e) of T-10 CXRS diagnostics because of the low inflow of Li with respect to other light impurities. Nevertheless, the strong influence of lithium on inflow of light and tungsten impurities is observed. In discharges with lithized walls, vanishing of light impurities occurs and values of {{Z}\\text{eff}}≈ 1 are obtained. It is also shown that the tungsten density in the plasma center decreases by 15 to 20 times while the W inflow reduces only by 2 to 4 times. In lithized discharges with high γ, the flattening of the tungsten density profile occurs and its central concentration decreases up to 10 times during the on-axis ECRH. This effect is observed together with the increase of the W inflow by 3 to 4 times at the ECRH stage.

  9. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4

    International Nuclear Information System (INIS)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-01-01

    The expanding clinical use of low-energy photon emitting 125 I and 103 Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst ±5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately ±2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV

  10. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.

    Science.gov (United States)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-02-07

    The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.

  11. Experimental investigation of focusing and transport of heavy-current electron beams

    International Nuclear Information System (INIS)

    Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Pen'kina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.

    The results of an experimental and theoretical study of beam transfer through transverse magnetic fields are outlined. The injection and transport of an annular relativistic electron beam due to a magnetic trap of acute-angle geometry are experimentally studied

  12. A Heterogeneous Medium Analytical Benchmark

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1999-01-01

    A benchmark, called benchmark BLUE, has been developed for one-group neutral particle (neutron or photon) transport in a one-dimensional sub-critical heterogeneous plane parallel medium with surface illumination. General anisotropic scattering is accommodated through the Green's Function Method (GFM). Numerical Fourier transform inversion is used to generate the required Green's functions which are kernels to coupled integral equations that give the exiting angular fluxes. The interior scalar flux is then obtained through quadrature. A compound iterative procedure for quadrature order and slab surface source convergence provides highly accurate benchmark qualities (4- to 5- places of accuracy) results

  13. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  14. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01. The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81 with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.

  15. Experimental challenges to stiffness as a transport paradigm

    Science.gov (United States)

    Luce, T. C.; Burrell, K. H.; Holland, C.; Marinoni, A.; Petty, C. C.; Smith, S. P.; Austin, M. E.; Grierson, B. A.; Zeng, L.

    2018-02-01

    Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans is presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the case of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that E  ×  B shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating E  ×  B shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.

  16. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    Science.gov (United States)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations

  17. Handbook of critical experiments benchmarks

    International Nuclear Information System (INIS)

    Durst, B.M.; Bierman, S.R.; Clayton, E.D.

    1978-03-01

    Data from critical experiments have been collected together for use as benchmarks in evaluating calculational techniques and nuclear data. These benchmarks have been selected from the numerous experiments performed on homogeneous plutonium systems. No attempt has been made to reproduce all of the data that exists. The primary objective in the collection of these data is to present representative experimental data defined in a concise, standardized format that can easily be translated into computer code input

  18. Experimental study on interfacial area transport in downward two-phase flow

    Science.gov (United States)

    Wang, Guanyi

    In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter

  19. Benchmark experiments on a lead reflected system and calculations on the geometry of the experimental facility using most of the commonly available nuclear data libraries

    International Nuclear Information System (INIS)

    Guillemot, M.; Colomb, G.

    1985-01-01

    A series of criticality benchmark experiments with a small LWR-type core, reflected by 30 cm of lead, was defined jointly by SEC (Service d'Etude de Criticite), Fontenay-aux-Roses, and SRD (Safety and Reliability Directorate). These experiments are very representative of the reflecting effect of lead, since the contribution of the lead to the reactivity was assessed as about 30% in Δ K. The experiments were carried out by SRSC (Service de Recherche en Surete et Criticite), Valduc, in December 1983 in the sub-critical facility called APPARATUS B. In addition, they confirmed and measured the effect on reactivity of a water gap between the core and the lead reflector; with a water gap of less than 1 cm, the reactivity can be greater than that of the core directly reflected the lead or by over 20 cm of water. The experimental results were to a large extent made use of by SRD with the aid of the MONK Monte Carlo code and to some extent by SEC with the aid of the MORET Monte Carlo Code. All the results obtained are presented in the summary tables. These experiments allowed to compare the different libraries of cross sections available

  20. Benchmarks for GADRAS performance validation

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Rhykerd, Charles L. Jr.

    2009-01-01

    The performance of the Gamma Detector Response and Analysis Software (GADRAS) was validated by comparing GADRAS model results to experimental measurements for a series of benchmark sources. Sources for the benchmark include a plutonium metal sphere, bare and shielded in polyethylene, plutonium oxide in cans, a highly enriched uranium sphere, bare and shielded in polyethylene, a depleted uranium shell and spheres, and a natural uranium sphere. The benchmark experimental data were previously acquired and consist of careful collection of background and calibration source spectra along with the source spectra. The calibration data were fit with GADRAS to determine response functions for the detector in each experiment. A one-dimensional model (pie chart) was constructed for each source based on the dimensions of the benchmark source. The GADRAS code made a forward calculation from each model to predict the radiation spectrum for the detector used in the benchmark experiment. The comparisons between the GADRAS calculation and the experimental measurements are excellent, validating that GADRAS can correctly predict the radiation spectra for these well-defined benchmark sources.

  1. Field research program for unsaturated flow and transport experimentation

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Rautman, C.A.; Glass, R.J.

    1992-01-01

    As part of the Yucca Mountain Site Characterization Project, a field research program has been developed to refine and validate models for flow and transport through unsaturated fractured rock. Validation of these models within the range of their application for performance assessment requires a more sophisticated understanding of the processes that govern flow and transport within fractured porous media than currently exists. In particular, our research is prioritized according to understanding and modeling processes that, if not accurately incorporated into performance assessment models, would adversely impact the project's ability to evaluate repository performance. For this reason, we have oriented our field program toward enhancing our understanding of scaling processes as they relate to effective media property modeling, as well as to the conceptual modeling of complex flow and transport phenomena

  2. FENDL neutronics benchmark: Specifications for the calculational neutronics and shielding benchmark

    International Nuclear Information System (INIS)

    Sawan, M.E.

    1994-12-01

    During the IAEA Advisory Group Meeting on ''Improved Evaluations and Integral Data Testing for FENDL'' held in Garching near Munich, Germany in the period 12-16 September 1994, the Working Group II on ''Experimental and Calculational Benchmarks on Fusion Neutronics for ITER'' recommended that a calculational benchmark representative of the ITER design should be developed. This report describes the neutronics and shielding calculational benchmark available for scientists interested in performing analysis for this benchmark. (author)

  3. Experimental transport analysis code system in JT-60

    International Nuclear Information System (INIS)

    Hirayama, Toshio; Shimizu, Katsuhiro; Tani, Keiji; Shirai, Hiroshi; Kikuchi, Mitsuru

    1988-03-01

    Transport analysis codes have been developed in order to study confinement properties related to particle and energy balance in ohmically and neutral beam heated plasmas of JT-60. The analysis procedure is divided into three steps as follows: 1) LOOK ; The shape of the plasma boundary is identified with a fast boundary identification code of FBI by using magnetic data, and flux surfaces are calculated with a MHD equilibrium code of SELENE. The diagnostic data are mapped to flux surfaces for neutral beam heating calculation and/or for radial transport analysis. 2) OFMC ; On the basis of transformed data, an orbit following Monte Carlo code of OFMC calculates both profiles of power deposition and particle source of neutral beam injected into a plasma. 3) SCOOP ; In the last stage, a one dimensional transport code of SCOOP solves particle and energy balance for electron and ion, in order to evaluate transport coefficients as well as global parameters such as energy confinement time and the stored energy. The analysis results are provided to a data bank of DARTS that is used to find an overview of important consideration on confinement with a regression analysis code of RAC. (author)

  4. Monte Carlo benchmarking: Validation and progress

    International Nuclear Information System (INIS)

    Sala, P.

    2010-01-01

    Document available in abstract form only. Full text of publication follows: Calculational tools for radiation shielding at accelerators are faced with new challenges from the present and next generations of particle accelerators. All the details of particle production and transport play a role when dealing with huge power facilities, therapeutic ion beams, radioactive beams and so on. Besides the traditional calculations required for shielding, activation predictions have become an increasingly critical component. Comparison and benchmarking with experimental data is obviously mandatory in order to build up confidence in the computing tools, and to assess their reliability and limitations. Thin target particle production data are often the best tools for understanding the predictive power of individual interaction models and improving their performances. Complex benchmarks (e.g. thick target data, deep penetration, etc.) are invaluable in assessing the overall performances of calculational tools when all ingredients are put at work together. A review of the validation procedures of Monte Carlo tools will be presented with practical and real life examples. The interconnections among benchmarks, model development and impact on shielding calculations will be highlighted. (authors)

  5. Experimental SGU background and in sodium water leak noise data provided by the Electricite de France R and D organization for IAEA benchmark tapes

    International Nuclear Information System (INIS)

    Jouneau, C.

    1997-01-01

    The paper describes the data which have been provided to Mr. Shinohara (JAERI) and which have served to generate the Fourth Stage Analysis Benchmark Test Tapes distributed in August 1993. (author). 2 refs, 3 figs

  6. Benchmarking in Foodservice Operations

    National Research Council Canada - National Science Library

    Johnson, Bonnie

    1998-01-01

    The objective of this study was to identify usage of foodservice performance measures, important activities in foodservice benchmarking, and benchmarking attitudes, beliefs, and practices by foodservice directors...

  7. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M.; Parma, E.J.; Ball, R.M.; Hoovler, G.S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors

  8. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    Science.gov (United States)

    Selcow, Elizabeth C.; Cerbone, Ralph J.; Ludewig, Hans; Mughabghab, Said F.; Schmidt, Eldon; Todosow, Michael; Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.

  9. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Villegas, D.

    2010-01-01

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/L Te on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/L Te the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/L Te , both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author) [fr

  10. Impact of porosity variation on diffusive transport: experimentation vs simulation

    International Nuclear Information System (INIS)

    Fatnassi, Ikram

    2015-01-01

    Reactions induced by the diffusion of reactants from different sources may alter rock confinement properties, and are therefore critical processes to assess short-term and long-term behaviour of rocks displaying a low permeability, such as argillites which are used as barriers in underground storage installation. In order to test transport-chemistry codes based on a continuous approach, the author of this research thesis reports the development and performance of simplest as possible experiments of sealing/dissolution diffusion, by using porous media of increasing complexity: compact sand, sintered glass, stoneware, chalk, until a material close to that envisaged within the frame of a storage like a Tournemire argillite. The principle of these experiments relies on the characterisation of the diffusive behaviour of an inert tracer within a porous medium submitted to dissolution reactions (attack of a carbonate matrix by an acid solution) and/or precipitation of mineral compounds (calcium oxalate, gypsum or barite) which results in an evolution of porosity and a modification of the diffusive transport of the studied tracer. At the end of the experiment, porous media and precipitates are characterised by SEM-EDS [fr

  11. Experimental tests of transport models using modulated ECH

    International Nuclear Information System (INIS)

    DeBoo, J.C.; Kinsey, J.E.; Bravenec, R.

    1998-12-01

    Both the dynamic and equilibrium thermal responses of an L-mode plasma to repetitive ECH heat pulses were measured and compared to predictions from several thermal transport models. While no model consistently agreed with all observations, the GLF23 model was most consistent with the perturbated electron and ion temperature responses for one of the cases studied which may indicate a key role played by electron modes in the core of these discharges. Generally, the IIF and MM models performed well for the perturbed electron response while the GLF23 and IFS/PPPL models agreed with the perturbed ion response for all three cases studied. No single model agreed well with the equilibrium temperature profiles measured

  12. HZETRN radiation transport validation using balloon-based experimental data

    Science.gov (United States)

    Warner, James E.; Norman, Ryan B.; Blattnig, Steve R.

    2018-05-01

    The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding ± 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm2 but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that

  13. Computational Chemistry Comparison and Benchmark Database

    Science.gov (United States)

    SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access)   The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.

  14. Benchmarking and Performance Measurement.

    Science.gov (United States)

    Town, J. Stephen

    This paper defines benchmarking and its relationship to quality management, describes a project which applied the technique in a library context, and explores the relationship between performance measurement and benchmarking. Numerous benchmarking methods contain similar elements: deciding what to benchmark; identifying partners; gathering…

  15. The coupled code system DORT-TD/THERMIX and its application to the OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark

    International Nuclear Information System (INIS)

    Pautz, A.; Tyobeka, B.; Ivanov, K.

    2009-01-01

    In new reactor designs that are still under review such as the Pebble Bed Modular Reactor (PBMR), not much experimental data exists to benchmark newly developed computer codes against. Such a situation requires that nuclear engineers and designers of this novel reactor design must resort to the validation of a newly developed code through a code-to-code benchmarking exercise because there are validated codes that are currently in use to analyze this reactor design, albeit very few of them. There are numerous HTR core physics benchmarks that are currently being pursued by different organizations, for different purposes. One such benchmark exercise is the PBMR-400MW OECD/NEA coupled neutronics/thermal hydraulics transient benchmark. In this paper, a newly developed coupled neutronics thermal hydraulics code system, DORT-TD/THERMIX with both transport and diffusion theory options, is used to simulate both the steady-state as well as several transient scenarios in this benchmark problem. (orig.)

  16. BUGLE-93 (ENDF/B-VI) cross-section library data testing using shielding benchmarks

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; White, J.E.

    1994-01-01

    Several integral shielding benchmarks were selected to perform data testing for new multigroup cross-section libraries compiled from the ENDF/B-VI data for light water reactor (LWR) shielding and dosimetry. The new multigroup libraries, BUGLE-93 and VITAMIN-B6, were studied to establish their reliability and response to the benchmark measurements by use of radiation transport codes, ANISN and DORT. Also, direct comparisons of BUGLE-93 and VITAMIN-B6 to BUGLE-80 (ENDF/B-IV) and VITAMIN-E (ENDF/B-V) were performed. Some benchmarks involved the nuclides used in LWR shielding and dosimetry applications, and some were sensitive specific nuclear data, i.e. iron due to its dominant use in nuclear reactor systems and complex set of cross-section resonances. Five shielding benchmarks (four experimental and one calculational) are described and results are presented

  17. Benchmarking in the Netherlands

    International Nuclear Information System (INIS)

    1999-01-01

    In two articles an overview is given of the activities in the Dutch industry and energy sector with respect to benchmarking. In benchmarking operational processes of different competitive businesses are compared to improve your own performance. Benchmark covenants for energy efficiency between the Dutch government and industrial sectors contribute to a growth of the number of benchmark surveys in the energy intensive industry in the Netherlands. However, some doubt the effectiveness of the benchmark studies

  18. 134Cs-transport in an experimental ecological system

    International Nuclear Information System (INIS)

    Mocsy, Ildiko; Uray, Ildiko; Salagean, Stefania

    1986-01-01

    An experimental aquatic ecosystem was developed consisting of river water, slurry, algae and crustaceans. The change of the cesium concentration factor (F c ) of two alga species were measured using 20 Bq/ml of 134 CsCl. Measurements were performed in the 6th, 12th, 24th, 48th and 72nd hour after irradiation. F c in crustaceans was found to be 1300 in the 12th hr, then decreased rapidly down to 275. The temporal dependence of cesium accumulation in slurry increased consistently. It was found that algae accumulated cesium variously. Owing to its high accumulation, Cladophora glomerata can be used as a biological indicator of cesium concentration in surface waters. (K.I.)

  19. Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Harms, Gary A.; Helmick, Paul H.; Ford, John T.; Walker, Sharon A.; Berry, Donald T.; Pickard, Paul S.

    2004-01-01

    This report describes criticality benchmark experiments containing rhodium that were conducted as part of a Department of Energy Nuclear Energy Research Initiative project. Rhodium is an important fission product absorber. A capability to perform critical experiments with low-enriched uranium fuel was established as part of the project. Ten critical experiments, some containing rhodium and others without, were conducted. The experiments were performed in such a way that the effects of the rhodium could be accurately isolated. The use of the experimental results to test neutronics codes is demonstrated by example for two Monte Carlo codes. These comparisons indicate that the codes predict the behavior of the rhodium in the critical systems within the experimental uncertainties. The results from this project, coupled with the results of follow-on experiments that investigate other fission products, can be used to quantify and reduce the conservatism of spent nuclear fuel safety analyses while still providing the necessary level of safety

  20. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  1. Experimental results on transport and focusing of laser accelerated protons

    Energy Technology Data Exchange (ETDEWEB)

    Busold, Simon; Deppert, Oliver; Roth, Markus [TU Darmstadt, IKP, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Schumacher, Dennis; Blazevic, Abel; Zielbauer, Bernhard; Hofmann, Ingo; Bagnoud, Vincent [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Brabetz, Christian; Al-Omari, Husam [JWG Universitaet Frankfurt, IAP, Max von Laue Str. 1, 60438 Frankfurt am Main (Germany); Joost, Martin; Kroll, Florian; Cowan, Tom [Helmholtzzentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Irradiation of thin foils with high-intensity laser pulses became a reliable tool during the last decade for producing high-intensity proton bunches in about a pico-second from a sub-millimeter source. However, the energy distribution is of an exponential shape with a currently achievable cut-off energy <100 MeV (TNSA mechanism) and the beam is highly divergent with an energy-dependent envelope-divergence of up to 60 deg. Thus, for most applications it is necessary to be able to capture and control these protons as well as select a specific energy. In the frame of the LIGHT collaboration, experimental studies were done at the PHELIX laser at GSI Darmstadt using a pulsed high-field solenoid and alternatively a permanent magnet quadrupole triplet in order to match the beam for injection into a RF cavity. The beam was characterized at several distances after the source and the results are compared to particle tracking simulations.

  2. Benchmarking in digital circuit design automation

    NARCIS (Netherlands)

    Jozwiak, L.; Gawlowski, D.M.; Slusarczyk, A.S.

    2008-01-01

    This paper focuses on benchmarking, which is the main experimental approach to the design method and EDA-tool analysis, characterization and evaluation. We discuss the importance and difficulties of benchmarking, as well as the recent research effort related to it. To resolve several serious

  3. Benchmark problems for repository siting models

    International Nuclear Information System (INIS)

    Ross, B.; Mercer, J.W.; Thomas, S.D.; Lester, B.H.

    1982-12-01

    This report describes benchmark problems to test computer codes used in siting nuclear waste repositories. Analytical solutions, field problems, and hypothetical problems are included. Problems are included for the following types of codes: ground-water flow in saturated porous media, heat transport in saturated media, ground-water flow in saturated fractured media, heat and solute transport in saturated porous media, solute transport in saturated porous media, solute transport in saturated fractured media, and solute transport in unsaturated porous media

  4. Determinación experimental de los coeficientes locales de transporte de humedad en almacenes soterrados. // Experimental determination of local humidity transport coefficients in underground warehouses.

    Directory of Open Access Journals (Sweden)

    Ma. D. Andrade Gregori

    2006-05-01

    Full Text Available En el trabajo se fundamentan los mecanismos de transporte de humedad que tienen lugar en almacenes soterrados dadas lascaracterísticas climáticas y geohidrològicas de Cuba. Se establece una analogía con la ley de Fick y se propone un modeloteórico que describe este mecanismo de transporte hacia las cavidades. Se determinó experimentalmente los coeficienteslocales de transporte de humedad para diferentes tipos de recubrimiento en paredes y diferentes formas geométricas de losalmacenes.Palabras claves: Almacenes, soterrado, humedad, conservación, coeficientes._______________________________________________________________________________Abstract.In this paper the mechanisms of humidity transport are explained. These mechanisms have place in underground warehousesaccording to the climatic and geohydrological characteristics of Cuba. An analogy with the Fick´s law is stated and it intends atheoretical model that describes this mechanism of transport toward the cavities. It was determined the local coefficients oftransport of humidity experimentally for different recover types in walls and different geometric forms of the warehouses.Key words: Store, buried, humidity, conservation, and coefficients.

  5. Experimentally determined distribution of granular-flow characteristics in collisional bed load transport

    Directory of Open Access Journals (Sweden)

    Matoušek Václav

    2018-01-01

    Full Text Available A series of laboratory experiments on turbulent open-channel two-phase flow in a form of intense bed load transport is reported. Measurements in a laboratory tilting flume included camera based imaging techniques to identify the structure of the flow at the local level. Obtained experimental distributions of two-phase flow related parameters - granular velocity, concentration, and temperature - across a collisional transport layer are discussed. The results are analysed together with additional measured quantities (discharges of mixture and grains, flow depth, bed slope etc. Our major goal is to evaluate the distribution of granular stresses across the transport layer with a special attention paid to the interface between the transport layer and the bed. Furthermore, comparisons are discussed between the experimental results and predictions produced by suitable kinetic-theory based models.

  6. Dynamic benchmarking of simulation codes

    International Nuclear Information System (INIS)

    Henry, R.E.; Paik, C.Y.; Hauser, G.M.

    1996-01-01

    output includes a plot of the MAAP calculation and the plant data. For the large integral experiments, a major part, but not all of the MAAP code is needed. These use an experiment specific benchmark routine that includes all of the information and boundary conditions for performing the calculation, as well as the information of which parts of MAAP are unnecessary and can be 'bypassed'. Lastly, the separate effects tests only require a few MAAP routines. These are exercised through their own specific benchmark routine that includes the experiment specific information and boundary conditions. This benchmark routine calls the appropriate MAAP routines from the source code, performs the calculations, including integration where necessary and provide the comparison between the MAAP calculation and the experimental observations. (author)

  7. Absorption and transport of radioactive 57Co-vitamin B12 in experimental giardiasis in rats

    International Nuclear Information System (INIS)

    Deka, N.C.; Sehgal, A.K.; Chnuttani, P.N.

    1981-01-01

    Giardiasis was produced in weanling albino rats by feeding suspension of Giardia lamblia cysts isolated from human stool. Experiments were carried out to assess the absorption and transport through intestinal wall of 57 Co-vitamin B 12 in these rats. The results showed a significant impairment of the absorption of the vitamin in the rats with experimental giardiasis. However, the transport of the vitamin B 12 was unimpaired. (author)

  8. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, Vikas; Margala, Martin [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA, 01854 (United States); Yu Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman, E-mail: vikas_kaushal@student.uml.ed [Department of Electrical and Computer Engineering, University of Rochester, NY, 14627 (United States)

    2009-11-15

    In this paper, two different theoretical models, Comsol Multiphysics{sup TM} (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  9. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    International Nuclear Information System (INIS)

    Kaushal, Vikas; Margala, Martin; Yu Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman

    2009-01-01

    In this paper, two different theoretical models, Comsol Multiphysics TM (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  10. Benchmarking biofuels; Biobrandstoffen benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Kampman, B.; Bergsma, G.

    2012-03-15

    A sustainability benchmark for transport biofuels has been developed and used to evaluate the various biofuels currently on the market. For comparison, electric vehicles, hydrogen vehicles and petrol/diesel vehicles were also included. A range of studies as well as growing insight are making it ever clearer that biomass-based transport fuels may have just as big a carbon footprint as fossil fuels like petrol or diesel, or even bigger. At the request of Greenpeace Netherlands, CE Delft has brought together current understanding on the sustainability of fossil fuels, biofuels and electric vehicles, with particular focus on the performance of the respective energy carriers on three sustainability criteria, with the first weighing the heaviest: (1) Greenhouse gas emissions; (2) Land use; and (3) Nutrient consumption [Dutch] Greenpeace Nederland heeft CE Delft gevraagd een duurzaamheidsmeetlat voor biobrandstoffen voor transport te ontwerpen en hierop de verschillende biobrandstoffen te scoren. Voor een vergelijk zijn ook elektrisch rijden, rijden op waterstof en rijden op benzine of diesel opgenomen. Door onderzoek en voortschrijdend inzicht blijkt steeds vaker dat transportbrandstoffen op basis van biomassa soms net zoveel of zelfs meer broeikasgassen veroorzaken dan fossiele brandstoffen als benzine en diesel. CE Delft heeft voor Greenpeace Nederland op een rijtje gezet wat de huidige inzichten zijn over de duurzaamheid van fossiele brandstoffen, biobrandstoffen en elektrisch rijden. Daarbij is gekeken naar de effecten van de brandstoffen op drie duurzaamheidscriteria, waarbij broeikasgasemissies het zwaarst wegen: (1) Broeikasgasemissies; (2) Landgebruik; en (3) Nutriëntengebruik.

  11. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  12. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  13. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  14. Core Benchmarks Descriptions

    International Nuclear Information System (INIS)

    Pavlovichev, A.M.

    2001-01-01

    Actual regulations while designing of new fuel cycles for nuclear power installations comprise a calculational justification to be performed by certified computer codes. It guarantees that obtained calculational results will be within the limits of declared uncertainties that are indicated in a certificate issued by Gosatomnadzor of Russian Federation (GAN) and concerning a corresponding computer code. A formal justification of declared uncertainties is the comparison of calculational results obtained by a commercial code with the results of experiments or of calculational tests that are calculated with an uncertainty defined by certified precision codes of MCU type or of other one. The actual level of international cooperation provides an enlarging of the bank of experimental and calculational benchmarks acceptable for a certification of commercial codes that are being used for a design of fuel loadings with MOX fuel. In particular, the work is practically finished on the forming of calculational benchmarks list for a certification of code TVS-M as applied to MOX fuel assembly calculations. The results on these activities are presented

  15. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  16. IAEA coordinated research program on `harmonization and validation of fast reactor thermomechanical and thermohydraulic codes using experimental data`. 1. Thermohydraulic benchmark analysis on high-cycle thermal fatigue events occurred at French fast breeder reactor Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-06-01

    A benchmark exercise on `Tee junction of Liquid Metal Fast Reactor (LMFR) secondary circuit` was proposed by France in the scope of the said Coordinated Research Program (CRP) via International Atomic Energy Agency (IAEA). The physical phenomenon chosen here deals with the mixture of two flows of different temperature. In a LMFR, several areas of the reactor are submitted to this problem. They are often difficult to design, because of the complexity of the phenomena involved. This is one of the major problems of the LMFRs. This problem has been encountered in the Phenix reactor on the secondary loop, where defects in a tee junction zone were detected during a campaign of inspections after an operation of 90,000 hours of the reactor. The present benchmark is based on an industrial problem and deal with thermal striping phenomena. Problems on pipes induced by thermal striping phenomena have been observed in some reactors and experimental facilities coolant circuits. This report presents numerical results on thermohydraulic characteristics of the benchmark problem, carried out using a direct numerical simulation code DINUS-3 and a boundary element code BEMSET. From the analysis with both the codes, it was confirmed that the hot sodium from the small pipe rise into the cold sodium of the main pipe with thermally instabilities. Furthermore, it was indicated that the coolant mixing region including the instabilities agrees approximately with the result by eye inspections. (author)

  17. Benchmarking for Higher Education.

    Science.gov (United States)

    Jackson, Norman, Ed.; Lund, Helen, Ed.

    The chapters in this collection explore the concept of benchmarking as it is being used and developed in higher education (HE). Case studies and reviews show how universities in the United Kingdom are using benchmarking to aid in self-regulation and self-improvement. The chapters are: (1) "Introduction to Benchmarking" (Norman Jackson…

  18. Numisheet2005 Benchmark Analysis on Forming of an Automotive Underbody Cross Member: Benchmark 2

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao Jian

    2005-01-01

    This report presents an international cooperation benchmark effort focusing on simulations of a sheet metal stamping process. A forming process of an automotive underbody cross member using steel and aluminum blanks is used as a benchmark. Simulation predictions from each submission are analyzed via comparison with the experimental results. A brief summary of various models submitted for this benchmark study is discussed. Prediction accuracy of each parameter of interest is discussed through the evaluation of cumulative errors from each submission

  19. Experimental and AI-based numerical modeling of contaminant transport in porous media

    Science.gov (United States)

    Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P.

    2017-10-01

    This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively.

  20. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    Science.gov (United States)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  1. Multiscale benchmarking of drug delivery vectors.

    Science.gov (United States)

    Summers, Huw D; Ware, Matthew J; Majithia, Ravish; Meissner, Kenith E; Godin, Biana; Rees, Paul

    2016-10-01

    Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-vitro experimental protocol is presented that separates the role of the delivery vector from that of its cargo in determining the cell response, thus allowing quantitative comparison of different systems. The technique is validated through benchmarking of the dose-response of human fibroblast cells exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are converted to a delivered dose with the transport properties of the different scale systems characterized by a delivery time, τ. The benchmarking highlights an agglomeration of the free PEI molecules into micron sized clusters and identifies the metric determining cell death as the total number of PEI molecules presented to cells, determined by the delivery vector dose and the surface density of the cargo. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Experimental investigations and seismic analyses for benchmark study of 1000 MW WWER type (water-cooled and moderated reactor) nuclear power plant Kozloduy. Final report 15 June 1993 - 14 June 1994

    International Nuclear Information System (INIS)

    Sachansky, S.

    1995-01-01

    This report includes preparation and compilation of all existing studies related to seismic safety assessment of Kozloduy WWER-1000, i.e. Units 5 and 6; description of previous full scale testing of Unit 5; and the results obtained from seismic analyses performed under benchmark experimental studies. The results are concerned with analysis of the geological conditions; analysis of the seismic wave velocities in the soil layers; analysis of the predominant natural periods; dynamic characteristics of the Unit 5; soil-structure interaction and laboratory testing and analysis of the reactor containment tenders

  3. Experimental investigations and seismic analyses for benchmark study of 1000 MW WWER type (water-cooled and moderated reactor) nuclear power plant Kozloduy. Final report 15 June 1993 - 14 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sachansky, S [Building Research Institute (NISI), Sofia (Bulgaria)

    1995-07-01

    This report includes preparation and compilation of all existing studies related to seismic safety assessment of Kozloduy WWER-1000, i.e. Units 5 and 6; description of previous full scale testing of Unit 5; and the results obtained from seismic analyses performed under benchmark experimental studies. The results are concerned with analysis of the geological conditions; analysis of the seismic wave velocities in the soil layers; analysis of the predominant natural periods; dynamic characteristics of the Unit 5; soil-structure interaction and laboratory testing and analysis of the reactor containment tenders.

  4. A Benchmark of Tractor Trailer Operator Training Between the United States Army’s 37th Transportation Command and a Selected Civilian Industry Leader

    Science.gov (United States)

    1993-09-01

    against Japanese competitors (Camp, 1989:6; Geber , 1990:38). Due to their incredible success in controlling costs, Xerox adopted the technique company...important first step to benchmarking outside the organization ( Geber , 1990:40). Due to availability of information and cooperation of partners, this is...science ( Geber , 1990:42). Several avenues can be pursued to find best-in-class companies. Search business publications for companies frequently

  5. Benchmarking semantic web technology

    CERN Document Server

    García-Castro, R

    2009-01-01

    This book addresses the problem of benchmarking Semantic Web Technologies; first, from a methodological point of view, proposing a general methodology to follow in benchmarking activities over Semantic Web Technologies and, second, from a practical point of view, presenting two international benchmarking activities that involved benchmarking the interoperability of Semantic Web technologies using RDF(S) as the interchange language in one activity and OWL in the other.The book presents in detail how the different resources needed for these interoperability benchmarking activities were defined:

  6. Benchmarking in University Toolbox

    Directory of Open Access Journals (Sweden)

    Katarzyna Kuźmicz

    2015-06-01

    Full Text Available In the face of global competition and rising challenges that higher education institutions (HEIs meet, it is imperative to increase innovativeness and efficiency of their management. Benchmarking can be the appropriate tool to search for a point of reference necessary to assess institution’s competitive position and learn from the best in order to improve. The primary purpose of the paper is to present in-depth analysis of benchmarking application in HEIs worldwide. The study involves indicating premises of using benchmarking in HEIs. It also contains detailed examination of types, approaches and scope of benchmarking initiatives. The thorough insight of benchmarking applications enabled developing classification of benchmarking undertakings in HEIs. The paper includes review of the most recent benchmarking projects and relating them to the classification according to the elaborated criteria (geographical range, scope, type of data, subject, support and continuity. The presented examples were chosen in order to exemplify different approaches to benchmarking in higher education setting. The study was performed on the basis of the published reports from benchmarking projects, scientific literature and the experience of the author from the active participation in benchmarking projects. The paper concludes with recommendations for university managers undertaking benchmarking, derived on the basis of the conducted analysis.

  7. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  8. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    International Nuclear Information System (INIS)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions

  9. Experimental and analytical study of interfacial area transport phenomena in a vertical two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Byung-Gil; Euh, Dong-Jin; Yun, Byong-Jo; Youn, Young-Jung; Yoon, Han-Yeong; Song, Chul-Hwa

    2005-03-01

    The number density transport equations for various bubble groups are used to predict the void fraction and the interfacial area concentration. As the closure relations for number density transport equation, the coalescence due to random collisions and the breakup due to the impact of turbulent eddies is modified based on the previous studies and the bubble expansion term due to the pressure reduction is considered. Also, the coalescence due to a wake entrainment is modeled newly to apply to the number density transport equation. In order to predict the local experimental data, the code is developed that the two-fluid model is coupled systematically with the number density transport equation for each bubble group. As for the results of the numerical analysis, the void fraction and interfacial area concentration are predicted well by the developed code and models although some deviations exist in the values between the prediction and experiment, especially, for the high void fraction conditions.

  10. Experimental and theoretical study of particle transport in the TCV Tokamak

    International Nuclear Information System (INIS)

    Fable, E.

    2009-06-01

    The main scope of this thesis work is to compare theoretical models with experimental observations on particle transport in particular regimes of plasma operation from the Tokamak à Configuration Variable (TCV) located at CRPP–EPFL in Lausanne. We introduce the main topics in Tokamak fusion research and the challenging problems in the first Chapter. A particular attention is devoted to the modelling of heat and particle transport. In the second Chapter the experimental part is presented, including an overview of TCV capabilities, a brief review of the relevant diagnostic systems, and a discussion of the numerical tools used to analyze the experimental data. In addition, the numerical codes that are used to interpret the experimental data and to compare them with theoretical predictions are introduced. The third Chapter deals with the problem of understanding the mechanisms that regulate the transport of energy in TCV plasmas, in particular in the electron Internal Transport Barrier (eITB) scenario. A radial transport code, integrated with an external module for the calculation of the turbulence-induced transport coefficients, is employed to reproduce the experimental scenario and to understand the physics at play. It is shown how the sustainment of an improved confinement regime is linked to the presence of a reversed safety factor profile. The improvement of confinement in the eITB regime is visible in the energy channel and in the particle channel as well. The density profile shows strong correlation with the temperature profile and has a large local logarithmic gradient. This is an important result obtained from the TCV eITB scenario analysis and is presented in the fourth Chapter. In the same chapter we present the estimate of the particle diffusion and convection coefficients obtained from density transient experiments performed in the eITB scenario. The theoretical understanding of the strong correlation between density and temperature observed in the e

  11. MCNP: Photon benchmark problems

    International Nuclear Information System (INIS)

    Whalen, D.J.; Hollowell, D.E.; Hendricks, J.S.

    1991-09-01

    The recent widespread, markedly increased use of radiation transport codes has produced greater user and institutional demand for assurance that such codes give correct results. Responding to these pressing requirements for code validation, the general purpose Monte Carlo transport code MCNP has been tested on six different photon problem families. MCNP was used to simulate these six sets numerically. Results for each were compared to the set's analytical or experimental data. MCNP successfully predicted the analytical or experimental results of all six families within the statistical uncertainty inherent in the Monte Carlo method. From this we conclude that MCNP can accurately model a broad spectrum of photon transport problems. 8 refs., 30 figs., 5 tabs

  12. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  13. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    Science.gov (United States)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  14. The development of code benchmarks

    International Nuclear Information System (INIS)

    Glass, R.E.

    1986-01-01

    Sandia National Laboratories has undertaken a code benchmarking effort to define a series of cask-like problems having both numerical solutions and experimental data. The development of the benchmarks includes: (1) model problem definition, (2) code intercomparison, and (3) experimental verification. The first two steps are complete and a series of experiments are planned. The experiments will examine the elastic/plastic behavior of cylinders for both the end and side impacts resulting from a nine meter drop. The cylinders will be made from stainless steel and aluminum to give a range of plastic deformations. This paper presents the results of analyses simulating the model's behavior using materials properties for stainless steel and aluminum

  15. RISKIND verification and benchmark comparisons

    International Nuclear Information System (INIS)

    Biwer, B.M.; Arnish, J.J.; Chen, S.Y.; Kamboj, S.

    1997-08-01

    This report presents verification calculations and benchmark comparisons for RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the population from exposures associated with the transportation of spent nuclear fuel and other radioactive materials. Spreadsheet calculations were performed to verify the proper operation of the major options and calculational steps in RISKIND. The program is unique in that it combines a variety of well-established models into a comprehensive treatment for assessing risks from the transportation of radioactive materials. Benchmark comparisons with other validated codes that incorporate similar models were also performed. For instance, the external gamma and neutron dose rate curves for a shipping package estimated by RISKIND were compared with those estimated by using the RADTRAN 4 code and NUREG-0170 methodology. Atmospheric dispersion of released material and dose estimates from the GENII and CAP88-PC codes. Verification results have shown the program to be performing its intended function correctly. The benchmark results indicate that the predictions made by RISKIND are within acceptable limits when compared with predictions from similar existing models

  16. RISKIND verification and benchmark comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Biwer, B.M.; Arnish, J.J.; Chen, S.Y.; Kamboj, S.

    1997-08-01

    This report presents verification calculations and benchmark comparisons for RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the population from exposures associated with the transportation of spent nuclear fuel and other radioactive materials. Spreadsheet calculations were performed to verify the proper operation of the major options and calculational steps in RISKIND. The program is unique in that it combines a variety of well-established models into a comprehensive treatment for assessing risks from the transportation of radioactive materials. Benchmark comparisons with other validated codes that incorporate similar models were also performed. For instance, the external gamma and neutron dose rate curves for a shipping package estimated by RISKIND were compared with those estimated by using the RADTRAN 4 code and NUREG-0170 methodology. Atmospheric dispersion of released material and dose estimates from the GENII and CAP88-PC codes. Verification results have shown the program to be performing its intended function correctly. The benchmark results indicate that the predictions made by RISKIND are within acceptable limits when compared with predictions from similar existing models.

  17. Validation of VHTRC calculation benchmark of critical experiment using the MCB code

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2016-01-01

    Full Text Available The calculation benchmark problem Very High Temperature Reactor Critical (VHTR a pin-in-block type core critical assembly has been investigated with the Monte Carlo Burnup (MCB code in order to validate the latest version of Nuclear Data Library based on ENDF format. Executed benchmark has been made on the basis of VHTR benchmark available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments. This benchmark is useful for verifying the discrepancies in keff values between various libraries and experimental values. This allows to improve accuracy of the neutron transport calculations that may help in designing the high performance commercial VHTRs. Almost all safety parameters depend on the accuracy of neutron transport calculation results that, in turn depend on the accuracy of nuclear data libraries. Thus, evaluation of the libraries applicability to VHTR modelling is one of the important subjects. We compared the numerical experiment results with experimental measurements using two versions of available nuclear data (ENDF-B-VII.1 and JEFF-3.2 prepared for required temperatures. Calculations have been performed with the MCB code which allows to obtain very precise representation of complex VHTR geometry, including the double heterogeneity of a fuel element. In this paper, together with impact of nuclear data, we discuss also the impact of different lattice modelling inside the fuel pins. The discrepancies of keff have been successfully observed and show good agreement with each other and with the experimental data within the 1 σ range of the experimental uncertainty. Because some propagated discrepancies observed, we proposed appropriate corrections in experimental constants which can improve the reactivity coefficient dependency. Obtained results confirm the accuracy of the new Nuclear Data Libraries.

  18. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conventional technology for gas transport

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier and an integrated receiving terminal. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. In the onshore process, the cryogenic exergy in the LNG is utilized to cool and liquefy the cold carriers, LCO 2 and LIN. The transport pressures for LNG, LIN and LCO 2 will influence the thermodynamic efficiency as well as the ship utilization; hence sensitivity analyses are performed, showing that the ship utilization for the payload will vary between 58% and 80%, and the transport chain exergy efficiency between 48% and 52%. A thermodynamically optimized process requires 319 kWh/tonne LNG. The NG lost due to power generation needed to operate the LEC processes is roughly one third of the requirement in a conventional transport chain for stranded NG gas with CO 2 capture and sequestration (CCS)

  19. Modeling Human Nonalcoholic Steatohepatitis-Associated Changes in Drug Transporter Expression Using Experimental Rodent Models

    OpenAIRE

    Canet, Mark J.; Hardwick, Rhiannon N.; Lake, April D.; Dzierlenga, Anika L.; Clarke, John D.; Cherrington, Nathan J.

    2014-01-01

    Nonalcoholic fatty liver disease is a prevalent form of chronic liver disease that can progress to the more advanced stage of nonalcoholic steatohepatitis (NASH). NASH has been shown to alter drug transporter regulation and may have implications in the development of adverse drug reactions. Several experimental rodent models have been proposed for the study of NASH, but no single model fully recapitulates all aspects of the human disease. The purpose of the current study was to determine whic...

  20. DORT-TD/THERMIX solutions for the OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Pautz, Andreas; Ivanov, Kostadin

    2008-01-01

    In new reactor designs that are still under review such as the PBMR, not much experimental data exists to benchmark newly developed computer codes against. Such a situation requires that nuclear engineers and designers of this novel reactor design must resort to the validation of a newly developed code through a code-to-code benchmarking exercise because there are validated codes that are currently in use to analyze this reactor design, albeit very few of them. There are numerous HTR core physics benchmarks that are currently being pursued by different organizations, for different purposes. One such benchmark exercise is the PBMR-400 MW OECD/NEA/NSC coupled neutronics/thermal hydraulics transient benchmark. In this paper, a newly developed coupled neutronics thermal hydraulics code system, DORT-TD/THERMIX with both transport and diffusion theory options, is used to simulate the transient scenarios in the above-mentioned benchmark problem. Steady-state calculations results are compared with selected participants' results as well as transient models in which the diffusion and transport theory solutions of the same code system are directly compared. Several sensitivity studies are also shown in order to determine how much the change in certain parameters influences the overall behaviour of a given transient. It is shown in this paper that DORT-TD/THERMIX is a versatile tool which can be deployed for design and safety analyses of high temperature reactors of pebble-bed type. (authors)

  1. Benchmarking af kommunernes sagsbehandling

    DEFF Research Database (Denmark)

    Amilon, Anna

    Fra 2007 skal Ankestyrelsen gennemføre benchmarking af kommuernes sagsbehandlingskvalitet. Formålet med benchmarkingen er at udvikle praksisundersøgelsernes design med henblik på en bedre opfølgning og at forbedre kommunernes sagsbehandling. Dette arbejdspapir diskuterer metoder for benchmarking...

  2. Internet based benchmarking

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Nielsen, Kurt

    2005-01-01

    We discuss the design of interactive, internet based benchmarking using parametric (statistical) as well as nonparametric (DEA) models. The user receives benchmarks and improvement potentials. The user is also given the possibility to search different efficiency frontiers and hereby to explore...

  3. The Drill Down Benchmark

    NARCIS (Netherlands)

    P.A. Boncz (Peter); T. Rühl (Tim); F. Kwakkel

    1998-01-01

    textabstractData Mining places specific requirements on DBMS query performance that cannot be evaluated satisfactorily using existing OLAP benchmarks. The DD Benchmark - defined here - provides a practical case and yardstick to explore how well a DBMS is able to support Data Mining applications. It

  4. Benchmarking Tool Kit.

    Science.gov (United States)

    Canadian Health Libraries Association.

    Nine Canadian health libraries participated in a pilot test of the Benchmarking Tool Kit between January and April, 1998. Although the Tool Kit was designed specifically for health libraries, the content and approach are useful to other types of libraries as well. Used to its full potential, benchmarking can provide a common measuring stick to…

  5. Experimental study on unsteady open channel flow and bedload transport based on a physical model

    Science.gov (United States)

    Cao, W.

    2015-12-01

    Flow in a nature river are usually unsteady, while nearly all the theories about bedload transport are on the basis of steady, uniform flow, and also with supposed equilibrium state of sediment transport. This is may be one of the main reasons why the bedload transport formulas are notoriously poor accuracy to predict the bedload. The aim of this research is to shed light on the effect of unsteadiness on the bedload transport based on experimental studies. The novel of this study is that the experiments were not carried out in a conventional flume but in a physical model, which are more similar to the actual river. On the other hand, in our experiments, multiple consecutive flood wave were reproduced in the physical model, and all the flow and sediment parameters are based on a large number of data obtained from many of identical flood waves. This method allow us to get more data for one flood, efficiently avoids the uncertainty of bedload rate only for one single flood wave, due to the stochastic fluctuation of the bedload transport. Three different flood waves were selected in the experiments. During each run of experiment, the water level of five different positions along the model were measured by ultrasonic water level gauge, flow velocity at the middle of the channel were measured by two dimensional electromagnetic current meter. Moreover, the bedload transport rate was measured by a unique automatic trap collecting and weighing system at the end of the physical model. The results shows that the celerity of flood wave propagate varies for different flow conditions. The velocity distribution was approximately accord with log-law profile during the entire rising and falling limb of flood. The bedload transport rate show intensity fluctuation in all the experiments, moreover, for different flood waves, the moment when the shear stress reaches its maximum value is not the exact moment when the sediment transport rate reaches its maximum value, which indicates

  6. How Activists Use Benchmarks

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Wigan, Duncan

    2015-01-01

    Non-governmental organisations use benchmarks as a form of symbolic violence to place political pressure on firms, states, and international organisations. The development of benchmarks requires three elements: (1) salience, that the community of concern is aware of the issue and views...... are put to the test. The first is a reformist benchmarking cycle where organisations defer to experts to create a benchmark that conforms with the broader system of politico-economic norms. The second is a revolutionary benchmarking cycle driven by expert-activists that seek to contest strong vested...... interests and challenge established politico-economic norms. Differentiating these cycles provides insights into how activists work through organisations and with expert networks, as well as how campaigns on complex economic issues can be mounted and sustained....

  7. EGS4 benchmark program

    International Nuclear Information System (INIS)

    Yasu, Y.; Hirayama, H.; Namito, Y.; Yashiro, S.

    1995-01-01

    This paper proposes EGS4 Benchmark Suite which consists of three programs called UCSAMPL4, UCSAMPL4I and XYZDOS. This paper also evaluates optimization methods of recent RISC/UNIX systems, such as IBM, HP, DEC, Hitachi and Fujitsu, for the benchmark suite. When particular compiler option and math library were included in the evaluation process, system performed significantly better. Observed performance of some of the RISC/UNIX systems were beyond some so-called Mainframes of IBM, Hitachi or Fujitsu. The computer performance of EGS4 Code System on an HP9000/735 (99MHz) was defined to be the unit of EGS4 Unit. The EGS4 Benchmark Suite also run on various PCs such as Pentiums, i486 and DEC alpha and so forth. The performance of recent fast PCs reaches that of recent RISC/UNIX systems. The benchmark programs have been evaluated with correlation of industry benchmark programs, namely, SPECmark. (author)

  8. Generation of seven group cross section library for TRIGA LEU fuel in CITATION format and benchmarking some experimental and operational data

    International Nuclear Information System (INIS)

    Sarker, M.M.; Bhuiyan, S.I.; Akramuzzaman, M.

    2007-01-01

    The principal objective of this study is to validate the seven group cross section library in CITATION format for TRIGA LEU Fuel. This presentation deals with the 'generation of a cross section library for the CITATION and its validation. We used WIMSD-5B version for the generation of all group constants. The overall strategy is: (1) use WIMS package to generate few group neutron macroscopic cross section (cell constants) for all of the materials in the core and its immediate neighborhood (2) use 3-D code CITATION to perform the global analysis of the core to study: multiplication factor, neutron flux distribution and power peaking factors. Various options available in WIMS program were studied in depth to finalize the models to generate the most appropriate group constants. For the global analysis the code CITATION and a post processing program FCAP were chosen. Thus a seven group cross section library for the calculations of TRIGA Research Reactor was generated. To investigate the validity of the generated library a critical experiment of the TRIGA research reactor was benchmarked. (author)

  9. Existing experimental criticality data applicable to nuclear-fuel-transportation systems

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1983-02-01

    Analytical techniques are generally relied upon in making criticality evaluations involving nuclear material outside reactors. For these evaluations to be accepted the calculations must be validated by comparison with experimental data for a known set of conditions having physical and neutronic characteristics similar to those conditions being evaluated analytically. The purpose of this report is to identify those existing experimental data that are suitable for use in verifying criticality calculations on nuclear fuel transportation systems. In addition, near term needs for additional data in this area are identified. Of the considerable amount of criticality data currently existing, that are applicable to non-reactor systems, those particularly suitable for use in support of nuclear material transportation systems have been identified and catalogued into the following groups: (1) critical assemblies of fuel rods in water; (2) critical assemblies of fuel rods in water containing soluble neutron absorbers; (3) critical assemblies containing solid neutron absorber; (4) critical assemblies of fuel rods in water with heavy metal reflectors; and (5) critical assemblies of fuel rods in water with irregular features. A listing of the current near term needs for additional data in each of the groups has been developed for future use in planning criticality research in support of nuclear fuel transportation systems. The criticality experiments needed to provide these data are briefly described and identified according to priority and relative cost of performing the experiments

  10. Experimental and gyrokinetic investigation of core impurity transport in Alcator C-mod

    Science.gov (United States)

    Howard, N.; Greenwald, M.; Podpaly, Y.; Reinke, M. L.; Rice, J. E.; White, A. E.; Mikkelsen, D. R.; Puetterich, T.

    2010-11-01

    A new multiple pulse laser blow-off system coupled with an upgraded high resolution x-ray spectrometer with spatial resolution allow for the most detailed studies of impurity transport on Alcator C-mod to date. Trace impurity injections created by the laser blow-off technique were introduced into plasmas with a wide range of parameters and time evolving profiles of He-like calcium were measured. The unique measurement of a single charge state profile and line integrated emission measurements from spectroscopic diagnostics were compared with the simulated emission from the impurity transport code STRAHL. A nonlinear least squares fitting routine was coupled with STRAHL, allowing for core impurity transport coefficients with errors to be determined. With this method, experimental data from trace calcium injections were analyzed and radially dependent, core values (< r/a ˜.6) of the diffusive and convective components of the impurity flux were obtained. The STRAHL results are compared with linear and global, nonlinear simulations from the gyrokinetic code GYRO. Results of this comparison and an investigation of the underlying physics associated with turbulent impurity transport will be presented.

  11. Selective segmental sclerotherapy of the liver by transportal absolute ethanol injection: an animal experimental study

    International Nuclear Information System (INIS)

    Pan Jie; Yang Ning; Zhang Zhongzhong; Hu Libin; Chen Jie; Wu Wei; Jin Zhengyu; Liu Wei

    2003-01-01

    Objective: To evaluate the safety and efficacy of selective segmental sclerotherapy (SSS) of the liver by transportal absolute ethanol injection with an animal experimental study, and to discuss several technical points involved in this method. Methods: Thirty dogs received SSS of the liver by transportal absolute ethanol injection with the injection dose of 0.2-1.0 ml/kg, repeated examinations of blood ethanol level, WBC, and liver functions were done, and CT and pathological examinations of the liver were performed. Results: All dogs treated with SSS survived during the study. The maximum elevation of blood ethanol values occurred in group F. Its average value was (1.603 ± 0.083) mg/ml, which was much lower than that of death level. Transient elevations of blood WBC and ALT were seen. The average values of WBC and ALT were (46.36 ± 7.28) x 10 9 and (827.36 ± 147.25) U/L, respectively. CT and pathological examinations proved that the dogs given SSS by transportal absolute ethanol injection with the injection dose of 0.3-1.0 ml/kg had a complete wedge-shaped necrosis in the liver. Conclusion: Selective segmental sclerotherapy of the liver by transportal ethanol injection was quite safe and effective if the proper dose of ethanol was injected. SSS may be useful in the treatment of HCC

  12. Experimental characterization of the water transport properties of PEM fuel cells diffusion media

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Sole, Joshua D.; Hernandez-Guerrero, Abel; Ellis, Michael W.

    2012-11-01

    A full experimental characterization of the liquid water transport properties of Toray TGP-090 paper is carried out in this work. Porosity, capillary pressure curves (capillary pressure-saturation relationships), absolute permeability, and relative permeability are obtained via experimental procedures. Porosity was determined using two methods, both aimed to obtain the solid volume of the network of fibers comprising the carbon paper. Capillary pressure curves were obtained using a gas displacement porosimeter where liquid water is injected using a syringe pump and the capillary pressure is recorded using a differential pressure transducer. Absolute and relative permeability were also measured with an apparatus designed at Virginia Tech. Absolute permeability was calculated at different flow rates using nitrogen. On the other hand, relative permeability was a more complicated task to carry out giving the complexity (two-phase flow condition) of this property. All of the water transport properties of Toray TGP-090 were studied under the effects of wet-proofing (PTFE treatment) and compression. Some observations were that wet-proofing reduces the porosity of the raw material, increases the hydrophobicity (Pc-S curves), and reduces the permeability of the material. Similar effects were observed for compression, where compressed material exhibited trends similar to those of wet-proofing effects. The results presented here will allow a more accurate modeling of PEMFCs, providing an experimentally verified alternative to the assumptions frequently employed.

  13. Benchmarking and the laboratory

    Science.gov (United States)

    Galloway, M; Nadin, L

    2001-01-01

    This article describes how benchmarking can be used to assess laboratory performance. Two benchmarking schemes are reviewed, the Clinical Benchmarking Company's Pathology Report and the College of American Pathologists' Q-Probes scheme. The Clinical Benchmarking Company's Pathology Report is undertaken by staff based in the clinical management unit, Keele University with appropriate input from the professional organisations within pathology. Five annual reports have now been completed. Each report is a detailed analysis of 10 areas of laboratory performance. In this review, particular attention is focused on the areas of quality, productivity, variation in clinical practice, skill mix, and working hours. The Q-Probes scheme is part of the College of American Pathologists programme in studies of quality assurance. The Q-Probes scheme and its applicability to pathology in the UK is illustrated by reviewing two recent Q-Probe studies: routine outpatient test turnaround time and outpatient test order accuracy. The Q-Probes scheme is somewhat limited by the small number of UK laboratories that have participated. In conclusion, as a result of the government's policy in the UK, benchmarking is here to stay. Benchmarking schemes described in this article are one way in which pathologists can demonstrate that they are providing a cost effective and high quality service. Key Words: benchmarking • pathology PMID:11477112

  14. Innovative alpha radioactivity monitor for clearance level inspection based on ionized air transport technology (2). CFD-simulated and experimental ion transport efficiencies for uranium-attached pipes

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Nakahara, Katsuhiko; Sano, Akira; Sato, Mitsuyoshi; Aoyama, Yoshio; Miyamoto, Yasuaki; Yamaguchi, Hiromi; Nanbu, Kenichi; Takahashi, Hiroyuki; Oda, Akinori

    2007-01-01

    An innovative alpha radioactivity monitor for clearance level inspection has been developed. This apparatus measures an ion current resulting from air ionization by alpha particles. Ions generated in the measurement chamber of about 1 m 3 in volume are transported by airflow to a sensor and measured. This paper presents computational estimation of ion transport efficiencies for two pipes with different lengths, the inner surfaces of which were covered with a thin layer of uranium. These ion transport efficiencies were compared with those experimentally obtained for the purpose of our model validation. Good agreement was observed between transport efficiencies from simulations and those experimentally estimated. Dependence of the transport efficiencies on the region of uranium coating was also examined, based on which anticipated errors arising from unclear positions of contamination are also discussed. (author)

  15. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-01-01

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport

  16. Experimental investigation of turbulent transport at the edge of a tokamak plasma

    International Nuclear Information System (INIS)

    Fedorczak, N.

    2010-01-01

    This manuscript is devoted to the experimental investigation of particle transport in the edge region of the tokamak Tore Supra. The first part introduces the motivations linked to energy production, the principle of a magnetic confinement and the elements of physics essential to describe the dynamic of the plasma at the edge region. From data collected by a set of Langmuir probes and a fast visible imaging camera, we demonstrate that the particle transport is dominated by the convection of plasma filaments, structures elongated along magnetic field lines. They present a finite wave number, responsible for the high enhancement of the particle flux at the low field side of the tokamak. This leads to the generation of strong parallel flows, and the strong constraint of filament geometry by the magnetic shear. (author)

  17. Benchmark calculations of power distribution within assemblies

    International Nuclear Information System (INIS)

    Cavarec, C.; Perron, J.F.; Verwaerde, D.; West, J.P.

    1994-09-01

    The main objective of this Benchmark is to compare different techniques for fine flux prediction based upon coarse mesh diffusion or transport calculations. We proposed 5 ''core'' configurations including different assembly types (17 x 17 pins, ''uranium'', ''absorber'' or ''MOX'' assemblies), with different boundary conditions. The specification required results in terms of reactivity, pin by pin fluxes and production rate distributions. The proposal for these Benchmark calculations was made by J.C. LEFEBVRE, J. MONDOT, J.P. WEST and the specification (with nuclear data, assembly types, core configurations for 2D geometry and results presentation) was distributed to correspondents of the OECD Nuclear Energy Agency. 11 countries and 19 companies answered the exercise proposed by this Benchmark. Heterogeneous calculations and homogeneous calculations were made. Various methods were used to produce the results: diffusion (finite differences, nodal...), transport (P ij , S n , Monte Carlo). This report presents an analysis and intercomparisons of all the results received

  18. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  19. Toxicological Benchmarks for Wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E. Opresko, D.M. Suter, G.W.

    1993-01-01

    Ecological risks of environmental contaminants are evaluated by using a two-tiered process. In the first tier, a screening assessment is performed where concentrations of contaminants in the environment are compared to no observed adverse effects level (NOAEL)-based toxicological benchmarks. These benchmarks represent concentrations of chemicals (i.e., concentrations presumed to be nonhazardous to the biota) in environmental media (water, sediment, soil, food, etc.). While exceedance of these benchmarks does not indicate any particular level or type of risk, concentrations below the benchmarks should not result in significant effects. In practice, when contaminant concentrations in food or water resources are less than these toxicological benchmarks, the contaminants may be excluded from further consideration. However, if the concentration of a contaminant exceeds a benchmark, that contaminant should be retained as a contaminant of potential concern (COPC) and investigated further. The second tier in ecological risk assessment, the baseline ecological risk assessment, may use toxicological benchmarks as part of a weight-of-evidence approach (Suter 1993). Under this approach, based toxicological benchmarks are one of several lines of evidence used to support or refute the presence of ecological effects. Other sources of evidence include media toxicity tests, surveys of biota (abundance and diversity), measures of contaminant body burdens, and biomarkers. This report presents NOAEL- and lowest observed adverse effects level (LOAEL)-based toxicological benchmarks for assessment of effects of 85 chemicals on 9 representative mammalian wildlife species (short-tailed shrew, little brown bat, meadow vole, white-footed mouse, cottontail rabbit, mink, red fox, and whitetail deer) or 11 avian wildlife species (American robin, rough-winged swallow, American woodcock, wild turkey, belted kingfisher, great blue heron, barred owl, barn owl, Cooper's hawk, and red

  20. Benchmark problem for IAEA coordinated research program (CRP-3) on GCR afterheat removal. 1

    International Nuclear Information System (INIS)

    Takada, Shoji; Shiina, Yasuaki; Inagaki, Yoshiyuki; Hishida, Makoto; Sudo, Yukio

    1995-08-01

    In this report, detailed data which are necessary for the benchmark analysis of International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP-3) on 'Heat Transport and Afterheat Removal for Gas-cooled Reactors under Accident Conditions' are described concerning about the configuration and sizes of the cooling panel test apparatus, experimental data and thermal properties. The test section of the test apparatus is composed of pressure vessel (max. 450degC) containing an electric heater (max. 100kW, 600degC) and cooling panels surrounding the pressure vessel. Gas pressure is varied from vacuum to 1.0MPa in the pressure vessel. Two experimental cases are selected as benchmark problems about afterheat removal of HTGR, described as follows, The experimental conditions are vacuum inside the pressure vessel and heater output 13.14kW, and helium gas pressure 0.73MPa inside the pressure vessel and heater output 28.79kW. Benchmark problems are to calculate temperature distributions on the outer surface of pressure vessel and heat transferred to the cooling panel using the experimental data. The analytical result of temperature distribution on the pressure vessel was estimated +38degC, -29degC compared with the experimental data, and analytical result of heat transferred from the surface of pressure vessel to the cooling panel was estimated max. -11.4% compared with the experimental result by using the computational code -THANPACST2- of JAERI. (author)

  1. Experimental methods and transport models for drug delivery across the blood-brain barrier.

    Science.gov (United States)

    Fu, Bingmei M

    2012-06-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.

  2. Recent experimental studies of edge and internal transport barriers in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Gohil, P; Baylor, L R; Burrell, K H; Casper, T A; Doyle, E J; Greenfield, C M; Jernigan, T C; Kinsey, J E; Lasnier, C J; Moyer, R A; Murakami, M; Rhodes, T L; Rudakov, D L; Staebler, G M; Wang, G; Watkins, J G; West, W P; Zeng, L

    2003-01-01

    Results from recent experiments on the DIII-D tokamak have revealed many important details on transport barriers at the plasma edge and in the plasma core. These experiments include: (a) the formation of the H-mode edge barrier directly by pellet injection; (b) the formation of a quiescent H-mode edge barrier (QH-mode) which is free from edge localized modes, but which still exhibits good density and radiative power control; (c) the formation of multiple transport barriers, such as the quiescent double barrier (QDB) which combines an internal transport barrier with the quiescent H-mode edge barrier. Results from the pellet-induced H-mode experiments indicate that: (a) the edge temperature (electron or ion) does not need to attain a critical value for the formation of the H-mode barrier, (b) pellet injection leads to an increased gradient in the radial electric field, E r , at the plasma edge; (c) the experimentally determined edge parameters at barrier transition are well below the predictions of several theories on the formation of the H-mode barrier, (d) pellet injection can lower the threshold power required to form the H-mode barrier. The quiescent H-mode barrier exhibits good density control as the result of continuous magnetohydrodynamic activity at the plasma edge called the edge harmonic oscillation (EHO). The EHO enhances the edge particle transport whilst maintaining a good energy transport barrier. The ability to produce multiple barriers in the QDB regime has led to long duration, high-performance plasmas with β N H 89 values of 7 for up to 10 times the confinement time. Density profile control in the plasma core of QDB plasmas has been demonstrated using on-axis electron cyclotron heating

  3. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  4. Benchmarking Swiss electricity grids

    International Nuclear Information System (INIS)

    Walti, N.O.; Weber, Ch.

    2001-01-01

    This extensive article describes a pilot benchmarking project initiated by the Swiss Association of Electricity Enterprises that assessed 37 Swiss utilities. The data collected from these utilities on a voluntary basis included data on technical infrastructure, investments and operating costs. These various factors are listed and discussed in detail. The assessment methods and rating mechanisms that provided the benchmarks are discussed and the results of the pilot study are presented that are to form the basis of benchmarking procedures for the grid regulation authorities under the planned Switzerland's electricity market law. Examples of the practical use of the benchmarking methods are given and cost-efficiency questions still open in the area of investment and operating costs are listed. Prefaces by the Swiss Association of Electricity Enterprises and the Swiss Federal Office of Energy complete the article

  5. Benchmarking and Regulation

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    . The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  6. Financial Integrity Benchmarks

    Data.gov (United States)

    City of Jackson, Mississippi — This data compiles standard financial integrity benchmarks that allow the City to measure its financial standing. It measure the City's debt ratio and bond ratings....

  7. Benchmarking in Foodservice Operations

    National Research Council Canada - National Science Library

    Johnson, Bonnie

    1998-01-01

    .... The design of this study included two parts: (1) eleven expert panelists involved in a Delphi technique to identify and rate importance of foodservice performance measures and rate the importance of benchmarking activities, and (2...

  8. MFTF TOTAL benchmark

    International Nuclear Information System (INIS)

    Choy, J.H.

    1979-06-01

    A benchmark of the TOTAL data base management system as applied to the Mirror Fusion Test Facility (MFTF) data base was implemented and run in February and March of 1979. The benchmark was run on an Interdata 8/32 and involved the following tasks: (1) data base design, (2) data base generation, (3) data base load, and (4) develop and implement programs to simulate MFTF usage of the data base

  9. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  10. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  11. Benchmarking electricity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Watts, K. [Department of Justice and Attorney-General, QLD (Australia)

    1995-12-31

    Benchmarking has been described as a method of continuous improvement that involves an ongoing and systematic evaluation and incorporation of external products, services and processes recognised as representing best practice. It is a management tool similar to total quality management (TQM) and business process re-engineering (BPR), and is best used as part of a total package. This paper discusses benchmarking models and approaches and suggests a few key performance indicators that could be applied to benchmarking electricity distribution utilities. Some recent benchmarking studies are used as examples and briefly discussed. It is concluded that benchmarking is a strong tool to be added to the range of techniques that can be used by electricity distribution utilities and other organizations in search of continuous improvement, and that there is now a high level of interest in Australia. Benchmarking represents an opportunity for organizations to approach learning from others in a disciplined and highly productive way, which will complement the other micro-economic reforms being implemented in Australia. (author). 26 refs.

  12. EPRI depletion benchmark calculations using PARAGON

    International Nuclear Information System (INIS)

    Kucukboyaci, Vefa N.

    2015-01-01

    Highlights: • PARAGON depletion calculations are benchmarked against the EPRI reactivity decrement experiments. • Benchmarks cover a wide range of enrichments, burnups, cooling times, and burnable absorbers, and different depletion and storage conditions. • Results from PARAGON-SCALE scheme are more conservative relative to the benchmark data. • ENDF/B-VII based data reduces the excess conservatism and brings the predictions closer to benchmark reactivity decrement values. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality analyses, code validation for both fresh and used fuel is required. Fresh fuel validation is typically done by modeling experiments from the “International Handbook.” A depletion validation can determine a bias and bias uncertainty for the worth of the isotopes not found in the fresh fuel critical experiments. Westinghouse’s burnup credit methodology uses PARAGON™ (Westinghouse 2-D lattice physics code) and its 70-group cross-section library, which have been benchmarked, qualified, and licensed both as a standalone transport code and as a nuclear data source for core design simulations. A bias and bias uncertainty for the worth of depletion isotopes, however, are not available for PARAGON. Instead, the 5% decrement approach for depletion uncertainty is used, as set forth in the Kopp memo. Recently, EPRI developed a set of benchmarks based on a large set of power distribution measurements to ascertain reactivity biases. The depletion reactivity has been used to create 11 benchmark cases for 10, 20, 30, 40, 50, and 60 GWd/MTU and 3 cooling times 100 h, 5 years, and 15 years. These benchmark cases are analyzed with PARAGON and the SCALE package and sensitivity studies are performed using different cross-section libraries based on ENDF/B-VI.3 and ENDF/B-VII data to assess that the 5% decrement approach is conservative for determining depletion uncertainty

  13. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil; Lee, Eui-Jong; Jeong, Sanghyun; Guo, Jiaxin; An, Alicia Kyoungjin; Guo, Hong; Kim, Joonha; Leiknes, TorOve; Ghaffour, NorEddine

    2016-01-01

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  14. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil

    2016-12-27

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  15. Benchmark shielding calculations for the NEACRP [Nuclear Energy Agency-Committee on Reactor Physics] Working Group on shielding assessment of transportation packages

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Brady, M.C.; Parks, C.V.

    1990-11-01

    In 1985, the Nuclear Energy Agency-Committee on Reactor Physics (NEACRP) established a working group on shielding assessment of transportation packages. Following the initial distribution of a set of six problems, discussions were held at the Organization for Economic Cooperation and Development (OECD) Headquarters in Paris, France, in June/July 1986, May 1988, and February/March 1990. The US contribution to the working group is documented in this report. The results from this effort permit the evaluation of a number of approximations and effects that must be considered in a typical shielding analysis of a transportation cask. Among the effects reported here are the performance of multiple cross-section sets, the comparison of several source generation codes, and multidimensional versus one-dimensional (1-D) analyses. 18 refs., 16 figs., 33 tabs

  16. A 3D stylized half-core CANDU benchmark problem

    International Nuclear Information System (INIS)

    Pounders, Justin M.; Rahnema, Farzad; Serghiuta, Dumitru; Tholammakkil, John

    2011-01-01

    A 3D stylized half-core Canadian deuterium uranium (CANDU) reactor benchmark problem is presented. The benchmark problem is comprised of a heterogeneous lattice of 37-element natural uranium fuel bundles, heavy water moderated, heavy water cooled, with adjuster rods included as reactivity control devices. Furthermore, a 2-group macroscopic cross section library has been developed for the problem to increase the utility of this benchmark for full-core deterministic transport methods development. Monte Carlo results are presented for the benchmark problem in cooled, checkerboard void, and full coolant void configurations.

  17. Integral benchmarks with reference to thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2003-01-01

    This is a power point presentation about the Indian participation in the CRP 'Evaluated Data for the Thorium-Uranium fuel cycle'. The plans and scope of the Indian participation are to provide selected integral experimental benchmarks for nuclear data validation, including Indian Thorium burn up benchmarks, post-irradiation examination studies, comparison of basic evaluated data files and analysis of selected benchmarks for Th-U fuel cycle

  18. The KMAT: Benchmarking Knowledge Management.

    Science.gov (United States)

    de Jager, Martha

    Provides an overview of knowledge management and benchmarking, including the benefits and methods of benchmarking (e.g., competitive, cooperative, collaborative, and internal benchmarking). Arthur Andersen's KMAT (Knowledge Management Assessment Tool) is described. The KMAT is a collaborative benchmarking tool, designed to help organizations make…

  19. Benchmarking the Netherlands. Benchmarking for growth

    International Nuclear Information System (INIS)

    2003-01-01

    This is the fourth edition of the Ministry of Economic Affairs' publication 'Benchmarking the Netherlands', which aims to assess the competitiveness of the Dutch economy. The methodology and objective of the benchmarking remain the same. The basic conditions for economic activity (institutions, regulation, etc.) in a number of benchmark countries are compared in order to learn from the solutions found by other countries for common economic problems. This publication is devoted entirely to the potential output of the Dutch economy. In other words, its ability to achieve sustainable growth and create work over a longer period without capacity becoming an obstacle. This is important because economic growth is needed to increase prosperity in the broad sense and meeting social needs. Prosperity in both a material (per capita GDP) and immaterial (living environment, environment, health, etc) sense, in other words. The economy's potential output is determined by two structural factors: the growth of potential employment and the structural increase in labour productivity. Analysis by the Netherlands Bureau for Economic Policy Analysis (CPB) shows that in recent years the increase in the capacity for economic growth has been realised mainly by increasing the supply of labour and reducing the equilibrium unemployment rate. In view of the ageing of the population in the coming years and decades the supply of labour is unlikely to continue growing at the pace we have become accustomed to in recent years. According to a number of recent studies, to achieve a respectable rate of sustainable economic growth the aim will therefore have to be to increase labour productivity. To realise this we have to focus on for six pillars of economic policy: (1) human capital, (2) functioning of markets, (3) entrepreneurship, (4) spatial planning, (5) innovation, and (6) sustainability. These six pillars determine the course for economic policy aiming at higher productivity growth. Throughout

  20. Benchmarking the Netherlands. Benchmarking for growth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    This is the fourth edition of the Ministry of Economic Affairs' publication 'Benchmarking the Netherlands', which aims to assess the competitiveness of the Dutch economy. The methodology and objective of the benchmarking remain the same. The basic conditions for economic activity (institutions, regulation, etc.) in a number of benchmark countries are compared in order to learn from the solutions found by other countries for common economic problems. This publication is devoted entirely to the potential output of the Dutch economy. In other words, its ability to achieve sustainable growth and create work over a longer period without capacity becoming an obstacle. This is important because economic growth is needed to increase prosperity in the broad sense and meeting social needs. Prosperity in both a material (per capita GDP) and immaterial (living environment, environment, health, etc) sense, in other words. The economy's potential output is determined by two structural factors: the growth of potential employment and the structural increase in labour productivity. Analysis by the Netherlands Bureau for Economic Policy Analysis (CPB) shows that in recent years the increase in the capacity for economic growth has been realised mainly by increasing the supply of labour and reducing the equilibrium unemployment rate. In view of the ageing of the population in the coming years and decades the supply of labour is unlikely to continue growing at the pace we have become accustomed to in recent years. According to a number of recent studies, to achieve a respectable rate of sustainable economic growth the aim will therefore have to be to increase labour productivity. To realise this we have to focus on for six pillars of economic policy: (1) human capital, (2) functioning of markets, (3) entrepreneurship, (4) spatial planning, (5) innovation, and (6) sustainability. These six pillars determine the course for economic policy aiming at higher productivity

  1. Benchmarking infrastructure for mutation text mining.

    Science.gov (United States)

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  2. Benchmarking infrastructure for mutation text mining

    Science.gov (United States)

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  3. Reactor group constants and benchmark test

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    The evaluated nuclear data files such as JENDL, ENDF/B-VI and JEF-2 are validated by analyzing critical mock-up experiments for various type reactors and assessing applicability for nuclear characteristics such as criticality, reaction rates, reactivities, etc. This is called Benchmark Testing. In the nuclear calculations, the diffusion and transport codes use the group constant library which is generated by processing the nuclear data files. In this paper, the calculation methods of the reactor group constants and benchmark test are described. Finally, a new group constants scheme is proposed. (author)

  4. Benchmarking in Mobarakeh Steel Company

    Directory of Open Access Journals (Sweden)

    Sasan Ghasemi

    2008-05-01

    Full Text Available Benchmarking is considered as one of the most effective ways of improving performance incompanies. Although benchmarking in business organizations is a relatively new concept and practice, ithas rapidly gained acceptance worldwide. This paper introduces the benchmarking project conducted in Esfahan’s Mobarakeh Steel Company, as the first systematic benchmarking project conducted in Iran. It aimsto share the process deployed for the benchmarking project in this company and illustrate how the projectsystematic implementation led to succes.

  5. Benchmarking in Mobarakeh Steel Company

    OpenAIRE

    Sasan Ghasemi; Mohammad Nazemi; Mehran Nejati

    2008-01-01

    Benchmarking is considered as one of the most effective ways of improving performance in companies. Although benchmarking in business organizations is a relatively new concept and practice, it has rapidly gained acceptance worldwide. This paper introduces the benchmarking project conducted in Esfahan's Mobarakeh Steel Company, as the first systematic benchmarking project conducted in Iran. It aims to share the process deployed for the benchmarking project in this company and illustrate how th...

  6. Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat.

    Science.gov (United States)

    Martin, Keith R G; Levkovitch-Verbin, Hana; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Quigley, Harry A

    2002-07-01

    High levels of glutamate can be toxic to retinal ganglion cells. Effective buffering of extracellular glutamate by retinal glutamate transporters is therefore important. This study was conducted to investigate whether glutamate transporter changes occur with two models of optic nerve injury in the rat. Glaucoma was induced in one eye of 35 adult Wistar rats by translimbal diode laser treatment to the trabecular meshwork. Twenty-five more rats underwent unilateral optic nerve transection. Two glutamate transporters, GLAST (EAAT-1) and GLT-1 (EAAT-2), were studied by immunohistochemistry and quantitative Western blot analysis. Treated and control eyes were compared 3 days and 1, 4, and 6 weeks after injury. Optic nerve damage was assessed semiquantitatively in epoxy-embedded optic nerve cross sections. Trabecular laser treatment resulted in moderate intraocular pressure (IOP) elevation in all animals. After 1 to 6 weeks of experimental glaucoma, all treated eyes had significant optic nerve damage. Glutamate transporter changes were not detected by immunohistochemistry. Western blot analysis demonstrated significantly reduced GLT-1 in glaucomatous eyes compared with control eyes at 3 days (29.3% +/- 6.7%, P = 0.01), 1 week (55.5% +/- 13.6%, P = 0.02), 4 weeks (27.2% +/- 10.1%, P = 0.05), and 6 weeks (38.1% +/- 7.9%, P = 0.01; mean reduction +/- SEM, paired t-tests, n = 5 animals per group, four duplicate Western blot analyses per eye). The magnitude of the reduction in GLT-1 correlated significantly with mean IOP in the glaucomatous eye (r(2) = 0.31, P = 0.01, linear regression). GLAST was significantly reduced (33.8% +/- 8.1%, mean +/- SEM) after 4 weeks of elevated IOP (P = 0.01, paired t-test, n = 5 animals per group). In contrast to glaucoma, optic nerve transection resulted in an increase in GLT-1 compared with the control eye (P = 0.01, paired t-test, n = 15 animals). There was no significant change in GLAST after transection. GLT-1 and GLAST were significantly

  7. Numerical and experimental approaches to study soil transport and clogging in granular filters

    Science.gov (United States)

    Kanarska, Y.; Smith, J. J.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.

    2012-12-01

    Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. Numerical modeling has proved to be a cost-effective tool for improving our understanding of physical processes. Traditionally, the consideration of flow and particle transport in porous media has focused on treating the media as continuum. Practical models typically address flow and transport based on the Darcy's law as a function of a pressure gradient and a medium-dependent permeability parameter. Additional macroscopic constitutes describe porosity, and permeability changes during the migration of a suspension through porous media. However, most of them rely on empirical correlations, which often need to be recalibrated for each application. Grain-scale modeling can be used to gain insight into scale dependence of continuum macroscale parameters. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration in the filter layers of gravity dam. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. It is believed that the agreement between simulations and experimental data demonstrates the applicability of the proposed approach for prediction of the soil transport and clogging in embankment dams. To get more precise understanding of

  8. Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights

    Science.gov (United States)

    Rasmuson, J. A.; Johnson, W. P.

    2017-12-01

    A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector

  9. Deviating From the Benchmarks

    DEFF Research Database (Denmark)

    Rocha, Vera; Van Praag, Mirjam; Carneiro, Anabela

    This paper studies three related questions: To what extent otherwise similar startups employ different quantities and qualities of human capital at the moment of entry? How persistent are initial human capital choices over time? And how does deviating from human capital benchmarks influence firm......, founders human capital, and the ownership structure of startups (solo entrepreneurs versus entrepreneurial teams). We then study the survival implications of exogenous deviations from these benchmarks, based on spline models for survival data. Our results indicate that (especially negative) deviations from...... the benchmark can be substantial, are persistent over time, and hinder the survival of firms. The implications may, however, vary according to the sector and the ownership structure at entry. Given the stickiness of initial choices, wrong human capital decisions at entry turn out to be a close to irreversible...

  10. The benchmark testing of 9Be of CENDL-3

    International Nuclear Information System (INIS)

    Liu Ping

    2002-01-01

    CENDL-3, the latest version of China Evaluated Nuclear Data Library was finished. The data of 9 Be were updated, and distributed for benchmark analysis recently. The calculated results were presented, and compared with the experimental data and the results based on other evaluated nuclear data libraries. The results show that CENDL-3 is better than others for most benchmarks

  11. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    Directory of Open Access Journals (Sweden)

    Chiang K.-T. K.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  12. Recent developments in identification of kinetic and transport models from experimental data. Contributed Paper IT-08

    International Nuclear Information System (INIS)

    Bhatt, Nirav P.

    2014-01-01

    In this presentation, we will discuss recent developments in area of identification of kinetic and transport models from experimental data, and their importance in spent fuel reprocessing. The traditional kinetic modelling approaches, differentiation and integral methods, will be presented to set the stage. Then, two frameworks of identifying kinetic and transport models will be presented in details. These frameworks can be classified as follows: (i) simultaneous or global model identification (SMI), and (ii) incremental model identification (IMI). In the SMI framework, as name indicates, rate expressions of all reactions are integrated to predict concentrations that are fitted to measured values via a least-squares problem simultaneously. Alternatively, the identification task can be split into a sequence of sub-problems such as the identification of stoichiometry and rate expressions. For each subproblem, the number of model candidates can be kept small. In addition, the information available at a given step can be used to refine the model in subsequent steps. Further, the advantages and disadvantages of these frameworks will be presented

  13. Experimental studies on the transport of silver and cesium fission products in SiC

    International Nuclear Information System (INIS)

    Gerczak, Tyler; Tan, Lizhen; Allen, Todd

    2009-01-01

    To understand the release of Ag and Cs in SiC we have designed an integrated experimental and modeling program to understand the potential role of microstructure on fission product transport. We have encapsulated SiC/Ag and SiC/Cs diffusion couples in a molybdenum canister to ensure contact between the two diffusion couple elements and no Ag or Cs loss to the surrounding environment. The diffusion couples are exposed to temperatures spanning 800 to 1500degC for up to 1000 hrs to simulate normal and the onset of accident conditions. The relationship between the microstructure and diffusion will be understood by employing a variety of techniques such as scanning electron microscopy (SEM), electron backscattered detection (EBSD), energy dispersive spectroscopy (EDS), Rutherford backscattering (RBS), and Raman spectroscopy to characterize morphology, grain boundary character distribution, chemical composition, and crystalline structure. In addition computer modeling is also being used to investigate the diffusion of silver through SiC, but will not be discussed in this paper. A multi-scale approach based on ab initio techniques, molecular dynamics, and continuum rate equations is being pursued to establish relationships between complex microstructures and diffusion rates. Initial work has begun on transport through bulk SiC and on building realistic models of grain boundaries in SiC. (author)

  14. HPCG Benchmark Technical Specification

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, Michael Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dongarra, Jack [Univ. of Tennessee, Knoxville, TN (United States); Luszczek, Piotr [Univ. of Tennessee, Knoxville, TN (United States)

    2013-10-01

    The High Performance Conjugate Gradient (HPCG) benchmark [cite SNL, UTK reports] is a tool for ranking computer systems based on a simple additive Schwarz, symmetric Gauss-Seidel preconditioned conjugate gradient solver. HPCG is similar to the High Performance Linpack (HPL), or Top 500, benchmark [1] in its purpose, but HPCG is intended to better represent how today’s applications perform. In this paper we describe the technical details of HPCG: how it is designed and implemented, what code transformations are permitted and how to interpret and report results.

  15. Benchmarking for Best Practice

    CERN Document Server

    Zairi, Mohamed

    1998-01-01

    Benchmarking for Best Practice uses up-to-the-minute case-studies of individual companies and industry-wide quality schemes to show how and why implementation has succeeded. For any practitioner wanting to establish best practice in a wide variety of business areas, this book makes essential reading. .It is also an ideal textbook on the applications of TQM since it describes concepts, covers definitions and illustrates the applications with first-hand examples. Professor Mohamed Zairi is an international expert and leading figure in the field of benchmarking. His pioneering work in this area l

  16. Benchmarking Danish Industries

    DEFF Research Database (Denmark)

    Gammelgaard, Britta; Bentzen, Eric; Aagaard Andreassen, Mette

    2003-01-01

    compatible survey. The International Manufacturing Strategy Survey (IMSS) doesbring up the question of supply chain management, but unfortunately, we did not have access to thedatabase. Data from the members of the SCOR-model, in the form of benchmarked performance data,may exist, but are nonetheless...... not public. The survey is a cooperative project "Benchmarking DanishIndustries" with CIP/Aalborg University, the Danish Technological University, the DanishTechnological Institute and Copenhagen Business School as consortia partners. The project has beenfunded by the Danish Agency for Trade and Industry...

  17. [Do you mean benchmarking?].

    Science.gov (United States)

    Bonnet, F; Solignac, S; Marty, J

    2008-03-01

    The purpose of benchmarking is to settle improvement processes by comparing the activities to quality standards. The proposed methodology is illustrated by benchmark business cases performed inside medical plants on some items like nosocomial diseases or organization of surgery facilities. Moreover, the authors have built a specific graphic tool, enhanced with balance score numbers and mappings, so that the comparison between different anesthesia-reanimation services, which are willing to start an improvement program, is easy and relevant. This ready-made application is even more accurate as far as detailed tariffs of activities are implemented.

  18. RB reactor benchmark cores

    International Nuclear Information System (INIS)

    Pesic, M.

    1998-01-01

    A selected set of the RB reactor benchmark cores is presented in this paper. The first results of validation of the well-known Monte Carlo MCNP TM code and adjoining neutron cross section libraries are given. They confirm the idea for the proposal of the new U-D 2 O criticality benchmark system and support the intention to include this system in the next edition of the recent OECD/NEA Project: International Handbook of Evaluated Criticality Safety Experiment, in near future. (author)

  19. An experimental setup to evaluate innovative therapy options for the enhancement of bone healing using BMP as a benchmark – a pilot study

    Directory of Open Access Journals (Sweden)

    B Preininger

    2012-04-01

    Full Text Available Critical or delayed bone healing in rat osteotomy (OT models is mostly achieved through large defects or instability. We aimed to design a rat OT model for impaired bone healing based on age, gender and parity. The outcome should be controllable through variations of the haematoma in the OT including a bone morphogenetic protein (BMP 2 guided positive control.Using external fixation to stabilise femoral a 2 mm double OT in 12 month old, female Sprague Dawley rats after a minimum of 3 litters healing was characterised following in situ haematoma formation (ISH-group, transplantation of a BMP charged autologous blood clot (BMP-group and the artificial blood clot only (ABC-group into the OT-gap. In vivo micro-computer tomography (µCT scans were performed after 2, 4 and 6 weeks. After 6 weeks specimens underwent histological analyses.In µCT examinations and histological analyses no bony bridging was observed in all but one animal in the ISH-group. In the BMP group complete bridging was achieved in all animals. The ABC-group showed less mineralised tissue formation and smaller bridging scores during the course of healing than the ISH-group.In this pilot study we introduce a model for impaired bone healing taking the major biological risk factors into account. We could show that the in situ fracture haematoma is essential for bone regeneration. Using BMP as a positive control the presented experimental setup can serve to evaluate innovative therapeutical concepts in long bone application.

  20. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  1. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  2. A simplified 2D HTTR benchmark problem

    International Nuclear Information System (INIS)

    Zhang, Z.; Rahnema, F.; Pounders, J. M.; Zhang, D.; Ougouag, A.

    2009-01-01

    To access the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of relevant whole core configurations. In this paper we have created a numerical benchmark problem in 2D configuration typical of a high temperature gas cooled prismatic core. This problem was derived from the HTTR start-up experiment. For code-to-code verification, complex details of geometry and material specification of the physical experiments are not necessary. To this end, the benchmark problem presented here is derived by simplifications that remove the unnecessary details while retaining the heterogeneity and major physics properties from the neutronics viewpoint. Also included here is a six-group material (macroscopic) cross section library for the benchmark problem. This library was generated using the lattice depletion code HELIOS. Using this library, benchmark quality Monte Carlo solutions are provided for three different configurations (all-rods-in, partially-controlled and all-rods-out). The reference solutions include the core eigenvalue, block (assembly) averaged fuel pin fission density distributions, and absorption rate in absorbers (burnable poison and control rods). (authors)

  3. HYDROCOIN [HYDROlogic COde INtercomparison] Level 1: Benchmarking and verification test results with CFEST [Coupled Fluid, Energy, and Solute Transport] code: Draft report

    International Nuclear Information System (INIS)

    Yabusaki, S.; Cole, C.; Monti, A.M.; Gupta, S.K.

    1987-04-01

    Part of the safety analysis is evaluating groundwater flow through the repository and the host rock to the accessible environment by developing mathematical or analytical models and numerical computer codes describing the flow mechanisms. This need led to the establishment of an international project called HYDROCOIN (HYDROlogic COde INtercomparison) organized by the Swedish Nuclear Power Inspectorate, a forum for discussing techniques and strategies in subsurface hydrologic modeling. The major objective of the present effort, HYDROCOIN Level 1, is determining the numerical accuracy of the computer codes. The definition of each case includes the input parameters, the governing equations, the output specifications, and the format. The Coupled Fluid, Energy, and Solute Transport (CFEST) code was applied to solve cases 1, 2, 4, 5, and 7; the Finite Element Three-Dimensional Groundwater (FE3DGW) Flow Model was used to solve case 6. Case 3 has been ignored because unsaturated flow is not pertinent to SRP. This report presents the Level 1 results furnished by the project teams. The numerical accuracy of the codes is determined by (1) comparing the computational results with analytical solutions for cases that have analytical solutions (namely cases 1 and 4), and (2) intercomparing results from codes for cases which do not have analytical solutions (cases 2, 5, 6, and 7). Cases 1, 2, 6, and 7 relate to flow analyses, whereas cases 4 and 5 require nonlinear solutions. 7 refs., 71 figs., 9 tabs

  4. Histological evolution of the regenerate during bone transport: an experimental study in sheep.

    Science.gov (United States)

    López-Pliego, Esperanza Macarena; Giráldez-Sánchez, Miguel Ángel; Mora-Macías, Juan; Reina-Romo, Esther; Domínguez, Jaime

    2016-09-01

    Bone transport (BT) for segmentary bone defects is a well-known technique as it enables correction with new bone formation, which is similar to the previous bone. Despite the high number of experimental studies of distraction osteogenesis in bone lengthening, the types of ossification and histological changes that occur in the regenerate of the bone transport process remain controversial. The aim of this study is to provide the complete evolution of tissues and the types of ossification in the regenerate during the different phases of bone formation after BT until the end of the remodelling period. A histological study was performed using ten adult sheep that were submitted to BT. The types of ossification as well as the evolution of different tissues in the regenerate were determined using histomorphometry and inmunohistochemical studies. The evolution of trabeculae thickness, osteoblast and osteoclast densities, relationship between collagen types and changes in vascularization were also studied. Ossification was primarily intramembranous, with some focus of endochondral ossification in isolated animals. The cell counts showed a progression of cellular activity from the periphery to the centre, presenting the same progression as the growth of bone trabeculae, whose trabeculae thickness was quadrupled at the end of remodelling. Inmunohistochemical studies confirmed the prevalence of type I collagen and the ratio of the Type I/Type II collagen ratio was found to be 2.48. The percentages of the vascularized areas were proximally higher than distally in all animals, but distal zone obtained higher rates than the central region. Bone transport regenerate exhibits a centripetal ossification model and a mixed pattern with predominance of intramembranous over endochondral ossification. The data obtained resemble partially to those found in models of bone lengthening applied to large animals. This study provides a detailed structural characterization of the newly formed

  5. Changes in mode of travel to work: a natural experimental study of new transport infrastructure.

    Science.gov (United States)

    Heinen, Eva; Panter, Jenna; Mackett, Roger; Ogilvie, David

    2015-06-20

    New transport infrastructure may promote a shift towards active travel, thereby improving population health. The purpose of this study was to determine the effect of a major transport infrastructure project on commuters' mode of travel, trip frequency and distance travelled to work. Quasi-experimental analysis nested within a cohort study of 470 adults working in Cambridge, UK. The intervention consisted of the opening of a guided busway with a path for walking and cycling in 2011. Exposure to the intervention was defined as the negative of the square root of the shortest distance from home to busway. The outcome measures were changes in commute mode share and number of commute trips - both based on a seven-day travel-to-work record collected before (2009) and after (2012) the intervention - and change in objective commute distance. The mode share outcomes were changes in the proportions of trips (i) involving any active travel, (ii) involving any public transport, and (iii) made entirely by car. Separate multinomial regression models were estimated adjusting for commute and sociodemographic characteristics, residential settlement size and life events. Proximity to the busway predicted an increased likelihood of a large (>30 %) increase in the share of commute trips involving any active travel (relative risk ratio [RRR] 1.80, 95 % CI 1.27, 2.55) and a large decrease in the share of trips made entirely by car (RRR 2.09, 95 % CI 1.35, 3.21), as well as a lower likelihood of a small (travel (RRR 0.47, 95 % CI 0.28, 0.81). It was not associated with changes in the share of commute trips involving any public transport, the number of commute trips, or commute distance. The new infrastructure promoted an increase in the share of commuting trips involving active travel and a decrease in the share made entirely by car. Further analysis will show the extent to which the changes in commute mode share were translated into an increase in time spent in active commuting and

  6. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    Science.gov (United States)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  7. Benchmarking and Performance Management

    Directory of Open Access Journals (Sweden)

    Adrian TANTAU

    2010-12-01

    Full Text Available The relevance of the chosen topic is explained by the meaning of the firm efficiency concept - the firm efficiency means the revealed performance (how well the firm performs in the actual market environment given the basic characteristics of the firms and their markets that are expected to drive their profitability (firm size, market power etc.. This complex and relative performance could be due to such things as product innovation, management quality, work organization, some other factors can be a cause even if they are not directly observed by the researcher. The critical need for the management individuals/group to continuously improve their firm/company’s efficiency and effectiveness, the need for the managers to know which are the success factors and the competitiveness determinants determine consequently, what performance measures are most critical in determining their firm’s overall success. Benchmarking, when done properly, can accurately identify both successful companies and the underlying reasons for their success. Innovation and benchmarking firm level performance are critical interdependent activities. Firm level variables, used to infer performance, are often interdependent due to operational reasons. Hence, the managers need to take the dependencies among these variables into account when forecasting and benchmarking performance. This paper studies firm level performance using financial ratio and other type of profitability measures. It uses econometric models to describe and then propose a method to forecast and benchmark performance.

  8. Surveys and Benchmarks

    Science.gov (United States)

    Bers, Trudy

    2012-01-01

    Surveys and benchmarks continue to grow in importance for community colleges in response to several factors. One is the press for accountability, that is, for colleges to report the outcomes of their programs and services to demonstrate their quality and prudent use of resources, primarily to external constituents and governing boards at the state…

  9. Shielding benchmark tests of JENDL-3

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Hasegawa, Akira; Ueki, Kohtaro; Yamano, Naoki; Sasaki, Kenji; Matsumoto, Yoshihiro; Takemura, Morio; Ohtani, Nobuo; Sakurai, Kiyoshi.

    1994-03-01

    The integral test of neutron cross sections for major shielding materials in JENDL-3 has been performed by analyzing various shielding benchmark experiments. For the fission-like neutron source problem, the following experiments are analyzed: (1) ORNL Broomstick experiments for oxygen, iron and sodium, (2) ASPIS deep penetration experiments for iron, (3) ORNL neutron transmission experiments for iron, stainless steel, sodium and graphite, (4) KfK leakage spectrum measurements from iron spheres, (5) RPI angular neutron spectrum measurements in a graphite block. For D-T neutron source problem, the following two experiments are analyzed: (6) LLNL leakage spectrum measurements from spheres of iron and graphite, and (7) JAERI-FNS angular neutron spectrum measurements on beryllium and graphite slabs. Analyses have been performed using the radiation transport codes: ANISN(1D Sn), DIAC(1D Sn), DOT3.5(2D Sn) and MCNP(3D point Monte Carlo). The group cross sections for Sn transport calculations are generated with the code systems PROF-GROUCH-G/B and RADHEAT-V4. The point-wise cross sections for MCNP are produced with NJOY. For comparison, the analyses with JENDL-2 and ENDF/B-IV have been also carried out. The calculations using JENDL-3 show overall agreement with the experimental data as well as those with ENDF/B-IV. Particularly, JENDL-3 gives better results than JENDL-2 and ENDF/B-IV for sodium. It has been concluded that JENDL-3 is very applicable for fission and fusion reactor shielding analyses. (author)

  10. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.; Timchalk, Charles

    2017-04-11

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed, and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.

  11. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach.

    Science.gov (United States)

    Smith, Jordan Ned; Carver, Zana A; Weber, Thomas J; Timchalk, Charles

    2017-06-01

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with nonphysiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding were observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the 2 experimental conditions. In the nonphysiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed, and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than nonphysiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and simulated all transport experiments reasonably well using different permeability coefficients for the 2 experimental conditions (1.14 vs 0.4 cm/h for nonphysiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva, potentially increasing the utility of salivary biomonitoring in the future. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights

  12. Benchmark referencing of neutron dosimetry measurements

    International Nuclear Information System (INIS)

    Eisenhauer, C.M.; Grundl, J.A.; Gilliam, D.M.; McGarry, E.D.; Spiegel, V.

    1980-01-01

    The concept of benchmark referencing involves interpretation of dosimetry measurements in applied neutron fields in terms of similar measurements in benchmark fields whose neutron spectra and intensity are well known. The main advantage of benchmark referencing is that it minimizes or eliminates many types of experimental uncertainties such as those associated with absolute detection efficiencies and cross sections. In this paper we consider the cavity external to the pressure vessel of a power reactor as an example of an applied field. The pressure vessel cavity is an accessible location for exploratory dosimetry measurements aimed at understanding embrittlement of pressure vessel steel. Comparisons with calculated predictions of neutron fluence and spectra in the cavity provide a valuable check of the computational methods used to estimate pressure vessel safety margins for pressure vessel lifetimes

  13. Mixing and transport during pharmaceutical twin-screw wet granulation: experimental analysis via chemical imaging.

    Science.gov (United States)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vanhoorne, Valérie; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2014-07-01

    Twin-screw granulation is a promising continuous alternative for traditional batch high shear wet granulation (HSWG). The extent of HSWG in a twin screw granulator (TSG) is greatly governed by the residence time of the granulation materials in the TSG and degree of mixing. In order to determine the residence time distribution (RTD) and mixing in TSG, mostly visual observation and particle tracking methods are used, which are either inaccurate and difficult for short RTD, or provide an RTD only for a finite number of preferential tracer paths. In this study, near infrared chemical imaging, which is more accurate and provides a complete RTD, was used. The impact of changes in material throughput (10-17 kg/h), screw speed (500-900 rpm), number of kneading discs (2-12) and stagger angle (30-90°) on the RTD and axial mixing of the material was characterised. The experimental RTD curves were used to calculate the mean residence time, mean centred variance and the Péclet number to determine the axial mixing and predominance of convective over dispersive transport. The results showed that screw speed is the most influential parameter in terms of RTD and axial mixing in the TSG and established a significant interaction between screw design parameters (number and stagger angle of kneading discs) and the process parameters (material throughput and number of kneading discs). The results of the study will allow the development and validation of a transport model capable of predicting the RTD and macro-mixing in the TSG. These can later be coupled with a population balance model in order to predict granulation yields in a TSG more accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  15. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  16. EBR-II Reactor Physics Benchmark Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Chad L. [Idaho State Univ., Pocatello, ID (United States); Lum, Edward S [Idaho State Univ., Pocatello, ID (United States); Stewart, Ryan [Idaho State Univ., Pocatello, ID (United States); Byambadorj, Bilguun [Idaho State Univ., Pocatello, ID (United States); Beaulieu, Quinton [Idaho State Univ., Pocatello, ID (United States)

    2017-12-28

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  17. Benchmarking the Particle Background in the Large Hadron Collider Experiments

    CERN Document Server

    Gschwendtner, Edda; Fabjan, Christian Wolfgang; Hessey, N P; Otto, Thomas

    2002-01-01

    Background benchmarking measurements have been made to check the low-energy processes which will contribute via nuclear reactions to the radiation background in the LHC experiments at CERN. Previously these processes were only evaluated with Monte Carlo simulations, estimated to be reliable within an uncertainty factor of 2.5. Measurements were carried out in an experimental set-up comparable to the shielding of ATLAS, one of the general-purpose experiments at LHC. The absolute yield and spectral measurements of photons and neutrons emanating from the final stages of the hadronic showers were made with a Bi_4Ge_3O_{12} (BGO) detector. The particle transport code FLUKA was used for detailed simulations. Comparison between measurements and simulations show that they agree within 20% and hence the uncertainty factor resulting from the shower processes can be reduced to a factor of 1.2.

  18. Argonne Code Center: benchmark problem book

    International Nuclear Information System (INIS)

    1977-06-01

    This report is a supplement to the original report, published in 1968, as revised. The Benchmark Problem Book is intended to serve as a source book of solutions to mathematically well-defined problems for which either analytical or very accurate approximate solutions are known. This supplement contains problems in eight new areas: two-dimensional (R-z) reactor model; multidimensional (Hex-z) HTGR model; PWR thermal hydraulics--flow between two channels with different heat fluxes; multidimensional (x-y-z) LWR model; neutron transport in a cylindrical ''black'' rod; neutron transport in a BWR rod bundle; multidimensional (x-y-z) BWR model; and neutronic depletion benchmark problems. This supplement contains only the additional pages and those requiring modification

  19. Benchmarking i den offentlige sektor

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj; Dietrichson, Lars; Sandalgaard, Niels

    2008-01-01

    I artiklen vil vi kort diskutere behovet for benchmarking i fraværet af traditionelle markedsmekanismer. Herefter vil vi nærmere redegøre for, hvad benchmarking er med udgangspunkt i fire forskellige anvendelser af benchmarking. Regulering af forsyningsvirksomheder vil blive behandlet, hvorefter...

  20. Experimental Benchmarking of Pu Electronic Structure

    International Nuclear Information System (INIS)

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, N.E. Jr.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.

    2008-01-01

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  1. SINBAD: Shielding integral benchmark archive and database

    International Nuclear Information System (INIS)

    Hunter, H.T.; Ingersoll, D.T.; Roussin, R.W.

    1996-01-01

    SINBAD is a new electronic database developed to store a variety of radiation shielding benchmark data so that users can easily retrieve and incorporate the data into their calculations. SINBAD is an excellent data source for users who require the quality assurance necessary in developing cross-section libraries or radiation transport codes. The future needs of the scientific community are best served by the electronic database format of SINBAD and its user-friendly interface, combined with its data accuracy and integrity

  2. Experimentally testing the dependence of momentum transport on second derivatives using Gaussian process regression

    Science.gov (United States)

    Chilenski, M. A.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Lee, J. P.; Marzouk, Y. M.; Rice, J. E.; White, A. E.

    2017-12-01

    It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n{e} and T{e} between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.

  3. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    Science.gov (United States)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  4. Cloud benchmarking for performance

    OpenAIRE

    Varghese, Blesson; Akgun, Ozgur; Miguel, Ian; Thai, Long; Barker, Adam

    2014-01-01

    Date of Acceptance: 20/09/2014 How can applications be deployed on the cloud to achieve maximum performance? This question has become significant and challenging with the availability of a wide variety of Virtual Machines (VMs) with different performance capabilities in the cloud. The above question is addressed by proposing a six step benchmarking methodology in which a user provides a set of four weights that indicate how important each of the following groups: memory, processor, computa...

  5. Benchmark experiments to test plutonium and stainless steel cross sections. Topical report

    International Nuclear Information System (INIS)

    Jenquin, U.P.; Bierman, S.R.

    1978-06-01

    The Nuclear Regulatory Commission (NRC) commissioned Battelle, Pacific Northwest Laboratory (PNL) to ascertain the accuracy of the neutron cross sections for the isotopes of plutonium and the constituents of stainless steel and determine if improvements can be made in application to criticality safety analysis. NRC's particular area of interest is in the transportation of light-water reactor spent fuel assemblies. The project was divided into two tasks. The first task was to define a set of integral experimental measurements (benchmarks). The second task is to use these benchmarks in neutronics calculations such that the accuracy of ENDF/B-IV plutonium and stainless steel cross sections can be assessed. The results of the first task are given in this report. A set of integral experiments most pertinent to testing the cross sections has been identified and the code input data for calculating each experiment has been developed

  6. Bench-mark experiments to study the neutron distribution in a heterogeneous reactor shielding

    International Nuclear Information System (INIS)

    Bolyatko, V.V.; Vyrskij, M.Yu.; Mashkovich, V.P.; Nagaev, R.Kh.; Prit'mov, A.P.; Sakharov, V.K.; Troshin, V.S.; Tikhonov, E.G.

    1981-01-01

    The bench-mark experiments performed at the B-2 facility of the BR-10 reactor to investigate the spatial and energy neutron distributions are described. The experimental facility includes the neutron beam channel with a slide, a mo shielding composition investigated consisted of sequential layers of steel (1KH18N9T) and graphite slabs. The neutron spectra were measured by activation method, a set of treshold and resonance detectors having been used. The detectors made it possible to obtain the absolute neutron spectra in the 1.4 eV-10 MeV range. The comparison of calculations with the results of the bench-mark experiments made it possible to prove the neutron transport calculational model realized in the ROZ-9 and ARAMAKO-2F computer codes and evaluate the validity of the ARAMAKO constants for the class of shielding compositions in question [ru

  7. Experimental study of fast electron transport in the framework of fast ignition for inertial fusion

    International Nuclear Information System (INIS)

    Vauzour, B.

    2012-01-01

    The framework of this PhD thesis is the validation of the fast ignition scheme for the nuclear fusion by inertial confinement. It consists in the experimental study of the various processes involved in fast electron beams propagation, produced by intense laser pulses (10 19 W.cm -2 ), through dense matter either solid or compressed. In this work we present the results of three experiments carried out on different laser facilities in order to generate fast electron beams in various conditions and study their propagation in different states of matter, from the cold solid to the warm and dense plasma.The first experiment was performed with a high intensity contrast on the UHI100 laser facility (CEA Saclay). The study of fast electron energy deposition inside thin aluminium targets highlights a strong target heating at shallow depths, where the collective effects are predominant, thus producing a steep temperature profile between front (300 eV) and rear (20 eV) sides over 20μm thickness. A numerical simulation of the experiment shows that this temperature gradient induces the formation of a shock wave, breaking through the rear side of the target and thus leading to increase the thermal emission. The experimental chronometry of the shock breakthrough allowed validating the model of the collective transport of electrons.Two other experiments were dedicated to the study of fast electron beam propagation inside compressed targets. In the first experiment on the LULI2000 laser facility, the plane compression geometry allowed to precisely dissociate the energy losses due to resistive effects from those due to the collisional ones. By comparing our experimental results with simulations, we observed a significative increase of the fast electron beam energy losses with the compression and the target heating to temperatures close to the Fermi temperature. The second experiment, performed in a cylindrical geometry, demonstrated a fast electron beam guiding phenomenon due to

  8. THEORETICAL AND EXPERIMENTAL MODELING OF MULTI-SPECIES TRANSPORT IN SOILS UNDER ELECTRIC FIELDS

    Science.gov (United States)

    Electrokinetics employs the use of electrodes implanted in soils-contaminated media. Electrodes are supplied with direct current (dc) facilitating ionic transport and subsequent removal. This project investigates the feasibility and efficiency of electrokinetic transport of lea...

  9. Antiproton annihilation physics annihilation physics in the Monte Carlo particle transport code particle transport code SHIELD-HIT12A

    DEFF Research Database (Denmark)

    Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael

    2015-01-01

    The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An...

  10. Outline of experimental schemes for measurements of thermophysical and transport properties in warm dense matter at GSI and FAIR

    International Nuclear Information System (INIS)

    Tauschwitz, Anna; Jacoby, Joachim; Maruhn, Joachim; Basko, Mikhail; Efremov, Vladimir; Iosilevskiy, Igor; Neumayer, Paul; Novikov, Vladimir; Tauschwitz, Andreas; Rosmej, Frank

    2010-01-01

    Different experimental schemes for investigation of warm dense matter produced with intense energetic ion beams are presented. The described target configurations allow direct measurements of thermophysical and transport properties of warm dense matter without hydrodynamic recalculations. The presented experiments will be realized at the current GSI synchrotron SIS-18 and the future FAIR facility in the framework of the WDM-collaboration.

  11. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  12. Benchmarking reference services: an introduction.

    Science.gov (United States)

    Marshall, J G; Buchanan, H S

    1995-01-01

    Benchmarking is based on the common sense idea that someone else, either inside or outside of libraries, has found a better way of doing certain things and that your own library's performance can be improved by finding out how others do things and adopting the best practices you find. Benchmarking is one of the tools used for achieving continuous improvement in Total Quality Management (TQM) programs. Although benchmarking can be done on an informal basis, TQM puts considerable emphasis on formal data collection and performance measurement. Used to its full potential, benchmarking can provide a common measuring stick to evaluate process performance. This article introduces the general concept of benchmarking, linking it whenever possible to reference services in health sciences libraries. Data collection instruments that have potential application in benchmarking studies are discussed and the need to develop common measurement tools to facilitate benchmarking is emphasized.

  13. MCNP simulation of the TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Jeraj, R.; Glumac, B.; Maucec, M.

    1996-01-01

    The complete 3D MCNP model of the TRIGA Mark II reactor is presented. It enables precise calculations of some quantities of interest in a steady-state mode of operation. Calculational results are compared to the experimental results gathered during reactor reconstruction in 1992. Since the operating conditions were well defined at that time, the experimental results can be used as a benchmark. It may be noted that this benchmark is one of very few high enrichment benchmarks available. In our simulations experimental conditions were thoroughly simulated: fuel elements and control rods were precisely modeled as well as entire core configuration and the vicinity of the core. ENDF/B-VI and ENDF/B-V libraries were used. Partial results of benchmark calculations are presented. Excellent agreement of core criticality, excess reactivity and control rod worths can be observed. (author)

  14. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  15. Change of striatum dopaminergic transporter and content of dopamine in rats with experimental hyperthyroidism

    International Nuclear Information System (INIS)

    Lin Yansong; Wang Huicheng; Zhao Zhiying; Zhu Li; Zhang Yingqiang; Chen Zhengping

    2009-01-01

    Objective: The central dopamine system plays an important role in regulating movement and mood. In our routine clinical practice,we found that patients with hyperthyroidism often show tremor of their hands or legs. Meanwhile they also experienced emotional problems such as anxiety and depression. These reminded us that there might be close relationship between thyroid hormone and dopamine system. Based on our previous works, in this study we evaluated the change of striatum dopamine transporter (DAT) by using 99 Tc m -2β- [N, N'-bis (2-merecaptoethyl) ethylenediamino]methyl, 3β- (4-chlorophenyl) tropane (TRODAT-1) brain biodistribution, and the content of striatum dopamine and its metabolites 3.4-di-hydroxyphenylacetic (DOPAC) by high performace liquid chromatograph-electrochemical detection (HPLC-ECD) in rats with experimental hyperthyroidism. Methods: All 24 rats were randomly divided into two groups, thyroxin group were induced by daily thyroxin infusion for 14 d to be experimental hyperthyroidism, the others were control group which received saline infusion. The blood samples were randomly taken from thyroxine group and control group, and the concentration of TT 3 and TT 4 were detected by radioimmunoassay. After 14 d,both experimental (thyroxine group) and control group were further divided into 2 sub-groups. One was for evaluation of the function of striatum DAT by 99 Tc m -TRODAT-1 biodistribution study and the other was for HPIJC-ECD measurement of the concentration of dopamine and its metabolites DOPAC. Results: Significantly hyperactivity and weight loss [(223.90 ± 8.40) VS (261.60 ± 14.20)g, t=6.98. P 3 and TT 4 after thyroxin infusion was significantly elevated than that of before thyroxin infusion [(2.72 ± 0.29) V8(1.46 ± 0.17) nmol/L, t=10.51, P 3 , and TT 4 after saline infusion showed no statistical significance as compared with before saline infusion [(1.71 ± 0.20) vs (1.54 ± O.09) nmol/L, t=1.68. P>0.05 and (88.38 ± 6.76) vs (98.38 ± 9

  16. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    Science.gov (United States)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution

  17. Experimental proposals for procedures to investigate the water chemistry, sorption and transport properties of marl

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Alexander, W.R.

    1990-11-01

    The aim of this report is to describe a framework within which laboratory studies on groundwater chemistry, sorption and transport properties might be conducted on samples from rock formations being considered as potential 'host rocks' for the disposal of radioactive waste. Here, Valanginian marl, has been taken as a specific example, but the general principles should be applicable to other systems. Some brief notes are given on sampling and handling procedures and mineralogical characterisation. This is followed by a detailed discussion of the procedures considered necessary to determine a groundwater chemistry of a specific rock matrix. The methods described are particularly appropriate to rocks such as marl i.e. low water content rocks (essentially 'dry') with appreciable clay and carbonate contents. An important conclusion drawn is that simple aqueous phase extractions at different liquid to solid ratios, followed by extrapolation procedures, are not always appropriate and can lead to incorrect water compositions. Some of the uncertainties and difficulties inherently involved in determining sorption parameters from batch, infiltration and diffusion based methods are presented. These methods are then individually discussed in greater detail with some illustrative examples. In the relatively few studies where sorption has been measured in crushed rock tests and compared with the results from intact rock experiments, it is often found that there are discrepancies. An outline for an experiment is described in which results from the two types of test could be quantitatively related to one another via cation exchange capacity measurements. Using this method it might be possible to explain the reasons for such discrepancies. Finally, a brief discussion is given on the possible consequences for experimental studies of gas in Valanginian marl and the swelling of the clay rich components. (author) 8 figs., 4 tabs., 46 refs

  18. Attila calculations for the 3-D C5G7 benchmark extension

    International Nuclear Information System (INIS)

    Wareing, T.A.; McGhee, J.M.; Barnett, D.A.; Failla, G.A.

    2005-01-01

    The performance of the Attila radiation transport software was evaluated for the 3-D C5G7 MOX benchmark extension, a follow-on study to the MOX benchmark developed by the 'OECD/NEA Expert Group on 3-D Radiation Transport Benchmarks'. These benchmarks were designed to test the ability of modern deterministic transport methods to model reactor problems without spatial homogenization. Attila is a general purpose radiation transport software package with an integrated graphical user interface (GUI) for analysis, set-up and postprocessing. Attila provides solutions to the discrete-ordinates form of the linear Boltzmann transport equation on a fully unstructured, tetrahedral mesh using linear discontinuous finite-element spatial differencing in conjunction with diffusion synthetic acceleration of inner iterations. The results obtained indicate that Attila can accurately solve the benchmark problem without spatial homogenization. (authors)

  19. How does fiction reading influence empathy? An experimental investigation on the role of emotional transportation.

    Science.gov (United States)

    Bal, P Matthijs; Veltkamp, Martijn

    2013-01-01

    The current study investigated whether fiction experiences change empathy of the reader. Based on transportation theory, it was predicted that when people read fiction, and they are emotionally transported into the story, they become more empathic. Two experiments showed that empathy was influenced over a period of one week for people who read a fictional story, but only when they were emotionally transported into the story. No transportation led to lower empathy in both studies, while study 1 showed that high transportation led to higher empathy among fiction readers. These effects were not found for people in the control condition where people read non-fiction. The study showed that fiction influences empathy of the reader, but only under the condition of low or high emotional transportation into the story.

  20. How Does Fiction Reading Influence Empathy? An Experimental Investigation on the Role of Emotional Transportation

    Science.gov (United States)

    Bal, P. Matthijs; Veltkamp, Martijn

    2013-01-01

    The current study investigated whether fiction experiences change empathy of the reader. Based on transportation theory, it was predicted that when people read fiction, and they are emotionally transported into the story, they become more empathic. Two experiments showed that empathy was influenced over a period of one week for people who read a fictional story, but only when they were emotionally transported into the story. No transportation led to lower empathy in both studies, while study 1 showed that high transportation led to higher empathy among fiction readers. These effects were not found for people in the control condition where people read non-fiction. The study showed that fiction influences empathy of the reader, but only under the condition of low or high emotional transportation into the story. PMID:23383160

  1. How does fiction reading influence empathy? An experimental investigation on the role of emotional transportation.

    Directory of Open Access Journals (Sweden)

    P Matthijs Bal

    Full Text Available The current study investigated whether fiction experiences change empathy of the reader. Based on transportation theory, it was predicted that when people read fiction, and they are emotionally transported into the story, they become more empathic. Two experiments showed that empathy was influenced over a period of one week for people who read a fictional story, but only when they were emotionally transported into the story. No transportation led to lower empathy in both studies, while study 1 showed that high transportation led to higher empathy among fiction readers. These effects were not found for people in the control condition where people read non-fiction. The study showed that fiction influences empathy of the reader, but only under the condition of low or high emotional transportation into the story.

  2. Benchmarking HIV health care

    DEFF Research Database (Denmark)

    Podlekareva, Daria; Reekie, Joanne; Mocroft, Amanda

    2012-01-01

    ABSTRACT: BACKGROUND: State-of-the-art care involving the utilisation of multiple health care interventions is the basis for an optimal long-term clinical prognosis for HIV-patients. We evaluated health care for HIV-patients based on four key indicators. METHODS: Four indicators of health care we...... document pronounced regional differences in adherence to guidelines and can help to identify gaps and direct target interventions. It may serve as a tool for assessment and benchmarking the clinical management of HIV-patients in any setting worldwide....

  3. Benchmarking Cloud Storage Systems

    OpenAIRE

    Wang, Xing

    2014-01-01

    With the rise of cloud computing, many cloud storage systems like Dropbox, Google Drive and Mega have been built to provide decentralized and reliable file storage. It is thus of prime importance to know their features, performance, and the best way to make use of them. In this context, we introduce BenchCloud, a tool designed as part of this thesis to conveniently and efficiently benchmark any cloud storage system. First, we provide a study of six commonly-used cloud storage systems to ident...

  4. The COST Benchmark

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Tiesyte, Dalia; Tradisauskas, Nerius

    2006-01-01

    An infrastructure is emerging that enables the positioning of populations of on-line, mobile service users. In step with this, research in the management of moving objects has attracted substantial attention. In particular, quite a few proposals now exist for the indexing of moving objects...... takes into account that the available positions of the moving objects are inaccurate, an aspect largely ignored in previous indexing research. The concepts of data and query enlargement are introduced for addressing inaccuracy. As proof of concepts of the benchmark, the paper covers the application...

  5. Benchmark testing calculations for 232Th

    International Nuclear Information System (INIS)

    Liu Ping

    2003-01-01

    The cross sections of 232 Th from CNDC and JENDL-3.3 were processed with NJOY97.45 code in the ACE format for the continuous-energy Monte Carlo Code MCNP4C. The K eff values and central reaction rates based on CENDL-3.0, JENDL-3.3 and ENDF/B-6.2 were calculated using MCNP4C code for benchmark assembly, and the comparisons with experimental results are given. (author)

  6. Numisheet2005 Benchmark Analysis on Forming of an Automotive Deck Lid Inner Panel: Benchmark 1

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao Jian

    2005-01-01

    Numerical simulations in sheet metal forming processes have been a very challenging topic in industry. There are many computer codes and modeling techniques existing today. However, there are many unknowns affecting the prediction accuracy. Systematic benchmark tests are needed to accelerate the future implementations and to provide as a reference. This report presents an international cooperative benchmark effort for an automotive deck lid inner panel. Predictions from simulations are analyzed and discussed against the corresponding experimental results. The correlations between accuracy of each parameter of interest are discussed in this report

  7. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  8. Benchmarking multimedia performance

    Science.gov (United States)

    Zandi, Ahmad; Sudharsanan, Subramania I.

    1998-03-01

    With the introduction of faster processors and special instruction sets tailored to multimedia, a number of exciting applications are now feasible on the desktops. Among these is the DVD playback consisting, among other things, of MPEG-2 video and Dolby digital audio or MPEG-2 audio. Other multimedia applications such as video conferencing and speech recognition are also becoming popular on computer systems. In view of this tremendous interest in multimedia, a group of major computer companies have formed, Multimedia Benchmarks Committee as part of Standard Performance Evaluation Corp. to address the performance issues of multimedia applications. The approach is multi-tiered with three tiers of fidelity from minimal to full compliant. In each case the fidelity of the bitstream reconstruction as well as quality of the video or audio output are measured and the system is classified accordingly. At the next step the performance of the system is measured. In many multimedia applications such as the DVD playback the application needs to be run at a specific rate. In this case the measurement of the excess processing power, makes all the difference. All these make a system level, application based, multimedia benchmark very challenging. Several ideas and methodologies for each aspect of the problems will be presented and analyzed.

  9. A benchmarking study

    Directory of Open Access Journals (Sweden)

    H. Groessing

    2015-02-01

    Full Text Available A benchmark study for permeability measurement is presented. In the past studies of other research groups which focused on the reproducibility of 1D-permeability measurements showed high standard deviations of the gained permeability values (25%, even though a defined test rig with required specifications was used. Within this study, the reproducibility of capacitive in-plane permeability testing system measurements was benchmarked by comparing results of two research sites using this technology. The reproducibility was compared by using a glass fibre woven textile and carbon fibre non crimped fabric (NCF. These two material types were taken into consideration due to the different electrical properties of glass and carbon with respect to dielectric capacitive sensors of the permeability measurement systems. In order to determine the unsaturated permeability characteristics as function of fibre volume content the measurements were executed at three different fibre volume contents including five repetitions. It was found that the stability and reproducibility of the presentedin-plane permeability measurement system is very good in the case of the glass fibre woven textiles. This is true for the comparison of the repetition measurements as well as for the comparison between the two different permeameters. These positive results were confirmed by a comparison to permeability values of the same textile gained with an older generation permeameter applying the same measurement technology. Also it was shown, that a correct determination of the grammage and the material density are crucial for correct correlation of measured permeability values and fibre volume contents.

  10. Thermal Performance Benchmarking: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center

    2017-10-19

    In FY16, the thermal performance of the 2014 Honda Accord Hybrid power electronics thermal management systems were benchmarked. Both experiments and numerical simulation were utilized to thoroughly study the thermal resistances and temperature distribution in the power module. Experimental results obtained from the water-ethylene glycol tests provided the junction-to-liquid thermal resistance. The finite element analysis (FEA) and computational fluid dynamics (CFD) models were found to yield a good match with experimental results. Both experimental and modeling results demonstrate that the passive stack is the dominant thermal resistance for both the motor and power electronics systems. The 2014 Accord power electronics systems yield steady-state thermal resistance values around 42- 50 mm to the 2nd power K/W, depending on the flow rates. At a typical flow rate of 10 liters per minute, the thermal resistance of the Accord system was found to be about 44 percent lower than that of the 2012 Nissan LEAF system that was benchmarked in FY15. The main reason for the difference is that the Accord power module used a metalized-ceramic substrate and eliminated the thermal interface material layers. FEA models were developed to study the transient performance of 2012 Nissan LEAF, 2014 Accord, and two other systems that feature conventional power module designs. The simulation results indicate that the 2012 LEAF power module has lowest thermal impedance at a time scale less than one second. This is probably due to moving low thermally conductive materials further away from the heat source and enhancing the heat spreading effect from the copper-molybdenum plate close to the insulated gate bipolar transistors. When approaching steady state, the Honda system shows lower thermal impedance. Measurement results of the thermal resistance of the 2015 BMW i3 power electronic system indicate that the i3 insulated gate bipolar transistor module has significantly lower junction

  11. How does fiction reading influence empathy? An experimental investigation on the role of emotional transportation

    NARCIS (Netherlands)

    Bal, P.M.; Veltkamp, M.

    2013-01-01

    The current study investigated whether fiction experiences change empathy of the reader. Based on transportation theory, it was predicted that when people read fiction, and they are emotionally transported into the story, they become more empathic. Two experiments showed that empathy was influenced

  12. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  13. Experimental Setup for Measuring Diffusive and Advective Transport of Radon through Building Materials

    NARCIS (Netherlands)

    Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.

    2000-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  14. Gas transport in low-permeability formations: a review of experimental evidence and modeling approaches

    International Nuclear Information System (INIS)

    Marschall, Paul; Keller, Lukas; Lanyon, Bill; Senger, Rainer

    2012-01-01

    This paper presents a review of phenomenological studies on immiscible fluid flow in porous media, clarifies terminology as used by different disciplines and discusses the different modeling approaches. It concludes with a discussion on the transferability of classical two-phase flow concepts on gas transport processes in low-permeability clay-stones. From a phenomenological point of view, advection and diffusion of dissolved species represent the simplest transport mechanisms in a water-saturated porous medium. The propagation of the dissolved species is controlled by the water velocity and its extent is controlled by the hydrodynamic dispersion - a well-known aggregate representation of the mixing processes due to diffusion, Taylor dispersion and tortuosity. Usually, the dissolution of a gaseous species in water is described by Henry's law, the diffusion of the dissolved gas is represented by Fick's law and the viscous losses of the pore water flow in the pore network are expressed by Darcy's law. Two-phase flow conditions occur when gas invades as a separate phase a water-saturated porous medium. This process is often called drainage, because the non-wetting fluid (gas) displaces a wetting fluid (pore water, 'defending' fluid). The propagation of the gas front is controlled by the complex interaction of gravity, viscous forces and capillary forces. Lenormand et al. (1988) conducted two-phase flow experiments for a wide range of capillary numbers Ca and viscosity ratios M. They identified 3 major flow regimes in the C a -M-space, which they coined viscous fingering, capillary fingering and stable displacement. The regime of stable displacement applies for the special case where the invading fluid has a higher viscosity than the defending fluid (e.g. water imbibition in a gas-filled porous medium). Viscous and capillary fingering are associated with instable displacement of a wetting fluid by the non-wetting fluid, giving rise to phenomena such as migration

  15. Benchmarking in Czech Higher Education

    OpenAIRE

    Plaček Michal; Ochrana František; Půček Milan

    2015-01-01

    The first part of this article surveys the current experience with the use of benchmarking at Czech universities specializing in economics and management. The results indicate that collaborative benchmarking is not used on this level today, but most actors show some interest in its introduction. The expression of the need for it and the importance of benchmarking as a very suitable performance-management tool in less developed countries are the impetus for the second part of our article. Base...

  16. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-01-01

    . The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured....... The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used...

  17. Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup

    Science.gov (United States)

    Braun, A.; Neukum, C.; Azzam, R.

    2011-12-01

    The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is

  18. REVISED STREAM CODE AND WASP5 BENCHMARK

    International Nuclear Information System (INIS)

    Chen, K

    2005-01-01

    STREAM is an emergency response code that predicts downstream pollutant concentrations for releases from the SRS area to the Savannah River. The STREAM code uses an algebraic equation to approximate the solution of the one dimensional advective transport differential equation. This approach generates spurious oscillations in the concentration profile when modeling long duration releases. To improve the capability of the STREAM code to model long-term releases, its calculation module was replaced by the WASP5 code. WASP5 is a US EPA water quality analysis program that simulates one-dimensional pollutant transport through surface water. Test cases were performed to compare the revised version of STREAM with the existing version. For continuous releases, results predicted by the revised STREAM code agree with physical expectations. The WASP5 code was benchmarked with the US EPA 1990 and 1991 dye tracer studies, in which the transport of the dye was measured from its release at the New Savannah Bluff Lock and Dam downstream to Savannah. The peak concentrations predicted by the WASP5 agreed with the measurements within ±20.0%. The transport times of the dye concentration peak predicted by the WASP5 agreed with the measurements within ±3.6%. These benchmarking results demonstrate that STREAM should be capable of accurately modeling releases from SRS outfalls

  19. Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling and experimental measurement

    International Nuclear Information System (INIS)

    Gubba, S.R.; Ingham, D.B.; Larsen, K.J.; Ma, L.; Pourkashanian, M.; Qian, X.; Williams, A.; Yan, Y.

    2012-01-01

    Recent national and international emission legislations to reduce emissions of carbon dioxide are forcing power generation industries using coal to look at various alternatives, such as biomass and especially by co-firing techniques. Biomass is transported to the burners either mixed with the primary fuel, in general, coal, or used in dedicated pipelines. In both cases, transportation of biomass is difficult due to its composition, size, shape and physical behaviour in comparison to the transportation of coal. This study considers experimental measurements for biomass particle transportation in a pipeline with a transverse elbow and compares the results with those using computation fluid dynamic (CFD) techniques. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered in the present investigation. The experimental work was performed using the dynamic changes in the electrostatic charges of biomass particles in conjunction with correlation signal processing techniques. The CFD simulations were performed by considering the effects of gravity, non-spherical drag (based on estimated shape factor), detailed information of the particle distribution, particle wall collisions and particle–particle interactions. Good quantitative and qualitative agreement was obtained between the CFD simulations and the experimental data. It is concluded that particle–particle interactions are of less importance if the mass loading ratio of particles to air is less than 0.03. -- Highlights: ► Dispersed biomass particle transportation is studied using experiments and CFD. ► Inclusion of asphericity in the drag model clearly demonstrated the improvements. ► Gravity effects are found to be important for correct particle distribution in pipe lines. ► Inter-particle collisions were less important for mass loading ratios <0.05 kg/kg.

  20. An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns

    Directory of Open Access Journals (Sweden)

    Muhammad Zaheer

    2017-01-01

    Full Text Available Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE, Two-Region Model (TRM, Continuous Time Random Walk (CTRW, and Fractional Advection-Dispersion Equation (FADE. It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching.

  1. ZZ ECN-BUBEBO, ECN-Petten Burnup Benchmark Book, Inventories, Afterheat

    International Nuclear Information System (INIS)

    Kloosterman, Jan Leen

    1999-01-01

    Description of program or function: Contains experimental benchmarks which can be used for the validation of burnup code systems and accompanied data libraries. Although the benchmarks presented here are thoroughly described in literature, it is in many cases not straightforward to retrieve unambiguously the correct input data and corresponding results from the benchmark Descriptions. Furthermore, results which can easily be measured, are sometimes difficult to calculate because of conversions to be made. Therefore, emphasis has been put to clarify the input of the benchmarks and to present the benchmark results in such a way that they can easily be calculated and compared. For more thorough Descriptions of the benchmarks themselves, the literature referred to here should be consulted. This benchmark book is divided in 11 chapters/files containing the following in text and tabular form: chapter 1: Introduction; chapter 2: Burnup Credit Criticality Benchmark Phase 1-B; chapter 3: Yankee-Rowe Core V Fuel Inventory Study; chapter 4: H.B. Robinson Unit 2 Fuel Inventory Study; chapter 5: Turkey Point Unit 3 Fuel Inventory Study; chapter 6: Turkey Point Unit 3 Afterheat Power Study; chapter 7: Dickens Benchmark on Fission Product Energy Release of U-235; chapter 8: Dickens Benchmark on Fission Product Energy Release of Pu-239; chapter 9: Yarnell Benchmark on Decay Heat Measurements of U-233; chapter 10: Yarnell Benchmark on Decay Heat Measurements of U-235; chapter 11: Yarnell Benchmark on Decay Heat Measurements of Pu-239

  2. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  3. Effects of Job Accessibility Improved by Public Transport System: Natural Experimental Evidence from the Copenhagen Metro

    DEFF Research Database (Denmark)

    Pons Rotger, Gabriel Angel; Nielsen, Thomas Alexander Sick

    2015-01-01

    This study examines the effect of accessibility to urban jobs via a public transport system on individual earnings and commuting behaviour. The effect of improved public transport based accessibility on these outcomes is determined by exploiting the exogenous variation in access to a public rail ...... with a change in commuting patterns as the improved access to public transport facilitates a shift from employment within the township to better paid jobs in the city centre, as well as in other suburbs of the Copenhagen Metropolitan area...

  4. Comparison of diffusion and transport theory analysis with experimental results in fast breeder test reactor

    International Nuclear Information System (INIS)

    Sathyabama, N.; Mohanakrishnan, P.; Lee, S.M.

    1994-01-01

    A systematic analysis has been performed by 3 dimensional diffusion and transport methods to calculate the measured control rod worths and subassembly wise power distribution in fast breeder test reactor. Geometry corrections (rectangular to hexagonal and diffusion to transport corrections are estimated for multiplication factors and control rod worths. Calculated control rod worths by diffusion and transport theory are nearly the same and 10% above measured values. Power distribution in the core periphery is over predicted (15%) by diffusion theory. But, this over prediction reduces to 8% by use of the S N method. (authors). 9 refs., 4 tabs., 3 fig

  5. Benchmarking Academic Anatomic Pathologists

    Directory of Open Access Journals (Sweden)

    Barbara S. Ducatman MD

    2016-10-01

    Full Text Available The most common benchmarks for faculty productivity are derived from Medical Group Management Association (MGMA or Vizient-AAMC Faculty Practice Solutions Center ® (FPSC databases. The Association of Pathology Chairs has also collected similar survey data for several years. We examined the Association of Pathology Chairs annual faculty productivity data and compared it with MGMA and FPSC data to understand the value, inherent flaws, and limitations of benchmarking data. We hypothesized that the variability in calculated faculty productivity is due to the type of practice model and clinical effort allocation. Data from the Association of Pathology Chairs survey on 629 surgical pathologists and/or anatomic pathologists from 51 programs were analyzed. From review of service assignments, we were able to assign each pathologist to a specific practice model: general anatomic pathologists/surgical pathologists, 1 or more subspecialties, or a hybrid of the 2 models. There were statistically significant differences among academic ranks and practice types. When we analyzed our data using each organization’s methods, the median results for the anatomic pathologists/surgical pathologists general practice model compared to MGMA and FPSC results for anatomic and/or surgical pathology were quite close. Both MGMA and FPSC data exclude a significant proportion of academic pathologists with clinical duties. We used the more inclusive FPSC definition of clinical “full-time faculty” (0.60 clinical full-time equivalent and above. The correlation between clinical full-time equivalent effort allocation, annual days on service, and annual work relative value unit productivity was poor. This study demonstrates that effort allocations are variable across academic departments of pathology and do not correlate well with either work relative value unit effort or reported days on service. Although the Association of Pathology Chairs–reported median work relative

  6. Self-benchmarking Guide for Cleanrooms: Metrics, Benchmarks, Actions

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul; Sartor, Dale; Tschudi, William

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  7. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  8. Effects of Job Accessibility Improved by Public Transport System: Natural Experimental Evidence from the Copenhagen Metro

    DEFF Research Database (Denmark)

    Pons Rotger, Gabriel Angel; Nielsen, Thomas Alexander Sick

    2015-01-01

    This study examines the effect of accessibility to urban jobs via a public transport system on individual earnings and commuting behaviour. The effect of improved public transport based accessibility on these outcomes is determined by exploiting the exogenous variation in access to a public rail...... and Metro system resulting from the construction of a new terminal Metro station connecting southern townships to Copenhagen city centre. The results show that public transport based job accessibility has a positive and permanent effect on individual earnings. The increase in earnings is associated...... with a change in commuting patterns as the improved access to public transport facilitates a shift from employment within the township to better paid jobs in the city centre, as well as in other suburbs of the Copenhagen Metropolitan area...

  9. Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study

    Science.gov (United States)

    Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.

    2015-12-01

    Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.

  10. Variations of helicon wave induced radial plasma transport in different experimental conditions

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-08-01

    Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs

  11. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  12. Shielding benchmark test

    International Nuclear Information System (INIS)

    Kawai, Masayoshi

    1984-01-01

    Iron data in JENDL-2 have been tested by analyzing shielding benchmark experiments for neutron transmission through iron block performed at KFK using CF-252 neutron source and at ORNL using collimated neutron beam from reactor. The analyses are made by a shielding analysis code system RADHEAT-V4 developed at JAERI. The calculated results are compared with the measured data. As for the KFK experiments, the C/E values are about 1.1. For the ORNL experiments, the calculated values agree with the measured data within an accuracy of 33% for the off-center geometry. The d-t neutron transmission measurements through carbon sphere made at LLNL are also analyzed preliminarily by using the revised JENDL data for fusion neutronics calculation. (author)

  13. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling

    Czech Academy of Sciences Publication Activity Database

    Angioni, C.; Mantica, P.; Pütterich, T.; Valisa, M.; Baruzzo, M.; Belli, A.E.; Belo, P.; Casson, F.J.; Challis, C.; Drewelow, P.; Giroud, C.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Koskela, T.; Lauro Taroni, L.; Maggi, C.F.; Mlynář, Jan; Odstrčil, T.; Reinke, M.L.; Romanelli, M.

    2014-01-01

    Roč. 54, č. 8 (2014), 083028-083028 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : heavy impurity transport * H-mode hybrid scenario * neoclassical and turbulent transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/8/083028/pdf/0029-5515_54_8_083028.pdf

  14. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  15. Benchmarking foreign electronics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. SSI and structural benchmarks

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1987-01-01

    This paper presents the latest results of the ongoing program entitled, Standard Problems for Structural Computer Codes, currently being worked on at BNL for the USNRC, Office of Nuclear Regulatory Research. During FY 1986, efforts were focussed on three tasks, namely, (1) an investigation of ground water effects on the response of Category I structures, (2) the Soil-Structure Interaction Workshop and (3) studies on structural benchmarks associated with Category I structures. The objective of the studies on ground water effects is to verify the applicability and the limitations of the SSI methods currently used by the industry in performing seismic evaluations of nuclear plants which are located at sites with high water tables. In a previous study by BNL (NUREG/CR-4588), it has been concluded that the pore water can influence significantly the soil-structure interaction process. This result, however, is based on the assumption of fully saturated soil profiles. Consequently, the work was further extended to include cases associated with variable water table depths. In this paper, results related to cut-off depths beyond which the pore water effects can be ignored in seismic calculations, are addressed. Comprehensive numerical data are given for soil configurations typical to those encountered in nuclear plant sites. These data were generated by using a modified version of the SLAM code which is capable of handling problems related to the dynamic response of saturated soils. Further, the paper presents some key aspects of the Soil-Structure Interaction Workshop (NUREG/CP-0054) which was held in Bethesda, MD on June 1, 1986. Finally, recent efforts related to the task on the structural benchmarks are described

  17. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    Science.gov (United States)

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  18. Experimental Evaluation of the Transport Mechanisms of PoIFN-α in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-11-01

    Full Text Available For the development of an efficient intestinal delivery system for Porcine interferon-α (PoIFN-α, the understanding of transport mechanisms of which in the intestinal cell is essential. In this study, we investigated the absorption mechanisms of PoIFN-α in intestine cells. Caco-2 cells and fluorescein isothiocyanate-labeled (FITC-PoIFN-α were used to explore the whole transport process, including endocytosis, intracellular trafficking, exocytosis, and transcytosis. Via various techniques, the transport pathways of PoIFN-α in Caco-2 cells and the mechanisms were clarified. Firstly, the endocytosis of PoIFN-α by Caco-2 cells was time, concentration and temperature dependence. And the lipid raft/caveolae endocytosis was the most likely endocytic pathway for PoIFN-α. Secondly, both Golgi apparatus and lysosome were involved in the intracellular trafficking of PoIFN-α. Thirdly, the treatment of indomethacin resulted in a significant decrease of exocytosis of PoIFN-α, indicating the participation of cyclooxygenase. Finally, to evaluate the efficiency of PoIFN-α transport, the transepithelial electrical resistance (TEER value was measured to investigate the tight junctional integrity of the cell monolayers. The fluorescence microscope results revealed that the transport of PoIFN-α across the Caco-2 cell monolayers was restricted. In conclusion, this study depicts a probable picture of PoIFN-α transport in Caco-2 cells characterized by non-specificity, partial energy-dependency and low transcytosis.

  19. Hydrogeomorphic linkages of sediment transport in headwater streams, Maybeso Experimental Forest, southeast Alaska

    Science.gov (United States)

    Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.

    2004-03-01

    Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.

  20. Status on benchmark testing of CENDL-3

    CERN Document Server

    Liu Ping

    2002-01-01

    CENDL-3, the newest version of China Evaluated Nuclear Data Library has been finished, and distributed for some benchmarks analysis recently. The processing was carried out using the NJOY nuclear data processing code system. The calculations and analysis of benchmarks were done with Monte Carlo code MCNP and reactor lattice code WIMSD5A. The calculated results were compared with the experimental results based on ENDF/B6. In most thermal and fast uranium criticality benchmarks, the calculated k sub e sub f sub f values with CENDL-3 were in good agreements with experimental results. In the plutonium fast cores, the k sub e sub f sub f values were improved significantly with CENDL-3. This is duo to reevaluation of the fission spectrum and elastic angular distributions of sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 0 Pu. CENDL-3 underestimated the k sub e sub f sub f values compared with other evaluated data libraries for most spherical or cylindrical assemblies of plutonium or uranium with beryllium

  1. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  2. Review for session K - benchmarks

    International Nuclear Information System (INIS)

    McCracken, A.K.

    1980-01-01

    Eight of the papers to be considered in Session K are directly concerned, at least in part, with the Pool Critical Assembly (P.C.A.) benchmark at Oak Ridge. The remaining seven papers in this session, the subject of this review, are concerned with a variety of topics related to the general theme of Benchmarks and will be considered individually

  3. Internal Benchmarking for Institutional Effectiveness

    Science.gov (United States)

    Ronco, Sharron L.

    2012-01-01

    Internal benchmarking is an established practice in business and industry for identifying best in-house practices and disseminating the knowledge about those practices to other groups in the organization. Internal benchmarking can be done with structures, processes, outcomes, or even individuals. In colleges or universities with multicampuses or a…

  4. Entropy-based benchmarking methods

    NARCIS (Netherlands)

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth

  5. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to p...

  6. EPA's Benchmark Dose Modeling Software

    Science.gov (United States)

    The EPA developed the Benchmark Dose Software (BMDS) as a tool to help Agency risk assessors facilitate applying benchmark dose (BMD) method’s to EPA’s human health risk assessment (HHRA) documents. The application of BMD methods overcomes many well know limitations ...

  7. Benchmark for Strategic Performance Improvement.

    Science.gov (United States)

    Gohlke, Annette

    1997-01-01

    Explains benchmarking, a total quality management tool used to measure and compare the work processes in a library with those in other libraries to increase library performance. Topics include the main groups of upper management, clients, and staff; critical success factors for each group; and benefits of benchmarking. (Author/LRW)

  8. Benchmarking: A Process for Improvement.

    Science.gov (United States)

    Peischl, Thomas M.

    One problem with the outcome-based measures used in higher education is that they measure quantity but not quality. Benchmarking, or the use of some external standard of quality to measure tasks, processes, and outputs, is partially solving that difficulty. Benchmarking allows for the establishment of a systematic process to indicate if outputs…

  9. Benchmark job – Watch out!

    CERN Multimedia

    Staff Association

    2017-01-01

    On 12 December 2016, in Echo No. 259, we already discussed at length the MERIT and benchmark jobs. Still, we find that a couple of issues warrant further discussion. Benchmark job – administrative decision on 1 July 2017 On 12 January 2017, the HR Department informed all staff members of a change to the effective date of the administrative decision regarding benchmark jobs. The benchmark job title of each staff member will be confirmed on 1 July 2017, instead of 1 May 2017 as originally announced in HR’s letter on 18 August 2016. Postponing the administrative decision by two months will leave a little more time to address the issues related to incorrect placement in a benchmark job. Benchmark job – discuss with your supervisor, at the latest during the MERIT interview In order to rectify an incorrect placement in a benchmark job, it is essential that the supervisor and the supervisee go over the assigned benchmark job together. In most cases, this placement has been done autom...

  10. Benchmarking - a validation of UTDefect

    International Nuclear Information System (INIS)

    Niklasson, Jonas; Bostroem, Anders; Wirdelius, Haakan

    2006-06-01

    New and stronger demands on reliability of used NDE/NDT procedures and methods have stimulated the development of simulation tools of NDT. Modelling of ultrasonic non-destructive testing is useful for a number of reasons, e.g. physical understanding, parametric studies and in the qualification of procedures and personnel. The traditional way of qualifying a procedure is to generate a technical justification by employing experimental verification of the chosen technique. The manufacturing of test pieces is often very expensive and time consuming. It also tends to introduce a number of possible misalignments between the actual NDT situation and the proposed experimental simulation. The UTDefect computer code (SUNDT/simSUNDT) has been developed, together with the Dept. of Mechanics at Chalmers Univ. of Technology, during a decade and simulates the entire ultrasonic testing situation. A thorough validated model has the ability to be an alternative and a complement to the experimental work in order to reduce the extensive cost. The validation can be accomplished by comparisons with other models, but ultimately by comparisons with experiments. This project addresses the last alternative but provides an opportunity to, in a later stage, compare with other software when all data are made public and available. The comparison has been with experimental data from an international benchmark study initiated by the World Federation of NDE Centers. The experiments have been conducted with planar and spherically focused immersion transducers. The defects considered are side-drilled holes, flat-bottomed holes, and a spherical cavity. The data from the experiments are a reference signal used for calibration (the signal from the front surface of the test block at normal incidence) and the raw output from the scattering experiment. In all, more than forty cases have been compared. The agreement between UTDefect and the experiments was in general good (deviation less than 2dB) when the

  11. Experimental insights into organic carbon oxidation potential during fluvial transport without floodplain storage

    Science.gov (United States)

    Scheingross, J. S.; Hovius, N.; Sachse, D.; Vieth-Hillebrand, A.; Turowski, J. M.; Hilton, R. G.

    2016-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, rock, and biosphere is thought to be a major control on global climate. CO2 flux estimates from oxidation of rock-derived OC and sequestration of biospheric OC during fluvial transit from source to sink are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing loss of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in laboratory experiments simulating fluvial transport without floodplain storage. Mixtures of OC-rich and siliciclastic sediment were transported for distances of 2000 km in annular flumes while making time-series measurements of sediment TOC and water DOC concentrations. Initial results for transport of OC-rich soil show increasing DOC with transport distance to levels that represent a transfer of 2% of the total OC from the solid to the dissolved phase; however, we observed no detectable change in the solid-phase TOC. Similar results were obtained in a control experiment with identical sediment in still water. These preliminary results suggest minimal OC oxidation within our experiment, and, to the extent that such experiments represent natural transport through river systems, are consistent with the hypothesis that OC losses may occur primarily during floodplain storage rather than fluvial transport.

  12. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  13. Optix: A Monte Carlo scintillation light transport code

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M.J., E-mail: mjsafari@aut.ac.ir [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Afarideh, H. [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghal-Eh, N. [School of Physics, Damghan University, PO Box 36716-41167, Damghan (Iran, Islamic Republic of); Davani, F. Abbasi [Nuclear Engineering Department, Shahid Beheshti University, PO Box 1983963113, Tehran (Iran, Islamic Republic of)

    2014-02-11

    The paper reports on the capabilities of Monte Carlo scintillation light transport code Optix, which is an extended version of previously introduced code Optics. Optix provides the user a variety of both numerical and graphical outputs with a very simple and user-friendly input structure. A benchmarking strategy has been adopted based on the comparison with experimental results, semi-analytical solutions, and other Monte Carlo simulation codes to verify various aspects of the developed code. Besides, some extensive comparisons have been made against the tracking abilities of general-purpose MCNPX and FLUKA codes. The presented benchmark results for the Optix code exhibit promising agreements. -- Highlights: • Monte Carlo simulation of scintillation light transport in 3D geometry. • Evaluation of angular distribution of detected photons. • Benchmark studies to check the accuracy of Monte Carlo simulations.

  14. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  15. Benchmarking: applications to transfusion medicine.

    Science.gov (United States)

    Apelseth, Torunn Oveland; Molnar, Laura; Arnold, Emmy; Heddle, Nancy M

    2012-10-01

    Benchmarking is as a structured continuous collaborative process in which comparisons for selected indicators are used to identify factors that, when implemented, will improve transfusion practices. This study aimed to identify transfusion medicine studies reporting on benchmarking, summarize the benchmarking approaches used, and identify important considerations to move the concept of benchmarking forward in the field of transfusion medicine. A systematic review of published literature was performed to identify transfusion medicine-related studies that compared at least 2 separate institutions or regions with the intention of benchmarking focusing on 4 areas: blood utilization, safety, operational aspects, and blood donation. Forty-five studies were included: blood utilization (n = 35), safety (n = 5), operational aspects of transfusion medicine (n = 5), and blood donation (n = 0). Based on predefined criteria, 7 publications were classified as benchmarking, 2 as trending, and 36 as single-event studies. Three models of benchmarking are described: (1) a regional benchmarking program that collects and links relevant data from existing electronic sources, (2) a sentinel site model where data from a limited number of sites are collected, and (3) an institutional-initiated model where a site identifies indicators of interest and approaches other institutions. Benchmarking approaches are needed in the field of transfusion medicine. Major challenges include defining best practices and developing cost-effective methods of data collection. For those interested in initiating a benchmarking program, the sentinel site model may be most effective and sustainable as a starting point, although the regional model would be the ideal goal. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Colloid facilitated transport in fractured rocks: parameter estimation and comparison with experimental data

    International Nuclear Information System (INIS)

    Viswanthan, H.S.; Wolfsberg, A.V.; Reimus, P.W.; Ware, D.; Lu, G.

    2003-01-01

    Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies. Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium. The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloid-facilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model

  17. Ion and solvent Transport in Polypyrrole: Experimental Test of Osmotic Model

    DEFF Research Database (Denmark)

    Velmurugu, Yogambigai; Skaarup, Steen

    2005-01-01

    Ion and solvent transport in the conjugated polymer actuator material, polypyrrole, doped with the immobile anion dodecyl benzene sulphonate, has been investigated by simultaneous cyclic voltammetry and Electrochemical Quartz Crystal Microbalance measurements. The purpose was to elucidate the pre...... from almost pure cation transport to ca. equal amount of anion transport; exchanging Br- for Cl- ions has only negligible effect at lower concentrations at equal osmotic pressures. Ca. 4 H2O molecules are tightly bound to each Na+ ion at concentrations ... the precise nature of the mobile species during redox cycling, and to seek confirmation for the osmotic mechanism of actuation. Three testable aspects of the model were confirmed: The number of inserted H2O molecules decreases with electrolyte concentration; at the same time the mechanism gradually changes...

  18. Experimental study of the transport limits of intense heavy ion beams in the HCX

    International Nuclear Information System (INIS)

    Prost, L.R.; Bieniosek, F.M.; Celata, C.M.; Dugan, C.C.; Faltens, A.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density up to ∼ 0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. The experiment also contributes to the practical baseline knowledge of intense beam manipulations necessary for the design, construction and operation of a heavy ion driver for inertial fusion. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We first present the results for a coasting 1 MeV K + ion beam transported through the first ten electrostatic transport quadrupoles, measured with optical beam-imaging and double-slit phase-space diagnostics. This includes studies at two different radial fill factors (60% and 80%), for which the beam transverse distribution was characterized in detail. Additionally, beam energy measurements will be shown. We then discuss the first results of beam transport through four pulsed room-temperature magnetic quadrupoles (located downstream of the electrostatic quadrupoles), where the beam dynamics become more sensitive to the presence of secondary electrons

  19. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    Science.gov (United States)

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature

  20. Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via chemical imaging

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu

    2014-01-01

    to calculate the mean residence time, mean centred variance and the Péclet number to determine the axial mixing and predominance of convective over dispersive transport. The results showed that screw speed is the most influential parameter in terms of RTD and axial mixing in the TSG and established...... a significant interaction between screw design parameters (number and stagger angle of kneading discs) and the process parameters (material throughput and number of kneading discs). The results of the study will allow the development and validation of a transport model capable of predicting the RTD and macro...

  1. Analysis of a multigroup stylized CANDU half-core benchmark

    International Nuclear Information System (INIS)

    Pounders, Justin M.; Rahnema, Farzad; Serghiuta, Dumitru

    2011-01-01

    Highlights: → This paper provides a benchmark that is a stylized model problem in more than two energy groups that is realistic with respect to the underlying physics. → An 8-group cross section library is provided to augment a previously published 2-group 3D stylized half-core CANDU benchmark problem. → Reference eigenvalues and selected pin and bundle fission rates are included. → 2-, 4- and 47-group Monte Carlo solutions are compared to analyze homogenization-free transport approximations that result from energy condensation. - Abstract: An 8-group cross section library is provided to augment a previously published 2-group 3D stylized half-core Canadian deuterium uranium (CANDU) reactor benchmark problem. Reference eigenvalues and selected pin and bundle fission rates are also included. This benchmark is intended to provide computational reactor physicists and methods developers with a stylized model problem in more than two energy groups that is realistic with respect to the underlying physics. In addition to transport theory code verification, the 8-group energy structure provides reactor physicist with an ideal problem for examining cross section homogenization and collapsing effects in a full-core environment. To this end, additional 2-, 4- and 47-group full-core Monte Carlo benchmark solutions are compared to analyze homogenization-free transport approximations incurred as a result of energy group condensation.

  2. Benchmarking school nursing practice: the North West Regional Benchmarking Group

    OpenAIRE

    Littler, Nadine; Mullen, Margaret; Beckett, Helen; Freshney, Alice; Pinder, Lynn

    2016-01-01

    It is essential that the quality of care is reviewed regularly through robust processes such as benchmarking to ensure all outcomes and resources are evidence-based so that children and young people’s needs are met effectively. This article provides an example of the use of benchmarking in school nursing practice. Benchmarking has been defined as a process for finding, adapting and applying best practices (Camp, 1994). This concept was first adopted in the 1970s ‘from industry where it was us...

  3. Benchmarks for multicomponent diffusion and electrochemical migration

    DEFF Research Database (Denmark)

    Rasouli, Pejman; Steefel, Carl I.; Mayer, K. Ulrich

    2015-01-01

    In multicomponent electrolyte solutions, the tendency of ions to diffuse at different rates results in a charge imbalance that is counteracted by the electrostatic coupling between charged species leading to a process called “electrochemical migration” or “electromigration.” Although not commonly...... not been published to date. This contribution provides a set of three benchmark problems that demonstrate the effect of electric coupling during multicomponent diffusion and electrochemical migration and at the same time facilitate the intercomparison of solutions from existing reactive transport codes...

  4. Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former.

    Science.gov (United States)

    Wojnarowska, Z; Rams-Baron, M; Knapik-Kowalczuk, J; Połatyńska, A; Pochylski, M; Gapinski, J; Patkowski, A; Wlodarczyk, P; Paluch, M

    2017-08-01

    In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τ α  = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H + hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dT g /dP coefficient, stretching exponent β KWW and dynamic modulus E a /ΔV # were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications.

  5. Experimental research on free-surface vortices as transport mechanism in wastewater sumps

    NARCIS (Netherlands)

    Clemens, F.H.L.R.; Duinmeijer, S.P.A.

    2016-01-01

    Sumps of wastewater pumping station can experience problems due the formation of (solid) floating layers of fat and scum as a result of insufficient current guidelines for sump design with respect to transport of floating debris. To complimentary the guidelines, the use of free-surface vortices is

  6. Prospects of the Minimum Fisher Regularisation in the Experimental Analyses of Plasma Particle Transport at JET

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Bonheure, G.; Murari, A.; JET EFDA, Contributors.

    2006-01-01

    Roč. 51, č. 10 (2006), s. 196 ISSN 0003-0503. [Division of Plasma Physics Meeting 2006. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tomography * transport * neutrons * fusion * tokamak * JET Subject RIV: BL - Plasma and Gas Discharge Physics

  7. Experimental investigation of the lithium transport mechanisms in cementitious materials by NMR

    NARCIS (Netherlands)

    Venglovska, S.; Pel, L.; Adan, O.C.G.; Bakker, J.; Frangopol, D.M.; van Breugel, K.

    2017-01-01

    Lithium hydroxide can help to reduce and control the expansion of concrete caused by Alkalisilica reaction. In new concrete structures the lithium ions can be introduced as admixture to prevent ASR deleterious expansion. In existing structures the lithium ions need to be transported into the

  8. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    NARCIS (Netherlands)

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors,

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that

  9. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  10. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

    Directory of Open Access Journals (Sweden)

    J. K. Koestel

    2012-06-01

    increased at larger flow rates and water saturations, which suggests that macropore flow was a more important flow mechanism than heterogeneous flow in the soil matrix. Nevertheless, our data show that heterogeneous flow in the soil matrix also occasionally leads to strong preferential transport. Furthermore, we show that preferential solute transport under steady-state flow depends on soil texture in a threshold-like manner: moderate to strong preferential transport was found to occur only for undisturbed soils that contain more than 8% clay. Preferential flow characteristics were also absent for columns filled with glass beads, clean sands, or sieved soil. No clear effect of land use on the pattern of solute transport could be discerned, probably because the available dataset was too small and too strongly affected by cross-correlations with experimental conditions. Our results suggest that, in developing pedotransfer functions for solute transport properties of soils, it is critically important to account for travel distance, lateral observation scale, and water flow rate and saturation.

  11. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the

  12. The International Criticality Safety Benchmark Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, B. J.; Dean, V. F.; Pesic, M. P.

    2001-01-01

    In order to properly manage the risk of a nuclear criticality accident, it is important to establish the conditions for which such an accident becomes possible for any activity involving fissile material. Only when this information is known is it possible to establish the likelihood of actually achieving such conditions. It is therefore important that criticality safety analysts have confidence in the accuracy of their calculations. Confidence in analytical results can only be gained through comparison of those results with experimental data. The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the US Department of Energy. The project was managed through the Idaho National Engineering and Environmental Laboratory (INEEL), but involved nationally known criticality safety experts from Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Savannah River Technology Center, Oak Ridge National Laboratory and the Y-12 Plant, Hanford, Argonne National Laboratory, and the Rocky Flats Plant. An International Criticality Safety Data Exchange component was added to the project during 1994 and the project became what is currently known as the International Criticality Safety Benchmark Evaluation Project (ICSBEP). Representatives from the United Kingdom, France, Japan, the Russian Federation, Hungary, Kazakhstan, Korea, Slovenia, Yugoslavia, Spain, and Israel are now participating on the project In December of 1994, the ICSBEP became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency's (OECD-NEA) Nuclear Science Committee. The United States currently remains the lead country, providing most of the administrative support. The purpose of the ICSBEP is to: (1) identify and evaluate a comprehensive set of critical benchmark data; (2) verify the data, to the extent possible, by reviewing original and subsequently revised documentation, and by talking with the

  13. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  14. Virtual machine performance benchmarking.

    Science.gov (United States)

    Langer, Steve G; French, Todd

    2011-10-01

    The attractions of virtual computing are many: reduced costs, reduced resources and simplified maintenance. Any one of these would be compelling for a medical imaging professional attempting to support a complex practice on limited resources in an era of ever tightened reimbursement. In particular, the ability to run multiple operating systems optimized for different tasks (computational image processing on Linux versus office tasks on Microsoft operating systems) on a single physical machine is compelling. However, there are also potential drawbacks. High performance requirements need to be carefully considered if they are to be executed in an environment where the running software has to execute through multiple layers of device drivers before reaching the real disk or network interface. Our lab has attempted to gain insight into the impact of virtualization on performance by benchmarking the following metrics on both physical and virtual platforms: local memory and disk bandwidth, network bandwidth, and integer and floating point performance. The virtual performance metrics are compared to baseline performance on "bare metal." The results are complex, and indeed somewhat surprising.

  15. AER benchmark specification sheet

    International Nuclear Information System (INIS)

    Aszodi, A.; Toth, S.

    2009-01-01

    In the VVER-440/213 type reactors, the core outlet temperature field is monitored with in-core thermocouples, which are installed above 210 fuel assemblies. These measured temperatures are used in determination of the fuel assembly powers and they have important role in the reactor power limitation. For these reasons, correct interpretation of the thermocouple signals is an important question. In order to interpret the signals in correct way, knowledge of the coolant mixing in the assembly heads is necessary. Computational Fluid Dynamics (CFD) codes and experiments can help to understand better these mixing processes and they can provide information which can support the more adequate interpretation of the thermocouple signals. This benchmark deals with the 3D CFD modeling of the coolant mixing in the heads of the profiled fuel assemblies with 12.2 mm rod pitch. Two assemblies of the 23rd cycle of the Paks NPP's Unit 3 are investigated. One of them has symmetrical pin power profile and another possesses inclined profile. (authors)

  16. AER Benchmark Specification Sheet

    International Nuclear Information System (INIS)

    Aszodi, A.; Toth, S.

    2009-01-01

    In the WWER-440/213 type reactors, the core outlet temperature field is monitored with in-core thermocouples, which are installed above 210 fuel assemblies. These measured temperatures are used in determination of the fuel assembly powers and they have important role in the reactor power limitation. For these reasons, correct interpretation of the thermocouple signals is an important question. In order to interpret the signals in correct way, knowledge of the coolant mixing in the assembly heads is necessary. Computational fluid dynamics codes and experiments can help to understand better these mixing processes and they can provide information which can support the more adequate interpretation of the thermocouple signals. This benchmark deals with the 3D computational fluid dynamics modeling of the coolant mixing in the heads of the profiled fuel assemblies with 12.2 mm rod pitch. Two assemblies of the twenty third cycle of the Paks NPPs Unit 3 are investigated. One of them has symmetrical pin power profile and another possesses inclined profile. (Authors)

  17. Benchmarking in academic pharmacy departments.

    Science.gov (United States)

    Bosso, John A; Chisholm-Burns, Marie; Nappi, Jean; Gubbins, Paul O; Ross, Leigh Ann

    2010-10-11

    Benchmarking in academic pharmacy, and recommendations for the potential uses of benchmarking in academic pharmacy departments are discussed in this paper. Benchmarking is the process by which practices, procedures, and performance metrics are compared to an established standard or best practice. Many businesses and industries use benchmarking to compare processes and outcomes, and ultimately plan for improvement. Institutions of higher learning have embraced benchmarking practices to facilitate measuring the quality of their educational and research programs. Benchmarking is used internally as well to justify the allocation of institutional resources or to mediate among competing demands for additional program staff or space. Surveying all chairs of academic pharmacy departments to explore benchmarking issues such as department size and composition, as well as faculty teaching, scholarly, and service productivity, could provide valuable information. To date, attempts to gather this data have had limited success. We believe this information is potentially important, urge that efforts to gather it should be continued, and offer suggestions to achieve full participation.

  18. An experimental program for testing the validity of flow and transport models in unsaturated tuff: The Yucca Mountain Project

    International Nuclear Information System (INIS)

    Shephard, L.E.; Glass, R.J.; Siegel, M.D.; Tidwell, V.C.

    1990-01-01

    Groundwater flow and contaminant transport through the unsaturated zone are receiving increased attention as options for waste disposal in saturated media continue to be considered as a potential means for resolving the nation's waste management concerns. An experimental program is being developed to test the validity of conceptual flow and transport models that are being formulated to predict the long-term performance at Yucca Mountain. This program is in the developmental stage and will continue to evolve as information is acquired and knowledge is improved with reference to flow and transport in unsaturated fractured media. The general approach for directing the validation effort entails identifying those processes which may cause the site to fail relative to imposed regulatory requirements, evaluating the key assumptions underlying the conceptual models used or developed to describe these processes, and developing new conceptual models as needed. Emphasis is currently being placed in four general areas: flow and transport in unsaturated fractures; fracture-matrix interactions; infiltration flow instability; and evaluation of scale effects in heterogeneous fractured media. Preliminary results and plans or each of these areas for both the laboratory and field investigation components will be presented in the manuscript. 1 ref

  19. Experimental Evidence of Momentum Transport Induced by an Up-Down Asymmetric Magnetic Equilibrium in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Szepesi, G.; Bortolon, A.; Duval, B. P.; Federspiel, L.; Karpushov, A. N.; Piras, F.; Sauter, O.

    2010-01-01

    The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak a Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.

  20. Issues in Benchmark Metric Selection

    Science.gov (United States)

    Crolotte, Alain

    It is true that a metric can influence a benchmark but will esoteric metrics create more problems than they will solve? We answer this question affirmatively by examining the case of the TPC-D metric which used the much debated geometric mean for the single-stream test. We will show how a simple choice influenced the benchmark and its conduct and, to some extent, DBMS development. After examining other alternatives our conclusion is that the “real” measure for a decision-support benchmark is the arithmetic mean.

  1. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  2. Validation of the WIMSD4M cross-section generation code with benchmark results

    International Nuclear Information System (INIS)

    Deen, J.R.; Woodruff, W.L.; Leal, L.E.

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section libraries for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D 2 O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented

  3. Validation of the WIMSD4M cross-section generation code with benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Deen, J.R.; Woodruff, W.L. [Argonne National Lab., IL (United States); Leal, L.E. [Oak Ridge National Lab., TN (United States)

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section libraries for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.

  4. A Global Vision over Benchmarking Process: Benchmarking Based Enterprises

    OpenAIRE

    Sitnikov, Catalina; Giurca Vasilescu, Laura

    2008-01-01

    Benchmarking uses the knowledge and the experience of others to improve the enterprise. Starting from the analysis of the performance and underlying the strengths and weaknesses of the enterprise it should be assessed what must be done in order to improve its activity. Using benchmarking techniques, an enterprise looks at how processes in the value chain are performed. The approach based on the vision “from the whole towards the parts” (a fragmented image of the enterprise’s value chain) redu...

  5. Benchmarking and Learning in Public Healthcare

    DEFF Research Database (Denmark)

    Buckmaster, Natalie; Mouritsen, Jan

    2017-01-01

    This research investigates the effects of learning-oriented benchmarking in public healthcare settings. Benchmarking is a widely adopted yet little explored accounting practice that is part of the paradigm of New Public Management. Extant studies are directed towards mandated coercive benchmarking...... applications. The present study analyses voluntary benchmarking in a public setting that is oriented towards learning. The study contributes by showing how benchmarking can be mobilised for learning and offers evidence of the effects of such benchmarking for performance outcomes. It concludes that benchmarking...... can enable learning in public settings but that this requires actors to invest in ensuring that benchmark data are directed towards improvement....

  6. Experimental study on transportation safety of package in side collision of heavy duty truck

    International Nuclear Information System (INIS)

    Suga, M.; Sasaki, T.

    1989-01-01

    The accidents in road transportation of package may be collision, fall and fire. It is necessary to examine all cases very carefully because collision might be caused by other vehicle. Collisions are classified into head-on collision, rear-end collision, side collision. A lot of experiments and analyses are reported on head-on collision, so the behavior of vehicle and package may be predicted without difficulty. Rear-end collisions bring about less impact and may be applied corresponding to the head-on collisions. About side collisions, few experiments or analyses are reported, and most of them are about passenger cars not about trucks. So it becomes important to study the transportation safety of package carried on a heavy duty truck when hit on the side by another truck similar in size

  7. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    International Nuclear Information System (INIS)

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used

  8. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui; Xu, Ke; Wang, Jianfeng; Ren, Guoqiang

    2014-01-01

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure

  9. Parametric dependencies of the experimental tungsten transport coefficients in ICRH and ECRH assisted ASDEX Upgrade H-modes

    Science.gov (United States)

    Sertoli, M.; Angioni, C.; Odstrcil, T.; ASDEX Upgrade Team; Eurofusion MST1 Team

    2017-11-01

    The profiles of the W transport coefficients have been experimentally calculated for a large database of identical ASDEX Upgrade H-mode discharges where only the radio-frequency (RF) power characteristics have been varied [Angioni et al., Nucl. Fusion 57, 056015 (2017)]. Central ion cyclotron resonance heating (ICRH) in the minority heating scheme has been compared with central and off-axis electron cyclotron resonance heating (ECRH), using both localized and broad heat deposition profiles. The transport coefficients have been calculated applying the gradient-flux relation to the evolution of the intrinsic W density in-between sawtooth cycles as measured using the soft X-ray diagnostic. For both ICRH and ECRH, the major player in reducing the central W density peaking is found to be the reduction of inward pinch and, in the case of ECRH, the rise of an outward convection. The impurity convection increases, from negative to positive, almost linearly with RF-power, while no appreciable changes are observed in the diffusion coefficient, which remains roughly at neoclassical levels independent of RF power or background plasma conditions. The ratio vW/DW is consistent with the equilibrium ∇ n W / n W prior to the sawtooth crash, corroborating the separate estimates of diffusion and convection. These experimental findings are slightly different from previous results obtained analysing the evolution of impurity injections over many sawtooth cycles. Modelling performed using the drift-kinetic code NEO and the gyro-kinetic code GKW (assuming axisymmetry) overestimates the diffusion coefficient and underestimates the experimental positive convection. This is a further indication that magneto-hydrodynamic/neoclassical models accounting for 3D effects may be needed to characterize impurity transport in sawtoothing tokamak plasmas.

  10. Use of bone transport to treat tibial large segmental defects. Experimental study in dogs

    International Nuclear Information System (INIS)

    Rahal, S.C.; Volpi, R.S.; Vulcano, L.C.

    2005-01-01

    The aim of this study was to evaluate the bone transport technique using the Ilizarov external fixator for the treatment of the extensive segmental bone defect induced in the tibia of 7 dogs. An Ilizarov frame assembled with one proximal half-ring, one middle ring and one distal ring, all connected to each other, was used. 30% of the tibia and fibula were removed in the medium and distal parts of the diaphyses, between the medium and distal rings

  11. A system for beams transport from synchrophasotron and nuclotron to experimental set-ups No. 205

    International Nuclear Information System (INIS)

    Barteneva, N.A.; Volobueva, T.I.; Kirillov, A.D.

    1990-01-01

    A scheme for accelerated particle beam trasnport from the MV-1 synchrophasotron and Nuclotron is presented. The positioning of the Nuclotron ring at 3.9 m level relatively to the lines of existing channels conditioned the development of beam vertical extraction system. Beam transport from the Nuclotron or the synchrophasotron to building 205 is ensured through a moving doublet of quadrupoles and magnet mounted on a rotating platform. 1 ref

  12. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  13. Experimental evidence of off-diagonal transport term and the discrepancy between energy/particle balance and perturbation analyses

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Fukuda, Takeshi

    1991-12-01

    Evidence of temperature gradient driven particle flux was observed from the sawtooth induced density propagation phenomenon in JT-60. This off-diagonal particle flux was confirmed using the numerical calculation of measured chord integrated electron density. It was shown that the discrepancies between thermal and particle diffusivities estimated from the perturbation method and energy/particle balance analysis can be explained by considering the flux equations with off-diagonal transport terms. These flux equations were compared with the E x B convective fluxes in an electro-static drift wave instability and it was found that the E x B fluxes are consistent with several experimental observations. (author)

  14. Experimental measurement of efficiency and transport coherence of a cold-atom Brownian motor in optical lattices.

    Science.gov (United States)

    Zelan, M; Hagman, H; Labaigt, G; Jonsell, S; Dion, C M

    2011-02-01

    The rectification of noise into directed movement or useful energy is utilized by many different systems. The peculiar nature of the energy source and conceptual differences between such Brownian motor systems makes a characterization of the performance far from straightforward. In this work, where the Brownian motor consists of atoms interacting with dissipative optical lattices, we adopt existing theory and present experimental measurements for both the efficiency and the transport coherence. We achieve up to 0.3% for the efficiency and 0.01 for the Péclet number.

  15. Experimental and theoretical study of the transport of silver nanoparticles at their prolonged administration into a mammal organism

    Science.gov (United States)

    Antsiferova, A. A.; Buzulukov, Yu. P.; Kashkarov, P. K.; Kovalchuk, M. V.

    2016-11-01

    The transport of silver nanoparticles in the organism of laboratory animals has been investigated. A mathematical model of the biokinetics of prolonged administration of nonmetabolizable and nonaglomerating pharmaceutical preparations is proposed, and its analytical solution is found. Based on the experimental data on the prolonged introduction and excretion of colloidal silver nanoparticles and the numerical approximation of the solutions to the equations for the proposed model, time dependences of the silver mass content in brain and blood are obtained and some other important biokinetic parameters are determined. It is concluded that both chronic1 and subchronic2 peroral application of these nanoparticles as an biologically active additive or antiseptic is potentially dangerous.

  16. Automation and instrument control applied to an experimental study of electron transport dynamics in an avalanche mode resistive plater chamber

    International Nuclear Information System (INIS)

    Ridenti, Marco A.; Pascholati, Paulo R.

    2009-01-01

    In this work it is presented a computer based instrumentation system which was developed to perform data acquisition and integrate the control of different devices in an experimental study of electron transport dynamics in an avalanche mode resistive plate chamber detector in the Radiation Technology Center (CTR) at IPEN/CNEN-SP. System control and data acquisition was performed by a computer program called RPCLabOperator written in MatLab environment running on a LeCroy WavePro 7000 digital oscilloscope. (author)

  17. Benchmarking for On-Scalp MEG Sensors.

    Science.gov (United States)

    Xie, Minshu; Schneiderman, Justin F; Chukharkin, Maxim L; Kalabukhov, Alexei; Riaz, Bushra; Lundqvist, Daniel; Whitmarsh, Stephen; Hamalainen, Matti; Jousmaki, Veikko; Oostenveld, Robert; Winkler, Dag

    2017-06-01

    We present a benchmarking protocol for quantitatively comparing emerging on-scalp magnetoencephalography (MEG) sensor technologies to their counterparts in state-of-the-art MEG systems. As a means of validation, we compare a high-critical-temperature superconducting quantum interference device (high T c SQUID) with the low- T c SQUIDs of an Elekta Neuromag TRIUX system in MEG recordings of auditory and somatosensory evoked fields (SEFs) on one human subject. We measure the expected signal gain for the auditory-evoked fields (deeper sources) and notice some unfamiliar features in the on-scalp sensor-based recordings of SEFs (shallower sources). The experimental results serve as a proof of principle for the benchmarking protocol. This approach is straightforward, general to various on-scalp MEG sensors, and convenient to use on human subjects. The unexpected features in the SEFs suggest on-scalp MEG sensors may reveal information about neuromagnetic sources that is otherwise difficult to extract from state-of-the-art MEG recordings. As the first systematically established on-scalp MEG benchmarking protocol, magnetic sensor developers can employ this method to prove the utility of their technology in MEG recordings. Further exploration of the SEFs with on-scalp MEG sensors may reveal unique information about their sources.

  18. Physiological response of invasive mussel Limnoperna fortunei (Dunker, 1857 (Bivalvia: Mytilidae submitted to transport and experimental conditions

    Directory of Open Access Journals (Sweden)

    N. I. S. Cordeiro

    Full Text Available Abstract Successful animal rearing under laboratory conditions for commercial processes or laboratory experiments is a complex chain that includes several stressors (e.g., sampling and transport and incurs, as a consequence, the reduction of natural animal conditions, economic losses and inconsistent and unreliable biological results. Since the invasion of the bivalve Limnoperna fortunei (Dunker, 1857 in South America, several studies have been performed to help control and manage this fouling pest in industrial plants that use raw water. Relatively little attention has been given to the laboratory rearing procedure of L. fortunei, its condition when exposed to a stressor or its acclimation into laboratory conditions. Considering this issue, the aims of this study are to (i investigate L. fortunei physiological responses when submitted to the depuration process and subsequent air transport (without water/dry condition at two temperatures, based on glycogen concentrations, and (ii monitor the glycogen concentrations in different groups when maintained for 28 days under laboratory conditions. Based on the obtained results, depuration did not affect either of the groups when they were submitted to approximately eight hours of transport. The variation in glycogen concentration among the specimens that were obtained from the field under depurated and non-depurated conditions was significant only in the first week of laboratory growth for the non-depurated group and in the second week for the depurated group. In addition, the tested temperature did not affect either of the groups that were submitted to transport. The glycogen concentrations were similar to those of the specimens that were obtained from the field in third week, which suggests that the specimens acclimated to laboratory conditions during this period of time. Thus, the results indicate that the air transport and acclimation time can be successfully incorporated into experimental studies

  19. Method of characteristics - Based sensitivity calculations for international PWR benchmark

    International Nuclear Information System (INIS)

    Suslov, I. R.; Tormyshev, I. V.; Komlev, O. G.

    2013-01-01

    Method to calculate sensitivity of fractional-linear neutron flux functionals to transport equation coefficients is proposed. Implementation of the method on the basis of MOC code MCCG3D is developed. Sensitivity calculations for fission intensity for international PWR benchmark are performed. (authors)

  20. Performance Targets and External Benchmarking

    DEFF Research Database (Denmark)

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    Research on relative performance measures, transfer pricing, beyond budgeting initiatives, target costing, piece rates systems and value based management has for decades underlined the importance of external benchmarking in performance management. Research conceptualises external benchmarking...... as a market mechanism that can be brought inside the firm to provide incentives for continuous improvement and the development of competitive advances. However, whereas extant research primarily has focused on the importance and effects of using external benchmarks, less attention has been directed towards...... the conditions upon which the market mechanism is performing within organizations. This paper aims to contribute to research by providing more insight to the conditions for the use of external benchmarking as an element in performance management in organizations. Our study explores a particular type of external...

  1. Experimental aspects of ion acceleration and transport in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Young, D.T.

    1985-01-01

    Major particle population within the Earth's magnetosphere have been studied via ion acceleration processes. Experimental advances over the past ten to fifteen years have demonstrated the complexity of the processes. A review is given here for areas where composition experiments have expanded perception on magnetospheric phenomena. 64 refs., 6 figs., 1 tab

  2. Multi scale experimental study of water and ionic transport in porous charged media: clays

    International Nuclear Information System (INIS)

    Cadene, A.

    2005-10-01

    Clays are porous media of industrial interest. Due to their retention capacities and low permeability to water, they are the principal candidate for the conception of engineered barriers radioactive waste disposal. The main interest of this study is the experimental determination of the cationic and water dynamics in montmorillonite and fluoro-hectorite at low water contents This latter synthetic smectite has been used as a model clay to help the interpretation of the results issued from the first natural one. After a summary on the clayey system, this work reports the many experimental techniques (Atomic Force Microscopy, Photo-Correlation Spectroscopy, Micro-calorimetry, Powder Diffraction) used during the preliminary study concerning structural characterisation of the samples. The study of the sodic form of smectites with the use of a combination of quasi-elastic neutron scattering techniques (Time of Flight and Spin Echo) succeeded to water diffusion coefficients but also to a discernment of the limits of such techniques. Experiments with montmorillonite samples are in agreement with the simulations, so tending to a validation of the models. Experimental data obtained from synthetic hectorites will be in the near future compared to simulations In the last part, this work shows the application of Broad Band Dielectric Spectroscopy for the investigation of ionic dynamic in these porous media. Many models have been developed for the interpretation of the experimental raw data obtained with this technique. (author)

  3. Benchmarking: contexts and details matter.

    Science.gov (United States)

    Zheng, Siyuan

    2017-07-05

    Benchmarking is an essential step in the development of computational tools. We take this opportunity to pitch in our opinions on tool benchmarking, in light of two correspondence articles published in Genome Biology.Please see related Li et al. and Newman et al. correspondence articles: www.dx.doi.org/10.1186/s13059-017-1256-5 and www.dx.doi.org/10.1186/s13059-017-1257-4.

  4. Analysis of Benchmark 2 results

    International Nuclear Information System (INIS)

    Bacha, F.; Lefievre, B.; Maillard, J.; Silva, J.

    1994-01-01

    The code GEANT315 has been compared to different codes in two benchmarks. We analyze its performances through our results, especially in the thick target case. In spite of gaps in nucleus-nucleus interaction theories at intermediate energies, benchmarks allow possible improvements of physical models used in our codes. Thereafter, a scheme of radioactive waste burning system is studied. (authors). 4 refs., 7 figs., 1 tab

  5. Experimental transport studies of yttrium barium copper oxide and lambda-DNA

    Science.gov (United States)

    Zhang, Yuexing

    This dissertation consists of two parts. In Part I, we focus on the quasi-particle transport properties in the high temperature superconductor YBa2Cu3O7-delta (YBCO), probed by the thermal Hall conductivity (kappa xy). The thermal Hall conductivity selectively reflects the transport behaviors of the charge carriers. By measuring kappaxy in the normal state YBCO, we established a new method to determine the Wiedemann-Franz (WF) ratio in cuprates. We determined the Hall-channel WF ratio kappa xy/sigmaxyT in Cu and YBCO. In the latter, we uncovered a T-linear dependence and suppression of the Hallchannel WF ratio. The suppression of the Hall-channel WF ratio in systems with predominant electron-electron scattering will be discussed. Thermal transport behaviors of the quasi-particles in the mixed state were studied by measuring kappaxx and kappa xy in a high-purity YBCO crystal. From the field-dependence of the thermal conductivity kappaxx, we separated the quasi particle contribution (kappae) from the phonon background. In the Hall channel, we observed that the (weak-field) kappa xy increased 103-fold between T c (90 K) and 30 K, implying a 100-fold enhancement of the quasi-particle lifetime. We found that kappaxy exhibited a specific scaling behavior below ˜30 K. The implication of the scaling behavior will be discussed. In Part II, we describe an experiment on determining the electrical conductivity of the bacteriophage lambda-DNA, an issue currently under intense debate. We covalently bonded the DNA to Au electrodes by incorporating thiol modified dTTP into the 'sticky' ends of the lambda-DNA. Two-probe measurements on such molecules provided a lower bound for the resistivity rho > 10 6 mum at bias potentials up to 20 V, in conflict with recent claims of moderate to high conductivity. We stress the importance of eliminating salt residues in these measurements.

  6. Borehole plugging by hydrothermal transport: an interim report on experimental studies

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    Five possible systems that might lead to borehole plugs were considered with respect to replacement of the original rock with a material of essentially the same chemical composition and mineralogical makeup or with the introduction of other materials that might be chemically compatible with the surrounding wall rock. The five systems were: Quartz or chalcedony plugs from the SiO 2 -water system, replacement of shale rock by transport in the ''clay''-water system, hydrothermal cement systems, carbonate plugs in limestone and dolomite, and sulfur plugs by transport in the system sulfur-water. Hydrothermal cements appear to be most feasible from an engineering and economic point of view. Pressures and temperatures for reactions in the systems CaO-Al 2 O 3 -SiO 2 -H 2 O are modest and there is evidence that the plug formed would have a lower porosity and permeability than those derived from more conventional cement systems. Further, the mineral phases, principally tobermorite, are likely to be compatible with expected shale, sandstone, and limestone wall rock materials. Calcite (but not dolomite) plugs could be formed in limestone or dolomite rock. Less is known about carbonate plugs and the porosity, permeability, and possible reactions with circulating groundwater. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be the most compatible with the wall rock but would be extremely difficult to form in place. It was concluded that replacement of shales by clay, mica, or other layer silicate transport in hydrothermal solution was limited by the extremely sluggish kinetics of these reactions and that a practical plug of such materials is not feasible. Likewise, the sulfur-water system was found to be unlikely to yield a plug material

  7. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  8. Charge Transport in Conjugated Materials: From Theoretical Models to Experimental Systems

    International Nuclear Information System (INIS)

    Olivier, Yoann; Cornil, Jerome; Muccioli, Luca; Zannoni, Claudio

    2008-01-01

    Charge carrier mobility is the key quantity to characterize the charge transport properties in devices. Based on earlier work of Baessler and co-workers, we set up a Monte-Carlo approach that allows us to calculate mobility using transfer rates derived from Marcus theory. The parameters entering into the rate expression are evaluated by means of different quantum-chemical techniques. Our approach is applied here to a model one-dimensional system made of pentacene molecules as well as to real systems such as crystalline structures and columnar liquid crystal phases.

  9. U.S. integral and benchmark experiments

    International Nuclear Information System (INIS)

    Maienschein, F.C.

    1978-01-01

    Verification of methods for analysis of radiation-transport (shielding) problems in Liquid-Metal Fast Breeder Reactors has required a series of experiments that can be classified as benchmark, parametric, or design-confirmation experiments. These experiments, performed at the Oak Ridge Tower Shielding Facility, have included measurements of neutron transport in bulk shields of sodium, steel, and inconel and in configurations that simulate lower axial shields, pipe chases, and top-head shields. They have also included measurements of the effects of fuel stored within the reactor vessel and of gamma-ray energy deposition (heating). The paper consists of brief comments on these experiments, and also on a recent experiment in which neutron streaming problems in a Gas-Cooled Fast Breeder Reactor were studied. The need for additional experiments for a few areas of LMFBR shielding is also cited

  10. Benchmarking in Czech Higher Education

    Directory of Open Access Journals (Sweden)

    Plaček Michal

    2015-12-01

    Full Text Available The first part of this article surveys the current experience with the use of benchmarking at Czech universities specializing in economics and management. The results indicate that collaborative benchmarking is not used on this level today, but most actors show some interest in its introduction. The expression of the need for it and the importance of benchmarking as a very suitable performance-management tool in less developed countries are the impetus for the second part of our article. Based on an analysis of the current situation and existing needs in the Czech Republic, as well as on a comparison with international experience, recommendations for public policy are made, which lie in the design of a model of a collaborative benchmarking for Czech economics and management in higher-education programs. Because the fully complex model cannot be implemented immediately – which is also confirmed by structured interviews with academics who have practical experience with benchmarking –, the final model is designed as a multi-stage model. This approach helps eliminate major barriers to the implementation of benchmarking.

  11. Benchmarking of HEU mental annuli critical assemblies with internally reflected graphite cylinder

    Directory of Open Access Journals (Sweden)

    Xiaobo Liu

    2017-01-01

    Full Text Available Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00057, 0.00058 and 0.00057 respectively, and biases to the benchmark models which are − 0.00286, − 0.00242 and − 0.00168 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified models. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF/B-VII.1 agree well to the benchmark experimental results within difference less than 0.2%. The benchmarking results were accepted for the inclusion of ICSBEP Handbook.

  12. A bench top experimental model of bubble transport in multiple arteriole bifurcations

    International Nuclear Information System (INIS)

    Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph L.

    2005-01-01

    Motivated by a novel gas embolotherapy technique, a bench top vascular bifurcation model is used to investigate the splitting of long bubbles in a series of liquid-filled bifurcations. The developmental gas embolotherapy technique aims to treat cancer by infarcting tumors with gas emboli that are formed by selective acoustic vaporization of ∼6 μm, intravascular, perfluorcarbon droplets. The resulting gas bubbles are large enough to extend through several vessel bifurcations. The current bench top experiments examine the effects of gravity and flow on bubble transport through multiple bifurcations. The effect of gravity is varied by changing the roll angle of the bifurcating network about its parent tube. Splitting at each bifurcation is nearly even when the roll angle is zero. It is demonstrated that bubbles can either stick at one of the second bifurcations or in the second generation daughter tubes, even though the flow rate in the parent tube is constant. The findings of this work indicate that both gravity and flow are important in determining the bubble transport, and suggest that a treatment strategy that includes multiple doses may be effective in delivering emboli to vessels not occluded by the initial dose

  13. JNC results of BN-600 benchmark calculation (phase 3)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2002-01-01

    The present work is the result of phase 3 BN-600 core benchmark problem, meaning burnup and heterogeneity. Analytical method applied consisted of: JENDL-3.2 nuclear data library, group constants (70 group, ABBN type self shielding transport factors), heterogeneous cell model for fuel and control rod, basic diffusion calculation (CITATION code), transport theory and mesh size correction (NSHEX code based on SN transport nodal method developed by JNC). Burnup and heterogeneity calculation results are presented obtained by applying both diffusion and transport approach for beginning and end of cycle

  14. Coupled fast-thermal core 'HERBE', as the benchmark experiment at the RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2003-10-01

    Validation of the well-known Monte Carlo code MCNP TM against measured criticality data for the coupled fast-thermal HERBE. System at the RB research reactor is shown in this paper. Experimental data are obtained for regular HERBE core and for the cases of controlled flooding of the neutron converter zone by heavy water. Earlier calculations of these criticality parameters, done by combination of transport and diffusion codes using 2D geometry model are also compared to new calculations carried out by the MCNP code in 3D geometry, applying new detailed 3D model of the HEU fuel slug, developed recently. Satisfactory agreements in comparison of the HERBE criticality calculation results with experimental data, in spite complex heterogeneous composition of the HERBE core, are obtained and confirmed that HERBE core could be used as a criticality benchmark for coupled fast-thermal core. (author)

  15. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  16. Interactions of solutes and streambed sediment: 1. An experimental analysis of cation and anion transport in a mountain stream

    Science.gov (United States)

    Bencala, Kenneth E.; Kennedy, Vance C.; Zellweger, Gary W.; Jackman, Alan P.; Avanzino, Ronald J.

    1984-01-01

    An experimental injection was performed to study the transport of stream water solutes under conditions of significant interaction with streambed sediments in a mountain pool-and-riffle stream. Experiments were conducted in Little Lost Man Creek, Humboldt County, California, in a period of low flow duringwhich only a part of the bank-full channel held active surface flow. The injection of chloride and several trace cations lasted 20 days. In this report we discuss the results of the first 24 hours of the injection and survey the results of the first 10 days. Solute-streambed interactions of two types were observed. First, the physical transport of the conservative tracer, chloride, was affected by intergravel flow and stagnant watt, zones created by the bed relief. Second, the transport of the cations (strontium, potassium, and lithium) was appreciably modified by sorption onto streambed sediment. In the stream the readily observable consequence of the solute-streambed interactions was an attenuation of the dissolved concentration of each of the tracers. The attenuation in the stream channel occurred concurrently with the storage of tracers in the streambed via both physical and chemical processes. All tracers were subsequently present in shallow wells dug several meters from the wetted part of the channel. Sediment samples collected approximately 3 weeks after the start of the injection contained increased concentrations of the injected cations.

  17. Development of common user data model for APOLLO3 and MARBLE and application to benchmark problems

    International Nuclear Information System (INIS)

    Yokoyama, Kenji

    2009-07-01

    A Common User Data Model, CUDM, has been developed for the purpose of benchmark calculations between APOLLO3 and MARBLE code systems. The current version of CUDM was designed for core calculation benchmark problems with 3-dimensional Cartesian, 3-D XYZ, geometry. CUDM is able to manage all input/output data such as 3-D XYZ geometry, effective macroscopic cross section, effective multiplication factor and neutron flux. In addition, visualization tools for geometry and neutron flux were included. CUDM was designed by the object-oriented technique and implemented using Python programming language. Based on the CUDM, a prototype system for a benchmark calculation, CUDM-benchmark, was also developed. The CUDM-benchmark supports input/output data conversion for IDT solver in APOLLO3, and TRITAC and SNT solvers in MARBLE. In order to evaluate pertinence of CUDM, the CUDM-benchmark was applied to benchmark problems proposed by T. Takeda, G. Chiba and I. Zmijarevic. It was verified that the CUDM-benchmark successfully reproduced the results calculated with reference input data files, and provided consistent results among all the solvers by using one common input data defined by CUDM. In addition, a detailed benchmark calculation for Chiba benchmark was performed by using the CUDM-benchmark. Chiba benchmark is a neutron transport benchmark problem for fast criticality assembly without homogenization. This benchmark problem consists of 4 core configurations which have different sodium void regions, and each core configuration is defined by more than 5,000 fuel/material cells. In this application, it was found that the results by IDT and SNT solvers agreed well with the reference results by Monte-Carlo code. In addition, model effects such as quadrature set effect, S n order effect and mesh size effect were systematically evaluated and summarized in this report. (author)

  18. Transport modeling for W7-X on the basis of W7-AS experimental results

    International Nuclear Information System (INIS)

    Beidler, C.D.; Geiger, J.; Maassberg, H.; Marushchenko, N.B.; Turkin, Yu.

    2008-01-01

    Exploratory simulations of plasma confinement in the Wendelstein 7-X (W7-X) stellarator are presented, concentrating on scenarios which simultaneously achieve high temperature and high β (normalized plasma pressure) at the full magnetic field of B=2.5 T. Efficient 1-D transport and ray-tracing codes are combined to provide an approximately self-consistent description of the heating and current drive (ECCD) to be expected from up to 10 MW of electron cyclotron resonance heating (ECRH) in W7-X. Best performance is exhibited in high density (n=1.8x10 20 m -3 ) simulations heated at the second harmonic of the ordinary mode, although control of the magnetic topology at the plasma edge - needed to insure functioning of the island divertor - becomes problematic due to the imbalance of the bootstrap current and ECCD. (author)

  19. Experimental characterization of X-ray transverse coherence in the presence of beam transport optics

    DEFF Research Database (Denmark)

    Chubar, O.; Fluerasu, A.; Chu, Y.S.

    2013-01-01

    A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics...... in the optical path, the interpretation of the measured interference pattern is relatively straightforward and can be done in terms of the basic parameters of the source [2]. However, if the interference scheme is used after some focusing optics, e.g. close to the X-ray beam waist, the visibility of fringes can...... be significantly affected by the new shape of the focused beam phase-space. At the same time, optical element imperfections still have a negative impact on the transverse coherence. In such situations, which are frequently encountered in experiments at beamlines, the quantitative interpretation of a measured...

  20. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  1. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    Science.gov (United States)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  2. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-02-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two-dimensional flow-through setup using pulse injection of multiple tracers (both uncharged and ionic species). Extensive sampling and measurement of solutes' concentrations (˜1500 samples; >3000 measurements) were performed at the outlet of the flow-through setup, at high spatial and temporal resolution. The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model. The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used in connection with the traditional solute breakthrough curves, proved to be useful to correctly distinguish between plume spreading and mixing, particularly for the cases in which the sole analysis of integrated concentration breakthrough curves may lead to erroneous interpretation of plume dilution.

  3. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  4. Pericles and Attila results for the C5G7 MOX benchmark problems

    International Nuclear Information System (INIS)

    Wareing, T.A.; McGhee, J.M.

    2002-01-01

    Recently the Nuclear Energy Agency has published a new benchmark entitled, 'C5G7 MOX Benchmark.' This benchmark is to test the ability of current transport codes to treat reactor core problems without spatial homogenization. The benchmark includes both a two- and three-dimensional problem. We have calculated results for these benchmark problems with our Pericles and Attila codes. Pericles is a one-,two-, and three-dimensional unstructured grid discrete-ordinates code and was used for the twodimensional benchmark problem. Attila is a three-dimensional unstructured tetrahedral mesh discrete-ordinate code and was used for the three-dimensional problem. Both codes use discontinuous finite element spatial differencing. Both codes use diffusion synthetic acceleration (DSA) for accelerating the inner iterations.

  5. Structural code benchmarking for the analysis of impact response of nuclear material shipping casks

    International Nuclear Information System (INIS)

    Glass, R.E.

    1984-01-01

    The Transportation Technology Center at Sandia National Laboratories has initiated a program to benchmark thermal and structural codes that are available to the nuclear material transportation community. The program consists of the following five phrases: (1) code inventory and review, (2) development of a cask-like set of problems, (3) multiple independent numerical analyses of the problems, (4) transfer of information, and (5) performance of experiments to obtain data for comparison with the numerical analyses. This paper will summarize the results obtained by the independent numerical analyses. The analyses indicate the variability that can be expected both due to differences in user-controlled parameters and from code-to-code differences. The results show that in purely elastic analyses, differences can be attributed to user controlled parameters. Model problems involving elastic/plastic material behavior and large deformations, however, have greater variability with significant differences reported for implicit and explicit integration schemes in finite element programs. This variability demonstrates the need to obtain experimental data to properly benchmark codes utilizing elastic/plastic material models and large deformation capability

  6. Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell

    Science.gov (United States)

    Huo, Sen; Zhou, Jiaxun; Wang, Tianyou; Chen, Rui; Jiao, Kui

    2018-04-01

    Experimental test and analytical modeling are conducted to investigate the operating behavior of an alkaline electrolyte membrane (AEM) fuel cell fed by H2/air (or O2) and explore the effect of various operating pressures on the water transfer mechanism. According to the experimental test, the cell performance is greatly improved through increasing the operating pressure gradient from anode to cathode which leads to significant liquid water permeation through the membrane. The high frequency resistance of the A901 alkaline membrane is observed to be relatively stable as the operating pressure varies based on the electrochemical impedance spectroscopy (EIS) method. Correspondingly, based on the modeling prediction, the averaged water content in the membrane electrode assembly (MEA) does not change too much which leads to the weak variation of membrane ohmic resistance. This reveals that the performance enhancement should give the credit to better electro-chemical reaction kinetics for both the anode and cathode, also prone by the EIS results. The reversion of water back diffusion direction across the membrane is also observed through analytical solution.

  7. Thermal reactor benchmark tests on JENDL-2

    International Nuclear Information System (INIS)

    Takano, Hideki; Tsuchihashi, Keichiro; Yamane, Tsuyoshi; Akino, Fujiyoshi; Ishiguro, Yukio; Ido, Masaru.

    1983-11-01

    A group constant library for the thermal reactor standard nuclear design code system SRAC was produced by using the evaluated nuclear data JENDL-2. Furthermore, the group constants for 235 U were calculated also from ENDF/B-V. Thermal reactor benchmark calculations were performed using the produced group constant library. The selected benchmark cores are two water-moderated lattices (TRX-1 and 2), two heavy water-moderated cores (DCA and ETA-1), two graphite-moderated cores (SHE-8 and 13) and eight critical experiments for critical safety. The effective multiplication factors and lattice cell parameters were calculated and compared with the experimental values. The results are summarized as follows. (1) Effective multiplication factors: The results by JENDL-2 are considerably improved in comparison with ones by ENDF/B-IV. The best agreement is obtained by using JENDL-2 and ENDF/B-V (only 235 U) data. (2) Lattice cell parameters: For the rho 28 (the ratio of epithermal to thermal 238 U captures) and C* (the ratio of 238 U captures to 235 U fissions), the values calculated by JENDL-2 are in good agreement with the experimental values. The rho 28 (the ratio of 238 U to 235 U fissions) are overestimated as found also for the fast reactor benchmarks. The rho 02 (the ratio of epithermal to thermal 232 Th captures) calculated by JENDL-2 or ENDF/B-IV are considerably underestimated. The functions of the SRAC system have been continued to be extended according to the needs of its users. A brief description will be given, in Appendix B, to the extended parts of the SRAC system together with the input specification. (author)

  8. Regional Competitive Intelligence: Benchmarking and Policymaking

    OpenAIRE

    Huggins , Robert

    2010-01-01

    Benchmarking exercises have become increasingly popular within the sphere of regional policymaking in recent years. The aim of this paper is to analyse the concept of regional benchmarking and its links with regional policymaking processes. It develops a typology of regional benchmarking exercises and regional benchmarkers, and critically reviews the literature, both academic and policy oriented. It is argued that critics who suggest regional benchmarking is a flawed concept and technique fai...

  9. Computer simulation of Masurca critical and subcritical experiments. Muse-4 benchmark. Final report

    International Nuclear Information System (INIS)

    2006-01-01

    of solutions provided has allowed to analyse the calculation results with many different combinations of simulation methods, including deterministic and Monte Carlo methods, and nuclear databases. The intercomparisons of these results and their direct comparison against experimental results (when available), were helpful to identify the sources of discrepancies observed among different solutions. Nevertheless, this MUSE-4 benchmark could not answer all the questions raised. A follow-up exercise may be useful for a more thorough investigation on external fast neutron source propagation within the multiplier media and thermal neutron transport in large and nearly transparent reflectors. (author)

  10. Benchmarking of human resources management

    Directory of Open Access Journals (Sweden)

    David M. Akinnusi

    2008-11-01

    Full Text Available This paper reviews the role of human resource management (HRM which, today, plays a strategic partnership role in management. The focus of the paper is on HRM in the public sector, where much hope rests on HRM as a means of transforming the public service and achieving much needed service delivery. However, a critical evaluation of HRM practices in the public sector reveals that these services leave much to be desired. The paper suggests the adoption of benchmarking as a process to revamp HRM in the public sector so that it is able to deliver on its promises. It describes the nature and process of benchmarking and highlights the inherent difficulties in applying benchmarking in HRM. It concludes with some suggestions for a plan of action. The process of identifying “best” practices in HRM requires the best collaborative efforts of HRM practitioners and academicians. If used creatively, benchmarking has the potential to bring about radical and positive changes in HRM in the public sector. The adoption of the benchmarking process is, in itself, a litmus test of the extent to which HRM in the public sector has grown professionally.

  11. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  12. Systematic Experimental and Computational Investigation of Ion Transport in Novel Polyether Electrolytes

    Science.gov (United States)

    Pesko, Danielle; Webb, Michael; Jung, Yukyung; Zheng, Qi; Miller, Thomas, III; Coates, Geoffrey; Balsara, Nitash

    Polyethers, such as poly(ethylene oxide) (PEO), are considered to be the most promising polymer electrolyte materials due to their high ionic conductivity and electrochemical stability, both essential for battery applications. To gain a fundamental understanding of the transport properties of polyether systems, we design a systematic set of linear PEO-like polymers to explore the effect of adding carbon spacers to the backbone of the chain. Ac impedance spectroscopy is employed to measure the ionic conductivity of polyether/lithium salt electrolytes; the results elucidate tradeoffs between lowering the glass transition temperature and diluting the polar groups on the polymer chain. Molecular-level insight is provided by molecular dynamics simulations of the polyether electrolytes. We define the useful and intuitive metric of ``connectivity'', a parameter calculated from simulations which describes the physical arrangements of solvation sites in a polymer melt. Direct comparison of experiment and theory allows us to determine the relationship between connectivity and conductivity. The comparison provides insight regarding the factors that control conductivity, and highlights considerations that must be taken when designing new ion-conducting polymers.

  13. Experimental determination of the dimensionless scaling parameter of energy transport in tokamaks

    International Nuclear Information System (INIS)

    Luce, T.C.; Petty, C.C.

    1995-07-01

    Controlled fusion experiments have focused on the variation of the plasma characteristics as the engineering or control parameters are systematically changed. This has led to the development of extrapolation formulae for prediction of future device performance using these same variables as a basis. Recently, it was noticed that present-day tokamaks can operate with all of the dimensionless variables which appear in the Vlasov-Maxwell system of equations at values projected for a fusion powerplant with the exception of the parameter ρ * , the gyroradius normalized to the machine size. The scaling with this parameter is related to the benefit of increasing the size of the machine either directly or effectively by increasing the magnetic field. It is exactly this scaling which is subject to systematic error in the inter-machine databases and the cost driver for any future machine. If this scaling can be fixed by a series of single machine experiments, much as the current and power scalings have been, the confidence in the prediction of future device performance would be greatly enhanced. While carrying out experiments of this type, it was also found that the ρ * scaling can illuminate the underlying physics of energy transport. Conclusions drawn from experiments on the DIII-D tokamak in these two areas are the subject of this paper

  14. Simulation and experimental study on transportation of dual-beam guided by confining magnetic-field

    International Nuclear Information System (INIS)

    Bai Xianchen; Zhang Jiande; Yang Jianhua

    2008-01-01

    Using external longitudinal magnetic-field to guide dual-beam out of the dual-shift tubes is a key step for the practicality of synchronizing dual-beam produced by a single accelerator. On the basis of the simulation of the confining magnetic-field for the solid dual-beam, the experiment of magnetic-field guiding annular dual-beam was presented. When the diode voltage was 380 kV, dual-beam currents of 5.10 kA and 4.92 kA were obtained. The experimental results indicate that the designed magnetic-field system could confine the annular dual-beam effectively, and the critical confining magnetic-field is about 0.5 T. (authors)

  15. System identification by experimental data processing, application to turbulent transport of a tracer in pipe flow

    International Nuclear Information System (INIS)

    Burgos, Manuel; Getto, Daniel; Berne, Philippe

    2005-01-01

    System identification is the first, and probably the most important step in detecting abnormal behavior, control system design or performance improving. Data analysis is performed for studying the plant behavior, sensitivity of operation procedures and several other goals. In all these cases, the observed data is the convolution of an input function, and the system's impulse response. Practical discrete time convolutions may be performed multiplying a matrix built from the impulse response by the input vector, but for deconvolution it is necessary to invert the matrix which is singular in a causal system. Another method for deconvolution is by means of Fourier Transforms. Actual readings are usually corrupted by noise and, besides, their transform shows high low frequencies components and high frequency ones mainly due to additive noise. Subjective decisions as cut-off frequency should be taken as well. This paper proposes a deconvolution method based on parameters fitting of suitable models, where they exist, and estimation of values where analytical forms are not available. It is based on the global, non linear fitting of them, with a maximum likelihood criteria. An application of the method is shown using data from two fluid flow experiments. The experimental test rigs basically consist in a long section of straight pipe in which fluid is flowing. A pulse of tracer is injected at the entrance and detected at various locations along the pipe. An attempt of deconvolution of signals from successive probes using a classical model describing the flow of tracer as a plug moving with the average fluid velocity, plus some axial dispersion. The parameters are for instance the velocity of the plug and a dispersion coefficient. After parameter fitting, the model is found to reproduce the experimental data well. The flow rates deduced from the adjusted travel times are in very good agreement with the actual values. In addition, the flow dispersion coefficient is obtained

  16. Sensitivity analysis and benchmarking of the BLT low-level waste source term code

    International Nuclear Information System (INIS)

    Suen, C.J.; Sullivan, T.M.

    1993-07-01

    To evaluate the source term for low-level waste disposal, a comprehensive model had been developed and incorporated into a computer code, called BLT (Breach-Leach-Transport) Since the release of the original version, many new features and improvements had also been added to the Leach model of the code. This report consists of two different studies based on the new version of the BLT code: (1) a series of verification/sensitivity tests; and (2) benchmarking of the BLT code using field data. Based on the results of the verification/sensitivity tests, the authors concluded that the new version represents a significant improvement and it is capable of providing more realistic simulations of the leaching process. Benchmarking work was carried out to provide a reasonable level of confidence in the model predictions. In this study, the experimentally measured release curves for nitrate, technetium-99 and tritium from the saltstone lysimeters operated by Savannah River Laboratory were used. The model results are observed to be in general agreement with the experimental data, within the acceptable limits of uncertainty

  17. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  18. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  19. Criticality benchmark comparisons leading to cross-section upgrades

    International Nuclear Information System (INIS)

    Alesso, H.P.; Annese, C.E.; Heinrichs, D.P.; Lloyd, W.R.; Lent, E.M.

    1993-01-01

    For several years criticality benchmark calculations with COG. COG is a point-wise Monte Carlo code developed at Lawrence Livermore National Laboratory (LLNL). It solves the Boltzmann equation for the transport of neutrons and photons. The principle consideration in developing COG was that the resulting calculation would be as accurate as the point-wise cross-sectional data, since no physics computational approximations were used. The objective of this paper is to report on COG results for criticality benchmark experiments in concert with MCNP comparisons which are resulting in corrections an upgrades to the point-wise ENDL cross-section data libraries. Benchmarking discrepancies reported here indicated difficulties in the Evaluated Nuclear Data Livermore (ENDL) cross-sections for U-238 at thermal neutron energy levels. This led to a re-evaluation and selection of the appropriate cross-section values from several cross-section sets available (ENDL, ENDF/B-V). Further cross-section upgrades anticipated

  20. Benchmark experiment on vanadium assembly with D-T neutrons. In-situ measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Kasugai, Yoshimi; Konno, Chikara; Wada, Masayuki; Oyama, Yukio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murata, Isao; Kokooo; Takahashi, Akito

    1998-03-01

    Fusion neutronics benchmark experimental data on vanadium were obtained for neutrons in almost entire energies as well as secondary gamma-rays. Benchmark calculations for the experiment were performed to investigate validity of recent nuclear data files, i.e., JENDL Fusion File, FENDL/E-1.0 and EFF-3. (author)

  1. Investigation of particle transport through the measurement of the electron source in the Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Klepper, C.C.

    1985-01-01

    The spatial distribution of the electron source was measured spectroscopically in the Texas Experimental Tokamak. The method used involves the measurement of the emissivity of the Balmer α and β lines of neutral hydrogen. Modeling of the corresponding atomic transitions provides a relation between the emissivities and the electron source from the ionization of neutrals. Toroidal distributions were obtained by means of a set of relatively calibrated photodiode amplifier-filter packages referred to as plasma light monitors. Such monitors were distributed toroidally, and attached primarily to radial ports. Specially constructed, absolutely calibrated monitors provided absolute calibration. A scanning, rotating mirror system provided in-out brightness profiles. A TV camera system, viewing the limiter through a tangential port, provided a qualitative description of the poloidal asymmetry. Such description was necessary for the inversion of the rotating mirror data. Using electron density profiles obtained by means of far-infrared interferometry, and integrating the electron sources, the global particle confinement time (tau/sub p/) was computed. Parameter scans were performed in ohmically heated plasmas, varying the toroidal field, the plasma current, the electron density, and the plasma position with respect to the center of the poloidal ring limiter. It was found that tau/sub p/ peaks for a critical density that is independent of the other parameters

  2. Modelling solute dispersion in periodic heterogeneous porous media: Model benchmarking against intermediate scale experiments

    Science.gov (United States)

    Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham

    2018-06-01

    This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

  3. Benchmarking of the FENDL-3 Neutron Cross-section Data Starter Library for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Association KIT-Euratom, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Angelone, M. [Associazione ENEA-Euratom, ENEA Fusion Division, Via E. Fermi 27, I-00044 Frascati (Italy); Bohm, T. [University of Wisconsin-Madison, 1500 Engineering Dr, Madison, WI 53706 (United States); Kondo, K. [Association KIT-Euratom, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Konno, C. [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Sawan, M. [University of Wisconsin-Madison, 1500 Engineering Dr, Madison, WI 53706 (United States); Villari, R. [Associazione ENEA-Euratom, ENEA Fusion Division, Via E. Fermi 27, I-00044 Frascati (Italy); Walker, B. [University of Wisconsin-Madison, 1500 Engineering Dr, Madison, WI 53706 (United States)

    2014-06-15

    This paper summarizes the benchmark analyses performed in a joint effort of ENEA (Italy), JAEA (Japan), KIT (Germany), and the University of Wisconsin (USA) on a computational ITER benchmark and a series of 14 MeV neutron benchmark experiments. The computational benchmark revealed a modest increase of the neutron flux levels in the deep penetration regions and a substantial increase of the gas production in steel components. The comparison to experimental results showed good agreement with no substantial differences between FENDL-3.0 and FENDL-2.1 for most of the responses. In general, FENDL-3 shows an improved performance for fusion neutronics applications.

  4. Strategic behaviour under regulatory benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Jamasb, T. [Cambridge Univ. (United Kingdom). Dept. of Applied Economics; Nillesen, P. [NUON NV (Netherlands); Pollitt, M. [Cambridge Univ. (United Kingdom). Judge Inst. of Management

    2004-09-01

    In order to improve the efficiency of electricity distribution networks, some regulators have adopted incentive regulation schemes that rely on performance benchmarking. Although regulation benchmarking can influence the ''regulation game,'' the subject has received limited attention. This paper discusses how strategic behaviour can result in inefficient behaviour by firms. We then use the Data Envelopment Analysis (DEA) method with US utility data to examine implications of illustrative cases of strategic behaviour reported by regulators. The results show that gaming can have significant effects on the measured performance and profitability of firms. (author)

  5. Atomic Energy Research benchmark activity

    International Nuclear Information System (INIS)

    Makai, M.

    1998-01-01

    The test problems utilized in the validation and verification process of computer programs in Atomic Energie Research are collected into one bunch. This is the first step towards issuing a volume in which tests for VVER are collected, along with reference solutions and a number of solutions. The benchmarks do not include the ZR-6 experiments because they have been published along with a number of comparisons in the Final reports of TIC. The present collection focuses on operational and mathematical benchmarks which cover almost the entire range of reaktor calculation. (Author)

  6. Analysis of CSNI benchmark test on containment using the code CONTRAN

    International Nuclear Information System (INIS)

    Haware, S.K.; Ghosh, A.K.; Raj, V.V.; Kakodkar, A.

    1994-01-01

    A programme of experimental as well as analytical studies on the behaviour of nuclear reactor containment is being actively pursued. A large number ol' experiments on pressure and temperature transients have been carried out on a one-tenth scale model vapour suppression pool containment experimental facility, simulating the 220 MWe Indian Pressurised Heavy Water Reactors. A programme of development of computer codes is underway to enable prediction of containment behaviour under accident conditions. This includes codes for pressure and temperature transients, hydrogen behaviour, aerosol behaviour etc. As a part of this ongoing work, the code CONTRAN (CONtainment TRansient ANalysis) has been developed for predicting the thermal hydraulic transients in a multicompartment containment. For the assessment of the hydrogen behaviour, the models for hydrogen transportation in a multicompartment configuration and hydrogen combustion have been incorporated in the code CONTRAN. The code also has models for the heat and mass transfer due to condensation and convection heat transfer. The structural heat transfer is modeled using the one-dimensional transient heat conduction equation. Extensive validation exercises have been carried out with the code CONTRAN. The code CONTRAN has been successfully used for the analysis of the benchmark test devised by Committee on the Safety of Nuclear Installations (CSNI) of the Organisation for Economic Cooperation and Development (OECD), to test the numerical accuracy and convergence errors in the computation of mass and energy conservation for the fluid and in the computation of heat conduction in structural walls. The salient features of the code CONTRAN, description of the CSNI benchmark test and a comparison of the CONTRAN predictions with the benchmark test results are presented and discussed in the paper. (author)

  7. Thermal transport in lithium ion batteries: An experimental investigation of interfaces and granular materials

    Science.gov (United States)

    Gaitonde, Aalok Jaisheela Uday

    simultaneously shears the sample while applying a temperature gradient across the particle bed, enabling thermal conductivity measurements using a radial equivalent of the conventional reference bar method. Results of this research, which includes characterization of thermal conductance across the rate limiting separator-case interface, will help improve the design and reliability of lithium ion batteries. Cells of larger dimension and capacity could also be achieved by the improved understanding of thermal transport across the microscopic electrode stack. Better analytic models of the thermal response of the batteries could be constructed, by taking into account the interfacial conductance and thermal conductivity of the electrodes measured in this work. This is of particular importance in the current circumstances, where accidents and safety issues related to lithium ion batteries are on the increase.

  8. Transport channel of secondary ion beam of experimental setup for selective laser ionization with gas cell GALS

    Science.gov (United States)

    Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.

    2017-07-01

    GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.

  9. Experimental and Theoretical Demonstration on the Transport Properties of Fused Ring Host Materials for Organic Light-Emitting Diodes

    Science.gov (United States)

    Tse, S. C.; So, S. K.; Yeung, M. Y.; Lo, C. F.; Wen, S. W.; Chen, C. H.

    2006-01-01

    The charge transport properties of three tertiary-butyl (t-Bu) substituted anthracene derivatives (ADN), critical blue host materials for organic light-emitting diodes (OLEDs), have been investigated experimentally and computationally. From time-of-flight (TOF) measurements, all ADN compounds exhibit ambipolar characters. The hole and electron mobilities are in the range (1--5)× 10-7 cm2 V-1 s-1 under an external applied field of about 1 MV cm-1. Un-substituted ADN has the highest carrier mobilities while heavily t-Bu substituted ADN has the least. The electron and hole conducting properties of are consistent with ab initio calculation, which indicates that the frontier orbitals are localized mainly on the anthracene moiety. t-Bu substitutions in ADN increase the hopping path lengths among the molecules and hence reduce the electron and hole mobilities. The results demonstrate that t-Bu substitution is an effective means of engineering the conductivity of organic charge transporter for OLED applications.

  10. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    Science.gov (United States)

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.

  11. Benchmark calculation of subchannel analysis codes

    International Nuclear Information System (INIS)

    1996-02-01

    In order to evaluate the analysis capabilities of various subchannel codes used in thermal-hydraulic design of light water reactors, benchmark calculations were performed. The selected benchmark problems and major findings obtained by the calculations were as follows: (1)As for single-phase flow mixing experiments between two channels, the calculated results of water temperature distribution along the flow direction were agreed with experimental results by tuning turbulent mixing coefficients properly. However, the effect of gap width observed in the experiments could not be predicted by the subchannel codes. (2)As for two-phase flow mixing experiments between two channels, in high water flow rate cases, the calculated distributions of air and water flows in each channel were well agreed with the experimental results. In low water flow cases, on the other hand, the air mixing rates were underestimated. (3)As for two-phase flow mixing experiments among multi-channels, the calculated mass velocities at channel exit under steady-state condition were agreed with experimental values within about 10%. However, the predictive errors of exit qualities were as high as 30%. (4)As for critical heat flux(CHF) experiments, two different results were obtained. A code indicated that the calculated CHF's using KfK or EPRI correlations were well agreed with the experimental results, while another code suggested that the CHF's were well predicted by using WSC-2 correlation or Weisman-Pei mechanistic model. (5)As for droplets entrainment and deposition experiments, it was indicated that the predictive capability was significantly increased by improving correlations. On the other hand, a remarkable discrepancy between codes was observed. That is, a code underestimated the droplet flow rate and overestimated the liquid film flow rate in high quality cases, while another code overestimated the droplet flow rate and underestimated the liquid film flow rate in low quality cases. (J.P.N.)

  12. Simplified two and three dimensional HTTR benchmark problems

    International Nuclear Information System (INIS)

    Zhang Zhan; Rahnema, Farzad; Zhang Dingkang; Pounders, Justin M.; Ougouag, Abderrafi M.

    2011-01-01

    To assess the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of whole core configurations. In this paper we have created two and three dimensional numerical benchmark problems typical of high temperature gas cooled prismatic cores. Additionally, a single cell and single block benchmark problems are also included. These problems were derived from the HTTR start-up experiment. Since the primary utility of the benchmark problems is in code-to-code verification, minor details regarding geometry and material specification of the original experiment have been simplified while retaining the heterogeneity and the major physics properties of the core from a neutronics viewpoint. A six-group material (macroscopic) cross section library has been generated for the benchmark problems using the lattice depletion code HELIOS. Using this library, Monte Carlo solutions are presented for three configurations (all-rods-in, partially-controlled and all-rods-out) for both the 2D and 3D problems. These solutions include the core eigenvalues, the block (assembly) averaged fission densities, local peaking factors, the absorption densities in the burnable poison and control rods, and pin fission density distribution for selected blocks. Also included are the solutions for the single cell and single block problems.

  13. Scheme for generating and transporting THz radiation to the X-ray experimental floor at LCLS baseline

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-08-15

    This paper describes a novel scheme for integrating a coherent THz source in the baseline of the LCLS facility. Any method relying on the spent electron beam downstream of the baseline undulator should provide a way of transporting the radiation up to the experimental floor.Herewe propose to use the dump area access maze. In this way the THz output must propagate with limited size at least for one hundred meters in a maze, following many turns, to reach the near experimental hall. The use of a standard, discrete, open beam-waveguide formed by periodic reflectors, that is a mirror guide, would lead to unacceptable size of the system. To avoid these problems, in this paper we propose an alternative approach based on periodically spaced metallic screens with holes. This quasi-optical transmission line is referred to as an iris line. We present complete calculations for the iris line using both analytical and numerical methods, which we find in good agreement. We present a design of a THz edge radiation source based on the use of an iris line. The proposed setup takes almost no cost nor time to be implemented at the LCLS baseline, and can be used at other facilities as well. The edge radiation source is limited in maximally achievable field strength at the sample. An extension based on the use of an undulator in the presence of the iris line, which is feasible at the LCLS energies, is proposed as a possible upgrade of the baseline THz source. (orig)

  14. Scheme for generating and transporting THz radiation to the X-ray experimental floor at LCLS baseline

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-08-01

    This paper describes a novel scheme for integrating a coherent THz source in the baseline of the LCLS facility. Any method relying on the spent electron beam downstream of the baseline undulator should provide a way of transporting the radiation up to the experimental floor.Herewe propose to use the dump area access maze. In this way the THz output must propagate with limited size at least for one hundred meters in a maze, following many turns, to reach the near experimental hall. The use of a standard, discrete, open beam-waveguide formed by periodic reflectors, that is a mirror guide, would lead to unacceptable size of the system. To avoid these problems, in this paper we propose an alternative approach based on periodically spaced metallic screens with holes. This quasi-optical transmission line is referred to as an iris line. We present complete calculations for the iris line using both analytical and numerical methods, which we find in good agreement. We present a design of a THz edge radiation source based on the use of an iris line. The proposed setup takes almost no cost nor time to be implemented at the LCLS baseline, and can be used at other facilities as well. The edge radiation source is limited in maximally achievable field strength at the sample. An extension based on the use of an undulator in the presence of the iris line, which is feasible at the LCLS energies, is proposed as a possible upgrade of the baseline THz source. (orig)

  15. ABM news and benchmarks

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2013-08-01

    We report on progress in the determination of the unpolarised nucleon PDFs within the ABM global fit framework. The data used in the ABM analysis are updated including the charm-production and the high-Q 2 neutral-current samples obtained at the HERA collider, as well as the LHC data on the differential Drell-Yan cross-sections. An updated set of the PDFs with improved experimental and theoretical accuracy at small x is presented. We find minimal impact of the t-quark production cross section measured at the Tevatron and the LHC on the gluon distribution and the value of the strong coupling constant α s determined from the ABM fit in the case of the t-quark running-mass definition. In particular, the value of α s (M Z )=0.1133±0.0008 is obtained from the variant of the ABM12 fit with the Tevatron and CMS t-quark production cross-section data included and the MS value of m t (m t )=162 GeV.

  16. Benchmarked Library Websites Comparative Study

    KAUST Repository

    Ramli, Rindra M.; Tyhurst, Janis

    2015-01-01

    This presentation provides an analysis of services provided by the benchmarked library websites. The exploratory study includes comparison of these websites against a list of criterion and presents a list of services that are most commonly deployed by the selected websites. In addition to that, the investigators proposed a list of services that could be provided via the KAUST library website.

  17. Prismatic Core Coupled Transient Benchmark

    International Nuclear Information System (INIS)

    Ortensi, J.; Pope, M.A.; Strydom, G.; Sen, R.S.; DeHart, M.D.; Gougar, H.D.; Ellis, C.; Baxter, A.; Seker, V.; Downar, T.J.; Vierow, K.; Ivanov, K.

    2011-01-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  18. Benchmarking organic mixed conductors for transistors

    KAUST Repository

    Inal, Sahika; Malliaras, George G.; Rivnay, Jonathan

    2017-01-01

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  19. Benchmarking organic mixed conductors for transistors

    KAUST Repository

    Inal, Sahika

    2017-11-20

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  20. International Criticality Safety Benchmark Evaluation Project (ICSBEP) - ICSBEP 2015 Handbook

    International Nuclear Information System (INIS)

    Bess, John D.

    2015-01-01

    evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 829 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be added to this document periodically. The document is organized in a manner that allows easy inclusion of additional evaluations as they become available. This handbook was prepared by a working group comprised of experienced criticality safety personnel from the United States, the United Kingdom, Japan, the Russian Federation, France, Hungary, Republic of Korea, Slovenia, Serbia, Kazakhstan, Israel, Spain, Brazil, Czech Republic, Poland, India, Canada, P.R. China, Sweden and Argentina

  1. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, John D.; Marshall, Margaret A.; Gorham, Mackenzie L.; Christensen, Joseph; Turnbull, James C.; Clark, Kim

    2011-01-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) (1) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) (2) were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  2. Radcalc for windows benchmark study: A comparison of software results with Rocky Flats hydrogen gas generation data

    International Nuclear Information System (INIS)

    MCFADDEN, J.G.

    1999-01-01

    Radcalc for Windows Version 2.01 is a user-friendly software program developed by Waste Management Federal Services, Inc., Northwest Operations for the U.S. Department of Energy (McFadden et al. 1998). It is used for transportation and packaging applications in the shipment of radioactive waste materials. Among its applications are the classification of waste per the US. Department of Transportation regulations, the calculation of decay heat and daughter products, and the calculation of the radiolytic production of hydrogen gas. The Radcalc program has been extensively tested and validated (Green et al. 1995, McFadden et al. 1998) by comparison of each Radcalc algorithm to hand calculations. An opportunity to benchmark Radcalc hydrogen gas generation calculations to experimental data arose when the Rocky Flats Environmental Technology Site (RFETS) Residue Stabilization Program collected hydrogen gas generation data to determine compliance with requirements for shipment of waste in the TRUPACT-II (Schierloh 1998). The residue/waste drums tested at RFETS contain contaminated, solid, inorganic materials in polyethylene bags. The contamination is predominantly due to plutonium and americium isotopes. The information provided by Schierloh (1 998) of RFETS includes decay heat, hydrogen gas generation rates, calculated G eff values, and waste material type, making the experimental data ideal for benchmarking Radcalc. The following sections discuss the RFETS data and the Radcalc cases modeled with the data. Results are tabulated and also provided graphically

  3. Benchmark models, planes lines and points for future SUSY searches at the LHC

    International Nuclear Information System (INIS)

    AbdusSalam, S.S.; Allanach, B.C.; Dreiner, H.K.

    2012-03-01

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  4. Benchmark models, planes lines and points for future SUSY searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    AbdusSalam, S.S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Allanach, B.C. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Dreiner, H.K. [Bonn Univ. (DE). Bethe Center for Theoretical Physics and Physikalisches Inst.] (and others)

    2012-03-15

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  5. Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC

    CERN Document Server

    AbdusSalam, S S; Dreiner, H K; Ellis, J; Ellwanger, U; Gunion, J; Heinemeyer, S; Krämer, M; Mangano, M L; Olive, K A; Rogerson, S; Roszkowski, L; Schlaffer, M; Weiglein, G

    2011-01-01

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  6. Recommendations for Benchmarking Preclinical Studies of Nanomedicines.

    Science.gov (United States)

    Dawidczyk, Charlene M; Russell, Luisa M; Searson, Peter C

    2015-10-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small-molecule drug therapy for cancer and to achieve both therapeutic and diagnostic functions in the same platform. Preclinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of preclinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of preclinical trials and propose a protocol for benchmarking that we recommend be included in in vivo preclinical studies of drug-delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. ©2015 American Association for Cancer Research.

  7. A large-scale benchmark of gene prioritization methods.

    Science.gov (United States)

    Guala, Dimitri; Sonnhammer, Erik L L

    2017-04-21

    In order to maximize the use of results from high-throughput experimental studies, e.g. GWAS, for identification and diagnostics of new disease-associated genes, it is important to have properly analyzed and benchmarked gene prioritization tools. While prospective benchmarks are underpowered to provide statistically significant results in their attempt to differentiate the performance of gene prioritization tools, a strategy for retrospective benchmarking has been missing, and new tools usually only provide internal validations. The Gene Ontology(GO) contains genes clustered around annotation terms. This intrinsic property of GO can be utilized in construction of robust benchmarks, objective to the problem domain. We demonstrate how this can be achieved for network-based gene prioritization tools, utilizing the FunCoup network. We use cross-validation and a set of appropriate performance measures to compare state-of-the-art gene prioritization algorithms: three based on network diffusion, NetRank and two implementations of Random Walk with Restart, and MaxLink that utilizes network neighborhood. Our benchmark suite provides a systematic and objective way to compare the multitude of available and future gene prioritization tools, enabling researchers to select the best gene prioritization tool for the task at hand, and helping to guide the development of more accurate methods.

  8. Decoys Selection in Benchmarking Datasets: Overview and Perspectives

    Science.gov (United States)

    Réau, Manon; Langenfeld, Florent; Zagury, Jean-François; Lagarde, Nathalie; Montes, Matthieu

    2018-01-01

    Virtual Screening (VS) is designed to prospectively help identifying potential hits, i.e., compounds capable of interacting with a given target and potentially modulate its activity, out of large compound collections. Among the variety of methodologies, it is crucial to select the protocol that is the most adapted to the query/target system under study and that yields the most reliable output. To this aim, the performance of VS methods is commonly evaluated and compared by computing their ability to retrieve active compounds in benchmarking datasets. The benchmarking datasets contain a subset of known active compounds together with a subset of decoys, i.e., assumed non-active molecules. The composition of both the active and the decoy compounds subsets is critical to limit the biases in the evaluation of the VS methods. In this review, we focus on the selection of decoy compounds that has considerably changed over the years, from randomly selected compounds to highly customized or experimentally validated negative compounds. We first outline the evolution of decoys selection in benchmarking databases as well as current benchmarking databases that tend to minimize the introduction of biases, and secondly, we propose recommendations for the selection and the design of benchmarking datasets. PMID:29416509

  9. Benchmarking computer platforms for lattice QCD applications

    International Nuclear Information System (INIS)

    Hasenbusch, M.; Jansen, K.; Pleiter, D.; Wegner, P.; Wettig, T.

    2003-09-01

    We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC. (orig.)

  10. Benchmarking computer platforms for lattice QCD applications

    International Nuclear Information System (INIS)

    Hasenbusch, M.; Jansen, K.; Pleiter, D.; Stueben, H.; Wegner, P.; Wettig, T.; Wittig, H.

    2004-01-01

    We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E; Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC

  11. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Directory of Open Access Journals (Sweden)

    Mimoun Maurice

    2011-03-01

    Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to

  12. Tourism Destination Benchmarking: Evaluation and Selection of the Benchmarking Partners

    Directory of Open Access Journals (Sweden)

    Luštický Martin

    2012-03-01

    Full Text Available Tourism development has an irreplaceable role in regional policy of almost all countries. This is due to its undeniable benefits for the local population with regards to the economic, social and environmental sphere. Tourist destinations compete for visitors at tourism market and subsequently get into a relatively sharp competitive struggle. The main goal of regional governments and destination management institutions is to succeed in this struggle by increasing the competitiveness of their destination. The quality of strategic planning and final strategies is a key factor of competitiveness. Even though the tourism sector is not the typical field where the benchmarking methods are widely used, such approaches could be successfully applied. The paper focuses on key phases of the benchmarking process which lies in the search for suitable referencing partners. The partners are consequently selected to meet general requirements to ensure the quality if strategies. Following from this, some specific characteristics are developed according to the SMART approach. The paper tests this procedure with an expert evaluation of eight selected regional tourism strategies of regions in the Czech Republic, Slovakia and Great Britain. In this way it validates the selected criteria in the frame of the international environment. Hence, it makes it possible to find strengths and weaknesses of selected strategies and at the same time facilitates the discovery of suitable benchmarking partners.

  13. BONFIRE: benchmarking computers and computer networks

    OpenAIRE

    Bouckaert, Stefan; Vanhie-Van Gerwen, Jono; Moerman, Ingrid; Phillips, Stephen; Wilander, Jerker

    2011-01-01

    The benchmarking concept is not new in the field of computing or computer networking. With “benchmarking tools”, one usually refers to a program or set of programs, used to evaluate the performance of a solution under certain reference conditions, relative to the performance of another solution. Since the 1970s, benchmarking techniques have been used to measure the performance of computers and computer networks. Benchmarking of applications and virtual machines in an Infrastructure-as-a-Servi...

  14. Benchmarking clinical photography services in the NHS.

    Science.gov (United States)

    Arbon, Giles

    2015-01-01

    Benchmarking is used in services across the National Health Service (NHS) using various benchmarking programs. Clinical photography services do not have a program in place and services have to rely on ad hoc surveys of other services. A trial benchmarking exercise was undertaken with 13 services in NHS Trusts. This highlights valuable data and comparisons that can be used to benchmark and improve services throughout the profession.

  15. The Benchmark experiment on stainless steel bulk shielding at the Frascati neutron generator

    International Nuclear Information System (INIS)

    Batistoni, P.; Angelone, M.; Martone, M.; Pillon, M.; Rado, V.

    1994-11-01

    In the framework of the European Technology Program for NET/ITER, ENEA (Italian Agency for New Technologies, Energy and Environment) - Frascati and CEA (Commissariat a L'Energie Atomique) - Cadarache collaborated on a Bulk Shield Benchmark Experiment using the 14-MeV Frascati Neutron Generator (FNG). The aim of the experiment was to obtain accurate experimental data for improving the nuclear database and methods used in shielding designs, through a rigorous analysis of the results. The experiment consisted of the irradiation of a stainless steel block by 14-MeV neutrons. The neutron reaction rates at different depths inside the block were measured by fission chambers and activation foils characterized by different energy response ranges. The experimental results have been compared with numerical results calculated using both S N and Monte Carlo transport codes and as transport cross section library the European Fusion File (EFF). In particular, the present report describes the experimental and numerical activity, including neutron measurements and Monte Carlo calculations, carried out by the ENEA Italian Agency for New Technologies, Energy and Environment) team

  16. How Benchmarking and Higher Education Came Together

    Science.gov (United States)

    Levy, Gary D.; Ronco, Sharron L.

    2012-01-01

    This chapter introduces the concept of benchmarking and how higher education institutions began to use benchmarking for a variety of purposes. Here, benchmarking is defined as a strategic and structured approach whereby an organization compares aspects of its processes and/or outcomes to those of another organization or set of organizations to…

  17. WWER-1000 Burnup Credit Benchmark (CB5)

    International Nuclear Information System (INIS)

    Manolova, M.A.

    2002-01-01

    In the paper the specification of WWER-1000 Burnup Credit Benchmark first phase (depletion calculations), given. The second phase - criticality calculations for the WWER-1000 fuel pin cell, will be given after the evaluation of the results, obtained at the first phase. The proposed benchmark is a continuation of the WWER benchmark activities in this field (Author)

  18. Benchmarking and Learning in Public Healthcare

    DEFF Research Database (Denmark)

    Buckmaster, Natalie; Mouritsen, Jan

    2017-01-01

    This research investigates the effects of learning-oriented benchmarking in public healthcare settings. Benchmarking is a widely adopted yet little explored accounting practice that is part of the paradigm of New Public Management. Extant studies are directed towards mandated coercive benchmarking...

  19. International handbook of evaluated criticality safety benchmark experiments

    International Nuclear Information System (INIS)

    2010-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency (OECD-NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span over 55,000 pages and contain 516 evaluations with benchmark specifications for 4,405 critical, near critical, or subcritical configurations, 24 criticality alarm placement / shielding configurations with multiple dose points for each, and 200 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 770 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be

  20. Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression

    International Nuclear Information System (INIS)

    Chilenski, M.A.; Greenwald, M.; Howard, N.T.; White, A.E.; Rice, J.E.; Walk, J.R.; Marzouk, Y.

    2015-01-01

    The need to fit smooth temperature and density profiles to discrete observations is ubiquitous in plasma physics, but the prevailing techniques for this have many shortcomings that cast doubt on the statistical validity of the results. This issue is amplified in the context of validation of gyrokinetic transport models (Holland et al 2009 Phys. Plasmas 16 052301), where the strong sensitivity of the code outputs to input gradients means that inadequacies in the profile fitting technique can easily lead to an incorrect assessment of the degree of agreement with experimental measurements. In order to rectify the shortcomings of standard approaches to profile fitting, we have applied Gaussian process regression (GPR), a powerful non-parametric regression technique, to analyse an Alcator C-Mod L-mode discharge used for past gyrokinetic validation work (Howard et al 2012 Nucl. Fusion 52 063002). We show that the GPR techniques can reproduce the previous results while delivering more statistically rigorous fits and uncertainty estimates for both the value and the gradient of plasma profiles with an improved level of automation. We also discuss how the use of GPR can allow for dramatic increases in the rate of convergence of uncertainty propagation for any code that takes experimental profiles as inputs. The new GPR techniques for profile fitting and uncertainty propagation are quite useful and general, and we describe the steps to implementation in detail in this paper. These techniques have the potential to substantially improve the quality of uncertainty estimates on profile fits and the rate of convergence of uncertainty propagation, making them of great interest for wider use in fusion experiments and modelling efforts. (paper)