WorldWideScience

Sample records for experimental technology exchange

  1. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    Energy Technology Data Exchange (ETDEWEB)

    Conger, R.L. [Pacific Northwest Lab., Richland, WA (United States); Lee, V.E.; Buel, L.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  2. Exchange asymmetry in experimental settings

    Science.gov (United States)

    Thomas C. Brown; Mark D. Morrison; Jacob A. Benfield; Gretchen Nurse Rainbolt; Paul A. Bell

    2015-01-01

    We review past trading experiments and present 11 new experiments designed to show how the trading rate responds to alterations of the experimental procedure. In agreement with earlier studies, results show that if the trade decision is converted to one resembling a choice between goods the exchange asymmetry disappears, but otherwise the asymmetry is...

  3. Ion exchange technology assessment report

    International Nuclear Information System (INIS)

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team

  4. Experimental test of exchange degeneracy in hypercharge exchange reactions

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1978-10-01

    Two pairs of line-reversed reactions π + P → K + Σ + , K - p → π - Σ + and π + p → K + Y* + (1385), K - p → π - Y* + (1385) provide an experimental test of exchange degeneracy in hypercharge exchange reactions. From their study it is concluded that in contrast to the lower energy data, the 11.5 results for the two pairs of reactions are consistent with exchange degeneracy predictions for both helicity-flip and nonflip amplitudes. The Y(1385) decay angular distributions indicate that the quark model and Stodolsky--Sakurai predictions are in agreement with the main features of the data. However, small violations are observed at small momentum transfer. While the Y(1385) vertex is helicity-flip dominated, the nonvanishing of T/sub 3/2 - 1/2/ and T/sub -3/2 1/2/ suggests some finite helicity nonflip contribution in the forward direction. 23 references

  5. Program Integration for International Technology Exchange

    International Nuclear Information System (INIS)

    Rea, J.L.

    1993-01-01

    Sandia National Laboratories (SNL), Albuquerque, New Mexico, supports the International Technology Exchange Division (ITED) through the integration of all international activities conducted within the DOE's Office of Environmental Management (EM)

  6. Post irradiation examination technology exchange

    International Nuclear Information System (INIS)

    Sozawa, Shizuo; Ito, Masayasu; Taguchi, Taketoshi; Nakagawa, Tetsuya; Lee, Hyung-Kwon

    2012-01-01

    Under the KAERI and JAEA agreement, in a part of the program 18 (Post Irradiation Examination (PIE) and Evaluation Technique of Irradiated Materials), an eddy current test was proposed as a round robin test, and it has been being progressed in both organizations in order to enhance the post irradiation examination technology. Up to now, several data are obtained by both PIE facilities. In this paper, the round robin test program is shown, and also shown obtained data with discussion from applicability as a nondestructive test in the hot cell. (author)

  7. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Experimental evaluation of vibrations in heat exchangers

    International Nuclear Information System (INIS)

    Martin Ghiselli, A.

    1997-01-01

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author) [es

  9. International Technology Exchange Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. International Technology Exchange Division: 1993 Annual report

    International Nuclear Information System (INIS)

    1993-01-01

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES's goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM's policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM's training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  12. Experimental testing of exchangeable cutting inserts cutting ability

    OpenAIRE

    Čep, Robert; Janásek, Adam; Čepová, Lenka; Petrů, Jana; Hlavatý, Ivo; Car, Zlatan; Hatala, Michal

    2013-01-01

    The article deals with experimental testing of the cutting ability of exchangeable cutting inserts. Eleven types of exchangeable cutting inserts from five different manufacturers were tested. The tested cutting inserts were of the same shape and were different especially in material and coating types. The main aim was both to select a suitable test for determination of the cutting ability of exchangeable cutting inserts and to design such testing procedure that could make it possible...

  13. Experimental studies of rotating exchange flow

    Science.gov (United States)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also people/sd103/papers/1988/Thesis_Dalziel.pdf>] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu1 a steady, two-layer flow was observed that persisted across the channel at the narrows

  14. Technological study of experimental proton exchange polymer membrane fuel cells; Estudo tecnologico de celulas a combustivel experimentais a membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Thais Aranha de Barros

    2004-07-01

    Experimental studies to achieve an optimized behavior of a unit PEM-fuel cell with an active area of 25cm{sup 2} were carried out. Polarization curves, surface response methodology and regression methodology were used for the analysis. The different methodologies identified the interactions between the parameters that were studied. These parameters were, humidifying temperature, fuel cell operating temperature and the flows of hydrogen and oxygen. MEAs were produced by the spray and hot pressing hybrid method, developed at IPEN. The studies were done with these MEAs and equivalent commercial ones. The MEAs producing method used induced an important variation on the quantity of platinum in the electrodes. This fact has showed to have a great influence in the results. The optimized values were: oxygen flow from 30 to 35% of consume (70 to 65% of excess), fuel cell operating temperature from 60 to 62 deg C and 0.41 mg of platinum in the electrodes. The hydrogen flows and the humidifying temperature have not showed a major influence in the fuel cell behavior, in the studied variable range. (author)

  15. An experimental set-up to test heatmoisture exchangers

    NARCIS (Netherlands)

    N. Ünal (N.); J.C. Pompe (Jan); W.P. Holland (Wim); I. Gultuna; P.E.M. Huygen; K. Jabaaij (K.); C. Ince (Can); B. Saygin (B.); H.A. Bruining (Hajo)

    1995-01-01

    textabstractObjectives: The purpose of this study was to build an experimental set-up to assess continuously the humidification, heating and resistance properties of heat-moisture exchangers (HMEs) under clinical conditions. Design: The experimental set-up consists of a patient model, measurement

  16. Network topology of an experimental futures exchange

    Science.gov (United States)

    Wang, S. C.; Tseng, J. J.; Tai, C. C.; Lai, K. H.; Wu, W. S.; Chen, S. H.; Li, S. P.

    2008-03-01

    Many systems of different nature exhibit scale free behaviors. Economic systems with power law distribution in the wealth are one of the examples. To better understand the working behind the complexity, we undertook an experiment recording the interactions between market participants. A Web server was setup to administer the exchange of futures contracts whose liquidation prices were coupled to event outcomes. After free registration, participants started trading to compete for the money prizes upon maturity of the futures contracts at the end of the experiment. The evolving `cash' flow network was reconstructed from the transactions between players. We show that the network topology is hierarchical, disassortative and small-world with a power law exponent of 1.02±0.09 in the degree distribution after an exponential decay correction. The small-world property emerged early in the experiment while the number of participants was still small. We also show power law-like distributions of the net incomes and inter-transaction time intervals. Big winners and losers are associated with high degree, high betweenness centrality, low clustering coefficient and low degree-correlation. We identify communities in the network as groups of the like-minded. The distribution of the community sizes is shown to be power-law distributed with an exponent of 1.19±0.16.

  17. Overview of technologies to reprocess ion-exchange resins

    International Nuclear Information System (INIS)

    Gavrish, V.M.; Chernikova, N.P.; Ivanets, V.G.

    2010-01-01

    The article deals with overview of technologies for reprocessing of ion-exchange resins and determining the most optimal solutions for Ukraine. The technologies for cementations, thermal reprocessing, bituminization and deep decontamination are considered.

  18. Horizontal Parallel Pipe Ground Heat Exchanger : Analytical Conception and Experimental Study

    International Nuclear Information System (INIS)

    Naili, Nabiha; Jemli, Ramzi; Farhat, Abdel Hamid; Ben Nasrallah, Sassi

    2009-01-01

    Due to limited amount of natural resources exploited for heating, and in order to reduce the environmental impact, people should strive to use renewable energy resources. Ambient low-grade energy may be upgraded by the ground heat exchanger (GH E), which exploits the ground thermal inertia for buildings heating and cooling. In this study, analytical performance and experiments analysis of a horizontal ground heat exchanger have been performed. The analytical study, relates to the dimensioning of the heat exchanger, shows that the heat exchanger characteristics are very important for the determination of heat extracted from ground. The experimental results were obtained during the period 30 November to 10 December 2007, in the heating season of the greenhouses. Measurements show that the ground temperature under a certain depth remains relatively constant. To exploit effectively the heat capacity of the ground, a horizontal heat exchanger system has to be constructed and tested in the Center of Research and Technology of Energy, in Tunisia

  19. Experimental investigation of a manifold heat-pipe heat exchanger

    International Nuclear Information System (INIS)

    Konev, S.V.; Wang Tszin' Lyan'; D'yakov, I.I.

    1995-01-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered

  20. Experimental evaluation of sodium to air heat exchanger performance

    International Nuclear Information System (INIS)

    Vinod, V.; Pathak, S.P.; Paunikar, V.D.; Suresh Kumar, V.A.; Noushad, I.B.; Rajan, K.K.

    2013-01-01

    Highlights: ► Sodium to air heat exchangers are used to remove the decay heat produced in fast breeder reactor after shutdown. ► Finned tube sodium to air heat exchanger with sodium on tube side was tested for its heat transfer performance. ► A one dimensional computer code was validated by the experimental data obtained. ► Non uniform sodium and air flow distribution was present in the heat exchanger. - Abstract: Sodium to air heat exchangers (AHXs) is used in Prototype Fast Breeder Reactor (PFBR) circuits to reject the decay heat produced by the radioactive decay of the fission products after reactor shutdown, to the atmospheric air. The heat removal through sodium to air heat exchanger maintains the temperature of reactor components in the pool within safe limits in case of non availability of normal heat transport path. The performance of sodium to air heat exchanger is very critical to ensure high reliability of the decay heat removal systems in sodium cooled fast breeder reactors. Hence experimental evaluation of the adequacy of the heat transfer capability gives confidence to the designers. A finned tube cross flow sodium to air heat exchanger of 2 MW heat transfer capacity with sodium on tube side and air on shell side was tested in the Steam Generator Test Facility at Indira Gandhi Center for Atomic Research, India. Heat transfer experiments were carried out with forced circulation of sodium and air, which confirmed the adequacy of heat removal capacity of the heat exchanger. The testing showed that 2.34 MW of heat power is transferred from sodium to air at nominal flow and temperature conditions. A one dimensional computer code developed for design and analysis of the sodium to air heat exchanger was validated by the experimental data obtained. An equivalent Nusselt number, Nu eq is derived by approximating that the resistance of heat transfer from sodium to air is contributed only by the film resistance of air. The variation of Nu eq with respect

  1. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Sommer, A.

    1987-07-01

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m 2 . The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  2. Experimental study of particulate fouling onto heat exchanger elements

    International Nuclear Information System (INIS)

    Chandrasa

    1994-01-01

    An experimental study of particulate fouling onto tubular heat exchanger surfaces was carried out using sodium sulfate particles. An experimental apparatus equipped with an aerosol generator has been used to examine the deposition of small particles under controlled conditions. Two sets of experiments were performed. Firstly, the deposition against time of solid particles onto single heat exchanger tube in cross-flow was studied. The effects of a number variables such as particle size, gas velocity and temperature on the deposition was analysed. Secondly, the deposition for the aerosol particles as they passed through a bank of finned tubes was examined. The deposition patterns on various tubes depended on local conditions (velocity and temperature) within the bank. It was found that the fouling resistance increases as aerosol flow rate decreases. The smaller particles showed higher fouling resistance. (author) [fr

  3. Implications of WWW technologies for exchanging medical records

    Directory of Open Access Journals (Sweden)

    Maurice Dixon

    1999-09-01

    Full Text Available This article addresses some of the implications for medical record exchange of very recent developments in technology and tools that support the World Wide Web. It argues that XML (Extensible Mark-up Language is a very good enabling technology for medical record exchange. XML provides a much cheaper way of executing the exchange of medical information that circumvents the need for proprietary software. Use of XML can also simplify solutions to the problems associated with coping with the evolution of medical systems in time. However XML on its own does not resolve all the semantic heterogeneities.

  4. Experimental and numerical study of a printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Shi, Shanbin; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • A dynamic model is developed for transient analysis of the straight-channel PCHE. • Transient scenarios of the straight-channel PCHE subject to helium temperature and mass flow rate variations are numerically investigated. • Steady-state temperature distribution inside the straight-channel PCHE is obtained in calculation. • Experiments are conducted to study the dynamic behavior of the straight-channel PCHE. - Abstract: Printed circuit heat exchangers (PCHEs) are promising to be employed in very-high-temperature gas-cooled reactors (VHTRs) due to their high robustness for high-temperature, high-pressure applications and high compactness. PCHEs typically serve as intermediate heat exchangers (IHXs) that isolate the secondary loop from the reactor’s primary system and hence must be sufficiently robust to maintain the system integrity during normal and off-normal conditions. In addition, the performance of the PCHE-type IHX could considerably affect the nuclear power plant overall operation since any transients on the secondary side would be propagated back to the reactor’s primary coolant system via the IHX. It is therefore imperative to understand how the PCHE would dynamically respond to a variety of transients. In the current study, experiments were first conducted to examine the steady-state thermal performance of a reduced-scale straight-channel PCHE. A dynamic model benchmarked in a previous study was then used to predict the steady-state and transient behavior of the PCHE. The steady-state temperature profiles of the working fluids on both the hot and cold sides and in the solid plates of the heat exchanger were obtained, which served as the initial condition for the transient simulations. The detailed dynamic response of the straight-channel PCHE, subject to inlet temperature variations, helium mass flow variations, and combinations of the two, was simulated and analyzed. In addition, two sets of transient tests, one for helium inlet

  5. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  6. Compact heat exchanger technologies for the HTRs recuperator application

    International Nuclear Information System (INIS)

    Thonon, B.; Breuil, E.

    2001-01-01

    Modern HTR nuclear power plants which are now under development (projects GT-MHR, PBMR) are based on the direct cycle concept. This concept leads to a more important efficiency compared to the steam cycle but requires the use of high performance components such as an helium/helium heat exchanger called recuperator to guarantee the cycle efficiency. Using this concept, a net plant efficiency of around 50% can be achieved in the case of an electricity generating plant. As geometric constraints are particularly important for such a gas reactor to limit the size of the primary vessels, compact heat exchangers operating at high pressure and high temperature are attractive potential solutions for the recuperator application. In this frame, Framatome and CEA have reviewed the various technologies of compact heat exchangers used in industry. The first part of the paper will give a short description of the heat exchangers technologies and their ranges of application. In a second part, a selection of potential compact heat exchangers technologies are proposed for the recuperator application. This selection will be based upon their capabilities to cope with the operating conditions parameters (pressure, temperature, flow rate) and with other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. (author)

  7. Safety technology for air-cooled heat exchangers

    International Nuclear Information System (INIS)

    Kawai, Masafumi; Miyamoto, Hitoshi

    2011-01-01

    The air-cooled heat exchanger is a device that enables a large amount of heat exchange (cooling) by utilizing the atmosphere as a stable and infinite heat sink. It is widely used in general industrial plants, and nowadays it is also utilized in nuclear facilities. This type of exchanger is advantageous in that it can be constructed in any location without having to be near the sea or rivers. It can be operated safely if a natural disaster, such as a tsunami or flood, occurs, thus contributing to the safety of the mother facility. IHI's air-cooled heat exchangers are designed to ensure safe operation and withstand a large earthquake or severe atmospheric conditions. This report describes the technologies used to establish these safety features and their performance. (author)

  8. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  9. Experimental results for an experimental condensation heat exchanger with a spiral minichanel tube. Comparison to numerical imulations

    Directory of Open Access Journals (Sweden)

    Hrubý J.

    2013-04-01

    Full Text Available The paper describes new results for an experimental heat exchanger equipped with a single corrugated capillary tube, basic information about the measurements and the experimental setup. Some of the results were compared with numerical simulations.

  10. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers - 15563

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Millan, P.

    2015-01-01

    In the framework of the CEA program to develop an industrial prototype of sodium-cooled fast reactor named (ASTRID), the present work aims at proposing an innovative compact heat exchanger technology, to provide solid technological basis for the utilization of a Brayton power conversion system. This allows avoiding the energetic sodium-water interaction that could potentially occur if a traditional Rankine cycle was used. The design of the gas-side (which determines the heat transfer resistance of the heat exchanger) of the sodium-gas heat exchanger has been the object of the present work. Compact technologies are necessary for the present application because of the low heat transfer capacity of the gas foreseen, i.e. nitrogen. The basic idea of this work is to design a channel were the fluid flow is as much as 3-dimensional as possible. In particular the proposed channel can be thought as the result of the superposition of 2 single PCHE wavy channels in phase opposition. The innovative channel geometry has to be studied numerically and experimentally to demonstrate its industrial interest and the final compact gain. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. It has been demonstrated that the ASST model can provide a valuable alternative to more complex models. Given the innovation of the proposed geometry, no test case has been found in the literature to be fully applicable to the present study. So, 3 experimental facilities have been used to acquire an extensive aerodynamic database. The Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV) and VHEGAS facilities have been built to investigate the innovative channel flow and heat transfer characteristics. The ASST model, used with a SGDH turbulent heat flux model, has been validate against the acquired thermal-hydraulic database

  11. The experimental and technological developments reactor

    International Nuclear Information System (INIS)

    Carbonnier, J.L.

    2003-01-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  12. The coordination value of monetary exchange: Experimental evidence

    OpenAIRE

    Camera, Gabriele; Casari, Marco

    2011-01-01

    A new behavioral foundation is uncovered for why money promotes impersonal exchange. In an experiment, subjects could cooperate by intertemporally exchanging goods with anonymous opponents met at random. Indefinite repetition supported multiple equilibria, from full defection to the efficient outcome. Introducing the possibility to hold and exchange intrinsically worthless tickets affected outcomes and cooperation patterns. Tickets resembled fiat money, which emerged as a tool for equilibrium...

  13. An experimental investigation on air-side performances of finned tube heat exchangers for indirect air-cooling tower

    Directory of Open Access Journals (Sweden)

    Du Xueping

    2014-01-01

    Full Text Available A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90°, 60 °, 45°, and 30° are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90° has the worst performance while 45° and 30° has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60°, while the best performance occurred at 45° and 90° at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.

  14. ORGANIZATIONAL, LEGAL AND TECHNOLOGICAL ASPECTS OF HEALTH INFORMATION EXCHANGE

    Directory of Open Access Journals (Sweden)

    N. A. Karasev

    2017-01-01

    Full Text Available The article discusses organizational and legal aspects of electronic health information exchange in developed countries, particularly, introduction of electronic medical records in the United States and Europe, as well as topical issues related to standardization of information technologies in health care. We briefly describe the most popular standards used in e-medicine, such as Digital Imaging and Communications in Medicine (DICOM, openEHR and HL7. The questions of syntactic and semantic interoperability in the exchange of electronic medical records and some aspects of the digital signature use are also considered. We suggest mechanisms for implementation of electronic document management and sharing of digital medical information, as one of the most important directions of information technologies in health care. It is noted that today, the main limiting factor in providing the digital exchange of health information in Russian Federation is unresolved legal issues, i.e. the absence of a legal framework of electronic medical records share. At the same time, the level of IT development in our country is quite sufficient to meet current challenges. It is stated that, despite the unresolved number of problems (for example, completeness of medical data on a patient, given to relatives in critical situations, the adoption of a single electronic card is able to bring medical care to a new level, especially in emergency and urgent medicine.

  15. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  16. Numerical calibration and experimental validation of a PCM-Air heat exchanger model

    International Nuclear Information System (INIS)

    Stathopoulos, N.; El Mankibi, M.; Santamouris, Mattheos

    2017-01-01

    Highlights: • Development of a PCM-Air heat exchanger experimental unit and its numerical model. • Differential Scanning Calorimetry for PCM properties. • Ineptitude of DSC obtained heat capacity curves. • Creation of adequate heat capacity curves depending on heat transfer rates. • Confrontation of numerical and experimental results and validation of the model. - Abstract: Ambitious goals have been set at international, European and French level for energy consumption and greenhouse gas emissions decrease of the building sector. Achieving them requires renewable energy integration, a technology that presents however an important drawback: intermittent energy production. In response, thermal energy storage (TES) technology applications have been developed in order to correlate energy production and consumption of the building. Phase Change Materials (PCMs) have been widely used in TES applications as they offer a high storage density and adequate phase change temperature range. It is important to accurately know the thermophysical properties of the PCM, both for experimental (system design) and numerical (correct prediction) purposes. In this paper, the fabrication of a PCM – Air experimental prototype is presented at first, along with the development of a numerical model simulating the downstream temperature evolution of the heat exchanger. Particular focus is given to the calibration method and the validation of the model using experimental characterization results. Differential scanning calorimetry (DSC) is used to define the thermal properties of the PCM. Initial numerical results are underestimated compared to experimental ones. Various factors were investigated, pointing to the ineptitude of the heat capacity parameter, as DSC results depend on heating/cooling rates. Adequate heat capacity curves were empirically determined, depending on heat transfer rates and based on DSC results and experimental observations. The results of the proposed model

  17. Experimental and Numerical Comparison of Two Borehole Heat Exchangers

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs

    2014-01-01

    This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S.......This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S....

  18. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  19. HEALTH INFORMATION TECHNOLOGY IN EXCHANGE OF HEALTH INFORMATION

    Directory of Open Access Journals (Sweden)

    Jordan Deliversky

    2016-06-01

    Full Text Available Health information technology involves the exchange of health information in an electronic environment. Data protection is comprised of many elements, including where the data resides, how it is used, and who has access to it. Individually identifiable health information should be protected with reasonable administrative, technical, and physical safeguards to ensure its confidentiality, integrity, and availability and to prevent unauthorized access, use, or disclosure. Health records are among the most sensitive records available containing information concerning an individual. The unauthorized disclosure of a medical condition or diagnosis could negatively impact an individual’s personal and professional life.

  20. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Directory of Open Access Journals (Sweden)

    J. C. T. Thangaraj

    2012-11-01

    Full Text Available One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  1. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Science.gov (United States)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  2. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers

    International Nuclear Information System (INIS)

    Vitillo, Francesco

    2014-01-01

    In the framework of CEA R and D program to develop an industrial prototype of Sodium cooled Fast Reactor, the present thesis aimed to propose an innovative compact heat exchanger technology. In order to increase the global compactness the basic idea of this work is to design a channel were the fluid flow is as much three-dimensional as possible. In particular the channel can be thought as the result of the superposition of two undulated channels in phase opposition. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. To validate the numerical model, two experimental sections have been used to acquire an extensive aerodynamic database, whereas, to validate the thermal modeling approach, the VHEGAS facility has been built. Once having validated the ASST model, correlations for friction factor and Nusselt number for various geometries could be obtained. Finally, it has been shown that the innovative channel is the most compact one among the most important existing industrial compact heat exchanger technologies. (author) [fr

  3. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  4. Experimental determination of a flow model in a plate exchanger

    International Nuclear Information System (INIS)

    Fontaine, J.; Lannoy, F.

    1975-01-01

    Starting from the conductivimetric measurement of the response of a plate exchanger to a stepped input signal, two techniques (i.e. one direct and one indirect) for the determination of the coefficients of the mathematical model describing the behaviour of the exchanger are compared. The results show that these coefficients can be obtained with a sufficient accuracy by the direct reading of two parameters of the response curve. Variation of these coefficients with rated conditions show, moreover that the phenomenon is not linear and that these coefficients must be considered as variable parameters [fr

  5. Variability of hyporheic exchange in an experimental gravel bed

    NARCIS (Netherlands)

    Perk, M. van der; Petticrew, E.L.; Owens, P.N.

    2011-01-01

    A series of tracer experiments in a large outdoor flume were conducted to examine the variability of hyporheic exchange in gravel bed sediments. An 18 m long section of a 2 m wide flume was filled with a 30 cm thick gravel layer with a porosity of 0.39. The gravel of the 17 cm top layer was

  6. State of technology of direct contact heat exchanging

    Energy Technology Data Exchange (ETDEWEB)

    Vallario, R.W.; DeBellis, D.E.

    1984-05-01

    Specific objectives of this study were to assess the state of technology development and to identify and evaluate the constraints to wider use of direct contact heat exchanger (DCHE) technology in the U.S. The scope of this study is relatively broad; it includes many types of generic systems and end-use applications, both current and future. Domestic and foreign experience with DCHE technology are compared, although the primary focus is on domestic experience. Twenty-two distinct applications of DCHE technology were identified in this study and are examined in this report. The general format is to describe each system, explore its potential applications, discuss current and past research activities and identify major implementation barriers. Finally, as a result of discussions with principal users of DCHE systems and with other knowledgeable sources, generic and specific R and D needs to overcome specific implementation barriers have been identified. The following list of DCHE systems/concepts has been classified into four major end-uses; there is also a category for specialized (other) applications.

  7. People's Republic of China in the International Technology Exchange

    Directory of Open Access Journals (Sweden)

    Alexander Igorevich Salitskiy

    2015-12-01

    Full Text Available The authors investigate the current state of the S&T in China in the context of its historical development and national policy in the sphere. The evaluation of the Chinese scientific and technological potential is based on some indicators of foreign trade as well as patent activity - in international comparisons. The trends in Chinese S&T sector and its role in the international technology transfers are viewed in the context of internationalization of the global economy. Today’s globally recognized achievements of China in trade in technology-intensive goods and services are based on a long history of rational state policy in acquisition and diffusion of foreign technology and expertise. This policy have resulted in the build-up of S&T system - which is already remarkably productive and keeps growing. One important and specific feature of China’s role in international exchange of high-tech goods and knowledge-intensive services is a growing self-capacity, and a lowering dependence on foreign sources (in relative terms.

  8. Pre-design stage of the intermediate heat exchanger for experimental fast reactor

    International Nuclear Information System (INIS)

    Luz, M.; Borges, E.M.; Braz Filho, F.A.; Hirdes, V.R.

    1986-09-01

    This report presents the outlines of a thermal-hydraulic calculation procedure for the pre-design stage of the Intermediate Heat Exchanger for a 5 MW Experimental Fast Reactor (EFR), which can be used in other similar projects, at the same stage of evolution. Heat transfer and heat loss computations for the preliminary design of the heat exchanger are presented. (author) [pt

  9. Experimental study of energy exchanges between two coupled granular gases

    OpenAIRE

    Chastaing , J.-Y; Géminard , J.-C; Naert , A

    2016-01-01

    International audience; We report on the energy exchanges between two granular gases of different densities coupled electrome-chanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the ene...

  10. [No exchange of information without technology : modern infrastructure in radiology].

    Science.gov (United States)

    Hupperts, H; Hermann, K-G A

    2014-01-01

    Modern radiology cannot accomplish the daily numbers of examinations without supportive technology. Even though technology seems to be becoming increasingly more indispensable, business continuity should be ensured at any time and if necessary even with a limited technical infrastructure by business continuity management. An efficient information security management system forms the basis. The early radiology information systems were islands of information processing. A modern radiology department must be able to be modularly integrated into an informational network of a bigger organization. The secondary use of stored data for clinical decision-making support poses new challenges for the integrity of the data or systems because medical knowledge is displayed and provided in a context of treatment. In terms of imaging the creation and distribution radiology services work in a fully digital manner which is often different for radiology reports. Legally secure electronic diagnostic reports require a complex technical infrastructure; therefore, diagnostic findings still need to be filed as a paper document. The internal exchange and an improved dose management can be simplified by systems which continuously and automatically record the doses and thus provide the possibility of permanent analysis and reporting. Communication between patient and radiologist will gain ongoing importance. Intelligent use of technology will convey this to the radiologist and it will facilitate the understanding of the information by the patient.

  11. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  12. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi; Kagoshima, Mayumi

    2000-01-01

    The behavior of radioactive iodide and chloride ions through an anion exchange paper membrane to remove 125 I from radioactive experimental waste has been studied with nonequilibrium thermodynamic analyses. Anion exchange paper membrane was found to be electroconductively more permeable to iodide ion than to chloride ion. The iodide ion bound more strongly to the anion exchange site within a membrane phase than the chloride ion by more than twice. The results suggested that an anion exchange paper membrane was appropriate for the filtration removal system

  13. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    Science.gov (United States)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  14. Developing maintenance technologies for FBR's heat exchanger units by advanced laser processing

    International Nuclear Information System (INIS)

    Nishimura, Akihiko; Shimada, Yukihiro

    2011-01-01

    Laser processing technologies were developed for the purpose of maintenance of FBR's heat exchanger units. Ultrashort laser processing fabricated fiber Bragg grating sensor for seismic monitoring. Fiber laser welding with a newly developed robot system repair cracks on inner wall of heat exchanger tubes. Safety operation of the heat exchanger units will be improved by the advanced laser processing technologies. These technologies are expected to be applied to the maintenance for the next generation FBRs. (author)

  15. Experimental Evaluation of the Training Structure of the Picture Exchange Communication System (PECS)

    Science.gov (United States)

    Cummings, Anne R.; Carr, James E.; LeBlanc, Linda A.

    2012-01-01

    The Picture Exchange Communication System (PECS) is a picture-based alternative communication method that is widely accepted and utilized with individuals with disabilities. Although prior studies have examined the clinical efficacy of PECS, none have experimentally evaluated its manualized training structure. We experimentally evaluated the…

  16. An experimental set-up to test heat-moisture exchangers

    NARCIS (Netherlands)

    Unal, N.; Pompe, J. C.; Holland, W. P.; Gültuna, I.; Huygen, P. E.; Jabaaij, K.; Ince, C.; Saygin, B.; Bruining, H. A.

    1995-01-01

    The purpose of this study was to build an experimental set-up to assess continuously the humidification, heating and resistance properties of heat-moisture exchangers (HMEs) under clinical conditions. The experimental set-up consists of a patient model, measurement systems and a ventilator. Surgical

  17. An Exponential Increase in Regional Health Information Exchange With Collaborative Policies and Technologies.

    Science.gov (United States)

    Downing, N Lance; Lane, Steven; Eisenberg, Mathew; Sharp, Christopher; Palma, Jonathan; Longhurst, Christopher

    2015-01-01

    In the United States, the ability to securely exchange health information between organization has been limited by technical interoperability, patient identity matching, and variable institutional policies. Here, we examine the regional experience in a national health information exchange network by examining clinical data sharing between eleven Northern California organizations using the same health information exchange (HIE) platform between 2013-2014. We identify key policies and technologies that have led to a dramatic increase in health information exchange.

  18. Analytical and experimental analysis of a low-pressure heat exchanger suitable for passive ventilation

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2011-01-01

    AbstractA core element in sustainable ventilation systems is the heat recovery system. Conventional heat recovery systems have a high pressure drop that acts as blockage to naturally driven airflow. The heat recovery system we propose here consists of two separated air-to-liquid heat exchangers...... interconnected by a liquid loop powered by a pump ideal as a component in a heat recovery system for passive ventilation systems. This paper describes the analytical framework and the experimental development of one exchanger in the liquid-loop. The exchanger was constructed from the 8mm plastic tubing...... that is commonly used in water-based floor-heating systems. The pressure loss and temperature exchange efficiency was measured. For a design airflow rate of 560L/s, the pressure loss was 0.37Pa and the efficiency was 75.6%. The experimental results agree well with the literature or numerical fluid calculations...

  19. THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1996-03-01

    Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.

  20. Experimental study of heat transfer in a heat exchanger with rectangular channels

    International Nuclear Information System (INIS)

    Hammami, Mahmoud; Ben Said, Akrem; Ben Maad, Rejeb; Rebay, Mourad

    2009-01-01

    This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m 2 , the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in q uinconce r ectangular mini-channel heat exchanger, with a hydraulic diameter D h = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int

  1. Cables, Sharks and Servers: Technology and the Geography of the Foreign Exchange Market

    OpenAIRE

    Eichengreen, Barry; Lafarguette, Romain; Mehl, Arnaud

    2016-01-01

    We analyze the impact of technology on production and trade in services, focusing on the foreign exchange market. We identify exogenous technological changes by the connection of countries to submarine fiber-optic cables used for electronic trading, but which were not laid for purposes related to the foreign exchange market. We estimate the impact of cable connections on the share of offshore foreign exchange transactions. Cable connections between local markets and matching servers in the ma...

  2. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  3. A thermoelectric power generating heat exchanger: Part I – Experimental realization

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Sarhadi, Ali; Pryds, Nini

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal...

  4. Size doesn't matter!: gift exchange in experimental labor markets

    NARCIS (Netherlands)

    Brandts, J.; Gërxhani, K.; Schram, A.; Ygosse-Battisti, J.

    2009-01-01

    We study how the number of traders affects the interaction between a centralized exchange and bilateral negotiations in an experimental labor market with excess supply and incomplete contracts. In bilateral negotiations firms obtain information about employees’ performance in previous jobs. Though

  5. NUMERICAL AND EXPERIMENTAL ANALYSIS OF UNSTEADY WORK OF U-SHAPE BOREHOLE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S. A. Filatau

    2014-01-01

    Full Text Available Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.

  6. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers

    International Nuclear Information System (INIS)

    Araiz, M.; Martínez, A.; Astrain, D.; Aranguren, P.

    2017-01-01

    Highlights: • Thermosyphon with phase change heat exchanger computational model. • Construction and experimentation of a prototype. • ±9% of maximum deviation from experimental values of the main outputs. • Influence of the auxiliary equipment on the net power generation. - Abstract: An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (because fans or pumps are not required); and the fact that these systems are wickless. A computational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the computational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [−8.09; 7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.

  7. Ion exchange technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1986-02-01

    The application of ion exchange has been expanded to various parts of the nuclear fuel cycle. Major applications are in uranium production facilities, nuclear power plants, spent fuel reprocessing and waste treatment. Furthermore, application to isotope separation has been under development. The appendix contains a compilation of resin data. A separate abstract was prepared for each of the 6 chapters in this technical document

  8. Mechanisms for international technology exchange, privatization, and transfer

    International Nuclear Information System (INIS)

    Mayfield, T.

    1993-01-01

    An environmental technology transfer business assistance program is needed to encourage collaboration and technology transfer within the international community. This program helped to find appropriate mechanisms to facilitate the transfer of these technologies for use by DOE environmental restoration and waste management (ER/WM) programs while assisting U.S. private industry (especially small and medium size business) in commercializing the technologies nationally and abroad

  9. Weak interactions and exchange currents in light nuclei. Theoretical and experimental aspects

    International Nuclear Information System (INIS)

    Guichon, P.

    1980-01-01

    The influence of meson exchange currents in the nuclear weak interaction is investigated theoretically and experimentally. The hypothesis of current algebra and partial conservation of axial current are used, through Adler-Dothan theorem, to derive the one pion exchange correction to the impulse approximation. Calculations are performed for partial transitions in the 1p-shell nuclei and in 16 O. The corrections are generally small except for the (0 + →0 - ) transition in 16 O where the large correction to the time component of the axial current can show up, due to selection rules. The measurement of the muon capture rate for this transition is described and an interpretation in term of exchange currents is proposed [fr

  10. Experimental and numerical investigation of dimplelike protrusions employed in recent heat exchangers

    International Nuclear Information System (INIS)

    Preibisch, S; Dietzel, D; Buschmann, M H; Friebe, C

    2011-01-01

    This study is motivated by the observation that recent investigations of dimpled surfaces employed for enhancing heat transfer rarely go beyond general parameters like pressure losses and heat transfer performance. Here, we explore a real world dimpled cross-flow heat exchanger. In particular, we are interested in the global parameters, but also in the local flow situation around a single dimplelike protrusion. Detailed PIV-experiments and simulations of the local flow around single protrusions and groups of them reveal the flow structures essential for heat transfer. These local results are brought in conjunction with the general performance of the heat exchanger. Based on local results, simulations of the complete heat exchanger are carried out which are found to be in reasonable agreement with the global parameters found experimentally.

  11. Experimental studies of the transfer phenomena of tritium in an isotope exchange column for tritium recovery

    International Nuclear Information System (INIS)

    Bornea, Anisia; Cristescu, Ion; Zamfirache, Marius; Varlam, Carmen

    2003-01-01

    To extract the tritium generated in the heavy water moderated power reactor, we have chosen the catalytic isotope exchange process in liquid phase combined with cryogenic distillation LPCE-CD. This paper presents the experimental studies of the catalytic isotope transfer of tritium. The catalytic isotope exchange process is performed in a column filled with successive layers of catalyst PT/C/PTFE and B7 type ordered package of phosphorous bronze. The catalyst and the package are manufactured in our institute and corresponding patents were issues. The catalyst consists of 95.5 wt.% PTFE, 4.1 wt. % carbon and 0.40 wt. % platinum and was made with 10'10'2 mm Raschig rings. The ordered package was consists of wire mesh phosphor bronze of 4'1 wire with a mesh size of 0.18 x 0.48 mm. The paper also presents the mathematical model which is used to evaluate the performance of the process. The mathematical model and the experimental data allowed determining two speed constants for isotope exchange process and for distillation process, respectively. By considering the values of these speed constants it is possible to improve the hydrophobic Pt catalyst and to design the H 2 /H 2 O isotopic exchange column package with this catalyst. (authors)

  12. Very High Temperature Test of Alloy617 Compact Heat Exchanger in Helium Experimental Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Soo; Park, Byung-Ha; Kim, Eung-Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Intermediate Heat eXchanger (IHX) is a key-challenged high temperature component which determines the efficiency and the economy of VHTR system. Heat generated in the VHTR fuel block is transferred from the VHTR to the intermediate loop through IHX. In the present, the shell-helical tube heat exchanger is generally used as IHX of the helium cooled reactor. Recently, a Printed Circuit Heat Exchanger (PCHE) is one of the candidates for the IHX in a VHTR because its operation temperature and pressure are larger than any other compact heat exchanger types. These test results show that there is no problem in operation of HELP at the very high temperature experimental condition and the alloy617 compact heat exchanger can be operated in the very high temperature condition above 850℃. In the future, the high temperature structural analysis will be studied to estimate the thermal stress during transient and thermal shock condition. The conditions and evaluation standard for the alloy 617 diffusion bonding will be minutely studied to fabricate the large-scale PCHE for the high temperature condition.

  13. International Symposium for the Promotion of APEC Environmental Technology Exchange; APEC kankyo gijutsu koryu sokushin symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-11

    The International Symposium for the Promotion of APEC Environmental Technology Exchange was held under the theme `The function and role expected of the APEC Virtual Center,` with the objectives of clarifying the need for future intra-regional environmental technological exchange, defining the types of information and personnel exchange, and promoting the use of interactive character of the APEC Virtual Center for Environmental Technology Exchange by encouraging access to and participation in the Virtual Center project. It was held in the period of 11th and 12th, November in 1996, at the venue of Rinku International Convention Center in Osaka. The symposium was attended by 477 persons from nine countries, i.e., Australia, Canada, China, Indonesia, Korea, Philippines, Thailand, the US, and Japan, comprising staff members of intra-regional environment-related organizations. After the keynote speech, `Current status and tasks of environmental technology exchange`, and `Expected roles of the Virtual Center for Environmental Technology Exchange` were discussed. During the plenary session, the chairman summarized the symposium. This summary was carried on the Virtual Center homepage of the Internet

  14. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  15. Experimental Results For Hydrocarbon Refrigerant Vaporization In Brazed Plate Heat Exchangers at High Pressure

    OpenAIRE

    Desideri, Adriano; Schmidt Ommen, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In this contribution, the experimental heat transfer coefficient  and the pressure drop measured during HFC refrigerants vaporization inside small brazed plate heat exchanger (PHE) at typical evaporation temperature for organic Rankine cycle systems for low thermal energy quality applications are presented. Scientific work focusing on the heat transfer in PHEs has been carried out since the late 19th century. More recent publications have been focusing on vaporization and condensation of ref...

  16. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  17. AN EXPERIMENTAL ASSESSMENT OF THE PLATE HEAT EXCHANGER CHARACTERISTICS BY WILSON PLOT METHOD

    Directory of Open Access Journals (Sweden)

    Jan Opatřil

    2016-10-01

    Full Text Available An aim of this paper is suggestion of the evaluation method based on the experimental data and the Wilson plot method for the Plate Heat Exchangers (PHE. For the purpose of the project the new experimental loop was built for the testing of PHE to obtain the overhaul heat transfer coefficient and pressure drop between inlet and outlet of the fluid. The measurement were done for three different PHE with the performance range 30-100kW. The working fluid was water on both sides of the PHE. The differences are in number of pates as well as in extrusion profiles. The Wilson plot evaluation method was involved for the processing experimental data. To obtain more accurate correlations between the experimental data and theoretical results yield of the Wilson plot, the method was enhanced by the measured pressure drop involving. This approach could be useful for PHE designing software and for the manufacturing company.

  18. Use of communication technologies in document exchange for the management of construction projects

    Science.gov (United States)

    Mesároš, Peter; Mandičák, Tomáš

    2016-06-01

    Information and communication technologies represent a set of people, processes, technical and software tools providing collection, transport, storage and processing of data for distribution and presentation of information. Particularly communication systems are the main tool for information exchange. Of the other part, these technologies have a broad focus and use. One of them is the exchange of documents in the management of construction projects. Paper discusses the issue of exploitation level of communication technologies in construction project management. The main objective of this paper is to analyze exploitation level of communication technologies. Another aim of the paper is to compare exploitation level or rate of document exchange by electronic communication devices and face-to-face communication.

  19. Use of communication technologies in document exchange for the management of construction projects

    Directory of Open Access Journals (Sweden)

    Mesároš Peter

    2016-06-01

    Full Text Available Information and communication technologies represent a set of people, processes, technical and software tools providing collection, transport, storage and processing of data for distribution and presentation of information. Particularly communication systems are the main tool for information exchange. Of the other part, these technologies have a broad focus and use. One of them is the exchange of documents in the management of construction projects. Paper discusses the issue of exploitation level of communication technologies in construction project management. The main objective of this paper is to analyze exploitation level of communication technologies. Another aim of the paper is to compare exploitation level or rate of document exchange by electronic communication devices and face-to-face communication.

  20. Manufacture of power station heat exchangers using modern production technology

    International Nuclear Information System (INIS)

    Genzlinger, W.; Hoffmann, J.; Ohlhaeuser, K.

    1986-01-01

    Heat exchangers of high quality and operational safety can only be fabricated economically if fabrication is as 'simple' as possible and can be controlled and if, through value analysis, the work flows can be mechanized and automated and the following requirements are met: use of materials that are easy to work with for the application considered, choice of product designs and wall thicknesses that offer favourable conditions for processing and non-destructive testing, placing of seams in such a way that good accessibility for welding and minimum residual welding stresses are assured, minimizing the number of welding seams, use of automatic welding machines for submerged-arc welding and electronically controlled sources of welding current - semi-automatic equipment for spatter-free interfaces (pulse technique), electronically controlled equipment for welding in rollers and pipes and CNC-controlled machining centres for drilling pipe galleries (deep-hole drilling) and baffle plates and for machining the sealing elements after welding. Continuous inspections in each phase of fabrication assures that heat exchangers are made which fully meet the requirements of nuclear power station operators. (orig.)

  1. Development of a micro-heat exchanger with stacked plates using LTCC technology

    Directory of Open Access Journals (Sweden)

    E. Vásquez-Alvarez

    2010-09-01

    Full Text Available A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC. The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm³.

  2. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  3. History of establishment of scientific technology law focused on exchanges of Korea, China and Japan

    International Nuclear Information System (INIS)

    Lee, Gyeong Hui

    1990-10-01

    This book introduces science and technology promotion related law, industrial technology related law, resources and energy related law, nuclear energy related law, information and communication related law, intellectual property right related law, and environment related law. It explains process of development of 7 laws in threes countries and relations of three countries exchanges. It also covers special law for science and technology innovation, electric utility law, petroleum enterprise law, telecommunication related law, law of settlement of digital divide, and information-oriented law.

  4. Analysis of the Technological Parameters of the Heat Exchanger in the Heating Pipe

    Directory of Open Access Journals (Sweden)

    Knyazev Vladimir

    2017-01-01

    Full Text Available The main purpose of this article is to analyze the selecting of technological parameters for the heat exchanger to improve the heat transfer and reduce the noise during operation in the heating pipe, which is used in the different systems of the planes and helicopters. In result of this study, the best technical parameters are found, considering different variations of deformation cutting heat exchanger pipes.

  5. Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system

    International Nuclear Information System (INIS)

    Asakura, Yamato; Uchida, Shunsuke

    1984-01-01

    A proposed dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is evaluated experimentally. The proposed system is composed of low temperature co-current reactors for reaction between water mists and hydrogen gas and high temperature co-current reactors for reaction between water vapor and hydrogen gas. Thus, operation is possible under atmospheric pressure with high reaction efficiency. Using the pilot test system which is composed of ten low temperature (30 0 C) reaction units and ten high temperature (200 0 C) reaction units, an experimental separation of deuterium from light water is carried out. The enrichment factor under steady state conditions, its dependency on operating time, and the reaction period necessary to obtain the steady state enrichment factor are determined experimentally and compared with calculations. It is shown that separation ability in a multistage reaction system can be estimated by numerical calculation using actual reaction efficiency in a unit reactor. (author)

  6. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  7. Experimental and numerical investigation of a louvered fin and elliptical tube compact heat exchanger

    Directory of Open Access Journals (Sweden)

    Pooranachandran Karthik

    2015-01-01

    Full Text Available In the present work, an experimental investigation is carried out to analyze the heat transfer characteristics of a louvered fin and elliptical tube compact heat exchanger used as a radiator in an internal combustion engine. Experiments are conducted by positioning the radiator in an open-loop wind tunnel. A total of 24 sets of air, water flow rate combinations are tested, and the temperature drops of air and water were acquired. A numerical analysis has been carried out using Fluent software (a general purpose computational fluid dynamics simulation tool for three chosen data from the experiments. The numerical air-side temperature drop is compared with those of the experimental values. A good agreement between the experimental and numerical results validates the present computational methodology.

  8. Numerical and Experimental Study of an Ambient Air Vaporizer Coupled with a Compact Heat Exchanger

    Science.gov (United States)

    Kimura, Randon

    The University of Washington was tasked with designing a "21st century engine" that will make use of the thermal energy available in cryogenic gasses due to their coldness. There are currently large quantities of cryogenic gases stored throughout the U.S. at industrial facilities whereupon the regasification process, the potential for the fluid to do work is wasted. The engine proposed by the University of Washington will try to capture some of that wasted energy. One technical challenge that must be overcome during the regasification process is providing frost free operation. This thesis presents the numerical analysis and experimental testing of a passive heat exchange system that uses ambient vaporizers coupled with compact heat exchangers to provide frost free operation while minimizing pressure drop.

  9. Experimental Study of the Variation Dynamic’s for Air Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Maryia Marozava

    2017-07-01

    Full Text Available The development of management systems is assigned one of the leading roles. When solving the problems of regulating the technological parameters, various problems arise. One of such problems is the adjustment of control loops. For some control objects, one-time adjustment of the controller parameters can be made, and then it is periodically refined as necessary. In other objects, the changes occur very quickly, but in a certain range. In the latter case, you should first estimate the range of changes. Then find universal robust settings that will ensure the stability and quality of the stabilization system. Some of such objects are air heat exchangers. The article presents the results of the determination of the heat exchanger dynamics. The limits of the variation of the parameters of the dynamic models are determined. There is a significant nonlinearity in the transfer function of the control channel.

  10. Experimental study on the effects of the number of heat exchanger modules on thermal characteristics in a premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Lee, Chang-Eon; Kum, Sung Min; Lee, Seungro

    2016-01-01

    The effects of the number of heat exchanger modules on thermal characteristics were experimentally studied in a premixed combustion system with a cross-flow staggered-tube heat exchanger. The various heat exchanger modules, from 4 to 8, combined with a premixed burner were tested to investigate the performance of the heat exchanger through the surface area of the heat exchanger at various equivalence ratios. Additionally, the performance of the heat exchanger was analyzed by applying entropy generation theory to the heat exchanger system. As a result, although the heat transfer rate increases with the increase of the equivalence ratio, the NOx and CO concentrations also increase due to the increasing flame temperature. In addition, the entropy generation increases with an increase of the equivalence ratio. Furthermore, the heat transfer rate and the effectiveness are increased with the increase of the number of the heat exchanger modules. Also, the effectiveness is sharply increased when the number of the heat exchanger modules is increased from 4 to 5. Consequently, the optimal operating conditions regarding pollutant emission, effectiveness and entropy generation in this experimental range are 0.85 for the equivalence ratio and 8 for the number of heat exchanger modules

  11. Experimental and numerical investigation of gas side particulate fouling onto heat exchanger tubes

    International Nuclear Information System (INIS)

    Bailer, Frederic

    1998-01-01

    This work deals with gas side particulate fouling onto heat exchanger tubes. An experimental and numerical investigation was carried out. By means of a new testing loop designed for this study, the deposit kinetics were obtained in dust-controlled conditions at the beginning of the fouling process. Experimental results pointed out the existence of various transport regimes: for sub-micronic particles, convective diffusion augmented by thermophoresis in the presence of a temperature gradient governs the particle deposition; inertial impaction controls the super-micronic particles deposition: in the intermediate granulometric range, combined action of particle inertia and thermophoresis must be considered. Moreover, measurements on an other testing loop using a more concentrated aerosol allowed us to point out the modification of the mechanisms with time and the influence of the deposit shape. A numerical model predicting the particle deposition, based on the TRIO software and an Eulerian-Lagrangian approach, was developed and validated against experimental results from the literature and from our study. Numerical approach gave us an accurate understanding of the phenomena by means of local parameters computations. In this way, the different mechanisms which control particulate deposition onto heat exchangers tubes were identified and modelled, especially before the onset of the inertial impaction. (author) [fr

  12. U.S. Department of Energy national technology information exchange workshops

    International Nuclear Information System (INIS)

    Daub, G.J.; Earle, S.D.; Smibert, A.M.; Wight, E.H.

    1994-01-01

    The U.S. Department of Energy National Technology Information Exchange (TIE) Workshops bring together environmental restoration and technology development personnel to exchange and share problems, needs, technological solutions, ideas, and successes and failures from lessons learned at DOE sites. The success of this forum is measured by the knowledge gained, contacts made, and program dollars saved by the people who actually do the work in the field. TIE is a unique opportunity to unite the DOE community and allow individuals to listen and to learn about each others' problems and solutions. By using today's technologies better, the National TIE Workshops help identify and implement cost-effective and appropriate technologies to meet the needs of the DOE environmental restoration program

  13. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  14. Simulacra, Symbolic Exchange and Technology in Michel Tournier's La Goutte d'Or

    Directory of Open Access Journals (Sweden)

    David W. Price

    1993-06-01

    Full Text Available In La Goutte d'Or , Michel Tournier offers a critique of Western culture by constructing a novel that reflects both Jean Baudrillard's theories of simulacra and the political economy of the sign and Martin Heidegger's meditations on technology. Tournier's novel explores the relationship between Heidegger's explanation of technology as an act of Enframing ( Ge-stell and Baudrillard's description of an economy based upon exchange-sign value. Thus, through La Goutte d 'Or , Michel Tournier depicts the violent confrontation between a symbolic exchange economy based on poietic acts and late capitalist economies of autonomized signs.

  15. Commercialization of proton exchange membrane (PEM) fuel cell technology

    International Nuclear Information System (INIS)

    Goel, N.; Pant, A.; Sera, G.

    1995-01-01

    The MCTTC performed a market assessment for PEM Fuel Cells for terrestrial applications for the Center for Space Power (CSP). The purpose of the market assessment was to gauge the market and commercial potential for PEM fuel cell technology. Further, the market assessment was divided into subsections of technical and market overview, competitive environment, political environment, barriers to market entry, and keys to market entry. The market assessment conducted by the MCTTC involved both secondary and primary research. The primary target markets for PEM fuel cells were transportation and utilities in the power range of 10 kW to 100 kW. The fuel cell vehicle market size was estimated under a pessimistic scenario and an optimistic scenario. The estimated size of the fuel cell vehicle market in dollar terms for the year 2005 is $17.3 billion for the pessimistic scenario and $34.7 billion for the optimistic scenario. The fundamental and applied research funded and conducted by the National Aeronautics and Space Administration (NASA) and DOE in the area of fuel cells presents an excellent opportunity to commercialize dual-use technology and enhance U.S. business competitiveness. copyright 1995 American Institute of Physics

  16. Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger

    Science.gov (United States)

    Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.

    2017-02-01

    In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.

  17. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States); Childress, Amy [Univ. of Nevada, Reno, NV (United States); Hiibel, Sage [Univ. of Nevada, Reno, NV (United States); Kim, Kwang [Univ. of Nevada, Reno, NV (United States); Park, Chanwoo [Univ. of Nevada, Reno, NV (United States); Wirtz, Richard [Univ. of Nevada, Reno, NV (United States)

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  18. Experimental and Numerical Design and Optimization of a Counter-Flow Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Bahrami Salman

    2018-01-01

    Full Text Available A new inexpensive counter-flow heat exchanger has been designed and optimized for a vapor-compression cooling system in this research. The main aim is to experimentally and numerically evaluate the effect of an internal heat exchanger (IHX adaptation in an automotive air conditioning system. In this new design of IHX, the high-pressure liquid passes through the central channel and the low-pressure vapor flows in several parallel channels in the opposite direction. The experimental set-up has been made up of original components of the air conditioning system of a medium sedan car, specially designed and built to analyze vehicle A/C equipment under real operating conditions. The results show that this compact IHX may achieve up to 10% of the evaporator capacity while low pressure drop will be imposed on this refrigeration cycle. Also, they confirm considerable decrease of compressor power consumption (CPC, which is intensified at higher evaporator air flow. A significant improvement of the coefficient of performance (COP is achieved with the IHX employment too. The influence of operating conditions has been also discussed in this paper. Finally, numerical analyses have been briefly presented, which bring more details of the flow behavior and heat transfer phenomena, and help to determine the optimal arrangement of channels.

  19. Experimental simulation study on hydraulic behavior of the main heat exchanger of Daqing 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Jiang Shengyao; Zhang Youjie; Jia Haijun; Bo Jinhai; Hong Liuming; Bo Hanliang; Liu Zhiyong

    1997-07-01

    The hydraulic behavior of the main heat exchanger of Daqing 200 MW nuclear heating reactor is studied through a 1:2.33 test model. The design and other feature of the test model is described. The experimental results show that the flow resistance coefficient of the heat exchanger becomes self-simulation when Reynolds number is greater than 5000. The value of flow resistance coefficient at self-simulation condition and the distribution of pressure drop in the heat exchanger are given through experiment. The option design to reduce flow resistance is proposed. The designed and experimental value for the flow resistance coefficient are in good agreement. The variation of system parameters during flow excursion was described. The experimental results are of great significant for the final design of the main heat exchanger of Daqing 200 MW nuclear heating reactor. (2 refs., 5 figs., 1 tab.)

  20. Establishment of experimental equipments in irradiation technology development building

    International Nuclear Information System (INIS)

    Ishida, Takuya; Tanimoto, Masataka; Shibata, Akira; Kitagishi, Shigeru; Saito, Takashi; Ohmi, Masao; Nakamura, Jinichi; Tsuchiya, Kunihiko

    2011-06-01

    The Neutron Irradiation and Testing Reactor Center has developed new irradiation technologies to provide irradiation data with high technical value for the resume of the Japan Materials Testing Reactor (JMTR). For the purpose to perform assembling of capsules, materials tests, materials inspection and analysis of irradiation specimens for the development of irradiation capsules, improvement and maintenance of facilities were performed. From the viewpoint of effective use of existing buildings in the Oarai research and development center, the RI application development building was refurbished and maintained for above-mentioned purpose. The RI application development building is a released controlled area, and was used as storage of experimental equipments and stationeries. The building was named 'Irradiation Technology Development Building' after it refurbished and maintained. Eight laboratories were maintained based on the purpose of use, and the installation of the experimental apparatuses was started. A basic management procedure of the Irradiation Technology Development Building was established and has been operated. This report describes the refurbish work of the RI application development building, the installation and operation method of the experimental apparatuses and the basic management procedure of the Irradiation Technology Development Building. (author)

  1. Numerical investigation on a novel shell-and-tube heat exchanger with plate baffles and experimental validation

    International Nuclear Information System (INIS)

    Yang, Jie; Liu, Wei

    2015-01-01

    Highlights: • A novel shell-and-tube heat exchanger with plate baffles is proposed. • Heat transfer and pressure drop of computational calculations are studied. • Experimental method is carried out to verify the modeling approach. • Path lines, temperature field and pressure field are analyzed. - Abstract: A novel shell-and-tube heat exchanger with new plate baffles is proposed. It is numerically investigated in comparison with a shell-and-tube heat exchanger with rod baffles. Commercial softwares FLUENT 6.3 and GAMBIT 2.3 are adopted for modeling and computational calculations. The modeling approach is verified with experimental approach. The shell-side results of heat transfer, flow performance, and comprehensive performance are analyzed. The Nusselt number for the plate baffles heat exchanger is around 128–139% of that for the rod baffles heat exchanger. The pressure drop for the novel one is about 139–147% of that for the rod baffles heat exchanger. Overall, the novel plate baffles heat exchanger illustrates evidently higher comprehensive performance (115–122%) than the rod baffles one. The temperature field, pressure field, and path lines are analyzed to demonstrate the advantage of the novel shell-and-tube heat exchanger

  2. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    Science.gov (United States)

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHMg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  3. The impact of technological improvements on developing financial markets: The case of the Johannesburg Stock Exchange

    Directory of Open Access Journals (Sweden)

    Mehmet F. Dicle

    2013-07-01

    Full Text Available Can a significant technological improvement make an economically justifiable contribution to a financial market's development? The Johannesburg Stock Exchange (JSE incorporated the SETS system from the London Stock Exchange in 2002. It is certain that SETS is a technologically efficient trading system, and it would undoubtedly improve trading in the JSE. We test whether SETS represents a structural break by examining whether there was an increase in the JSE's liquidity, market efficiency and international integration after the introduction of SETS. While SETS is certainly a technological improvement with increased liquidity, it is not a sufficient factor to render it efficient. After the incorporation of SETS, the JSE has become more independent and it now offers better diversification opportunities for international investors.

  4. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Grabenstein, V; Kabelac, S

    2012-01-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  5. Identity Orientation, Social Exchange, and Information Technology Use in Interorganizational Collaborations

    DEFF Research Database (Denmark)

    Gal, Uri; Jensen, Tina Blegind; Lyytinen, Kalle

    2014-01-01

    Advances in information technologies (IT) are creating unprecedented opportunities for interorganizational collaboration, particularly in large-scale distributed projects. The use of advanced IT in such projects can foster new forms of social exchange among organizations and change the way...... identity orientations. To address this gap, we conduct multiple case studies that describe the changing use of two-dimensional computer-aided design technology and new three-dimensional modeling technologies by a leading metal fabrication company in the architecture, engineering, and construction industry...

  6. Establishment of experimental equipments in irradiation technology development building (2)

    International Nuclear Information System (INIS)

    Shibata, Hiroshi; Nakano, Hiroko; Suzuki, Yoshitaka; Ohtsuka, Noriaki; Nishikata, Kaori; Takeuchi, Tomoaki; Hirota, Noriaki; Tsuchiya, Kunihiko

    2018-01-01

    From the viewpoints of utilization improvement of the Japan Materials Testing Reactor (JMTR), the experimental devices have been established for the out-pile tests in the irradiation technology development building. The devices for the irradiation capsule assembly, material tests and inspections were established at first and experimental data were accumulated before the neutron irradiation tests. On the other hand, after the Great East Japan Earthquake, the repairs and earthquake-resistant measures of the existing devices were carried out. New devices and equipments were also established for the R and D program for power plant safety enhancement of the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI) and 99 Mo/ 99m Tc production development under the Tsukuba International Strategic Zone. This report describes the outline and basic operation manuals of the devices established from 2011 to 2016 and the management points for the safety works in the irradiation technology development building. (author)

  7. Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct

    Directory of Open Access Journals (Sweden)

    Sanjeev Jakhar

    2016-06-01

    Full Text Available Earth air heat exchanger (EAHE systems are insufficient to meet the thermal comfort requirements in winter conditions. The low heating potential of such systems can be improved by integrating the system with solar air heating duct (SAHD. The aim of this paper is to present a model to estimate the heating potential for EAHE system with and without SAHD. The model is generated using TRNSYS 17 simulation tool and validated against experimental investigation on an experimental set-up in Ajmer, India. The experiment was done during the winter season, where the system was evaluated for different inlet flow velocities, length and depth of buried pipe. From the experimentation, it was observed that the depth of 3.7 m is sufficient for pipe burial and the 34 m length of pipe is sufficient to get optimum EAHE outlet temperature. It is also observed that increase in flow velocity results in drop in EAHE outlet temperature, while room temperature is found to increase for higher velocities (5 m/s. The COP of the system also increased up to 6.304 when assisted with solar air heating duct. The results obtained from the experiment data are in good agreement with simulated results within the variation of up to 7.9%.

  8. Experimentally measuring a quantum state by the Heisenberg exchange interaction in a single apparatus

    International Nuclear Information System (INIS)

    Peng Xinhua; Du Jiangfeng; Suter, D.

    2005-01-01

    Full text: Quantum information processing requires the effective measurement of quantum states. An important method, called quantum state tomography, needs measuring a complete set of observables on the measured system to determine its unknown quantum state ρ. The measurement involves certain noncommuting observables as a result of Bohr's complementarity. Very recently, Allahverdyan et al. proposed a new method in which the unknown quantum state r is determined by measuring a set of commuting observables in the price of a controlled interaction with an auxiliary system. If both systems S and A are spins, their z components (σ z ) can be chosen to measure after some specific Heisenberg exchange interaction. We study in detail a general Heisenberg XYZ model for a two-qubit system and present two classes of special Heisenberg interactions which can serve as the controlled interaction in Allahverdyan's scheme when the state of the auxiliary system A is initially completely disordered. Using the nuclear magnetic resonance techniques, the measurement scheme in a single apparatus has been experimentally demonstrated by designing the quantum circuit to simulate the Heisenberg exchange interaction. (author)

  9. [Social exchange and inference: an experimental study with the Wason selection task].

    Science.gov (United States)

    Hayashi, N

    2001-04-01

    Social contract theory (Cosmides, 1989) posits that the human mind was equipped with inference faculty specialized for cheater detection. Cosmides (1989) conducted a series of experiments employing the Wason selection task to demonstrate that her social contract theory could account for the content effects reported in the literature. The purpose of this study was to investigate the possibility that the results were due to experimental artifacts. In the current experiment, the subject was given two versions of the Wason task that contained no social exchange context, but included an instruction implying him/her to look for something, together with the cassava root and the abstract versions used by Cosmides (1989). Results showed that the two versions with no social exchange context produced the same response pattern observed in the original study. It may be concluded that the subject's perception of the rule as a social contract was not necessary to obtain the original results, and that an instruction implying that he/she should look for something was sufficient.

  10. Experimental evaluation of tritium permeation through stainless steel tubes of heat exchanger from primary to secondary water in ITER

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2004-01-01

    Tritium permeation through heat exchanger from primary cooling water to secondary cooling water has been investigated experimentally with SS316L heat exchanger under simulated ITER (international thermonuclear experimental reactor) operation condition in order to establish the tritium permeation evaluation method through the heat exchanger. As the result, the permeation rate of aqueous tritium was found to be about three orders smaller than that of the gaseous tritium. Tritium permeation through the heat exchanger in ITER was then evaluated, and it was revealed that total tritium permeation amount based on obtained aqueous permeability was about one order less than that with the former method with the gaseous permeability and putting the permeation reduction factor as 1000. Evaluated tritium permeation amount into secondary water during 20 years was quite small, which could be considered as negligible from the safety viewpoint

  11. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  12. Design of charge exchange recombination spectroscopy for the joint Texas experimental tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Y.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Cheng, Z. F.; Hou, S. Y.; Cheng, C.; Li, Z.; Wang, J. R.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15

    The old diagnostic neutral beam injector first operated at the University of Texas at Austin is ready for rejoining the joint Texas experimental tokamak (J-TEXT). A new set of high voltage power supplies has been equipped and there is no limitation for beam modulation or beam pulse duration henceforth. Based on the spectra of fully striped impurity ions induced by the diagnostic beam the design work for toroidal charge exchange recombination spectroscopy (CXRS) system is presented. The 529 nm carbon VI (n = 8 − 7 transition) line seems to be the best choice for ion temperature and plasma rotation measurements and the considered hardware is listed. The design work of the toroidal CXRS system is guided by essential simulation of expected spectral results under the J-TEXT tokamak operation conditions.

  13. Experimental studies on hydrogen isotopic deuterium from gas to liquid phase by catalytic exchange

    International Nuclear Information System (INIS)

    Luo Yangming; Wang Heyi; Liu Jun; Fu Zhonghua; Wang Changbin; Han Jun; Xia Xiulong; Tang Lei

    2005-01-01

    The experimental studies on hydrogen isotopic deuterium from gas to liquid phase were completed by mixed ratio 1:4 of Pt-SDB hydrophobic catalyst and hydrophilic packing. The influencing factors on number of transfer units (NTU) and transformation efficiencies of deuterium were researched. The results show that preferable NTU can be obtained by choosing suitable operational temperature and flux of exchange gas. The transformation rate increases with increasing liquid flux, but it cannot obviously be improved when liquid flux attains some level. The length of catalytic column has an obvious influence on transformation rate and 90% of transformation rate is obtained by 4 m column length at gas flux with 2 m 3 /h, liquid flux with 1-2 kg/h and 45 degree C. (author)

  14. Experimental study on the thermal hydraulic performance of plate-fin heat exchangers for cryogenic applications

    Science.gov (United States)

    Jiang, Qingfeng; Zhuang, Ming; Zhang, Qiyong; Zhu, Zhigang; Geng, Maofei; Sheng, Linhai; Zhu, Ping

    2018-04-01

    Efficient and compact plate-fin heat exchangers are critical for large-scale helium liquefaction/refrigeration systems as they constitute major part in the cold box. This study experimentally explores the heat transfer and pressure drop behaviors of helium gas at low temperature in four types of plate-fin channels, namely offset-strip and perforated fins, with different geometrical parameters. A series of cryogenic experiments at approximately liquid nitrogen temperature are carried out to measure the Colburn j factors and Fanning friction f factors with a wide range of Reynolds number. Besides, to reveal the performance variations under different operating temperatures, comparative experiments respectively conducted at room temperature and liquid nitrogen temperature are implemented. The results show that in comparison with the performance data at room temperature, most of j factors are relatively smaller perhaps because the lower aluminum thermal conductivity and higher Prandtl Number at low temperature. Meanwhile, the f factors corresponding to cryogenic conditions exhibit slightly larger even though the core pressure drops show considerable reductions. In contrast to the calculated results from the frequently-used performance curves (Chen and Shen, 1993), the Root Mean Squared Errors of j and f values are correlated within 8.38% and 6.97% for one perforated fin core, 41.29% and 34.97% for three OSF cores, respectively. For OSFs, further comparisons with the previous empirical correlations from literatures are conducted to verify the accuracy of each correlation. Generally, most of the calculated results predict acceptably within the deviations of ±25% for the j factors, while the predicted results express relatively large deviations for the f factors. Therefore, it may be revealed that most of the existing correlations were not able to accurately predict the experimental data in consideration of the performance differences under realistic cryogenic operating

  15. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS; FINAL

    International Nuclear Information System (INIS)

    Arsalan Razani; Kwang J. Kim

    2001-01-01

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has

  16. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Jobelin, I. [CEA Marcoule, Nucl Energy Div, RadioChem and Proc Dept, Actinides Chem and Convers Lab, F-30207 Bagnols Sur Ceze (France); Ramiere, I. [Fuel Simulat Lab, Fuel Study Dept, F-13108 St Paul Les Durance (France)

    2010-07-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  17. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    International Nuclear Information System (INIS)

    Picart, S.; Mokhtari, H.; Jobelin, I.; Ramiere, I.

    2010-01-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  18. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    Science.gov (United States)

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Experimental observation of thermal-hydraulic behavior in PCCS horizontal heat exchanger

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nakamura, Hideo; Yamamoto, Kazuhiko; Shimada, Rumi; Tokuma, Hideaki

    2003-01-01

    A series of thermal-hydraulic experiments have been performed using a prototypical-scale experimental facility simulating a horizontal heat exchanger of a Passive Containment Cooling System (PCCS) for next generation BWRs. The influences of multi-dimensional boiling flow in secondary water pool on primary flow in parallel tubes are investigated. The experimental results at postulated accident conditions; 0.7 MPa, steam flow rate equivalent to 1% core power with 1% non-condensable gas, show that steam condensation completes in almost the same heat transfer length in all the instrumented tubes. The secondary heat transfer coefficient is relatively small at the lower portion in the tube bundle when the flow regime is bubbly flow, and increases with elevation as the flow regime turns into churn-like flow. The primary steam flow distribution among tubes is rather insensitive to such a variation in the secondary heat transfer coefficient, since the contribution of the secondary heat transfer to the local heat resistance is 30% or less at postulated accident conditions. The influence of steam flow rate is insensitive too, while the contribution of the secondary heat transfer coefficient increases at low pressure conditions. (author)

  20. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  1. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

    Directory of Open Access Journals (Sweden)

    Milchert Eugeniusz

    2016-09-01

    Full Text Available A review paper of the technology basics of vegetable oils epoxidation by means of peracetic or performic acid in the presence of acidic ion exchange resins has been presented. The influence of the following parameters: temperature, molar ratio of acetic acid and hydrogen peroxide to ethylenic unsaturation, catalyst loading, stirring intensity and the reaction time on a conversion of ethylenic unsaturation, the relative percentage conversion to oxirane and the iodine number was discussed. Optimal technological parameters, mechanism of epoxidation by carboxylic peracids and the possibilities of catalyst recycling have been also discussed. This review paper shows the application of epoxidized oils.

  2. Extracorporeal gas exchange with the DeltaStream rotary blood pump in experimental lung injury.

    Science.gov (United States)

    Dembinski, Rolf; Kopp, Rüdger; Henzler, Dietrich; Hochhausen, Nadine; Oslender, Nicole; Max, Martin; Rossaint, Rolf; Kuhlen, Ralf

    2003-06-01

    In most severe cases of the acute respiratory distress syndrome, veno-venous extracorporeal membrane oxygenation (ECMO) can be used to facilitate gas exchange. However, the clinical use is limited due to the size and the concomitant risk of severe adverse events of conventionally-used centrifugal blood pumps with high extracorporeal blood volumes. The DeltaStream blood pump is a small-sized rotary blood pump that may reduce extracorporeal blood volume, foreign surfaces, contact activation of the coagulation system, and blood trauma. The aim of the present study was to test the safety and efficacy of the DeltaStream pump for ECMO in animals with normal lung function and experimental acute lung injury (ALI). Therefore, veno-venous ECMO was performed for 6 hours in mechanically ventilated pigs with normal lung function (n=6) and with ALI induced by repeated lung lavage (n=6) with a blood flow of 30% of the cardiac output. Gas flow with a FiO2 of 1.0 was set to equal blood flow. With a mean activated clotting time of 121 +/- 22 s, no circulatory impairment or thrombus formation was revealed during ECMO. Furthermore, free plasma Hb did not increase. In controls, hemodynamics and gas exchange remained unchanged. In animals with ALI, hemodynamics remained stable and gas transfer across the extracorporeal oxygenators was optimal, but only in 2 animals was a marked increase in PaO2 observed. CO2 removal was efficacious in all animals. We concluded that the DeltaStream blood pump may be used for veno-venous ECMO without major blood damage or hemodynamic impairment.

  3. Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery

    International Nuclear Information System (INIS)

    Ma, Hongting; Yin, Lihui; Shen, Xiaopeng; Lu, Wenqian; Sun, Yuexia; Zhang, Yufeng; Deng, Na

    2016-01-01

    Highlights: • A heat pipe heat exchanger (HPHE) was used to recycle the waste heat in a slag cooling process of steel industry. • An specially designed on-line cleaning device was construed and used to enhance the heat transfer of HPHE. • The performance characteristics of a HPHE has been assessed by integrating the first and second law of thermodynamics. • The optimum operation conditions was determined by integrating the first and the second law of thermodynamics. - Abstract: Steel industry plays an important role economically in China. A great amount of hot waste liquids and gases are discharged into environment during many steelmaking processes. These waste liquids and gases have crucial energy saving potential, especially for steel slag cooling process. It could be possible to provide energy saving by employing a waste heat recovery system (WHRS). The optimum operation condition was assessed by integrating the first and the second law of thermodynamics for a water–water heat pipe heat exchanger (HPHE) for a slag cooling process in steel industry. The performance characteristics of a HPHE has been investigated experimentally by analyzing heat transfer rate, heat transfer coefficient, effectiveness, exergy efficiency and number of heat transfer units (NTU). A specially designed on-line cleaning device was used to clean the heat exchange tubes and enhance heat transfer. The results indicated that the exergy efficiency increased with the increment of waste water mass flow rate at constant fresh water mass flow rate, while the effectiveness decreased at the same operation condition. As the waste water mass flow rate varied from 0.83 m"3/h to 1.87 m"3/h, the effectiveness and exergy efficiency varied from 0.19 to 0.09 and from 34% to 41%, respectively. In the present work, the optimal flow rates of waste water and fresh water were 1.20 m"3/h and 3.00 m"3/h, respectively. The on-line cleaning device had an obvious effect on the heat transfer, by performing

  4. Joint research and development and exchange of technology on toxic material emergency response between LLNL and ENEA. 1985 progress report

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Caracciolo, R.

    1986-01-01

    For the past six years, the US Department of Energy, LLNL, and the ENEA, Rome, Italy, have participated in cooperative studies for improving a systems approach to an emergency response following nuclear accidents. Technology exchange between LLNL and the ENEA was initially confined to the development, application, and evaluation of atmospheric transport and diffusion models. With the emergence of compatible hardware configurations between LLNL and ENEA, exchanges of technology and ideas for improving the development and implementation of systems are beginning to emerge. This report describes cooperative work that has occurred during the past three years, the present state of each system, and recommendations for future exchanges of technology

  5. Modelling and experimental validation for off-design performance of the helical heat exchanger with LMTD correction taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Phu, Nguyen Minh; Trinh, Nguyen Thi Minh [Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-07-15

    Today the helical coil heat exchanger is being employed widely due to its dominant advantages. In this study, a mathematical model was established to predict off-design works of the helical heat exchanger. The model was based on the LMTD and e-NTU methods, where a LMTD correction factor was taken into account to increase accuracy. An experimental apparatus was set-up to validate the model. Results showed that errors of thermal duty, outlet hot fluid temperature, outlet cold fluid temperature, shell-side pressure drop, and tube-side pressure drop were respectively +-5%, +-1%, +-1%, +-5% and +-2%. Diagrams of dimensionless operating parameters and a regression function were also presented as design-maps, a fast calculator for usage in design and operation of the exchanger. The study is expected to be a good tool to estimate off-design conditions of the single-phase helical heat exchangers.

  6. PCM-air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes

    International Nuclear Information System (INIS)

    Lazaro, Ana; Dolado, Pablo; Marin, Jose M.; Zalba, Belen

    2009-01-01

    Latent heat storage using phase change materials (PCM) can be used for free-cooling. In this application low air temperature is used to solidify the PCM during the night and then during the next day, the inside air of a building can be cooled down by exchanging heat with PCM. Short times for charging and discharging the PCM are required. PCM have in general low thermal conductivity, therefore the heat exchanger design is very important to fulfil free-cooling requirements. This paper presents an experimental setup for testing PCM-air real-scale heat exchangers and the results for two real-scale prototypes. Results show that a heat exchanger using a PCM with lower thermal conductivity and lower total stored energy, but adequately designed, has higher cooling power and can be applied for free-cooling

  7. Experimental studies on coherent synchrotron radiaiton in the emittance exchange line at the Fermilab A0 Photoinjector

    International Nuclear Information System (INIS)

    Thangaraj, J.C.T.; Keup, R.; Johnson, A.; Ruan, J.; Piot, P.; Church, M.; Edwards, H.; Lumpkin, A.; Sun, Y.-E.; Santucci, J.

    2011-01-01

    Future accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. Coherent synchrotron radiation (CSR) in the dipoles could limit the performance of the emittance exchanger. In this paper, we report the experimental studies on measuring CSR and its effects on the beam at the A0 photoinjector in the emittance exchange line. After reporting the CSR power measurements, we report on the diagnostic scheme based on a weak skew quad in the emittance exchange line to study the CSR effects on the beam and other beam dynamics. In this work, we have reported on CSR measurements and the effect of skew quad on the dogleg line with the 5-cell turned on and off. We plan to study CSR effects on the bunch with the 5-cell on at larger chirp. This is will not only increase the CSR self-effect but also reduce the beamsize at the screen for convenient beamsize measurements.

  8. Mechanisms underlying gas exchange alterations in an experimental model of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    J.H.T. Ferreira

    2006-09-01

    Full Text Available The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg. The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13 consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction. The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg, but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg. Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg, as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution

  9. Experimental and parametric studies of a louvered fin and flat tube compact heat exchanger using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    P. Karthik

    2015-12-01

    Full Text Available The present study aimed to perform the parametric analysis on thermo-hydraulic performance of a compact heat exchanger using computational fluid dynamics (CFD. The analysis has been carried out at different frontal air velocities by varying the geometrical parameters such as fin pitch, transverse tube pitch, longitudinal tube pitch, louver pitch and louver angle. The air side performance of the heat exchanger has been evaluated by calculating Colburn factor (j and Fanning friction factor (f. The comparison of CFD results with the experimental data exhibited a good agreement and the influence of various geometrical parameters for the selected range of values on the pressure drop, heat transfer coefficient and goodness factor was analyzed. The results obtained from the analysis will be very useful to optimize the louvered fin and flat tube compact heat exchanger for better thermo-hydraulic performance analysis without the need of time consuming and expensive experimentation.

  10. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  11. Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space

    Science.gov (United States)

    Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.

    2018-01-01

    Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.

  12. Experimental demonstration of a tailored-width microchannel heat exchanger configuration for uniform wall temperature

    International Nuclear Information System (INIS)

    Riera, S; Barrau, J; Rosell, J I; Omri, M; Fréchette, L G

    2013-01-01

    In this work, an experimental study of a novel microfabricated heat sink configuration that tends to uniform the wall temperature, even with increasing flow temperature, is presented. The design consists of a series of microchannel sections with stepwise varying width. This scheme counteracts the flow temperature increase by reducing the local thermal resistance along the flow path. A test apparatus with uniform heat flux and distributed wall temperature measurements was developed for microchannel heat exchanger characterisation. The energy balance is checked and the temperature distribution is analysed for each test. The results show that the wall temperature decreases slightly along the flow path while the fluid temperature increases, highlighting the strong impact of this approach. For a flow rate of 16 ml/s, the mean thermal resistance of the heat sink is 2,35·10 −5 m 2 ·K/W which enhances the results compared to the millimeter scale channels nearly three-fold. For the same flow rate and a heat flux of 50 W/cm 2 , the temperature uniformity, expressed as the standard deviation of the wall temperature, is around 6 °C

  13. High temperature heat exchanger application in power engineering and energy-technological processes

    International Nuclear Information System (INIS)

    Shpilrain, E.E.

    1986-01-01

    The possibilities for intensification of various processes in metallurgy and chemical technology, the prospects for enhancing power plant efficiency are often linked with temperature increase of reagents, heat carriers and working fluids. In some cases elevated temperatures give the opportunity to use new and principally different technologies, enhance capacities of power production units and technological apparatuses, improve their economical performance. The variety of problems where high temperature heat exchangers are or can be used are extremely wide. It is therefore impossible to overview all of them in one lecture. Therefore the author tries to consider only some examples which are typical and gives an impression of what kind of problems arise in these cases

  14. Experimental temperature analysis of simple & hybrid earth air tunnel heat exchanger in series connection at Bikaner Rajasthan India

    Science.gov (United States)

    Jakhar, O. P.; Sharma, Chandra Shekhar; Kukana, Rajendra

    2018-05-01

    The Earth Air Tunnel Heat Exchanger System is a passive air-conditioning system which has no side effect on earth climate and produces better cooling effect and heating effect comfortable to human body. It produces heating effect in winter and cooling effect in summer with the minimum power consumption of energy as compare to other air-conditioning devices. In this research paper Temperature Analysis was done on the two systems of Earth Air Tunnel Heat Exchanger experimentally for summer cooling purpose. Both the system was installed at Mechanical Engineering Department Government Engineering College Bikaner Rajasthan India. Experimental results concludes that the Average Air Temperature Difference was found as 11.00° C and 16.27° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Maximum Air Temperature Difference was found as 18.10° C and 23.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Minimum Air Temperature Difference was found as 5.20° C and 11.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively.

  15. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  16. An experimental observation of the effect of flow direction for evaporation heat transfer in plate heat exchanger

    International Nuclear Information System (INIS)

    Lin, Yueh-Hung; Li, Guang-Cheng; Yang, Chien-Yuh

    2015-01-01

    This study provides an Infrared Thermal Image observation on the evaporation heat transfer of refrigerant R-410A in plate heat exchanger with various flow arrangement and exit superheat conditions. An experimental method was derived for estimating the superheat region area of two-phase refrigerant evaporation in plate heat exchanger. The experimental results show that the superheat region area for parallel flow is much larger than that for counter flow as that estimated by Yang et al. [9]. There is an early superheated region at the central part of the plate heat exchanger for parallel flow arrangement. This effect is not significant for counter flow arrangement. The Yang et al. [9] method under estimated the superheat area approximately 40%–53% at various flow rates and degree of exit superheat. Even though the flow inside a plate heat exchanger is extremely turbulent because of the chevron flow passages, the assumption of uniform temperature distribution in the cross section normal to the bulk flow direction will cause significant uncertainties for estimating the superheat area for refrigerant evaporating in a plate heat exchanger

  17. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2014-01-01

    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  18. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    Science.gov (United States)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  19. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  20. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

    Directory of Open Access Journals (Sweden)

    C.Q. Su

    2014-11-01

    Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

  1. Experimental (e, 2e) study of exchange interferences in the resonant Auger decay of Ar induced by electron impact

    International Nuclear Information System (INIS)

    Paripás, Béla; Palásthy, Béla; Žitnik, Matjaz

    2013-01-01

    Highlights: •The interference of autoionizing resonances with a common final ionic state is measured. •We have developed a method to experimentally verify for the exchange interference effect. •The sum of kinetic energies of the two detected electrons is kept constant. •Mainly the interference effects of [2p 3/2 ]4p and [2p 1/2 ]4p resonances in argon are studied. •The results possibly indicate small exchange interference effects. -- Abstract: Any two autoionizing resonances with a common final ionic state can be made to interfere by an appropriate selection of electron impact energy. To reveal the exchange interference effects a selective detection of electron pairs related to the selected final state is desired. We have performed a constant ionic state (e, 2e) experiment (CIS) isolating the final state by keeping the sum of transmission energies of two independent electron spectrometers constant. In the focus of this work are the exchange interference effects of 2p 3/2 −1 4p and 2p 1/2 −1 4p resonances in argon decaying to the 3p −2 ( 1 D)4p 2 P, 2 D final ionic state with energy E F = 37.3 ± 0.2 eV. We have developed a method to experimentally verify for the exchange interference effect. It is based on a comparison of the CIS spectrum recorded at the critical primary electron energy that activates the interferences, and the constructed, interference-free CIS spectrum that is build up from the CIS spectrum measured at primary electron energy away from the critical value. The results possibly indicate small exchange interference effects that may have been considerably smeared out at present experimental energy resolution

  2. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    International Nuclear Information System (INIS)

    King, W.

    2007-01-01

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  3. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  4. The structural innovative design of DN400 experimental facility with inversed U-shaped twin tower for uranium ion exchange

    International Nuclear Information System (INIS)

    Li Geng; Lei Ze'nan; Liu Qing

    2012-01-01

    A DN400 experimental facility with inversed U-shaped twin towers for uranium ion exchange is designed and developed to solve the existing problems in ion exchange equipment, such as easy agglomeration on the upper layer of resin bed, much resin abrasion, high sensitiveness for mud and sand, and difficulty in producing ideal plug flow in back-wash process. The facility combined with the valve control principle, cross flow type sieve plate and the unique inlet and outlet structures can solve the above problems, and the efficiency of uranium extraction can be improved significantly. (authors)

  5. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  6. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T P; Tchizhik, A A; Chavchanidze, N N [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1999-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  7. Experimental investigation of thermal neutron analysis based landmine detection technology

    International Nuclear Information System (INIS)

    Zeng Jun; Chu Chengsheng; Ding Ge; Xiang Qingpei; Hao Fanhua; Luo Xiaobing

    2013-01-01

    Background: Recently, the prompt gamma-rays neutron activation analysis method is wildly used in coal analysis and explosive detection, however there were less application about landmine detection using neutron method especially in the domestic research. Purpose: In order to verify the feasibility of Thermal Neutron Analysis (TNA) method used in landmine detection, and explore the characteristic of this technology. Methods: An experimental system of TNA landmine detection was built based on LaBr 3 (Ce) fast scintillator detector and 252 Cf isotope neutron source. The system is comprised of the thermal neutron transition system, the shield system, and the detector system. Results: On the basis of the TNA, the wide energy area calibration method especially to the high energy area was investigated, and the least detection time for a typical mine was defined. In this study, the 72-type anti-tank mine, the 500 g TNT sample and several interferential objects are tested in loess, red soil, magnetic soil and sand respectively. Conclusions: The experimental results indicate that TNA is a reliable demining method, and it can be used to confirm the existence of Anti-Tank Mines (ATM) and large Anti-Personnel Mines (APM) in complicated condition. (authors)

  8. Scientific Knowledge and Technology, Animal Experimentation, and Pharmaceutical Development.

    Science.gov (United States)

    Kinter, Lewis B; DeGeorge, Joseph J

    2016-12-01

    Human discovery of pharmacologically active substances is arguably the oldest of the biomedical sciences with origins >3500 years ago. Since ancient times, four major transformations have dramatically impacted pharmaceutical development, each driven by advances in scientific knowledge, technology, and/or regulation: (1) anesthesia, analgesia, and antisepsis; (2) medicinal chemistry; (3) regulatory toxicology; and (4) targeted drug discovery. Animal experimentation in pharmaceutical development is a modern phenomenon dating from the 20th century and enabling several of the four transformations. While each transformation resulted in more effective and/or safer pharmaceuticals, overall attrition, cycle time, cost, numbers of animals used, and low probability of success for new products remain concerns, and pharmaceutical development remains a very high risk business proposition. In this manuscript we review pharmaceutical development since ancient times, describe its coevolution with animal experimentation, and attempt to predict the characteristics of future transformations. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Experimental investigation of an active magnetic regenerative heat circulator applied to self-heat recuperation technology

    International Nuclear Information System (INIS)

    Kotani, Yui; Kansha, Yasuki; Ishizuka, Masanori; Tsutsumi, Atsushi

    2014-01-01

    An experimental investigation into an active magnetic regenerative (AMR) heat circulator based on self-heat recuperation technology, was conducted to evaluate its energy saving potential in heat circulation. In an AMR heat circulator, magnetocaloric effect is applied to recuperate the heat exergy of the process fluid. The recuperated heat can be reused to heat the feed process fluid and realize self-heat recuperation. In this paper, AMR heat circulator has newly been constructed to determine the amount of heat circulated when applied to self-heat recuperation and the energy consumption of the heat circulator. Gadolinium and water was used as the magnetocaloric working material and the process fluid, respectively. The heat circulated amount was determined by measuring the temperature of the process fluid and gadolinium. The net work input for heat circulation was obtained from the magnetizing and demagnetizing forces and the distance travelled by the magnetocaloric bed. The results were compared with the minimum work input needed for heat circulation derived from exergy loss during heat exchange. It was seen that the experimentally obtained value was close to the minimum work input needed for heat circulation. - Highlights: • AMR heat circulator has newly been constructed for experimental evaluation. • Heat circulation in the vicinity of Curie temperature was observed. • Energy consumption of an AMR heat circulator has been measured. • Energy saving for processes near Curie temperature of working material was seen

  10. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Koefoed-Nielsen, Jacob

    2008-01-01

    We hypothesized that apneic oxygenation, using an open lung approach, combined with extracorporeal CO2 removal, would provide adequate gas exchange in acute lung injury. We tested this hypothesis in nine anesthetized and mechanically ventilated pigs (85-95 kg), in which surfactant was depleted fr....../min. Thus, the method provided adequate gas exchange in this experimental model, suggesting that it might have potential as an alternative treatment modality in acute lung injury.......We hypothesized that apneic oxygenation, using an open lung approach, combined with extracorporeal CO2 removal, would provide adequate gas exchange in acute lung injury. We tested this hypothesis in nine anesthetized and mechanically ventilated pigs (85-95 kg), in which surfactant was depleted from...

  11. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  12. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges - 15066

    International Nuclear Information System (INIS)

    Sabharwall, P.; O'Brien, J.E.; Yoon, S.J.; Sun, X.

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic, materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The 3 loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuits heat exchangers (PCHEs) at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integrated System Test (ARTIST) facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 C. degrees), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF 4 ) flow loop operating at low pressure (0.2 MPa), at a temperature of ∼ 450 C. degrees. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift) in measuring operational data for extended periods of times, as data collected will be

  13. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  14. Improvements on heavy water separation technology by isotopic water-hydrogen sulfide exchange

    International Nuclear Information System (INIS)

    Peculea, M.

    1987-01-01

    A series of possible variance is presented for the heavy water separation technology by isotopic H 2 O-H 2 S exchange at dual temperatures. The critical study of these variants, which are considered as characteristic quantities for the isotopes transport (production) and the extraction level is related to a dual temperature plant fed by liquid and cold column, which is the up-to-date technology employed in all heavy water production plants as variants of following plants are studied: dual temperature plant with double feeding; dual-temperature plant with equilibrium column (booster); dual-temperature-dual-pressure plant. Attention is paid to the variant with equilibration column (booster), executed and tested at the State Committee for Nuclear Energy and to the dual-temperature-dual pressure plant which presents the highest efficiency. (author)

  15. Data exchange technology based on handshake protocol for industrial automation system

    Science.gov (United States)

    Astafiev, A. V.; Shardin, T. O.

    2018-05-01

    In the article, questions of data exchange technology based on the handshake protocol for industrial automation system are considered. The methods of organizing the technology in client-server applications are analyzed. In the process of work, the main threats of client-server applications that arise during the information interaction of users are indicated. Also, a comparative analysis of analogue systems was carried out, as a result of which the most suitable option was chosen for further use. The basic schemes for the operation of the handshake protocol are shown, as well as the general scheme of the implemented application, which describes the entire process of interaction between the client and the server.

  16. Experimental evidence for a vector-like behaviour of Pomeron exchange

    CERN Document Server

    Barberis, D.; Close, F.E.; Danielsen, K.M.; Donskov, S.V.; Earl, B.C.; Evans, D.; French, B.R.; Hino, T.; Inaba, S.; Jacholkowski, A.; Jacobsen, T.; Khaustov, G.V.; Kinson, J.B.; Kirk, A.; Kondashov, A.A.; Lednev, A.A.; Lenti, V.; Minashvili, I.; Peigneux, J.P.; Romanovsky, V.; Russakovich, N.; Semenov, A.; Shagin, P.M.; Shimizu, H.; Singovsky, A.V.; Sobol, A.; Stassinaki, M.; Stroot, J.P.; Takamatsu, K.; Tsuru, T.; Villalobos Baillie, O.; Votruba, M.F.; Yasu, Y.

    1999-01-01

    Evidence is presented that the Pomeron act as a non-conserved vector current. A study has been made of the azimuthal angle phi, which is defined as the angle between the pT vectors of the two outgoing protons, in the reaction pp -> pp(X0) for those resonances (X0) which are compatible with being produced by double Pomeron exchange. These distributions have been compared with a model which describes the Pomeron as a non-conserved vector current and a qualitative agreement is found. In addition, when one of the particles exchanged is known to have spin 0, namely pi-Pomeron exchange, the phi distribution is flat.

  17. Development of low temperature solid state joining technology of dissimilar for nuclear heat exchanger tube components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    By conventional fusion welding process (TIG), a realization of reliable and sound joints for the nuclear heat exchanger components is very difficult, especially for the parts comprising of the dissimilar metal couples (Ti-STS, Ti-Cu alloy etc.). This is mainly attributed to the formation of brittle intermetallics (Ti{sub x}Cu{sub y}, Ti{sub x}Fe{sub y}, Ti{sub x}Ni{sub y} etc.) and wide difference in physical properties. Moreover, it usually employs very high thermal input, so making it difficult to obtain sound joints due to generations of high residual stresses and degradation of the adjacent base metals, even for similar metal combinations. In this project, the low temperature solid-state joining technology was established by developing new alloy fillers, e.g. the multi-component eutectic based alloys or amorphous alloys, and thereby lowering the joining temperature down to {approx}800 .deg. C without affecting the structural properties of base metals. Based on a low temperature joining, the interlayer engineering technology was then developed to be able to eliminate the brittleness of the joints for strong Ti-STS dissimilar joints, and the diffusion brazing technology of Ti-Ti with a superior joining strength and corrosion-resistance comparable to those of base metal were developed. By using those developed technologies, the joining procedures feasible for the heat exchanger components were finally established for the dissimilar metal joints including Ti tube sheet to super STS tube, Ti tube sheet to super STS tube sheet, and the joints of the Ti tube to Ti tube sheet

  18. Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange

    Science.gov (United States)

    Haynes, Brian D.

    2015-01-01

    Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange is a two-year research effort to visualize the U. S. aviation industry at a point 50 years in the future, and to define potential communication solutions to meet those future data exchange needs. The research team, led by XCELAR, was tasked with identifying future National Airspace System (NAS) scenarios, determining requirements and functions (including gaps), investigating technical and business issues for air, ground, & air-to-ground interactions, and reporting on the results. The project was conducted under technical direction from NASA and in collaboration with XCELAR's partner, National Institute of Aerospace, and NASA technical representatives. Parallel efforts were initiated to define the information exchange functional needs of the future NAS, and specific communication link technologies to potentially serve those needs. Those efforts converged with the mapping of each identified future NAS function to potential enabling communication solutions; those solutions were then compared with, and ranked relative to, each other on a technical basis in a structured analysis process. The technical solutions emerging from that process were then assessed from a business case perspective to determine their viability from a real-world adoption and deployment standpoint. The results of that analysis produced a proposed set of future solutions and most promising candidate technologies. Gap analyses were conducted at two points in the process, the first examining technical factors, and the second as part of the business case analysis. In each case, no gaps or unmet needs were identified in applying the solutions evaluated to the requirements identified. The future communication solutions identified in the research comprise both specific link technologies and two enabling technologies that apply to most or all specific links. As a result, the research resulted in a new analysis approach, viewing the

  19. Experimental study of heat transfer in a transverse flow around the heat exchanger tubes bank by lead

    International Nuclear Information System (INIS)

    Berezin, A.N.; Grabezhnaya, V.A.; Mikheev, A.S.; Parfenov, A.S.

    2014-01-01

    The results of the work to determine the heat transfer coefficient in crossflow by lead of pipes are presented. The study was conducted at supercritical pressure in the water circuit. There was a significant inequality in the distribution of the heat flow in different rows of the bundle of heat exchange tubes of corridor location at crossflow their lead. The experimentally determined heat transfer coefficients from the lead differ substantially from those generally accepted recommendations for the calculation of heat transfer at cross flow of rod bundle by liquid metal. The experimental results are close to those obtained earlier on the model with cross flow of heat exchanger tubes bundle by lead alloy with bismuth [ru

  20. Experimental Ion Exchange Column With SuperLig 639 And Simulant Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Megan; Nash, C.

    2013-08-26

    SuperLig®639 ion exchange resin was tested as a retrieval mechanism for pertechnetate, through decontamination of a perrhenate spiked 5M Simple Average Na{sup +} Mass Based Simulant. Testing included batch contacts and a three-column ion exchange campaign. A decontamination of perrhenate exceeding 99% from the liquid feed was demonstrated. Analysis of the first formulation of a SBS/WESP simulant found unexpectedly low concentrations of soluble aluminum. Follow-on work will complete the formulation.

  1. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  2. Benefits from an exchange of knowledge in the treaty-related science and technologies: A personal perspective

    International Nuclear Information System (INIS)

    Marshall, P.D.

    1999-01-01

    This paper describes benefits from an exchange of knowledge in the non-proliferation treaty related science and technologies concerning science and technology development. Benefits to State Parties are concerned with non-treaty uses of seismic, hydro acoustic, infrasound and radionuclides data, their evaluation and measuring techniques

  3. An experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfire stop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. There is a separate appendix volume. 62 refs., 152 figs., 22 tabs.

  4. Biodiesel purification methodology produced in the RECOPE experimental plant, using ion exchange resins

    International Nuclear Information System (INIS)

    Calderon Hernandez, Teresita

    2016-01-01

    A methodology was proposed for the biodisel purification of crude palm oil produced in a plant located on the Refinadora Costarricense de Petroleo (RECOPE) campus in Alto de Ochomogo, using ion exchange resins. A comparison between two resins was carried out: the USF C-211H, which had been acquired together with the RECOPE experimental plant and the PD206 resin, which was in the process of being acquired at the time of starting the project. The biodisel was eluted by glass columns packed with each resin, to determine the saturation of the same. The percentage of free and bound glycerin and the presence of soaps were analyzed as response variables. With the results obtained, it was determined that the PD206 resin is more efficient in the removal of glycerin, soaps and methanol than the resin USF C-211H. However, neither of the two resins diminishes the acidity of the biodisel. A biodisel sample was eluted by the PD206 resin and the quality of the obtained product was analyzed. A flash point of 145 degrees was obtained. A total acid number of 0.82 mg KOH / G was shown, no presence of water or sediment was observed. The percentage value of carbon residue was 0.01% m / m, the cloud point was 12 degrees, the density at 15 degrees was 0.8713 g / cm 3 , the viscosity at 40 degrees was 2.75 mm 2 /s; the stability to oxidation was 14.5 h, the percentage of free glycerin was 0.01% m / m and the percentage of total glycerin was 0.06% m / m, finally a percentage of Fatty Acids Methyl Esters (FAME) of 98,6%. Of the analyzed parameters, all are within the limits established in the Reglamento Tecnico Centroamericano except the acidity value, which exceeds the maximum value of 0.05 mg KOH / g sample. An economic analysis was carried out to evaluate which resin provides the best option to complete the purification process of the biodisel produced. The PD206, despite being more expensive, purifies a larger volume of biodiesel, so for a better negotiation in the purchase price, this

  5. An experimental study on the thermal and fouling characteristics in a washable shell and helically coiled heat exchanger by the Wilson plot method

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kyoung Min; Ahn, Young Chull [Pusan National University, Busan (Korea, Republic of); Hwang, Jun Hyeon; Hur, Hyun; Na, Byung Chul; Hwang, Yoon Jae; Kim, Byung Soon [LG Electronics, Changwon (Korea, Republic of); Lee, Jae Keun [EcoEnergy Research Institute, Busan (Korea, Republic of)

    2016-06-15

    Brazed plate heat exchangers (BPHEX) are broadly used in water source heat pump systems for their large heat transfer capacity. Despite their high heat transfer rate, their high-performance rate tends to decrease sharply, due to fouling and they cannot be cleaned. So the thermal and fouling resistances of washable Shell and helically coiled tube heat exchangers (SCHEX) are designed and experimentally investigated in this study. Heat exchangers with two different tube types are studied and compared with a brazed plate heat exchanger. The overall thermal resistance coefficient of the heat exchangers as determined by using Wilson plots is 38% lower than that of the brazed plate heat exchanger at a Reynolds number of 2460. Fouling test results revealed that regular maintenance and physical cleaning can be used to maintain the thermal resistance of fouling of the washable heat exchanger at a level equal to or less than that of the brazed plate heat exchanger.

  6. Technology, Incentives, or Both? Factors Related to Level of Hospital Health Information Exchange.

    Science.gov (United States)

    Lin, Sunny C; Everson, Jordan; Adler-Milstein, Julia

    2018-02-28

    To assess whether the level of health information exchange (HIE) in U.S. hospitals is related to technology capabilities, incentives to exchange, or both. A total of 1,812 hospitals attesting to stage 2 of Medicare's Meaningful Use Incentive Program through April 2016. Hospital-level, multivariate OLS regression with state fixed effects was used to analyze the relationship between technology capability and incentives measures, and percent of care transitions with summary of care records (SCRs) sent electronically to subsequent providers. Stage 2 hospitals reported sending SCRs electronically for an average of 41 percent (median = 33 percent) of transitions. HIE level is related to four capability measures, one incentive measure, and one measure that is related to both capability and incentive. Percent of transitions with SCRs sent electronically was 3 percentage points higher (95 percent CI: 0.1-5.1) for hospitals with a third-party HIE vendor, 3 percentage points higher (95 percent CI: 0.5-5.4) for hospitals with an EHR vendor as their HIE vendor, and 3 percentage points higher (95 percent CI: 0.4-5.4) for hospitals that automatically alert primary care providers. The direction and statistical significance of the relationships between specific EHR vendor and electronic SCR transmission level varied by vendor. Nonprofits and government hospitals performed 5 percentage points higher (95 percent CI: 1.5-9.1) and 8 percentage points higher (95 percent CI: 3.4-12.3) than for-profits. Hospitals in systems performed 3 percentage points higher (95 percent CI: 0.8-6.1). The overall level of HIE is low, with hospitals sending an SCR electronically for less than half of patient transitions. Specific hospital characteristics related to both technology capabilities and incentives were associated with higher levels of HIE. © Health Research and Educational Trust.

  7. Entrepreneurship Education: An Experimental Study with Information and Communication Technology

    Directory of Open Access Journals (Sweden)

    Yenchun Jim Wu

    2018-03-01

    Full Text Available Entrepreneurship has been regarded as a new science in the promotion of economic development, which has led to rapid development in entrepreneurship education. The growing number of students enrolled in entrepreneurship programs creates unprecedented challenges on educators. Although multiple teaching and learning activities are adopted in entrepreneurship education, these are mainly carried out using traditional classroom lectures, case studies and group discussions. Nowadays, information & communication technology (ICT is used to enhance the effectiveness of traditional teaching methods and competency training. PowToon is a web-based ICT tool that hat allows teachers and students to quickly and easily create animated presentations. Using quasi-experimental design and qualitative method, this study is to examine whether PowToon is an effective tool for business plan presentation. The study find that the animated presentations attracted more investment than the groups that did not prepare animated videos. It reflects that developed videos which helps entrepreneurial team to better deliver their business ideas to investors in a well-thought out way. In addition, the results of the study show that individuals who generate a business idea did not necessarily significantly influence their investment decisions. Our findings challenge the concept on self-biases evaluations of the economic potential of their own business ideas. Finally, the students were very willing to adopt new ways of delivering their business ideas.

  8. Experimental study on the heat transfer characteristics in corrugated and flat plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hun; Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June [Busan National Univ., Busan (Korea, Republic of); Lim, Hyeok [DHT, Busan (Korea, Republic of)

    2003-07-01

    An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, the temperature and the pressure drop were measured. Furthermore, heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  9. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  10. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water.

    Science.gov (United States)

    Bergquist, Allison M; Choe, Jong Kwon; Strathmann, Timothy J; Werth, Charles J

    2016-06-01

    Ion exchange (IX) is the most common approach to treating nitrate-contaminated drinking water sources, but the cost of salt to make regeneration brine, as well as the cost and environmental burden of waste brine disposal, are major disadvantages. A hybrid ion exchange-catalyst treatment system, in which waste brine is catalytically treated for reuse, shows promise for reducing costs and environmental burdens of the conventional IX system. An IX model with separate treatment and regeneration cycles was developed, and ion selectivity coefficients for each cycle were separately calibrated by fitting experimental data. Of note, selectivity coefficients for the regeneration cycle required fitting the second treatment cycle after incomplete resin regeneration. The calibrated and validated model was used to simulate many cycles of treatment and regeneration using the hybrid system. Simulated waste brines and a real brine obtained from a California utility were also evaluated for catalytic nitrate treatment in a packed-bed, flow-through column with 0.5 wt%Pd-0.05 wt%In/activated carbon support (PdIn/AC). Consistent nitrate removal and no apparent catalyst deactivation were observed over 23 d (synthetic brine) and 45 d (real waste brine) of continuous-flow treatment. Ion exchange and catalyst results were used to evaluate treatment of 1 billion gallons of nitrate-contaminated source water at a 0.5 MGD water treatment plant. Switching from a conventional IX system with a two bed volume regeneration to a hybrid system with the same regeneration length and sequencing batch catalytic reactor treatment would save 76% in salt cost. The results suggest the hybrid system has the potential to address the disadvantages of a conventional IX treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Experimental measurements of the effects of frost formation on heat exchanger performance

    International Nuclear Information System (INIS)

    Emery, A.F.; Siegel, B.L.

    1990-01-01

    Frost formation on compact heat exchangers can lead to reductions in heat transfer of the order of 50 to 75% and to substantial increases in pressure drop. These effects are dependent upon the spatial pattern of the frost deposition, the growth history of the frost, and the thicknesses of the frost. This paper describes a series of experiments to measure the effects of frost when cold air (260 - 273 K) is passing through the exchanger. It is found that the thermal performance is a function of time and specific humidity levels while the pressure is function only of the frost thickness and surface roughness

  12. Experimental analysis of an air–water heat pump with micro-channel heat exchanger

    International Nuclear Information System (INIS)

    Brignoli, Riccardo; Cecchinato, Luca; Zilio, Claudio

    2013-01-01

    A multi-port extruded (MPE) aluminium flat tube air heat exchanger was compared to a round tube finned coil (FC). The MPE heat exchanger has parallel flow vertical tube configuration with headers in horizontal position and conventional folded louvred fins. The two heat exchangers were mounted on a 10 kW cooling capacity R410A packaged air heat pump. They were sized to approximately obtain the same cooling and heating capacities in chiller and heating mode, respectively. Climatic room steady state tests without frosting phenomena occurring during heat pump operation, demonstrated that the round tube and the flat tube heat exchanger performance are comparable. The MPE heat exchanger was tested with different refrigerant inlet distributor/outlet tubes configurations to investigate the effect of liquid refrigerant distribution. Cycling frosting/defrosting operations were tested with two equivalent machines placed in parallel outdoor and working at full load condition, one of the units was equipped with the MPE heat exchanger while the other mounted a standard finned coil. Penalization factors were analytically introduced to evaluate frosting associated heating energy and energy efficiency degradation. Test results indicate that both the heat pumps are penalized by frost formation but both the penalization factors are higher for the MPE-unit than the FC-unit one in the −6 to 4 °C air dry bulb temperature range. For the two units, a roughly linear dependence of the heating energy penalization factor and of the energy efficiency factor from the difference between outdoor air and saturated air at the evaporation temperature humidity ratio can be pointed out. - Highlights: ► A multi-port aluminium flat tube heat exchanger was compared to a round tube finned one in a heat pump application. ► In steady state tests without frosting the round and the flat tube heat exchanger are comparable. ► Different inlet distributor/outlet tubes configurations were tested to

  13. Eddy current technology for heat exchanger and steam generator tube inspection

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.; Lepine, B.; Lu, J.; Cassidy, R.; Carter, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2004-07-01

    A variety of degradation modes can affect the integrity of both heat exchanger (HX) and balance of plant tubing, resulting in expensive repairs, tube plugging or replacement of tube bundles. One key component for ensuring tube integrity is inspection and monitoring for detection and characterization of the degradation. In-service inspection of HX and balance of plant tubing is usually carried out using eddy current (EC) bobbin coils, which are adequate for the detection of volumetric degradations. However, detection and quantification of additional modes of degradation such as pitting, intergranular attack (IGA), axial cracking and circumferential cracking require specialized probes. The need for timely, reliable detection and characterization of these modes of degradation is especially critical in Nuclear Generating Stations. Transmit-receive single-pass array probes, developed by AECL, offer high defect detectability in conjunction with fast and reliable inspection capabilities. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection. Compared to impedance probes, they offer improved performance in the presence of variable lift-off. This EC technology can help resolve critical detection issues at susceptible areas, such as the rolled-joint transitions at the tubesheet, U-bends and tube-support intersections. This paper provides an overview of the operating principles and the capabilities of advanced ET inspection technology available for HX tube inspection. Examples of recent application of this technology in Nuclear Generating Stations (NGSs) are discussed. (author)

  14. Eddy current technology for heat exchanger and steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Lepine, B.; Lu, J.; Cassidy, R.; Carter, J.

    2004-01-01

    A variety of degradation modes can affect the integrity of both heat exchanger (HX) and balance of plant tubing, resulting in expensive repairs, tube plugging or replacement of tube bundles. One key component for ensuring tube integrity is inspection and monitoring for detection and characterization of the degradation. In-service inspection of HX and balance of plant tubing is usually carried out using eddy current (EC) bobbin coils, which are adequate for the detection of volumetric degradations. However, detection and quantification of additional modes of degradation such as pitting, intergranular attack (IGA), axial cracking and circumferential cracking require specialized probes. The need for timely, reliable detection and characterization of these modes of degradation is especially critical in Nuclear Generating Stations. Transmit-receive single-pass array probes, developed by AECL, offer high defect detectability in conjunction with fast and reliable inspection capabilities. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection. Compared to impedance probes, they offer improved performance in the presence of variable lift-off. This EC technology can help resolve critical detection issues at susceptible areas, such as the rolled-joint transitions at the tubesheet, U-bends and tube-support intersections. This paper provides an overview of the operating principles and the capabilities of advanced ET inspection technology available for HX tube inspection. Examples of recent application of this technology in Nuclear Generating Stations (NGSs) are discussed. (author)

  15. The strategic use of standardized information exchange technology in a university health system.

    Science.gov (United States)

    Cheng, Po-Hsun; Chen, Heng-Shuen; Lai, Feipei; Lai, Jin-Shin

    2010-04-01

    This article illustrates a Web-based health information system that is comprised of specific information exchange standards related to health information for healthcare services in National Taiwan University Health System. Through multidisciplinary teamwork, medical and informatics experts collaborated and studied on system scope definition, standard selection challenges, system implementation barriers, system management outcomes, and further expandability of other systems. After user requirement analysis and prototyping, from 2005 to 2008, an online clinical decision support system with multiple functions of reminding and information push was implemented. It was to replace its original legacy systems and serve among the main hospital and three branches of 180-200 clinics and 7,500-8,000 patient visits per day. To evaluate the effectiveness of this system, user surveys were performed, which revealed that the average score of user satisfaction increased from 2.80 to 3.18 on a 4-point scale. Among the items, especially e-learning for training service, courtesy communications for system requests, and courtesy communications for system operations showed statistically significant improvement. From this study, the authors concluded that standardized information exchange technologies can be used to create a brand new enterprise value and steadily obtain more competitive advantages for a prestige healthcare system.

  16. Design and technology parameters influence on durability for heat exchangers tube to tubesheet joints

    Science.gov (United States)

    Ripeanu, R. G.

    2017-02-01

    The main failures of heat exchangers are: corrosion of tubes and jacket, tubes blockage and failures of tube to tubesheet joints also by corrosion. The most critical zone is tube to tubesheet joints. Depending on types of tube to tubesheet joints, in order to better respect conditions of tension and compression, this paper analyses the tubesheet holes shapes, smooth and with a grove, on corrosion behavior. In the case of welding tubes with tubesheet, welding parameters modify corrosion behavior. Were realized welded joints by three welding regimes and tested at corrosion in two media, tap water and industrial water. Were tested also samples made of smooth tubes, finned tubes and tubes coated with a passive product as applied by a heat exchanger manufacturer. For all samples, the roughness parameters were measured, before and after the corrosion tests. The obtained corrosion rates show that stress values and their distribution along the joint modify the corrosion behavior. The optimum welding parameters were established in order to increase the joint durability. The paper has shown that passive product used is not proper chosen and the technology of obtaining rolled thread pipes diminishes tubes’ durability by increasing the corrosion rate.

  17. Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2007-01-01

    In this work, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was investigated theoretically and experimentally under the meteorological conditions of Cairo, Egypt. The author's earlier simulation program of wickless heat pipes flat plate solar water heaters was modified to be valid for the present type of wickless heat pipes solar collector by including the solution of the dimensionless governing equations of the present analysis. For verifying the modified simulation program, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was designed, constructed, and tested at different meteorological conditions and operating parameters. These parameters include different cooling water mass flow rates and different inlet cooling water temperatures. The comparison between the experimental results and their corresponding simulated ones showed considerable agreement. Under different climatic conditions, the experimental and theoretical results showed that the optimal mass flow rate is very close to the ASHRAE standard mass flow rate for testing conventional flat plate solar collectors. Also, the experimental and theoretical results indicated that the number of wickless heat pipes has a significant effect on the collector efficiency

  18. HEALTH RECORDS AND INFORMATION TECHNOLOGY IN SUPPORT OF EXCHANGE OF HEALTH INFORMATION

    Directory of Open Access Journals (Sweden)

    Jordan Deliversky

    2017-05-01

    Full Text Available The exchange of health information in conditions directly related to electronic environment is referred as health information technology. Usually the protection of personal health related data is comprised of various elements such as ways of information usage and access to sensitive health information. The protection of individually identifiable health information is possible with combination of measures. Protective measures include administrative, technical and physical elements. Through such protective measures is possible to ensure confidentiality, integrity and availability of the information, while at the same time could be guaranteed the prevention of unauthorized access. Sensitive records usually contain personal health information. Personal medical data requires high level of protection, as its content includes medical condition or diagnosis, where unauthorized access could have negative impact on one’s personal and professional life.

  19. Experimental test of a supercritical helium heat exchanger dedicated to EUROTRANS 150 kW CW power coupler

    Science.gov (United States)

    Souli, M.; Fouaidy, M.; Hammoudi, N.

    2010-05-01

    The coaxial power coupler needed for beta = 0.65 superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the proton beam. The estimated RF losses on the power coupler outer conductor in standing wave mode operation are 46 W. To remove these heat loads, a full scale copper coil heat exchanger brazed around the outer conductor was designed and tested using supercritical helium at T = 6 K as a coolant. Our main objective was to minimise the heat loads to cold extremity of SRF cavity maintained at 2 K or 4.2 K. A dedicated test facility named SUPERCRYLOOP was developed and successfully operated in order to measure the performance of the cold heat exchanger. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryomodule. After a short introduction, a brief discussion about the problem of power coupler cooling systems in different machines is made. After that, we describe the experimental set-up and test apparatus. Then, a heat exchanger thermal model will be developed with FEM code COSMOS/M to estimate the different heat transfer coefficients by comparison between numerical simulation results and experimental data in order to validate the design. Finally, thermo-hydraulic behavior of supercritical helium has been investigated as function of different parameters (inlet pressure, flow rate, heat loads).

  20. Experimental investigation and CFD simulation of multi-pipe earth-to-air heat exchangers (EAHEs) flow performance

    Science.gov (United States)

    Amanowicz, Łukasz; Wojtkowiak, Janusz

    2017-11-01

    In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.

  1. Experimental and CFD Analysis of Printed Circuit Heat Exchanger for Supercritical CO{sub 2} Power Cycle Application

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Kim, Hyeon Tae; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The supercritical carbon dioxide (S-CO{sub 2}) power cycle has been suggested as an alternative for the SFR power generation system. First of all, relatively mild sodium-CO{sub 2} interaction can reduce the accident probability. Also the S-CO{sub 2} power conversion cycle can achieve high efficiency with SFR core thermal condition. Moreover, the S-CO{sub 2} power cycle can reduce cycle footprint due to high density of the working fluid. Recently, various compact heat exchangers have been studied for developing an optimal heat exchanger. In this paper, the printed circuit heat exchanger was selected for S-CO{sub 2} power cycle applications and was closely investigated experimentally and analytically. Recently, design and performance prediction of PCHE received attention due to its importance in high pressure power systems such as S-CO{sub 2} cycle. To evaluate a PCHE performance with CO{sub 2} to water, KAIST research team designed and tested a lab-scale PCHE. From the experimental data and CFD analysis, pressure drop and heat transfer correlations are obtained. For the CFD analysis, Ansys-CFX commercial code was utilized with RGP table implementation. In near future, the turbulence model sensitivity study will be followed.

  2. Experimental investigation of thermal-hydraulic performance of PCCS with horizontal tube heat exchangers: single U-tube test

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Anoda, Yoshinari; Arai, Kenji; Kurita, Tomohisa

    2000-01-01

    JAERI and JAPC started a cooperative study to verify performance of a PCCS (Passive Containment Cooling System) using horizontal heat exchanger for next-generation BWR in 1998. A test facility with a horizontal single U-tube was constructed in JAERI in 1999 to investigate fundamental condensation behavior under influences of non-condensable gas. Preliminary pre-test analyses were performed using RELAP5/ MOD3.2.1.2 code to expect the experimental outcomes by incorporating a correlation for condensation degradation because of non-condensable gas by Ueno et al. for better prediction. Preliminary results from both experiments (shakedown) and pre-test analyses indicated that the PCCS using horizontal U-tube heat exchanger is promising. Steam generated under assumed severe accident conditions; steam generation rate approx. = 1% core power, non-condensable gas concentration of 1% and simulated containment vessel pressure of 0.7 MPa, was totally condensed with a small differential pressure across inlet and outlet plenum. Experimental data will be accumulated to develop models and correlations for a better prediction of responses of the PCCS using horizontal heat exchanger during postulated severe accidents. (author)

  3. Experimental investigation of using ambient energy to cool Internet Data Center with thermosyphon heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Tian, X.; Ma, G. [Beijing Univ. of Technology, Beijing (China). College of Environmental and Energy Engineering

    2010-07-01

    The energy consumption of the air-conditioning system at the Internet Data Center (IDC) in Beijing comprises 40 per cent of the building's total energy consumption. Of all the energy energy management strategies available at the IDC, the most unique one is the use of ambient energy to cool the IDC by the thermosyphon heat exchanger. Atmospheric energy can reduce the air conditioner's running time while maintaining the humidity and cleanliness of the IDC. In this study, an IDC test model was set up to analyze the heat dissipating characteristics and the energy consumption of the thermosyphon heat exchanger and the air conditioner in the IDC for winter conditions. The heat dissipating capacity of the building envelope was measured and calculated. The energy consumption of the air conditioner was compared under different indoor and outdoor temperatures. The study showed that the heat dissipating need of the IDC cannot be met just by the heat dissipation of the building envelope in winter conditions. The heat dissipating capacity of the IDC building envelope comprises 19.5 per cent of the total heat load. The average energy consumption of the air conditioner is 3.5 to 4 kWh per day. The temperature difference between indoor and outdoor temperature in the IDC with the thermosyphon heat exchanger was less than 20 degrees C, and the energy consumption of the thermosyphon heat exchanger comprised only 41 per cent of that of the air conditioner. 8 refs., 1 tab., 8 figs.

  4. Experimental study on ceramic membrane technology for onboard oxygen generation

    OpenAIRE

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  5. Values exchange: using online technology to raise awareness of values and ethics in radiography education.

    Science.gov (United States)

    Mc Inerney, John; Lees, Amanda

    2018-03-01

    Ethics and values are increasingly significant aspects of patient-centred healthcare. While it is widely agreed that ethics and values are essential for healthcare delivery, there is also an acknowledgement that these are areas that are challenging to teach. The purpose of this study is to report a small-scale evaluative research project of a web-based technology with the educational potential to facilitate learning in relation to ethics, values, self-reflection and peer-based learning. Five diagnostic radiography students took part in a semi-structured focus group with the aim of exploring their experiences of using Values Exchange, an online ethical decision-making framework, to examine practice-based ethical issues. Transcripts were interrogated for key themes. From the thematic analysis three major themes emerged, understanding and appreciating others, addressing the theory-practice gap and delivering a safe and effective learning environment. Perceived limitations of the platform included students' fear of misinterpreted responses and possibility of poor group dynamics. There are varied approaches to how ethics and values are taught and assessed within health-related environments. Values Exchange is one such teaching tool and has been investigated and described positively by radiography students in this study. Online teaching tools can have a positive effect in helping students identify their own values but require skilled implementation to reap positive rewards. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  6. A Review of the Experimental and Modeling Development of a Water Phase Change Heat Exchanger for Future Exploration Support Vehicles

    Science.gov (United States)

    Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan

    2011-01-01

    Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.

  7. Numerical simulation and experimental validation of internal heat exchanger influence on CO{sub 2} trans-critical cycle performance

    Energy Technology Data Exchange (ETDEWEB)

    Rigola, Joaquim; Ablanque, Nicolas; Perez-Segarra, Carlos D.; Oliva, Assensi [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, C. Colom 11, 08222 Terrassa (Barcelona) (Spain)

    2010-06-15

    The present paper is a numerical and experimental comparative study of the whole vapour compression refrigerating cycle in general, and reciprocating compressors in particular, with the aim of showing the possibilities that CO{sub 2} offers for commercial refrigeration, considering a single-stage trans-critical cycle using semi-hermetic reciprocating compressors under small cooling capacity systems. The present work is focussed on the influence of using an internal heat exchanger (IHX) in order to improve the cycle performance under real working conditions. In order to validate the numerical results, an experimental unit specially designed and built to analyze trans-critical refrigerating equipments considering IHX has been built. Both numerical results and experimental data show reasonable good agreement, while the comparative global values conclude the improvement of cooling capacity and COP when IHX is considered in the CO{sub 2} trans-critical cycle. (author)

  8. Effect of Air Cleaning Technologies in Conjunction With the Use of Rotary Heat Exchangers in Residential Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Bergsøe, Niels Christian; Ekberg, Lars

    2013-01-01

    This study is part of a research project concerning the possibilities of applying efficient air cleaning technologies using rotary heat exchanger in residential buildings. The purpose of this project was to identify and adapt new air-cleaning technologies for implementation in HVAC systems...... with rotary air-to-air heat exchangers. For this purpose, a mechanical filter with low pressure drop and a 4 cm thick activated carbon filter were selected for testing in a laboratory environment. The measurements included testing of the filters, separately and combined, in a ductwork to study the efficiency...

  9. Experimental Study on the Airside Performance of Aluminum Heat Exchangers Having Slim Louver Fins

    International Nuclear Information System (INIS)

    Kim, Nae Hyun; Cho, Honggi

    2017-01-01

    Recent trends in slim air conditioners require heat exchangers of reduced flow depth. In this study, slim louver fin geometry was obtained using predictive correlations. The deduced geometry yielded 10 mm flow depth, 0.9 mm louver pitch, and 35° louver angle. Samples were made and tests were conducted. The new slim sample yielded 36% higher j factor and 2.3% higher f factor compared with those of the standard sample. This implies that 26% reduction of heat exchanger volume was possible by reducing the flow depth. In addition, the j/f1/3 of the slim sample was 55% larger than that of the standard sample. Furthermore, the results are compared with predictions made using existing correlations.

  10. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    International Nuclear Information System (INIS)

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  11. Experimental Study on the Airside Performance of Aluminum Heat Exchangers Having Slim Louver Fins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nae Hyun [Incheon Nat’l Univ., Incheon (Korea, Republic of); Cho, Honggi [Samsung Electronics Daejeon, Suwon (Korea, Republic of)

    2017-09-15

    Recent trends in slim air conditioners require heat exchangers of reduced flow depth. In this study, slim louver fin geometry was obtained using predictive correlations. The deduced geometry yielded 10 mm flow depth, 0.9 mm louver pitch, and 35° louver angle. Samples were made and tests were conducted. The new slim sample yielded 36% higher j factor and 2.3% higher f factor compared with those of the standard sample. This implies that 26% reduction of heat exchanger volume was possible by reducing the flow depth. In addition, the j/f1/3 of the slim sample was 55% larger than that of the standard sample. Furthermore, the results are compared with predictions made using existing correlations.

  12. Experimental evaluation of a Pt based heat exchanger methanol reformer for a HTPEM fuel cell

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2007-01-01

    The storage of hydrogen in hydrogen consuming applications is often inconvenient because of the very low density of hydrogen even at high pressures (0.014 kg/L @ 300 bar) or cryogenically (0.043 kg/L). Much higher volumetric energy densities can be achieved using liquid hydrocarbons as e.g. metha...... (up to 1-2%). This work examines the possibility of using a catalyst coated plate heat exchanger for the reforming process of methanol....

  13. Experimental results for hydrocarbon refrigerant vaporization in brazed plate heat exchangers at high pressure

    OpenAIRE

    Desideri, Adriano; Rhyl Kaern, Martin; Ommen Schmidt, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In recent years the interest in small capacity organic Rankine cycle (ORC) power systems for harvesting low quality waste thermal energy from industrial processes has been steadily growing. Micro ORC systems are normally equipped with brazed plate heat exchangers which allows for efficient heat transfer with a compact design. An accurate prediction of the heat transfer process characterizing these devices is required from the design phase to the development of model- based control strategies....

  14. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    OpenAIRE

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is d...

  15. Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators

    Directory of Open Access Journals (Sweden)

    Shengqiang Bai

    2014-11-01

    Full Text Available Ideal heat exchangers recover as much heat as possible from an engine exhaust at the cost of an acceptable pressure drop. They provide primary heat for a thermoelectric generator (TEG, and their capacity and efficiency is dependent on the material, shape, and type of the heat exchanger. Six different exhaust heat exchangers were designed within the same shell, and their computational fluid dynamics (CFD models were developed to compare heat transfer and pressure drop in typical driving cycles for a vehicle with a 1.2 L gasoline engine. The result showed that the serial plate structure enhanced heat transfer by 7 baffles and transferred the maximum heat of 1737 W. It also produced a maximum pressure drop of 9.7 kPa in a suburban driving cycle. The numerical results for the pipe structure and an empty cavity were verified by experiments. Under the maximum power output condition, only the inclined plate and empty cavity structure undergoes a pressure drop less than 80 kPa, and the largest pressure drop exceeds 190 kPa. In this case, a mechanism with a differential pressure switch is essential to bypass part of the exhaust.

  16. The Analysis and Structuring of the Causes Impeding the Introduction of Advanced Technologies for Exchange Grain Trading

    Directory of Open Access Journals (Sweden)

    Vinnychenko Olena V

    2015-03-01

    Full Text Available In the article the main causes impeding the development and introduction of advanced technologies for grain trading on commodity exchanges in Ukraine have been identified and structured. The generalization of existing shortcomings in operation of the domestic commodity exchanges has served the basis for the model, within which there were built: a directed graph of correlations between the above mentioned shortcomings in the operation of exchanges, the matrix of dependency and reachability. The causes have been identified and structured, the main ones being determined, which, in turn, makes it possible to carry out the correct sequence of actions and emphasize the primary issues requiring priority solutions at making management decisions in order to promote the grain exchange market. The suggested approach clearly shows the correlation between the existing causes and sequence of their elimination.

  17. Are happier people less judgmental of other people's selfish behaviors? Experimental survey evidence from trust and gift exchange games.

    Science.gov (United States)

    Drouvelis, Michalis; Powdthavee, Nattavudh

    2015-10-01

    What determines people's moral judgments of selfish behaviors? Here we study whether people's normative views in trust and gift exchange games, which underlie many situations of economic and social significance, are themselves functions of positive emotions. We use experimental survey methods to investigate the moral judgments of impartial observers empirically, and explore whether we could influence subsequent judgments by deliberately making some individuals happier. We find that moral judgments of selfish behaviors in the economic context depend strongly on the behavior of the interaction partner of the judged person, but their relationships are significantly moderated by an increase in happiness for the person making the judgment.

  18. On the Experimental Investigation of the Clamping Pressure Effects on the Proton Exchange Membrane Water Electrolyser Cell Performance

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Frensch, Steffen Henrik; Kær, Søren Knudsen

    2017-01-01

    energy sources. The proton exchange membrane water electrolyser(PEMWE) is the most candidate technology to produce hydrogen from renewable energysources. PEMWE cell splits water into hydrogen and oxygen when an electric current is passedthrough it. Electrical current forces the positively charged ions...... to migrate to negatively chargedcathode, where hydrogen is reduced. Meanwhile, oxygen is produced at the anode sideelectrode and escape as a gas with the circulating water. In the recent few years, PEMWE’s R&D has inched towards; operating conditions; such asincreased operating temperature and cathode...

  19. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  20. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  1. Newly available technologies present expanding opportunities for scientific and technical information exchange

    Science.gov (United States)

    Tolzman, Jean M.

    1993-01-01

    The potential for expanded communication among researchers, scholars, and students is supported by growth in the capabilities for electronic communication as well as expanding access to various forms of electronic interchange and computing capabilities. Increased possibilities for information exchange, collegial dialogue, collaboration, and access to remote resources exist as high-speed networks, increasingly powerful workstations, and large, multi-user computational facilities are more frequently linked and more commonly available. Numerous writers speak of the telecommunications revolution and its impact on the development and dissemination of knowledge and learning. One author offers the phrase 'Scholarly skywriting' to represent a new form of scientific communication that he envisions using electronic networks. In the United States (U.S.), researchers associated with the National Science Foundation (NSF) are exploring 'nationwide collaboratories' and 'digital collaboration.' Research supported by the U.S. National Aeronautics and Space Administration (NASA) points to a future where workstations with built-in audio, video monitors, and screen sharing protocols are used to support collaborations with colleagues located throughout the world. Instruments and sensors located worldwide will produce data streams that will be brought together, analyzed, and distributed as new findings. Researchers will have access to machines that can supply domain-specific information in addition to locator and directory assistance. New forms of electronic journals will emerge and provide opportunities for researchers and scientists to exchange information electronically and interactively in a range of structures and formats. Ultimately, the wide-scale use of these technologies in the dissemination of research results and the stimulation of collegial dialogue will change the way we represent and express our knowledge of the world. A new paradigm will evolve--perhaps a truly worldwide

  2. Health information exchange technology on the front lines of healthcare: workflow factors and patterns of use

    Science.gov (United States)

    Johnson, Kevin B; Lorenzi, Nancy M

    2011-01-01

    Objective The goal of this study was to develop an in-depth understanding of how a health information exchange (HIE) fits into clinical workflow at multiple clinical sites. Materials and Methods The ethnographic qualitative study was conducted over a 9-month period in six emergency departments (ED) and eight ambulatory clinics in Memphis, Tennessee, USA. Data were collected using direct observation, informal interviews during observation, and formal semi-structured interviews. The authors observed for over 180 h, during which providers used the exchange 130 times. Results HIE-related workflow was modeled for each ED site and ambulatory clinic group and substantial site-to-site workflow differences were identified. Common patterns in HIE-related workflow were also identified across all sites, leading to the development of two role-based workflow models: nurse based and physician based. The workflow elements framework was applied to the two role-based patterns. An in-depth description was developed of how providers integrated HIE into existing clinical workflow, including prompts for HIE use. Discussion Workflow differed substantially among sites, but two general role-based HIE usage models were identified. Although providers used HIE to improve continuity of patient care, patient–provider trust played a significant role. Types of information retrieved related to roles, with nurses seeking to retrieve recent hospitalization data and more open-ended usage by nurse practitioners and physicians. User and role-specific customization to accommodate differences in workflow and information needs may increase the adoption and use of HIE. Conclusion Understanding end users' perspectives towards HIE technology is crucial to the long-term success of HIE. By applying qualitative methods, an in-depth understanding of HIE usage was developed. PMID:22003156

  3. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger

    Science.gov (United States)

    Akyürek, Eda Feyza; Geliş, Kadir; Şahin, Bayram; Manay, Eyüphan

    2018-06-01

    Nanofluids are a novel class of heat transfer suspensions of metallic or nonmetallic nanopowders with a size of less than 100 nm in base fluids and they can increase heat transfer potential of the base fluids in various applications. In the last decade, nanofluids have become an intensive research topic because of their improved thermal properties and possible heat transfer applications. For comparison, an experiment using water as the working fluid in the heat exchanger without wire coils was also performed. Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3-water nanofluids in a concentric tube heat exchanger with and without wire coil turbulators were experimentally investigated in this research. Experiments effected particle volume concentrations of 0.4-0.8 to 1.2-1.6 vol% in the Reynolds number range from 4000 to 20,000. Two turbulators with the pitches of 25 mm and 39 mm were used. The average Nusselt number increased with increasing the Reynolds number and particle concentrations. Moreover, the pressure drop of the Al2O3-water nanofluid showed nearly equal to that of pure water at the same Reynolds number range. As a result, nanofluids with lower particle concentrations did not show an important influence on pressure drop change. Nonetheless, when the wire coils used in the heat exchanger, it increased pressure drop as well as the heat transfer coefficient.

  4. Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery

    International Nuclear Information System (INIS)

    Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.

    2015-01-01

    Highlights: • An optimized finned-tube heat exchanger is modeled. • Artificial Neural Networks and Genetic Algorithm are applied. • Exergy recovery from exhaust of a diesel engine is studied. - Abstract: In this research, a multi objective optimization based on Artificial Neural Network (ANN) and Genetic Algorithm (GA) are applied on the obtained results from numerical outcomes for a finned-tube heat exchanger (HEX) in diesel exhaust heat recovery. Thirty heat exchangers with different fin length, thickness and fin numbers are modeled and those results in three engine loads are optimized with weight functions for pressure drop, recovered heat and HEX weight. Finally, two cases of HEXs (an optimized and a non-optimized) are produced experimentally and mounted on the exhaust of an OM314 diesel engine to compare their results in heat and exergy recovery. All experiments are done for five engine loads (0%, 20%, 40%, 60% and 80% of full load) and four water mass flow rates (50, 40, 30 and 20 g/s). Results show that maximum exergy recovers occurs in high engine loads and optimized HEX with 10 fins have averagely 8% second law efficiency in exergy recovery

  5. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    International Nuclear Information System (INIS)

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    Highlights: • An integrated thermal management system is proposed for electric vehicle. • The parallel branch of battery chiller can supply additional cooling capacity. • Heat pipe performance on preheating mode is better than that on cooling mode. • Heat pipe heat exchanger is a feasible choice for battery thermal management. - Abstract: An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is designed to meet the basic cabinet cooling demand, the additional parallel branch of battery chiller is a good way to solve the battery group cooling problem, which can supply about 20% additional cooling capacity without input power increase. Its coefficient of performance for cabinet heating is around 1.34 at −20 °C out-car temperature and 20 °C in-car temperature. The specific heat of the battery group is tested about 1.24 kJ/kg °C. There exists a necessary temperature condition for the heat pipe heat exchanger to start action. The heat pipe heat transfer performance is around 0.87 W/°C on cooling mode and 1.11 W/°C on preheating mode. The gravity role makes the heat transfer performance of the heat pipe on preheating mode better than that on cooling mode.

  6. Ion exchange and dehydration experimental studies of clinoptilolite: Implications to zeolite dating

    International Nuclear Information System (INIS)

    WoldeGabriel, G.

    1995-02-01

    Variable effects were noted on the argon (Ar) and potassium (K) contents of clinoptilolite fractions used in ion-exchange and dehydration experiments. The K contents of clinoptilolite fractions were differently affected during cation exchange with Ca-, Cs-, K-, and Na-chloride solutions. Ar was generally less affected during these experiments, except for a Na-clinoptitolite fraction exchanged for five days. Loss of Ar during organic heavy-liquid treatment and cleaning using acetone and deionized water does occur, as indicated by comparing the amounts of radiogenic Ar of treated and untreated fractions. Moreover, a regular decrease in radiogenic Ar contents was noted in clinoptilolite fractions during dehydration experiments at different temperatures for 16 hours. Comparable losses do not occur from saturated samples that were heated in 100 C for more than five months. Water appears to play a vital role in stabilizing the clinoptilolite framework structure and in the retention of Ar. The radiogenic Ar depletion pattern noted in clinoptilolite fractions dehydrated in unsaturated environment at different temperatures is similar to variations in the amount of radiogenic Ar observed in clinoptilolite samples from the unsaturated zone of an altered tuff. These results can be used to evaluate the extent of zeolitic water (and hence Ar) retention in unsaturated geologic settings. The utility of alkali zeolites (e.g., phillipsite, clinoptilolite, and mordenite) from low-temperature, open-hydrologic alteration as potential dateable minerals was evaluated using the K/Ar method as part of the Yucca Mountain Site Characterization Project, which is evaluating Yucca Mountain, Nevada, as a potential high-level radioactive waste repository site

  7. Experimental study of the structure of vapor phase during boiling of R134a on heat exchange surfaces of heat pump

    Science.gov (United States)

    Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.

    2017-10-01

    The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.

  8. Experimental Study of Evaporative Heat Transfer Characteristics of R-134a with Channel-Bending Angle in Microchannel Heat Exchangers

    International Nuclear Information System (INIS)

    Lee, Hae Seung; Jeon, Dong Soon; Kim, Young Lyoul; Kim, Seon Chang

    2010-01-01

    Experimental investigations have been carried out to examine the evaporative heat transfer characteristics of R-134a with the channel-bending angle (CBA) in microchannel heat exchangers. In this study, we examined the effects of evaporation temperature and Reynolds number of R-134a on the evaporative heat transfer characteristics of R-134a in microchannel heat exchangers with CBAs of 120 .deg. , 150 .deg. , and 180 .deg. under counterflow conditions. Experimental results show that the evaporative heat transfer rate and evaporative heat transfer coefficient increased with an increase in the Reynolds number of R-134a. Further, the evaporative heat transfer rate corresponding to CBAs of 120 .deg. and 150 .deg. increased to values greater than the evaporative heat transfer rate corresponding to 180 .deg. by approximately 17.1% and 13.3%, respectively, for evaporating temperatures in the range 4.9-14.9 .deg. C. The evaporative heat transfer coefficient was affected by the channel angle with increasing evaporative heat transfer coefficient at small channel bending angle

  9. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  10. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  11. Sodium/hydrogen-exchanger inhibition during cardioplegic arrest and cardiopulmonary bypass: an experimental study.

    Science.gov (United States)

    Cox, Charles S; Sauer, Henning; Allen, Steven J; Buja, L Maximilian; Laine, Glen A

    2002-05-01

    We sought to determine whether pretreatment with a sodium/hydrogen-exchange inhibitor (EMD 96 785) improves myocardial performance and reduces myocardial edema after cardioplegic arrest and cardiopulmonary bypass. Anesthetized dogs (n = 13) were instrumented with vascular catheters, myocardial ultrasonic crystals, and left ventricular micromanometers to measure preload recruitable stroke work, maximum rate of pressure rise (positive and negative), and left ventricular end-diastolic volume and pressure. Cardiac output was measured by means of thermodilution. Myocardial tissue water content was determined from sequential biopsy. After baseline measurements, hypothermic (28 degrees C) cardiopulmonary bypass was initiated. Cardioplegic arrest (4 degrees C Bretschneider crystalloid cardioplegic solution) was maintained for 2 hours, followed by reperfusion-rewarming and separation from cardiopulmonary bypass. Preload recruitable stroke work and myocardial tissue water content were measured at 30, 60, and 120 minutes after bypass. EMD 96 785 (3 mg/kg) was given 15 minutes before bypass, and 2 micromol was given in the cardioplegic solution. Control animals received the same volume of saline vehicle. Arterial-coronary sinus lactate difference was similar in both animals receiving EMD 96 785 and control animals, suggesting equivalent myocardial ischemia in each group. Myocardial tissue water content increased from baseline in both animals receiving EMD 96 785 and control animals with cardiopulmonary bypass and cardioplegic arrest but was statistically lower in animals receiving EMD 96 785 compared with control animals (range, 1.0%-1.5% lower in animals receiving EMD 96 785). Preload recruitable stroke work decreased from baseline (97 +/- 2 mm Hg) at 30 (59 +/- 6 mm Hg) and 60 (72 +/- 9 mm Hg) minutes after cardiopulmonary bypass and cardioplegic arrest in control animals; preload recruitable stroke work did not decrease from baseline (98 +/- 2 mm Hg) in animals receiving

  12. Experimental investigation of Cu-based, double-layered, microchannel heat exchangers

    International Nuclear Information System (INIS)

    Lu, Bin; Meng, W J; Mei, Fanghua

    2013-01-01

    Cu-based, single- and double-layered, microchannel heat exchangers (MHEs) were fabricated and assembled. Comparative measurements on liquid flow characteristics and heat transfer performance were conducted on these devices. Results were compared at the individual microchannel level as well as at the device level. The present results demonstrate that double-layered MHEs exhibit similar heat transfer performance while suffering a much lower pressure drop penalty compared to single-layered MHEs. Another Cu-based, double-layered, liquid–liquid counter-flow MHE was fabricated, assembled and tested. Results show that a low-volume, multilayered, high-performance, liquid-to-liquid MHE is achievable following the manufacturing protocols of the present double-layered, liquid–liquid counter-flow MHE. (paper)

  13. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  14. Experimental results for hydrocarbon refrigerant vaporization inside brazed plate heat exchangers at high pressure

    DEFF Research Database (Denmark)

    Desideri, Adriano; Ommen, Torben Schmidt; Wronski, Jorrit

    2016-01-01

    fluids at typical working conditions of ORC systems for low temperature waste heat recovery (WHR) applications. Based on these premises, a novel testrig has been recently designed and built at the Technical University of Denmark to simulate the evaporating condition occurring in a small capacity ORC...... power unit. In this contribution the preliminary experimental results obtained from the first experimental campaign carried out on the rig are reported. HFC-134a was selected as working fluid. The experiments were carried out at saturation temperature of 60, 70 and 80 °C and inlet and outlet qualities...

  15. RIAR experimental base development concept 1. Multi-purpose pyrochemical complex for experimental justification of innovative closed fuel cycle technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, A.V.; Kormilitsyn, M.V. [Research Institute of Atomic Reactors, Dimitrovgrad-10, Ulyanovsk region, 433510 (Russian Federation)

    2009-06-15

    The principles of closed FC arrangement on the basis of non-aqueous methods allow the development of production addressing two tasks simultaneously: production of fresh fuel and reprocessing of irradiated fuel, that makes it possible to achieve the industrial level of implementation of closed FC of fast reactors of new generation in a series variant of standardized process modules on the basis of innovative pyrochemical high-effective compact technologies. For the purpose of experimental justification of innovative closed FC technologies at the RIAR site, the existing experimental base is being updated and a multi-purpose pyrochemical complex is developed: - Experimental complex of pyrochemical molten salt facilities to reprocess all types of spent fuel (MOX, nitride, metallic, IMF) of fast reactors of new generation (BN-800, MBIR, BREST). - Experimental complex of facilities to master a gas-fluoride technology of reprocessing intractable fuel, research reactors fuel and thermal SNF. - Transition of the existing facility of pyro-electrochemical production of MOX fuel into the mode of reprocessing of the BN-800 MOX SNF. - Renovation of the facilities for production of fuel elements from experimental, re-fabricated, innovative and high-active fuel - a complex of heavy and glove boxes - to produce experimental fuel elements and targets with MAs on the basis of oxides (vibro and pellets), mixed nitrides, metal alloys and inert matrices in heavy boxes. - Upgrading of the complex for mastering and demonstration of the processes for radioactive waste management and spent fuel pyrochemical reprocessing. The report covers main concept and design solutions, plans and schedule of the program for development of pyrochemical complex for experimental justification of innovative closed FC technologies. (authors)

  16. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  17. Studies of the experimental technologies of radiative opacity

    International Nuclear Information System (INIS)

    Zhang Jiyan; Yang Guohong; Ding Yaonan; Yang Jiamin; Li Jun; Zhang Wenhai; He Yingling; Wang Yaomei; Huang Haodong

    2004-12-01

    On the SHENGUANG-II laser facility, integrated experiment for opacity measurement was performed and related physical items were studies. In the experiment, some new-typed diagnosing device were also tested. The experiment includes three contents: (1) Investigation of the measurement technique of absorption spectra in the keV region; (2) Investigation of the measurement technique of dual point projection spectroscopy; (3) Investigation of the temperature and density parameters of the experimental samples. (authors)

  18. Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas//Experimental heat transfer coefficients for the liquor cooling in plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Enrique Torres‐Tamayo

    2014-01-01

    Full Text Available La pérdida de eficiencia del proceso de enfriamiento del licor amoniacal, mediante el uso de intercambiadores de calor de placas, está asociada a imprecisiones en la estimación de los coeficientes de transferencia de calor y la acumulación de incrustaciones en la superficie de intercambio. El objetivo de la investigación es determinar los coeficientes de transferencia de calor y la influencia de lasincrustaciones en la pérdida de eficiencia de la instalación. Mediante un procedimiento iterativo se estableció la ecuación del número de Nusselt y su relación con el número de Reynolds y Prandtl. Se utilizó un diseño experimental multifactorial. Los resultados predicen el conocimiento de los coeficientespara el cálculo del número de Nusselt en ambos fluidos. Los valores de los coeficientes del licor amoniacal son inferiores, ello se debe a la presencia de componentes gaseosos. La ecuación obtenida muestra correspondencia con el modelo de Buonapane, el error comparativo es del 3,55 %.Palabras claves: intercambiador de calor de placas, coeficientes de transferencia de calor, eficiencia térmica.______________________________________________________________________________AbstractThe loss of efficiency of the ammonia liquor cooling process, by means of the plate heat exchanger, is associated to the incorrect estimate of the heat transfer coefficients and the accumulation of inlays in the exchange surface. The objective of the investigation is to determine the transfer coefficients and the influence of the inlays in the efficiency loss of the installation. By means of an iterative procedure was obtained the Nusselt number equation and the relationship with the Reynolds and Prandtl number, for it was used it a design experimental multifactorial. The results predict the knowledge of the coefficients forthe calculation of the Nusselt number for both fluids. The ammonia liquor coefficients values are inferior, due to the presence of gassy

  19. Experimental study of commercial size proton exchange membrane fuel cell performance

    International Nuclear Information System (INIS)

    Yan, Wei-Mon; Wang, Xiao-Dong; Lee, Duu-Jong; Zhang, Xin-Xin; Guo, Yi-Fan; Su, Ay

    2011-01-01

    Commercial sized (16 x 16 cm 2 active surface area) proton exchange membrane (PEM) fuel cells with serpentine flow chambers are fabricated. The GORE-TEX (registered) PRIMEA 5621 was used with a 35-μm-thick PEM with an anode catalyst layer with 0.45 mg cm -2 Pt and cathode catalyst layer with 0.6 mg cm -2 Pt and Ru or GORE-TEX (registered) PRIMEA 57 was used with an 18-μm-thick PEM with an anode catalyst layer at 0.2 mg cm -2 Pt and cathode catalyst layer at 0.4 mg cm -2 of Pt and Ru. At the specified cell and humidification temperatures, the thin PRIMEA 57 membrane yields better cell performance than the thick PRIMEA 5621 membrane, since hydration of the former is more easily maintained with the limited amount of produced water. Sufficient humidification at both the cathode and anode sides is essential to achieve high cell performance with a thick membrane, like the PRIMEA 5621. The optimal cell temperature to produce the best cell performance with PRIMEA 5621 is close to the humidification temperature. For PRIMEA 57, however, optimal cell temperature exceeds the humidification temperature.

  20. Fragmentation and Thermochemical Exchanges during Planetary Core Formation - an Experimental Approach

    Science.gov (United States)

    Le Bars, M.; Wacheul, J. B.

    2015-12-01

    Telluric planet formation involved the settling of large amounts of liquid iron coming from impacting planetesimals into an ambient viscous magma ocean. The initial state of planets was mostly determined by exchanges of heat and elements during this iron rain. Up to now, most models of planet formation simply assume that the metal rapidly equilibrated with the whole mantle. Other models account for simplified dynamics of the iron rain, involving the settling of single size drops at the Stokes velocity. But the fluid dynamics of iron sedimentation is much more complex, and influenced by the large viscosity ratio between the metal and the ambient fluid, as shown in studies of rising gas bubbles (e.g. Bonometti and Magnaudet 2006). We aim at developing a global understanding of the iron rain dynamics. Our study relies on a model experiment, consisting in popping a balloon of heated metal liquid at the top of a tank filled with viscous liquid. The experiments reach the relevant turbulent planetary regime, and tackle the whole range of expected viscosity ratios. High-speed videos allow determining the dynamics of drop clouds, as well as the statistics of drop sizes, shapes, and velocities. We also develop an analytical model of turbulent diffusion during settling, validated by measuring the temperature decrease of the metal blob. We finally present consequences for models of planet formation.

  1. Experimental investigation of mouse kidney aging with SR PCI technology

    Science.gov (United States)

    Yifeng, P.; Zehua, Z.; Guohao, D.; Tiqiao, X.; Hongjie, X.; Peiping, Z.

    2013-08-01

    Objective. Basing on the coherence character of the Synchrotron radiation (SR), the mouse kidney study is performed using the propagation-based phase-contrast imaging (PCI) technology which as one approach of the phase contrasts imaging (PCI). The aim of this paper was to visualize the kidney at different ages and evaluate the latent value of aging mechanism with SR phase contrast imaging technology. Methods. The experiments were performed at the BL13W1 line of the SSRF (the Shanghai synchrotron radiation facility), the samples were soaked in 10% formalin solution, the mouse kidneys at different ages were imaged on the shelf in the propagation-based phase-contrast imaging setup and captured with CCD. The captured images were analyzed and compared. Results. When the distance is 50 cm between the samples and imaging plate, good contrast and high resolution were obtained in the propagation-based phase-contrast imaging (PCI), as such renal capsule revealed well, and the resolution reach to 30 micron; there is significant difference in the shape and vessels structures among the mouse kidneys at different age. Conclusion. The PCI is good for the applying of main light element organization imaging, the difference in shape and vessels structure between the young and old mouse kidney maybe indicated at some extent with the propagation-based phase-contrast imaging technology.

  2. The overall heat transfer characteristics of a double pipe heat exchanger: comparison of experimental data with predictions of standard correlations

    International Nuclear Information System (INIS)

    Mehrabian, M. A.; Mansouri, S. H.; Sheikhzadeh, G. A.

    2002-01-01

    The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are also measured using calibrated ratemeters. Heat is supplied to the inner tube stream by an immersion heater. The overall heat transfer coefficients are inferred from the measured data. The heat transfer coefficient of the inner tube flow (circular cross section) is calculated using the standard correlations. The heat transfer coefficient of the outer tube flow (annular cross section) is then deduced.Higher heat transfer coefficients are reported in the laminar flow regime in comparison to the predictions of standard correlations for straight and smooth tubes. The reasons for this discrepancy are identified and discussed. Experimental errors in measuring temperatures and mass flow rates are studied and their effects on the heat transfer coefficients are estimated. Experimental results for the range of operating conditions used in this work show that the outer tube side heat transfer coefficients are smaller than the inner side heat transfer coefficients by a factor of almost 1.5 and 3.4 in counter flow and parallel flow arrangements, respectively. The agreement with predictions is very good for the counter flow arrangement, but not very good for the parallel flow arrangement

  3. An experimental investigation on the airside performance of fin-and-tube heat exchangers having slit fins under wet condition

    International Nuclear Information System (INIS)

    Kim, Nae Hyun; Kim, Tae Hun

    2015-01-01

    In this study, the heat transfer and friction characteristics of the 5.3 mm O.D. slit-finned heat exchangers under wet condition have been experimentally investigated. Plain-finned heat exchangers having the same 5.3 mm O.D. tubes are also tested for comparison purpose. The effect of fin pitch on j and f factor is negligible. Slit fin samples yield higher j and f factors than plain fin samples. For one row configuration, the average f factor ratio between slit fin sample and plain fin sample is 2.18. The ratio increases to 2.41 for two row configuration, and to 2.65 for three row configuration. As for the j factor, the ratios are approximately the same (1.61, 1.70 and 1.71 for one, two and three row configuration). Both j and f factor increase as the number of tube row decreases. The same trend is observed for the plain fin samples. At high Reynolds numbers, the j/f ratios of the slit fin are approximately the same as those of the plain fin. At low Reynolds numbers, the j/f ratios of the slit fin are smaller than those of plain fin. Data are compared with existing correlations.

  4. Experimental study on CO2 frosting and clogging in a brazed plate heat exchanger for natural gas liquefaction process

    Science.gov (United States)

    Wu, Jitan; He, Tianbiao; Ju, Yonglin

    2018-04-01

    The plate-fin heat exchanger (PFHE), which has been widely used in natural gas liquefaction (LNG) industry at present, has some disadvantages such as being sensitive to the impurities in the feed gas, such as water, CO2 and H2S. Compared with the PFHE, the brazed plate heat exchanger (BPHE), which has been applied in some boil off gas (BOG) recycling LNG plants of small to middle size, has simpler inherent structure and higher impurity tolerance. In this study the BPHE is suggested to replace the PFHE to simplify or even omit the massive CO2 purification equipment for the LNG process. A set of experimental apparatus is designed and constructed to investigate the influence of the CO2 concentration of the natural gas on solid precipitation inside a typical BPHE meanly by considering the flow resistance throughout the LNG process. The results show that the maximum allowable CO2 concentration of the natural gas liquefied in the BPHE is two orders of magnitude higher than that in the PFHE under the same condition. In addition, the solid-liquid separation for the CO2 impurity is studied and the reasonable separating temperature is obtained. The solid CO2 should be separated below 135 K under the pressure of 3 MPa.

  5. Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition

    International Nuclear Information System (INIS)

    Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.

    2015-01-01

    In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30° angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50 and 100%) and four water mass flow rates (50, 40, 30 and 20 g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition. - Highlights: • A vortex generator heat exchanger is used for diesel exhaust heat recovery. • A thermodynamic analysis is performed for experimental data. • Exergy recovery, irreversibility are calculated in different exhaust gases amount. • Optimization study is performed using response surface method

  6. Gas and aerosol radionuclide transfers in complex environments: experimental studies of atmospheric dispersion and interfaces exchanges

    International Nuclear Information System (INIS)

    Maro, Denis

    2011-01-01

    In situations of chronic or accidental releases, the atmosphere is the main pathway of radioactive releases from nuclear facilities to the environment and, consequently, to humans. It is therefore necessary to have sufficient information on this pathway to accurately assess the radiological impact on man and his environment. Institute for Radioprotection and Nuclear Safety develops its own tools of dispersion and atmospheric transfer for its expertise, under normal operation conditions of a facility, but especially in crisis or post-accident. These tools must have a national and international recognition in particular through scientific validation against benchmark experiments performed internationally, nationally or within the IRSN. The Radioecology Laboratory of Cherbourg-Octeville provides, and will increasingly make, a significant contribution to the scientific influence of the Institute in this field. The work presented in this report has contributed to the development or improvement of experimental techniques in the fields of atmospheric dispersion of radionuclides and transfer at interfaces, in complex environments (complex topography, urban area). These experimental techniques, applied during field campaigns, have allowed to acquire new data in order to get a better understanding of radionuclide transfers in the form of gases and aerosols. (author)

  7. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  8. An Experimental Seismic Data and Parameter Exchange System for Tsunami Warning Systems

    Science.gov (United States)

    Hoffmann, T. L.; Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Heinloo, A.; Hoffmann, M.

    2009-12-01

    For several years GFZ Potsdam is operating a global earthquake monitoring system. Since the beginning of 2008, this system is also used as an experimental seismic background data center for two different regional Tsunami Warning Systems (TWS), the IOTWS (Indian Ocean) and the interim NEAMTWS (NE Atlantic and Mediterranean). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project, capable to acquire, archive and process real-time data feeds, was extended for export and import of individual processing results within the two clusters of connected SC3 systems. Therefore not only real-time waveform data are routed to the attached warning centers through GFZ but also processing results. While the current experimental NEAMTWS cluster consists of SC3 systems in six designated national warning centers in Europe, the IOTWS cluster presently includes seven centers, with another three likely to join in 2009/10. For NEAMTWS purposes, the GFZ virtual real-time seismic network (GEOFON Extended Virtual Network -GEVN) in Europe was substantially extended by adding many stations from Western European countries optimizing the station distribution. In parallel to the data collection over the Internet, a GFZ VSAT hub for secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and first data links were established through this backbone. For the Southeast Asia region, a VSAT hub has been established in Jakarta already in 2006, with some other partner networks connecting to this backbone via the Internet. Since its establishment, the experimental system has had the opportunity to prove its performance in a number of relevant earthquakes. Reliable solutions derived from a minimum of 25 stations were very promising in terms of speed. For important events, automatic alerts were released and disseminated by emails and SMS. Manually verified solutions are added as soon as they become

  9. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling

    International Nuclear Information System (INIS)

    Baloch, Ahmer A.B.; Bahaidarah, Haitham M.S.; Gandhidasan, Palanichamy; Al-Sulaiman, Fahad A.

    2015-01-01

    Highlights: • Effect of varying converging angle on temperature characteristics of PV surface studied. • Optical, CFD, thermal, and electrical models developed for the analysis. • Experimental measurements carried out for two configurations for June and December. • Using this cooling technique, maximum cell temperature reduction was 57.8%. • Maximum percentage improvement in power output was 35.5%. - Abstract: An experimental and numerical investigation of a cooling technique called as converging channel cooling intended to achieve low and uniform temperature on the surface of PV panel is presented in this paper. Experimental evaluation for an uncooled PV system and a converging channel cooled PV system was carried out subjected to the hot climate of Saudi Arabia for the month of June and December. Detailed modeling was performed using numerical analysis to investigate the effect of changing the converging angle on the thermal characteristics of the PV system. Based on the developed model, two degrees angle showed the best performance in terms of temperature distribution and average cell temperature with a standard deviation of 0.91 °C. A comprehensive system model was developed to assess the performance of PV systems numerically by coupling the optical, radiation, thermal, computational fluid dynamics, and electrical model. Thermal measurements for an uncooled PV showed cell temperature as high as 71.2 °C and 48.3 °C for the month of June and December, respectively. By employing converging cooling, cell temperature was reduced significantly to 45.1 °C for June and to 36.4 °C for December. Maximum percentage improvement in power output was 35.5% whereas maximum percentage increase in the conversion efficiency was 36.1% when compared to the performance of an uncooled PV system. For cost feasibility of an uncooled and cooled PV system, levelized cost of energy (LCE) analysis was performed using the annual energy yield simulation for both systems. LCE

  10. Workshop on APEC virtual center for environmental technology exchange; APEC kankyo gijutsu koryu virtual center workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    At the 'policy maker workshop of the virtual center of APEC technology exchange' held in November 1997 in Osaka, Japan, it was agreed to organize study groups to discuss the scope of information provided by the virtual center, and to make common the classification systems and retrieval functions. In addition, the necessity was confirmed on international cooperation to promote establishment of virtual centers in different countries and territories. On the first day, Professor Ueda at the Kyoto University gave the basic lecture entitled 'global environment preservation and environmental technology transfer: problems and prospects'. Mr. Dan, the workshop manager gave the basic proposal entitled 'the future directionality of environmental technology exchange inside the APEC territories by using Internet'. Based on the basic proposal made on the first day, reports and discussions were given in the following sessions, where confirmation was made on the future directions. S1: establishment of the virtual centers in other countries and territories; S2: assurance of interchangeability of classification systems and retrieval functions in providing information, and S3: presentation of examples of inter-territorial exchange and the future directionality. (NEDO)

  11. Ion Exchange Technology Development in Support of the Urine Processor Assembly Precipitation Prevention Project for the International Space Station

    Science.gov (United States)

    Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callahan, Michael; Carrier, Chris

    2012-01-01

    In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its ability to remove calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 13 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.

  12. Workshop on APEC virtual center for environmental technology exchange; APEC kankyo gijutsu koryu virtual center workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    At the 'policy maker workshop of the virtual center of APEC technology exchange' held in November 1997 in Osaka, Japan, it was agreed to organize study groups to discuss the scope of information provided by the virtual center, and to make common the classification systems and retrieval functions. In addition, the necessity was confirmed on international cooperation to promote establishment of virtual centers in different countries and territories. On the first day, Professor Ueda at the Kyoto University gave the basic lecture entitled 'global environment preservation and environmental technology transfer: problems and prospects'. Mr. Dan, the workshop manager gave the basic proposal entitled 'the future directionality of environmental technology exchange inside the APEC territories by using Internet'. Based on the basic proposal made on the first day, reports and discussions were given in the following sessions, where confirmation was made on the future directions. S1: establishment of the virtual centers in other countries and territories; S2: assurance of interchangeability of classification systems and retrieval functions in providing information, and S3: presentation of examples of inter-territorial exchange and the future directionality. (NEDO)

  13. An Experimental Seismic Data and Parameter Exchange System for Interim NEAMTWS

    Science.gov (United States)

    Hanka, W.; Hoffmann, T.; Weber, B.; Heinloo, A.; Hoffmann, M.; Müller-Wrana, T.; Saul, J.

    2009-04-01

    In 2008 GFZ Potsdam has started to operate its global earthquake monitoring system as an experimental seismic background data centre for the interim NEAMTWS (NE Atlantic and Mediterranean Tsunami Warning System). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project was extended to test the export and import of individual processing results within a cluster of SC3 systems. The initiated NEAMTWS SC3 cluster consists presently of the 24/7 seismic services at IMP, IGN, LDG/EMSC and KOERI, whereas INGV and NOA are still pending. The GFZ virtual real-time seismic network (GEOFON Extended Virtual Network - GEVN) was substantially extended by many stations from Western European countries optimizing the station distribution for NEAMTWS purposes. To amend the public seismic network (VEBSN - Virtual European Broadband Seismic Network) some attached centres provided additional private stations for NEAMTWS usage. In parallel to the data collection by Internet the GFZ VSAT hub for the secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and the first data links were established. In 2008 the experimental system could already prove its performance since a number of relevant earthquakes have happened in NEAMTWS area. The results are very promising in terms of speed as the automatic alerts (reliable solutions based on a minimum of 25 stations and disseminated by emails and SMS) were issued between 2 1/2 and 4 minutes for Greece and 5 minutes for Iceland. They are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, usually don't differ substantially from the final solutions and provide a good starting point for the operations of the interim NEAMTWS. However, although an automatic seismic system is a good first step, 24/7 manned RTWCs are mandatory for regular manual verification

  14. International exchange project for the engineer exchange project (in coal mine technology area) in fiscal 1998. Overseas workshop; 1998 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The international exchange project for the engineer exchange project (in coal mine technology area) in fiscal 1998, the 'Overseas workshop' has performed exchange in technologies with Australian coal mine engineers. The project refers to the Australian technological levels and needs in coal production, safety control and environment, as well as transfer of the Japanese coal mine technologies. This report summarizes the result of a survey on the engineer exchange project in the coal mine technology area and the possibility of joint researches. The 'overseas workshop' was held in November 1998 for two days in Brisbane City in QLD Province as the 'Japan-Australia coal technology workshop'. The 'Japan-Australia coal technology workshop' gave lectures in five sessions (the basic lecture, Japan-Australia high-speed excavation project, coal mine gas control project, exploration and resources, and development and experience of Japan). It also discussed two themes (mine safety management and rules, and greenhouse effect gases and coal mining). Two coal mines were visited thereafter to deepen the exchange with the Australian coal mine engineers. (NEDO)

  15. International exchange project for the engineer exchange project (in coal mine technology area) in fiscal 1998. Overseas workshop; 1998 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The international exchange project for the engineer exchange project (in coal mine technology area) in fiscal 1998, the 'Overseas workshop' has performed exchange in technologies with Australian coal mine engineers. The project refers to the Australian technological levels and needs in coal production, safety control and environment, as well as transfer of the Japanese coal mine technologies. This report summarizes the result of a survey on the engineer exchange project in the coal mine technology area and the possibility of joint researches. The 'overseas workshop' was held in November 1998 for two days in Brisbane City in QLD Province as the 'Japan-Australia coal technology workshop'. The 'Japan-Australia coal technology workshop' gave lectures in five sessions (the basic lecture, Japan-Australia high-speed excavation project, coal mine gas control project, exploration and resources, and development and experience of Japan). It also discussed two themes (mine safety management and rules, and greenhouse effect gases and coal mining). Two coal mines were visited thereafter to deepen the exchange with the Australian coal mine engineers. (NEDO)

  16. Expectations and realities in the nuclear technology exchanges with the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, J.

    1980-01-01

    A nontechnical, subjective account is given of some of the experiences and personal encounters in the US-USSR technical exchange visit programs. Some notes are given on the growth of nuclear power in the two countries. (DLC)

  17. Proceedings of the 1st JAEA/KAERI information exchange meeting on HTGR and nuclear hydrogen technology

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sakaba, Nariaki; Nishihara, Tetsuo; Yan, Xing L.; Hino, Ryutaro

    2007-03-01

    Japan Atomic Energy Agency (JAEA) has completed an implementation with Korea Atomic Energy Research Institute (KAERI) on HTGR and nuclear hydrogen technology, 'The Implementation of Cooperative Program in the Field of Peaceful Uses of Nuclear Energy between KAERI and JAEA. 'To facilitate efficient technology development on HTGR and nuclear hydrogen by the IS process, an information exchange meeting was held at the Oarai Research and Development Center of JAEA on August 28-30, 2006 under Program 13th of the JAEA/KAERI Implementation, 'Development of HTGR and Nuclear Hydrogen Technology'. JAEA and KAERI mutually showed the status and future plan of the HTTR (High-Temperature Engineering Test Reactor) project in Japan and of the NHDD (Nuclear Hydrogen Development and Demonstration) project in Korea, respectively, and discussed collaboration items. This proceedings summarizes all materials of presented technical discussions on HTGR and hydrogen production technology as well as the meeting briefing including collaboration items. (author)

  18. Technologies and experimental approaches in the NIH Botanical Research Centers

    Science.gov (United States)

    Barnes, Stephen; Birt, Diane F; Cassileth, Barrie R; Cefalu, William T; Chilton, Floyd H; Farnsworth, Norman R; Raskin, Ilya; van Breemen, Richard B; Weaver, Connie M

    2009-01-01

    There are many similarities between research on combinatorial chemistry and natural products and research on dietary supplements and botanicals in the NIH Botanical Research Centers. The technologies in the centers are similar to those used by other NIH-sponsored investigators. All centers rigorously examine the authenticity of botanical dietary supplements and determine the composition and concentrations of the phytochemicals therein, most often by liquid chromatography–mass spectrometry. Several of the centers specialize in fractionation and high-throughput evaluation to identify the individual bioactive agent or a combination of agents. Some centers are using DNA microarray analyses to determine the effects of botanicals on gene transcription with the goal of uncovering the important biochemical pathways they regulate. Other centers focus on bioavailability and uptake, distribution, metabolism, and excretion of the phytochemicals as for all xenobiotics. Because phytochemicals are often complex molecules, synthesis of isotopically labeled forms is carried out by plant cells in culture, followed by careful fractionation. These labeled phytochemicals allow the use of accelerator mass spectrometry to trace the tissue distribution of 14C-labeled proanthocyanidins in animal models of disease. State-of-the-art proteomics and mass spectrometry are also used to identify proteins in selected tissues whose expression and posttranslational modification are influenced by botanicals and dietary supplements. In summary, the skills needed to carry out botanical centers’ research are extensive and may exceed those practiced by most NIH investigators. PMID:18258642

  19. Experimentally and numerically investigating cell performance and localized characteristics for a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Su Ay; Ferng, Yuh Ming; Shih, Jah Ching

    2009-01-01

    This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal-hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model.

  20. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells

    Science.gov (United States)

    Pivac, Ivan; Šimić, Boris; Barbir, Frano

    2017-10-01

    Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.

  1. Experimental characterization of thermal hydraulic performance of louvered brazed plate fin heat exchangers

    Directory of Open Access Journals (Sweden)

    John Turizo-Santos

    2015-01-01

    Full Text Available Las aletas tipo persianas se utilizan comúnmente en los intercambiadores de calor compactos para aumentar el área de superficie, la turbulencia, y producir una regeneración de la capa límite requerido para mejorar el rendimiento de transferencia de calor sin un aumento significativo en la caída de presión en comparación con otro tipo aletas. Un estudio experimental sobre la transferencia de calor y la caída de presión del lado del aire en aletas tipo persiana con patrón simétrico usada en intercambiadores de calor de placas soldadas, ha sido llevado a cabo. El números de Reynolds osciló entre 350 - 1270, basado en el pitch de la aleta, mientras se mantuvo un caudal de agua constante de 1,82 m 3 /h. La transferencia de calor y caída de presión para la geometría probada se presenta en términos del factor de Colburn (j y el factor de fricción de Fanning (f como función del número de Reynolds. Los resultados experimentales para j y f presentan un comportamiento acorde comparados con los modelos de regresión sugeridos para intercambiadores de calor compactos con aletas tipo persiana y tubos planos, presentando una desviación de 5,48 % y 5,39 % respectivamente. Por otra parte, cuando se compara con el análisis de CFD para la misma geometría, se obtiene una desviación media de 6,3%. Por último, un modelo de regresión para los factores j y f se logró con base en el número de Reynolds, presentando una desviación de 1,51 % y 2,19 % respectivamente.

  2. Gallium sorption on montmorillonite and illite colloids: Experimental study and modelling by ionic exchange and surface complexation

    International Nuclear Information System (INIS)

    Benedicto, Ana; Degueldre, Claude; Missana, Tiziana

    2014-01-01

    Highlights: • Ga sorption onto illite and montmorillonite was studied and modelled for the first time. • The developed sorption model was able to well explain Ga sorption in both clays. • Number of free parameters was reduced applying the linear free energy relationship. • Cationic exchange dominate sorption at pH < 4.5; surface complexation at higher pH. - Abstract: The migration of metals as gallium (Ga) in the environment is highly influenced by their sorption on clay minerals, as montmorillonite and illite. Given the increased usage of gallium in the industry and the medicine, the Ga-associated waste may result in environmental problems. Ga sorption experiments were carried out on montmorillonite and illite colloids in a wide range of pH, ionic strength and Ga concentration. A Ga sorption model was developed combining ionic exchange and surface complexation on the edge sites (silanol and aluminol-like) of the clay sheets. The complexation constants were estimated as far as possible from the Ga hydrolysis constants applying the linear free energy relationship (LFER), which allowed to reduce the number of free parameters in the model. The Ga sorption behaviour was very similar on illite and montmorillonite: decreasing tendency with pH and dependency on ionic strength at very acidic conditions. The experimental data modelling suggests that the Ga sorption reactions avoid the Ga precipitation, which is predicted in absence of clay colloids between pH 3.5 and 5.5. Assuming this hypothesis, clay colloids would affect Ga aqueous speciation, preventing precipitation in favour of sorption. Ga sorption on montmorillonite and illite can be explained on the basis of three main reactions: Ga 3+ exchange at very acidic conditions (pH < ∼3.8); Ga(OH) 4 - complexation on protonated weak sites in acidic-neutral conditions (between pH ∼5.2 and pH ∼7.9); and Ga(OH) 3 complexation on strong sites at basic conditions (pH > ∼7.9)

  3. Combined electrolysis and catalytic exchange (CECE) technology - an economical alternative for heavy water upgraders using water distillation

    International Nuclear Information System (INIS)

    Ryland, D.K.; Sadhankar, R.R.

    2003-01-01

    Heavy water upgrading is a unique and crucial part of a CANDU power station. Water distillation (DW) systems are used for heavy water upgrading in all CANDU stations. The DW upgrader is designed to take advantage of the difference in relative volatility (a measure of separation of isotopes) between H 2 O and D 2 O. However, the low relative volatility of the H 2 O/D 2 O system requires large number of stages (long columns) and large reflux ratios (large reboiler loads) - thus resulting in significant capital and operating costs. Atomic Energy of Canada Limited (AECL) developed the Combined Electrolysis and Catalytic Exchange (CECE) technology as an economical alternative to the DW system. CECE-based upgraders have been demonstrated in pilot scale facilities at AECL Chalk River Laboratories and in Hamilton, Ontario. This design is based on catalytic hydrogen isotope exchange between water and hydrogen gas. (author)

  4. Engineer exchanging project on coal mine technology field in fiscal 1999. International information exchanging project (the overseas workshop in Vietnam); 1999 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop (Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Technical information exchange was performed with Vietnamese engineers related to coal mine technologies through the overseas workshop and the technical tour. At the same time, investigations were executed on the production technology levels and needs in Vietnam, and on possibilities of transfer of Japanese technologies. The 'Overseas workshop (Vietnam)' was held on September 28, 1999 with the 'trends and problems in coal production technologies' as the main theme. Lectures were given in the session related to coal production technologies by Vietnamese coal technology experts, each from VINACOAL and IMSAT, and by two Japanese coal technology experts. A comprehensive discussion was also executed, and items of technical information were exchanged on the coal production technologies. The number of persons actually participated in the workshop counted 58, with the proceedings presented by them distributed. The Mao Khe and Duong Huy coal mines in Quang Ninh Province were visited as the technical tour, whereas the coal mine sites were inspected and opinions were exchanged with the site engineers. Gas analysis was performed in the Mao Khe mine from the viewpoint of a gas control technology, and site investigation was carried out on lock bolts in the Duong Huy mine from the viewpoint of a roof control technology. (NEDO)

  5. Experimental and micromagnetic first-order reversal curves analysis in NdFeB-based bulk 'exchange spring'-type permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, Horia [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050, Iasi (Romania); Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050, Iasi (Romania); Stoleriu, Laurentiu [Al. I. Cuza University, Department of Solid State and Theoretical Physics, Blvd. Carol I, 11, 700506, Iasi (Romania)]. E-mail: lstoler@uaic.ro; Postolache, Petronel [Al. I. Cuza University, Department of Solid State and Theoretical Physics, Blvd. Carol I, 11, 700506, Iasi (Romania); Stancu, Alexandru [Al. I. Cuza University, Department of Solid State and Theoretical Physics, Blvd. Carol I, 11, 700506, Iasi (Romania)

    2007-09-15

    In this paper we present the results of applying the first-order reversal curves (FORC) diagram experimental method to the analysis of the magnetization processes of NdFeB-based permanents magnets. The FORC diagrams for this kind of exchange spring magnets show the existence of two magnetic phases-a soft magnetic phase and a hard magnetic one. Micromagnetic modeling is used for validating the hypotheses regarding the origin of the different features of the experimental FORC diagrams.

  6. An overview of heat exchanger technology in the Canadian nuclear program

    International Nuclear Information System (INIS)

    Carlucci, L.N.; Dalrymple, D.G.; Ko, P.L.; Pathania, R.; Pettigrew, M.I.; Scott, D.A.

    1981-06-01

    This paper provides an overview of the Canadian approach to the reliability and serviceability of heat exchange equipment used in nuclear power stations and heavy water plants. Current work in vibration and fretting predictions, thermal-hydraulic analyses, and corrosion research is described. Procedures developed for in-service inspection, in situ tube replacment and chemical cleaning of corrosion products are also outlined

  7. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  8. An experimental evolution study confirms that discontinuous gas exchange does not contribute to body water conservation in locusts.

    Science.gov (United States)

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2016-12-01

    The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic 'hygric hypothesis', which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust (Locusta migratoria) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO 2 , rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts. © 2016 The Author(s).

  9. Experimental evidence for importance of Hund's exchange interaction for incoherence of charge carriers in iron-based superconductors

    Science.gov (United States)

    Fink, J.; Rienks, E. D. L.; Thirupathaiah, S.; Nayak, J.; van Roekeghem, A.; Biermann, S.; Wolf, T.; Adelmann, P.; Jeevan, H. S.; Gegenwart, P.; Wurmehl, S.; Felser, C.; Büchner, B.

    2017-04-01

    Angle-resolved photoemission spectroscopy is used to study the scattering rates of charge carriers from the hole pockets near Γ in the iron-based high-Tc hole-doped superconductors KxBa1 -xFe2As2 , x =0.4 , and KxEu1 -xFe2As2 , x =0.55 , and the electron-doped compound Ba (Fe1-xCox) 2As2 , x =0.075 . The scattering rate for any given band is found to depend linearly on the energy, indicating a non-Fermi-liquid regime. The scattering rates in the hole-doped compound are considerably higher than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times higher than the binding energy, indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron- and hole-doped compounds signals the importance of Hund's exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.

  10. Final report on LDRD project : elucidating performance of proton-exchange-membrane fuel cells via computational modeling with experimental discovery and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao Yang (Pennsylvania State University, University Park, PA); Pasaogullari, Ugur (Pennsylvania State University, University Park, PA); Noble, David R.; Siegel, Nathan P.; Hickner, Michael A.; Chen, Ken Shuang

    2006-11-01

    In this report, we document the accomplishments in our Laboratory Directed Research and Development project in which we employed a technical approach of combining experiments with computational modeling and analyses to elucidate the performance of hydrogen-fed proton exchange membrane fuel cells (PEMFCs). In the first part of this report, we document our focused efforts on understanding water transport in and removal from a hydrogen-fed PEMFC. Using a transparent cell, we directly visualized the evolution and growth of liquid-water droplets at the gas diffusion layer (GDL)/gas flow channel (GFC) interface. We further carried out a detailed experimental study to observe, via direct visualization, the formation, growth, and instability of water droplets at the GDL/GFC interface using a specially-designed apparatus, which simulates the cathode operation of a PEMFC. We developed a simplified model, based on our experimental observation and data, for predicting the onset of water-droplet instability at the GDL/GFC interface. Using a state-of-the-art neutron imaging instrument available at NIST (National Institute of Standard and Technology), we probed liquid-water distribution inside an operating PEMFC under a variety of operating conditions and investigated effects of evaporation due to local heating by waste heat on water removal. Moreover, we developed computational models for analyzing the effects of micro-porous layer on net water transport across the membrane and GDL anisotropy on the temperature and water distributions in the cathode of a PEMFC. We further developed a two-phase model based on the multiphase mixture formulation for predicting the liquid saturation, pressure drop, and flow maldistribution across the PEMFC cathode channels. In the second part of this report, we document our efforts on modeling the electrochemical performance of PEMFCs. We developed a constitutive model for predicting proton conductivity in polymer electrolyte membranes and compared

  11. Experimental Research into Technology of Abrasive Flow Machining Nonlinear Tube Runner

    Directory of Open Access Journals (Sweden)

    Junye Li

    2014-06-01

    Full Text Available In the fields of military and civil uses, some special passages exist in many major parts, such as non-linear tubes. The overall performance is usually decided by the surface quality. Abrasive flow machining (AFM technology can effectively improve the surface quality of the parts. In order to discuss the mechanism and technology of abrasive flow machining nonlinear tube, the nozzle is picked up as the researching object, and the self-designed polishing liquid is employed to make research on the key technological parameters of abrasive flow machining linear tube. Technological parameters’ impact on surface quality of the parts through the nozzle surface topography and scanning electron microscopy (SEM map is explored. It is experimentally confirmed that abrasive flow machining can significantly improve surface quality of nonlinear runner, and experimental results can provide technical reference to optimizing study of abrasive flow machining theory.

  12. Thermal Analysis of Hybrid Thermal Control System and Experimental Investigation of Flow Boiling in Micro-channel Heat Exchangers

    Science.gov (United States)

    Lee, Seunghyun

    Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as

  13. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    International Nuclear Information System (INIS)

    Bakalyarov, A.M.; Karetnikov, M.D.; Kozlov, K.N.; Lebedev, V.I.; Meleshko, E.A.; Obinyakov, B.A.; Ostashev, I.E.; Tupikin, N.A.; Yakovlev, G.V.

    2007-01-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed

  14. Innovative experimental particle physics through technological advances: Past, present and future

    International Nuclear Information System (INIS)

    Cheung, Harry W.K.; Fermilab

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists

  15. Project to promote exchange of international information on environmental technologies; Kankyo gijutsu kokusai joho koryu sokushin jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Mutual information exchange at international levels is important for practical application of global environment preservation technologies, whereas the APEC Virtual Center was established in fiscal 1997. Fiscal 1998 has discussed the future functions of the Virtual Center, and carried out the following matters to improve the functions and achieve its stable operation. Discussions were given on common use with the centers of other countries and regions of the specifications of classification systems for information areas and provided information that are provided by the Virtual Center. Visits were made to sub-managing countries and regions for smooth operation of the study groups, and opinions were exchanged. Visits were made to coordinators and contact points established in each country and region when the Center was founded in fiscal 1997. A visit was made to the U.S. Environmental Protection Agency to exchange opinions on coordination measures with the Cleaner Production Strategy of the U.S.A. being a project similar to the subject project. In order to strengthen the Japan's Center, attempts were made to expand the linking information to wider scope. Special pages publishing concentratedly the items of information that the users are interested were prepared as part of the information provision. (NEDO)

  16. Enhancement of international cooperation and experience exchange: international and regional cooperation in nuclear technology

    International Nuclear Information System (INIS)

    Henderson, R.R.

    1987-01-01

    This paper will explore methods that have been effective in accomplishing broad-based technology transfer relationships between international commercial nuclear organizations, and have enhanced the benefits from such relationships through mutual participation in the development of new technology. The factors involved in accomplishing technology transfer will be examined based on the 25 years of Westinghouse experience in establishing successful nuclear technology relationships with over 20 different associates world-wide. This will include information pertaining to organization, training, consultation, technical information transmission, and other important aspects of technology transfer. Additionally, the methodology of enhancing and increasing the benefits of technology transfer through cooperative development programs as produced and promoted by Weatinghouse with its associates will be examined. This will include reviews of several significant copperative programs, such as the programs for the Advanced Pressurized Water Reactor and the Integrated Protection and Control Systems for future plants. (author)

  17. Enhancement of international cooperation and experience exchange - international and regional cooperation in nuclear technology

    International Nuclear Information System (INIS)

    Henderson, R.R.

    1988-01-01

    This paper will explore methods that have been effective in accomplishing broad-based technology transfer relationships between international commercial nuclear organizations, and have enhanced the benefits from such relationships through mutual participation in the development of new technology. The factors involved in accomplishing technology transfer will be examined based on the 25 years of Westinghouse experience in establishing successful nuclear technology relationships with over 20 different associates world-wide. This will include information pertaining to organization, training, consultation, technical information transmission, and other important aspects of technology transfer. Additionally, the methodology of enhancing and increasing the benefits of technology transfer through cooperative development programs as produced and promoted by Westinghouse with its associates will be examined. This will include reviews of several significant cooperative programs, such as the programs for the Advanced Pressurized Water Reactor and the Integrated Protection and Control Systems for future plants

  18. Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve.

    Science.gov (United States)

    Diletti, Roberto; Van Mieghem, Nicolas M; Valgimigli, Marco; Karanasos, Antonis; Everaert, Bert R C; Daemen, Joost; van Geuns, Robert-Jan; de Jaegere, Peter P; Zijlstra, Felix; Regar, Evelyn

    2015-08-01

    The present report describes a novel coronary fractional flow reserve (FFR) system which allows FFR assessment using a rapid exchange microcatheter (RXi). The RXi microcatheter is compatible with standard 0.014" coronary guidewires facilitating lesion negotiation and FFR assessment in a wide range of coronary anatomies. In case of serial lesions, a microcatheter would have the important advantage of allowing multiple pullbacks while maintaining wire access to the vessel. The RXi is a fibre-optic sensor technology-based device. This technology might allow reduction in signal drift. The RXi microcatheter's fibre-optic sensor is located 5 mm from the distal tip. The microcatheter profile at the sensor site is 0.027"0.036". The segment of the catheter which is intended to reside within the target lesion is proximal to the sensor and has dimensions decreased to 0.020"0.025"; these dimensions are comparable to a 0.022" circular-shaped wire. The RXi microcatheter FFR system represents a novel technology that could allow easier lesion negotiation, maintaining guidewire position, facilitating pullbacks for assessment of serial lesions and simplifying the obtainment of post-intervention FFR measurements. The optical sensing technology could additionally result in less signal drift. Further investigations are required to evaluate the clinical value of this technology fully.

  19. EXPERIMENTAL AND THEORETICAL FOUNDATIONS AND PRACTICAL IMPLEMENTATION OF TECHNOLOGY BRAIN-COMPUTER INTERFACE

    Directory of Open Access Journals (Sweden)

    A. Ya. Kaplan

    2013-01-01

    Full Text Available Technology brain-computer interface (BCI allow saperson to learn how to control external devices via thevoluntary regulation of own EEG directly from the brain without the involvement in the process of nerves and muscles. At the beginning the main goal of BCI was to replace or restore motor function to people disabled by neuromuscular disorders. Currently, the task of designing the BCI increased significantly, more capturing different aspects of life a healthy person. This article discusses the theoretical, experimental and technological base of BCI development and systematized critical fields of real implementation of these technologies.

  20. A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weibo; Liu, Guangyuan [School of Energy and Power Engineering, Yangzhou University, Yangzhou City (China); Shi, Mingheng; Chen, Zhenqian [School of Energy and Environment, Southeast University, Nanjing City (China)

    2009-10-15

    Heat transfer around vertical ground heat exchanger (GHE) is a common problem for the design and simulation of ground coupled heat pump (GCHP). In this paper, an updated two-region vertical U-tube GHE analytical model, which is fit for system dynamic simulation of GCHP, is proposed and developed. It divides the heat transfer region of GHE into two parts at the boundary of borehole wall, and the two regions are coupled by the temperature of borehole wall. Both steady and transient heat transfer method are used to analyze the heat transfer process inside and outside borehole, respectively. The transient borehole wall temperature is calculated for the soil region outside borehole by use of a variable heat flux cylindrical source model. As for the region inside borehole, considering the variation of fluid temperature along the borehole length and the heat interference between two adjacent legs of U-tube, a quasi-three dimensional steady-state heat transfer analytical model for the borehole is developed based on the element energy conservation. The implement process of the model used in the dynamic simulation of GCHPs is illuminated in detail and the application calculation example for it is also presented. The experimental validation on the model is performed in a solar-geothermal multifunctional heat pump experiment system with two vertical boreholes and each with a 30 m vertical 1 1/4 in nominal diameter HDPE single U-tube GHE, the results indicate that the calculated fluid outlet temperatures of GHE by the model are agreed well with the corresponding test data and the guess relative error is less than 6%. (author)

  1. Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST

    International Nuclear Information System (INIS)

    Kang, Myeong Gie; Chun, Moon Hyun

    1996-01-01

    In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q v ersus ΔT has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q ≤ 50kW/m 2 ) and high heat fluxes (q > 50kW/m 2 ) depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q , one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness (ε) and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient (h b ) is obtained as a function of heat flux (q ) only. 9 figs., 4 tabs., 15 refs. (Author)

  2. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  3. Ion Exchange Technology Development in Support of the Urine Processor Assembly

    Science.gov (United States)

    Mitchell, Julie; Broyan, James; Pickering, Karen

    2013-01-01

    The urine processor assembly (UPA) on the International Space Station (ISS) recovers water from urine via a vacuum distillation process. The distillation occurs in a rotating distillation assembly (DA) where the urine is heated and subjected to sub-ambient pressure. As water is removed, the original organics, salts, and minerals in the urine become more concentrated and result in urine brine. Eventually, water removal will concentrate the urine brine to super saturation of individual constituents, and precipitation occurs. Under typical UPA DA operating conditions, calcium sulfate or gypsum is the first chemical to precipitate in substantial quantity. During preflight testing with ground urine, the UPA achieved 85% water recovery without precipitation. However, on ISS, it is possible that crewmember urine can be significantly more concentrated relative to urine from ground donors. As a result, gypsum precipitated in the DA when operating at water recovery rates at or near 85%, causing the failure and subsequent re14 NASA Tech Briefs, September 2013 placement of the DA. Later investigations have demonstrated that an excess of calcium and sulfate will cause precipitation at water recovery rates greater than 70%. The source of the excess calcium is likely physiological in nature, via crewmembers' bone loss, while the excess sulfate is primarily due to the sulfuric acid component of the urine pretreatment. To prevent gypsum precipitation in the UPA, the Precipitation Prevention Project (PPP) team has focused on removing the calcium ion from pretreated urine, using ion exchange resins as calcium removal agents. The selectivity and effectiveness of ion exchange resins are determined by such factors as the mobility of the liquid phase through the polymer matrix, the density of functional groups, type of functional groups bound to the matrix, and the chemical characteristics of the liquid phase (pH, oxidation potential, and ionic strength). Previous experience with ion

  4. Ion exchange technology in the remediation of uranium contaminated groundwater at Fernald

    International Nuclear Information System (INIS)

    Sutton, Chris; Glassmeyer, Cathy; Bozich, Steve

    2000-01-01

    Using pump and treat methodology, uranium contaminated groundwater is being removed from the Great Miami Aquifer at the Fernald Environmental Management Project (FEMP) per the FEMP Record of Decision (ROD) that defines groundwater cleanup. Standard extraction wells pump about 3900 gallons-per-minute (gpm) from the aquifer through five ion exchange treatment systems. The largest treatment system k the Advanced Wastewater Treatment (AWWT) Expansion System with a capacity of 1800 gpm, which consists of three trains of two vessels. The trains operate in parallel treating 600 gpm each, The two vessels in each train operate in series, one in lead and one in lag. Treated groundwater is either reinfected back into the aquifer to speed up the aquifer cleanup processor discharged to the Great Miami River. The uranium regulatory ROD limit for discharge to the river is 20 parts per billion (ppb), and the FEMP uranium administrative action level for reinfection is 10 ppb. Spent (i.e., a resin that no longer adsorbs uranium) ion exchange resins must either be replaced or regenerated. The regeneration of spent ion exchange resins is considerably more cost effective than their replacement. Therefore, a project was undertaken to learn how best to regenerate the resins in the groundwater vessels. At the outset of this project, considerable uncertainty existed as to whether a spent resin could be regenerated successfully enough so that it performed as well as new resin relative to achieving very low uranium concentrations in the effluent. A second major uncertain y was whether the operational lifetime of a regenerated resin would be similar to that of a new resin with respect to uranium loading capacity and effluent concentration behavior. The project was successful in that a method for regenerating resins has been developed that is operationally efficient, that results in regenerated resins yielding uranium concentrations much lower than regulatory limits, and that results in

  5. Fiscal 1999 engineer exchange project (field of coal mining technology), international exchange project. Domestic workshop; 1999 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kokunai workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The domestic workshop invites Japanese engineers and engineers from coal producing countries for the exchange of coal mining technologies and aims to substantiate and facilitate the dispatching and receiving of engineers under training programs. The main subject of the Asia-Pacific coal technology workshop was 'Coal for the 21st century - resources and technology,' and there were two sessions held on September 8, titled 'Trends and tasks of coal resources exploitation' and 'Coal resources and production technology.' Lectures were delivered by five overseas and five Japanese coal engineering experts. On September 9, nine essays were presented concerning 'Coal resources and security problems' and 'Coal resources and environmental problems.' In addition, a panel discussion was held, titled 'Coal resources assessment and technology.' Importance was emphasized of the correct assessment of the magnitude of resources, development of probing technologies to collect more detailed information, improvement of digging speeds applicable to faces for large and high-efficiency mining, development of coal mining technologies for increased recovery, etc. Information was exchanged on various occasions and partnership was enhanced between the participants to the advantage of engineer exchanging projects in the future. (NEDO)

  6. Bio nitrate Project: a new technology for water nitrate elimination by means of ionic exchange resins

    International Nuclear Information System (INIS)

    Arellano Ortiz, J.

    2009-01-01

    The use of ion exchange resins for nitrate elimination from water generates a waste containing a sodium chloride mixture plus the retained nitrates. this waste must be correctly disposed. In this project, the resin ionic form is modified to be regenerated with other compounds, different from the common salt, which are interesting because of the presence of mineral nutrition. So, with Bio nitrate Project, nitrates are recovered and the regeneration waste is apt to be use as fertilizer, for agricultural uses, or as complementary contribution of nutrients in biological water treatment. (Author) 27 refs.

  7. High temperature technological heat exchangers and steam generators with helical coil assembly tube bundle

    International Nuclear Information System (INIS)

    Korotaev, O.J.; Mizonov, N.V.; Nikolaevsky, V.B.; Nazarov, E.K.

    1990-01-01

    Analysis of thermal hydraulics characteristics of nuclear steam generators with different tube bundle arrangements and waste heat boilers for ammonia production units was performed on the basis of operating experience results and research and development data. The present report involves the obtained information. The estimations of steam generator performances and repair-ability are given. The significant temperature profile of the primary and secondary coolant flows are attributed to all steam generator designs. The intermediate mixing is found to be an effective means of temperature profile overcoming. At present the only means to provide an effective mixing in heat exchangers of the following types: straight tubes, field tubes, platen tubes and multibank helical coil tubes (with complicated bend distribution along their length) are section arrangements in series in conjunction with forced and natural mixing in connecting lines. Development of the unificated system from mini helical coil assemblies allows to design and manufacture heat exchangers and steam generators within the wide range of operating conditions without additional expenses on the research and development work

  8. The development of pedagogical content knowledge in science teachers: New opportunities through technology-mediated reflection and peer-exchange

    Science.gov (United States)

    Madeira, M. Cheryl-Ann

    This design-based research study investigates the development of pedagogical content knowledge among nine teacher-participants (N = 9) in three design phases. PCK is a particular type of teacher knowledge that addresses not only the teacher's understanding of the content to be instructed, but also ways of how to teach that content effectively. This knowledge has been well documented over several decades, and is seen as central to teacher expertise. However, its actual development has been difficult for researchers to investigate. This study offers a detailed perspective on how teachers developed PCK with their engagement in lesson planning and enactment of a project-based technology-enhanced lesson. The study includes two specific interventions designed to enhance teachers' development of PCK: (1) scaffolded reflection that occurs throughout the practices; and (2) peer-exchange of lesson plans, enactment ideas, and completed reflections. The findings demonstrate that teachers improve their planning and enactment of project-based technology-enhanced lessons with scaffolded reflection and peer exchange. Positive correlations were seen between teachers' engagement in the reflections and the quality of their lesson planning. Teachers who participated more deeply in the scaffolded reflections were able to understand how their lesson plans and enactment patterns fostered student understanding of relevant science concepts. Positive correlations were also seen between community influence and teacher lesson plans and enactment. Additionally, positive correlations were confirmed between teachers' level of participation in the peer exchange activities and the quality of their lesson planning and enactments. Teachers who contributed more deeply within the online and face-to-face peer community meetings benefited from the different perspectives of their peers about student learning and the best ways to succeed with project-based instruction. This study allowed some insight into

  9. Engineer exchanging project (coal mine technology field) in fiscal 1999. International information exchanging project (advance survey on Russia); 1999 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Jizen chosa (Roshia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This advance survey on Russia has performed visiting surveys and information collection at coal related organizations inside Japan and in overseas countries on production technology levels, trends and technology exchange needs in overseas coal producing countries. The project is intended to serve for improvement in the contents of and smooth execution of the engineer exchange project in the 'coal mine technology field. It was carried out by expertise people as the site surveys and the engineer reception and exchange surveys. Because of the economic crisis that has hit Russia in 1998, unprofitable coal mines were closed one after another under the coal mine scrap and build policy under the initiative of the World Bank. This situation is giving serious impacts on coal mines in the Far East Russia and the coastal areas. However, the importance of coal as the primary energy source has not been changed at all in the Far East Russia. Thus, the areas have fallen into a situation that they must rely on a great amount of introduced and imported coals as a result of weakening in coal mines in the Far Eastern area on the other hand. This paper reports mainly the situation in which the coal industries in the coastal areas are placed, and the possibilities of technology exchange. (NEDO)

  10. Experimental analysis on frosting characteristic of SK-type finned refrigerating heat exchanger with large-diameter circular holes

    International Nuclear Information System (INIS)

    Fang, Zhao-song; Wang, Hou-hua; Zhang, Jie; Wu, Wei-wei

    2014-01-01

    This paper presents the construction of both a plane fin-and-tube heat exchanger and a SK-type fin-and-tube heat exchanger. Based on plane fin-and-tube heat exchanger, comparative industrial prototype experiments of SK-type fin-and-tube heat exchanger energy efficiency performance were carried out in the artificial climate chamber. Test results confirmed several findings: when the amount of the refrigerant charged is the same and face velocity u = 3.75 m s −1 , SK-type fin-and-tube heat exchanger refrigeration capacity increases by an average of 9.13%; energy consumption reduces by an average of 11.25%, coefficient of performance (COP) of heat exchanger increases by an average of 22.65% with continuous operation during the first 2 h. Also, when the operation time exceeds 2 h, the COP of both types of heat exchangers are both less than 0.6, illustrating that under frost conditions, the defrost interval should not be too long, otherwise energy consumption may sharply spike. - Highlights: •The large holes of SK-type induced the generation of turbulence flow. •The refrigeration capacity and COP of SK-type exceeds that of plane one. •The SK-type fin-and-tube heat exchanger is a new kind of heat transfer equipment. •The defrost interval should not exceed 2 h under frost conditions

  11. Appendix to the thesis an experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfirestop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. This is a separate appendix volume, including computer codes and simulated results. 316 figs., 11 tabs.

  12. On-Line Ion Exchange Liquid Chromatography as a Process Analytical Technology for Monoclonal Antibody Characterization in Continuous Bioprocessing.

    Science.gov (United States)

    Patel, Bhumit A; Pinto, Nuno D S; Gospodarek, Adrian; Kilgore, Bruce; Goswami, Kudrat; Napoli, William N; Desai, Jayesh; Heo, Jun H; Panzera, Dominick; Pollard, David; Richardson, Daisy; Brower, Mark; Richardson, Douglas D

    2017-11-07

    Combining process analytical technology (PAT) with continuous production provides a powerful tool to observe and control monoclonal antibody (mAb) fermentation and purification processes. This work demonstrates on-line liquid chromatography (on-line LC) as a PAT tool for monitoring a continuous biologics process and forced degradation studies. Specifically, this work focused on ion exchange chromatography (IEX), which is a critical separation technique to detect charge variants. Product-related impurities, including charge variants, that impact function are classified as critical quality attributes (CQAs). First, we confirmed no significant differences were observed in the charge heterogeneity profile of a mAb through both at-line and on-line sampling and that the on-line method has the ability to rapidly detect changes in protein quality over time. The robustness and versatility of the PAT methods were tested by sampling from two purification locations in a continuous mAb process. The PAT IEX methods used with on-line LC were a weak cation exchange (WCX) separation and a newly developed shorter strong cation exchange (SCX) assay. Both methods provided similar results with the distribution of percent acidic, main, and basic species remaining unchanged over a 2 week period. Second, a forced degradation study showed an increase in acidic species and a decrease in basic species when sampled on-line over 7 days. These applications further strengthen the use of on-line LC to monitor CQAs of a mAb continuously with various PAT IEX analytical methods. Implementation of on-line IEX will enable faster decision making during process development and could potentially be applied to control in biomanufacturing.

  13. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  14. TRU-waste decontamination and size reduction review, June 1983, US DOE/PNC technology exchange

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1983-01-01

    A review of transuranic (TRU) noncombustible waste decontamination and size reduction technology is presented. Electropolishing, vibratory cleaning, and spray decontamination processes developed at Battelle Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are highlighted. TRU waste size reduction processes at (PNL), Los Alamos National Laboratory (LANL), the Rocky Flats Plant (RFP), and SRL are also highlighted

  15. Designation and Implementation of Microcomputer Principle and Interface Technology Virtual Experimental Platform Website

    Science.gov (United States)

    Gao, JinYue; Tang, Yin

    This paper explicitly discusses the designation and implementation thought and method of Microcomputer Principle and Interface Technology virtual experimental platform website construction. The instructional design of this platform mainly follows with the students-oriented constructivism learning theory, and the overall structure is subject to the features of teaching aims, teaching contents and interactive methods. Virtual experiment platform production and development should fully take the characteristics of network operation into consideration and adopt relevant technologies to improve the effect and speed of network software application in internet.

  16. Experimental evidence of spin glass and exchange bias behavior in sputtered grown α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani; Sanger, Amit; Singh, Amit Kumar; Kumar, Arvind [Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kumar, Mohit [Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Chandra, Ramesh [Nanoscience Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2017-07-01

    Highlights: • We have synthesized the α-MnO{sub 2} nanorods by using DC reactive sputtering. • We observed Spin glass and exchange bias behavior at low temperature in sputtered grown α-MnO{sub 2} nanorods. • Exchange bias arises due to exchange coupling of uncompensated FM spins and AFM spins at FM/AFM interface. - Abstract: Here, we present a single-step process to synthesize the α-MnO{sub 2} nanorods forest using reactive DC magnetron sputtering for the application of magnetic memories. The structural and morphological properties of the α-MnO{sub 2} nanorods were systematically studied using numerous analytical techniques, including X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The magnetic measurements suggest that the α-MnO{sub 2} nanorods exhibit spin glass and exchange bias behaviour at low temperature. Such low temperature behaviour is explained by the core-shell type structure of nanorods. Antiferromagnetic core and shell of uncompensated ferromagnetic spins leads to the formation of antiferromagnetic/ferromagnetic (AFM/FM) interfaces, which originates exchange bias in the sample.

  17. FY 2000 international exchange project on exchanges of engineers - Coal mine technology field. Overseas workshop (China); 2000 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop (Chugoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of making technical exchanges with coal mine related engineers in China and surveying levels of coal production technology and the needs in China and possibilities of technology transfer from Japan, workshop was held and technical tours were made. On December 13, 2000, a workshop was held in China which was named 'Japan-China Joint Coal Project Workshop: Environment/Production/Security.' Participants were 112 including 16 from Japan and 96 from China. Subjects were as follows: subjects on coal resource and technical strategy in the 21st century, technical exchange project and technical development, Japan-China technical cooperation project, report on the operational situation of China Coal Industry Environmental Preservation Safety Training Center, Japan-China Joint Project on spontaneous combustion prevention technology, CMG recovery/utilization system joint demonstration project, Japan-China joint coal exploration project, Japan-China coal field geology joint exploration project, etc. (NEDO)

  18. Modelling technological process of ion-exchange filtration of fluids in porous media

    Science.gov (United States)

    Ravshanov, N.; Saidov, U. M.

    2018-05-01

    Solution of an actual problem related to the process of filtration and dehydration of liquid and ionic solutions from gel particles and heavy ionic compounds is considered in the paper. This technological process is realized during the preparation and cleaning of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. For the analysis, research, determination of the main parameters of the technological process and operating modes of filter units and for support in managerial decision-making, a mathematical model is developed. Using the developed model, a series of computational experiments on a computer is carried out. The results of numerical calculations are illustrated in the form of graphs. Based on the analysis of numerical experiments, the conclusions are formulated that serve as the basis for making appropriate managerial decisions.

  19. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2008

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Tachibana, Yukio; Sun Yuliang

    2009-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2008. (author)

  20. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2009

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Wang Hong

    2010-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2009. (author)

  1. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

    Science.gov (United States)

    Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan

    2014-11-28

    The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Technology and Policy Challenges in the Adoption and Operation of Health Information Exchange Systems.

    Science.gov (United States)

    Ji, Hyerim; Yoo, Sooyoung; Heo, Eun-Young; Hwang, Hee; Kim, Jeong-Whun

    2017-10-01

    This study aimed to identify problems and issues that arise with the implementation of online health information exchange (HIE) systems in a medical environment and to identify solutions to facilitate the successful operation of future HIE systems in primary care clinics and hospitals. In this study, the issues that arose during the establishment and operation of an HIE system in a hospital were identified so that they could be addressed to enable the successful establishment and operation of a standard-based HIE system. After the issues were identified, they were reviewed and categorized by a group of experts that included medical information system experts, doctors, medical information standard experts, and HIE researchers. Then, solutions for the identified problems were derived based on the system development, operation, and improvement carried out during this work. Twenty-one issues were identified during the implementation and operation of an online HIE system. These issues were then divided into four categories: system architecture and standards, documents and data items, consent of HIE, and usability. We offer technical and policy recommendations for various stakeholders based on the experiences of operating and improving the online HIE system in the medical field. The issues and solutions identified in this study regarding the implementation and operate of an online HIE system can provide valuable insight for planners to enable them to successfully design and operate such systems at a national level in the future. In addition, policy support from governments is needed.

  3. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    Science.gov (United States)

    Cornelius, Christopher J [Albuquerque, NM

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  4. Proceedings of the workshop for exchange of technology for CWC inspections

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, R.R.

    1993-04-01

    With the signing of the Chemical Weapons Convention (CWC), the work of the Preparatory Commission in defining the modalities of on-site verification inspections will begin early in 1993. One of the methods for increasing the effectiveness of inspections is the collection of samples for chemical analysis. The CWC allows for this analysis to be performed either at the site of the inspection or in a dedicated off-site laboratory. The decision as to where samples are to be analyzed in any specific instance may involve a consideration of the threat, real or perceived, to the compromise of legitimate sensitive host-party information. The ability to perform efficient chemical analysis at the inspection site, where samples remain in joint (host-inspector) custody and the analytical procedures can be observed by the host, can alleviate much of the concern over possible loss of confidential information in both government and industry. This workshop was designed to encourage the exchange of information among participants with experience in the use of analytical equipment for on-site sample collection and analysis. Individual projects are processed separately for the databases.

  5. Heat exchanger technologies for the global environment. PWR-Vol. 25

    International Nuclear Information System (INIS)

    Maurer, J.R.

    1994-01-01

    This is the Committee's largest compilation of papers in the fourteen years that ASME has sponsored one or more sessions at the Joint Power Generation Conference. In addition to the twenty-two papers offered at the conference, one session contained a panel discussion during which five industry specialists related their experiences and interpretations. Many of the presentations of the past few years have been made by authors from foreign lands as the conference has expanded to an international forum. This years' theme of global impact is included in the heat exchanger presentations from the USA and abroad. In addition, ASME has encouraged authors to make the subjects of their presentations more apropos to current concerns. New concepts and designs, particularly with PC programs in mind, is one specific area that is addressed. Other topics such as materials selection, coatings to extend performance life, minimizing the effects of microbiologically influenced corrosion, zebra mussel control and new approaches to heat transfer design are some of the subjects covered at the conference and in this volume. Nineteen papers have been processed separately for inclusion in the appropriate data bases

  6. EXPERIMENTAL ESTIMATION OF THE DEMINERALIZED BONE ALLOGRAFTS MADE BY TECHNOLOGY OF CITO

    Directory of Open Access Journals (Sweden)

    Yu. B. Yurasova

    2010-01-01

    Full Text Available Research is devoted an experimental estimation of osteoinductive properties of demineralized bone implants (DBA made on technology CITO with use of lyophilization and radiating sterilization by stream of fast electrons. As experimental animals, white rats on ectopic osteogenesis model for a period of 40 days and rabbits to which DBA implanted into defect of the jaw with terms of experiment 10, 20, 30, 60 and 90 days have been chosen. Results of morphological researches testified to absence of toxicity, presence of high indicators of biointegration and osteoinductance studied DBA. The offered technology of processing of a bone tissue allows to keep biological activity of tissues and to receive biological materials with the expressed plastic properties. Obtained among other data were the bases for the decision of use of these materials in clinic of different bone pathologies.

  7. U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Richard, D., Dr.

    2007-10-01

    The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused “technology transfer” was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Department’s Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOE’s Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Department’s Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexico’s priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexico’s federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOE’s technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Department’s technology base to help address some of Mexico

  8. Report on International Symposium for the Promotion of APEC Environmental Technology Exchange and Experts; APEC kankyogijutsu koryusokushin kokusai shinpojium jisshi hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The above event took place at Nagoya City, Japan, on December 5, 2000. Taken up were the response of developing nations to the problem of environmental protection, their needs for environmental technologies, examples of the transfer of environmental technologies carried out by Japan's environment related businesses or organizations, introduction of technologies Japan was able to present, and so forth. Introduced also were the current state and future outlook of such activities as the exchange of environmental technologies and business through the utilization of the virtual center for APEC (Asia-Pacific Economic Cooperation Conference) environmental technology exchange now in service, and so forth. At the symposium, a keynote address entitled Toward the Realization of Sustainable Society was delivered by Professor Yamamoto of the Institute of Industrial Science of the University of Tokyo. Panel discussions were held on the exchange of environmental technologies and business making use of the international network APEC-VC (virtual center) at Session 1, on some front-line cases of environmental technology transfer at Session 2, and on the transfer of technologies useful for developing nations as it ought to be at Session 3. (NEDO)

  9. Fundamentals of ion exchange

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1993-01-01

    In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)

  10. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    International Nuclear Information System (INIS)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir

    2012-01-01

    Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.

  11. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Nielsen, Jakob Koefoed

    In this porcine lung injury model, apneic oxygenation with arteriovenous CO2 removal provided sufficient gas exchange and stable hemodynamics, indicating that the method might have a potential in the treatment of severe ARDS.   Acknowledgements The membrane lungs were kindly provided by Novalung GmbH, Germany.......Background and aim of study We hypothesized that continuous high airway pressure without ventilatory movements (apneic oxygenation), using an open lung approach, combined with extracorporeal, pumpless, arterio-venous, carbon dioxide (CO2) removal would provide adequate gas exchange in acute lung...

  12. Nuclear engineering experiments at experimental facilities of JNC in graduate course of Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hayashizaki, Noriyosu; Takahashi, Minoru; Aoyama, Takafumi; Onose, Shoji

    2005-01-01

    Nuclear engineering experiments using outside facilities of the campus have been offered for graduate students in the nuclear engineering course in Tokyo Institute of Technology (Tokyo Tech.). The experiments are managed with the collaboration of Japan Nuclear Cycle Development Institute (JNC), Japan Atomic Energy Research Institute (JAERI) and Research Reactor Institute, Kyoto University (KUR). This report presents the new curriculum of the nuclear engineering experiments at JNC since 2002. The change is due to the shutdown of Deuterium Criticality Assembly Facility (DCA) that was used as an experimental facility until 2001. Reactor physics experiment using the training simulator of the experimental fast reactor JOYO is continued from the previous curriculum with the addition of the criticality approach experiment and control rods calibration. A new experimental subject is an irradiated material experiment at the Material Monitoring Facility (MMF). As a result, both are acceptable as the student experiments on the fast reactor. (author)

  13. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  14. Report on investigation in fiscal 2000 of industrial technology exchange with international networking organizations; 2000 nendo kokusaitekina network gata soshiki tono sangyo gijutsu koryu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to promote exchange of industrial technologies, investigations and analyses were made on identification of the current status of networking organizations in different countries working as windows for industrial technology exchange, and on the actual status of technology commercialization methods in overseas incubators. Activities were taken in the following three fields: 1) the current status of networking organizations and incubators in different countries, 2) typology of technology commercialization, technical fields, and success factors, and 3) possibility of the use of technology information in the networking organizations. In Item 1), investigations were performed on the current status and actual activity status of the networking organizations including research parks and individual incubators intended of information exchange, mainly in the United States, UK, and Finland. In Item 2), considerations are given on the points related to technology incubation based on the information about the networking organizations and incubators in each country, and the way the industry-academia cooperation should be. In Item 3), discussions were given on the roles of the networking organizations and the possibility of utilization of technological information in the networking organizations in Japan. (NEDO)

  15. Fiscal 1999 international engineer exchange project (Coal mining technology field). Overseas workshop (Australia); 1999 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop (Goshu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the technology exchange with Australian coal mining engineers, the technical levels and needs on coal production, safety and environment in Australia, and the FS result on transfer of Japanese technologies, engineer exchange and joint research in a coal mining technology field. The overseas workshop (Australia) was held on Nov. 9, 1999 (Tues.) in Brisbane, Queensland. The Australia-Japan Technology Exchange Workshop on coal resources and coal mining technology includes 5 sessions (keynote address, trends and issues of coal resource development, coal resources and production technology, coal resources and safety technology, coal resources and environmental problems), and the open forum discussion on innovative technologies for coal mining. 6 Japanese specialists and 11 Australian specialists read papers. After the workshop, the participants visited Liddell Mine in New South Wales to master natural conditions, and production and safety technology levels of Australian coal mines, and to exchange various information with Australian coal mining engineers. (NEDO)

  16. Joint Thesaurus. Part I (A-L) + Part II (M-Z)[International Nuclear Information System. Energy Technology Data Exchange

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    This is the 1st revision of the INIS/ETDE Joint Thesaurus. It contains 20 953 valid descriptors and 8 600 forbidden terms. It was last updated in December 2003. The Joint Thesaurus contains the controlled terminology for indexing all information within the subject scope of both INIS (International Nuclear Information System) and ETDE (Energy Technology Data Exchange) information systems. The terminology is intended for use in subject description for input or retrieval of information in those systems. The thesaurus is a terminological control device used in translating from the natural language of documents, indexers or users into a more constrained system language It is also a controlled and dynamic vocabulary of semantically and generically related terms which covers a specific domain of knowledge. The domain of knowledge covered by this Thesaurus includes physics (in particular, plasma physics, atomic and molecular physics, and especially nuclear and high-energy physics), chemistry, materials, earth sciences, radiation biology, radioisotope effects and kinetics, applied life sciences, radiology and nuclear medicine, isotope and radiation source technology, radiation protection, radiation applications, engineering, instrumentation, fossil fuels, synthetic fuels, renewable energy sources, advanced energy systems, fission and fusion reactor technology, safeguards and inspection, waste management, environmental aspects of the production and consumption of energy from nuclear and non-nuclear sources, energy efficiency and energy conservation, economics and sociology of energy production and use, energy policy, and nuclear law. The terms in the Thesaurus are listed alphabetically, and with each alphabetic entry a word block containing the terms associated with the particular entry is displayed. In the word block, terms that have a hierarchical relationship to the entry are identified by the symbols BT and NT, for Broader Term and Narrower Term. Those with an affinitive

  17. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  18. Study the Effect of the Flow on the Performance of a shell and Tube Type Heat Exchanger using Experimental Design Technique

    Directory of Open Access Journals (Sweden)

    Zuher Hassan Abdullah

    2016-10-01

    Full Text Available In the current research an experimental study was done to show the effect of pulse flow on the effectiveness of shell and tube type heat exchanger. the study was in the case of steady and pulse flows with a changing mass flow rate of hot water flowing inside the pipes of the heat exchanger for the range between (0.0273-0.0819 kg / s  at fix mass flow rate of cold water that flows through the shell and on the outer surface of the pipes when (0.0416 kg / s, to obtain pulsing a used was solenoid valve. The research aims to measure the percentage effect of independent factors which were presenting the mass flow rate of hot water, flow type and the surrounding environment conditions of the experimental side upon shell and tube type heat exchanger performance using experimental design technique at the significant level (0.05.The results derived from the experimental tests showed that pulse flow leads to increase internal heat transfer coefficient (hi comparing with its value in the steady flow and the highest increase was by (9.75% at a mass flow rate of hot water (0.0416 kg / s and increases the overall heat transfer coefficient (U, where the highest percentage was by 4.68% at a mass flow rate of hot water (0.0416kg/s. The results also showed increasing both the number of transmitted units (NTU and the effectiveness of the shell and tube type heat exchanger ( in the case of pulse flow of its value in the steady flow and the highest percentage of increase occurring was (4.75% and (1.85%, respectively, and at the mass flow rate of hot water (0.0416 kg / s. Percentage effect of mass flow rate of hot water was (97%, 97.42%, 95.5%, 99.48% and the percentage effect of each flow type and the errors were (2.8%, 2.25%, 2.44%, 0.4% and (0. 2, 0.33%, 2.06%, 0.12 respectively

  19. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  20. Experimental investigation of centrifugal fans for personal protection equipment - effect of used 3D printing technologies

    Science.gov (United States)

    Dvořák, Václav; Votrubec, Radek; Šafka, Jiří; Kracík, Jan

    2018-06-01

    The aim of the research is experimental investigation of centrifugal fans for a personal protection equipment. The aim of the fan is to drive the contaminated air containing harmful or irritating particles through the filters and then into the mask of workers, such as a fireman, a labourer or a lab worker. The fan is measured on the test stand, the characteristics and performances are evaluated, i.e. the dependencies of the working pressure on the flow rate. The characteristics are measured for three constant speed settings. The characteristics of the wheels produced by the different 3D printing technology are compared. It is found that the production technology has only a minimal effect, the performance of the wheels is more influenced by the position of the impeller on the motor shaft and hence by the mutual position of the impeller and the diffuser.

  1. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  2. Optical waveguiding and applied photonics technological aspects, experimental issue approaches and measurements

    CERN Document Server

    Massaro, Alessandro

    2012-01-01

    Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a

  3. Accelerator laboratories: development centers for experimental physics and technology in Mexico

    International Nuclear Information System (INIS)

    Mazari, M.

    1989-01-01

    Three years ago in this Nuclear Center the author and Professor Graef expounded the inception and development of experimental physics and new techniques centered about laboratories and equipped in our country with positive ion accelerators. Extracted here is the information on the laboratories that have allowed professional training as well as the furtherance of scientific productivity in each group. An additional proposal as to how the technical groups knowledgeable in advanced technology might contribute significantly to adequate preparation of youth at the intermediate level able to generate innocuous micro industries in their own neighbourhood. (Author). 5 refs, 2 figs, 2 tabs

  4. Experimental Investigation of Gaseous Reaction Products from Na-CO{sub 2} Reaction in Na/CO{sub 2} Heat Exchanger leakage scenario

    Energy Technology Data Exchange (ETDEWEB)

    Go, A-Reum; Jung, Hwa-Young; Kim, Min Seok; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Min, Jaehong; Wi, Myung-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The SFRs have operated with the steam Rankine cycle as a power conversion system. However, the potential sodium-water reaction (SWR) whose chemical reactivity is vigorous and instantaneous has been one of the major issues concerning the safety and integrity of the SFRs. In order to avoid SWR, supercritical CO{sub 2}(S-CO{sub 2}) Brayton cycles have been investigated recently. Compared to conventional steam Rankine cycles, S-CO{sub 2} Brayton cycle features higher thermal efficiency and potential compactness of its required equipment. In spite of the superiority of S-CO{sub 2} Brayton cycle, there is a potential reactive process between sodium and CO{sub 2} if the pressure boundary fails in the sodium-CO{sub 2} heat exchanger. The leakage scenario which could lead to mechanical and thermal problems should be evaluated. Previous studies have reported the following major reaction formulas. Each reaction occurs competitively. In this paper, the experimental setup to observe the pressure variation and CO concentration in Na-CO{sub 2} heat exchanger during the CO{sub 2} leak is explained. Before the experiment is carried out, water-CO{sub 2} mock-up test will be performed. In order to evaluate the leakage scenario in Na-CO{sub 2} heat exchanger more accurately, this study will be important for guaranteeing the system of SFR coupled with S-CO{sub 2} cycle.

  5. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities during Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-01-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused…

  6. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial......Fuel cell systems running on pure hydrogen can efficiently produce electricity and heat for various applications, stationary and mobile. Storage volume can be problematic for stationary fuel cell systems with high run-time demands, but it is especially a challenge when dealing with mobile...

  7. Project to promote the development of global environmental industry technology. Feasibility study of research exchanges; Chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo. Kenkyu koryu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In fiscal 1995, three teams were organized to study the following subjects: plant genetic and cellular engineering in relation to drought stress; simulation models of global environment for accurate assessment and prediction; the APEC Virtual Center for environmental technology exchange. The team studying plant genetic and cellular engineering in relation to drought stress visited the Department of Botany, Hebrew University of Jerusalem, Israel, the Jacob Blaustein Institute for Desert Research, Ben-Grunion University, Israel, the Department of Biochemistry and the Office of Arid Lands Studies, Arizona University, the U.S. to survey the present and future trend of the study and feasibility of research exchanges. The team studying simulation models of global environment for accurate assessment and prediction visited Yale University, Massachusetts Institute of Technology, Electric Power Research Institute, and Battle Research Institute in the U.S. to survey feasibility of research exchanges. The team studying the APEC Virtual Center for environmental technology exchange visited institutes in ASEAN countries to survey needs for the Virtual Center. 312 refs., 74 figs., 17 tabs.

  8. Theoretical-Experimental study on the electroslag remelting technology of high quality steels

    International Nuclear Information System (INIS)

    Robles P, E.F.

    1993-01-01

    This is a theoretical-experimental laboratory study on the Electroslag Remelting Technology (ESRT) of high quality steels. The objective of this study was to analyze the problems that this technology entails and thus facilitate its industrial application in Mexico. The study was carried out using a 1 Kg. capacity furnace, the behavior of different fluxes on the remelting of 1018 AISI carbon steel was established and a slag 70F/15/15 was selected for the remelting of H-13 AISI hot work tool steel. From the experimental results it was possible to establish a flux manufacture route, the electrode conditioning necessary for the experiments, and the critical points of the process. It was demonstrated that the crucible and electrode advance system are the more critical points in the furnace manufacture, that the start up is fundamental for the remelting continuity and that the CaF 2 base slags are more recommendable for special steels refining. It has been proven that it is possible to experiment with little laboratory electroslag furnaces. (Author)

  9. Joint thesaurus Part I (A-L) + II (M-Z)[International Nuclear Information System. Energy Technology Data Exchange

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    This is the second revision of the ETDE/INIS Joint Thesaurus, including all updates up to September 2006. It contains 21 147 valid descriptors and 9 114 forbidden terms. The Joint Thesaurus contains the controlled terminology for indexing all information within the subject scopes of the International Nuclear Information System (INIS) and the Energy Technology Data Exchange (ETDE). The terminology is intended for use in subject descriptions for input or retrieval of information in these systems. The thesaurus is a terminological control device used in translating from the natural language of documents, indexers or users into a more constrained system language It is also a controlled and dynamic vocabulary of semantically and generically related terms which covers a specific domain of knowledge. The basic terminology in this thesaurus goes back to the 1969 edition of the EURATOM Thesaurus. The structure subsequently given to that terminology was the result of a systematic study performed by INIS subject specialists. Further expansion of the thesaurus terminology was done by ETDE to incorporate information on all forms of energy. The ETDE/INIS Joint Thesaurus is the result of continued editing, carried out in parallel to the processing of the INIS and ETDE databases. The domain of knowledge covered by the Joint Thesaurus includes physics (in particular, plasma physics, atomic and molecular physics, and especially nuclear and high-energy physics), chemistry, materials science, earth sciences, radiation biology, radioisotope effects and kinetics, applied life sciences, radiology and nuclear medicine, isotope and radiation source technology, radiation protection, radiation applications, engineering, instrumentation, fossil fuels, synthetic fuels, renewable energy sources, advanced energy systems, fission and fusion reactor technology, safeguards and inspection, waste management, environmental aspects of the production and consumption of energy from nuclear and non

  10. Experimental Design of Electrocoagulation and Magnetic Technology for Enhancing Suspended Solids Removal from Synthetic Wastewater

    Directory of Open Access Journals (Sweden)

    Moh Faiqun Ni'am

    2014-10-01

    Full Text Available Design of experiments (DOE is one of the statistical method that is used as a tool to enhance and improve experimental quality. The changes to the variables of a process or system is supposed to give the optimal result (response and quite satisfactory. Experimental design can defined as a test or series of test series by varying the input variables (factors of a process that can known to cause changes in output (response. This paper presents the results of experimental design of wastewater treatment by electrocoagulation (EC technique. A combined magnet and electrocoagulation (EC technology were designed to increase settling velocity and to enhance suspended solid removal efficiencies from wastewater samples. In this experiment, a synthetic wastewater samples were prepared by mixing 700 mg of the milk powder in one litre of water and treated by using an acidic buffer solution. The monopolar iron (Fe plate anodes and cathodes were employed as electrodes. Direct current was varied in a range of between 0.5 and 1.1 A, and flowrate in a range of between 1.00 to 3.50 mL/s. One permanent magnets namely AlNiCo with a magnetic strength of 0.16T was used in this experiment. The results show that the magnetic field and the flowrate have major influences on suspended solids removal. The efficiency removals of suspended solids, turbidity and COD removal efficiencies at optimum conditions were found to be more than 85%, 95%, and 75%, respectively.

  11. Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan.

    Science.gov (United States)

    Whiten, Andrew

    2015-11-19

    The complexity of Stone Age tool-making is assumed to have relied upon cultural transmission, but direct evidence is lacking. This paper reviews evidence bearing on this question provided through five related empirical perspectives. Controlled experimental studies offer special power in identifying and dissecting social learning into its diverse component forms, such as imitation and emulation. The first approach focuses on experimental studies that have discriminated social learning processes in nut-cracking by chimpanzees. Second come experiments that have identified and dissected the processes of cultural transmission involved in a variety of other force-based forms of chimpanzee tool use. A third perspective is provided by field studies that have revealed a range of forms of forceful, targeted tool use by chimpanzees, that set percussion in its broader cognitive context. Fourth are experimental studies of the development of flint knapping to make functional sharp flakes by bonobos, implicating and defining the social learning and innovation involved. Finally, new and substantial experiments compare what different social learning processes, from observational learning to teaching, afford good quality human flake and biface manufacture. Together these complementary approaches begin to delineate the social learning processes necessary to percussive technologies within the Pan-Homo clade. © 2015 The Author(s).

  12. Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation

    International Nuclear Information System (INIS)

    Dolado, Pablo; Lazaro, Ana; Marin, Jose M.; Zalba, Belen

    2011-01-01

    Research highlights: → A mathematical model of a PCM-air heat exchanger is developed and validated. → Validation range is 0.7-2.1 m/s for airflow and 8-45 o C for air inlet temperature. → Better λPCM lead to minor improvement as the main resistance is mostly on air side. → 1 o C mismatch in the PCM h-T curve could lead to errors of up to 20% in power. → The accuracy of material properties' data used as inputs in the model is stressed. -- Abstract: This paper describes the models developed to simulate the performance of a thermal energy storage (TES) unit in a real scale PCM-air heat exchanger, analyzing the heat transfer between the air and a commercially available and slab macroencapsulated phase change material (PCM). The models are based on one-dimensional conduction analysis, utilizing finite differences method, and implicit formulation, using the thermo-physical data of the PCM measured in the laboratory: enthalpy and thermal conductivity as functions of temperature. The models can take into account the hysteresis of the enthalpy curve and the convection inside the PCM, using effective conductivity when necessary. Two main paths are followed to accomplish the modeling: the thermal analysis of a single plate, and the thermal behavior of the entire TES unit. Comparisons between measurements and simulations are undertaken to evaluate the models. Average errors of less than 12% on thermal power are obtained for the entire cycle. Once the model is validated, a series of parameters and variables is studied to verify their influence on the behavior and design of the TES unit.

  13. Promotion project to develop the global environment related industrial technology. Investigation on the possibility of research exchange; Chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo. Kenkyu koryu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Through visits to US universities and research institutes, investigation was made on the trend of global environment-related research and possibility of their exchanging the result of research with the RITE (Research Institute of Innovative Technology for the Earth). To investigate the process technology to utilize microbes harmoniously with the environment, the visit was paid to Cornell University, Battelle Memorial Institute and Risk Reduction Engineering Laboratory, where the investigation was made on the environmental bioremediation with microbial functions and clean process production without by-producing substances to load the environment. To investigate the technical measures against the global warming, the visit was paid to Brookhaven National Laboratory, Massachusetts Institute of Technology, California University, Hawaii University and Pacific International Center for High Technology Research, where the investigation was made, through discussion and exchange of research information and opinion with researchers and engineers, on the possibility of their exchanging the result of research with the RITE. Judging from the investigation of this time, the research which is mutually complementary between Japan and USA is easy to promote, because their respective advanced fields do not overlap with each other. 88 refs., 11 figs., 6 tabs.

  14. An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage. Part II: Simultaneous charging/discharging modes

    International Nuclear Information System (INIS)

    Liu Zhongliang; Wang Zengyi; Ma Chongfang

    2006-01-01

    In this part of the paper, the performance of the simultaneous charging/discharging operation modes of the heat pipe heat exchanger with latent heat storage is experimentally studied. The experimental results show that the device may operate under either the fluid to fluid heat transfer with charging heat to the phase change material (PCM) or the fluid to fluid heat transfer with discharging heat from the PCM modes according to the initial temperature of the PCM. The melting/solidification curves, the performances of the heat pipes and the device, the influences of the inlet temperature and the mass flow rate of the cold water on the operation performance are investigated by extensive experiments. The experimental results also disclose that under the simultaneous charging/discharging operation mode, although the heat transfer from the hot water directly to the cold water may vary, it always takes up a major part of the total heat recovered by the cold water due to the very small thermal resistance compared with the thermal resistance of the PCM side. The melting/solidification processes taking place in the simultaneous charging/discharging operation are compared with those in the charging only and discharging only processes. By applying a simplified thermal resistance analysis, a criterion for predicting the exact operation modes was derived and used to explain the observed experimental phenomena

  15. Experimental Research on How Instructing Students to Use Lecture Capture (Podcasting) Technology Affects Student Learning in Higher Education

    Science.gov (United States)

    Hall, William A., Jr.

    2012-01-01

    Students' use of new technology is prevalent. Many of them own mobile phones, laptop computers, and various entertainment devices. However, they are seldom taught how to maximize these technologies for academic purposes. This experimental study examined whether students who received instructions on how to use podcasts for academic purposes…

  16. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  17. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  18. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk [Dept. of Mechanical Engineering, Chung Ang University, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed.

  19. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    International Nuclear Information System (INIS)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk

    2016-01-01

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed

  20. Dictionary of heat exchanger technology. English-German, German-English. Woerterbuch der Waermeaustauschertechnik. Englisch-Deutsch, Deutsch-Englisch

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, H P [comp.

    1989-01-01

    This dictionary contains more than 6,000 terms and numerous explanations and comprises all types of shell-and-tube and tubular heat exchangers including condensers, feedwater heaters, air heaters, evaporators, vaporizers, steam generators, steam boilers as well as plate-and-frame heat exchangers, cooling towers, and special designs, and the related technical fields such as thermal and mass transfer, thermodynamics, fluids engineering, and strength calculation. Part 1 contains the English-German version, Part 2 the German-English version and Annex 1 the figures for explaining the most important heat exchanger designs. (orig.).

  1. The HartX-synthesis: An experimental approach to water and carbon exchange of a Scots pine plantation

    Science.gov (United States)

    Bernhofer, Ch.; Gay, L. W.; Granier, A.; Joss, U.; Kessler, A.; Köstner, B.; Siegwolf, R.; Tenhunen, J. D.; Vogt, R.

    1996-03-01

    In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine ( Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast. Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol

  2. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  3. Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition

    International Nuclear Information System (INIS)

    Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang

    2014-01-01

    Highlights: • Two-phase flow in PEMFC cathode channels is observed in different gravity environments. • The PEMFC shows different operating behavior in normal and microgravity conditions. • Water tends can be removed in microgravity conditions at high water production regime. • Liquid aggregation occurs in microgravity conditions at low water production regime. • Effect of gravity on performance and two-phase flow at two operating regimes is studied. - Abstract: Water management is important for improving the performance and stability of proton exchange membrane fuel cells (PEMFCs) for space applications. An in situ visual observation was conducted on the gas–liquid two-phase flow in the cathode channels of a PEMFC in short-term microgravity condition. The microgravity environment was supplied by a drop tower. A single serpentine flow channel with a depth of 2 mm and a width of 2 mm was applied as the cathode flow field. A membrane electrode assembly comprising of a Nafion 112 membrane sandwiched between gas diffusion layers was used. The anode and cathode were loaded with 1 mg cm −2 platinum. The PEMFC shows a distinct operating behavior in microgravity because of the effect of gravity on the two-phase flow. At a high water production regime, cell performance is enhanced by 4.6% and the accumulated liquid water in the flow channel tends can be removed in microgravity conditions to alleviate flooding. At a low water production regime, cell performance deteriorates by 6.6% and liquid aggregation occurs in the flow channel because of the coalescence of dispersed water droplets in microgravity conditions, thus squeezing the flow channel. The operating behavior of PEMFC in microgravity conditions is different from that in normal gravity conditions. Further studies are needed on PEMFC operating characteristics and liquid management for space applications

  4. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer

    International Nuclear Information System (INIS)

    Kong, Im Mo; Choi, Jong Won; Kim, Sung Il; Lee, Eun Sook; Kim, Min Soo

    2015-01-01

    Highlights: • Investigated self-humidification effect of structurally modified GDBLs in PEMFCs. • One conventional and two modified GDLs were prepared. • Structural design of the GDBLs significantly affected self-humidification. • Stacking was found to have negligible effect on self-humidification. • It can be applied readily to self-humidified PEMFCs. - Abstract: Adequate hydration of the membrane is required to ensure high proton conductivity in proton exchange membrane fuel cells (PEMFCs), which, in turn, is required for achieving high cell performances. While external humidifiers are typically used to humidify the supplied air in conventional systems, their use increases the complexity, weight, volume, and parasitic power loss in fuel cell systems, rendering them unviable in some systems, particularly for portable applications. In this study, the structure of a gas diffusion backing layer (GDBL) was modified to enhance the self-humidification effect in PEMFCs. Three types of GDLs were prepared for the experiments: a conventional GDL (GDL-A with uniform single GDBL) and two modified GDLs (GDL-A′B with uniform double GDBL and GDL-A′C with heterogeneous double GDBLs). In order to evaluate the effect of stacking and structural design on the self-humidification characteristics, some characteristics of the GDLs such as contact angle, resistance, and vapor permeation rate were measured. The electrochemical performances of the fuel cells were also measured at various relative humidity (RH) and stoichiometric ratio (SR) conditions. The results showed that stacking had a negligible effect, whereas the structural design of the GDBL had a significant effect on self-humidification. The self-humidification effect and the cell performance were improved significantly in the structurally modified GDBL. In addition, considering the actual field conditions and the results of the present study, it was concluded that the structural modifications made to the GDBL would

  5. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Science.gov (United States)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  6. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Tsolakoglou Nikolas P.

    2017-01-01

    Full Text Available This work investigates melting and solidification processes of four different Phase Change Materials (PCM used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF. Both charging (melting and discharging (solidification processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates. Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  7. Peer exchange May 3-5, 2016 : Alaska Department of Transportation and Public Facilities : research development & technology transfer.

    Science.gov (United States)

    2016-01-01

    Members of the Peer Exchange Team identified actions Alaska should consider to : improve effectiveness of the research program: : 1. Conduct Research Strategic Visioning Workshop with Staff and Research : Advisory Board in Fall, 2016 : 2. Develop a T...

  8. Experimental study on the influence of clamping pressure on proton exchange membrane water electrolyzer (PEMWE) cell’s characteristics

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Cui, Xiaoti; Kær, Søren Knudsen

    Energy transition can be led by more hydrogen production. Hydrogen offers a clean, sustainable, and flexible option for overcoming different obstacles that face the low-carbon economy [1]. PEMWE is one of the most promising candidate technologies to produce hydrogen from renewable energy sources...... with the circulating water. In the recent few years, PEMWE’s R&D has inched towards; operating conditions; such as increased operating temperature and cathode-anode high differential pressure operation, flow field design, stack development, and numerical modelling [2,3]. In this work the effect of clamping pressure...... on the PEMWE cell characteristics’; performance, conductivity, hydrogen and water cross-over through the membrane electrode assembly (MEA) is studied. A 50 cm2 active area PEMWE cell with double serpentine flow field channels for the anode and cathode side is used. Measurements are carried out at constant cell...

  9. Computational Fluid Dynamics and Experimental Studies of a New Mixing Element in a Static Mixer as a Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Konopacki Maciej

    2015-03-01

    Full Text Available The main aim of this work is to study the thermal efficiency of a new type of a static mixer and to analyse the flow and temperature patterns and heat transfer efficiency. The measurements were carried out for the static mixer equipped with a new mixing insert. The heat transfer enhancement was determined by measuring the temperature profiles on each side of the heating pipe as well as the temperature field inside the static mixer. All experiments were carried out with varying operating parameters for four liquids: water, glycerol, transformer oil and an aqueous solution of molasses. Numerical CFD simulations were carried out using the two-equation turbulence k-ω model, provided by ANSYS Workbench 14.5 software. The proposed CFD model was validated by comparing the predicted numerical results against experimental thermal database obtained from the investigations. Local and global convective heat transfer coefficients and Nusselt numbers were detrmined. The relationship between heat transfer process and hydrodynamics in the static mixer was also presented. Moreover, a comparison of the thermal performance between the tested static mixer and a conventional empty tube was carried out. The relative enhancement of heat transfer was characterised by the rate of relative heat transfer intensification.

  10. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models?

    Science.gov (United States)

    Hanna-El-Daher, Layane; Braissant, Olivier

    2016-08-01

    While it has long been thought that most of cerebral creatine is of peripheral origin, the last 20 years has provided evidence that the creatine synthetic pathway (AGAT and GAMT enzymes) is expressed in the brain together with the creatine transporter (SLC6A8). It has also been shown that SLC6A8 is expressed by microcapillary endothelial cells at the blood-brain barrier, but is absent from surrounding astrocytes, raising the concept that the blood-brain barrier has a limited permeability for peripheral creatine. The first creatine deficiency syndrome in humans was also discovered 20 years ago (GAMT deficiency), followed later by AGAT and SLC6A8 deficiencies, all three diseases being characterized by creatine deficiency in the CNS and essentially affecting the brain. By reviewing the numerous and latest experimental studies addressing creatine transport and synthesis in the CNS, as well as the clinical and biochemical characteristics of creatine-deficient patients, our aim was to delineate a clearer view of the roles of the blood-brain and blood-cerebrospinal fluid barriers in the transport of creatine and guanidinoacetate between periphery and CNS, and on the intracerebral synthesis and transport of creatine. This review also addresses the question of guanidinoacetate toxicity for brain cells, as probably found under GAMT deficiency.

  11. Experimental platform utilising melting curve technology for detection of mutations in Mycobacterium tuberculosis isolates.

    Science.gov (United States)

    Broda, Agnieszka; Nikolayevskyy, Vlad; Casali, Nicki; Khan, Huma; Bowker, Richard; Blackwell, Gemma; Patel, Bhakti; Hume, James; Hussain, Waqar; Drobniewski, Francis

    2018-04-20

    Tuberculosis (TB) remains one of the most deadly infections with approximately a quarter of cases not being identified and/or treated mainly due to a lack of resources. Rapid detection of TB or drug-resistant TB enables timely adequate treatment and is a cornerstone of effective TB management. We evaluated the analytical performance of a single-tube assay for multidrug-resistant TB (MDR-TB) on an experimental platform utilising RT-PCR and melting curve analysis that could potentially be operated as a point-of-care (PoC) test in resource-constrained settings with a high burden of TB. Firstly, we developed and evaluated the prototype MDR-TB assay using specimens extracted from well-characterised TB isolates with a variety of distinct rifampicin and isoniazid resistance conferring mutations and nontuberculous Mycobacteria (NTM) strains. Secondly, we validated the experimental platform using 98 clinical sputum samples from pulmonary TB patients collected in high MDR-TB settings. The sensitivity of the platform for TB detection in clinical specimens was 75% for smear-negative and 92.6% for smear-positive sputum samples. The sensitivity of detection for rifampicin and isoniazid resistance was 88.9 and 96.0% and specificity was 87.5 and 100%, respectively. Observed limitations in sensitivity and specificity could be resolved by adjusting the sample preparation methodology and melting curve recognition algorithm. Overall technology could be considered a promising PoC methodology especially in resource-constrained settings based on its combined accuracy, convenience, simplicity, speed, and cost characteristics.

  12. An experimental investigation on heat transfer enhancement in the laminar flow of water/TiO2 nanofluid through a tube heat exchanger fitted with modified butterfly inserts

    Science.gov (United States)

    Venkitaraj, K. P.; Suresh, S.; Alwin Mathew, T.; Bibin, B. S.; Abraham, Jisa

    2018-03-01

    Nanofluids are advanced heat transfer fluids that exhibit thermal properties superior than that of the conventional fluids such as water, oil etc. This paper reports the experimental study on convective heat transfer characteristics of water based titanium dioxide nanofluids in fully developed flow through a uniformly heated pipe heat exchanger fitted with modified butterfly inserts. Nanofluids are prepared by dispersing TiO2 nanoparticles of average particle size 29 nm in deionized water. The heat transfer experiments are performed in laminar regime using nanofluids prepared with 0.1% and 0.3% volume fractions of TiO2 nanoparticles. The thermal performance characteristics of conventional butterfly inserts and modified butterfly inserts are also compared using TiO2 nanofluid. The inserts with different pitches 6 cm, 9 cm and 12 cm are tested to determine the effect of pitch distance of inserts in the heat transfer and friction. The experimental results showed that the modification made in the butterfly inserts were able to produce higher heat transfer than conventional butterfly inserts.

  13. Chinese Commission of Science Technology and Industry for National Defense Senior Vice Minister CHEN Qiufa exchanging gifts at luncheon and signing the Guest Book on 1st November 2007 with CERN Director-General R. Aymar.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Chinese Commission of Science Technology and Industry for National Defense Senior Vice Minister CHEN Qiufa exchanging gifts at luncheon and signing the Guest Book on 1st November 2007 with CERN Director-General R. Aymar.

  14. Development of long-lived radionuclide partitioning technology - Preparation of ion exchanges for selective separation of radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Joong; Jeong, Hae In; Shim, Min Sook [Korea University, Seoul (Korea, Republic of); Kim, Jeong [Seonam University, Namwon (Korea, Republic of)

    1995-07-01

    Ion exchanger contained nitrogen-oxygen donor macrocyclic units was synthesized, and immobilization process was carried out by adsorption of the exchanger to silica gel. The binding constants were measured with acid concentration. From the binding constants, selectivity for Pt(II) ion and acid concentration of eluents were determined. The most optimum conditions for the separation were also determined from investigating the effects of amount of immobile phase and column length. And liarit aza-crown ethers were synthesized and selectively separated Cs/Sr ion from mixed metal solution. 37= refs., 24 tabs., 40 figs. (author)

  15. Green” Technology and Ecologically Unequal Exchange: The Environmental and Social Consequences of Ecological Modernization in the World-System

    Directory of Open Access Journals (Sweden)

    Eric Bonds

    2015-08-01

    Full Text Available This paper contributes to understandings of ecologically unequal exchange within the world-systems perspective by offering a series of case studies of ecological modernization in the automobile industry. The case studies demonstrate that “green” technologies developed and instituted in core nations often require specific raw materials that are extracted from the periphery and semi-periphery. Extraction of such natural resources causes significant environmental degradation and often displaces entire communities from their land. Moreover, because states often use violence and repression to facilitate raw material extraction, the widespread commercialization of “green” technologies can result in serious human rights violations. These findings challenge ecological modernization theory, which rests on the assumption that the development and commercialization of more ecologically-efficient technologies is universally beneficial.

  16. Assessment of information needs: Production phase of the petroleum industry for an evaluaton of International Energy Agency Energy Technology Data Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B.

    1989-09-01

    This survey was conducted to determine needs of the petroleum industry for information and data on petroleum production technology, including subjects of most interest and most difficult to obtain, and sources being used to acquire such information. Results of the survey will be used in evaluating the Energy Technology Data Exchange and Department of Energy common data base. A selected sample of world petroleum production specialists and petroleum information specialists and other related personnel were surveyed to learn about their problems in retrieving information and data on petroleum production. They were asked what topics and kinds of information are of current interest, what sources they are using to help resolve their technological problems, what petroleum-producing countries are of interest to them, and other related questions.

  17. 1995 national heat transfer conference: Proceedings. Volume 12: Falling films; Fundamentals of subcooled flow boiling; Compact heat exchanger technology for the process industry; HTD-Volume 314

    International Nuclear Information System (INIS)

    Sernas, V.; Boyd, R.D.; Jensen, M.K.

    1995-01-01

    The papers in the first section cover falling films and heat transfer. Papers in the second section address issues associated with heat exchangers, such as: plate-and-frame heat exchanger technology; thermal design issues; condensation; and single-phase flows. The papers in the third section deal with studies related to: the turbulent velocity field in a vertical annulus; the effects of curvature and a dissolved noncondensable gas on nucleate boiling heat transfer; the effects of flow obstruction on the onset of a Ledinegg-type flow instability; pool boiling from a large-diameter tube; and two-dimensional wall temperature distributions and convection in a single-sided heated vertical tube. Separate abstracts were prepared for most papers in this volume

  18. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  19. Outlook for ion exchange

    International Nuclear Information System (INIS)

    Kunin, R.

    1977-01-01

    This paper presents the history and theory of ion exchange technology and discusses the usefulness of ion exchange resins which found broad applications in chemical operations. It is demonstrated that the theory of ion exchange technology seems to be moving away from the physical chemist back to the polymer chemist where it started originally. This but confronted the polymer chemists with some knotty problems. It is pointed out that one has still to learn how to use ion exchange materials as efficiently as possible in terms of the waste load that is being pumped into the environment. It is interesting to note that, whereas ion exchange is used for abating pollution, it is also a polluter. One must learn how to use ion exchange as an antipollution device, and at the same time minimize its polluting properties

  20. Augmentative and Alternative Communication in Autism: A Comparison of the Picture Exchange Communication System and Speech-Output Technology

    Science.gov (United States)

    Boesch, Miriam Chacon

    2011-01-01

    The purpose of this comparative efficacy study was to investigate the Picture Exchange Communication System (PECS) and a speech-generating device (SGD) in developing requesting skills, social-communicative behavior, and speech for three elementary-age children with severe autism and little to no functional speech. Requesting was selected as the…

  1. Research on XML-based Application Layer Data Exchange Technology%基于XML的应用层数据交换技术的研究

    Institute of Scientific and Technical Information of China (English)

    尹建璋

    2009-01-01

    目前,许多企业已着力建立各种计算机应用以助于商业运营.虽然这带来了效率的显著提高,但它并没有扩展到企业外部的业务.这些业务涵盖不同公司企业应用或商业运营的交换和交流.很多情况下企业与它们的商业伙伴、供货商和客户存在信息孤岛.企业间以及它们与其商业伙伴间的交流仍旧是依赖人工处理,因此效率很低.电子数据交换(EDI)被认为是这一问题的解决方案,而应用层数据交换技术是该方案的重中之重,因此,本文主要对电子数据交换技术中的XML应用层数据交换技术进行研究.%At present, many enterprises have been efforts to establish a variety of computer applications in order to help business operators. While that has had a significant improvement in the efficiency, but it does not extend to companies outside the business. These businesses cover a variety of companies applications or business operations of the exchange and communication. Many cases, enterprises and their business partners, suppliers and customers there are islands of information. Between enterprises and their business partners and their exchanges are still dependent on manual processing, so efficiency is very low. Electronic Data Interchange (EDI) is considered to be the solution to this problem, and the application layer data exchange technology is the top priority of the program, this paper studies the electronic data exchange technology in application-level XML data exchange technology.

  2. Metal for Zambujal: experimentally reconstructing a 5000-year-old technology

    Directory of Open Access Journals (Sweden)

    Hanning, Erica

    2010-12-01

    Full Text Available A series of 17 crucible smelting experiments were carried out as part of an interdisciplinary research project initiated to understand the innovation of copper metallurgy in the central and southern Portuguese Copper Age. The reconstructed smelting technology was based on information gathered from archaeological contexts, with emphasis on artifacts found at Zambujal and other sites in the Portuguese Estremadura, and ores collected from five different ore deposits in Portugal. Both the ore and smelting products were analysed using mineralogical and geochemical analyses, and compared with archaeological remains. Results of this comparative study are presented, and in light of technological observations made during the experiments, the role of copper production within the Chalcolithic society in southern and central Portugal is also discussed.

    Una serie de 17 experimentos de fundición fueron llevados a cabo como parte de un proyecto de investigación interdisciplinar, que fue iniciado con el propósito de entender las innovaciones en el ámbito de la metalurgia del cobre que se dieron en el centro y el sur de Portugal durante la Edad de Cobre. La tecnología de fundición utilizada en los experimentos fue recreada conforme a información recopilada y a artefactos encontrados en sitios arqueológicos, principalmente en Zambujal y otros lugares pertenecientes a la Estremadura Portuguesa. Asimismo, los minerales de cobre usados durante la fase experimental fueron recolectados en cinco yacimientos minerales de Portugal. El mineral y los productos finales del proceso de fundición fueron analizados mineralógica y geoquímicamente, para después ser comparados con el resto de las muestras arqueológicas. En el presente documento se discuten los resultados del estudio comparativo. Por último, se presenta una discusión del papel que tiene la producción de cobre en la sociedad del centro y del sur de Portugal durante el Calcolítico, basado en

  3. Exotic baryonium exchanges

    International Nuclear Information System (INIS)

    Nicolescu, B.

    1978-05-01

    The prominent effects supposed to be associated with the exchange of exotic baryonium Regge trajectories are reviewed. The experimental presence of all expected effects leads to suggest that the baryonium exchange mechanism is a correct phenomenological picture and that mesons with isospin 2 or 3/2 or with strangeness 2, strongly coupled to the baryon-antibaryon channels, must be observed

  4. Development of long-lived radionuclides partitioning technology - Experimental/theoretical study of phase equilibria for multicomponent multiphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Soo; Lee, Se Il; Sim, Yeon Sik; Park, Sung Bin; Yang, Sung Oh; Park, Ji Yong [Korea University, Seoul (Korea, Republic of)

    1995-08-01

    In various partitioning processes, rare earth elements and actinide elements are separated from other elements in the first stage. They are then separated into rare earth groups and actinde groups. The first stage is accomplished by solvent extraction using DEHPA, by precipitation using oxalic= acid, or by cation exchange. The second stage is carried out by selective back-extraction or by selective elution using DTPA. In these processes the equilibria is governed by the concentrations of nitric acid, of solvents, and of precipitants among others. In this study various distribution coefficients in partitioning processes were experimentally determined. And thermodynamic models were proposed to calculate distribution coefficients with experimentally determined equilibrium constants. 32 refs., 11 tabs., 23 figs. (author)

  5. FY 2000 international exchange project on exchanges of engineers - Coal mine technology field. Overseas workshop (Indonesia); 2000 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop (Indonesia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of making effective technology exchanges and surveying levels of technology in Indonesia and the needs and possibilities of technology transfer from Japan, workshop was held in Jakarta city on March 1, 2001. Subjects were the following seven: subjects on coal resource and technical strategy in the 21st century, challenge in coal development in Indonesia, geological structure survey at Tanjung Enim coal mine, waste water treatment in Indonesia, outlook for underground mining coal mines, joint research on the centralized monitoring system, and introduction of the optimum high wall coal mining system into open pit mining coal mines in Indonesia. The coal production amount in Indonesia was 75 million tons, and the domestic demand was 22 million tons. Japan imported 14 million tons from Indonesia. In coal mines in Indonesia, most of the coal preparation plants have no waste water treatment facilities. Considering that waste water treatment facilities are necessary for the plants in future, the joint research was made on the simple coal preparation waste water treatment system. (NEDO)

  6. An experimental study of charge exchange process in the energy range 1-30 keV during the passage of alkali metal ions and atoms through cesium and potassium vapour

    International Nuclear Information System (INIS)

    Wittchow, F.

    1979-01-01

    An experimental study is presented of the charge exchange processes in the energy range of about 1-30 keV during the passage of positive alkali ions and alkali atoms through potassium and cesium vapour. The experimental set-up designed for this experiment includes a thermionic source for positive alkali ions with an acceleration stage, a first charge exchange cell to produce fast alkali atoms, a second charge exchange cell with a surface ionisation detector to determine the alkali metal vapor target thickness and a detection system with electrostatic bending of the charged secondary species. The maximum negative ion yield has been determined for the collision systems Li + + K, Na + + K, K + + K, and Rb + + K, and for another eleven systems the charge transfer cross-sections have been measured too. (orig./GG) [de

  7. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-08-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.

  8. An experimental study of hafting adhesives and the implications for compound tool technology.

    Science.gov (United States)

    Zipkin, Andrew M; Wagner, Mark; McGrath, Kate; Brooks, Alison S; Lucas, Peter W

    2014-01-01

    Experimental studies of hafting adhesives and modifications to compound tool components can demonstrate the extent to which human ancestors understood and exploited material properties only formally defined by science within the last century. Discoveries of Stone Age hafting adhesives at archaeological sites in Europe, the Middle East, and Africa have spurred experiments that sought to replicate or create models of such adhesives. Most of these studies, however, have been actualistic in design, focusing on replicating ancient applications of adhesive technology. In contrast, this study tested several glues based on Acacia resin within a materials science framework to better understand the effect of each adhesive ingredient on compound tool durability. Using an overlap joint as a model for a compound tool, adhesives formulated with loading agents from a range of particle sizes and mineral compositions were tested for toughness on smooth and rough substrates. Our results indicated that overlap joint toughness is significantly increased by using a roughened joint surface. Contrary to some previous studies, there was no evidence that particle size diversity in a loading agent improved adhesive effectiveness. Generally, glues containing quartz or ochre loading agents in the silt and clay-sized particle class yielded the toughest overlap joints, with the effect of particle size found to be more significant for rough rather than smooth substrate joints. Additionally, no particular ochre mineral or mineral mixture was found to be a clearly superior loading agent. These two points taken together suggest that Paleolithic use of ochre-loaded adhesives and the criteria used to select ochres for this purpose may have been mediated by visual and symbolic considerations rather than purely functional concerns.

  9. Conceptual design and technology development of containment structure in Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sato, Keisuke; Matsuoka, Fushiki; Kanamori, Naokazu; Koizumi, Koichi; Abe, Tetsuya; Hosobuchi, Hideo; Tada, Eisuke; Yamada, Masao.

    1991-05-01

    A conceptual design of FER (Fusion Experimental Reactor) containment structure and its associated R and D activities, conducted from '89 to '90, are described. The FER containment structure system which mainly consists of a vacuum vessel, shielding structures, in-vessel replaceable components, ports, a cooling pipe system, has been developed to fullfil the required function. As an initial stage of R and D activities, the elemental technologies common to a tokamak reactor have been developed. Among them, a locking mechanism for supporting in-vessel replaceable components and a technique for insulation/conduction are described. For the locking mechanism, a caulking cotter driven by hydraulic pressure has been employed. Three kinds of hydraulic driving mechanism have been manufactured by trial: a 'piston jack' type, a 'bellows' type and a 'flexible tube' type. In the latter type, the stroke is obtained by changing the cross section of the flexible tube from a flat racetrack shape to a fat shape by hydraulic pressure. As the result of preliminary performance test, the shape of 'flexible tube' has been found to be improved. For the insulation coating, Al 2 O 3 has been selected as the material and a plasma spray method has been applied as the coating procedure. For the conduction coating, Cr 3 C 2 has been selected as the material and JET-KOTE method has been applied as the coating procedure. Both methods have been successfully developed and have been confirmed to be applicable the actual machine. A one fifth scale model has been fabricated in order to verify the design feasibility, mainly geometrical consistency. Then some design modifications were found to be needed for some of the components based on the manufacturing experience. (author)

  10. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 C

    Science.gov (United States)

    Spry, David; Neudeck, Phil; Chen, Liangyu; Chang, Carl; Lukco, Dorothy; Beheim, Glenn M

    2016-01-01

    We have reported SiC integrated circuits (IC's) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 C [1, 2]. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 C [3]. However, this thermal ramp was not ended until a peak temperature of 880 C (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology. Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 C. In one test, the temperature was ramped and then held at 727 C, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 C before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 C (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 C.

  11. Engaging College Science Students and Changing Academic Achievement with Technology: A Quasi-Experimental Preliminary Investigation

    Science.gov (United States)

    Carle, Adam C.; Jaffee, David; Miller, Deborah

    2009-01-01

    Can modern, computer-based technology engage college students and improve their academic achievement in college? Although numerous examples detail technology's classroom uses, few studies empirically examine whether technologically oriented pedagogical changes factually lead to positive outcomes among college students. In this pilot study, we used…

  12. A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Ursula Wittstadt

    2015-08-01

    Full Text Available In order to achieve process intensification for adsorption chillers and heat pumps, a new composite material was developed based on sintered aluminum fibers from a melt-extraction process and a dense layer of silico-aluminophosphate (SAPO-34 on the fiber surfaces. The SAPO-34 layer was obtained through a partial support transformation (PST process. Preparation of a composite sample is described and its characteristic pore size distribution and heat conductivity are presented. Water adsorption data obtained under conditions of a large pressure jump are given. In the next step, preparation of the composite was scaled up to larger samples which were fixed on a small adsorption heat exchanger. Adsorption measurements on this heat exchanger element that confirm the achieved process intensification are presented. The specific cooling power for the adsorption step per volume of composite is found to exceed 500 kW/m3 under specified conditions.

  13. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  14. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  15. Experimental, economical and ecological substantiation of fuel cycle based on pyroelectrochemical reprocessing and vibropac technology

    International Nuclear Information System (INIS)

    Ivanov, V.B.; Skiba, O.V.; Mayershin, A.A.; Bychkov, A.V.; Demidova, L.S.; Porodnov, P.T.

    1997-01-01

    The humanity comes to the border of centuries. While growing the population, capacity of manufacture in various industries increases. It will be impossible to solve problems, facing the humanity, without introducing safe and high-efficient technologies. The following principles are considered to be the most important ones for technologies of the future: 1) The closed cycle, i.e. internal isolation of technological processes, aimed at reducing a gross output of dangerous substances, which are harmful to an environment, from industry, 2) Optimization of technological systems which is intended for achieving necessary results (both technological and commercial) with the maximal exception of excessive stages and processes, 3) Maximum level of internally inherent safety, i.e. using processes, in which safety is based not only on engineering barriers of safety, but also on its own, > properties of technological system, which creates a low degree of ecological damage probability. These principles have influence both on general safety and on economy in equal degree. The external nuclear fuel cycle, as a complex technological system, is to be built under the same principles. It is necessary to take into account, that, as a whole, the technologies connected with reprocessing and preparation of nuclear fuel were formed in 50-s years and, besides, the majority of modern technologies were developed as military technologies continuation. It is for this reason, that many technologies have not been optimized yet if real society needs are taken into consideration. (J.P.N.)

  16. Fiscal 2000 report on result of project for promoting exchange of international environmental technology information; 2000 nendo kankyo gijutsu kokusai joho koryu sokushin jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With the purpose of sharing environmental technology information of the APEC countries, the homepage structuring was commenced linking and systematizing the home pages owned by governments, institutions, enterprises, etc., as the APEC Virtual Center (APEC-VC) project, with the fiscal 2000 results reported. In creating the homepage contents, in order to disseminate more useful information for the developing countries, 'Environmental Technology Cooperation for Developing Countries' as the original contents was prepared. In building a search engine, for the purpose of improving convenience for website users of the Virtual Center, APEC VC Japan created a retrieval system on the site. In overseas investigation, the researchers visited local plants to grasp problems and the needs by enterprises and organizations on water-pollution, waste treatment and the like, with the purpose of reflecting the investigation result in the website. In addition, the researchers visited APEC VC coordinators and/or contact points to exchange opinions with the view of expanding the network. (NEDO)

  17. Exchange and fellowship programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-04-15

    By February 1959, the IAEA had received and considered nearly 300 nominations from 31 countries for nuclear science fellowships. More than 200 of the candidates - from 29 countries - had been selected for placement in centres of training in 21 countries. The programme covers three types of training: 1. General techniques training: to develop skills in the use of some fundamental techniques in the field of nuclear energy; 2. Specialist training: to prepare specialists in the theoretical and experimental aspects of the science and technology of nuclear energy; 3. Research training: to provide advanced training, including active participation in research work; this is for persons potentially qualified to develop and carry out research programmes in the basic sciences and engineering. The duration of training varies from some weeks to five or six years. The long-duration training is given at universities or educational establishments of university level, and is of special interest to Member States lacking personnel with the requisite university education. Under its 1959 exchange and fellowship programme, the Agency will be in a position to award over 400 fellowships. Some of these will be paid out of the Agency's operating fund, while 130 fellowships have been offered directly to IAEA by Member States for training at their universities or institutes. There are two new features in the Agency's 1959 programme. One provides for fellowships for scientific research work, the other is the exchange of specialists

  18. Mechanical design and fabrication of a heat exchanger. Report of the design and construction of a heat exchanger which will be used in 'Experimental analysis of heat transfer in the boiling in forced convection

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-08-01

    To continue with the equipment of the thermal hydraulics laboratory, it was designed thermal and mechanically an heat exchanger, to satisfy the requirements to have circuit that allows to carry out heat transfer experiments. The heat exchanger was manufactured and proven in the workshops of the Prototypes and Models Management, and it is expected that to obtain the foreseen results once completely installed the circuit, in the laboratory of thermal hydraulics of the Management of Nuclear Systems. (Author)

  19. In vitro assessments of experimental NaF dentifrices containing a prospective calcium phosphate technology.

    Science.gov (United States)

    Karlinsey, Robert L; Mackey, Allen C; Stookey, George K; Pfarrer, Aaron M

    2009-06-01

    To determine the fluoride dose response of experimental NaF dentifrices containing a prospective calcium phosphate technology, along with the corresponding relative enamel and dentin abrasion values. 3 mm diameter bovine enamel specimens were mounted, ground and polished, and softened in a carbopol-lactic acid solution (pH = 5.0) for 36 hours at 37 degrees C. Specimens were then measured for baseline Vickers microhardness and stratified (N = 18, mean VHN = 33) into eight groups. These groups consisted of a placebo paste, four test dentifrices (A, B, C, D) with three of the four (A, B, C) containing a promising calcium phosphate ingredient, Crest Cavity Protection, MI Paste Plus, and PreviDent Booster 5000. The groups were cycled in a lesion reversal pH cycling model consisting of four 2-minute treatment periods (diluted 1:3 with DI water) and one 4-hour acid challenge (carbopol-lactic acid, pH = 5.0) per day. Between these events, specimens were immersed in artificial saliva (pH = 7.0). After 20 days of cycling, the specimens were microdrilled and analyzed for fluoride content, and also measured for Vickers surface microhardness after 10 and 20 days of cycling and after a 2-hour and 16-hour post-cycle acid challenge (carbopol-lactic acid, pH = 5.0). Separately, relative dentin and enamel abrasion (RDA and REA) were performed using the ADA recommended radiotracer method. A fluoride dose response was observed for the test dentifrices after 10 and 20 days of pH cycling, with test dentifrice C promoting the highest remineralization among the groups while both the MI Paste Plus and PreviDent systems provide the least remineralization (one-way ANOVA, SNK, P dentin (one-way ANOVA, SNK, P < 0.05). Altogether, these data show the developmental test dentifrices demonstrate a fluoride dose response and show great promise in remineralizing white-spot enamel lesions relative to MI Paste Plus and PreviDent.

  20. Engineer exchanging project on coal mine technology field in fiscal 1999. International information exchanging project (advance survey on North America); 1999 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Jizen chosa (Hokubei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project has been performed with an intention of making visiting surveys and information collection at coal related organizations in overseas coal producing countries on production technology levels and trends. The project is intended to serve for improvement in the contents of and smooth execution of the engineer exchange project in the 'coal mine technology field. It was carried out by the site surveys. The surveys revealed that the situation of the American coal industry is expected of stable increase in the demand and supply in the future, but the coal price is on the falling trend, and therefore, the industry is compelled to further increase the intensity and enhance the productivity. The industry is strongly influenced by the amended air pollution prevention act and nature destruction problems, hence further coal mine curtailment is estimated. Under such a background, it was found that the long-wall mining process progressing toward larger scale and higher productivity, and the high-wall mining process that provides higher productivity at lower cost and has less impact on the environmental problems can continue development in mountainous areas, particularly in the Appalachian area. The high-wall mining process mines coal at exposed facings on the side of a mountain by using a continuous miner, and transports the coal using machines. (NEDO)

  1. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  2. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  3. NASA/University JOint VEnture (JOVE) Program. VIXEN(tm): Object-Oriented, Technology-Adaptive, Virtual Information Exchange Environment

    Science.gov (United States)

    Anyiwo, Joshua C.

    2000-01-01

    Vixen is a collection of enabling technologies for uninhibited distributed object computing. In the Spring of 1995 when Vixen was proposed, it was an innovative idea very much ahead of its time. But today the technologies proposed in Vixen have become standard technologies for Enterprise Computing. Sun Microsystems J2EE/EJB specifications, among others, are independently proposed technologies of the Vixen type. I have brought Vixen completely under the J2EE standard in order to maximize interoperability and compatibility with other computing industry efforts. Vixen and the Enterprise JavaBean (EJB) Server technologies are now practically identical; OIL, another Vixen technology, and the Java Messaging System (JMS) are practically identical; and so on. There is no longer anything novel or patentable in the Vixen work performed under this grant. The above discussion, notwithstanding, my independent development of Vixen has significantly helped me, my university, my students and the local community. The undergraduate students who worked with me in developing Vixen have enhanced their expertise in what has become the cutting edge technology of their industry and are therefore well positioned for lucrative employment opportunities in the industry. My academic department has gained a new course: "Multi-media System Development", which provides a highly desirable expertise to our students for employment in any enterprise today. The many Outreach Programs that I conducted during this grant period have exposed local Middle School students to the contributions that NASA is making in our society as well as awakened desires in many such students for careers in Science and Technology. I have applied Vixen to the development of two software packages: (a) JAS: Joshua Application Server - which allows a user to configure an EJB Server to serve a J2EE compliant application over the world wide web; (b) PCM: Professor Course Manager: a J2EE compliant application for configuring a

  4. Social exchange: Relations and networks

    OpenAIRE

    Dijkstra, Jacob

    2015-01-01

    In this short paper, I review the literature on social exchange networks, with specific attention to theoretical and experimental research. I indicate how social exchange theory is rooted in general social theory and mention a few of its main links to social network analysis and empirical network research. The paper provides an accessible entry into the literature on social exchange.

  5. Experimental improvement of the technology of cutting of high-pressure hoses with metal braid on hand cutting machine

    OpenAIRE

    Karpenko, Mykola; Bogdevicius, Marijonas; Prentkovskis, Olegas

    2016-01-01

    In the article the review of the problem of improvement of technology of high pressure hoses cutting on the hand cutting machines is analyzed. Different methods of cutting of high pressure hoses into the billets are overviewed and the quality of edge cuts of hoses is analyzed. The comparison of treatment on automatic cutting machines and on hand cutting machines is carried out. Different experimental techniques of improvement of the quality of edges cutting of high pressure hoses are prese...

  6. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  7. Experimental study on the influence of charge exchange on the stopping power in the interaction of chlorine with a gas and a deuterium plasma

    International Nuclear Information System (INIS)

    Nectoux, Marie

    1998-01-01

    This thesis is placed in the context of the physics of energy deposition of a multicharged heavy ion beam in matter at intermediate energies. The experiment gave measurements of energy loss as a function of final charge state for chlorine ions at 1.7 MeV/u in deuterium gas or plasma. In this way, we explore the influence of charge state evolution, depending on experimentally measured capture and ionization cross sections and the electron density of the target, on energy loss. The target is cylindrical and enclosed by two fast valves. The plasma is created in the gas by a discharge, which induces a magnetic perturbation of the beam (lens effect). This effect induces a divergent and misaligned outgoing beam. A simulation including charge state and velocity evolution of the projectile in flight in the magnetic field has been made in order to optimize beam analysis, to reach a precision better than 10 -3 in energy measurement. This study led to removal of the target to the 'Split Pole', a refocusing magnetic spectrometer. The first results obtained clearly show the dependence of energy loss on exit charge and especially on its evolution in the target. This is explained in terms of the lengths covered by the projectile in its successive charge states in the target, which depends on target electron density and the medium considered. In plasma, we observed an energy distribution with exit charge twice that observed in gas, because of a strong decrease of charge exchange. A comparison of data obtained in gas with stopping power calculated from Bethe-Bloch-Barkas theory leads to the necessity of including spatial extension of the projectile charge in the theory. (author)

  8. Technological aspects of the NIRA steam generator design and experimental programme

    International Nuclear Information System (INIS)

    D'Alesio, C.; Di Leo, S.; Fossati, M.; Urbani, A.

    1975-01-01

    In this report are described the technological works concerned with the developing of the tube to tube sheet connection either welded or brazed. Both give satisfactory results with regard to their application to the S. G. design. (author)

  9. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David Peter

    2008-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evaluate the air cleaning effects of two air purification devices that used photocatalytic oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjective human assessment...

  10. Experimental languages ​​of plastic representation through new technologies

    OpenAIRE

    Luis Eduardo Motta

    2011-01-01

    Technology is one of the important factors in artistic creation, the relationship of traditional art through its different periods, the evolution of new technologies and their use in contemporary art, the development of video art, digital photography, computer, video conference, cell phone, virtual images, multimedia facilities, internet and new storage media among others, are added to make way for new artistic expressions and complex communication channels and networks, stimulating complexit...

  11. Exchange currents in nuclear physics

    International Nuclear Information System (INIS)

    Truglik, Eh.

    1980-01-01

    Starting from Adler's low-energy theorem for the soft pion production amplitudes the predictions of the meson exchange currents theory for the nuclear physics are discussed. The results are reformulated in terms of phenomenological lagrangians. This method allows one to pass naturally to the more realistic case of hard mesons. The predictions are critically compared with the existing experimental data. The main processes in which vector isovector exchange currents, vector isoscalar exchange currents and axial exchange currents take place are pointed out

  12. Leak Detection in Heat Exchangers and Underground Pipelines Using Radiotracers. Material for Education and On-The-Job Training for Practitioners of Radiotracer Technology

    International Nuclear Information System (INIS)

    2009-01-01

    The International Atomic Energy Agency plays a major role in facilitating the transfer of radiotracer technology to developing Member States. The use of radiotracer techniques is well established in many Member States; some hundred radiotracer and end user specialists have been trained in radiotracer techniques and their applications; nearly 50 radiotracer laboratories have been working in this field. The training of radiotracer practitioners is vital for the provision of quality services to industry. Leak detection using radiotracer techniques is probably one of the most widespread applications of radiotracers in industrial troubleshooting. Radiotracer techniques are the most competitive for online leak inspection of heat exchangers and buried pipelines. Radiotracers help in early detection of leaks in heat exchangers and underground transporting pipelines, thus saving money, reducing shutdown time, ensuring safe operation and protecting the environment from pollution. The training course series on leak detection in heat exchangers and underground pipelines using radiotracers addresses the needs of the radiotracer groups and their end users. Besides training purposes, this material will assist radiotracer groups in establishing their quality control and accreditation systems. This training course material is based on lecture notes and practical work delivered by many experts in IAEA-supported activities. In particular, the Technical Cooperation Projects implemented under the Regional Cooperative Agreement (RCA) of the IAEA Member States in the Asia and the Pacific Region have been successful in transferring and implementing radiotracer techniques for leak detection to many end users from oil and gas production, oil refineries and the petrochemical industry. The experience obtained in the RCA Region is presented in the training material illustrated with many case studies carried out in several RCA Member States. Lectures and case studies were reviewed by a number

  13. Fiscal 1997 technological survey report. Engineer exchange project - coal mine technological field (Advanced coal producing country survey - U.S.A. survey); 1997 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) senshin santankoku chosa. Beikoku chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    While the introduction and adaptation of the Longwall excavation technology were carried forward for coal producing countries in the Pacific region, U.S.A. information was collected by making tours of coal mines in the West and Washington/Colorado/Utah States, with the intention of ascertaining technological trend so as to carry out efficient technological transfer, and for the purpose of replenishing the contents and contributing to the smooth implementation of the engineer exchange project in 'coal mine technological field'. The coal reserves are 400 billion tons, with 840 million tons produced and with 80 million tons exported; not less than 56% of the U.S. domestic electricity rests on coal. Production by open-pit mining is the majority while the output by underground mining is 38%; the Longwall method has increased as a digging method, taking 18% of all digging output. The productivity is 4.24 ton/person per day and ranks as the world highest. The coal mining technological trend in the U.S. can be summarized as follows. The coal mining output in the West is increasing, with the number of mines decreasing, so that the output per mine is increasing. With the output ratio by open-pit mining increasing, the digging method in the mine is being changed to the Longwall. (NEDO)

  14. [Improving the teaching quality by multiple tools and technology in oral histopathology experimental course].

    Science.gov (United States)

    Tian, Zhen; Wang, Li-Zhen; Hu, Yu-Hua; Zhang, Chun-Ye; Li, Jiang

    2017-04-01

    Oral histopathology is a course which needs to be combined with theory and practice closely. Experimental course plays an important role in teaching oral histopathology. Here, we aim to explore a series of effective measures to improve the teaching quality of experimental course and tried to train observation, thinking, analysis and problem solving skills of dental students. We re-edited and updated the experimental textbook "guidelines of experimental course of oral histopathology", and published the reference book for experimental course--"color pocket atlas of oral histopathology: experiment and diadactic teaching". The number of clinicopathological cases for presentation and class discussion was increased, and high-quality teaching slides were added and replaced the poor-quality or worn out slides. We established a variety of teaching methods based on the internet, which provided an environment of self-directed learning for dental students. Instead of simple slice-reading examination, a new evaluation system based on computer was established. The questionnaire survey showed that the students spoke positively on the teaching reform for experimental course. They thought that the reform played a significant role in enriching the teaching content, motivating learning interest and promoting self-study. Compared with traditional examination, computer-based examination showed a great advantage on mastering professional knowledge systematically and comprehensively. The measures adopted in our teaching reform not only effectively improve the teaching quality of experimental course of oral histopathology, but also help the students to have a clear, logical thinking when facing complicated diseases and have the ability to apply theoretical knowledge into clinical practice.

  15. Digital technology use among disadvantaged Australians: implications for equitable consumer participation in digitally-mediated communication and information exchange with health services.

    Science.gov (United States)

    Newman, Lareen; Biedrzycki, Kate; Baum, Fran

    2012-05-01

    To present research findings on access to, and use of, digital information and communication technologies (ICTs) by Australians from lower income and disadvantaged backgrounds to determine implications for equitable consumer access to digitally-mediated health services and information. Focus groups were held in 2008-09 with 80 residents from lower income and disadvantaged backgrounds in South Australia, predominantly of working- and family-formation age (25 to 55 years). Qualitative analysis was conducted on a-priori and emergent themes to describe dominant categories. Access to, and use of, computers, the Internet and mobile phones varied considerably in extent, frequency and quality within and across groups due to differences in abilities, resources and life experience. Barriers and facilitators included English literacy (including for native speakers), technological literacy, education, income, housing situation, social connection, health status, employment status, and trust. Many people gained ICT skills by trial and error or help from friends, and only a few from formal programs, resulting in varied skills. The considerable variation in ICT access and use within lower income and disadvantaged groups must be acknowledged and accommodated by health initiatives and services when delivering digitally-mediated consumer-provider interaction, online health information, or online self-management of health conditions. If services require consumers to participate in a digitally-mediated communication exchange, then we suggest they might support skills and technology acquisition, or provide non-ICT alternatives, in order to avoid exacerbating health inequities.

  16. Study of thermal accumulators-exchangers containing low temperature (20-80c) phase transformation materials

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, D.

    1983-06-01

    After a review of the various types of heat exchanger technologies (especially the tube and plate types), an analytical and experimental study of a rotating cylinder dynamical accumulator-exchanger is presented and extended to a larger scale accumulator. The various analytical and numerical methods for the resolution of the heat equation in a diphasic medium and the problems caused by the presence of an exchanger and by the natural convection are described. Two approaches for the immersed tubular exchangers are compared and used to modelize a real storage system. A dimensioning procedure is then proposed.

  17. The development of human factors experimental evaluation techniques -The development of human factors technologies-

    International Nuclear Information System (INIS)

    Sim, Bong Shick; Oh, In Seok; Cha, Kyeong Ho; Lee, Hyun Chul

    1994-04-01

    In the 2nd year of the research project for the development of human factors evaluation techniques, we first defined the experimental target systems by the comparison study of the advanced control rooms proposed by foreign countries in order to make the experiment feasible and realistic for the 10 experimental items selected in the first year of the project. Then we have decided to confine our research on the big board overview panel and operator workstations. Following the development of selection criteria for our research interest, we have identified the design variables which may influence the performance of the operator by the functional analysis. The experimental variables which will be used for the evaluation of the proposed items are then defined by the relational analysis between evaluation items and design variables and they are classified by the characteristics of the measurement data. The functional requirements of ITF are developed to accommodate the necessary functions for carrying out the 10 evaluation items. The functional requirements for each sub-system of ITF have been developed with the experimental paradigm of APTEA. Finally we have reviewed the compact nuclear simulator (CNS) at KAERI from the point of view of jyman factors guidelines/principles and proposed the two possible layouts for the experimental apparatus for the evaluation of display alternative and operational procedure. (Author)

  18. ISTC: experimental and technology programs toward novel reactor concepts (review of the ISTC projects and programs)

    Energy Technology Data Exchange (ETDEWEB)

    Tocheny, L.V. [ISTC - International Science and Technology Center, Moscow, Russia, Moscow (Russian Federation)

    2007-07-01

    The ISTC (International Science and Technology Center) is a unique international organization created in Moscow more than twelve years ago by Russia, Usa, E.U. and Japan. Later Korea and Canada, and several CIS countries as well acceded to ISTC. The basic idea behind establishing the ISTC was to support non-proliferation of the mass destruction weapons technologies by re-directing former Soviet weapons scientists to peaceful research thus preventing the drain of dangerous knowledge and expertise from Russia and other CIS countries. Numerous science and technology projects were realized with the ISTC support in different areas, from bio-technologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. Goals of this presentation are to introduce some of the ISTC programs to international nuclear community to give examples of international cooperation, created in the frames of ISTC, to illustrate the statement of importance of international nuclear experiment as a tool for evidence of new nuclear concepts acceptance, and to make a call for further joint collaboration. (author)

  19. ISTC: experimental and technology programs toward novel reactor concepts (review of the ISTC projects and programs)

    International Nuclear Information System (INIS)

    Tocheny, L.V.

    2007-01-01

    The ISTC (International Science and Technology Center) is a unique international organization created in Moscow more than twelve years ago by Russia, Usa, E.U. and Japan. Later Korea and Canada, and several CIS countries as well acceded to ISTC. The basic idea behind establishing the ISTC was to support non-proliferation of the mass destruction weapons technologies by re-directing former Soviet weapons scientists to peaceful research thus preventing the drain of dangerous knowledge and expertise from Russia and other CIS countries. Numerous science and technology projects were realized with the ISTC support in different areas, from bio-technologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. Goals of this presentation are to introduce some of the ISTC programs to international nuclear community to give examples of international cooperation, created in the frames of ISTC, to illustrate the statement of importance of international nuclear experiment as a tool for evidence of new nuclear concepts acceptance, and to make a call for further joint collaboration. (author)

  20. Individual response technology to promote active learning within the caring sciences: An experimental research study.

    Science.gov (United States)

    Hedén, Lena; Ahlstrom, Linda

    2016-01-01

    One major challenge in delivering lectures to large and diverse classes is the maintenance of a high standard of lecturing in order to engage students and increase their participation and involvement. The lecturer's assignment is to arrange and prepare the lecture before teaching, hence enabling students' enhanced learning. Individual response technology could encourage students' active learning and activate higher cognitive levels. The aim of this study was to evaluate individual response technology as a complement during lectures for students in higher education, in terms of the students' experiences of participation, engagement, and active learning. Also of interest was whether this technology can be considered a supportive technical system. Data were collected through a questionnaire where levels of each condition were reported on a numeric rating scale (0-10) at baseline and after the introduction of individual response technology. To get a broader perspective, two types of lectures (pediatric and statistical) were included, giving a total of four assessment times. The participants comprised 59 students in Bachelor of Nursing program at a Swedish metropolitan university. Overall, when individual response technology was used, students reported increased experience of engagement (n=82, mean 6.1 vs. n=65, mean 7.3, pactive learning (n=92, mean 7.3 vs. n=79, mean 8.2 plearning within the caring sciences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    Ahn, Young Chull; Cho, Jae Min; Lee, Jae Keun; Lee, Hyun Uk; Ahn, Seung Phyo; Youn, Deok Hyun; Kang, Tae Wook; Ock, Ju Jo

    2003-01-01

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m 3 ), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level

  2. Experimental Comparison of the Tribological Properties of Selected Surfaces Created by Thermal Spraying Technology

    Directory of Open Access Journals (Sweden)

    František Tóth

    2016-01-01

    Full Text Available The scientific article titled “Experimental comparison of the tribological properties of selected surfaces created by thermal spraying technology” deals with the surface condition of selected pairs working within the mixed friction before and after experimental tests. Based on the chosen methodology, the experimental tests were performed on the Tribotestor M’06 testing machine. The ecological oil MOGUL HEES 46 (manufactured by Paramo was used as a lubricant. The tests were performed on selected material pairs. The first friction element was a shaft of steel 14 220. The second friction element was a steel plate of steel 11 373 with a friction surface created by two materials, i.e. CuSn10 and NP 40. The results are statistically elaborated and illustrated in figures and tables.

  3. Minimum Viable Product and the Importance of Experimentation in Technology Startups

    Directory of Open Access Journals (Sweden)

    Dobrila Rancic Moogk

    2012-03-01

    Full Text Available Entrepreneurs are often faced with limited resources in their quest to commercialize new technology. This article presents the model of a lean startup, which can be applied to an organization regardless of its size or environment. It also emphasizes the conditions of extreme uncertainty under which the commercialization of new technology is carried out. The lean startup philosophy advocates efficient use of resources by introducing a minimum viable product to the market as soon as possible in order to test its value and the entrepreneur’s growth projections. This testing is done by running experiments that examine the metrics relevant to three distinct types of the growth. These experiments bring about accelerated learning to help reduce the uncertainty that accompanies commercialization projects, thereby bringing the resulting new technology to market faster.

  4. Survey report of FY 1997 on the global environmental industry technology development promotion project. International research exchange project; 1997 nendo chosa hokokusho. Chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo (kokusai kenkyu koryu jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Exchange of personnel among foreign research organizations is significant for promoting research and development to create new research fields and to build new technological systems for the purpose of solving global environmental problems. For this purpose, researchers were sent/invited to/from international conferences and international symposiums related to global environmental technology and exchange of personnel with major foreign research organizations and universities was conducted under the cooperation of RITE and RITE-related researchers and related academic societies. Based on short-term invitation and sending of researchers as well as the feasibility study of researcher exchange, researchers were sent/invited on long- and mid-terms. As a result, exchange of personnel engaged in the latest research in Japan and overseas could be promoted. It was found that various researches are being conducted abroad in basic areas of global environmental technology. Since they are closely related to the research and development of industrial technology contributing to global environmental preservation promoted by RITE, it is important to establish a more efficient exchange system of researchers in the future. 91 refs., 38 figs., 14 tabs.

  5. Off-resonance R1ρ relaxation outside of the fast exchange limit: An experimental study of a cavity mutant of T4 lysozyme

    International Nuclear Information System (INIS)

    Korzhnev, Dmitry M.; Orekhov, Vladislav Yu.; Dahlquist, Frederick W.; Kay, Lewis E.

    2003-01-01

    An 15 N off-resonance R 1ρ spin relaxation study of an L99A point mutant of T4 lysozyme is presented. Previous CPMG-based relaxation dispersion studies of exchange in this protein have established that the molecule interconverts between a populated ground state and an excited state (3.4%) with an exchange rate constant of 1450 s -1 at 25 deg. C. It is shown that for the majority of residues in this protein the offset dependence of the R 1ρ relaxation rates cannot be well fit using models which are only valid in the fast exchange regime. In contrast, a recently derived expression by Trott and Palmer (J. Magn. Reson., 154, 157-160, 2002) which is valid over a wider window of exchange than other relations, is shown to fit the data well. Values of (signed) chemical shift differences between exchanging sites have been extracted and are in reasonable agreement with shift differences measured using CPMG methods. A set of simulations is presented which help establish the exchange regimes that are best suited to analysis by off-resonance R 1ρ techniques

  6. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  7. Experimental languages ​​of plastic representation through new technologies

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Motta

    2011-01-01

    Full Text Available Technology is one of the important factors in artistic creation, the relationship of traditional art through its different periods, the evolution of new technologies and their use in contemporary art, the development of video art, digital photography, computer, video conference, cell phone, virtual images, multimedia facilities, internet and new storage media among others, are added to make way for new artistic expressions and complex communication channels and networks, stimulating complexity of novelty and imagination. The world of artificial universes image and give way to new forms, transforming artistic expression such as music, visual arts, theater, dance, among others, looking as if our society entered a true mutation.

  8. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    Science.gov (United States)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  9. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology.

    Science.gov (United States)

    Fazli, Mustafa; Harrison, Joe J; Gambino, Michela; Givskov, Michael; Tolker-Nielsen, Tim

    2015-06-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Blockchain Technology: A Data Framework to Improve Validity, Trust, and Accountability of Information Exchange in Health Professions Education.

    Science.gov (United States)

    Funk, Eric; Riddell, Jeff; Ankel, Felix; Cabrera, Daniel

    2018-06-12

    Health professions educators face multiple challenges, among them the need to adapt educational methods to new technologies. In the last decades multiple new digital platforms have appeared in the learning arena, including massive open online courses and social media-based education. The major critique of these novel methods is the lack of the ability to ascertain the origin, validity, and accountability of the knowledge that is created, shared, and acquired. Recently, a novel technology based on secured data storage and transmission, called blockchain, has emerged as a way to generate networks where validity, trust, and accountability can be created. Conceptually blockchain is an open, public, distributed, and secure digital registry where information transactions are secured and have a clear origin, explicit pathways, and concrete value. Health professions education based on the blockchain will potentially allow improved tracking of content and the individuals who create it, quantify educational impact on multiple generations of learners, and build a relative value of educational interventions. Furthermore, institutions adopting blockchain technology would be able to provide certification and credentialing of healthcare professionals with no intermediaries. There is potential for blockchain to significantly change the future of health professions education and radically transform how patients, professionals, educators, and learners interact around safe, valid, and accountable information.

  11. Do Decentralized Innovation Systems Promote Agricultural Technology Adoption? Experimental Evidence from Africa

    NARCIS (Netherlands)

    Pamuk, Haki; Bulte, Erwin|info:eu-repo/dai/nl/141315245; Adekunle, Adewale A.

    2014-01-01

    We use experimental data collected in 8 African countries to investigate whether a decentralized approach can promote the adoption of agricultural innovations. This participatory model is based on the creation of so-called ‘innovation platforms’ where local stakeholders meet and seek to identify

  12. Payment Technology Adoption by SMEs : Experimental Evidence from Kenya's Mobile Money

    NARCIS (Netherlands)

    Dalton, Patricio; Pamuk, Haki; van Soest, Daan; Ramrattan, R.; Uras, Burak

    This paper reports the results from a field experiment conducted in Kenya to investigate the adoption determinants of a profitable financial technology by small and medium sized enterprizes (SMEs). We offered a randomly selected sample of restaurants and pharmacies the possibility to sign up, on

  13. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David P.

    2005-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evalu-ate the air cleaning effects of two air purification devices using Photocatalytic Oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjec-tive human assessments ...

  14. A new application and experimental validation of moulding technology for ferrite magnet assisted synchronous reluctance machine

    DEFF Research Database (Denmark)

    Wu, Qian; Lu, Kaiyuan; Rasmussen, Peter Omand

    2016-01-01

    This paper introduces a new application of moulding technology to the installation of ferrite magnet material into the rotor flux barriers of Ferrite Magnet Assisted Synchronous Reluctance Machine (FASynRM). The feasibility of this application with respect to manufacturing process and motor...

  15. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater.

    Science.gov (United States)

    Ma, Shuangchen; Chai, Jin; Wu, Kai; Xiang, Yajun; Jia, Shaoguang; Li, Qingsong

    2018-03-20

    Zero liquid discharge (ZLD) of wastewater has become the trend of environmental governance after the implementation of 'The Action Plan for Prevention and Treatment of Water Pollution' in China, desulfurization wastewater has gained more attention due to its complex composition and heavy metals. However, current technologies for ZLD have some shortcomings such as high cost and insufficient processing capacity, ZLD cannot be achieved actually. This paper proposes a new evaporation drying technology. An independent bypass evaporation tower was built, part of the hot flue gas before the air preheater was introduced into the evaporation tower for desulfurization wastewater evaporation, and the generated dust after evaporation was discharged back to the flue duct before electrostatic precipitator. This paper reports on the performance of desulfurization wastewater evaporation and the characteristics of evaporation products in depth and makes a comprehensive discussion of the impact on the existing equipment based on the self-designed evaporation tower. Research suggests that this technology has high system reliability and little effect on subsequent equipment and provides theoretical and practical data. Due to environmental policies and huge market demand for ZLD of desulfurization wastewater, bypass evaporation tower technology has a great application prospect in the future.

  16. Program ECSX4 (version 78-1): conversion of experimentally measured cross-section data from the four-center-exchange (X-4) format to the Livermore ECSIL format

    International Nuclear Information System (INIS)

    Cullen, D.E.; Perkins, S.T.

    1978-01-01

    A computer code called ECSX4 converts experimentally measured cross-section data from the four-center-exchange (X-4) format to the Livermore Experimental Cross-Section Information Library (ECSIL) format. The major advantage of this program is that it converts the variable format and dimensioned data of the X-4 format to the fixed-field format and consistent set of units of the ECSIL format. This consistency greatly simplifies the subsequent use of the data for cross-section evaluations. 2 figures, 3 tables

  17. An experimental study of Fe-Ni exchange between sulfide melt and olivine at upper mantle conditions: implications for mantle sulfide compositions and phase equilibria

    Science.gov (United States)

    Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem

  18. Solitons: interactions, theoretical and experimental challenges and perspectives (physics research and technology)

    CERN Document Server

    2013-01-01

    In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of non-linear and dispersive effects in the medium. In this book, the authors discuss the interactions and theoretical and experimental challenges of solitons. Topics include soliton motion of electrons and its physical properties in coupled electron-phonon systems and ionic crystals; soliton excitations and its experimental evidence in molecular crystals; shapes and dynamics of semi-discrete solitons in arrayed and stacked waveguiding systems; ion-acoustic super solitons in plasma; diamond-controlled solitons and turbulence in extracellular matrix and lymphatic dynamics; and non-linear waves in strongly interacting relativistic fluids.

  19. New Technology and Experimental Study on Snow-Melting Heated Pavement System in Tunnel Portal

    Directory of Open Access Journals (Sweden)

    Jinxing Lai

    2015-01-01

    Full Text Available In recent years, with the rapid growth of economy and sharp rise of motor vehicles in China, the pavement skid resistance in tunnel portals has become increasingly important in cold region. However, the deicing salt, snow removal with machine, and other antiskid measures adopted by highway maintenance division have many limitations. To improve the treatment effect, we proposed a new snow-melting approach employing electric heat tracing, in which heating cables are installed in the structural layer of road. Through the field experiment, laboratory experiment, and numerical investigation, structure type, heating power, and preheating time of the flexible pavement heating system in tunnel portal were systematically analyzed, and advantages of electric heat tracing technology in improving the pavement skid resistance in tunnel portal were also presented. Therefore, such new technology, which offers new snow-melting methods for tunnel portal, bridge, mountainous area, and large longitudinal slope in cold region, has promising prospect for extensive application.

  20. Equilibrium phase experimental determination of petroleum + gas systems at supercritical condition using ultrasonic technology; Estudo experimental do equilibrio de fases de sistemas de fracoes de petroleo e gases em condicoes supercriticas utilizando tecnicas de ultra-som: aparato experimental

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, Ana; Pessoa, Fernando L.P.; Silva, Silvia M.C. da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Feiteira, Jose F. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Engenharia

    2008-07-01

    In separation process of multicomponent systems based on phase equilibrium is essential know the phase behavior and the critical points of the system for determination and optimization of the operational conditions. The experimental apparatus presents the challenge of determine the equilibrium phase dates of a system composed by petroleum residua and supercritical solvent. The used method, named acoustic method, allows the composition identification of the phases in equilibrium also in cloudy systems as they are the systems formed by residues of crude oil. For this reason, the acoustic methodology, based on the ultra-sound technology will be used in the study of the phase equilibrium and experimental characterization of the system, in benches scale, operating in severe conditions of temperature and pressure.The acoustic method is one not invasive and not subjective technique, what becomes the work in high pressures safer. (author)

  1. Evaluation of the feasibility of security technologies in teleradiology as biometric fingerprint scanners for data exchange over a satellite WAN

    Science.gov (United States)

    Soegner, Peter I.; Helweg, Gernot; Holzer, Heimo; zur Nedden, Dieter

    2000-05-01

    We evaluated the feasibility of fingerprint-scanners in combination with smart cards for personal identification and transmission of encrypted TCP/IP-data-packages via satellite between the university-hospital of Innsbruck and the rural hospital of Reutte. The aim of our study was the proof of the userfriendliness of the SkymedTM technology for security purpose in teleradiology. We examined the time of the personal identification process, the time for the necessary training and the personal satisfaction. The images were sent from the local PACS in Reutte via a Data-Encryption-and-Transmission- Box via satellite from Reutte to Innsbruck. We used an asymmetric bandwidth of 512 kbit/s from Reutte to Innsbruck and 128 kbit/s in the opposite direction. Window NT 4.0- operating PCs were used for the electronical patient record, the medical inquiry of the referring physician and the final report of the radiologist. The images were reported on an UNIX-PACS viewing station. After identification through fingerprint-scanners in combination with the smart card the radiologist was able to open the electronic patient record (EPR) from Reutte and sign with his digital signature his confirmed final report before it was send back to Reutte. The used security technology enables encrypted communication over a WAN, which fulfill data-protection.

  2. The development of human factors experimental evaluation technology - 3-dimensional measurement system for motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Soo; Pan, Young Hwan; Lee, Ahn Jae; Lee, Kyung Tae; Lim, Chi Hwan; Chang, Pil Sik; Lee, Seok Woo; Han, Sung Wook; Park, Chul Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    Measurement of human motion is important in the application of ergonomics. We developed a system which can measure body movement, especially= hand movement using advanced direct video measurement technology. This system has as dynamic accuracy with 1% error and the sampling rate to 6 - 10 Hz, and can analyse the trajectory and speed of the marker. The use of passive marker obviates the need for a marker telemetry system and minimize motion disruption. 18 refs., 4 tabs., 6 figs. (author)

  3. Just another reproductive technology? The ethics of human reproductive cloning as an experimental medical procedure.

    Science.gov (United States)

    Elsner, D

    2006-10-01

    Human reproductive cloning (HRC) has not yet resulted in any live births. There has been widespread condemnation of the practice in both the scientific world and the public sphere, and many countries explicitly outlaw the practice. Concerns about the procedure range from uncertainties about its physical safety to questions about the psychological well-being of clones. Yet, key aspects such as the philosophical implications of harm to future entities and a comparison with established reproductive technologies such as in vitro fertilisation (IVF) are often overlooked in discussions about HRC. Furthermore, there are people who are willing to use the technology. Several scientists have been outspoken in their intent to pursue HRC. The importance of concerns about the physical safety of children created by HRC and comparisons with concerns about the safety of IVF are discussed. A model to be used to determine when it is acceptable to use HRC and other new assisted reproductive technologies, balancing reproductive freedom and safety concerns, is proposed. Justifications underpinning potential applications of HRC are discussed, and it is determined that these are highly analogous to rationalisations used to justify IVF treatment. It is concluded that people wishing to conceive using HRC should have a prima facie negative right to do so.

  4. The Vienna comparative cognition technology (VCCT): an innovative operant conditioning system for various species and experimental procedures.

    Science.gov (United States)

    Steurer, Michael Morten; Aust, Ulrike; Huber, Ludwig

    2012-12-01

    This article describes a laboratory system for running learning experiments in operant chambers with various species. It is based on a modern version of a classical learning chamber for operant conditioning, the so-called "Skinner box". Rather than constituting a stand-alone unit, as is usually the case, it is an integrated part of a comprehensive technical solution, thereby eliminating a number of practical problems that are frequently encountered in research on animal learning and behavior. The Vienna comparative cognition technology combines modern computer, stimulus presentation, and reinforcement technology with flexibility and user-friendliness, which allows for efficient, widely automatized across-species experimentation, and thus makes the system appropriate for use in a broad range of learning tasks.

  5. Experimental investigation of centrifugal fans for personal protection equipment – effect of used 3D printing technologies

    Directory of Open Access Journals (Sweden)

    Dvořák Václav

    2018-01-01

    Full Text Available The aim of the research is experimental investigation of centrifugal fans for a personal protection equipment. The aim of the fan is to drive the contaminated air containing harmful or irritating particles through the filters and then into the mask of workers, such as a fireman, a labourer or a lab worker. The fan is measured on the test stand, the characteristics and performances are evaluated, i.e. the dependencies of the working pressure on the flow rate. The characteristics are measured for three constant speed settings. The characteristics of the wheels produced by the different 3D printing technology are compared. It is found that the production technology has only a minimal effect, the performance of the wheels is more influenced by the position of the impeller on the motor shaft and hence by the mutual position of the impeller and the diffuser.

  6. Mathematic Modeling of Experimental Results on the Influence of Technological Factors on Production in Some Energy Crops

    Directory of Open Access Journals (Sweden)

    Mona CRISTESCU

    2018-06-01

    Full Text Available The present article, based on data obtained from a study which analyzed the influence of technological and ecological factors on rape plants (Brassica napus production capacity - the Bolero variety – approaches the model of linear regression and the model of the smallest squares. The experimental results were mathematically interpreted using the “variance analysis” method. The study shows that the yields and therefore the profit rate for the studied rapeseed variety was of up to 55, 05%, depending on the seeding density (in this case: 100 germinable seeds / m2 , level of fertilization, as well as on the pedo-climatic conditions of the area

  7. Experimental methods for the Palaeolithic dry distillation of birch bark: implications for the origin and development of Neandertal adhesive technology.

    Science.gov (United States)

    Kozowyk, P R B; Soressi, M; Pomstra, D; Langejans, G H J

    2017-08-31

    The destructive distillation of birch bark to produce tar has recently featured in debates about the technological and cognitive abilities of Neandertals and modern humans. The abilities to precisely control fire temperatures and to manipulate adhesive properties are believed to require advanced mental traits. However, the significance given to adhesive technology in these debates has quickly outgrown our understanding of birch bark tar and its manufacture using aceramic techniques. In this paper, we detail three experimental methods of Palaeolithic tar production ranging from simple to complex. We recorded the fuel, time, materials, temperatures, and tar yield for each method and compared them with the tar known from the Palaeolithic. Our results indicate that it is possible to obtain useful amounts of tar by combining materials and technology already in use by Neandertals. A ceramic container is not required, and temperature control need not be as precise as previously thought. However, Neandertals must have been able to recognize certain material properties, such as adhesive tack and viscosity. In this way, they could develop the technology from producing small traces of tar on partially burned bark to techniques capable of manufacturing quantities of tar equal to those found in the Middle Palaeolithic archaeological record.

  8. Fiscal 2000 report on result of project for promoting exchange of international environmental technology information; 2000 nendo kankyo gijutsu kokusai joho koryu sokushin jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With the purpose of sharing environmental technology information of the APEC countries, the homepage structuring was commenced linking and systematizing the home pages owned by governments, institutions, enterprises, etc., as the APEC Virtual Center (APEC-VC) project, with the fiscal 2000 results reported. In creating the homepage contents, in order to disseminate more useful information for the developing countries, 'Environmental Technology Cooperation for Developing Countries' as the original contents was prepared. In building a search engine, for the purpose of improving convenience for website users of the Virtual Center, APEC VC Japan created a retrieval system on the site. In overseas investigation, the researchers visited local plants to grasp problems and the needs by enterprises and organizations on water-pollution, waste treatment and the like, with the purpose of reflecting the investigation result in the website. In addition, the researchers visited APEC VC coordinators and/or contact points to exchange opinions with the view of expanding the network. (NEDO)

  9. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  10. CFD Simulation and Experimental Analyses of a Copper Wire Woven Heat Exchanger Design to Improve Heat Transfer and Reduce the Size of Adsorption Beds

    Directory of Open Access Journals (Sweden)

    John White

    2016-02-01

    Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.

  11. Theoretical and experimental study of electroporation of red blood cells using MEMS technology

    KAUST Repository

    Deng, Peigang; Yin, Guangyao; Zhang, Tong Yi; Chang, Donald C.; Lee, Yi Kuen

    2010-01-01

    A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC's membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.

  12. Theoretical and experimental study of electroporation of red blood cells using MEMS technology

    KAUST Repository

    Deng, Peigang

    2010-01-01

    A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC\\'s membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.

  13. Experimental study on an innovative enthalpy recovery technology based on indirect flash evaporative cooling

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yuan, Shu; Fang, Lei

    2018-01-01

    recovery unit. The principle of the technology is to over saturate indoor exhaust air by ultrasonic atomizing humidification. The evaporation of ultrafine mists cools down indoor exhaust air to its wet-bulb temperature and makes not only sensible heat transfer but also moisture condensed in outdoor supply...... were measured to investigate and analyze its energy recover efficiencies. The results showed that in hot and humid climate, up to 71% of total heat recover efficiency could be achieved by the prototype unit, and more than 50% of the enthalpy recovered was contributed by moisture condensation...

  14. Experimental Study on Superfine Sand Concrete Mixed by Double Mixing Technology

    OpenAIRE

    yuqing zhao

    2013-01-01

    Traditional concept thought that medium sand and fine sand can be used to mix concrete, superfine sand can not used to mix concrete. This makes the source of superfine sand limited. With the shortage of medium sand and fine sand, it is imperative to exploit the resource of superfine sand. Superfine sand concrete is mixed by means of Double-doped Technology-ultra-fine fly ash and super plasticizer. Primary factor influencing superfine sand concrete strength is studied by orthogonal test, the o...

  15. Experimental technologies comparison for strain measurement of a composite main landing gear bay specimen

    Science.gov (United States)

    Viscardi, Massimo; Arena, Maurizio; Ciminello, Monica; Guida, Michele; Meola, Carosena; Cerreta, Pietro

    2018-03-01

    The development of advanced monitoring system for strain measurements on aeronautical components remain an important target both when related to the optimization of the lead-time and cost for part validation, allowing earlier entry into service, and when related to the implementation of advanced health monitoring systems dedicated to the in-service parameters verification and early stage detection of structural problems. The paper deals with the experimental testing of a composite samples set of the main landing gear bay for a CS-25 category aircraft, realized through an innovative design and production process. The test have represented a good opportunity for direct comparison of different strain measurement techniques: Strain Gauges (SG) and Fibers Bragg Grating (FBG) have been used as well as non-contact techniques, specifically the Digital Image Correlation (DIC) and Infrared (IR) thermography applied where possible in order to highlight possible hot-spot during the tests. The crucial points identification on the specimens has been supported by means of advanced finite element simulations, aimed to assessment of the structural strength and deformation as well as to ensure the best performance and the global safety of the whole experimental campaign.

  16. An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Zhaozhao Tang

    2017-12-01

    Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.

  17. Game Changing Development Program - Next Generation Life Support Project: Oxygen Recovery From Carbon Dioxide Using Ion Exchange Membrane Electrolysis Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jiao, Feng

    2016-01-01

    This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.

  18. Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA.

    Science.gov (United States)

    Justin K. Anderson; Steven M. Wondzell; Michael N. Gooseff; Roy. Haggerty

    2005-01-01

    There is a need to identify measurable characteristics of stream channel morphology that vary predictably throughout stream networks and that influence patterns of hyporheic exchange flow in mountain streams. In this paper we characterize stream longitudinal profiles according to channel unit spacing and the concavity of the water surface profile. We demonstrate that...

  19. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  20. Mechanical Behaviour of Conventional Materials at Experimental Conditions of Deep Drawing Technological Process

    Science.gov (United States)

    Nikolov, N.; Pashkouleva, D.; Kavardzhikov, V.

    2012-09-01

    The paper deals with experimental investigations on the mechanical behaviour of body-centred-cubic (BCC) and face-centred-cubic (FCC)-conventionally structured sheet metalic-metalic materials under stress-strain conditions of a deep drawing process determined by a coefficient close to the limiting one for Steel 08 and punch diameter of 50 mm. The mechanical characteristics of the investigated materials are identified by one-dimensional tension tests. The materials' responses, as results of identical loading conditions, are described by the change of blank sizes and characteristics of the forming processes. The chosen deformation path ensures obtaining a qualitative steel piece and leads to failures of aluminium and brass blanks. The reported results could be useful for investigations and predictions of the mechanical responses of such type metallic structures applying microscopic instrumented observations and numerical simulations.

  1. Exploration of offering photoelectric experimental general elective courses for college students of science and technology

    Science.gov (United States)

    Tao, Shen; Sun, Binchao

    2017-08-01

    The necessity of offering photoelectric experiment general elective courses, such as the experiments of modern optical and innovational photoelectric design for non optic-electric's science and engineering students were discussed based on the analysis of the status quo and problems in experimental general elective course in science and engineering colleges of our country. And the characters of photoelectric disciplines, the goal of science and engineering quality-oriented education and the reform of science education at home and abroad were also considered. The instructional objectives, contents and characteristics of the courses were investigated. The specific methods, the CDIO (conceive, design, implement and operate) mode in the general courses has been proposed; the experiences and practical effects of offering these courses were concluded.

  2. Publication of nuclear magnetic resonance experimental data with semantic web technology and the application thereof to biomedical research of proteins.

    Science.gov (United States)

    Yokochi, Masashi; Kobayashi, Naohiro; Ulrich, Eldon L; Kinjo, Akira R; Iwata, Takeshi; Ioannidis, Yannis E; Livny, Miron; Markley, John L; Nakamura, Haruki; Kojima, Chojiro; Fujiwara, Toshimichi

    2016-05-05

    The nuclear magnetic resonance (NMR) spectroscopic data for biological macromolecules archived at the BioMagResBank (BMRB) provide a rich resource of biophysical information at atomic resolution. The NMR data archived in NMR-STAR ASCII format have been implemented in a relational database. However, it is still fairly difficult for users to retrieve data from the NMR-STAR files or the relational database in association with data from other biological databases. To enhance the interoperability of the BMRB database, we present a full conversion of BMRB entries to two standard structured data formats, XML and RDF, as common open representations of the NMR-STAR data. Moreover, a SPARQL endpoint has been deployed. The described case study demonstrates that a simple query of the SPARQL endpoints of the BMRB, UniProt, and Online Mendelian Inheritance in Man (OMIM), can be used in NMR and structure-based analysis of proteins combined with information of single nucleotide polymorphisms (SNPs) and their phenotypes. We have developed BMRB/XML and BMRB/RDF and demonstrate their use in performing a federated SPARQL query linking the BMRB to other databases through standard semantic web technologies. This will facilitate data exchange across diverse information resources.

  3. Experimental study of defoaming by air-borne power ultrasonic technology

    Science.gov (United States)

    Rodríguez, Germán; Riera, Enrique; Gallego-Juárez, Juan A.; Acosta, Víctor M.; Pinto, Alberto; Martínez, Ignacio; Blanco, Alfonso

    2010-01-01

    Foam is a dispersion of gas in a liquid in which the distances between the gas bubbles are very small. Foams are frequently generated in the manufacture of many products as result from the aeration and agitation of liquids, from the vaporization of the liquid and also from biological or chemical reactions. Foams are generally an unwanted product in industrial processes because they cause difficulties in process control and in equipment operation. The most efficient conventional method for defoaming is the use of chemical agents but they contaminate the product. High-intensity ultrasonic waves offer a clean procedure to break foam bubbles. The potential use of ultrasound for foam breaking that was known since many years has been recently reinforced by the application of a new type of ultrasonic defoamer based on the stepped-plate high-power transducers to generate air-borne ultrasound. This defoamer has been successfully applied in several industrial problems such as the control of excess foam produced during the filling operation of bottles and cans on high-speed canning lines and in fermenting vessels and other reactors of great dimensions. The treatment of such industrial problems requires the proper characterization and quantification of the main parameters involved in the mechanisms of the defoaming effect. This paper deals with an experimental study about the separate influence of such parameters with the aim of improving the application of the stepped-plate power ultrasonic generators for the production of the defoaming action on industrial processes

  4. Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies.

    Science.gov (United States)

    Fraser, Keith; Bruckner, Dylan M; Dordick, Jonathan S

    2018-06-18

    Adverse drug reactions, particularly those that result in drug-induced liver injury (DILI), are a major cause of drug failure in clinical trials and drug withdrawals. Hepatotoxicity-mediated drug attrition occurs despite substantial investments of time and money in developing cellular assays, animal models, and computational models to predict its occurrence in humans. Underperformance in predicting hepatotoxicity associated with drugs and drug candidates has been attributed to existing gaps in our understanding of the mechanisms involved in driving hepatic injury after these compounds perfuse and are metabolized by the liver. Herein we assess in vitro, in vivo (animal), and in silico strategies used to develop predictive DILI models. We address the effectiveness of several two- and three-dimensional in vitro cellular methods that are frequently employed in hepatotoxicity screens and how they can be used to predict DILI in humans. We also explore how humanized animal models can recapitulate human drug metabolic profiles and associated liver injury. Finally, we highlight the maturation of computational methods for predicting hepatotoxicity, the untapped potential of artificial intelligence for improving in silico DILI screens, and how knowledge acquired from these predictions can shape the refinement of experimental methods.

  5. Tensile strength changeability of multilayered composites, fabricated through optimized VARTM Technology, an experimental

    International Nuclear Information System (INIS)

    Nasir, M.A.; Khan, Z.M.

    2016-01-01

    Life span estimation up to tensile fracture of different fiber reinforced composites, Kevlar Fiber Reinforced Polymer (KFRP) and Glass Fiber Reinforced Polymer (GFRP) along with the strain rate effects on dynamic properties is mainly viewed on experimental basis in this paper. Lab-scale Vacuum Assisted Resin Transfer Molding (VARTM) technique is used to fabricate flawless dog bone specimens considering ASTM standard D638-03 and by using LY5052 resin and HY 5052 hardener. In this research, it is tried to maintain 65% of fiber participation in whole specimen composition matrix. Detail design description of VARTM is also discussed and optimized up to maximum scale to acquire compact, uniformly strengthen and porosity banned standard specimens. A conventional stress-strain curve is established to compare the tensile validity of above mentioned competitive composites. Crack Opening Displacement (COD) of research materials after equal intervals of time is observed; results depict the shear stability and reinforcement perfection of these materials. The crack penetration behavior is examined transversely and longitudinally in this research. (author)

  6. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology.

    Science.gov (United States)

    Chen, Fengchen; Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  7. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    Directory of Open Access Journals (Sweden)

    Fengchen Chen

    2018-01-01

    Full Text Available A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  8. Experimental investigations of heat exchange and hydrodynamics on models of a VG-400 steam generator tube bundle made up of small diameter helicoils

    International Nuclear Information System (INIS)

    Golovko, V.F; Ivaskov, N.A.; Obukhov, P.I.; Pospelov, V.N.; Sergeev, A.I.

    1988-01-01

    Features of HTGR steam generators having heat exchange surface made up of small diameter helicoils are discussed in the paper. A general approach to optimization of thermohydraulic characteristics BΓW-400 steam generator design backed by calculation and experiment are given. Main results of steam generator assembly's model aerodynamic test are presented. Data of thermohydraulic tests of a single tube model in a helium heated test rig are discussed. (author)

  9. Experimental and numerical investigation of gas side particulate fouling onto heat exchanger tubes; Etude des differents mecanismes de depot conduisant a l'encrassement particulaire en phase gazeuse des tubes d'echangeurs de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Bailer, F.

    1998-11-06

    This works deals with gas side particulate fouling onto heat exchanger tubes. An experimental and numerical investigation was carried out. By means of a new testing loop designed for this study the deposit kinetics were obtained in dust-controlled conditions at the beginning of the fouling process, Experimental results pointed out the existence of various transport regimes: for sub-micron particles, convective diffusion augmented by thermophoresis in the presence of a temperature gradient governs the particle deposition: inertial impaction controls the super-micron particles deposition, in the intermediate granulometric range, combined action of particle inertia and thermophoresis must be considered. Moreover, measurements on an other testing loop using a more concentrated aerosol allowed us to point out the modification of the mechanisms with time and the influence of the deposit shape. A numerical model predicting the particle deposition, based on the TRIO software and an Eulerian-Lagrangian approach, was developed and validated against experimental results from the literature and from our study. Numerical approach gave us an accurate understanding of the phenomena by means of local parameters computations. In this way, the different mechanisms which control particulate deposition onto heat exchangers tubes were identified and modeled, especially before the onset of the inertial impaction. (authors)

  10. Experimental study of heat exchange coefficients, critical heat flux and charge losses, using water-steam mixtures in turbulent flow in a vertical tube

    International Nuclear Information System (INIS)

    Perroud, P.; De La Harpe, A.; Rebiere, J.

    1960-12-01

    Two stainless steel tubes were used (with diameters of 5 and 10 mm, lengths 400 and 600 mm respectively), heated electrically (50 Hz). The mixture flows from top to bottom. The work was carried out mainly on mixtures of high concentration (x > 0.1), at pressures between 50 and 60 kg/cm 2 , flowing as a liquid film on the walls of the tube with droplets suspended in the central current of steam. By analysis of the heat transfer laws the exchange mechanisms were established, and the conditions under which the critical heat flux may be exceeded without danger of actual burnout were determined. In this way high output concentrations (x s > 0.9) may be obtained. An attempt has been made to find out to what extent existing correlation formulae can be used to account for the phenomena observed. It is shown that those dealing with exchange coefficients can only be applied in a first approximation in cases where exchange by convection is preponderant, and only below the critical flux. The formulae proposed by WAPD and CISE do not give a satisfactory estimation of the critical heat flux, and the essential reasons for this inadequacy are explained. Lastly, the Martinelli and Nelson method may be used to an approximation of 30 per cent for the calculation of charge losses. (author) [fr

  11. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  12. Fiscal 2000 survey of geological structures overseas. Exchange of engineers with Indonesia (Coal mining technology); 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. Gijutsusha koryu jigyo (tanko gijutsu bun'ya) Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Indonesia rich in coal resources consumed 70-million tons of coal in 1999, which covered 17% of its total energy demand. It is estimated that as much as 120-million tons will be produced in 2005, and it is expected that underground mining will increase. Under such circumstances, Indonesia strongly desires that Japan's underground mining technologies be transferred to Indonesia. For the transfer of technologies especially involving production control and management out of Japan's underground mining technologies, Japan dispatched engineers to Indonesia under a mining engineer exchange project, and received and trained Indonesian engineers. Under the engineer exchange project, five engineers were dispatched to Indonesia and gave lectures and on-site training in the period July 9 through August 5, 2000. Japan received seven engineers, who were given lectures and training at the Ikeshima mining field of Matsushima Coal Mining Company in the period November 12 through December 12, 2000. (NEDO)

  13. Harmonic technology versus neodymium-doped yttrium aluminium garnet laser and electrocautery for lung metastasectomy: an experimental study.

    Science.gov (United States)

    Fiorelli, Alfonso; Accardo, Marina; Carelli, Emanuele; Del Prete, Assunta; Messina, Gaetana; Reginelli, Alfonso; Berritto, Daniela; Papale, Ferdinando; Armenia, Emilia; Chiodini, Paolo; Grassi, Roberto; Santini, Mario

    2016-07-01

    We compared the efficacy of non-anatomical lung resections with that of three other techniques: monopolar electrocautery; neodymium-doped yttrium aluminium garnet laser and harmonic technology. We hypothesized that the thermal damage with harmonic technology could be reduced because of the lower temperatures generated by harmonic technology compared with that of other devices. Initial studies were performed in 13 isolated pig lungs for each group. A 1.5-cm capsule was inserted within the lung to mimic a tumour and a total of 25 non-anatomical resections were performed with each device. The damage of the resected lung surface and of the tumour border were evaluated according to the colour (ranging from 0-pink colour to 4-black colour), histological (ranging from Score 0-no changes to Score 3-presence of necrotic tissue) and radiological (ranging from Score 0-isointense T2 signal at magnetic resonance imaging to Score 3-hyperintense T2 signal) criteria. A total of seven non-anatomical resections with harmonic technology were also performed in two live pigs to assess if ex vivo results could be reproducible in live pigs with particular attention to haemostatic and air-tightness properties. In the ex vivo lung, there was a statistical significant difference between depth of thermal damage (P laser (0.9 [0.6-0.9]) and harmonic (0.4 [0.3-0.5]) groups. Electrocautery had a higher depth of thermal damage compared with that of the laser (P = 0.01) and harmonic groups (P = 0.0005). The harmonic group had a less depth of thermal damage than that of the laser group (P = 0.01). Also, histological damages of tumour borders (P technology. Our experimental data support the resections performed with the use of harmonic technology. The lack of severe tissue alterations could favour healing of parenchyma, assure air tightness and preserve functional lung parenchyma. However, randomized controlled studies are needed in an in vivo model to corroborate our findings. © The Author 2016

  14. Technical engineers exchange project (coal mine technology field). Training in China; Gijutsusha koryu jigyo (tanko gijutsu bun`ya). Chugoku no kenshu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, T. [Japan Coal Energy Center, Tokyo (Japan)

    1998-07-01

    The paper described JCOAL`s project on the exchange of technical coal engineers of China. In the project on sending of engineers to China in the first term, coal mine engineers of Japan (Taiheiyo Coal Mine, Kushiro Works, Training Center) were sent to the Daitun coal-thermal power plant, Peixuan city, Jiangsu province, in September, 1997 to introduce the production control technology in Japan. They contributed to the heightening of productivity in coal mines in China. Eighteen Chinese participated in the training. Mechanization has been comparatively well in progress, and it was 83% in coal mining and 91% in drilling. The kind of coal is mostly a raw material coal. The stuff members are 30,000, and expert engineers are 4,200. The plant has an output of 130,000 kWh, owns its railroad, is run on the general multiple management, and is largely developing. The project on sending of engineers to China in the last term was carried out in February 1998 for tracing/confirming how the results of the training conducted in September are made the most of and if or not there is something bad and for obtaining the detailed data. A certain degree of promotion and effects were able to be confirmed. A project on training of the head, sub-head, etc. who were invited to Japan to lean production/management control was also carried out in November and December 1997. 1 tab.

  15. FY 2000 report on the promotion projects by Research Institute of Innovative Technology for the Earth. Study on possibility of research exchanges; 2000 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo seika hokokusho. Kenkyu koryu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the results of the study on possibility of research exchanges, conducted by Research Institute of Innovative Technology for the Earth (RITE) in FY 2000. For development of thin-film catalysts, HTE, a venture developing combinatorial chemistry application to catalysts, is a potential partner for the exchanges. One of the technical problems involved in underground sequestration of CO2 relates to evaluation of the reactions between CO2 injected under pressure and the surrounding rocks. It is a less site-specific theme, and preferably pursued through international networks. The RITE delegates have visited the British Geological Survey, Canada's Alberta Research Council, and US's Pennsylvania State University, Rice University and Chevron Petroleum, finding research exchange possibilities in all of these organizations for broad technical themes related to underground sequestration of CO2. For energy conversion technologies using biomass resources as the source materials, the potential partners for the research exchanges include Swedish Royal Institute of Technology, Belgium's Catholic University of Louvain and Spain's University of Zaragona which leads researches in production of gases from wastes and biomass. (NEDO)

  16. Simulation and Experimental Determination of Technological Liquid Molding Parameters of Tubing Basalt Insulation

    Directory of Open Access Journals (Sweden)

    Yu. V. Badanina

    2015-01-01

    Full Text Available The article is dedicated to one of the most important and urgent tasks in mechanical engineering development - the creation of low-density and environmentally-friendly thermoinsulation from available cheap basalt fibers for products to operate at temperatures up to 700°C.One of the most effective applications of such thermo-insulation is to develop and provide highly porous coatings from short basalt fibers by liquid filtration for tubing (T to supply superheated up to 420° C steam under pressure of 35 MPa in the deep layers with severe highviscosity oil. Tubing with the short low-density basalt insulation can be used for a greater depth than the vacuum-insulated tubing, which are also called "thermo-cases", and do not fully meet business needs for long-term reliability of oil vacuum tubes, too large mass per unit length of their design and, as a consequence, the impossibility to use such pipes for deep wells.The aim of the work is to simulate a liquid filtration process of short fibers and determine technological parameters of producing thermal insulation coatings of tubing pipes from basalt fibers and mineral binder shaped as cylinders and cylindrical shells. The paper proposes a mathematical model of free filtration deposition of short fibers from liquid slurry, which describes dynamics of creating thermal insulation products and allows us to determine the rational parameters of their manufacturing process. It shows methods to improve the products quality while forming the thermal insulation by filtration through additional vacuum deposition of a filtrate chamber and the final prepressing of sediment layer, giving dimensions and shape to the final product.The paper defines a prescription hydro mass composition. It shows that to increase the compressive strength of highly fibrous rings and cylindrical shells it is necessary to use based on oxide А12O3 5-7% by weight mineral binder, which fixes basalt fibers in places of their contacts. It

  17. Social exchange : Relations and networks

    NARCIS (Netherlands)

    Dijkstra, Jacob

    2015-01-01

    In this short paper, I review the literature on social exchange networks, with specific attention to theoretical and experimental research. I indicate how social exchange theory is rooted in general social theory and mention a few of its main links to social network analysis and empirical network

  18. Educators Exchange: A Program Evaluation.

    Science.gov (United States)

    Armstrong, William B.

    The Educators Exchange Program (EEP) was established under a training and educational exchange agreement reached by California's San Diego Community College District (SDCCD) and the republic of Mexico. In the program, the District provided a 4-week technological training program to faculty at Centros de Capacitacion Tecnologica Industrial…

  19. Experimental investigation of the performance of an elbow-bend type heat exchanger with a water tube bank used as a heater or cooler in alpha-type Stirling machines

    Energy Technology Data Exchange (ETDEWEB)

    El-Ehwany, A.A.; Hennes, G.M. [Mech. Power Dept., Faculty of Eng., Ain Shams University, Cairo (Egypt); Eid, E.I. [Mech. Dept., Faculty of Ind. Education, Suez Canal University, Suez 43515 (Egypt); El-Kenany, E. [The Specialized Studies Academy, Workers University, Tech. Dept., Mansura (Egypt)

    2011-02-15

    In this work the effect of the elbow-bend geometry and the effect of the tube arrangement on the performance of air-to-water heat exchanger is studied experimentally. In elbow-bend heat exchanger, the direction of the working fluid is bended at 90 degrees to its inlet direction. The heating or cooling fluid flows inside straight tubes while the working fluid flows past the tubes along an elbow pass. Three different types of the geometry of the elbow with three different tube bank arrangements were studied. The results were plotted and analyzed to clarify the effects of the elbow-bend geometry, the tube bank arrangements and the dead volume in the heat exchanger on the heat transfer and pressure drop. Two empirical correlations were deduced for each design, one to predict the relation between Nusselt and Reynolds numbers, while the other relation is between the friction factor and Reynolds number. This work was done to select the more suitable design to be used as a heater or a cooler in Stirling machines. (author)

  20. The Utilization of Historical Data and Geospatial Technology Advances at the Jornada Experimental Range to Support Western America Ranching Culture

    Directory of Open Access Journals (Sweden)

    Kris Havstad

    2011-09-01

    Full Text Available By the early 1900s, concerns were expressed by ranchers, academicians, and federal scientists that widespread overgrazing and invasion of native grassland by woody shrubs were having severe negative impacts upon normal grazing practices in Western America. Ranchers wanted to reverse these trends and continue their way of life and were willing to work with scientists to achieve these goals. One response to this desire was establishment of the USDA Jornada Experimental Range (783 km2 in south central New Mexico by a Presidential Executive Order in 1912 for conducting rangeland investigations. This cooperative effort involved experiments to understand principles of proper management and the processes causing the woody shrub invasion as well as to identify treatments to eradicate shrubs. By the late 1940s, it was apparent that combining the historical ground-based data accumulated at Jornada Experimental Range with rapidly expanding post World War II technologies would yield a better understanding of the driving processes in these arid and semiarid ecosystems which could then lead to improved rangeland management practices. One specific technology was the use of aerial photography to interpret landscape resource conditions. The assembly and utilization of long-term historical aerial photography data sets has occurred over the last half century. More recently, Global Positioning System (GPS techniques have been used in a myriad of scientific endeavors including efforts to accurately locate historical and contemporary treatment plots and to track research animals including livestock and wildlife. As an incredible amount of both spatial and temporal data became available, Geographic Information Systems have been exploited to display various layers of data over the same locations. Subsequent analyses of these data layers have begun to yield new insights. The most recent technological development has been the deployment of Unmanned Aerial Vehicles (UAVs

  1. The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice

    Directory of Open Access Journals (Sweden)

    Fakharzadeh S

    2014-08-01

    Full Text Available Saideh Fakharzadeh,1 Mohammad Ali Sahraian,2 Maryam Hafizi,1 Somayeh Kalanaky,1 Zahra Masoumi,1 Mehdi Mahdavi,1 Nasser Kamalian,3 Alireza Minagar,4 Mohammad Hassan Nazaran1 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pathology, Medical School of Tehran University of Medical Sciences, Tehran, Iran; 4Department of Neurology, LSU Health Sciences Centre, Shreveport, LA, USA Purpose: Currently approved therapies for multiple sclerosis (MS at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology. Materials and methods: MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1–7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50. Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively. Results: The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1–7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic

  2. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  3. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    International Nuclear Information System (INIS)

    Herbinger, K.; Then, Ch.; Loew, M.; Haberer, K.; Alexous, M.; Koch, N.; Remele, K.; Heerdt, C.; Grill, D.; Rennenberg, H.; Haeberle, K.-H.; Matyssek, R.; Tausz, M.; Wieser, G.

    2005-01-01

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO 3 ) or two-fold ambient (2xO 3 ) O 3 concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO 2 concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO 3 variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO 3 and 2xO 3 regimes were not observed. Glutathione concentrations were significantly increased under 2xO 3 across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO 3 without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system

  4. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herbinger, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]. E-mail: karin.herbinger@uni-graz.at; Then, Ch. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)]|[Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Loew, M.; Koch, N. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Haberer, K.; Alexous, M. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Remele, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Heerdt, C. [Lehrstuhl fuer Bioklimatologie und Immissionsforschung, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Grill, D. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Rennenberg, H. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Haeberle, K.-H.; Matyssek, R. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Tausz, M. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]|[[School of Forest and Ecosystem Science, University of Melbourne, Water Street, Creswick, Vic. 3363 (Australia); Wieser, G. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)

    2005-10-15

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO{sub 3}) or two-fold ambient (2xO{sub 3}) O{sub 3} concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO{sub 2} concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO{sub 3} variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO{sub 3} and 2xO{sub 3} regimes were not observed. Glutathione concentrations were significantly increased under 2xO{sub 3} across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO{sub 3} without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system.

  5. Promotional operation for developing industrial technologies for global environment in fiscal 1998. International research exchange operation; 1998 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo. Kokusai kenkyu koryu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    With an objective of creating a new scope of study intended of solving global environment problems and structuring a new technical system, exchanges with overseas researchers and research institutions have been carried out subsequent to those in last year. In fiscal 1998, six researchers from different countries were invited to implement joint researches, and two overseas researchers were invited to an international conference on industrial technologies for global environment. In addition, in order to identify trends of research and development in overseas countries, two researchers were sent to universities in Germany and the U.S.A., and three researchers to international conferences and symposiums on the industrial technologies for global environment. It was intended to exchange technological information between overseas researchers and Japanese researchers who are performing the advanced researches on the industrial technologies for global environment, and to proliferate the latest items of technological information. Therefore, seven international seminars have been held, including the '98 Japan-China Global Environment Protection Symposium, 'substance migration and carbon circulation in coral reefs', 'plant bio-technologies in the 21st century', and the Fourth International Forum for Environmental Catalysts. (NEDO)

  6. Promotional operation for developing industrial technologies for global environment in fiscal 1998. International research exchange operation; 1998 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo. Kokusai kenkyu koryu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    With an objective of creating a new scope of study intended of solving global environment problems and structuring a new technical system, exchanges with overseas researchers and research institutions have been carried out subsequent to those in last year. In fiscal 1998, six researchers from different countries were invited to implement joint researches, and two overseas researchers were invited to an international conference on industrial technologies for global environment. In addition, in order to identify trends of research and development in overseas countries, two researchers were sent to universities in Germany and the U.S.A., and three researchers to international conferences and symposiums on the industrial technologies for global environment. It was intended to exchange technological information between overseas researchers and Japanese researchers who are performing the advanced researches on the industrial technologies for global environment, and to proliferate the latest items of technological information. Therefore, seven international seminars have been held, including the '98 Japan-China Global Environment Protection Symposium, 'substance migration and carbon circulation in coral reefs', 'plant bio-technologies in the 21st century', and the Fourth International Forum for Environmental Catalysts. (NEDO)

  7. Exchange Network

    Science.gov (United States)

    The Environmental Information Exchange Network (EN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  8. Analysis of an Attenuator Artifact in an Experimental Attack by Gunn-Allison-Abbott Against the Kirchhoff-Law-Johnson-Noise (KLJN) Secure Key Exchange System

    Science.gov (United States)

    Kish, Laszlo B.; Gingl, Zoltan; Mingesz, Robert; Vadai, Gergely; Smulko, Janusz; Granqvist, Claes-Göran

    2015-12-01

    A recent paper by Gunn-Allison-Abbott (GAA) [L. J. Gunn et al., Scientific Reports 4 (2014) 6461] argued that the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system could experience a severe information leak. Here we refute their results and demonstrate that GAA's arguments ensue from a serious design flaw in their system. Specifically, an attenuator broke the single Kirchhoff-loop into two coupled loops, which is an incorrect operation since the single loop is essential for the security in the KLJN system, and hence GAA's asserted information leak is trivial. Another consequence is that a fully defended KLJN system would not be able to function due to its built-in current-comparison defense against active (invasive) attacks. In this paper we crack GAA's scheme via an elementary current-comparison attack which yields negligible error probability for Eve even without averaging over the correlation time of the noise.

  9. Organic decontamination by ion exchange

    International Nuclear Information System (INIS)

    Wilson, T.R.

    1994-01-01

    This study has successfully identified ion exchanger media suitable for decontaminating the 5500-gallon organic layer in Tank 241-C-103. Decontamination of radionuclides is necessary to meet shipping, incinerator site storage, and incineration feed requirements. The exchanger media were identified through a literature search and experiments at the Russian Institute for Physical Chemistry. The principal radionuclides addressed are Cs-137 and Sr-90. Recommendations for an experimental program plan conclude the discussion. The experimental program would provide the data necessary for plant design specifications for a column and for ion exchange media to be used in decontaminating the organic layer

  10. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    International Nuclear Information System (INIS)

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford's 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of 137 Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve 137 Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m 3 and (2) 1/10th of the NRC Class A limit of 1 Ci/m 3 i.e., 0.1/m 3 . The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified

  11. An experimental study of trans-critical CO2 water–water heat pump using compact tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Jiang, Yuntao; Ma, Yitai; Li, Minxia; Fu, Lin

    2013-01-01

    Highlights: • Thermodynamic analyses of transcritical CO 2 cycle with and without IHX are provided. • A transcritical CO 2 heat pump system adopts compact tube-in-tube heat exchangers. • Experiment results of systems with and without IHX have been analyzed and compared. • IHX can improve the performance of the transcritical CO 2 heat pump system. - Abstract: A transcritical CO 2 water–water heat pump system is introduced in this study, which employs compact tube-in-tube evaporator and gas cooler. Its primary test standards and operating conditions are introduced. Under test conditions, experiments have been carried out with compression cycles with and without internal heat exchanger (IHX). Experiment results have been analyzed and compared, showing that IHX can improve the coefficient of performance of the system. The analyses are done mainly on the variations of outlet CO 2 temperature of the gas cooler, compressor discharge pressure, compressor lubricant temperature, hot water mass flow rate, etc. When the inlet water temperature of the gas cooler is 15 °C, 20 °C, 25 °C respectively, the hot water temperature ranges from 45 °C to 70 °C, the relative COP h (coefficient of performance when heating) change index (RCI COP ) of the heat pump system with IHX is about 3.5–8% higher than that without IHX. The relative capacity change index (RCI Q ) of the heat pump system with IHX is about 5–10% higher than that without IHX. Temperature of CO 2 increases at the outlet of the gas cooler when the outlet water temperature of the gas cooler increases. Lowering the outlet CO 2 temperature of the gas cooler is an important way to improve the performance of the system

  12. To problem of experimental determination of parameters of μ-atom charge-exchange process of hydrogen isotopes on He nuclei

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Stolupin, V.A.

    1990-01-01

    The kinetics of μ-atomic and μ-molecular processes occuring in hydrogen isotopes-helium mixture is observed. The expressions are obtained to determine the parameters of a process of the muon transition from hydrogen isotope μ atoms to helium nuclei with the use of different experimental methods. 18 refs.; 3 figs.; 1 tab

  13. Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments

    International Nuclear Information System (INIS)

    Robin, Valentin; Tertre, Emmanuel; Beaufort, Daniel; Regnault, Olivier; Sardini, Paul; Descostes, Michael

    2015-01-01

    Highlights: • Multi-site ion exchange model for beidellite for Na + , Ca 2+ , Mg 2+ , K + and H + . • Validity over the 1–7 pH range and total normality >5 × 10 −3 mol/L. • Application to equilibrium between smectite and acidic solution from mining sites. • Impact of crystal chemistry of smectites on their sorption properties. - Abstract: To our knowledge, no thermodynamic database is available in the literature concerning ion-exchange reactions occurring in low-charge smectite with tetrahedral charge (beidellite). The lack of this information makes it difficult to predict the mobility of contaminants in environments where beidellite and major cations, which act as competitors with contaminants for sorption on the clay phase, are present. The present study proposes a multi-site ion exchange model able to describe experimental data obtained for H + and the four major cations (Na + , Ca 2+ , Mg 2+ and K + ) found in natural waters interacting with a <0.3 μm size fraction of Na-beidellite. The nature of the sites involved in the sorption processes is assessed using qualitative structural data. Moreover, the effect of the charge location in the smectite on the selectivity coefficient values is discussed by comparison with the results reported in the literature for smectite characterized by octahedral charge (montmorillonite). The new thermodynamic database proposed in this study is based on the same total sorption site density and distribution of sites regardless of the cations investigated. This database is valid for a large range of physico-chemical conditions: a [1–7] pH range, a total normality higher than 5 × 10 −3 mol/L corresponding to a flocculated state for water/clay systems, and when sorption of ions pairs can be neglected. Note that this study provides evidence that a thermodynamic database describing ion exchange reactions between H + and the four major cations of natural water for smectite cannot be valid irrespective of the total

  14. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  15. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  16. Theoretical and experimental studies of single event effect induced by atmospheric muons on nano-metric technologies

    International Nuclear Information System (INIS)

    Li Cavoli, P.

    2016-01-01

    This study concerns the domain of the microelectronics. It consists in the study of the impact of the 3D morphology of the energy deposit on the Single Event Effect (SEE) modeling, induced by atmospheric muons. Over a first phase, the approach has consisted in the modeling of the energy deposit induced by protons in nano-metric volumes. For that purpose the use of the Monte Carlo code GEANT4 has allowed us to simulate and stock in a database the tracks characteristics of the energy deposit induced by protons. Once the approach validated for the protons, simulations of the energy deposit induced by muons have been realized. A CCD camera has been used in order to measure the radiative atmospheric environment and to constrain the modeling of the energy deposit induced by muons. This study highlights and quantify the contribution of the radial distribution of the energy deposit induced by protons in nano-metric volumes for the SEE prediction. On the other hand, the study shows that the contribution of the radial distribution of the energy deposit induced by muons in nano-metric volumes has a negligible impact on the SEE modeling. It will be interesting to realize measurements of the energy deposit induced by muons in nano-metric technologies under particle accelerator. This will allow to bring experimental data still nonexistent necessary to the development of new physical models more accurate on the modeling of the energy deposit induced by muons. (author)

  17. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  18. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  19. An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions

    International Nuclear Information System (INIS)

    Jian, Qifei; Zhao, Yang; Wang, Haoting

    2015-01-01

    The dynamic behavior of the PEM (proton exchange membrane) fuel cell stack has great effect on the safety and effective operation of its applications. In this paper, a self-designed bulb-array is used to simulate the various loading conditions and study the dynamic behavior of a 2 kW PEM fuel cell stack. An evaluation index, including oscillation rate, pressure variation and dynamic resistance factor, is used to analyze the transient response of the PEM fuel cell stack. It is observed that the stack current increases about 8.6%, and the Oscillation rate decreases more rapidly after activation. In the step-up load stage, the oscillation rate and the dynamic resistance decrease more rapidly as the external load increases. Due to the periodic anodic purge process, a periodic voltage fluctuation can be seen. In addition, when the stack works in the open-loop state (working without the external load), the transient response of the stack current is significantly affected by the hydrogen humidity and the charge double-layer. - Highlights: • The working time of open-loop state significantly affects the transient response. • Oscillation rate decreases faster as the external load increases. • Dynamic resistance factor decreases as the external load increases. • The periodic anodic purge process leads to a slight periodic oscillation of voltage

  20. Experimental Investigation on Effect of Fin Shape on the Thermal-Hydraulic Performance of Compact Fin-and-Tube Heat Exchangers

    Science.gov (United States)

    Moorthy, P.; Oumer, A. N.; Ishak, M.

    2018-03-01

    The aim of this paper is to investigate the effect of fin shapes on the performance of compact finned flat tube heat exchangers. Three types of fin shapes namely plain, wavy, and rectangular grooved fins attached to three by three arrays of flat tube banks were considered. Moreover, the tubes were deployed in in-line and staggered arrangements. In addition to the fin shapes, the air velocity and the tube inclination angles were varied and the thermal-hydraulic performance was analysed. On the other hand, the temperatures at the tube surfaces were kept constant to produce constant heat flux throughout the study. The results showed that as flowrate increases, the heat transfer increases, however, the friction factor decreases. Staggered arrangement produces higher heat transfer and friction factor than inline fin. Moreover, the rectangular fin is the best in terms of high heat transfer however the drawback of high friction factor leads the fin to have the least efficiency of all. On the other hand, plain fin had the least heat transfer performance however the highest efficiency was achieved. Therefore, plain fin should be used when efficiency is prioritized and rectangular fin when high heat transfer is desired.

  1. Technical Note: A minimally invasive experimental system for pCO2 manipulation in plankton cultures using passive gas exchange (atmospheric carbon control simulator)

    Science.gov (United States)

    Love, Brooke A.; Olson, M. Brady; Wuori, Tristen

    2017-05-01

    As research into the biotic effects of ocean acidification has increased, the methods for simulating these environmental changes in the laboratory have multiplied. Here we describe the atmospheric carbon control simulator (ACCS) for the maintenance of plankton under controlled pCO2 conditions, designed for species sensitive to the physical disturbance introduced by the bubbling of cultures and for studies involving trophic interaction. The system consists of gas mixing and equilibration components coupled with large-volume atmospheric simulation chambers. These chambers allow gas exchange to counteract the changes in carbonate chemistry induced by the metabolic activity of the organisms. The system is relatively low cost, very flexible, and when used in conjunction with semi-continuous culture methods, it increases the density of organisms kept under realistic conditions, increases the allowable time interval between dilutions, and/or decreases the metabolically driven change in carbonate chemistry during these intervals. It accommodates a large number of culture vessels, which facilitate multi-trophic level studies and allow the tracking of variable responses within and across plankton populations to ocean acidification. It also includes components that increase the reliability of gas mixing systems using mass flow controllers.

  2. Experimental results of acetone hydrogenation on a heat exchanger type reactor for solar chemical heat pump; Solar chemical heat pump ni okeru acetone suisoka hanno netsu kaishu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T; Doi, T; Tanaka, T; Ando, Y [Electrotechnical Laboratory, Tsukuba (Japan); Miyahara, R; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    With the purpose of converting solar heat energy to industrial heat energy, an experiment of acetone hydrogenation was carried out using a heat exchanger type reactor that recovers heat generated by acetone hydrogenation, an exothermic reaction, and supplies it to an outside load. In the experiment, a pellet-like activated carbon-supported ruthenium catalyst was used for the acetone hydrogenation with hydrogen and acetone supplied to the catalyst layer at a space velocity of 400-1,200 or so. In the external pipe of the double-pipe type reactor, a heating medium oil was circulated in parallel with the flow of the reactant, with the heat of reaction recovered that was generated from the acetone hydrogenation. In this experiment, an 1wt%Ru/C catalyst and a 5wt%Ru/C catalyst were used so as to examine the effects of variation in the space velocity. As a result, from the viewpoint of recovering the heat of reaction, it was found desirable to increase the reaction speed by raising catalytic density and also to supply the reactant downstream inside the reaction pipe by increasing the space velocity. 1 ref., 6 figs., 1 tab.

  3. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  4. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Science.gov (United States)

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  5. Heat exchanger

    International Nuclear Information System (INIS)

    Drury, C.R.

    1988-01-01

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  6. Angular dependence of the exchange bias for the bistable state

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuhao [College of Physics and Electronic Information, Shanxi Normal University, Linfen 041004 (China); Research College of materials science, Shanxi Normal University, Linfen 041004 (China); Xu, Xiaohong, E-mail: xuxh@dns.sxnu.edu.cn [Research College of materials science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Shanxi Normal University, Linfen 041004 (China)

    2017-06-15

    The angular dependence of the exchange bias (ADEB) has been investigated in detail when the exchange-coupled ferromagnetic (FM)/antiferromagnetic (AFM) bilayer is in the bistable state. Complete and incomplete jump phenomena were found at the intrinsic easy and hard axes, when they pass through two special positions making the angular deviation of 58.2826° and 121.7174° from the easy axis of the uniaxial anisotropy, respectively. The combination of these different types of the jump phenomena at the intrinsic easy and hard axes yields five distinct types of the ADEB. The physical condition for each type of ADEB is established. Additionally, the extreme value problem of the exchange bias field and coercivity are also discussed, which is an important technological issue in the design of the magnetoresistive and spintronic devices. These results enable us to make a comprehensive understanding of the experimental ADEB curves.

  7. The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience.

    Science.gov (United States)

    Griss, Johannes; Jones, Andrew R; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G; Salek, Reza M; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; Del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-10-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience*

    Science.gov (United States)

    Griss, Johannes; Jones, Andrew R.; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G.; Salek, Reza M.; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-01-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. PMID:24980485

  9. Experimental study on the start-up with dry gases from normal cell temperatures in self-humidified proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kong, Im Mo; Jung, Aeri; Kim, Beom Jun; Baik, Kyung Don; Kim, Min Soo

    2015-01-01

    In this study, the start-up characteristics of PEMFCs (proton exchange membrane fuel cells) was investigated with dry gases from normal cell temperatures above 0 °C. Firstly, the effects of flow arrangements (co-flow and counter-flow) were evaluated at a starting cell temperature of 25 °C. Then, the start-up was successful in both arrangements, but it showed better performance with counter-flow. In addition, the hydrogen concentration was measured and it showed that hydrogen crossover contributes to the membrane hydration and the first phase of dry start-up. However, although the cell temperature rose above 45 °C after start-up form 25 °C with counter-flow arrangement, the restart-up after shut-down failed at a starting cell temperature of 45 °C regardless of flow arrangements. Considering the needs of restart-up, the available starting cell temperature should be improved. For this, after first sub-step of start-up process, relatively low flow rates were maintained to retain produced water without purge so that the membrane can be hydrated sufficiently. With this modified process, denominated as WSP (water storage process) in this study, the dry start-up became successful at a starting cell temperature of 45 °C and the cell performance was remarkably improved especially with counter-flow arrangement. - Highlights: • Start-up with dry gases from normal cell temperatures was investigated. • Counter-flow arrangement showed better performance over co-flow arrangement. • Water is produced by hydrogen crossover and its direct reaction with oxygen at cathode side. • It prevents the membrane dehydration and helps the start-up during the first phase of the process. • Available starting cell temperature and cell performance could be improved with WSP.

  10. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.

    Science.gov (United States)

    Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto

    2018-02-08

    The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: • EIS is employed to investigate the MEA design of a PEM fuel cell. • Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied. • MPL increases cell output at low to medium currents but reduces it at high currents. • Better results are obtained when employing a thinner Nafion membrane. • GDL hydrophobic treatment improves the cell performance. - Abstract: In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.

  12. Combining "open-lung" ventilation and arteriovenous extracorporeal lung assist: influence of different tidal volumes on gas exchange in experimental lung failure.

    Science.gov (United States)

    Muellenbach, Ralf M; Kredel, Markus; Kuestermann, Julian; Klingelhoefer, Michael; Schuster, Frank; Wunder, Christian; Kranke, Peter; Roewer, Norbert; Brederlau, Jörg

    2009-08-01

    Although low-tidal ventilation may reduce mortality in acute respiratory distress syndrome (ARDS), it can also result in severe respiratory acidosis and lung derecruitment. This study tested the hypothesis that combining "open-lung" ventilation and arteriovenous extracorporeal lung assist (av-ECLA) allows for maximal tidal volume (VT) reduction without the development of decompensated respiratory acidosis and impairment of oxygenation. After induction of ARDS in eight female pigs (56.1+/-3.2 kg), lung recruitment was performed and positive end-expiratory pressure was set 3 cmH2O above the lower inflection point of the pressure-volume curve. All animals were ventilated in the pressure-controlled ventilation mode (PCV) with VTs ranging from 0-8 ml/kg. At each VT, gas exchange and hemodynamic measurements were obtained with the av-ECLA circuit clamped and declamped. With each declamping, the gas flow through the membrane lung was set to 10 l of oxygen/min. The respiratory rate was adjusted to maintain normocapnia, but limited to 40/min. After lung recruitment, oxygenation remained significantly improved although VTs were minimized to 0 ml/kg (p<0.05). PaO2 was significantly improved during PCV and av-ECLA compared with PCV alone at VTs <4 ml/kg (p<0.05). With VT <6 ml/kg, severe acidosis could only be avoided if PCV was combined with av-ECLA. Due to sufficient CO2 elimination during av-ECLA, the VTs could be reduced to 0-2 ml/kg without the risk of decompensated respiratory acidosis. It was also shown that the "open-lung" strategy chosen was associated with sustained improvements in oxygenation, even though VTs were minimized.

  13. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  14. Heat exchanger

    Science.gov (United States)

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  15. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  16. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  17. Exchange rates.

    Science.gov (United States)

    Mills, Bev

    2003-09-01

    IN MAY this year, I was lucky enough to go to Larissa in northern Greece as part of Hope Exchange 2003, an annual study tour organised by the European Union's hospital committee and administered by the Institute of Healthcare Management (IHM).

  18. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  19. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  20. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    Science.gov (United States)

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Luong Ba Vien; Nguyen Minh Tuan; Nguyen Kien Cuong; Pham Quang Huy; Tran Tri Vien

    2015-01-01

    The project Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education performed by Dalat Nuclear Research Institute and financed by Ministry of Science and Technology aimed at strengthening the training capability of nuclear human resources. The content of this work includes: i) Improvement of experimental equipment; ii) Compilation of training material for experiments with the improved equipment systems on the reactor; iii) Compilation of training material for reactor calculations includes the following areas: neutronics, hydrothermal, safety analysis and accident consequence analysis. Results of the project provide important conditions to support practical educational and training curriculums in nuclear science and technology. (author)

  2. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 Degrees Centigrade

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Chang, Carl W.; Lukco, Dorothy; Beheim, Glenn M.

    2016-01-01

    We have reported SiC integrated circuits (ICs) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 degrees Centigrade. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 degrees Centigrade. However, this thermal ramp was not ended until a peak temperature of 880 degrees Centigrade (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology.Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 degrees Centigrade. In one test, the temperature was ramped and then held at 727 degrees Centigrade, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 degrees Centigrade before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 degrees Centigrade (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 degrees Centigrade.

  3. An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging.

    Science.gov (United States)

    Matrone, Giulia; Ramalli, Alessandro; Savoia, Alessandro Stuart; Quaglia, Fabio; Castellazzi, Gloria; Morbini, Patrizia; Piastra, Marco

    2017-09-24

    The possibility to perform an early and repeatable assessment of imaging performance is fundamental in the design and development process of new ultrasound (US) probes. Particularly, a more realistic analysis with application-specific imaging targets can be extremely valuable to assess the expected performance of US probes in their potential clinical field of application. The experimental protocol presented in this work was purposely designed to provide an application-specific assessment procedure for newly-developed US probe prototypes based on Capacitive Micromachined Ultrasonic Transducer (CMUT) technology in relation to brain imaging. The protocol combines the use of a bovine brain fixed in formalin as the imaging target, which ensures both realism and repeatability of the described procedures, and of neuronavigation techniques borrowed from neurosurgery. The US probe is in fact connected to a motion tracking system which acquires position data and enables the superposition of US images to reference Magnetic Resonance (MR) images of the brain. This provides a means for human experts to perform a visual qualitative assessment of the US probe imaging performance and to compare acquisitions made with different probes. Moreover, the protocol relies on the use of a complete and open research and development system for US image acquisition, i.e. the Ultrasound Advanced Open Platform (ULA-OP) scanner. The manuscript describes in detail the instruments and procedures involved in the protocol, in particular for the calibration, image acquisition and registration of US and MR images. The obtained results prove the effectiveness of the overall protocol presented, which is entirely open (within the limits of the instrumentation involved), repeatable, and covers the entire set of acquisition and processing activities for US images.

  4. Experimental Research on Multi-source Solar Energy and Air Source Heat Pump System with Serpentine Tube Energy Storage Exchangers%蓄能型蛇形管太阳能——空气源复合热泵系统实验研究

    Institute of Scientific and Technical Information of China (English)

    陈杨华; 彭辉; 郭文帅; 李钰; 陈非凡

    2013-01-01

    蛇形管蓄能型太阳能——空气源复合热泵系统结合了空气源热泵技术、太阳能利用技术和蓄能技术三者的优点,是一种高效新型的热泵系统.在搭建好实验台后,通过实验分析了该系统在常规空气源热泵供热模式、蓄冷模式、取冷模式、蓄能热泵供热模式、边蓄热边供热模式下的性能特性.实验结果证明蓄能型蛇形管太阳能——空气源复合热泵系统运行高效、安全、稳定可靠.%Multi-source solar energy and air source heat pump system with serpentine tube energy storage exchanges combine the advantages of air source heat pump, solar energy utilization technology and energy storage technology. It is a new high-efficiency heat pump system. After setting up experimental station, the performance characteristics of the system is analysed when conventional air source heat pump heating mode, cold storage mode, cold release mode, heating mode using heat storage, heat storage and heat release using solar heat pump mode is operated. Experimental results show that the system is efficient, safe, stable and reliable.

  5. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  6. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  7. Information Technologies as a Tool for Agricultural Extension and Farmer-to-Farmer Exchange: Mobile-Phone Video Use in Mali and Burkina Faso

    Science.gov (United States)

    Sousa, Fernando; Nicolay, Gian; Home, Robert

    2016-01-01

    Mobile phones are widespread in the rural areas of Mali and Burkina Faso, but their potential as a tool for knowledge transfer by extension services in the region remains largely unexplored. The aim of this contribution is to evaluate the potential of video on mobile phones as a tool for farmer-to-farmer exchange and agricultural extension in…

  8. Power and Thermal Technologies for Air and Space-Scientific Research Program. Delivery Order 0017: Study of Microchip Power Module Materials Using Mini-Channel Heat Exchanger

    Science.gov (United States)

    2009-12-01

    at the mid-point of the channels. In fabricating the heat exchanger, a method of attaching the inlet and exit flow tubes (stainless- steel 625 ) to...and the inlet/exit tubing. The mixing chambers ( Inconel 600) were machined as two pieces which were later welded together to make one chamber. The

  9. University Knowledge Exchange (KE) Framework: Good Practice in Technology Transfer. Report to the UK Higher Education Sector and HEFCE by the McMillan Group

    Science.gov (United States)

    Higher Education Funding Council for England, 2016

    2016-01-01

    As part of its commitment to keeping the UK at the leading edge as a global knowledge-based economy, the last Government asked the Higher Education Funding Council for England (HEFCE) in 2014 to develop a knowledge exchange (KE) performance framework that would secure effective practice in universities on key productive elements in the…

  10. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    Science.gov (United States)

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  11. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  12. New Trends in Magnetic Exchange Bias

    Science.gov (United States)

    Mougin, Alexandra; Mangin, Stéphane; Bobo, Jean-Francois; Loidl, Alois

    2005-05-01

    The study of layered magnetic structures is one of the hottest topics in magnetism due to the growing attraction of applications in magnetic sensors and magnetic storage media, such as random access memory. For almost half a century, new discoveries have driven researchers to re-investigate magnetism in thin film structures. Phenomena such as giant magnetoresistance, tunneling magnetoresistance, exchange bias and interlayer exchange coupling led to new ideas to construct devices, based not only on semiconductors but on a variety of magnetic materials Upon cooling fine cobalt particles in a magnetic field through the Néel temperature of their outer antiferromagnetic oxide layer, Meiklejohn and Bean discovered exchange bias in 1956. The exchange bias effect through which an antiferromagnetic AF layer can cause an adjacent ferromagnetic F layer to develop a preferred direction of magnetization, is widely used in magnetoelectronics technology to pin the magnetization of a device reference layer in a desired direction. However, the origin and effects due to exchange interaction across the interface between antiferromagneic and ferromagnetic layers are still debated after about fifty years of research, due to the extreme difficulty associated with the determination of the magnetic interfacial structure in F/AF bilayers. Indeed, in an AF/F bilayer system, the AF layer acts as “the invisible man” during conventional magnetic measurements and the presence of the exchange coupling is evidenced indirectly through the unusual behavior of the adjacent F layer. Basically, the coercive field of the F layer increases in contact with the AF and, in some cases, its hysteresis loop is shifted by an amount called exchange bias field. Thus, AF/F exchange coupling generates a new source of anisotropy in the F layer. This induced anisotropy strongly depends on basic features such as the magnetocrystalline anisotropy, crystallographic and spin structures, defects, domain patterns etc

  13. Current status of restoration work for obstacle and supper core structure in reactor vessel of experimental fast reactor 'JOYO'. 3. Sodium purification operation after MARICO recovery and UCS exchange work

    International Nuclear Information System (INIS)

    Shimizu, Shunji; Izawa, Osamu; Ishizaki, Kazuhiko; Takeishi, Tsuyoshi; Oowada, Ryohei; Yoshihara, Shizuya; Michino, Masanobu

    2015-01-01

    At fast-breeder reactor 'Joyo', in order to restore the partial inhibition of the rotating plug fuel exchange function due to interference with 'experimental apparatus with instrumentation lines (MARICO-2)', which occurred in May 2007, a recovery work was performed. The replacement work of the upper core structure and the recovery of sample part of the experimental apparatus with instrumentation lines were carried out under conditions where the primary system sodium was drained and the liquid level of reactor vessel was lowered. During the pulling-up work of upper core structure, an increase in nitrogen and hydrogen concentrations in the reactor vessel cover gas (argon) was confirmed through the measurement of the primary system gas chromatograph. This was due to the intrusion of air caused by the opening of the cover gas boundary. Since entrained oxygen reacted with sodium in the reactor, the purity of sodium was reduced. When this sodium is purified according to common method, the sodium with decreased purity defuses through the entire primary cooling system, causing various adverse effects. A safe and reliable procedure to purify sodium while preventing the adverse effects was examined and practiced. (A.O.)

  14. Altered Regulation of type 3 Na+/H+ exchanger, type 1 Na+/HCO3- cotransporter, and Na+,K+-ATPase in the Kidney of Rats with Experimental Rhabdomyolysis

    Science.gov (United States)

    Ma, Seong Kwon; Bae, Eun Hui; Lee, JongUn; Kim, Sun Young; Kim, Sung Zoo; Choi, Ki Chul

    2007-01-01

    Metabolic acidosis was shown to correlate with deterioration of renal function in patients with rhabdomyolysis. The present study was aimed to investigate whether the changes of type 3 Na+/H+ exchanger (NHE3), type 1 Na+/HCO3- cotransporter (NBC1), and Na+,K+-ATPase α1 subunit may play a role in the pathogenesis of metabolic acidosis in glycerol-induced experimental rhabdomyolysis. Male Sprague-Dawley rats were deprived of fluid intake for 24 hours, and then were injected with 50% glycerol in normal saline (10 mL/kg, intramuscularly). At 24 hours after the glycerol injection, rats were sacrificed by decapitation. Control rats were injected with normal saline. The protein expression of NHE3, NBC1 and Na+,K+-ATPase α1 subunit was determined in the cortex of the kidney by immunoblotting and immunohistochemistry. Following the treatment of glycerol, creatinine clearance was significantly decreased, and high anion gap metabolic acidosis developed. In the experimental group, the expression of Na+,K+-ATPase α1 subunit was significantly decreased in the cortex of the kidney. On the contrary, the expression of NHE3 and NBC1 was significantly increased. Immunohistochemical analyses confirmed the immunoblotting data. In conclusion, the coordinate up-regulation of NHE3 and NBC1 may play an adaptive role against the metabolic acidosis in glycerol-induced rhabdomyolysis. PMID:24459502

  15. Innovative heat exchangers

    CERN Document Server

    Scholl, Stephan

    2018-01-01

    This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valua...

  16. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  17. Development of micro-structured heat exchangers; Developpement d'echangeurs de chaleur microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzon, C

    2004-10-01

    This study has been carried out to defend the Technological Diploma of Research, in the aim to develop micro-structured heat exchangers. Realized within the Research Group on the Heat exchangers and Energy (GREThE) of the Atomic Energy Commission (CEA) of Grenoble. The rise of micro-technologies and the optimization of heat exchangers have led to emergence from few years of new structures of fluid paths with scales lower than the millimeter, thus making it possible to produce heat exchangers ultra-compacts. The micro-structured exchangers are heat exchangers whose hydraulic diameters are lower than the millimeter but with external dimensions of several centimeters. The study is based on two patents filed by the CEA and the characterization of these two geometries. A first concept of cross flow type finds applications with Gas/Liquid heat exchanger. A second type, a countercurrent, is more adapted to Liquid/Liquid applications. An approach with simplified analytical models and by numerical simulation was employed for each concept. An experimental study on the Gas/Liquid concept was also carried out. (author)

  18. Development of micro-structured heat exchangers; Developpement d'echangeurs de chaleur microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzon, C.

    2004-10-01

    This study has been carried out to defend the Technological Diploma of Research, in the aim to develop micro-structured heat exchangers. Realized within the Research Group on the Heat exchangers and Energy (GREThE) of the Atomic Energy Commission (CEA) of Grenoble. The rise of micro-technologies and the optimization of heat exchangers have led to emergence from few years of new structures of fluid paths with scales lower than the millimeter, thus making it possible to produce heat exchangers ultra-compacts. The micro-structured exchangers are heat exchangers whose hydraulic diameters are lower than the millimeter but with external dimensions of several centimeters. The study is based on two patents filed by the CEA and the characterization of these two geometries. A first concept of cross flow type finds applications with Gas/Liquid heat exchanger. A second type, a countercurrent, is more adapted to Liquid/Liquid applications. An approach with simplified analytical models and by numerical simulation was employed for each concept. An experimental study on the Gas/Liquid concept was also carried out. (author)

  19. Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1H-benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors.

    Science.gov (United States)

    Cernak, Tim; Gesmundo, Nathan J; Dykstra, Kevin; Yu, Yang; Wu, Zhicai; Shi, Zhi-Cai; Vachal, Petr; Sperbeck, Donald; He, Shuwen; Murphy, Beth Ann; Sonatore, Lisa; Williams, Steven; Madeira, Maria; Verras, Andreas; Reiter, Maud; Lee, Claire Heechoon; Cuff, James; Sherer, Edward C; Kuethe, Jeffrey; Goble, Stephen; Perrotto, Nicholas; Pinto, Shirly; Shen, Dong-Ming; Nargund, Ravi; Balkovec, James; DeVita, Robert J; Dreher, Spencer D

    2017-05-11

    Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging S N Ar reaction. The availability of robust synthetic chemistry conditions discovered in these miniaturized investigations enabled the development of structure-activity relationships that ultimately led to the discovery of soluble, selective, and potent inhibitors of DGAT1.

  20. Differential multiple quantum relaxation caused by chemical exchange outside the fast exchange limit

    International Nuclear Information System (INIS)

    Wang Chunyu; Palmer, Arthur G.

    2002-01-01

    Differential relaxation of multiple quantum coherences is a signature for chemical exchange processes in proteins. Previous analyses of experimental data have used theoretical descriptions applicable only in the limit of fast exchange. Theoretical expressions for differential relaxation rate constants that are accurate outside fast exchange are presented for two-spin-system subject to two-site chemical exchange. The theoretical expressions are validated using experimental results for 15 N- 1 H relaxation in basic pancreatic trypsin inhibitor. The new theoretical expression is valuable for identification and characterization of exchange processes in proteins using differential relaxation of multiple quantum coherences