WorldWideScience

Sample records for experimental stress analyses

  1. Experimental technique of stress analyses by neutron diffraction

    International Nuclear Information System (INIS)

    Sun, Guangai; Chen, Bo; Huang, Chaoqiang

    2009-09-01

    The structures and main components of neutron diffraction stress analyses spectrometer, SALSA, as well as functions and parameters of each components are presented. The technical characteristic and structure parameters of SALSA are described. Based on these aspects, the choice of gauge volume, method of positioning sample, determination of diffraction plane and measurement of zero stress do are discussed. Combined with the practical experiments, the basic experimental measurement and the related settings are introduced, including the adjustments of components, pattern scattering, data recording and checking etc. The above can be an instruction for stress analyses experiments by neutron diffraction and neutron stress spectrometer construction. (authors)

  2. Numerical and Experimental Analyses of Residual Stresses in

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Hattel, Jesper; Lorentzen, Torben

    1999-01-01

    Butt-welding in one pass with SMAW of two 10mm mild steel plates is investigated. In order to predict the residual stress fields associated with the welding procedure, a finite element model in 3D has been developed in ABAQUS. This model applies a sequential thermal and mechanical numerical...... analysis. In order to evaluate and refine the model parameters for the thermal analysis, the numerical results from this analysis are compared with experimental measurements of the temperature. To evaluate the predicted stress/strain fields, the mechanical model has been validated experimentally. This has...... been done using the novel non-destructive technique of neutron diffraction.The thermal model takes into account the moving heat source in the V-shaped weld. The heat source is modelled by filler material being added continuously in connection with a body flux. In order to obtain a more realistic weld...

  3. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  4. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  5. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-10-01

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  6. Stress analyses of flat plates with attached nozzles. Vol. 2: Experimental stress analyses of a flat plate with one nozzle attached

    International Nuclear Information System (INIS)

    Battiste, R.L.; Peters, W.H.; Ranson, W.F.; Swinson, W.F.

    1975-07-01

    Vol. 1 of this report compares experimental results with theoretical stress distributions for a flat plate with one nozzle configuration and for a flat plate with two closely spaced nozzles attached. This volume contains the complete test results for a flat plate with one nozzle attached that was subjected to 1:1 and 1:2 biaxial planar loadings on the plate, to a thrust loading on the nozzle, and to a moment loading on the nozzle. The plate tested was 36 x 36 x 0.375 in., and the attached nozzle had an outer dia of 2.625 in. and a 0.250-in.-thick wall. The nozzle was located in the center of the plate and was considered to be free of weld distortions and irregularities in the junction area. (U.S.)

  7. Experimental evidence for stress enhanced swelling

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1976-01-01

    Experimental evidence is presented which shows that the application of a biaxial stress during irradiation can increase the magnitude of irradiation-induced swelling observed in tubular specimens. It is shown that this increase in swelling is linear below the proportional elastic limit of the material and decreases above this value of stress. In the linear region a relationship is found between total swelling and stress free swelling. The phenomenon of reduced swelling is evaluated on the basis of increased cold work due to pre-irradiation straining. This analysis yields a relationship of dislocation density proportional to stress to the 3.82 power. Additional analyses using dislocation density proportional to sigma 2 (sigma = hoop stress) yield a similar but sharper decrease in swelling after the proportional elastic limit is reached. (Auth.)

  8. Thermal and stress analyses with ANSYS program

    International Nuclear Information System (INIS)

    Kanoo, Iwao; Kawaguchi, Osamu; Asakura, Junichi.

    1975-03-01

    Some analyses of the heat conduction and elastic/inelastic stresses, carried out in Power Reactor and Nuclear Fuel Development Corporation (PNC) in fiscal 1973 using ANSYS (Engineering Analysis System) program, are summarized. In chapter I, the present state of structural analysis programs available for a FBR (fast breeder reactor) in PNC is explained. Chapter II is a brief description of the ANSYS current status. In chapter III are presented 8 examples of the steady-state and transient thermal analyses for fast-reactor plant components, and in chapter IV 5 examples of the inelastic structural analysis. With the advance in the field of finite element method, its applications in design study should extend progressively in the future. The present report, it is hoped, will contribute as references in similar analyses and at the same time help to understand the deformation and strain behaviors of structures. (Mori, K.)

  9. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  10. 46 CFR Appendix B to Part 154 - Stress Analyses Definitions

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Stress Analyses Definitions B Appendix B to Part 154...—Stress Analyses Definitions The following are the standard definitions of stresses for the analysis of an independent tank type B: Normal stress means the component of stress normal to the plane of reference...

  11. Photoelastic analyses of stresses in toroidal magnetic field coils

    International Nuclear Information System (INIS)

    Pih, H.

    1977-02-01

    Several two-dimensional photoelastic stress analyses were made on models of circular and oval toroidal magnetic field coils for fusion reactors. The circumferential variation of each coil's in-plane magnetic force was simulated by applying different pressures to 16 segmented regions of the inner surface of the models. One special loading fixture was used for the model of each shape and size. Birefringence and isoclinic angles were measured in a transmission polariscope at selected points on the loaded model. Boundary stresses in the cases of known boundary conditions were determined directly from the isochromatics. Separate principal stresses were calculated using the combination of photoelastic information and isopachic data obtained by the electrical analogy method from the solution of Laplace's equation. Comparisons were made between experimental results and those computed using the finite element method. The stress distribution between theoretical and experimental agrees very well, although the finite element method yielded slightly higher stresses than the photoelastic method; further work is needed to resolve this difference. In this investigation several variations of coil geometry and methods of support were evaluated. Based on experimental results, optimum structural designs of toroidal field coils were recommended

  12. Theoretical and experimental analysis of cyclic stresses in gas turbine rotor blades, taking thermal fatigue into account (low cycle fatigue). Theoretische und experimentelle Analyse der zyklischen Beanspruchung von Gasturbinenlaufschaufeln unter besonderer Beruecksichtigung der thermischen Ermuedung (low cycle fatigue)

    Energy Technology Data Exchange (ETDEWEB)

    Hoelscher, R.

    1982-08-01

    The author is concerned with determining the life of highly stressed hot components of gas turbines. The main point of the experimental and theoretical investigations is the analysis of the cyclic stresses of an uncooled turbine rotor blade of an aircraft gas turbine ATAR 101. Apart from simulating cyclic load changes of turbine blades on a model test rig, models of service life predictions are prepared and tested. (HAG).

  13. Validating experimental and theoretical Langmuir probe analyses

    Science.gov (United States)

    Pilling, L. S.; Carnegie, D. A.

    2007-08-01

    Analysis of Langmuir probe characteristics contains a paradox in that it is unknown a priori which theory is applicable before it is applied. Often theories are assumed to be correct when certain criteria are met although they may not validate the approach used. We have analysed the Langmuir probe data from cylindrical double and single probes acquired from a dc discharge plasma over a wide variety of conditions. This discharge contains a dual-temperature distribution and hence fitting a theoretically generated curve is impractical. To determine the densities, an examination of the current theories was necessary. For the conditions where the probe radius is the same order of magnitude as the Debye length, the gradient expected for orbital-motion limited (OML) is approximately the same as the radial-motion gradients. An analysis of the 'gradients' from the radial-motion theory was able to resolve the differences from the OML gradient value of two. The method was also able to determine whether radial or OML theories applied without knowledge of the electron temperature, or separation of the ion and electron contributions. Only the value of the space potential is necessary to determine the applicable theory.

  14. Advanced toroidal facility vaccuum vessel stress analyses

    International Nuclear Information System (INIS)

    Hammonds, C.J.; Mayhall, J.A.

    1987-01-01

    The complex geometry of the Advance Toroidal Facility (ATF) vacuum vessel required special analysis techniques in investigating the structural behavior of the design. The response of a large-scale finite element model was found for transportation and operational loading. Several computer codes and systems, including the National Magnetic Fusion Energy Computer Center Cray machines, were implemented in accomplishing these analyses. The work combined complex methods that taxed the limits of both the codes and the computer systems involved. Using MSC/NASTRAN cyclic-symmetry solutions permitted using only 1/12 of the vessel geometry to mathematically analyze the entire vessel. This allowed the greater detail and accuracy demanded by the complex geometry of the vessel. Critical buckling-pressure analyses were performed with the same model. The development, results, and problems encountered in performing these analyses are described. 5 refs., 3 figs

  15. Fundamental topics for thermo-elastic stress analyses

    International Nuclear Information System (INIS)

    Biermann, M.

    1989-01-01

    This paper delivers a consistent collection of theoretical fundamentals needed to perform rather sound experimental stress analyses on thermo-elastic materials. An exposition of important concepts of symmetry and so-called peer groups, yielding the very base for a rational description of materials, goes ahead and is followed by an introduction to the constitutive theory of simple materials. Neat distinction is made between stress contributions determined by deformational and thermal impressions, on the one part, and stress constraints not accessible to strain gauging, on the other part. The mathematical formalism required for establishing constitutive equations is coherently developed from scratch and aided, albeit not subrogated, by intuition. The main intention goes to turning some of the recent advances in the nonlinear field theories of thermomechanics to practical account. A full success therein, obviously, results under the restriction to thermo-elasticity. In adverting to more particular subjects, the elementary static effects of nonlinear isotropic elasticity are pointed out. Due allowance is made for thermal effects likely to occur in heat conducting materials also beyond the isothermal or isentropic limit cases. Linearization of the constitutive equations for anisotropic thermo-elastic materials is then shown to entail the formulas of the classical theory. (orig./MM) [de

  16. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  17. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    of hydrostatic stress (σ1 = σ2 = σ3), differential stress (σ1 > σ2 = σ3), and the unique true triaxial stress (σ1 > σ2 > σ3). Velocity surveys can be acquired along all three axes, and therefore the effects of σ1,σ2,σ3 on the velocity-stress curve can be obtained. These geophysical cells are being used to reproduce the borehole P- and S-wave velocities by altering the differential stress, allowing for the unique position of determining the stress tensor. Currently, results have been obtained for differential stress (σ1 > σ2 = σ3), and true triaxial experiments will determine if σ3 is the missing factor to reproducing the borehole velocities. This project is the first to combine time - lapse borehole logging data and experimental laboratory data to infer a complete stress tensor.

  18. Masonry structures built with fictile tubules: Experimental and numerical analyses

    Science.gov (United States)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  19. Experimental verification of creep analyses for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Abe, H.; Ohnuma, H.

    1977-01-01

    The authors proposed a new method of creep analysis based on the theory of strain hardening, which assumes that accumulated creep at a given time influences the creep after that. This method was applied to calculate step-by-step the behaviors of uniaxial creep of concrete under variable temperatures and stresses, creep in reinforced concrete specimens and the behaviors of prestressed concrete beams under themal gradients. The experimental and calculated results agreed fairly well. Further, this method was incorporated in the finite element creep analysis for the prestressed concrete hollow cylinder and the full scale model. The calculated strain changes with time pursued closely those obtained by experiments. The above led to the conclusion that from the viewpoint of both accuracy and computation time the strain hardening method proposed by the authors may be judged advantageous for practical usages

  20. Stress analyses of pump gears produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Cetinel, Hakan [Celal Bayar Univ., Mechanical Engineering Dept. (Turkey); Yilmaz, Burak

    2013-06-01

    In this study, trochoidal type (gerotor) hydraulic pump gears were produced by powder metallurgy (P/M) technique. Several gears with different mechanical properties have been obtained by changing process variables. The tooth contact stresses were calculated analytically under particular operation conditions of the hydraulic pump. The 3D models have been obtained from real gears by using Capability Maturity Model (CMM, 3D scanning) operation and SOLIDWORKS software. Stress analyses were conducted on these 3D models by using ANSYS WORKBENCH software. It was found that the density increases by the increase of sintering duration and mechanical properties were positively affected by the increase of density. Maximum deformation takes place in the region of the outer gear where failure generally occurs with the minimum cross-section area.

  1. Stress analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1990-02-01

    The International Thermonuclear Experimental Reactor (ITER) is intended as an experimental thermonuclear tokamak reactor for testing the basic physics, performance and technologies essential to future fusion reactors. The ITER design will be based on extensive new design work, supported by new physical and technological results, and on the great body of experience built up over several years from previous national and international reactor studies. Conversely, the ITER design process should provide the fusion community with valuable insights into what key areas need further development or clarification as we move forward towards practical fusion power. As part of the design process of the ITER toroidal field coils the mechanical behaviour of the magnetic system under fault conditions has to be analysed in more detail. This paper describes the work carried out to create a detailed finite element model of two toroidal field coils as well as some results of linear elastic analyses with fault conditions. The analyses have been performed with the finite element code ANSYS. (author). 5 refs.; 8 figs.; 2 tabs

  2. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    International Nuclear Information System (INIS)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan; Park, Jozeph; Ahn, Byung Du; Kim, Hyun-Suk

    2015-01-01

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping

  3. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Park, Jozeph [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Ahn, Byung Du [School of Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Hyun-Suk, E-mail: khs3297@cnu.ac.kr, E-mail: drlife@kookmin.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-03-23

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  4. Clinical experimental stress studies: methods and assessment.

    Science.gov (United States)

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-01-01

    Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Stress induction methods are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these methods are also important for the development of novel pharmacological agents for stress management. The well-described methods to induce stress in humans include the cold pressor test, Trier Social Stress Test, Montreal Imaging Stress Task, Maastricht Acute Stress Test, CO2 challenge test, Stroop test, Paced Auditory Serial Addition Task, noise stress, and Mannheim Multicomponent Stress Test. Stress assessment in humans is done by measuring biochemical markers such as cortisol, cortisol awakening response, dexamethasone suppression test, salivary α-amylase, plasma/urinary norepinephrine, norepinephrine spillover rate, and interleukins. Physiological and behavioral changes such as galvanic skin response, heart rate variability, pupil size, and muscle and/or skin sympathetic nerve activity (microneurography) and cardiovascular parameters such as heart rate, blood pressure, and self-reported anxiety are also monitored to assess stress response. This present review describes these commonly employed methods to induce stress in humans along with stress assessment methods.

  5. Mechanical compatibility and stress analyses in composite materials

    International Nuclear Information System (INIS)

    Schimmoeller, H.; Ruge, J.

    1976-01-01

    This paper gives a short description of the problem of mechanical interactions and mechanical compatibility in composite bodies. The formation of stress-strain states, caused by the mechanical compatibility by bonding of the interfaces, is discussed. The difference between the continuous and discontinuous type of material transition in the interface is described. Flat laminated materials are at first considered. For this type of composite bodies thermal stresses and thermal residual stresses are elastically-plastically calculated. (orig.) [de

  6. Experimental analyses of dynamical systems involving shape memory alloys

    DEFF Research Database (Denmark)

    Enemark, Søren; Savi, Marcelo A.; Santos, Ilmar F.

    2015-01-01

    The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA ...

  7. Review of accident analyses of RB experimental reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2003-01-01

    The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VINCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62; yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin) consisting of 2% enriched uranium metal and 80% enriched U0 2 , dispersed in aluminum matrix, have been available since 1962 and 1976, respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements, as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINCA Institute, an independent regulator)' body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety' Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed) to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given. (author)

  8. Review of accident analyses of RB experimental reactor

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2003-01-01

    Full Text Available The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VTNCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62 yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin consisting of 2% enriched uranium metal and 80% enriched UO2 dispersed in aluminum matrix, have been available since 1962 and 1976 respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINĆA Institute, an independent regulatory body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given.

  9. Analytical and Experimental Study of Residual Stresses in CFRP

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available Fiber Bragg Grating sensors (FBGs have been utilized in various engineering and photoelectric fields because of their good environment tolerance. In this research, residual stresses of carbon fiber reinforced polymer composites (CFRP were studied using both experimental and analytical approach. The FBGs were embedded inside middle layers of CFRP to study the formation of residual stress during curing process. Finite element analysis was performed using ABAQUS software to simulate the CFRP curing process. Both experimental and simulation results showed that the residual stress appeared during cooling process and the residual stresses could be released when the CFRP was machined to a different shape.

  10. Experimental and numerical analyses of different extended surfaces

    International Nuclear Information System (INIS)

    Diani, A; Mancin, S; Zilio, C; Rossetto, L

    2012-01-01

    Air is a cheap and safe fluid, widely used in electronic, aerospace and air conditioning applications. Because of its poor heat transfer properties, it always flows through extended surfaces, such as finned surfaces, to enhance the convective heat transfer. In this paper, experimental results are reviewed and numerical studies during air forced convection through extended surfaces are presented. The thermal and hydraulic behaviours of a reference trapezoidal finned surface, experimentally evaluated by present authors in an open-circuit wind tunnel, has been compared with numerical simulations carried out by using the commercial CFD software COMSOL Multiphysics. Once the model has been validated, numerical simulations have been extended to other rectangular finned configurations, in order to study the effects of the fin thickness, fin pitch and fin height on the thermo-hydraulic behaviour of the extended surfaces. Moreover, several pin fin surfaces have been simulated in the same range of operating conditions previously analyzed. Numerical results about heat transfer and pressure drop, for both plain finned and pin fin surfaces, have been compared with empirical correlations from the open literature, and more accurate equations have been developed, proposed, and validated.

  11. Investigation of mixed mode - I/II fracture problems - Part 1: computational and experimental analyses

    Directory of Open Access Journals (Sweden)

    O. Demir

    2016-01-01

    Full Text Available In this study, to investigate and understand the nature of fracture behavior properly under in-plane mixed mode (Mode-I/II loading, three-dimensional fracture analyses and experiments of compact tension shear (CTS specimen are performed under different mixed mode loading conditions. Al 7075-T651 aluminum machined from rolled plates in the L-T rolling direction (crack plane is perpendicular to the rolling direction is used in this study. Results from finite element analyses and fracture loads, crack deflection angles obtained from the experiments are presented. To simulate the real conditions in the experiments, contacts are defined between the contact surfaces of the loading devices, specimen and loading pins. Modeling, meshing and the solution of the problem involving the whole assembly, i.e., loading devices, pins and the specimen, with contact mechanics are performed using ANSYSTM. Then, CTS specimen is analyzed separately using a submodeling approach, in which three-dimensional enriched finite elements are used in FRAC3D solver to calculate the resulting stress intensity factors along the crack front. Having performed the detailed computational and experimental studies on the CTS specimen, a new specimen type together with its loading device is also proposed that has smaller dimensions compared to the regular CTS specimen. Experimental results for the new specimen are also presented.

  12. Experimental and numerical analyses of magnesium alloy hot workability

    Directory of Open Access Journals (Sweden)

    F. Abbassi

    2016-12-01

    Full Text Available Due to their hexagonal crystal structure, magnesium alloys have relatively low workability at room temperature. In this study, the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing, numerical modeling and microstructural analyses. Hot deformation tests are performed at temperatures of 250 °C to 400 °C under strain rates of 0.01 to 1.0 s−1. Transmission electron microscopy is used to reveal the presence of dynamic recrystallization (DRX, dynamic recovery (DRY, cracks and shear bands. To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy, the authors use Johnson–Cook damage model in a 3D finite element simulation. The optimal hot workability of magnesium alloy is found at a temperature (T of 400 °C and strain rate (ε˙ of 0.01 s−1. Stability is found at a lower strain rate, and instability is found at a higher strain rate.

  13. Oxidative stress markers at birth: Analyses of a neonatal population.

    Science.gov (United States)

    Giuffrè, Mario; Rizzo, Manfredi; Scaturro, Giusy; Pitruzzella, Alessandro; Marino Gammazza, Antonella; Cappello, Francesco; Corsello, Giovanni; Li Volti, Giovanni

    2015-01-01

    In order to further understand neonatal stress and, thus, control it efficaciously, there is a need for more information on the manifestations of stress at the molecular level in the newborn, with particular regard to oxidants, and anti-oxidant and anti-stress mechanisms, including mitochondrial heat shock protein-chaperones such as Hsp60. We investigated patterns of anti-oxidants, biomarkers of oxidative stress, and Hsp60 levels in sera from newborns and found significant associations between glutathione (GSH) levels and gestational age, delivery modality, and lipid hydroperoxydes (LOOH) level. LOOH levels and spontaneous (vaginal) delivery were independently associated with increased GSH levels when these were above the median. Hsp60 and LOOH levels were positively correlated whereas Hsp60 and GSH levels were inversely correlated in spontaneously delivered newborns; in contrast, Hsp60 and GSH levels were positively correlated in newborns delivered by cesarea. Our results point to new directions in the search for definite patterns of GSH, LOOH, and Hsp60 in the newborn's serum that might have functional and diagnostic significance and that could help in the monitoring of newborn health during and after delivery. In addition, the data provide a starting basis for investigating the precise roles and interplay of GSH and Hsp60 in the maintenance of an optimal redox balance at birth to cope with the stress inherent to delivery, and also for investigating the predictive value of any given pattern of GSH, LOOH, and Hsp60 at birth with regard to health status and risk of disease in adult life. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. An experimental study on the normal stress of magnetorheological fluids

    International Nuclear Information System (INIS)

    Jiang, Jile; Tian, Yu; Ren, Dongxue; Meng, Yonggang

    2011-01-01

    The dependence of the normal stress on the shear rate and magnetic field strength in the shear flow of magnetorheological (MR) fluids has been studied experimentally. An obvious normal stress could be observed when the applied magnetic field was higher than a critical value. The normal stress increases considerably with increase of the shear rate and magnetic field, and decreases suddenly and significantly upon the onset of shear thickening in MR fluids. The ratio of shear stress to normal stress, an analogue of the friction coefficient, increases with increase of the shear rate, but decreases with increase of the applied magnetic field. Along with the shear stress, the normal stress in MR fluids could provide a more comprehensive understanding of the MR effect, and the evolution of the particle structure in shear flow, and may have important implications for preparing high performance magnetostrictive elastomers with high force output along the magnetic field direction

  15. Experimental Research on Boundary Shear Stress in Typical Meandering Channel

    Science.gov (United States)

    Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua

    2018-06-01

    A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.

  16. A NURBS approximation of experimental stress-strain curves

    International Nuclear Information System (INIS)

    Fedorov, Timofey V.; Morrev, Pavel G.

    2016-01-01

    A compact universal representation of monotonic experimental stress-strain curves of metals and alloys is proposed. It is based on the nonuniform rational Bezier splines (NURBS) of second order and may be used in a computer library of materials. Only six parameters per curve are needed; this is equivalent to a specification of only three points in a stress-strain plane. NURBS-functions of higher order prove to be surplus. Explicit expressions for both yield stress and hardening modulus are given. Two types of curves are considered: at a finite interval of strain and at infinite one. A broad class of metals and alloys of various chemical compositions subjected to various types of preliminary thermo-mechanical working is selected from a comprehensive data base in order to test the methodology proposed. The results demonstrate excellent correspondence to the experimental data. Keywords: work hardening, stress-strain curve, spline approximation, nonuniform rational B-spline, NURBS.

  17. Experimental investigation of system effects in stressed-skin elements

    DEFF Research Database (Denmark)

    Dela Stang, B.; Isaksson, T.; Hansson, M.

    What kind of behaviour can be expected from stressed-skin elements at failure? To answer this question was a primary objective of the experimental investigation presented in this report. Systems of 3 roof units, each made of 5 parallel beams, have been tested for load-carrying capacity and behavi......What kind of behaviour can be expected from stressed-skin elements at failure? To answer this question was a primary objective of the experimental investigation presented in this report. Systems of 3 roof units, each made of 5 parallel beams, have been tested for load-carrying capacity...

  18. Static and fatigue experimental tests on a full scale fuselage panel and FEM analyses

    Directory of Open Access Journals (Sweden)

    Raffaele Sepe

    2016-02-01

    Full Text Available A fatigue test on a full scale panel with complex loading condition and geometry configuration has been carried out using a triaxial test machine. The demonstrator is made up of two skins which are linked by a transversal butt-joint, parallel to the stringer direction. A fatigue load was applied in the direction normal to the longitudinal joint, while a constant load was applied in the longitudinal joint direction. The test panel was instrumented with strain gages and previously quasi-static tests were conducted to ensure a proper load transferring to the panel. In order to support the tests, geometric nonlinear shell finite element analyses were conducted to predict strain and stress distributions. The demonstrator broke up after about 177000 cycles. Subsequently, a finite element analysis (FEA was carried out in order to correlate failure events; due to the biaxial nature of the fatigue loads, Sines criterion was used. The analysis was performed taking into account the different materials by which the panel is composed. The numerical results show a good correlation with experimental data, successfully predicting failure locations on the panel.

  19. Analyses of edge effects on residual stresses in film strip/substrate systems

    International Nuclear Information System (INIS)

    Hsueh, Chun-Hway

    2000-01-01

    The residual stress distribution in a thin-film strip overlaid on a substrate is influenced by the edges of the strip. An analytical model is developed to derive a closed-form solution for the stress distribution along the film width. Because the film is much thinner than the substrate, the stress variation through the film thickness is ignored; however, the stress variation through the substrate thickness is considered in the analysis. Compared to the existing analytical models, the present model is more rigorous and the analytical results agree better with both finite element results and experimental measurements. (c) 2000 American Institute of Physics

  20. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    Science.gov (United States)

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  1. Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

    Directory of Open Access Journals (Sweden)

    Chang-Gi Han

    2016-12-01

    Full Text Available Austenitic stainless steels (ASSs are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

  2. Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area

    International Nuclear Information System (INIS)

    Calderoni, B.; Cordasco, E. A.; Lenza, P.; Guerriero, L.

    2008-01-01

    Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too

  3. Stress dependence of microstructures in experimentally deformed calcite

    Science.gov (United States)

    Platt, John P.; De Bresser, J. H. P.

    2017-12-01

    Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Lρ), and the maximum scale length for surface-energy driven grain-boundary migration (Lγ). Taken together with previously published data Dr defines a paleopiezometer over the range 15-291 MPa and temperature over the range 500-1000 °C, with a stress exponent of -1.09 (CI -1.27 to -0.95), showing no detectable dependence on temperature. Sg and Dr measured in the same samples are closely similar in size, suggesting that the new grains did not grow significantly after nucleation. Lρ and Lγ measured on each sample define a relationship to stress with an exponent of approximately -1.6, which helps define the boundary between a region of dominant strain-energy-driven grain-boundary migration at high stress, from a region of dominant surface-energy-driven grain-boundary migration at low stress.

  4. Stress intensity factor analyses of surface cracks in three-dimensional structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Shibata, Katsuyuki; Watanabe, Takayuki; Tagata, Kazunori.

    1983-11-01

    The stress intensity factor analyses of surface cracks in various three-dimensional structures were performed using the finite element computer program EPAS-J1. The results obtained by EPAS-J1 were compared with other finite element solutions or results obtained by the simplified estimation methods. Among the simplified estimation methods, the equations proposed by Newman and Raju give the distributions of the stress intensity factor along a crack front, which were compared with the result obtained by EPAS-J1. It was confirmed by comparing the results that EPAS-J1 gives reasonable stress intensity factors of surface cracks in three-dimensional structures. (author)

  5. Panel manipulation in social stress testing: The Bath Experimental Stress Test for Children (BEST-C).

    Science.gov (United States)

    Cheetham, Tara J; Turner-Cobb, Julie M

    2016-01-01

    Whilst acute stress paradigms in adults make use of adult panel members, similar paradigms modified for child participants have not manipulated the panel. Most work has utilised an audience of adult confederates, regardless of the age of the population being tested. The aim of this study was to trial a social stress test for children that provided a meaningful environment using age-matched child peers as panel actors. Thirty-three participants (7-11 years) underwent the Bath Experimental Stress Test for Children (BEST-C). Based on the Trier Social Stress Test (TSST), it comprises a shortened six-minute public speaking task and four-minute maths challenge. It differs from previous stress tests by using age-matched children on the panel, pre-recorded and presented as a live feed, and includes an expanded manipulation check of subjective experience. Salivary cortisol was assessed at four time points, pre-post stress testing; life events, daily hassles and coping strategies were measured through questionnaires. A simple numerical coding scheme was applied to post-test interview data. The BEST-C generated a typical stress and adaptation response in salivary cortisol (p=.032). Age and gender differences were observed during recovery. Cortisol responses mapped directly onto three distinct subjective response patterns: (i) expected response and recovery; (ii) expected response, no recovery; (iii) no response. The BEST-C, utilising child confederates of participant target age is a meaningful social stress test for children. This is the first social stress test developed specifically for children that manipulates panel characteristics by using child confederates and a pre-recorded sham panel. Greater cortisol responses to the test were also found to match subjective verbal accounts of the experience. It offers a meaningful acute stress paradigm with potential applications to other child and adolescent age groups. Furthermore, it leads the way in the use of panel manipulation

  6. Family structure and posttraumatic stress reactions: a longitudinal study using multilevel analyses

    Science.gov (United States)

    2011-01-01

    Background There is limited research on the relevance of family structures to the development and maintenance of posttraumatic stress following disasters. We longitudinally studied the effects of marital and parental statuses on posttraumatic stress reactions after the 2004 Southeast Asian tsunami and whether persons in the same households had more shared stress reactions than others. Method The study included a tourist population of 641 Norwegian adult citizens, many of them from families with children. We measured posttraumatic stress symptoms with the Impact of Event Scale-Revised at 6 months and 2 years post-disaster. Analyses included multilevel methods with mixed effects models. Results Results showed that neither marital nor parental status was significantly related to posttraumatic stress. At both assessments, adults living in the same household reported levels of posttraumatic stress that were more similar to one another than adults who were not living together. Between households, disaster experiences were closely related to the variance in posttraumatic stress symptom levels at both assessments. Within households, however, disaster experiences were less related to the variance in symptom level at 2 years than at 6 months. Conclusions These results indicate that adult household members may influence one another's posttraumatic stress reactions as well as their interpretations of the disaster experiences over time. Our findings suggest that multilevel methods may provide important information about family processes after disasters. PMID:22171549

  7. Family structure and posttraumatic stress reactions: a longitudinal study using multilevel analyses

    Directory of Open Access Journals (Sweden)

    Nygaard Egil

    2011-12-01

    Full Text Available Abstract Background There is limited research on the relevance of family structures to the development and maintenance of posttraumatic stress following disasters. We longitudinally studied the effects of marital and parental statuses on posttraumatic stress reactions after the 2004 Southeast Asian tsunami and whether persons in the same households had more shared stress reactions than others. Method The study included a tourist population of 641 Norwegian adult citizens, many of them from families with children. We measured posttraumatic stress symptoms with the Impact of Event Scale-Revised at 6 months and 2 years post-disaster. Analyses included multilevel methods with mixed effects models. Results Results showed that neither marital nor parental status was significantly related to posttraumatic stress. At both assessments, adults living in the same household reported levels of posttraumatic stress that were more similar to one another than adults who were not living together. Between households, disaster experiences were closely related to the variance in posttraumatic stress symptom levels at both assessments. Within households, however, disaster experiences were less related to the variance in symptom level at 2 years than at 6 months. Conclusions These results indicate that adult household members may influence one another's posttraumatic stress reactions as well as their interpretations of the disaster experiences over time. Our findings suggest that multilevel methods may provide important information about family processes after disasters.

  8. Oxidative stress in immature brain following experimentally-induced seizures

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava

    2013-01-01

    Roč. 62, Suppl.1 (2013), S39-S48 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA309/08/0292; GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GAP302/10/0971; GA MŠk(CZ) LL1204 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : immature rats * experimentally-induced seizures * oxidative stress * mitochondrial dysfunction * antioxidant defense Subject RIV: FH - Neurology Impact factor: 1.487, year: 2013

  9. Experimental stress analysis for determination of residual stresses and integrity monitoring of components and systems

    International Nuclear Information System (INIS)

    1993-01-01

    For an analysis of the safety-related significance of residual stresses, mechanical, magnetic as well as ultrasonic and diffraction methods can be applied as testing methods. The results of an interlaboratory test concerning the experimental determination of residual stresses in a railway track are included. Further, questions are analyzed concerning the in-service inspections of components and systems with regard to their operational safety and life. Measurement methods are explained by examples from power plant engineering, nuclear power plant engineering, construction and traffic engineering as well as aeronautics. (DG) [de

  10. Oxidative stress in rats experimentally infected by Sporothrix schenckii.

    Science.gov (United States)

    Castro, Verônica S P; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; Graça, Dominguita L; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Stefani, Lenita M; Azevedo, Maria I; Baldissera, Matheus D; Andrade, Cinthia M

    2017-06-01

    The aim of this study was to evaluate whether oxidative stress occurs in rats experimentally infected by Sporothrix schenckii, and its possible effect on disease pathogenesis. Thirty rats were divided into two groups: the group A (uninfected, n = 18) and the group B (infected by S. schenckii, n=21). Blood samples were collected on days 15, 30 and 40 post-infection (PI). At each sampling time, six rats of the group A, and seven of the group B were bled. TBARS (thiobarbituric acid reactive substances) levels in serum samples were measured to evaluate lipid peroxidation. In addition, catalase (CAT) and superoxide dismutase (SOD) activities, known as biomarkers of antioxidants levels, were verified in whole blood. Seric pro-inflammatory cytokine levels were measured (IFN-γ, TNF-α, and IL-6), which showed that these inflammatory mediators were at higher levels in the infected rats (P sporotrichosis showed significantly higher (p sporotrichosis is a likely mechanism for redox imbalance, and consequently cause the oxidative stress in experimentally infected rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Abanades, Alberto; Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto; Bornos, Victor; Kiyavitskaya, Anna; Carta, Mario; Janczyszyn, Jerzy; Maiorino, Jose; Pyeon, Cheolho; Stanculescu, Alexander; Titarenko, Yury; Westmeier, Wolfram

    2008-01-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  12. Proposed Testing to Assess the Accuracy of Glass-To-Metal Seal Stress Analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Robert S.; Emery, John M; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.; Gibson, Cory S; Bencoe, Denise N.

    2014-09-01

    The material characterization tests conducted on 304L VAR stainless steel and Schott 8061 glass have provided higher fidelity data for calibration of material models used in Glass - T o - Metal (GTM) seal analyses. Specifically, a Thermo - Multi - Linear Elastic Plastic ( thermo - MLEP) material model has be en defined for S S304L and the Simplified Potential Energy Clock nonlinear visc oelastic model has been calibrated for the S8061 glass. To assess the accuracy of finite element stress analyses of GTM seals, a suite of tests are proposed to provide data for comparison to mo del predictions.

  13. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    International Nuclear Information System (INIS)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-01-01

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state

  14. Working Together: Contributions of Corpus Analyses and Experimental Psycholinguistics to Understanding Conversation.

    Science.gov (United States)

    Meyer, Antje S; Alday, Phillip M; Decuyper, Caitlin; Knudsen, Birgit

    2018-01-01

    As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.

  15. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses.

    Directory of Open Access Journals (Sweden)

    Rafael Fonseca Benevenuto

    Full Text Available Some genetically modified (GM plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.

  16. Experimental Field Tests and Finite Element Analyses for Rock Cracking Using the Expansion of Vermiculite Materials

    Directory of Open Access Journals (Sweden)

    Chi-hyung Ahn

    2016-01-01

    Full Text Available In the previous research, laboratory tests were performed in order to measure the expansion of vermiculite upon heating and to convert it into expansion pressure. Based on these test results, this study mainly focuses on experimental field tests conducted to verify that expansion pressure obtained by heating vermiculite materials is enough to break massive and hard granite rock with an intention to excavate the tunnel. Hexahedral granite specimens with a circular hole perforated in the center were constructed for the experimental tests. The circular holes were filled with vermiculite plus thermal conduction and then heated using the cartridge heater. As a result, all of hexahedral granite specimens had cracks in the surface after 700-second thermal heating and were finally spilt into two pieces completely. The specimen of larger size only requires more heating time and expansion pressure. The material properties of granite rocks, which were obtained from the experimental tests, were utilized to produce finite element models used for numerical analyses. The analysis results show good agreement with the experimental results in terms of initial cracking, propagation direction, and expansion pressure.

  17. Integral analyses of fission product retention at mitigated thermally-induced SGTR using ARTIST experimental data

    International Nuclear Information System (INIS)

    Rýdl, Adolf; Lind, Terttaliisa; Birchley, Jonathan

    2016-01-01

    Highlights: • Source term analyses in a PWR of mitigated thermally-induced SGTR scenario performed. • Experimental ARTIST program results on aerosol scrubbing efficiency used in analyses. • Results demonstrate enhanced aerosol retention in a flooded steam generator. • High aerosol retention cannot be predicted by current theoretical scrubbing models. - Abstract: Integral source-term analyses are performed using MELCOR for a PWR Station Blackout (SBO) sequence leading to induced steam generator tube rupture (SGTR). In the absence of any mitigation measures, such a sequence can result in a containment bypass where the radioactive materials can be released directly to the environment. In some SGTR scenarios flooding of the faulted SG secondary side with water can mitigate the accident escalation and also the release of aerosol-borne and volatile radioactive materials. Data on the efficiency of aerosol scrubbing in an SG tube bundle were obtained in the international ARTIST project. In this paper ARTIST data are used directly with parametric MELCOR analyses of a mitigated SGTR sequence to provide more realistic estimates of the releases to environment in such a type of scenario or similar. Comparison is made with predictions using the default scrubbing model in MELCOR, as a representative of the aerosol scrubbing models in current integral codes. Specifically, simulations are performed for an unmitigated sequence and 2 cases where the SG secondary was refilled at different times after the tube rupture. The results, reflecting the experimental observations from ARTIST, demonstrate enhanced aerosol retention in the highly turbulent two-phase flow conditions caused by the complex geometry of the SG secondary side. This effect is not captured by any of the models currently available. The underlying physics remains only partly understood, indicating need for further studies to support a more mechanistic treatment of the retention process.

  18. Additional Stress And Fracture Mechanics Analyses Of Pressurized Water Reactor Pressure Vessel Nozzles

    International Nuclear Information System (INIS)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  19. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    Science.gov (United States)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  20. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

    NARCIS (Netherlands)

    Lutgendorff, Femke; Trulsson, Lena M.; van Minnen, L. Paul; Rijkers, Ger T.; Timmerman, Harro M.; Franzen, Lennart E.; Gooszen, Hein G.; Akkermans, Louis M. A.; Soderholm, Johan D.; Sandstrom, Per A.

    2008-01-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress,

  1. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Ariman, T.; Pierce, R.D.; Pedersen, D.R.

    1977-01-01

    A description of a meltdown cup to be used in the SLSF in-reactor experiments is presented. Thermal analyses have shown that the cup is capable of containing and cooling the postulated quantities of molten fuel and steel. The basic loadings for stress analyses were defined and failure modes were determined. It was shown that both the maximum bending stress and maximum tangential stress in the Inconel vessel are below the material yield stress. Additionally, the axial stress in the Inconel vessel was found to be negligible. The shear stress in the wire-formed retaining ring is much below the maximum shear stress. Therefore, the meltdown cup is capable of performing its required function

  2. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  3. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    International Nuclear Information System (INIS)

    Chiodo, Mario S.G.; Ruggieri, Claudio

    2009-01-01

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects

  4. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chiodo, Mario S.G. [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil); Ruggieri, Claudio [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil)], E-mail: claudio.ruggieri@poli.usp.br

    2009-02-15

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects.

  5. The secondary stress analyses in the fuel pin cladding due to the swelling gradient across the wall thickness

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2002-01-01

    Irradiation deformation analyses of FBR fuel cladding were made by using the finite element method. In these analyses the history of the stress occurred in the cladding was evaluated paying attention to the secondary stress induced by the swelling difference across the wall thickness. It was revealed that the difference of the swelling incubation dose in the direction of the thickness and the irradiation creep deformation play an important role in the history of the secondary stress. The effect of the stress-enhanced swelling was also analyzed in this study

  6. Medical Standards for Experimental Human Use in Acceleration Stress Research

    Science.gov (United States)

    1983-01-01

    or re- teroposterior and lateral X-rays of the cervical , thoracic, sources, we consider a positive treadmill test to be dis- and lumbar spine. These...Gz stress. The requirement for a complete cervical , thoracic and dividuals who developed significant stress dysrhythmias lumbar spine X-ray series...hematoma h. Hernia Ill. Cardiac Stress: a. Dywrhythmla (Tachyarrhythmias and Bradyarrhythmim) b. Heart blocks c. Stress caadlomyopmt U244 Awono. spme

  7. The role of metrical information in apraxia of speech. Perceptual and acoustic analyses of word stress.

    Science.gov (United States)

    Aichert, Ingrid; Späth, Mona; Ziegler, Wolfram

    2016-02-01

    Several factors are known to influence speech accuracy in patients with apraxia of speech (AOS), e.g., syllable structure or word length. However, the impact of word stress has largely been neglected so far. More generally, the role of prosodic information at the phonetic encoding stage of speech production often remains unconsidered in models of speech production. This study aimed to investigate the influence of word stress on error production in AOS. Two-syllabic words with stress on the first (trochees) vs. the second syllable (iambs) were compared in 14 patients with AOS, three of them exhibiting pure AOS, and in a control group of six normal speakers. The patients produced significantly more errors on iambic than on trochaic words. A most prominent metrical effect was obtained for segmental errors. Acoustic analyses of word durations revealed a disproportionate advantage of the trochaic meter in the patients relative to the healthy controls. The results indicate that German apraxic speakers are sensitive to metrical information. It is assumed that metrical patterns function as prosodic frames for articulation planning, and that the regular metrical pattern in German, the trochaic form, has a facilitating effect on word production in patients with AOS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Isolation and Abiotic Stress Resistance Analyses of a Catalase Gene from Ipomoea batatas (L.) Lam.

    Science.gov (United States)

    Yong, Bin; Wang, Xiaoyan; Xu, Pan; Zheng, Haiyan; Fei, Xueting; Hong, Zixi; Ma, Qinqin; Miao, Yuzhi; Yuan, Xianghua; Jiang, Yusong; Shao, Huanhuan

    2017-01-01

    As an indicator of the antioxidant capability of plants, catalase can detoxify reactive oxygen species (ROS) generated by environmental stresses. Sweet potato is one of the top six most important crops in the world. However, its catalases remain largely unknown. In this study, a catalase encoding gene, IbCAT2 (accession number: KY615708), was identified and cloned from sweet potato cv. Xushu 18. It contained a 1479 nucleotides' open reading frame (ORF). S-R-L, Q-K-L, and a putative calmodulin binding domain were located at the C-terminus of IbCAT2, which suggests that IbCAT2 could be a peroxisomal catalase. Next-generation sequencing (NGS) based quantitative analyses showed that IbCAT2 was mainly expressed in young leaves and expanding tuberous roots under normal conditions. When exposed to 10% PEG6000 or 200 mmol/L NaCl solutions, IbCAT2 was upregulated rapidly in the first 11 days and then downregulated, although different tissues showed different degree of change. Overexpression of IbCAT2 conferred salt and drought tolerance in Escherichia coli and Saccharomyces cerevisiae . The positive response of IbCAT2 to abiotic stresses suggested that IbCAT2 might play an important role in stress responses.

  9. IAEA coordinated research project on 'analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Ait-Abderrahim, H.; Stanculescu, A.

    2006-01-01

    This paper provides the general background and the main specifications of the benchmark exercises performed within the framework of the IAEA Coordinated Research Project (CRP) on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWG-FR) of IAEA's Nuclear Energy Dept., is to contribute to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e. heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. (authors)

  10. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  11. Application of a 2-D approximation technique for solving stress analyses problem in FEM

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-10-01

    Full Text Available With the advent of computational techniques and methods like finite element method, complex engineering problems are no longer difficult to solve. These methods have helped engineers and designers to simulate and solve engineering problems in much more details than possible with experimental techniques. However, applying these techniques is not a simple task and require lots of acumen, understanding, and experience in obtaining a solution that is as close to an exact solution as possible with minimum computer resources. In this work using the finite element (FE method, stress analyzes of the low-pressure turbine of a small turbofan engine is carried out by employing two different techniques. Initially, a complete solid model of the turbine is prepared which is then finite element modelled with the eight-node brick element. Stresses are calculated using this model. Subsequently, the same turbine is modelled with four-node shell element for calculation of stresses. Material properties, applied loads (inertial, aerodynamic, and thermal, and constraints were same for both the cases. Authors have developed a “2-D approximation technique” to approximate a 3-D problem into a 2-D problem to study the saving invaluable computational time and resources. In this statistics technique, the 3-D domain of variable thickness is divided into many small areas of constant thickness. It is ensured that the value of the thickness for each sub-area is the correct representative thickness of that sub area, and it is within three sigma limit. The results revealed that technique developed is accurate, less time consuming and computational effort saving; the stresses obtained by 2-D technique are within five percent of 3-D results. The solution is obtained in CPU time which is six times less than the 3-D model. Similarly, the number of nodes and elements are more than ten times less than that of the 3-D model. ANSYS ® was used in this work.

  12. ENERGY AND ENTROPY ANALYSES OF AN EXPERIMENTAL TURBOJET ENGINE FOR TARGET DRONE APPLICATION

    Directory of Open Access Journals (Sweden)

    Onder Turan

    2016-12-01

    Full Text Available This study investigates energy and entropy analyses of an experimental turbojet engine build in Anadolu University Faculty of Aeronautics and Astronautics Test-Cell Laboratory.  Law of motions and Brayton thermodynamic cycle model are used for this purpose. The processes (that is, compression, combustion, and expansion are simulated in P-v, T-s and h-s diagrams. Furthermore, the second law of thermodynamics is applied to the cycle model to perform the entropy analysis. A distribution of the wasted and thrust power, the overall (energy-based the first law efficiency, and the specific fuel consumption and specific thrust of the engine were calculated during the analyses as well. The results of the study also show the entropy changing value in engine components due to irreversibilities and inefficiencies. As a conclusion, it is expected that this study is useful to study future design and research work similar aircraft turbojets, auxiliary power units and target drone power systems.

  13. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    Science.gov (United States)

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  14. Stress and deflection analyses of floating roofs based on a load-modifying method

    International Nuclear Information System (INIS)

    Sun Xiushan; Liu Yinghua; Wang Jianbin; Cen Zhangzhi

    2008-01-01

    This paper proposes a load-modifying method for the stress and deflection analyses of floating roofs used in cylindrical oil storage tanks. The formulations of loads and deformations are derived according to the equilibrium analysis of floating roofs. Based on these formulations, the load-modifying method is developed to conduct a geometrically nonlinear analysis of floating roofs with the finite element (FE) simulation. In the procedure with the load-modifying method, the analysis is carried out through a series of iterative computations until a convergence is achieved within the error tolerance. Numerical examples are given to demonstrate the validity and reliability of the proposed method, which provides an effective and practical numerical solution to the design and analysis of floating roofs

  15. Preclinical experimental stress studies: protocols, assessment and comparison.

    Science.gov (United States)

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-01-05

    Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Preclinical models are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these models are also important for the development of novel pharmacological agents for stress management. The well described preclinical stress models include immobilization, restraint, electric foot shock and social isolation stress. Stress assessment in animals is done at the behavioral level using open field, social interaction, hole board test; at the biochemical level by measuring plasma corticosterone and ACTH; at the physiological level by measuring food intake, body weight, adrenal gland weight and gastric ulceration. Furthermore the comparison between different stressors including electric foot shock, immobilization and cold stressor is described in terms of intensity, hormonal release, protein changes in brain, adaptation and sleep pattern. This present review describes these preclinical stress protocols, and stress assessment at different levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A protocol for analysing thermal stress in insects using infrared thermography.

    Science.gov (United States)

    Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M

    2016-02-01

    The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator

    International Nuclear Information System (INIS)

    Plaznik, Uroš; Tušek, Jaka; Kitanovski, Andrej; Poredoš, Alojz

    2013-01-01

    We have analyzed the influence of different magnetic thermodynamic cycles on the performance of a magnetic cooling device with an active magnetic regenerator (AMR) based on the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles. Initially, a numerical simulation was performed using a 1D, time-dependent, numerical model. Then a comparison was made with respect to the cooling power and the COP for different temperature spans. We showed that applying the Ericsson or the Hybrid Brayton–Ericsson cycle with an AMR, instead of the standard Brayton cycle, can increase the efficiency of the selected cooling device. Yet, in the case of the Ericsson cycle, the cooling power was decreased compared to the Hybrid and especially compared to the Brayton cycle. Next, an experimental analysis was carried out using a linear-type magnetic cooling device. Again, the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles with an AMR were compared with respect to the cooling power and the COP for different temperature spans. The results of the numerical simulation were confirmed. The Hybrid Brayton–Ericsson cycle with an AMR showed the best performance if a no-load temperature span was considered as a criterion. -- Highlights: • New thermodynamic cycles with an active magnetic regenerator (AMR) are presented. • Three different thermodynamic cycles with an AMR were analyzed. • Numerical and experimental analyses were carried out. • The best overall performance was achieved with the Hybrid Brayton–Ericsson cycle. • With this cycle the temperature span of test device was increased by almost 10%

  18. Shielding analysis method applied to nuclear ship 'MUTSU' and its evaluation based on experimental analyses

    International Nuclear Information System (INIS)

    Yamaji, Akio; Miyakoshi, Jun-ichi; Iwao, Yoshiaki; Tsubosaka, Akira; Saito, Tetsuo; Fujii, Takayoshi; Okumura, Yoshihiro; Suzuoki, Zenro; Kawakita, Takashi.

    1984-01-01

    Procedures of shielding analysis are described which were used for the shielding modification design of the Nuclear Ship ''MUTSU''. The calculations of the radiation distribution on board were made using Sn codes ANISN and TWOTRAN, a point kernel code QAD and a Monte Carlo code MORSE. The accuracies of these calculations were investigated through the analysis of various shielding experiments: the shield tank experiment of the Nuclear Ship ''Otto Hahn'', the shielding mock-up experiment for ''MUTSU'' performed in JRR-4, the shielding benchmark experiment using the 16 N radiation facility of AERE Harwell and the shielding effect experiment of the ship structure performed in the training ship ''Shintoku-Maru''. The values calculated by the ANISN agree with the data measured at ''Otto Hahn'' within a factor of 2 for fast neutrons and within a factor of 3 for epithermal and thermal neutrons. The γ-ray dose rates calculated by the QAD agree with the measured values within 30% for the analysis of the experiment in JRR-4. The design values for ''MUTSU'' were determined in consequence of these experimental analyses. (author)

  19. Experimental and theoretical analyses of package-on-package structure under three-point bending loading

    International Nuclear Information System (INIS)

    Jia Su; Wang Xi-Shu; Ren Huai-Hui

    2012-01-01

    High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (PoP) is a promising three-dimensional high-density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results. (condensed matter: structural, mechanical, and thermal properties)

  20. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    International Nuclear Information System (INIS)

    Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

    2007-01-01

    various operating conditions as well as trade offs between efficiency and capital cost. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Mechanical analyses were performed to determine hoop stresses and thermal expansion characteristics for the different configurations. Economic analyses were performed to estimate the cost of the various configurations

  1. Geophagy (rock eating, experimental stress and cognitive idiosyncrasy

    Directory of Open Access Journals (Sweden)

    Kirill Golokhvast

    2014-05-01

    Conclusions: These results suggest that, in natural environmental conditions, “edible” rocks serve as an adaptive tool for recovery from various types of environmental stresses, and are examples of self-medication.

  2. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-02-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Calligraphy and meditation for stress reduction: an experimental comparison

    Directory of Open Access Journals (Sweden)

    Kao H SR

    2014-02-01

    Full Text Available Henry SR Kao,1 Lin Zhu,2 An An Chao,3 Hao Yi Chen,4 Ivy CY Liu,5 Manlin Zhang6 1Department of Social Work and Social Administration, University of Hong Kong, Hong Kong; 2Department of Psychology, Renmin University of China, Beijing, 3International Society of Calligraphy Therapy, Hong Kong; 4Department of Business Administration, National Chengchi University, Taipei, Taiwan, 5Department of Psychology, Fu Jen Catholic University, Taipei, Taiwan; 6Department of Psychology, Sun Yat-Sen University, Guangzhou, People's Republic of China Background: Chinese calligraphic handwriting (CCH has demonstrated a new role in health and therapy. Meanwhile, meditation is an traditional and effective method for coping with stress and staying healthy. This study compared the effectiveness of CCH and meditation as distinctive and parallel stress reduction interventions. Methods: Thirty graduate students and academic staff members in Taiwan who suffered from stress were selected by the General Health Questionnaire and randomly assigned to one of three treatment groups, ie, a CCH group, a meditation group, or a control group, for 8 consecutive weeks. Changes in physiological parameters were measured before, during, and after treatment. Results: CCH and meditation showed their strength in the respective indices of stress. There was a significant difference in respiratory rate, heart rate, and electromyographic scores between the groups. Comparing pre- and post-effects, a decrease in heart rate and an increase in skin temperature was seen in subjects who practiced CCH. Increased skin temperature and decreased respiratory rate were also seen in subjects who practiced meditation, along with reduced muscle tension and heart rate. Conclusion: CCH and meditation have good effects in stress reduction. CCH is a particularly promising new approach to reducing stress.Keywords: calligraphic handwriting, meditation, stress reduction, intervention

  4. Synthetic analyses of the LAVA experimental results on in-vessel corium retention through gap cooling

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Cho, Young Ro; Koo, Kil Mo; Park, Rae Joon; Kim, Jong Hwan; Kim, Jong Tae; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong

    2001-03-01

    LAVA(Lower-plenum Arrested Vessel Attack) has been performed to gather proof of gap formation between the debris and lower head vessel and to evaluate the effect of the gap formation on in-vessel cooling. Through the total of 12 tests, the analyses on the melt relocation process, gap formation and the thermal and mechanical behaviors of the vessel were performed. The thermal behaviors of the lower head vessel were affected by the formation of the fragmented particles and melt pool during the melt relocation process depending on mass and composition of melt and subcooling and depth of water. During the melt relocation process 10.0 to 20.0 % of the melt mass was fragmented and also 15.5 to 47.5 % of the thermal energy of the melt was transferred to water. The experimental results address the non-adherence of the debris to the lower head vessel and the consequent gap formation between the debris and the lower head vessel in case there was an internal pressure load across the vessel abreast with the thermal load induced by the thermite melt. The thermal behaviors of the lower head vessel during the cooldown period were mainly affected by the heat removal characteristics through this gap, which were determined by the possibilities of the water ingression into the gap depending on the melt composition of the corium simulant. The enhanced cooling capacity through the gap was distinguished in the Al 2 O 3 melt tests. It could be inferred from the analyses on the heat removal capacity through the gap that the lower head vessel could effectively cooldown via heat removal in the gap governed by counter current flow limits(CCFL) even if 2mm thick gap should form in the 30 kg Al 2 O 3 melt tests, which was also confirmed through the variations of the conduction heat flux in the vessel and rapid cool down of the vessel outer surface in the Al 2 O 3 melt tests. In the case of large melt mass of 70 kg Al 2 O 3 melt, however, the infinite possibility of heat removal through the

  5. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    Science.gov (United States)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  6. Reproductive effort affects oxidative status and stress in an Antarctic penguin species: An experimental study.

    Directory of Open Access Journals (Sweden)

    Roger Colominas-Ciuró

    Full Text Available The oxidative cost of reproduction has been a matter of debate in recent years presumably because of the lack of proper experimental studies. Based on the hypothesis that different brood sizes produce differential reproductive costs, an experimental manipulation during breeding of Adélie penguins was conducted at Hope Bay, Antarctica, to study oxidative status and stress. We predict that a lower reproductive effort should be positively related to low oxidative and physiological stress. We randomly assigned nests with two chicks to a control reproductive effort group (CRE, and by removing one chick from some nests with two chicks, formed a second, low reproductive effort group (LRE. We examined how oxidative status in blood plasma (reactive oxygen metabolites, ROMs, and total antioxidant capacity, OXY and stress (heterophil/lymphocyte ratio, H/L responded to a lower production of offspring total biomass. Our nest manipulation showed significant differences in offspring total biomass, which was lower in the LRE group. As predicted, the LRE group had higher antioxidant capacity than individuals in the CRE group. We have also found, although marginally significant, interactions between sex and treatment in the three variables analysed. Females had higher OXY, lower ROMs and lower H/L ratio when rearing one chick, whereas males did so when rearing two except for OXY which was high regardless of treatment. Moreover, there was a significant negative correlation between the H/L ratio and OXY in females. Finally, we have found a negative and significant relationship between the duration of the experiment and OXY and ROMs and positive with H/L ratio which suggests that indeed breeding penguins are paying an effort in physiological terms in relation to the duration of the chick rearing. In conclusion, a reduction of the reproductive effort decreased oxidative stress in this long-lived bird meaning that a link exists between breeding effort and oxidative

  7. Reproductive effort affects oxidative status and stress in an Antarctic penguin species: An experimental study.

    Science.gov (United States)

    Colominas-Ciuró, Roger; Santos, Mercedes; Coria, Néstor; Barbosa, Andrés

    2017-01-01

    The oxidative cost of reproduction has been a matter of debate in recent years presumably because of the lack of proper experimental studies. Based on the hypothesis that different brood sizes produce differential reproductive costs, an experimental manipulation during breeding of Adélie penguins was conducted at Hope Bay, Antarctica, to study oxidative status and stress. We predict that a lower reproductive effort should be positively related to low oxidative and physiological stress. We randomly assigned nests with two chicks to a control reproductive effort group (CRE), and by removing one chick from some nests with two chicks, formed a second, low reproductive effort group (LRE). We examined how oxidative status in blood plasma (reactive oxygen metabolites, ROMs, and total antioxidant capacity, OXY) and stress (heterophil/lymphocyte ratio, H/L) responded to a lower production of offspring total biomass. Our nest manipulation showed significant differences in offspring total biomass, which was lower in the LRE group. As predicted, the LRE group had higher antioxidant capacity than individuals in the CRE group. We have also found, although marginally significant, interactions between sex and treatment in the three variables analysed. Females had higher OXY, lower ROMs and lower H/L ratio when rearing one chick, whereas males did so when rearing two except for OXY which was high regardless of treatment. Moreover, there was a significant negative correlation between the H/L ratio and OXY in females. Finally, we have found a negative and significant relationship between the duration of the experiment and OXY and ROMs and positive with H/L ratio which suggests that indeed breeding penguins are paying an effort in physiological terms in relation to the duration of the chick rearing. In conclusion, a reduction of the reproductive effort decreased oxidative stress in this long-lived bird meaning that a link exists between breeding effort and oxidative stress. However

  8. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  9. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  10. Interferon-gamma regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, Carmen; Penkowa, Milena; Sáez-Torres, Irene

    2002-01-01

    disease eliciting secretion of proinflammatory cytokines like IFN-gamma or TNF-alpha, and it has been suggested that cytokine-induced oxidative stress could have a role in EAE neuropathology. However, the individual roles of these and other cytokines in the pathogenesis of the disease are still uncertain....... Here we analyze the role of IFN-gamma during EAE by using both IFN-gamma receptor-knockout (IFN-gamma R(-/-)) and wild-type mice, both strains immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. The levels of oxidative stress were determined through the analysis...... of immunoreactivity for inducible NO synthase, nitrotyrosine, and malondialdehyde, as well as through the expression of the tissue-protective antioxidant factors metallothionein I+II (MT-I+II). We also examined the number of cells undergoing apoptosis as judged by using the TUNEL technique. The levels of oxidative...

  11. Experimental Hepatic Carcinogenesis: Oxidative Stress and Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Velid Unsal

    2017-08-01

    Full Text Available Hepatocellular carcinoma is one of the most common cancers in the world, and it is influenced by agents such as DEN, 2-AAF, phenobarbital, alcohol, aflatoxin B1 metabolite or hepatitis viruses (B and C. Oxidative stress is becoming recognized as a key factor in the progression of hepatocarcinogenesis. Reactive oxygen species can play a leading role in initiation and promotion of hepatic carcinogenesis. The metabolites of DEN Diethylnitrosamine (DEN mediate the binding of tumour promoters by covalently binding to the DNA with one or two oxidation-providing electrons. 2-AAF is the inducer of DEN, and it is involved in tumour formation in the bladder and liver. Reactive Oxygen species (ROS; carbohydrates, lipids, DNA and enzymes, such as affect all important structures. Additionally, an excessive amount of ROS is highly toxic to cells. Antioxidants are protects against ROS, toxic substances, carcinogens. This review focuses on the literature on studies of Hepatic Carcinogenesis, oxidative stress and antioxidant therapy.

  12. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Directory of Open Access Journals (Sweden)

    Seema Sisodia

    Full Text Available The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult.Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet.Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  13. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Science.gov (United States)

    Sisodia, Seema; Singh, Bashisth N

    2012-01-01

    The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult. Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet. Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  14. Computational and experimental analyses of the wave propagation through a bar structure including liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [UST Graduate School, Daejeon (Korea, Republic of); Rhee, Hui Nam [Division of Mechanical and Aerospace Engineering, Sunchon National University, Sunchon (Korea, Republic of); Yoon, Doo Byung; Park, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    In this research, we study the propagation of longitudinal and transverse waves through a metal rod including a liquid layer using computational and experimental analyses. The propagation characteristics of longitudinal and transverse waves obtained by the computational and experimental analyses were consistent with the wave propagation theory for both cases, that is, the homogeneous metal rod and the metal rod including a liquid layer. The fluid-structure interaction modeling technique developed for the computational wave propagation analysis in this research can be applied to the more complex structures including solid-liquid interfaces.

  15. Heterogeneity in patterns of DSM-5 posttraumatic stress disorder and depression symptoms: Latent profile analyses.

    Science.gov (United States)

    Contractor, Ateka A; Roley-Roberts, Michelle E; Lagdon, Susan; Armour, Cherie

    2017-04-01

    Posttraumatic stress disorder (PTSD) and depression co-occur frequently following the experience of potentially traumatizing events (PTE; Morina et al., 2013). A person-centered approach to discern heterogeneous patterns of such co-occurring symptoms is recommended (Galatzer-Levy and Bryant, 2013). We assessed heterogeneity in PTSD and depression symptomatology; and subsequently assessed relations between class membership with psychopathology constructs (alcohol use, distress tolerance, dissociative experiences). The sample consisted of 268 university students who had experienced a PTE and susequently endorsed clinical levels of PTSD or depression severity. Latent profile analyses (LPA) was used to identify the best-fitting class solution accouring to recommended fit indices (Nylund et al., 2007a); and the effects of covariates was analyzed using a 3-step approach (Vermunt, 2010). Results of the LPA indicated an optimal 3-class solutions: high severity (Class 2), lower PTSD-higher depression (Class 1), and higher PTSD-lower depression (Class 3). Covariates of distress tolerance, and different kinds of dissociative experiences differentiated the latent classes. Use of self-report measure could lead to response biases; and the specific nature of the sample limits generalizability of results. We found evidence for a depressive subtype of PTSD differentiated from other classes in terms of lower distress tolerance and greater dissociative experiences. Thus, transdiagnostic treatment protocols may be most beneficial for these latent class members. Further, the distinctiveness of PTSD and depression at comparatively lower levels of PTSD severity was supported (mainly in terms of distress tolerance abilities); hence supporting the current classification system placement of these disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Elastic-plastic and creep analyses by assumed stress finite elements

    International Nuclear Information System (INIS)

    Pian, T.H.H.; Spilker, R.L.; Lee, S.W.

    1975-01-01

    A formulation is presented of incremental finite element solutions for both initial stress and initial strain problems based on modified complementary energy principle with relaxed inter-element continuity requirement. The corresponding finite element model is the assumed stress hybrid model which has stress parameters in the interior of each element and displacements at the individual nodes as unknowns. The formulation includes an important consideration that the states of stress and strain and the beginning of each increment may not satisfy the equilibrium and compatibility equations. These imbalance and mismatch conditions all lead to correction terms for the equivalent nodal forces of the matrix equations. The initial stress method is applied to elastic-plastic analysis of structures. In this case the stress parameters for the individual elements can be eliminated resulting to a system of equations with only nodal displacements as unknowns. Two different complementary energy principles can be formulated, in one of which the equilibrium of the final state of stress is maintained while in the other the equilibrium of the stress increments is maintained. Each of these two different formulations can be combined with different iterative schemes to be used at each incremental steps of the elastic-plastic analysis. It is also indicated clearly that for the initial stress method the state of stress at the beginning of each increments is in general, not in equilibrium and an imbalance correction is needed. Results of a comprehensive evaluation of various solution procedures by the initial stress method using the assumed stress hybrid elements are presented. The example used is the static response of a thick wall cylinder of elastic-perfectly plastic material under internal pressure. Solid of revolution elements with rectangular cross sections are used

  17. The role of allopurinol on oxidative stress in experimental hyperthyroidism.

    Science.gov (United States)

    Makay, O; Yenisey, C; Icoz, G; Genc Simsek, N; Ozgen, G; Akyildiz, M; Yetkin, E

    2009-09-01

    During hyperthyroidism, production of free oxygen radicals derives, where xanthine oxidase may also play an important role. Allopurinol, a xanthine oxidase inhibitor, has a significant effect on thyrotoxicosis-related oxidative stress. However, the relationship between thyroid hormones, oxidative stress parameters and allopurinol remains to be explored. Forty-two Wistar albino rats were divided into three groups. Rats in group A served as negative controls, while group B had untreated thyrotoxicosis and group C received allopurinol. Hyperthyroidism was induced by daily 0.2 mg/kg L-thyroxine intraperitoneally in groups B and C; 40 mg/kg allopurinol were given daily intraperitoneally. Efficacy of the treatment was assessed after 72 h and 21 days, by measuring serum xanthine oxidase (XO), malondialdehyde (MDA), glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx) and nitric oxide derivates (NO*x). In both time periods, serum XO, MDA, GSH and NO*x levels were significantly increased after thyroid hormone induction (p0.05). This study suggests an association between allopurinol and the biosynthesis of thyroid hormones. Allopurinol prevents the hyperthyroid state, which is mediated predominantly by triiodothyronine and not by XO. This issue has to be questioned in further studies where allopurinol is administered in control subjects.

  18. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations

    International Nuclear Information System (INIS)

    Yilbas, Bekir Sami; Akhtar, S.S.; Sahin, A.Z.

    2016-01-01

    Thermal stress developed in thermoelectric generators is critical for long service applications. High temperature gradients, due to a large temperature difference across the junctions, causes excessive stress levels developed in the device pins and electrodes at the interfaces. In the present study, a thermoelectric generator with horizontal pin configuration is considered and thermal stress analysis in the device is presented. Ceramic wafer is considered to resemble the high temperature plate and copper electrodes are introduced at the pin junctions to reduce the electrical resistance between the pins and the high and low temperature junction plates during the operation. Finite element code is used to simulate temperature and stress fields in the thermoelectric generator. In the simulations, convection and radiation losses from the thermoelectric pins are considered and bismuth telluride pin material with and without tapering is incorporated. It is found that von Mises stress attains high values at the interface between the hot and cold junctions and the copper electrodes. Thermal stress developed in tapered pin configuration attains lower values than that of rectangular pin cross-section. - Highlights: • Different cold junction temperatures improves thermoelectric generator performance. • von Mises stress remains high across copper electrodes and hot junction ceramics. • von Mises stress reduces along pin length towards cold junction. • Pin tapering lowers stress levels in thermoelectric generator.

  19. End-systolic stress-velocity relation and circumferential fiber velocity shortening for analysing left ventricular function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Fayssoil, A. [Cardiologie, Hopital europeen Georges Pompidou, 20, rue le blanc, Paris (France)], E-mail: fayssoil2000@yahoo.fr; Renault, G. [CNRS UMR 8104, Inserm, U567, Institut Cochin, Universite Paris Descartes, Paris (France); Fougerousse, F. [Genethon, RD, Evry (France)

    2009-08-15

    Traditionally, analysing left ventricular (LV) performance relies on echocardiography by evaluating shortening fraction (SF) in mice. SF is influenced by load conditions. End-systolic stress-velocity (ESSV) relation and circumferential fiber velocity (VcF) shortening are more relevant parameters for evaluating systolic function regardless load conditions particularly in mice's models of heart failure.

  20. Stress analyses for reactor pressure vessels by the example of a product line '69 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, Lilit; Schau, Henry [TUEV SUED Energietechnik GmbH, Mannheim (Germany). Abt. Strukturverhalten; Wolf, Werner; Holzer, Wieland [TUEV SUED Industrie Service GmbH, Muenchen (Germany). Abt. Behaelter und Turbosatz; Wernicke, Robert; Trieglaff, Ralf [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany). Abt. Festigkeit und Konstruktion

    2011-08-15

    The reactor pressure vessels (RPV) of boiling water reactors (BWR) belonging to the product line '69 have unusually designed heads. The spherical cap-shaped bottom head of the vessel is welded directly to the support flange of the lower shell course. This unusual construction has led repeatedly to controversial discussions concerning the limits and admissibility of stress intensities arising in the junction of the bottom head to the cylindrical shell. In the present paper, stress analyses for the design conditions are performed with the finite element method in order to determine and categorize the occurring stresses. The procedure of stress classification in accordance with the guidelines of German KTA 3201.2 and Section III of the ASME Code (Subsection NB) is described and subsequently demonstrated by the example of a typical BWR vessel. The accomplished investigations yield allowable stress intensities in the considered area. Additionally, limit load analyses are carried out to verify the obtained results. Complementary studies, performed for a torispherical head, prove that the determined maximum peak stresses in the junction between the bottom head and the cylindrical shell are not unusual also for pressure vessels with regular bottom head constructions. (orig.)

  1. Stress analyses for reactor pressure vessels by the example of a product line '69 boiling water reactor

    International Nuclear Information System (INIS)

    Mkrtchyan, Lilit; Schau, Henry; Wolf, Werner; Holzer, Wieland; Wernicke, Robert; Trieglaff, Ralf

    2011-01-01

    The reactor pressure vessels (RPV) of boiling water reactors (BWR) belonging to the product line '69 have unusually designed heads. The spherical cap-shaped bottom head of the vessel is welded directly to the support flange of the lower shell course. This unusual construction has led repeatedly to controversial discussions concerning the limits and admissibility of stress intensities arising in the junction of the bottom head to the cylindrical shell. In the present paper, stress analyses for the design conditions are performed with the finite element method in order to determine and categorize the occurring stresses. The procedure of stress classification in accordance with the guidelines of German KTA 3201.2 and Section III of the ASME Code (Subsection NB) is described and subsequently demonstrated by the example of a typical BWR vessel. The accomplished investigations yield allowable stress intensities in the considered area. Additionally, limit load analyses are carried out to verify the obtained results. Complementary studies, performed for a torispherical head, prove that the determined maximum peak stresses in the junction between the bottom head and the cylindrical shell are not unusual also for pressure vessels with regular bottom head constructions. (orig.)

  2. Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Robertson, Christian; Marini, Bernard

    2010-01-01

    Stress evolution in Fe laths undergoing plastic deformation is investigated using three-dimensional dislocation dynamics simulations adapted to body centred cubic crystals, in the ductile to brittle transition temperature range. The selected boundary conditions, applied stress tensor and initial dislocation structures account for the realistic microstructure observed in bainitic steels. The effective stress field projected in the three different {1 0 0}cleavage planes is calculated for two different temperatures (50 and 200 K) and presented quantitatively, in the form of stress/frequency diagrams. It is shown that plastic activity tends to relax the stress acting in certain cleavage planes (the (0 1 0) and (0 0 1) planes) while, at the same time, amplifying the stress acting in other cleavage planes (the (1 0 0) planes). The selective stress amplification in the latter planes depends on the applied load direction, in combination with the limited set of available slip systems and the lath geometry. In the examined configuration, this selection effect is more pronounced with decreasing temperature, emphasizing the role of thermally activated plasticity on deformation-induced stress concentrations

  3. Analyses of Deformation and Stress of Oil-free Scroll Compressor Scroll

    Science.gov (United States)

    Peng, Bin; Li, Yaohong; Zhao, Shenxian

    2017-12-01

    The solid model of orbiting and fixed scroll is created by the Solidworks The deformation and stress of scrolls under gas force, temperature field, inertia force and the coupling field are analyzed using the Ansys software. The deformation for different thickness and height scroll tooth is investigated. The laws of deformation and stress for scrolls are gotten. The research results indicate that the stress and deformation of orbiting scroll are mainly affected by the temperature field. The maximum deformation occurs in the tooth head of scroll wrap because of the largest gas forces and the highest temperature in the tooth head of scroll wrap. The maximum stress is located in the end of the tooth, and the maximum stress of the coupling field is not the sum of loads. The scroll tooth is higher, and the deformation is bigger. The scroll tooth is thicker, and the deformation is smaller.

  4. The effect of experimental stress and experimental occlusal interference on masseteric EMG activity.

    Science.gov (United States)

    McGlynn, F D; Bichajian, C; Tira, D E; Lundeen, H C; Mahan, P E; Nicholas, B V

    1989-01-01

    This experiment attempted to study the separate and combined effects of occlusal interference and transient stress on masseteric activity among eight nonclinical human subjects. Before each of two sessions, subjects were fitted with an occlusal interference or an occlusally inert (control) molar clasp. During each session they viewed horrific and idyllic videotapes while masseter EMG was recorded bilaterally. Electrodermal measures validated that the horrific videotapes were stressful. Studies showed that the occlusal variable worked less well. The EMG was elevated contralateral to both clasps and during videotape viewing. The EMG effects from videotape viewing were relatively pronounced without the occlusal interference. Research implications are discussed.

  5. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Pierce, R.D.; Pedersen, D.R.; Ariman, T.

    1977-01-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. Thermal analyses were performed with the Argonne-modified version fo the general heat transfer code THTB, based on the instantaneous addition of 3200 0 K molten fuel with a decay heat of 9 W/gm and 1920 0 K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The stress analysis showed that the Inconel vessel would not fail from the pressure loading, it was also shown that brittle fracture of the tungsten liner from thermal gradients is unlikely. Therefore, the melt-down cup meets the structural design requirements. (Auth.)

  6. Oxidative Stress and Pulmonary Changes in Experimental Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2012-01-01

    Full Text Available The use of carbon tetrachloride (CCl4 in rats is an experimental model of hepatic tissue damage; which leads to fibrosis, and at the long term, cirrhosis. Cirrhosis is the consequence of progressive continued liver damage, it may be reversible when the damaging noxae have been withdrawn. The aim of this study is to evaluate the changes caused by cirrhosis in lung and liver, through the experimental model of intraperitoneal CCI4 administration. We used 18 male Wistar rats divided into three groups: control (CO and two groups divided by the time of cirrhosis induction by CCI4: G1 (11 weeks, G2 (16 weeks. We found significant increase of transaminase levels and lipid peroxidation (TBARS in liver and lung tissue and also increased antioxidant enzymes SOD and CAT, as well as the expression of TNF-α and IL-1β in the lung of cirrhotic animals. We observed changes in gas exchange in both cirrhotic groups. We can conclude that our model reproduces a model of liver cirrhosis, which causes alterations in the pulmonary system that leads to changes in gas exchange and size of pulmonary vessels.

  7. LOFT experimental measurements uncertainty analyses. Volume XX. Fluid-velocity measurement using pulsed-neutron activation

    International Nuclear Information System (INIS)

    Lassahn, G.D.; Taylor, D.J.N.

    1982-08-01

    Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading

  8. Experimental and Computational Modal Analyses for Launch Vehicle Models considering Liquid Propellant and Flange Joints

    Directory of Open Access Journals (Sweden)

    Chang-Hoon Sim

    2018-01-01

    Full Text Available In this research, modal tests and analyses are performed for a simplified and scaled first-stage model of a space launch vehicle using liquid propellant. This study aims to establish finite element modeling techniques for computational modal analyses by considering the liquid propellant and flange joints of launch vehicles. The modal tests measure the natural frequencies and mode shapes in the first and second lateral bending modes. As the liquid filling ratio increases, the measured frequencies decrease. In addition, as the number of flange joints increases, the measured natural frequencies increase. Computational modal analyses using the finite element method are conducted. The liquid is modeled by the virtual mass method, and the flange joints are modeled using one-dimensional spring elements along with the node-to-node connection. Comparison of the modal test results and predicted natural frequencies shows good or moderate agreement. The correlation between the modal tests and analyses establishes finite element modeling techniques for modeling the liquid propellant and flange joints of space launch vehicles.

  9. Conformational determination of [Leu]enkephalin based on theoretical and experimental VA and VCD spectral analyses

    DEFF Research Database (Denmark)

    Abdali, Salim; Jalkanen, Karl J.; Cao, X.

    2004-01-01

    Conformational determination of [Leu]enkephalin in DMSO-d6 is carried out using VA and VCD spectral analyses. Conformational energies, vibrational frequencies and VA and VCD intensities are calculated using DFT at B3LYP/6-31G* level of theory. Comparison between the measured spectra...

  10. Experimental research data on stress state of salt rock mass around an underground excavation

    Science.gov (United States)

    Baryshnikov, VD; Baryshnikov, DV

    2018-03-01

    The paper presents the experimental stress state data obtained in surrounding salt rock mass around an excavation in Mir Mine, ALROSA. The deformation characteristics and the values of stresses in the adjacent rock mass are determined. Using the method of drilling a pair of parallel holes in a stressed area, the authors construct linear relationship for the radial displacements of the stress measurement hole boundaries under the short-term loading of the perturbing hole. The resultant elasticity moduli of rocks are comparable with the laboratory core test data. Pre-estimates of actual stresses point at the presence of a plasticity zone in the vicinity of the underground excavation. The stress state behavior at a distance from the excavation boundary disagrees with the Dinnik–Geim hypothesis.

  11. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    Science.gov (United States)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  12. Possible antidepressant effects of vanillin against experimentally induced chronic mild stress in rats

    Directory of Open Access Journals (Sweden)

    Amira M. Abo-youssef

    2016-06-01

    Full Text Available Vanillin is a flavoring agent widely used in food and beverages such as chocolates and dairy products and it is also used to mask unpleasant tastes in medicine. It has been reported to have antioxidant, anti-inflammatory and antiapoptotic properties. The current study was designed to investigate the protective effects of vanillin against experimentally induced stress in rats. Briefly rats were subdivided into four groups. Three groups were subjected to chronic mild stress and the fourth group served as normal control group. One week before induction of stress drugs or saline was administered daily and continued for another nine weeks. At the end of the experimental period behavioral tests including sucrose preference test, forced swim test and elevated plus maze test were assessed. In addition, brain biochemical parameters including MDA, GSH, NO and serotonin were determined. Vanillin succeeded to restore the behavioral and biochemical changes associated with stress. It significantly increased sucrose consumption in sucrose preference test and time spent in open arm in elevated plus maze test as compared to stress control group. It also reduced immobility time in forced swim test and time spent in closed arm in elevated plus maze test. Additionally, it significantly decreased brain MDA and NO levels and significantly increased brain GSH and Serotonin levels compared to stress control group. It could be concluded that vanillin showed beneficial protective effects against experimentally induced stress in rats.

  13. Experimental and finite element analysis of tibial stress fractures using a rabbit model.

    Science.gov (United States)

    Franklyn, Melanie; Field, Bruce

    2013-01-01

    To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of

  14. Le stress chez l’abeille domestique (Apis mellifera) : analyse des modifications physiologiques et comportementales

    OpenAIRE

    Bordier , Célia

    2017-01-01

    Honeybees (Apis mellifera), which play an important role in natural and agronomic ecosystems, are exposed to a growing number of environmental pressures(new parasites, pesticides, climatechangeand poor nutrition). In this context, deciphering the mechanisms underlying stress responses and their costs becomes crucial to better understand theim pact of these pressures. Stress usually represents a challenge to the homeostasis of a norganism. In response, a cascade of physiological and behavioura...

  15. Proteomic and metabolomic analyses of soybean root tips under flooding stress.

    Science.gov (United States)

    Komatsu, Setsuko; Nakamura, Takuji; Sugimoto, Yurie; Sakamoto, Kazunori

    2014-01-01

    Flooding is one of the serious problems for soybean plants because it inhibits growth. Proteomic and metabolomic techniques were used to determine whether proteins and metabolites are altered in the root tips of soybeans under flooding stress. Two-day-old soybean plants were flooded for 2 days, and proteins and metabolites were extracted from root tips. Flooding-responsive proteins were identified using two-dimensional- or SDS-polyacrylamide gel electrophoresis- based proteomics techniques. Using both techniques, 172 proteins increased and 105 proteins decreased in abundance in the root tips of flood-stressed soybean. The abundance of methionine synthase, heat shock cognate protein, urease, and phosphoenol pyruvate carboxylase was significantly increased by flooding stress. Furthermore, 73 flooding-responsive metabolites were identified using capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric acid, glycine, NADH2, and phosphoenol pyruvate were increased by flooding stress. Taken together, these results suggest that synthesis of phosphoenol pyruvate by way of oxaloacetate produced in the tricarboxylic acid cycle is activated in soybean root tips in response to flooding stress, and that flooding stress also leads to modulation of the urea cycle in the root tips.

  16. Nighttime radiative cooling potential of unglazed and PV/T solar collectors: parametric and experimental analyses

    DEFF Research Database (Denmark)

    Pean, Thibault Quentin; Gennari, Luca; Olesen, Bjarne W.

    2015-01-01

    Nighttime radiative cooling technology has been studied both by means of simulations and experiments, to evaluate its potential and to validate the existing theoretical models used to describe it. Photovoltaic/thermal panels (PV/T) and unglazed solar collectors have been chosen as case studies....... The obtained values showed a good agreement with the ones found in the literature about solar panels or other kinds of heat sinks used for radiative cooling applications. The panels provided a cooling performance per night ranging between 0.2 and 0.9 kWh/m2 of panel. The COP values (defined as the ratio....... An experimental setup has been constructed and tested during summer of 2014, at the Technical University of Denmark. The cooling performance (heat loss) has been measured simultaneously for both types of panels, installed side-by-side. The experimental results have been compared with the results from a commercial...

  17. Optimal design and experimental analyses of a new micro-vibration control payload-platform

    Science.gov (United States)

    Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen

    2016-07-01

    This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.

  18. Solid State Bonding Mechanics In Extrusion And FSW: Experimental Tests And Numerical Analyses

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.; Donati, L.; Tomesani, L.

    2007-01-01

    In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes

  19. Increase of crevicular interleukin 1beta under academic stress at experimental gingivitis sites and at sites of perfect oral hygiene.

    Science.gov (United States)

    Deinzer, R; Förster, P; Fuck, L; Herforth, A; Stiller-Winkler, R; Idel, H

    1999-01-01

    This study analyses the effects of academic stress on crevicular interleukin-1beta(I1-1beta) both at experimental gingivitis sites and at sites of perfect oral hygiene. I1-1beta is thought to play a predominant role in periodontal tissue destruction. 13 medical students participating in a major medical exam (exam group) and 13 medical students not participating in any exam throughout the study period (control group) volunteered for the study. In a split-mouth-design, they refrained from any oral hygiene procedures in two opposite quadrants for 21 days (experimental gingivitis) while they maintained perfect hygiene levels at the remaining sites. Crevicular fluid was sampled for further I1-1beta analysis at teeth 5 and 6 of the upper jaw at days 1, 5, 8, 11, 14, 18 and 21 of the experimental gingivitis period. Exam students showed significantly higher I1-1beta levels than controls both at experimental gingivitis sites (area under the curve, exam group: 1240.64+/-140.07; control group: 697.61+/-111.30; p=0.004) and at sites of perfect oral hygiene (exam group: 290.42+/-63.19; control group: 143.98+/-42.71; p = 0.04). These results indicate that stress might affect periodontal health by increasing local I1-1beta levels especially when oral hygiene is neglected.

  20. Influence of Impeller Geometry on the Unsteady Flow in a Centrifugal Fan: Numerical and Experimental Analyses

    Directory of Open Access Journals (Sweden)

    M. Younsi

    2007-01-01

    Full Text Available The aim of this study is to evaluate the influence of design parameters on the unsteady flow in a forward-curved centrifugal fan and their impact on the aeroacoustic behavior. To do so, numerical and experimental studies have been carried out on four centrifugal impellers designed with various geometrical parameters. The same volute casing has been used to study these impellers. The effects on the unsteady flow behavior related to irregular blade spacing, blade count and radial distance between the impeller periphery and the volute tongue have been studied. The numerical simulations of the unsteady flow have been carried out using computational fluid dynamics (CFD tools based on the unsteady Reynolds averaged Navier Stokes (URANS approach. The study is focused on the unsteadiness induced by the aerodynamic interaction between the volute and the rotating impeller blades. In order to predict the acoustic pressure at far field, the unsteady flow variables provided by the CFD calculations have been used as inputs in the Ffowcs Williams-Hawkings equations (FW-H. The experimental part of this work concerns measurement of aerodynamic performance of the fans using a test bench built according to ISO 5801 (1997 standard. In addition to this, pressure microphones have been flush mounted on the volute tongue surface in order to measure the wall pressure fluctuations. The sound pressure level (SPL measurements have been carried out in an anechoic room in order to remove undesired noise reflections. Finally, the numerical results have been compared with the experimental measurements and a correlation between the wall pressure fluctuations and the far field noise signals has been found.

  1. Thermal Stress Analyses for a Multislug Beam NLC Positron Target(LCC-0090)

    International Nuclear Information System (INIS)

    Stein, W.

    2003-01-01

    The power deposition of an incident multislug electron beam in a tungsten-rhenium target and the resultant thermal shock stresses in the material have been modeled with a transient, dynamic, structural response finite element code. The Next Linear Collider electron beam is assumed split into two parts, with each part impinging on a 4 radiation lengths thick target. Two targets are required to avoid excessive thermal stresses in the targets. Each of the two beam parts is assumed broken up into four slugs, each two microseconds apart. Energy deposition from each slug occurs over 265 nanoseconds and results in heating of the target and pressure pulses straining the material. The rapid power deposition of the electron beam and the resultant temperature profile in the target generates stress and pressure waves in the material that are considerably larger than those calculated by a static analysis. The 6.22 GeV electron beam has a spot radius size of 1.6 mm and results in a maximum temperature jump of 438 C. Stress pressure pulses are induced in the material from the rapid thermal expansion of the hotter material with peak effective stresses reaching 78 ksi (5.3 x 10 8 Pa) on the back side of the target, which is less than one half of the yield strength of the tungsten/rhenium alloy and below the material fatigue limit

  2. Thermal Stress Analyses for an NLC Positron Target with a 3 mm Spot Radius Beam

    International Nuclear Information System (INIS)

    Stein, W.; Sunwoo, A.; Sheppard, J. C.; Bharadwaj, V.; Schultz, D.

    2002-01-01

    The power deposition of an incident electron beam in a tungsten-rhenium target and the resultant thermal shock stresses in the material have been modeled with a transient, dynamic, structural response finite element code. The Next Linear Collider electron beam is assumed split into three parts, with each part impinging on a 4 radiation lengths thick target. Three targets are required to avoid excessive thermal stresses in the targets. Energy deposition from each beam pulse occurs over 265 nanoseconds and results in heating of the target and pressure pulses straining the material. The rapid power deposition of the electron beam and the resultant temperature profile in the target generates stress and pressure waves in the material that are considerably larger than those calculated by a static analysis. The 6.22 GeV electron beam has a spot radius size of 3 mm and results in a maximum temperature jump of 147 C. Stress pressure pulses are induced in the material from the rapid thermal expansion of the hotter material with peak effective stresses reaching 83 ksi (5.77 x 10 8 Pa) on the back side of the target, which is less than one half of the yield strength of the tungsten/rhenium alloy and below the material fatigue limit

  3. Diffusion model analyses of the experimental data of 12C+27Al, 40Ca dissipative collisions

    International Nuclear Information System (INIS)

    SHEN Wen-qing; QIAO Wei-min; ZHU Yong-tai; ZHAN Wen-long

    1985-01-01

    Assuming that the intermediate system decays with a statistical lifetime, the general behavior of the threefold differential cross section d 3 tau/dZdEdtheta in the dissipative collisions of 68 MeV 12 C+ 27 Al and 68.6 MeV 12 C+ 40 Ca system is analyzed in the diffusion model framework. The lifetime of the intermediate system and the separation distance for the completely damped deep-inelastic component are obtained. The calculated results and the experimental data of the angular distributions and Wilczynski plots are compared. The probable reasons for the differences between them are briefly discussed

  4. Environmental Stress Responses and Experimental Handling Artifacts of a Model Organism, the Copepod Acartia tonsa (Dana

    Directory of Open Access Journals (Sweden)

    Birgitte Nilsson

    2018-05-01

    Full Text Available Handling animals during experiments potentially affects the differential expression of genes chosen as biomarkers of sub-lethal stress. RNA sequencing was used to examine whole-transcriptome responses caused by laboratory handling of the calanoid copepod, Acartia tonsa. Salinity shock (S = 35 to S = 5 was used as positive stress control; individuals not exposed to handling or other stressors served as negative stress control. All copepods were grown from eggs to adults without being handled or exposed to any stressors prior the experiment. Survival of nauplii and adults was estimated for up to 10 min of exposure to handling stress and salinity shock. Only adults exhibited decreased survival (44 ± 7% with 10 min of exposure in response to handling stress and were selected for definitive experiments for RNA sequencing. After 10 min of experimental exposures to handling stress or salinity shock, adults were incubated for 15 min or 24 h at normal culture conditions. A small number of significantly differentially expressed genes (DEGs were observed 15 min after exposure to handling stress (2 DEGs or salinity shock (7 DEGs. However, 24 h after exposure, handling stress resulted in 276 DEGs and salinity shock resulted in 573 DEGs, of which 174 DEGs were overlapping between the treatments. Among the DEGs observed 24 h after exposure to handling stress or salinity shock, some commonly-used stress biomarkers appeared at low levels. This suggests that a stress-response was induced at the transcriptional level for these genes between 15 min and 24 h following exposure. Since handling stress clearly affects transcriptional patterns, it is important to consider handling when designing experiments, by either including additional controls or avoiding focus on impacted genes. Not considering handling in gene expression studies can lead to inaccurate conclusions. The present study provides a baseline for studying handling stress in future studies using this

  5. Solar Aluminum Production by Vacuum Carbothermal Reduction of Alumina—Thermodynamic and Experimental Analyses

    Science.gov (United States)

    Kruesi, M.; Galvez, M. E.; Halmann, M.; Steinfeld, A.

    2011-02-01

    Thermochemical equilibrium calculations indicate the possibility of significantly lowering the onset temperature of aluminum vapor formation via carbothermal reduction of Al2O3 by decreasing the total pressure, enabling its vacuum distillation while bypassing the formation of undesired by-products Al2O, Al4C3, and Al-oxycarbides. Furthermore, the use of concentrated solar energy as the source of high-temperature process heat offers considerable energy savings and reduced concomitant CO2 emissions. When the reducing agent is derived from a biomass source, the solar-driven carbothermal reduction is CO2 neutral. Exploratory experimental runs using a solar reactor were carried out at temperatures in the range 1300 K to 2000 K (1027 °C to 1727 °C) and with total pressures in the range 3.5 to 12 millibar, with reactants Al2O3 and biocharcoal directly exposed to simulated high-flux solar irradiation, yielding up to 19 pct Al by the condensation of product gases, accompanied by the formation of Al4C3 and Al4O4C within the crucible. Based on the measured CO generation, integrated over the duration of the experimental run, the reaction extent reached 55 pct at 2000 K (1727 °C).

  6. Processing and analyses of the pulsed-neutron experimental data of the YALINA facility

    International Nuclear Information System (INIS)

    Cao, Y.; Gohar, Y.; Smith, D.; Talamo, A.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: The YALINA subcritical assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus has been utilized to study the physics parameters of accelerator driven systems (ADS) with high intensity Deuterium-Tritium and Deuterium-Deuterium pulsed neutron sources. In particular, with the fast and thermal neutron zones of the YALINA-Booster subcritical assembly, the pulsed neutron experiments have been utilized to evaluate the pulsed neutron methods for determining the reactivity of the subcritical system. In this paper, the pulsed-neutron experiments performed in the YALINA-Booster 1141 configuration with 90% U 235 fuel and 1185 configuration with 36% and 21% U fuel are examined and analized. The Sjo:strand area-ratio method is utilized to determine the reactivities of the subcritical assembly configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from experimental data are shown to be dependent on the detector locations and also on the detector types. The large discrepancies between the reactivity values given by the detectors in the fast neutron zone was reduced by spatial correction methods, and the estimated reactivity after the spatial corrections are almost spatially independent.

  7. Reliability of an experimental method to analyse the impact point on a golf ball during putting.

    Science.gov (United States)

    Richardson, Ashley K; Mitchell, Andrew C S; Hughes, Gerwyn

    2015-06-01

    This study aimed to examine the reliability of an experimental method identifying the location of the impact point on a golf ball during putting. Forty trials were completed using a mechanical putting robot set to reproduce a putt of 3.2 m, with four different putter-ball combinations. After locating the centre of the dimple pattern (centroid) the following variables were tested; distance of the impact point from the centroid, angle of the impact point from the centroid and distance of the impact point from the centroid derived from the X, Y coordinates. Good to excellent reliability was demonstrated in all impact variables reflected in very strong relative (ICC = 0.98-1.00) and absolute reliability (SEM% = 0.9-4.3%). The highest SEM% observed was 7% for the angle of the impact point from the centroid. In conclusion, the experimental method was shown to be reliable at locating the centroid location of a golf ball, therefore allowing for the identification of the point of impact with the putter head and is suitable for use in subsequent studies.

  8. EDXS and XRD Analyses of Coleus with Different Concentration Selenium Supplements Under Lead Stress

    Directory of Open Access Journals (Sweden)

    QIN Hui-yuan

    2014-04-01

    Full Text Available In order to study the changes of the morphologies and element composition in Coleus hlumei Benth(Coleusroots and leaves under1.0 mmol·L-1 Pb2+ stress with selenium ( Setreatments, and to preliminarily investigate the relief mechanism of Se level on lead toxicity from the perspective of spectroscopy, Coleus was cultivated in nutrient solutions with different concentrations of Se. The results showed that the content of C, K and Ca elements in roots decreased, while 0, Mg, Al, Si, Fe and Pb elements increased under Pb stress with Se treatments. In addi-tion, the content of C, Mg, Al, Si, K, Ca and Fe elements in leaves decreased, while 0 and Cl elements increased. The element species and its contents in roots were changed obviously under Pb stress with Se treatments, and crystalline solid and crystal phase in roots were correspond-ingly changed.

  9. Stress and flow analyses of ultraviolet-curable resin during curing

    Science.gov (United States)

    Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto

    2014-06-01

    The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.

  10. Stress and fatigue analyses of primary circuit components of NPP using FEM

    International Nuclear Information System (INIS)

    Gal, P.

    2015-01-01

    This poster is a short illustration of the numerical assessment of the VVER-440 reactor pressure vessel (RPV) main flange. RPV main flange consists in free flange, pressure ring, flange bolts, nut and nickel gasket. Operating temperature transient modes, like heat up regime can lead to serious tension in bolts. So temperature fields have to be calculated. The fatigue assessment of the main flange bolt requires the determination of the coefficient of stress concentrators in bolt thread. Stress concentrators can be computed through FEM or given by norms (PNAEG). The most significant value of fatigue usage factor is in the first thread connection between bolt and nut. A finite element method (FEM) is used for calculation stress and temperature distribution in the reactor flange. The reassessment was performed according Czech normative document NTD-A.S.I. and VERLIFE

  11. Physiological and proteomic analyses of Saccharum spp. grown under salt stress.

    Directory of Open Access Journals (Sweden)

    Aline Melro Murad

    Full Text Available Sugarcane (Saccharum spp. is the world most productive sugar producing crop, making an understanding of its stress physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass and malondialdehyde (MDA content of leaves were determined. Control plants of the two cultivars showed similar values for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients concentrations was performed and the concentration of Mn(2+ increased on day 48 for both cultivars. In parallel, to observe the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose 1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants. These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be involved in protection mechanisms against salt stress in sugarcane.

  12. Effect of experimental stress in 2 different pain conditions affecting the facial muscles.

    Science.gov (United States)

    Woda, Alain; L'heveder, Gildas; Ouchchane, Lemlih; Bodéré, Céline

    2013-05-01

    Chronic facial muscle pain is a common feature in both fibromyalgia (FM) and myofascial (MF) pain conditions. In this controlled study, a possible difference in the mode of deregulation of the physiological response to a stressing stimulus was explored by applying an acute mental stress to FM and MF patients and to controls. The effects of the stress test were observed on pain, sympathetic variables, and both tonic and reflex electromyographic activities of masseteric and temporal muscles. The statistical analyses were performed through a generalized linear model including mixed effects. Painful reaction to the stressor was stronger (P < .001) and longer (P = .011) in FM than in MF independently of a higher pain level at baseline. The stress-induced autonomic changes only seen in FM patients did not reach significance. The electromyographic responses to the stress test were strongest for controls and weakest for FM. The stress test had no effect on reflex activity (area under the curve [AUC]) or latency, although AUC was high in FM and latencies were low in both pain groups. It is suggested that FM is characterized by a lower ability to adapt to acute stress than MF. This study showed that an acute psychosocial stress triggered several changes in 2 pain conditions including an increase in pain of larger amplitude in FM than in MF pain. Similar stress-induced changes should be explored as possible mechanisms for differentiation between dysfunctional pain conditions. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  14. Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel

    Science.gov (United States)

    Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.

    2016-09-01

    In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.

  15. Oxidative Stress Associated with Neuronal Apoptosis in Experimental Models of Epilepsy

    Directory of Open Access Journals (Sweden)

    Marisela Méndez-Armenta

    2014-01-01

    Full Text Available Epilepsy is considered one of the most common neurological disorders worldwide. Oxidative stress produced by free radicals may play a role in the initiation and progression of epilepsy; the changes in the mitochondrial and the oxidative stress state can lead mechanism associated with neuronal death pathway. Bioenergetics state failure and impaired mitochondrial function include excessive free radical production with impaired synthesis of antioxidants. This review summarizes evidence that suggest what is the role of oxidative stress on induction of apoptosis in experimental models of epilepsy.

  16. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Alberto [Universidad Politecnica de Madrid (Spain); Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto [ANL, Argonne (United States); Bornos, Victor; Kiyavitskaya, Anna [Joint Institute of Power Eng. and Nucl. Research ' Sosny' , Minsk (Belarus); Carta, Mario [ENEA, Casaccia (Italy); Janczyszyn, Jerzy [AGH-University of Science and Technology, Krakow (Poland); Maiorino, Jose [IPEN, Sao Paulo (Brazil); Pyeon, Cheolho [Kyoto University (Japan); Stanculescu, Alexander [IAEA, Vienna (Austria); Titarenko, Yury [ITEP, Moscow (Russian Federation); Westmeier, Wolfram [Wolfram Westmeier GmbH, Ebsdorfergrund (Germany)

    2008-07-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  17. Structural Response of Submerged Air-Backed Plates by Experimental and Numerical Analyses

    Directory of Open Access Journals (Sweden)

    Lloyd Hammond

    2000-01-01

    Full Text Available This paper presents the results of a series of small-scale underwater shock experiments that measured the structural responses of submerged, fully clamped, air-backed, steel plates to a range of high explosive charge sizes. The experimental results were subsequently used to validate a series of simulations using the coupled LS-DYNA/USA finite element/boundary element codes. The modelling exercise was complicated by a significant amount of local cavitation occurring in the fluid adjacent to the plate and difficulties in modelling the boundary conditions of the test plates. The finite element model results satisfactorily predicted the displacement-time history of the plate over a range of shock loadings although a less satisfactory correlation was achieved for the peak velocities. It is expected that the predictive capability of the finite element model will be significantly improved once hydrostatic initialisation can be fully utilised with the LS-DYNA/USA software.

  18. The specific heat loss combined with the thermoelastic effect for an experimental analysis of the mean stress influence on axial fatigue of stainless steel plain specimens

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2014-10-01

    Full Text Available The energy dissipated to the surroundings as heat in a unit volume of material per cycle, Q, was recently proposed by the authors as fatigue damage index and it was successfully applied to correlate fatigue data obtained by carrying out fully reversed stress- and strain-controlled fatigue tests on AISI 304L stainless steel plain and notched specimens. The use of the Q parameter to analyse the experimental results led to the definition of a scatter band having constant slope from the low- to the high-cycle fatigue regime. In this paper the energy approach is extended to analyse the influence of mean stress on the axial fatigue behaviour of unnotched cold drawn AISI 304L stainless steel bars. In view of this, stress controlled fatigue tests on plain specimens at different load ratios R (R=-1; R=0.1; R=0.5 were carried out. A new energy parameter is defined to account for the mean stress effect, which combines the specific heat loss Q and the relative temperature variation due to the thermoelastic effect corresponding to the achievement of the maximum stress level of the stress cycle. The new two-parameter approach was able to rationalise the mean stress effect observed experimentally. It is worth noting that the results found in the present contribution are meant to be specific for the material and testing condition investigated here.

  19. Construct Validity of the Posttraumatic Stress Disorder Checklist in Cancer Survivors: Analyses Based on Two Samples

    Science.gov (United States)

    DuHamel, Katherine N.; Ostrof, Jamie; Ashman, Teresa; Winkel, Gary; Mundy, Elizabeth A.; Keane, Terence M.; Morasco, Benjamin J.; Vickberg, Suzanne M. J.; Hurley, Karen; Chhabra, Rosy; Scigliano, Eileen; Papadopoulos, Esperanza; Moskowitz, Craig; Redd, William

    2004-01-01

    The measurement of posttraumatic stress disorder (PTSD) is critically important for the identification and treatment of this disorder. The PTSD Checklist (PCL; F. W. Weathers & J. Ford, 1996) is a self-report measure that is increasingly used. In this study, the authors investigated the factorial validity of the PCL with data from 236 cancer…

  20. Experimental stress analysis and fatigue tests of five 24-in. NPS ANSI Standard B16.9 tees

    International Nuclear Information System (INIS)

    Moore, S.E.; Hayes, J.K.; Weed, R.A.

    1985-03-01

    Experimental stress analyses and low-cycle fatigue tests of five 24-in. nominal pipe size American National Standards Institute (ANSI) Standard B16.9 forged tees are documented in this report. The tees, designated as Oak Ridge National Laboratory tees T10, T11, T12, T13, and T16, were tested under subcontract at Combustion Engineering, Inc. in Chattanooga, Tennessee. Experimental stress analyses were conducted for 12 individual loadings on each tee. Each test model was instrumented with approx. 225, 1/8-in. three-gage, 45 0 strain rosettes on the inside and outside surfaces; and 6 linear variable differential transformers mounted on special nonflexible holding frames for measuring deflections and rotations of the pipe extensions. Following completion of the strain-gate tests, each tee was fatigue tested to failure with either a fully reversed displacement controlled in-plane bending moment on the branch or a cyclic internal pressure that ranged from a value slightly above zero to about 90% of the nominal yield pressure of the pipe extensions

  1. Experimental stress analysis and fatigue tests of five 24-in. NPS ANSI Standard B16. 9 tees. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.E.; Hayes, J.K.; Weed, R.A.

    1985-03-01

    Experimental stress analyses and low-cycle fatigue tests of five 24-in. nominal pipe size American National Standards Institute (ANSI) Standard B16.9 forged tees are documented in this report. The tees, designated as Oak Ridge National Laboratory tees T10, T11, T12, T13, and T16, were tested under subcontract at Combustion Engineering, Inc. in Chattanooga, Tennessee. Experimental stress analyses were conducted for 12 individual loadings on each tee. Each test model was instrumented with approx. 225, 1/8-in. three-gage, 45/sup 0/ strain rosettes on the inside and outside surfaces; and 6 linear variable differential transformers mounted on special nonflexible holding frames for measuring deflections and rotations of the pipe extensions. Following completion of the strain-gate tests, each tee was fatigue tested to failure with either a fully reversed displacement controlled in-plane bending moment on the branch or a cyclic internal pressure that ranged from a value slightly above zero to about 90% of the nominal yield pressure of the pipe extensions.

  2. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  3. Freshwater reservoir offsets and food crusts: Isotope, AMS, and lipid analyses of experimental cooking residues

    Science.gov (United States)

    Taché, Karine; Lovis, William A.

    2018-01-01

    Freshwater reservoir offsets (FROs) occur when AMS dates on charred, encrusted food residues on pottery predate a pot’s chronological context because of the presence of ancient carbon from aquatic resources such as fish. Research over the past two decades has demonstrated that FROs vary widely within and between water bodies and between fish in those water bodies. Lipid analyses have identified aquatic biomarkers that can be extracted from cooking residues as potential evidence for FROs. However, lacking has been efforts to determine empirically how much fish with FROs needs to be cooked in a pot with other resources to result in significant FRO on encrusted cooking residue and what percentage of fish C in a residue is needed to result in the recovery of aquatic biomarkers. Here we provide preliminary assessments of both issues. Our results indicate that in historically-contingent, high alkalinity environments fish may result in a statistically significant FRO, but that biomarkers for aquatic resources may be present in the absence of a significant FRO. PMID:29694436

  4. Cross-section sensitivity analyses for a Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Simmons, E.L.; Gerstl, S.A.W.; Dudziak, D.J.

    1977-09-01

    The objectives of this report were (1) to determine the sensitivity of neutronic responses in the preliminary design of the Tokamak Experimental Power Reactor by Argonne National Laboratory, and (2) to develop the use of a neutron-gamma coupled cross-section set in the calculation of cross-section sensitivity analysis. Response functions such as neutron plus gamma kerma, Mylar dose, copper transmutation, copper dpa, and activation of the toroidal field coil dewar were investigated. Calculations revealed that the responses were most sensitive to the high-energy group cross sections of iron in the innermost regions containing stainless steel. For example, both the neutron heating of the toroidal field coil and the activation of the toroidal field coil dewar show an integral sensitivity of about -5 with respect to the iron total cross sections. Major contributors are the scattering cross sections of iron, with -2.7 and -4.4 for neutron heating and activation, respectively. The effects of changes in gamma cross sections were generally an order of 10 lower

  5. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  6. Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress

    Directory of Open Access Journals (Sweden)

    Xinhong Su

    2017-05-01

    Full Text Available Drought is a major environmental factor that limits crop growth and productivity. Flue-cured tobacco (Nicotiana tabacum is one of the most important commercial crops worldwide and its productivity is vulnerable to drought. However, comparative analyses of physiological, biochemical and gene expression changes in flue-cured tobacco varieties differing in drought tolerance under long-term drought stress are scarce. In this study, drought stress responses of two flue-cured tobacco varieties, LJ851 and JX6007, were comparatively studied at the physiological and transcriptional levels. After exposing to progressive drought stress, the drought-tolerant LJ851 showed less growth inhibition and chlorophyll reduction than the drought-sensitive JX6007. Moreover, higher antioxidant enzyme activities and lower levels of H2O2, Malondialdehyde (MDA, and electrolyte leakage after drought stress were found in LJ851 when compared with JX6007. Further analysis showed that LJ851 plants had much less reductions than the JX6007 in the net photosynthesis rate and stomatal conductance during drought stress; indicating that LJ851 had better photosynthetic performance than JX6007 during drought. In addition, transcriptional expression analysis revealed that LJ851 exhibited significantly increased transcripts of several categories of drought-responsive genes in leaves and roots under drought conditions. Together, these results indicated that LJ851 was more drought-tolerant than JX6007 as evidenced by better photosynthetic performance, more powerful antioxidant system, and higher expression of stress defense genes during drought stress. This study will be valuable for the development of novel flue-cured tobacco varieties with improved drought tolerance by exploitation of natural genetic variations in the future.

  7. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.

    Science.gov (United States)

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-04-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  8. Hydrodynamic Study of a Hollow Fiber Membrane System Using Experimental and Numerical Derived Surface Shear Stresses

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Hunze, M.; Nopens, I.

    2012-01-01

    .39 – 0.69 Pa) were in good agreement, with an error less that 15 %. Based on comparison of the cumulative frequency distribution of shear stresses from experiments and simulation: (i) moderate shear stresses (i.e. 50th percentile) were found to be accurately predicted (model: 0.24 – 0.45 Pa; experimental......Computational Fluids Dynamics (CFD) models can be used to gain insight into the shear stresses induced by air sparging on submerged hollow fiber Membrane BioReactor (MBR) systems. It was found that the average range of shear stresses obtained by the CFD model (0.30 – 0.60 Pa) and experimentally (0......: 0.25 – 0.49 Pa) with an error of less than 5 %; (ii) high shear stresses (i.e. 90th percentile) predictions were much less accurate (model: 0.60 – 1.23 Pa; experimental: 1.04 – 1.90 Pa) with an error up to 38 %. This was attributed to the fact that the CFD model only considers the two-phase flow (50...

  9. Meta-analyses of the 5-HTTLPR polymorphisms and post-traumatic stress disorder.

    Science.gov (United States)

    Navarro-Mateu, Fernando; Escámez, Teresa; Koenen, Karestan C; Alonso, Jordi; Sánchez-Meca, Julio

    2013-01-01

    To conduct a meta-analysis of all published genetic association studies of 5-HTTLPR polymorphisms performed in PTSD cases. Potential studies were identified through PubMed/MEDLINE, EMBASE, Web of Science databases (Web of Knowledge, WoK), PsychINFO, PsychArticles and HuGeNet (Human Genome Epidemiology Network) up until December 2011. Published observational studies reporting genotype or allele frequencies of this genetic factor in PTSD cases and in non-PTSD controls were all considered eligible for inclusion in this systematic review. Two reviewers selected studies for possible inclusion and extracted data independently following a standardized protocol. A biallelic and a triallelic meta-analysis, including the total S and S' frequencies, the dominant (S+/LL and S'+/L'L') and the recessive model (SS/L+ and S'S'/L'+), was performed with a random-effect model to calculate the pooled OR and its corresponding 95% CI. Forest plots and Cochran's Q-Statistic and I(2) index were calculated to check for heterogeneity. Subgroup analyses and meta-regression were carried out to analyze potential moderators. Publication bias and quality of reporting were also analyzed. 13 studies met our inclusion criteria, providing a total sample of 1874 patients with PTSD and 7785 controls in the biallelic meta-analyses and 627 and 3524, respectively, in the triallelic. None of the meta-analyses showed evidence of an association between 5-HTTLPR and PTSD but several characteristics (exposure to the same principal stressor for PTSD cases and controls, adjustment for potential confounding variables, blind assessment, study design, type of PTSD, ethnic distribution and Total Quality Score) influenced the results in subgroup analyses and meta-regression. There was no evidence of potential publication bias. Current evidence does not support a direct effect of 5-HTTLPR polymorphisms on PTSD. Further analyses of gene-environment interactions, epigenetic modulation and new studies with large samples

  10. Experimental and Numerical Analyses of the Sloshing in a Fuel Tank

    Directory of Open Access Journals (Sweden)

    Emma Frosina

    2018-03-01

    Full Text Available The sloshing of fuel inside the tank is an important issue in aerospace and automotive applications. This phenomenon, in fact, can cause various issues related to vehicle stability and safety, to component fatigue, audible noise, vibrations and to the level measurement of the fuel itself. The sloshing phenomenon can be defined as a highly nonlinear oscillatory movement of the free-surface of liquid inside a container, such as a fuel tank, under the effect of continuous or instantaneous forces. This paper is the result of a research collaboration between the Industrial Engineering Department of the University of Naples “Federico II” and the R&D department of Fiat Chrysler Automobiles (F.C.A. The activity is focused on the study of the sloshing in the fuel tank of vehicles. The goal is the optimization of the tank geometry in order to allow, for example, the correct fuel suction under all driving conditions and to prevent undesired noise and vibrations. This paper shows results obtained on a reference tank filled by water tinted with a dark blue food colorant. The geometry has been tested on a test bench designed by Moog Inc. on specification from Fiat Chrysler Automobiles with harmonic excitation of a 2D tank slice along one degree of freedom. The test bench consists of a hexapod with six independent actuators connecting the base to the top platform, allowing all six Degrees of Freedom (DOFs. On the top platform there are other two additional actuators to extend pitch and roll envelope, thus the name of “8-DOF bench”. The designed tank has been studied with a three-dimensional Computational Fluid Dynamics (CFD modeling approach, too. By the end, the numerical and experimental data have been compared with a post-processing analysis by means of Matlab® software. For this reason, the images have been reduced in two dimensions. In particular, the percentage gaps of the free surfaces and the center of gravity have been compared each other

  11. Experimental and finite element analyses of multifunctional skins for morphing wing applications

    Science.gov (United States)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2016-04-01

    -up. Based on experimental results a numerical model can be set up for further structural optimizaton of the multi-functional laminate.

  12. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    Science.gov (United States)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  13. Numerical Analysis and Experimental Verification of Stresses Building up in Microelectronics Packaging

    NARCIS (Netherlands)

    Rezaie Adli, A.R.

    2017-01-01

    This thesis comprises a thorough study of the microelectronics packaging process by means of various experimental and numerical methods to estimate the process induced residual stresses. The main objective of the packaging is to encapsulate the die, interconnections and the other exposed internal

  14. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    Directory of Open Access Journals (Sweden)

    Yinghui Yuan

    2016-07-01

    Full Text Available Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well reported. To gain a better understanding of the cucumber (Cucumis sativus L. responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. 62 differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%, protein metabolism (24.2%, carbohydrate metabolism (19.4% and amino acid metabolism (14.5%. Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.

  15. Three-dimensional elastic--plastic stress and strain analyses for fracture mechanics: complex geometries

    International Nuclear Information System (INIS)

    Bellucci, H.J.

    1975-11-01

    The report describes the continuation of research into capability for three-dimensional elastic-plastic stress and strain analysis for fracture mechanics. A computer program, MARC-3D, has been completed and was used to analyze a cylindrical pressure vessel with a nozzle insert. A method for generating crack tip elements was developed and a model was created for a cylindrical pressure vessel with a nozzle and an imbedded flaw at the inside nozzle corner. The MARC-3D program was again used to analyze this flawed model. Documentation for the use of the MARC-3D computer program has been included as an appendix

  16. Experimental and numerical determination of critical stress intensity factor of aluminum curved thin sheets under tensile stress

    Energy Technology Data Exchange (ETDEWEB)

    Heidarvand, Majid; Soltani, Naser; Hajializadeh, Farshid [University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-05-15

    We determined the fracture toughness of aluminum curved thin sheets using tensile stress tests and finite element method. We applied Linear elastic fracture mechanics (LEFM) and Feddersen procedure to evaluate stress intensity factor of the samples with central wire-cut cracks and fatigue cracks with different lengths to investigate the notch radius effect. Special fixture design was utilized to establish uniform stress distribution at the crack zone. Less than 9 % difference was found between the wire-cut and the fatigue cracked samples. Since generating central fatigue crack with different lengths required so much effort, wire-cut cracked samples were used to determine critical stress intensity factor. Finite element analysis was also performed on one-quarter of the specimen using both the singular Borsum elements and the regular isoparametric elements to further investigate fracture toughness of the samples. It was observed that the singular elements presented better results than the isoparametric ones. A slight difference was also found between the results obtained from finite element method using singular elements and the experimental results.

  17. Thermal and stress analyses of the reactor pressure vessel lower head of the Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Hashimoto, K.; Onizawa, K.; Kurihara, R.; Kawasaki, S.; Soda, K.

    1992-01-01

    Thermal and stress analyses were performed using the finite element analysis code ABAQUS to clarify the factors which caused tears in the stainless steel liner of the reactor pressure vessel lower head of the Three Mile Island Unit 2 (TMI-2) reactor pressure vessel during the accident on 28 March 1979. The present analyses covered the events which occurred after approximately 20 tons of molten core material were relocated to the lower head of the reactor pressure vessel. They showed that the tensile stress was highest in the case where the relocated core material consisting of homogeneous UO 2 debris was assumed to attack the lower head and the debris was then quenched. The peak tensile stress was in the vicinity of the welded zone of the penetration nozzle. This result agrees with the findings from the examination of the TMI-2 reactor pressure vessel that major tears in the stainless steel liner were observed around two penetration nozzles of the lower head. (author)

  18. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory.

    Science.gov (United States)

    Mousavi, S Jamaleddin; Avril, Stéphane

    2017-10-01

    It is now a rather common approach to perform patient-specific stress analyses of arterial walls using finite-element models reconstructed from gated medical images. However, this requires to compute for every Gauss point the deformation gradient between the current configuration and a stress-free reference configuration. It is technically difficult to define such a reference configuration, and there is actually no guarantee that a stress-free configuration is physically attainable due to the presence of internal stresses in unloaded soft tissues. An alternative framework was proposed by Bellini et al. (Ann Biomed Eng 42(3):488-502, 2014). It consists of computing the deformation gradients between the current configuration and a prestressed reference configuration. We present here the first finite-element results based on this concept using the Abaqus software. The reference configuration is set arbitrarily to the in vivo average geometry of the artery, which is obtained from gated medical images and is assumed to be mechanobiologically homeostatic. For every Gauss point, the stress is split additively into the contributions of each individual load-bearing constituent of the tissue, namely elastin, collagen, smooth muscle cells. Each constituent is assigned an independent prestretch in the reference configuration, named the deposition stretch. The outstanding advantage of the present approach is that it simultaneously computes the in situ stresses existing in the reference configuration and predicts the residual stresses that occur after removing the different loadings applied onto the artery (pressure and axial load). As a proof of concept, we applied it on an ideal thick-wall cylinder and showed that the obtained results were consistent with corresponding experimental and analytical results of the well-known literature. In addition, we developed a patient-specific model of a human ascending thoracic aneurysmal aorta and demonstrated the utility in predicting the

  19. Meta-analyses of the 5-HTTLPR polymorphisms and post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Mateu

    Full Text Available OBJECTIVE: To conduct a meta-analysis of all published genetic association studies of 5-HTTLPR polymorphisms performed in PTSD cases. METHODS DATA SOURCES: Potential studies were identified through PubMed/MEDLINE, EMBASE, Web of Science databases (Web of Knowledge, WoK, PsychINFO, PsychArticles and HuGeNet (Human Genome Epidemiology Network up until December 2011. STUDY SELECTION: Published observational studies reporting genotype or allele frequencies of this genetic factor in PTSD cases and in non-PTSD controls were all considered eligible for inclusion in this systematic review. DATA EXTRACTION: Two reviewers selected studies for possible inclusion and extracted data independently following a standardized protocol. STATISTICAL ANALYSIS: A biallelic and a triallelic meta-analysis, including the total S and S' frequencies, the dominant (S+/LL and S'+/L'L' and the recessive model (SS/L+ and S'S'/L'+, was performed with a random-effect model to calculate the pooled OR and its corresponding 95% CI. Forest plots and Cochran's Q-Statistic and I(2 index were calculated to check for heterogeneity. Subgroup analyses and meta-regression were carried out to analyze potential moderators. Publication bias and quality of reporting were also analyzed. RESULTS: 13 studies met our inclusion criteria, providing a total sample of 1874 patients with PTSD and 7785 controls in the biallelic meta-analyses and 627 and 3524, respectively, in the triallelic. None of the meta-analyses showed evidence of an association between 5-HTTLPR and PTSD but several characteristics (exposure to the same principal stressor for PTSD cases and controls, adjustment for potential confounding variables, blind assessment, study design, type of PTSD, ethnic distribution and Total Quality Score influenced the results in subgroup analyses and meta-regression. There was no evidence of potential publication bias. CONCLUSIONS: Current evidence does not support a direct effect of 5-HTTLPR

  20. Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean.

    Science.gov (United States)

    Chu, Shanshan; Li, Hongyan; Zhang, Xiangqian; Yu, Kaiye; Chao, Maoni; Han, Suoyi; Zhang, Dan

    2018-06-06

    Previous studies have revealed a significant genetic relationship between phosphorus (P)-efficiency and photosynthesis-related traits in soybean. In this study, we used proteome profiling in combination with expression analysis, biochemical investigations, and leaf ultrastructural analysis to identify the underlying physiological and molecular responses. The expression analysis and ultrastructural analysis showed that the photosynthesis key genes were decreased at transcript levels and the leaf mesophyll and chloroplast were severely damaged after low-P stress. Approximately 55 protein spots showed changes under low-P condition by mass spectrometry, of which 17 were involved in various photosynthetic processes. Further analysis revealed the depression of photosynthesis caused by low-P stress mainly involves the regulation of leaf structure, adenosine triphosphate (ATP) synthesis, absorption and transportation of CO₂, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. In summary, our findings indicated that the existence of a stringent relationship between P supply and the genomic control of photosynthesis in soybean. As an important strategy to protect soybean photosynthesis, P could maintain the stability of cell structure, up-regulate the enzymes’ activities, recover the process of photosystem II (PSII), and induce the expression of low-P responsive genes and proteins.

  1. Experimental evaluation of residual stresses produced by plain dents in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Pascotto, Jorge [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Marques, Altino; Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2009-07-01

    A dent means a permanent plastic deformation of the circular cross-section of the pipe. Dents are potentially danger for structural integrity of onshore and offshore pipelines, because it causes a local stress and strain concentration. It is also expected that residual stresses are introduced by the non-uniform plastic deformation. A plain dent is a dent which causes a smooth change in the curvature of the pipe wall that contains no wall thickness reductions (such as a gouge or a crack) or other defects or imperfections (such as a weld). This work presents an experimental evaluation of residual stresses intensification due to plain dents introduced through the same indentation process, in samples made of the same steel line pipe, commonly used in the pipeline industry. The residual stresses were measured in the longitudinal and circumferential directions in preselected points by X-ray diffraction technique, before indentation. After the samples have been dented, the residual stresses were measured once more at the same points, for comparison. All samples presented a similar behavior of the residual stresses due to induced plain dents, and the X-ray diffraction technique shows itself as an efficient methodology of stress measurement in pipelines. (author)

  2. Analyses of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm

    Science.gov (United States)

    Reed, K. W.; Atluri, S. N.

    1983-01-01

    A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is base upon a generalization of de Veubeke's complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and thg resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a complete separation of the boundary value problem (for stress rate and velocity) and the initial value problem (for total stress and deformation); hence, their numerical treatments are essentially independent. After a fairly comprehensive discussion of the numerical treatment of the boundary value problem, we launch into a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.

  3. Analysing the mechanical performance and growth adaptation of Norway spruce using a non-linear finite-element model and experimental data.

    Science.gov (United States)

    Lundström, T; Jonas, T; Volkwein, A

    2008-01-01

    Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.

  4. Methods and results for stress analyses on 14-ton, thin-wall depleted UF6 cylinders

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF 6 ) as a residential product. At the present time, the inventory of DUF 6 in this country is more than half a million tons. The inventory of DUF 6 is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF 6 may eventually be converted to a less hazardous material for final disposition. An important task in the DUF 6 cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail

  5. Experimental study of interfacial shear stress for an analogy model of evaporative heat transfer

    International Nuclear Information System (INIS)

    Kwon, Hyuk; Park, GoonCherl; Min, ByungJoo

    2008-01-01

    In this study, we conducted measurements of an evaporative interfacial shear stress in a passive containment cooling system (PCCS). An interfacial shear stress for a counter-current flow was measured from a momentum balance equation and the interfacial friction factor for evaporation was evaluated by using experimental data. A model for the evaporative heat transfer coefficient of a vertical evaporative flat surface was developed based on an analogy between heat and momentum transfer. It was found that the interfacial shear stress increases with the Jacob number, which incorporates the evaporation rate, and the air and water Reynolds numbers. The relationship between the evaporative heat transfer and the interfacial shear stress was evaluated by using the experimental results. This relationship was used to develop a model for an evaporative heat transfer coefficient by using an analogy between heat and mass transfer. The prediction of this model were found to be in good agreement with the experimental data obtained for evaporative heat transfer by Kang and Park. (author)

  6. Experimental stress analysis of four machined 10-in. NPS piping elbows with specified geometric distortions

    International Nuclear Information System (INIS)

    Moore, S.E.; Dodge, W.G.; Bolt, S.E.

    1983-09-01

    Four specially fabricated nominal 10-in. NPS, 90 0 , long-radius, schedule 40, carbon-steel piping elbows, welded to short lengths of straight pipe, were stress analyzed both experimentally and analytically. One elbow had a circular cross section and a uniform wall thickness, while the other three had either a circular or elliptical cross section with either a uniform or variable wall thickness. The objectives of the tests were primarily to study the influence of out of roundness and wall-thickness variations on the stresses in piping elbows under internal pressure and/or applied moment loadings. Analytical studies were made to isolate the various effects by comparing the experimental data with theoretical baseline solutions. Results of the studies showed that analytical solutions based on no-end-effects (NEE) theory capture the major characteristics of the stress distributions for elbows loaded with pressure and/or in-plane, out-of-plane, or torsional moment loadings. Of the four second-order effects addressed in this study, and effects had the most influence on the stresses, followed in order by out of roundness, wall-thickness variations, and pressure-moment interactions. Of these, the only significant increase in maximum stresses above those predicted by NEE theory was for the case of out of roundness with internal-pressure loading

  7. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    International Nuclear Information System (INIS)

    McGregor, R.; Doherty, P.; Hornbach, D.; Abdelsalam, U.

    1995-01-01

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tube reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material

  8. Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Hu, Rui; Lisowski, Darius; Kraus, Adam

    2016-04-17

    The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

  9. Optimizing laboratory animal stress paradigms: The H-H* experimental design.

    Science.gov (United States)

    McCarty, Richard

    2017-01-01

    Major advances in behavioral neuroscience have been facilitated by the development of consistent and highly reproducible experimental paradigms that have been widely adopted. In contrast, many different experimental approaches have been employed to expose laboratory mice and rats to acute versus chronic intermittent stress. An argument is advanced in this review that more consistent approaches to the design of chronic intermittent stress experiments would provide greater reproducibility of results across laboratories and greater reliability relating to various neural, endocrine, immune, genetic, and behavioral adaptations. As an example, the H-H* experimental design incorporates control, homotypic (H), and heterotypic (H*) groups and allows for comparisons across groups, where each animal is exposed to the same stressor, but that stressor has vastly different biological and behavioral effects depending upon each animal's prior stress history. Implementation of the H-H* experimental paradigm makes possible a delineation of transcriptional changes and neural, endocrine, and immune pathways that are activated in precisely defined stressor contexts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Experimental Research of Reliability of Plant Stress State Detection by Laser-Induced Fluorescence Method

    Directory of Open Access Journals (Sweden)

    Yury Fedotov

    2016-01-01

    Full Text Available Experimental laboratory investigations of the laser-induced fluorescence spectra of watercress and lawn grass were conducted. The fluorescence spectra were excited by YAG:Nd laser emitting at 532 nm. It was established that the influence of stress caused by mechanical damage, overwatering, and soil pollution is manifested in changes of the spectra shapes. The mean values and confidence intervals for the ratio of two fluorescence maxima near 685 and 740 nm were estimated. It is presented that the fluorescence ratio could be considered a reliable characteristic of plant stress state.

  11. Reactivity to interpersonal stress in patients with eating disorders: A systematic review and meta-analysis of studies using an experimental paradigm.

    Science.gov (United States)

    Monteleone, Alessio Maria; Treasure, Janet; Kan, Carol; Cardi, Valentina

    2018-04-01

    Reactivity to interpersonal stress in patients with eating disorders: A systematic review and meta-analysis of studies using an experimental paradigm. NEUROSCI BIOBEHAV REV XXX-XXX, 2018.- Social difficulties have been implicated in the development and maintenance of eating disorder symptoms. The aim of this work was to conduct a systematic review and meta-analysis of experimental studies testing patientsö reactivity to interpersonal stress, compared to healthy controls. Thirty-four studies were included. Meta-analyses were conducted on 16 studies and on following outcomes: attention bias and interference to threatening faces, cortisol, heart rate and negative affect before and after exposure to interpersonal stress. Patients showed heightened attention bias and interference to threatening faces. Lower heart rate after exposure to interpersonal stress and greater negative affect before and after interpersonal stress were observed in the clinical group compared to controls. Surprisingly, only a small minority of studies included measures of abnormal eating behaviour and attitudes. This seems a missed opportunity for testing the causal and maintaining role that abnormalities in interpersonal stress response play in eating disorders. Nonetheless, findings corroborate the hypothesis that patients' response to interpersonal stress differs from that of healthy controls. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Experimental sharp force injuries to ribs: Multimodal morphological and geometric morphometric analyses using micro-CT, macro photography and SEM.

    Science.gov (United States)

    Komo, Larissa; Grassberger, Martin

    2018-07-01

    Tool marks on bones induced by knife blades can be analysed morphometrically in order to enable an allocation of the suspected "inflicting weapon" to the particular morphology of the bone lesions. Until now, geometric morphometrics has not been used to analyse the morphology of knife lesions on fleshed bones in detail. By using twelve experimental knives and a drop weight tower, stab/cut injuries were inflicted on untreated pig ribs. The morphology of the experimentally produced lesions was subsequently recorded with three imaging techniques (μCT, macro photography and SEM) and analysed with different morphometric software (Amira, tps and Morpheus). Based on the measured distances between the walls of the kerf marks, which corresponded to the thickness of the blade, one could conclude to the respective blade thickness with a deviation of max. ±0.35mm and match the injuries to the knives. With subsequent reanalysis after maceration, an average shrinkage factor up to 8.6% was observed. Among the three imaging techniques used in this study, μCT was the most accurate and efficient technique, particularly because it represented the only non-destructive modality to document injuries without maceration, even though μCT is more expensive and time-consuming as well as less accessible than a macro SLR-camera or a SEM. For optimal characterizations of the blades' and kerfs' shapes the software tps proofed to be the best choice. Accordingly, geometric morphometrics could serve as a tool in forensic investigations concerning kerf marks. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Experimental Study of the Effect of Internal Defects on Stress Waves during Automated Fiber Placement

    Directory of Open Access Journals (Sweden)

    Zhenyu Han

    2018-04-01

    Full Text Available The detection technique of component defects is currently only realized to detect offline defects and online surface defects during automated fiber placement (AFP. The characteristics of stress waves can be effectively applied to identify and detect internal defects in material structure. However, the correlation mechanism between stress waves and internal defects remains unclear during the AFP process. This paper proposes a novel experimental method to test stress waves, where continuous loading induced by process itself is used as an excitation source without other external excitation. Twenty-seven groups of thermosetting prepreg laminates under different processing parameters are manufactured to obtain different void content. In order to quantitatively estimate the void content in the prepreg structure, the relation model between the void content and ultrasonic attenuation coefficient is revealed using an A-scan ultrasonic flaw detector and photographic methods by optical microscope. Furthermore, the high-frequency noises of stress waves are removed using Haar wavelet transform. The peaks, the Manhattan distance and mean stress during the laying process are analyzed and evaluated. Partial conclusions in this paper could provide theoretical support for online real-time detection of internal defects based on stress wave characteristics.

  14. Experimental stress analysis and fatigue tests of five 12-in. NPS ANSI Standard B16.9 tees

    International Nuclear Information System (INIS)

    Moore, S.E.; Grigory, S.C.; Weed, R.A.

    1984-04-01

    The tees, designated as ORNL tees T-4, T-6, T-7, T-8, and T-15, were tested under subcontract at Southwest Research Institute, and the data were analyzed at ORNL. Experimental stress analyses were conducted for 13 individual loadings on each tee, including internal pressure and 3 mutually perpendicular force and moment loads on the branch and on the run. Each test model was instrumented with approx. 220, 1/16-in. three-gage, 45 0 strain rosettes on the body of the tee, and approx. 10, 1/16-in. two-gage, strain rosettes on the pipe extensions. Dial indicators, mounted on a special nonflexible holding frame, were used to measure deflections and rotations of the pipe extensions. Normalized maximum stress intensities for each loading condition on each tee are summarized in the text. Complete sets of strain-gage data, normalized stresses, and displacement measurements for each tee are given on microfiche in the appendixes. Following completion of the strain-gage tests, each tee was tested to failure in a fully reversed displacement-controlled low-cycle fatigue test with an alternating transverse load applied to the branch pipe. The load was directed out of plane for T-4, T-6, T-8, and T-15; and in plane for T-7. A constant internal pressure equal to the nominal design pressure was maintained during the fatigue tests. Failure data from the fatigue tests are summarized in the text

  15. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven

    Directory of Open Access Journals (Sweden)

    Mustafa MUTLU

    2016-04-01

    Full Text Available In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.

  16. 6. GESA symposium on experimental stress analysis, May 6 and 7, 1982 Stuttgart

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Under the scientific chairmanship of Dr. H. Wolf, KWU Muehlheim/Ruhr, the 6th Symposium of the Gemeinschaft Experimentelle Spannungsanalyse (GESA = Experimental Stress Analysis Association) takes place in the Schwabenlandhalle at Fellbach near Stuttgart. The meeting will be organized by VDI/VDE-Gesellschaft Mess- und Regelungstechnik (GMR = VDI/VDE Society for Instrumentation and Control Engineering) located at Duesseldorf. It will be associated with an exposition of firms working in the field of experimental mechanics and presenting among other things developments in the fields of measuring transmitters, data acquisition and processing.

  17. 6. GESA symposium on experimental stress analysis, May 6 and 7, 1982 Stuttgart

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Under the scientific chairmanship of Dr. H. Wolf, KWU Muehlheim/Ruhr the 6th Symposium of the Gemeinschaft Experimentelle Spannungsanalyse (GESA = Experimental Stress Analysis Association) takes place in the Schwabenlandhalle at Fellbach near Stuttgart. The meeting will be organized by VDI/VDE-Gesellschaft Mess- und Regelungstechnik (GMR = VDI/VDE Society for Instrumentation and Control Engineering) located at Duesseldorf. It will be associated with an exposition of firms working in the field of experimental mechanics and presenting among other things developments in the fields of measuring transmitters, data acquisition and processing. (orig./RW) [de

  18. Experimental studies of the deformation of carbonated rocks by dissolution crystallization under stress

    International Nuclear Information System (INIS)

    Zubtsov, Sergey

    2003-01-01

    The first part of this research thesis reports the experimental investigation and the modelling of the deformation of poly-mineral rocks under the influence of mechanism of dissolution-crystallization under stress. This mechanism has a significant role in the compaction of sedimentary rocks, in the folding process of the earth's crust. The author notably reports the results of the experimental deformation of calcite in presence of water (calcite is present in marls in which the deposit of nuclear wastes in planned in France). The second part deals with the fact that healing is possible between two grains of similar mineralogy, and slows down or even stops deformation

  19. Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

    Science.gov (United States)

    Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao

    2018-04-01

    Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

  20. Linear elastic obstacles: analysis of experimental results in the case of stress dependent pre-exponentials

    International Nuclear Information System (INIS)

    Surek, T.; Kuon, L.G.; Luton, M.J.; Jones, J.J.

    1975-01-01

    For the case of linear elastic obstacles, the analysis of experimental plastic flow data is shown to have a particularly simple form when the pre-exponential factor is a single-valued function of the modulus-reduced stress. The analysis permits the separation of the stress and temperature dependence of the strain rate into those of the pre-exponential factor and the activation free energy. As a consequence, the true values of the activation enthalpy, volume and entropy also are obtained. The approach is applied to four sets of experimental data, including Zr, and the results for the pre-exponential term are examined for self-consistency in view of the assumed functional dependence

  1. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  2. Design rules for piping: experimental validation of flexibility and elastic stress indices for elbows under bending

    International Nuclear Information System (INIS)

    Touboul, F.; Ben Jdidia, M.; Acker, D.

    1989-01-01

    Design rules for class 1 piping components are based on stress indices (B, C, K) and flexibility factors (k). For elbows, adjacent straight parts and internal pressure inhibit ovalization of the cross-section, so reducing the sub-mentioned indices. Published theoretical works and experimental results allow for improvement of coded values. End effect may be represented by a suitable function of the elbow angle. The favourable effect of pressure on C 2 , for fatigue damage evaluation, can be taken into account

  3. Central neuropeptide Y (NPH) expression and function : role in stress, experimental anxiety, and cognition

    OpenAIRE

    Thorsell, Annika

    2000-01-01

    Neuropeptide Y (NPY), a 36 amino acid peptide abundantly expressed throughout the mammalian nervous system, has been implicated in experimental anxiety and stress related responses, feeding, and learning and memory. These functions are mediated via different receptor subtype populations (Y1-Y6), all belonging to the G-protein coupled receptor superfamily. The Y1 -subtype has been shown to mediate the anxiolytic effects of NPY, while the Y2 subtype is involved in regulation o...

  4. Stress distribution in the 16MND5 bainitic steel. Experimental analysis and polycrystalline modelling

    International Nuclear Information System (INIS)

    Pesci, R.; Inal, K.; Berveiller, M.; Masson, R.

    2003-01-01

    The 16MND5 bainitic steel being a two-phase material (ferrite/cementite), the X-Ray Diffraction (XRD) is the most efficient tool to determine the stress states into the ferritic phase (sin 2 ψ method). The latter, coupled to the observations realized during tensile tests (specimen surface and facies), have permitted to establish criteria to describe the behavior and the damaging processes of the material on a crystallographic scale, in the lower part of the ductile-to-brittle transition region and at lower temperatures [-196 deg. C;-60 deg. C]. During the loading, the damage is observed with a Scanning Electron Microscope, while the internal stresses are determined by XRD: the stress states are less important in ferrite than in bainite (macroscopic stress), the difference not exceeding 150 MPa. A multi-scale polycrystalline model is developed concurrently with the experimental measurements: a Mori-Tanaka formulation is used to describe the elastoplastic behavior of a ferritic single crystal reinforced by cementite precipitates, while the transition to the polycrystal is achieved by a self-consistent approach. The developed modeling takes into account the temperature effects on the stress states in each phase and includes a cleavage criterion (critical value of the stress normal to [100] planes), which expresses the damage of the material: thus, it enables to predict the actual experimental behavior of the 16MND5 steel in relation to temperature, and to take into account the failure process which is fragile from -120 deg. C. Besides, it is also possible to calculate the strains of the diffracting planes, which can be compared to those measured by XRD: this enables to evaluate the heterogeneity of the strains for each crystallographic orientation. (authors)

  5. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C. A. [Argonne National Lab., IL (United States); Ariman, T. [Univ. of Notre Dame, IN (United States); Pierce, R. D.; Pedersen, D. R. [Argonne National Lab., IL (United States)

    1977-07-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. The cup principal components are: 1. A 38 mm diameter tungsten spike which provides initial fuel quenching and prevents fuel boiling, 2. A 73 mm inside diameter tungsten liner to isolate the support vessel from the molten material high initial temperature, 3. An insulator which is an expedient for extending the experiment time, and 4. An Inconel 625 vessel which provides the structural support to withstand the thermal and pressure stresses. The spike, liner, and insulator are supported by a hemispherical tungsten end cap which fits inside the hemispherical bottom of the support vessel. This vessel is attached to the 316 stainless steel test train with an Inconel 750 wire-formed retaining ring. Thermal analyses were performed with the Argonne-modified version of the general heat transfer code THTB, based on the instantaneous addition of 3200/sup 0/K molten fuel with a decay heat of 9 W/gm and 1920/sup 0/K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The most severe heating occurs when there is no sodium flow outside the cup. For this case the sodium boils (approximately 1200/sup 0/K) and the Inconel vessel and tungsten liner temperatures are approximately 1250/sup 0/K and 2420/sup 0/K, respectively.

  6. Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Kim, Yun Jae [Korea Unviersity, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    In nuclear power plants, ferritic low alloy steel components were connected with austenitic stainless steel piping system through alloy 82/182 butt weld. There have been incidents recently where cracking has been observed in the dissimilar metal weld. Alloy 82/182 is susceptible to primary water stress corrosion cracking. Weld-induced residual stress is main factor for crack growth. Therefore exact estimation of residual stress is important for reliable operating. This paper presents residual stress computation performed by 6'' safety and relief nozzle. Based on 2 dimensional and 3 dimensional finite element analyses, effect of welding variables on residual stress variation is estimated for sensitivity analysis.

  7. Patterns of attention and experiences of post-traumatic stress symptoms following childbirth: an experimental study.

    Science.gov (United States)

    Dale-Hewitt, Vanessa; Slade, Pauline; Wright, Ingram; Cree, Michelle; Tully, Chris

    2012-08-01

    Childbirth for some women can be experienced as a traumatic event whereby it is appraised as threatening to life and associated with feelings of fear, helplessness or horror. These women may develop symptoms consistent with post-traumatic stress disorder or its sub-clinical symptoms (post-traumatic stress, PTS). Cognitive processes such as attentional biases have been identified in individuals with PTS exposed to other traumatic events. This study used an experimental design (the modified Stroop task) to investigate the relationship between attentional biases and PTS symptoms in 50 women who experienced their labour and delivery as stressful and responded with fear, helplessness and horror. Attentional biases away from childbirth words were significantly associated with both symptoms of post-traumatic stress and more negative experiences of childbirth. A negative experience was also associated with more severe symptoms of PTS. Positive experiences were unassociated with attentional biases or symptoms. Post-traumatic stress responses, in this population, may be associated with avoidance, and through influencing cognitive processing, acting as a maintaining factor of distress.

  8. Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    International Nuclear Information System (INIS)

    Mazlan, S A; Ekreem, N B; Olabi, A G

    2008-01-01

    This paper presents an experimental investigation of two different magnetorheological (MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

  9. Digital-image-correlation-based experimental stress analysis of reinforced concrete beams strengthened using carbon composites

    Science.gov (United States)

    Helm, Jeffrey; Kurtz, Stephen

    2005-01-01

    The strengthening of reinforced concrete beams through the use of epoxy-bonded carbon composites has been widely researched in the United States since 1991. Despite the widespread attention of researchers, however, there are no reliable methods of predicting the failure of the repaired and strengthened beams by peeling of the fiber reinforced polymer (FRP) material from the parent concrete. To better understand peeling failure, several investigators have presented analytical work to predict the distribution of stresses along the interface between the FRP and the concrete. Several closed-form solutions can be found in the literature to predict the levels of shear stress present between the bonded composite plate and the parent concrete beam. However, there has been very little experimental verification of these analytical predictions because few experiments on large-scale beams have had sufficient instrumentation to facilitate the comparison. Some experiments have been presented1 in which electrical resistance strain gages were placed along the length of the carbon plate in order to deduce the interfacial shear stress using first differences. This method, though very crude, demonstrated that there are substantial differences between the distributions of interfacial shear stresses in actual repaired beams versus the analytical predictions. This paper presents a new test program in which large-scale carbon-fiber-strengthened reinforced concrete beams are load-tested to failure, while employing digital image correlation (DIC) to record the strains in the carbon fiber plate. Relying on the linear elasticity of carbon fiber, the interfacial shear can be determined and compared with the analytical predictions of the literature. The focus of this paper is the presentation of the experimental shear stress distributions and comparisons of these distributions with previous results available in the literature.

  10. Parametric stress analyses for low-level liquid radwaste system piping of ITER subjected to seismic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon-Suk [Department of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of); Oh, Chang-Kyun [Materials Engineering Department, KEPCO E& C, Yongin (Korea, Republic of); Kim, Hyun-Su, E-mail: hyunsu@kepco-enc.com [Materials Engineering Department, KEPCO E& C, Yongin (Korea, Republic of)

    2015-10-15

    The ITER project is aimed at demonstrating the feasibility of fusion as one of the possible energy options. A layout optimization is one of the design concerns for maintaining safety and reliability of the piping, because some piping penetrating the buildings is subjected to large seismic displacements. The objective of this study is to determine an optimum layout for the radioactive liquid transfer piping to withstand a given seismic displacements combined with internal pressure and thermal expansion. To do this, a series of finite element analyses were performed for various layouts. In addition, the feasibility for utilizing the double-walled structure was investigated. Analysis result shows that effects of the internal pressure and thermal expansion on the total stress are very small compared to that of the seismic displacements. Also, the stress as well as the deformation of the double-walled piping is larger than that of the single-walled piping although the difference is not big. Based on this result, an optimum configuration, a spiral along with U shape, is suggested.

  11. Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment

    Science.gov (United States)

    Götze, Christian; Jung, András; Merbach, Ines; Wennrich, Rainer; Gläßer, Cornelia

    2010-06-01

    Floodplain ecosystems are affected by flood dynamics, nutrient supply as well as anthropogenic activities. Heavy metal pollution poses a serious environmental challenge. Pollution transfer from the soil to vegetation is still present at the central location of Elbe River, Germany. The goal of this study was to assess and separate the current heavy metal contamination of the floodplain ecosystem, using spectrometric field and laboratory measurements. A standardized pot experiment with floodplain vegetation in differently contaminated soils provided the basis for the measurements. The dominant plant types of the floodplains are: Urtica dioica, Phalaris arundinacea and Alopecurus pratensis, these were also chemically analysed. Various vegetation indices and methods were used to estimate the red edge position, to normalise the spectral curve of the vegetation and to investigate the potential of different methods for separating plant stress in floodplain vegetation. The main task was to compare spectral bands during phenological phases to find a method to detect heavy metal stress in plants. A multi-level algorithm for the curve parameterisation was developed. Chemo-analytical and ecophysiological parameters of plants were considered in the results and correlated with spectral data. The results of this study show the influence of heavy metals on the spectral characteristics of the focal plants. The developed method (depth CR1730) showed significant relationship between the plants and the contamination.

  12. Assessment of urban thermal stress by UTCI – experimental and modelling studies: an example from Poland

    Directory of Open Access Journals (Sweden)

    Błażejczyk, Krzysztof

    2014-09-01

    Full Text Available The paper presents a new approach to the study of the spatial variability of heat stress in urban areas. The Universal Thermal Climate Index UTCI was applied for this purpose. The spatial variability of UTCI at the local scale was studied using examples of urban areas with different sizes and geographical locations. The experimental research on urban heat stress was conducted in Warsaw. The research covers both differences between UTCI in urban to rural areas as well as the variation of heat stress within small residential districts in Warsaw. We found a very large and significant heat stress gradient between downtown Warsaw and rural stations. Spatial variability of UTCI was also observed in microclimate research. A modelling approach was presented based on examples from Warsaw, a city with a population of almost 2 million, as well as examples from several spa towns with populations of up to 40,000 located in various parts of Poland. GIS analysis (ArcGIS for Desktop and IDRISI was applied for this purpose.

  13. Systems Genetic Analyses Highlight a TGFβ-FOXO3 Dependent Striatal Astrocyte Network Conserved across Species and Associated with Stress, Sleep, and Huntington's Disease.

    Science.gov (United States)

    Scarpa, Joseph R; Jiang, Peng; Losic, Bojan; Readhead, Ben; Gao, Vance D; Dudley, Joel T; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2016-07-01

    Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFβ-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network

  14. Experimental And Theoretical Stress Analysis For Composite Plate Under Combined Load

    Directory of Open Access Journals (Sweden)

    Emad Qasim Hussein

    2017-12-01

    Full Text Available The combined effects of thermal and mechanical loadings on the distribution of stress-strain for E-glass fiber /polyester composite plates are investigated experimentally and numerically. The experimental work has been carried out by applying to a uniform temperature and tensile load on the composite plate inside the furnace and the deformation of plate measured by a dial gauge. Two parameter studies, the fiber volume fraction and fiber orientation on the stress-strain for plates subjected to identical mechanical and temperature gradient. The results presented showed that, the maximum absolute of total strain in longitudinal direction occurred at 50 N tension load and fiber angle 60º, while the minimum absolute values of it occurred at 15 N tension loads and fiber angle 0º. However the maximum absolute of total strain in transverse direction occurred at 15N tension load and fiber angle 0º, while the minimum absolute values of it are obtained at 50 N tension loads and fiber angle 60º. Also, the total strain in longitudinal and transverse direction decrease with increasing the fiber volume fraction. Comparison of the results in the experimental test with the numerical analysis of the total strain and evaluated the agreement between the two methods used, the maximum discrepancywas 20%.

  15. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718.

    Science.gov (United States)

    Hua, Yang; Liu, Zhanqiang

    2018-05-24

    Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  16. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718

    Directory of Open Access Journals (Sweden)

    Yang Hua

    2018-05-01

    Full Text Available Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  17. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    International Nuclear Information System (INIS)

    Biswas, Kaushik; Abhari, Ramin

    2014-01-01

    Highlights: • Testing of a low-cost bio-PCM in an exterior wall under varying weather conditions. • Numerical model validation and annual simulations of PCM-enhanced cellulose insulation. • Reduced wall-generated cooling electricity consumption due to the application of PCM. • PCM performance was sensitive to its location and distribution within the wall. - Abstract: A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM–HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months. To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, a side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM–HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM

  18. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  19. Experimental Study of Stress-Strain Behaviour of Open-Cell Aluminium Foam Sandwich Panel for Automotive Structural Part

    Directory of Open Access Journals (Sweden)

    Nur Asmawiyah Ibrahim

    2017-07-01

    Full Text Available Because of high stiffness and strength to weight ratio, aluminium foam sandwich (AFS has huge advantage in automotive industries in order to reduce the vehicle’s weight which consequently will reduce the fuel consumption. While reducing the weight, AFS must also maintain high strength and durability compared to other competitive materials used which perform same functionalities. AFS had been proved its suitability for industrial application by previous researchers such as in aerospace, automotive and architecture. However, there is still a gap need to be filled in order to expand the use of the AFS in another application. In this paper, the tensile strength of AFS panel made of from aluminium skin sheets and open-cell aluminium foam core with various thickness is investigated. Design of experiment was developed according to JUMP (JMP statistical software and experimental work was done using universal testing machine. The stress-strain behavior was analysed. The result shows that the effect of skin to core ratio is significant on the stress-strain behavior.

  20. Experimental stress analysis for four 24-in. ANSI standard B16.9 tees

    International Nuclear Information System (INIS)

    Hayes, J.K.; Moore, S.E.

    1976-01-01

    The experimental stress analysis and low cycle fatigue tests of four tees tested by Combustion Engineering, Inc. (E-E) under subcontract to Union Carbide Nuclear Division are described. These tests are part of the ORNL Design Criteria for Piping and Nozzles Program which is being conducted for the development of design criteria for nuclear power plant service piping components. The test assemblies were fabricated at C-E from commercially obtained ANSI B16.9 tees and matching diameter steel pipes welded to the tees, with suitable and closures and fixtures for applying the loads

  1. A numerical and experimental study of stress and crack development in kiln-dried wood

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2012-01-01

    Numerical and experimental investigations were carried out on well defined log-disc samples of Norway spruce consisting of both heartwood and sapwood, with the aim of gaining more adequate knowledge of stress and fracture generation during the drying process. Use of thin discs enabled a well-controlled...... and simplified drying history of the samples to be obtained. Experiments supported by the numerical model showed the heartwood to dry below the fibre saturation point, much earlier than the sapwood, and thus to start shrinking at a much earlier stage....

  2. Neonatal maternal separation increases susceptibility to experimental colitis and acute stress exposure in male mice

    Directory of Open Access Journals (Sweden)

    Isabella M. Fuentes

    2016-12-01

    Full Text Available Experiencing early life stress can result in maladjusted stress response via dysregulation of the hypothalamic-pituitary-adrenal axis and serves as a risk factor for developing chronic pelvic pain disorders. We investigated whether neonatal maternal separation (NMS would increase susceptibility to experimental colitis or exposure to acute or chronic stress. Male mice underwent NMS from postnatal day 1–21 and as adults were assessed for open field behavior, hindpaw sensitivity, and visceromotor response (VMR to colorectal distension (CRD. VMR was also measured before and after treatment with intracolonic trinitrobenzene sulfonic acid (TNBS or exposure to acute or chronic water avoidance stress (WAS. Myeloperoxidase (MPO activity, proinflammatory gene and corticotropin-releasing factor (CRF receptor expression were measured in distal colon. Baseline VMR was not affected by NMS, but undergoing CRD increased anxiety-like behaviors and mechanical hindpaw sensitivity of NMS mice. Treatment with TNBS dose-dependently decreased body weight and survival only in NMS mice. Following TNBS treatment, IL-6 and artemin mRNA levels were decreased in the distal colon of NMS mice, despite increased MPO activity. A single WAS exposure increased VMR during CRD in NMS mice and increased IL-6 mRNA and CRF2 protein levels in the distal colon of naïve mice, whereas CRF2 protein levels were heightened in NMS colon both at baseline and post-WAS exposure. Taken together, these results suggest that NMS in mice disrupts inflammatory- and stress-induced gene expression in the colon, potentially contributing towards an exaggerated response to specific stressors later in life.

  3. Research coordination meeting of the coordinated research project on analytical and experimental benchmark analyses of accelerator driven systems. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Technical Meeting hosted at the Belarus National Academy of Sciences in Minsk by the Joint Institute of Power Engineering and Nuclear Research 'SOSNY' from 5-9 December 2005 was the kick-off Research Coordination Meeting (RCM) of the IAEA Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems (ADS)'. The CRP had received proposals for research agreements and contracts from scientists representing the following 25 institutions: Centro Atomico Bariloche, SCK CEN Mol, Instituto de Pesquisas Energeticas e Nucleares Sao Paulo, Joint Institute of Power Engineering and Nuclear Research SOSNY Minsk, China Institute of Atomic Energy, CEA Cadarache, CNRS Paris, FZ Rossendorf, FZ Karlsruhe, Budapest University of Technology and Economics, Politecnico di Torino, Japan Atomic Energy Agency, Nuclear Research and Consultancy Group (NRG) Petten, Pakistan Institute of Nuclear Science and Technology, AGH-University of Science and Technology Krakow, Institute of Atomic Energy Otwock/Swierk, ITEP Moscow, MEPHI Moscow, Kurchatov Institute, JINR Dubna, Universidad Politecnica de Madrid, CIEMAT Madrid, Royal Institute of Technology Stockholm, National Science Center 'Kharkov Institute and Technology', and Argonne National Laboratory). These institutions represent 18 IAEA Member States (i.e., Argentina, Belarus, Belgium, Brazil, China, France, Germany, Hungary, Italy, Japan, Netherlands, Pakistan, Poland, Russia, Spain, Sweden, Ukraine, USA), and one International Organization (JINR Dubna). The overall objective of the CRP is contributing to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e., heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. Ultimately, the CRP

  4. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M

    2009-01-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  5. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  6. Activity of the Hypothalamic-Pituitary-Adrenal System in Prenatally Stressed Male Rats on the Experimental Model of Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Pivina, S G; Rakitskaya, V V; Akulova, V K; Ordyan, N E

    2016-03-01

    Using the experimental model of post-traumatic stress disorder (stress-restress paradigm), we studied the dynamics of activity of the hypothalamic-pituitary-adrenal system (HPAS) in adult male rats, whose mothers were daily subjected to restraint stress on days 15-19 of pregnancy. Prenatally stressed males that were subjected to combined stress and subsequent restress exhibited not only increased sensitivity of HPAS to negative feedback signals (manifested under restress conditions), but also enhanced stress system reactivity. These changes persisted to the 30th day after restress. Under basal conditions, the number of cells in the hypothalamic paraventricular nucleus of these animals expressing corticotropin-releasing hormone and vasopressin was shown to decrease progressively on days 1-30. By contrast, combined stress and restress in control animals were followed by an increase in the count of CRH-immunopositive cells in the magnocellular and parvocellular parts of the paraventricular nucleus and number of vasopressin-immunopositive cells in the magnocellular part of the nucleus (to the 10th day after restress). Our results indicate a peculiar level of functional activity of HPAS in prenatally stressed males in the stress-restress paradigm: decreased activity under basal conditions and enhanced reactivity during stress.

  7. Modeling and experimental study of residual stresses in NOREM hardfacing coatings used in valve parts

    International Nuclear Information System (INIS)

    Beaurin, G.

    2012-01-01

    Hardfacing coatings are widely used on the surfaces of parts subjected to drastic loadings. Norem02 alloy, Fe-based, is used in PWR nuclear power plants on valves seating surfaces. Its microstructure consists of a dendritic austenite structure with ferrite islets and carbides. This work tends to demonstrate that for this alloy, metallurgical evolution during the welding process has very little influence on mechanical properties. Tensile behavior was characterized and completed by dilatometry tests in welding process temperature range until 1000 Celsius degrees, in order to identify an elastoplastic model with non linear kinematic hardening rule. Temperature, displacements, distortions and residual stresses were measured during the PTAW (Plasma Transferred Arc Welding) process and used to identify an equivalent thermal loading by solving an inverse problem. Finally, the numerical simulation of the whole process using the EDF FEM software Code-Aster is presented. Predicted temperatures are consistent with experimental ones. In the same way, predicted displacements, residual distortions and residual stresses at the end of the cooling phase are close to experimental measures, validating the modeling strategy presented in this work. (author)

  8. Antenatal environmental stress and maturation of the breathing control, experimental data.

    Science.gov (United States)

    Cayetanot, F; Larnicol, N; Peyronnet, J

    2009-08-31

    The nervous respiratory system undergoes postnatal maturation and yet still must be functional at birth. Any antenatal suboptimal environment could upset either its building prenatally and/or its maturation after birth. Here, we would like to briefly summarize some of the major stresses leading to clinical postnatal respiratory dysfunction that can occur during pregnancy, we then relate them to experimental models that have been developed in order to better understand the underlying mechanisms implicated in the respiratory dysfunctions observed in neonatal care units. Four sections are aimed to review our current knowledge based on experimental data. The first will deal with the metabolic factors such as oxygen and glucose, the second with consumption of psychotropic substances (nicotine, cocaine, alcohol, morphine, cannabis and caffeine), the third with psychoactive molecules commonly consumed by pregnant women within a therapeutic context and/or delivered to premature neonates in critical care units (benzodiazepine, caffeine). In the fourth section, we take into account care protocols involving extended maternal-infant separation due to isolation in incubators. The effects of this stress potentially adds to those previously described.

  9. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  10. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    Science.gov (United States)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  11. Mini-channel flow experiments and CFD validation analyses with the IFMIF Thermo- Hydraulic Experimental facility (ITHEX)

    International Nuclear Information System (INIS)

    Arbeiter, F.; Heinzel, V.; Leichtle, D.; Stratmanns, E.; Gordeev, S.

    2006-01-01

    nozzle. Several possible options to cope with this deficiency will be presented. A systematic analysis using STAR-CD between 8 different low Reynolds number turbulence models showed that the k-ε low Reynolds model is most appropriate in describing the transition region. On the basis of these experimental results and analyses obtained so far with ITHEX it can be concluded that STAR-CD and it's k-ε low Reynolds model is validated for the thermohydraulic design of the HFTM. (author)

  12. Experimental and CFD Simulation Studies of Wall Shear Stress for Different Impeller Configurations and MBR Activated Sludge

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Chan, C.C.V.; Bentzen, Thomas Ruby

    2012-01-01

    in an MBR. Nevertheless, proper experimental validation is required to validate CFD simulation. In this work experimental measurements of shear stress induced by impellers at a membrane surface were made with an electrochemical approach and the results were used to validate CFD simulations. As good results...... appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be improved by understanding the shear stress over the membrane surface. Modern tools such as Computational Fluid Dynamics (CFD) can be used to diagnose and understand the shear stress...

  13. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses

    Directory of Open Access Journals (Sweden)

    Li Chuan

    2012-05-01

    Full Text Available Abstract Background Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP genes, fructosyltransferase (FST genes, and many C-repeat binding factor (CBF genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. Results Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. Conclusions We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.

  14. Latent profile analyses of posttraumatic stress disorder, depression and generalized anxiety disorder symptoms in trauma-exposed soldiers.

    Science.gov (United States)

    Contractor, Ateka A; Elhai, Jon D; Fine, Thomas H; Tamburrino, Marijo B; Cohen, Gregory; Shirley, Edwin; Chan, Philip K; Liberzon, Israel; Galea, Sandro; Calabrese, Joseph R

    2015-09-01

    Posttraumatic stress disorder (PTSD) is comorbid with major depressive disorder (MDD; Kessler et al., 1995) and generalized anxiety disorder (GAD; Brown et al., 2001). We aimed to (1) assess discrete patterns of post-trauma PTSD-depression-GAD symptoms using latent profile analyses (LPAs), and (2) assess covariates (gender, income, education, age) in defining the best fitting class solution. The PTSD Checklist (assessing PTSD symptoms), GAD-7 scale (assessing GAD symptoms), and Patient Health Questionnaire-9 (assessing depression) were administered to 1266 trauma-exposed Ohio National Guard soldiers. Results indicated three discrete subgroups based on symptom patterns with mild (class 1), moderate (class 2) and severe (class 3) levels of symptomatology. Classes differed in symptom severity rather than symptom type. Income and education significantly predicted class 1 versus class 3 membership, and class 2 versus class 3. In conclusion, there is heterogeneity regarding severity of PTSD-depression-GAD symptomatology among trauma-exposed soldiers, with income and education predictive of class membership. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Proteomic and physiological analyses reveal the role of exogenous spermidine on cucumber roots in response to Ca(NO3)2 stress.

    Science.gov (United States)

    Du, Jing; Guo, Shirong; Sun, Jin; Shu, Sheng

    2018-05-01

    The mechanism of exogenous Spd-induced Ca(NO 3 ) 2 stress tolerance in cucumber was studied by proteomics and physiological analyses. Protein-protein interaction network revealed 13 key proteins involved in Spd-induced Ca(NO 3 ) 2 stress resistance. Ca(NO 3 ) 2 stress is one of the major reasons for secondary salinization that limits cucumber plant development in greenhouse. The conferred protective role of exogenous Spd on cucumber in response to Ca(NO 3 ) 2 stress cues involves changes at the cellular and physiological levels. To investigate the molecular foundation of exogenous Spd in Ca(NO 3 ) 2 stress tolerance, a proteomic approach was performed in our work. After a 9 days period of Ca(NO 3 ) 2 stress and/or exogenous Spd, 71 differential protein spots were confidently identified. The resulting proteins were enriched in seven different categories of biological processes, including protein metabolism, carbohydrate and energy metabolism, ROS homeostasis and stress defense, cell wall related, transcription, others and unknown. Protein metabolism (31.2%), carbohydrate and energy metabolism (15.6%), ROS homeostasis and stress defense (32.5%) were the three largest functional categories in cucumber root and most of them were significantly increased by exogenous Spd. The Spd-responsive protein interaction network revealed 13 key proteins, whose accumulation changes could be critical for Spd-induced resistance; all 13 proteins were upregulated by Spd at transcriptional and protein levels in response to Ca(NO 3 ) 2 stress. Furthermore, accumulation of antioxidant enzymes, non-enzymatic antioxidant and polyamines, along with reduction of H 2 O 2 and MDA, were detected after exogenous Spd application during Ca(NO 3 ) 2 stress. The results of these proteomic and physiological analyses in cucumber root may facilitate a better understanding of the underlying mechanism of Ca(NO 3 ) 2 stress tolerance mediated by exogenous Spd.

  16. Gene Expression Responses to FUS, EWS, and TAF15 Reduction and Stress Granule Sequestration Analyses Identifies FET-Protein Non-Redundant Functions

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Luo, Yonglun; Bolund, Lars

    2012-01-01

    The FET family of proteins is composed of FUS/TLS, EWS/EWSR1, and TAF15 and possesses RNA- and DNA-binding capacities. The FET-proteins are involved in transcriptional regulation and RNA processing, and FET-gene deregulation is associated with development of cancer and protein granule formations...... in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and trinucleotide repeat expansion diseases. We here describe a comparative characterization of FET-protein localization and gene regulatory functions. We show that FUS and TAF15 locate to cellular stress granules to a larger extend than EWS....... FET-proteins have no major importance for stress granule formation and cellular stress responses, indicating that FET-protein stress granule association most likely is a downstream response to cellular stress. Gene expression analyses showed that the cellular response towards FUS and TAF15 reduction...

  17. Tic Frequency Decreases during Short-term Psychosocial Stress - An Experimental Study on Children with Tic Disorders.

    Science.gov (United States)

    Buse, Judith; Enghardt, Stephanie; Kirschbaum, Clemens; Ehrlich, Stefan; Roessner, Veit

    2016-01-01

    It has been suggested that psychosocial stress influences situational fluctuations of tic frequency. However, evidence from experimental studies is lacking. The current study investigated the effects of the Trier Social Stress Test (TSST-C) on tic frequency in 31 children and adolescents with tic disorders. A relaxation and a concentration situation served as control conditions. Patients were asked either to suppress their tics or to "tic freely." Physiological measures of stress were measured throughout the experiment. The TSST-C elicited a clear stress response with elevated levels of saliva cortisol, increased heart rate, and a larger number of skin conductance responses. During relaxation and concentration, the instruction to suppress tics reduced the number of tics, whereas during stress, the number of tics was low, regardless of the given instruction. Our study suggests that the stress might result in a situational decrease of tic frequency.

  18. Experimental model to evaluate in vivo and in vitro cartilage MR imaging by means of histological analyses

    International Nuclear Information System (INIS)

    Bittersohl, B.; Mamisch, T.C.; Welsch, G.H.; Stratmann, J.; Forst, R.; Swoboda, B.; Bautz, W.; Rechenberg, B. von; Cavallaro, A.

    2009-01-01

    Objectives: Implementation of an experimental model to compare cartilage MR imaging by means of histological analyses. Material and methods: MRI was obtained from 4 patients expecting total knee replacement at 1.5 and/or 3 T prior surgery. The timeframe between pre-op MRI and knee replacement was within two days. Resected cartilage-bone samples were tagged with Ethi-pins to reproduce the histological cutting course. Pre-operative scanning at 1.5 T included following parameters for fast low angle shot (FLASH: TR/TE/FA = 33 ms/6 ms/30 deg., BW = 110 kHz, 120 mm x 120 mm FOV, 256 x 256 matrix, 0.65 mm slice-thickness) and double echo steady state (DESS: TR/TE/FA = 23.7 ms/6.9 ms/40 deg., BW = 130 kHz, 120 x 120 mm FOV, 256 x 256 matrix, 0.65 mm slice-thickness). At 3 T, scan parameters were: FLASH (TR/TE/FA = 12.2 ms/5.1 ms/10 deg., BW = 130 kHz, 170 x 170 mm FOV, 320 x 320, 0.5 mm slice-thickness) and DESS (TR/TE/FA = 15.6 ms/4.5 ms/25 deg., BW = 200 kHz, 135 mm x 150 mm FOV, 288 x 320 matrix, 0.5 mm slice-thickness). Imaging of the specimens was done the same day at 1.5 T. MRI (Noyes) and histological (Mankin) score scales were correlated using the paired t-test. Sensitivity and specificity for the detection of different grades of cartilage degeneration were assessed. Inter-reader and intra-reader reliability was determined using Kappa analysis. Results: Low correlation (sensitivity, specificity) was found for both sequences in normal to mild Mankin grades. Only moderate to severe changes were diagnosed with higher significance and specificity. The use of higher field-strengths was advantageous for both protocols with sensitivity values ranging from 13.6% to 93.3% (FLASH) and 20.5% to 96.2% (DESS). Kappa values ranged from 0.488 to 0.944. Conclusions: Correlating MR images with continuous histological slices was feasible by using three-dimensional imaging, multi-planar-reformat and marker pins. The capability of diagnosing early cartilage changes with high accuracy

  19. Graphite nodules and local residual stresses in ductile iron: Thermo-mechanical modelingand experimental validation

    DEFF Research Database (Denmark)

    Andriollo, Tito

    -indentation method is considered first, with the aim of obtaining some direct information concerning the constitutive behavior of the individual graphite particles. Unfortunately, the technique turns out to feature a number of assumptions that pose strong limitations to its applicability to brittle, inhomogeneous...... this as point of departure, the present work initially focuses on finding a satisfactory description of the nodules’ thermo-elastic behavior, which is shown to be missing in the published literature, by means of micro-mechanical homogenization analyses based on a representative unit cell. These, combined...... stages of the manufacturing process are simulated numerically, accounting for the different thermal expansion of the nodules and of the matrix during both the eutectoid transformation and the subsequent cooling to room temperature. The results show the formation of significant residual stresses...

  20. NRI experimental facility for the testing of irradiation assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Ruscak, M.; Chvatal, P.; Zamboch, M.

    1998-01-01

    IASCC influencing reactor internals of both BWR and PWR reactors is a complex phenomenon covering influences of material structure, neutron fluence, neutron flux, chemistry of environment, gamma radiation and mechanical stress. To evaluate such degradation, tests should be performed under conditions similar to those in real structure. Nuclear Research Institute has built several experimental facilities in order to be able to test IASCC degradation of materials. Basically, reactor water loops, both PWR and BWR, could be used to model environmental conditions including gamma and neutron irradiation. Pre-irradiation can be done in irradiation channels under well controlled temperature conditions. During the experiment, in-pile conditions can be compared with those out of pile. It enables to clarify pure influence of irradiation. For testing of irradiated specimens, hot cell facility has been developed for slow strain rate tests. The paper will show all above mentioned facilities as well as some of the results observed with them. (author)

  1. Comparison of finite-element stress analysis with experimental copper sphere impacts

    International Nuclear Information System (INIS)

    Frantz, C.E.; Hecker, S.S.; Stout, M.G.; Browning, R.V.

    1980-07-01

    Three copper spheres were impacted on targets of varying surface finishes at 100 m/s. Impact face friction was varied for each test and the impact was photographed with a high-speed camera. Postimpact strains and deformation were measured. A finite-element computer code, NONSAP, was used to model the impact. The best agreement between computer prediction and experiment was obtained using isoparametric elements, a graded mesh, and actual high-strain-rate copper stress-strain data. Frictional conditions at the impact face were also modeled by altering the standard NONSAP code. The most critical test of NONSAP was accurate prediction of experimental impact strains. The best agreement we could obtain had a maximum point-to-point error of 20%, although in general, the comparison was much better. Results of this research indicate that we must know more about material and impact interface friction in order to obtain reliable numerical predictions

  2. Test report on experimental stress analysis of a 24 inch diameter tee (ORNL T-12)

    International Nuclear Information System (INIS)

    Henley, D.R.

    1975-04-01

    The experimental stress analysis and low cycle fatigue test of one 24'' x 24'' x 10'' schedule 40 carbon steel, ANSI B16.9 tee performed by Combustion Engineering, Inc. is described. The tee was instrumented with 230 rectangular strain gage rosettes. Elastic data was obtained for 12 loading conditions consisting of internal pressure and orthogonal pure moments and orthogonal direct forces applied individually to the free branch and run ends of the tee. One of the run ends of the tee was ''built in'' throughout the test. All loads were applied through pipe extensions welded to the tee. The tee was tested to failure in a low cycle pressure fatigue test with a cyclic internal pressure between 0 psi and 1800 psi. A through-the-wall fatigue crack occurred at 76620 cycles. Significant test results are summarized and compared with design values tabulated in the ASME Boiler and Pressure Vessel Code, Section III, 1971. (U.S.)

  3. [Change of blood antioxidant capacity of experimental animals during nutritional correction under oxidative stress].

    Science.gov (United States)

    Basov, A A; Bykov, I M

    2013-01-01

    The effect of nutritional correction (a diet high in foods with antioxidant content) on blood parameters in laboratory animals with metabolic disorders associated with oxidative stress has been studied. In experimental models of laboratory animals (male rabbits weighing 3.5-4.0 kg, n = 40) with purulent septic diseases it has been demonstrated that the use of nutritive correction (replacement of 100 g of the cereal mixture through day on a mixture of cabbage 50 g, carrots 50 g, beet 25 g, apple 25 g, kiwi 10 g and garnet 10 g per 1 rabbit) is not inferior to its efficiency of glutathione use (2 g per day). The use of these antioxidants in laboratory animals significantly reduced the phenomenon of oxidative stress on the 5th day: blood antioxidant capacity significantly increased by 14.9 and 26.6%, and the area of the flash of luminol-dependent H2O2-induced chemiluminescence of blood plasma reduced by 44.2 and 48.6% in the experimental groups receiving respectively nutritive correction and glutathione. The low-molecula level of blood antioxidant capacity was restored and the balance of the activity of superoxide dismutase (decrease) and catalase (increase) was achieved on the 10th day of the experiment. These figures significantly (p < 0.05) differed from than in the group of animals receiving no antioxidant correction. The latter studied parameters of prooxidant-antioxidant system reached values comparable with those in intact animals (n = 10) only on the 30th day, confirming the advisability of appointing a complex antioxidant therapy.

  4. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  5. Internal stress distribution of X-ring using photoelastic experimental hybrid method

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Alunda Ouma [Dedan Kimathi University of Technology, Nyeri (Kenya); Hawong, Jai Sug; Lim, Hyun Seok [Yeungnam University, Gyeongsan (Korea, Republic of); Shin, Dong Chul [Koje College, Geoje (Korea, Republic of)

    2014-05-15

    Sealing elements are essential parts of many machines, and are used to prevent the loss of a fluid or gas. When such fluids are not properly sealed, catastrophic failures may result. Many different types of rings have been developed to suit various industrial needs. Considerable research has been done on the O-ring. We analyze the internal stresses developed in an X-ring under a uniform squeeze rate of 20%, which is suitable for static applications, using a photoelastic experimental hybrid method. The internal pressures applied were 0.98, 1.96, 2.94, 3.92, 4.90, and 5.88 MPa. We show that sealing rings with X geometry have considerably higher internal stresses than O-ring seals. In addition, we demonstrate that after extrusion, for an internal pressure of 5.88 MPa, the two lobes on the upper contact surface merge, thereby increasing the contact length of the upper side significantly. Extrusion in the X-ring occurred when the internal pressure was 4.90 MPa.

  6. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  7. Multiphysics modelling and experimental validation of an air-coupled array of PMUTs with residual stresses

    Science.gov (United States)

    Massimino, G.; Colombo, A.; D'Alessandro, L.; Procopio, F.; Ardito, R.; Ferrera, M.; Corigliano, A.

    2018-05-01

    In this paper a complete multiphysics modelling via the finite element method (FEM) of an air-coupled array of piezoelectric micromachined ultrasonic transducers (PMUT) and its experimental validation are presented. Two numerical models are described for the single transducer, axisymmetric and 3D, with the following features: the presence of fabrication induced residual stresses, which determine a non-linear initial deformed configuration of the diaphragm and a substantial fundamental mode frequency shift; the multiple coupling between different physics, namely electro-mechanical coupling for the piezo-electric model, thermo-acoustic-structural interaction and thermo-acoustic-pressure interaction for the waves propagation in the surrounding fluid. The model for the single transducer is enhanced considering the full set of PMUTs belonging to the silicon dye in a 4 × 4 array configuration. The results of the numerical multiphysics models are compared with experimental ones in terms of the initial static pre-deflection, of the diaphragm central point spectrum and of the sound intensity at 3.5 cm on the vertical direction along the axis of the diaphragm.

  8. Application of the results of pipe stress analyses into fracture mechanics defect analyses for welds of nuclear piping components; Uebernahme der Ergebnisse von Rohrsystemanalysen (Spannungsanalysen) fuer bruchmechanische Fehlerbewertungen fuer Schweissnaehte an Rohrleitungsbauteilen in kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, S.; Neubrech, G.E.; Wernicke, R. [TUeV Nord SysTec GmbH und Co.KG (Germany); Rieck, D. [IGN Ingenieurgesellschaft Nord mbH und Co.KG (Germany)

    2008-07-01

    For the fracture mechanical assessment of postulated or detected crack-like defects in welds of piping systems it is necessary to know the stresses in the un-cracked component normal to the crack plane. Results of piping stress analyses may be used if these are evaluated for the locations of the welds in the piping system. Using stress enhancing factors (stress indices, stress factors) the needed stress components are calculated from the component specific sectional loads (forces and moments). For this procedure the tabulated stress enhancing factors, given in the standards (ASME Code, German KTA regulations) for determination and limitation of the effective stresses, are not always and immediately adequate for the calculation of the stress component normal to the crack plane. The contribution shows fundamental possibilities and validity limits for adoption of the results of piping system analyses for the fracture mechanical evaluation of axial and circumferential defects in welded joints, with special emphasis on typical piping system components (straight pipe, elbow, pipe fitting, T-joint). The lecture is supposed to contribute to the standardization of a code compliant and task-related use of the piping system analysis results for fracture mechanical failure assessment. [German] Fuer die bruchmechanische Bewertung von postulierten oder bei der wiederkehrenden zerstoerungsfreien Pruefung detektierten rissartigen Fehlern in Schweissnaehten von Rohrsystemen werden die Spannungen in der ungerissenen Bauteilwand senkrecht zur Rissebene benoetigt. Hierfuer koennen die Ergebnisse von Rohrsystemanalysen (Spannungsanalysen) genutzt werden, wenn sie fuer die Orte der Schweissnaehte im Rohrsystem ausgewertet werden. Mit Hilfe von Spannungserhoehungsfaktoren (Spannungsindizes, Spannungsbeiwerten) werden aus den komponentenweise berechneten Schnittlasten (Kraefte und Momente) die benoetigten Spannungskomponenten berechnet. Dabei sind jedoch die in den Regelwerken (ASME

  9. The Impact of Salient Role Stress on Trajectories of Health in Late Life among Survivors of a Seven-Year Panel Study: Analyses of Individual Growth Curves

    Science.gov (United States)

    Shaw, Benjamin A.; Krause, Neal

    2002-01-01

    The purpose of this study is twofold: 1) to model changes in health over time among older adults; and 2) to assess the degree to which stress arising in salient social roles accounts for individual variation in these changes. Individual growth curve analyses using Hierarchical Linear Modeling (HLM) software were employed with longitudinal data…

  10. Approximate analyses of inelastic effects in pipework

    International Nuclear Information System (INIS)

    Jobson, D.A.

    1983-01-01

    This presentation shows figures concerned with analyses of inelastic effects in pipework as follows: comparison of experimental and calculated simplified analyses results for free end rotation and for circumferential strain; interrupted stress relaxation; regenerated relaxation caused by reversed yield; buckling of straight pipe under combined bending and torsion; results of fatigues test of pipe bend

  11. An experimental investigation of the interaction of primary and secondary stresses in fuel plates

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1996-01-01

    If the load is not relieved as a structure starts to yield, the induced stress is defined as primary stress. If the load relaxes, as a structure begins yield the induced stress is defined as secondary stress. In design it is not uncommon to give more weight to primary stresses than to secondary stresses. However, knowing when this is good design practice and when it is not good design practice represents a problem. In particular, the fuel plates in operating reactors contain both primary stresses and secondary stresses and to properly assess a design there is a need to assign design weights to the stresses. Tests were conducted on reactor fuel plates intended for the Advanced Neutron Source (ANS) to determine the potential of giving different design weights to the primary and secondary stresses. The results of these tests and the conclusion that the stresses should be weighted the same are given in this paper

  12. An experimental investigation on the interaction of primary and secondary stresses in fuel plates

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1997-01-01

    If the load is not relieved as a structure starts to yield, the induced stress is defined as primary stress. If the load relaxes, as a structure begins to yield the induced stress is defined as secondary stress. In design, it is not uncommon to give more weight to primary stresses than to secondary stresses. However, knowing when this is good design practice and when it is not good design practice represent a problem. In particular, the fuel plates in operating reactors contain both primary stresses and secondary stresses, and to properly assess a design there is a need to assign design weights to the stresses. Tests were conducted on reactor fuel plates intended for the advanced neutron source (ANS) to determine the potential of giving different design weights to the primary and secondary stresses. The results of these tests and the conclusion that the stresses should be weighted the same are given in this paper

  13. Analysis of stress intensity factors for a new mechanical corrosion specimen; Analyse du facteur d`intensite de contrainte pour une nouvelle eprouvette de mecanique corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Rassineux, B; Crouzet, D; Le Hong, S

    1996-03-01

    Electricite de France is conducting a research program to determine corrosion cracking rates in the steam generators Alloy 600 tubes of the primary system. The objective is to correlate the cracking rates with the specimen stress intensity factor K{sub I}. One of the samples selected for the purpose of this study is the longitudinal notched specimen TEL (TEL: ``Tubulaire a Entailles Longitudinales``). This paper presents the analysis of the stress intensity factor and its experimental validation. The stress intensity factor has been evaluated for different loads using 3D finite element calculations with the Hellen-Parks and G({theta}) methods. Both crack initiation and propagation are considered. As an assessment of the method, the numerical simulations are in good agreement with the fatigue crack growth rates measured experimentally for TEL and compact tension (CT) specimens. (authors). 8 refs., 6 figs., 2 tabs.

  14. Experimental stress analysis of large plastic deformations in a hollow sphere deformed by impact against a concrete block

    Science.gov (United States)

    Morris, R. E.

    1973-01-01

    An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.

  15. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  16. Fractional calculus model of articular cartilage based on experimental stress-relaxation

    Science.gov (United States)

    Smyth, P. A.; Green, I.

    2015-05-01

    Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.

  17. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Directory of Open Access Journals (Sweden)

    Yixin He

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI, a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  18. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Science.gov (United States)

    He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao

    2013-01-01

    Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  19. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress

    International Nuclear Information System (INIS)

    Larrinaga, Pello; Chastre, Carlos; Biscaia, Hugo C.; San-José, José T.

    2014-01-01

    Highlights: • Making more deepen the knowledge of textile reinforced mortar in tensile stress. • Analyzing the effect of the reinforcing ratio of the composite. • To compare results with Aveston–Cooper–Kelly theory. • To develop a numerical model based on a finite element code. • Considering the importance of the bond-slip law of the mortar-to-textile-interface. - Abstract: During the last years several projects and studies have improved the knowledge about textile reinforced mortar (TRM) technology. TRM has already been used in strengthening masonry and reinforced concrete structural elements such as walls, arches, columns and beams. This material is presented as a real alternative to the use of fiber-reinforced polymers (FRP) in situations where these composites have presented some drawbacks or their use is banned. Textile reinforced mortar show a complex mechanical behavior derived from the heterogeneity of the constituent materials. This paper aims to deepen the knowledge of this composite material in terms of tensile behavior. Following this scope, this paper presents an experimental campaign focused on thirty-one TRM specimens reinforced with four different reinforcing ratios. The results are analyzed and contrasted with two distinct models. (i) The Aveston–Cooper–Kelly theory (ACK) which is based on a tri-linear analytical approach; and (ii) a non-linear numerical simulation with a 3D finite element code. The finite element analysis (FEA) of the TRM tensile tests also showed no significant dependence on the basalt-to-mortar interface, i.e., the choice of a bond-slip curve in order to reproduce the bond stresses and slippages along the interface is irrelevant and it can be simply considered as rigid interface

  20. Econometric Mediation Analyses: Identifying the Sources of Treatment Effects from Experimentally Estimated Production Technologies with Unmeasured and Mismeasured Inputs.

    Science.gov (United States)

    Heckman, James; Pinto, Rodrigo

    2015-01-01

    This paper presents an econometric mediation analysis. It considers identification of production functions and the sources of output effects (treatment effects) from experimental interventions when some inputs are mismeasured and others are entirely omitted. JEL Code: D24, C21, C43, C38.

  1. Proposal for the transmittal of data to LASL and the reporting of TRAC analyses for the multinational reflood experimental program

    International Nuclear Information System (INIS)

    Bleiweis, P.B.; Kirchner, W.L.; Sicilian, J.M.

    1979-04-01

    The proposed form of the digital tape containing the reduced experimental data from any of the 2D/3D facilities (CCTF, SCTF, UPTF, and possibly PKL Core-II) and the procedures which LASL will use in performing TRAC calculations and reporting results are described in this document

  2. Using experimental design and spatial analyses to improve the precision of NDVI estimates in upland cotton field trials

    Science.gov (United States)

    Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...

  3. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  4. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses.

    Science.gov (United States)

    Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li

    2016-09-01

    Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.

  5. The influence of the design matrix on treatment effect estimates in the quantitative analyses of single-subject experimental design research.

    Science.gov (United States)

    Moeyaert, Mariola; Ugille, Maaike; Ferron, John M; Beretvas, S Natasha; Van den Noortgate, Wim

    2014-09-01

    The quantitative methods for analyzing single-subject experimental data have expanded during the last decade, including the use of regression models to statistically analyze the data, but still a lot of questions remain. One question is how to specify predictors in a regression model to account for the specifics of the design and estimate the effect size of interest. These quantitative effect sizes are used in retrospective analyses and allow synthesis of single-subject experimental study results which is informative for evidence-based decision making, research and theory building, and policy discussions. We discuss different design matrices that can be used for the most common single-subject experimental designs (SSEDs), namely, the multiple-baseline designs, reversal designs, and alternating treatment designs, and provide empirical illustrations. The purpose of this article is to guide single-subject experimental data analysts interested in analyzing and meta-analyzing SSED data. © The Author(s) 2014.

  6. Experimental Study on Stress Monitoring of Sand-Filled Steel Tube during Impact Using Piezoceramic Smart Aggregates.

    Science.gov (United States)

    Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing

    2017-08-22

    The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.

  7. Test report on experimental stress analysis of a 24 inch diameter tee (ORNL T-13)

    International Nuclear Information System (INIS)

    Henley, D.R.

    1975-03-01

    The experimental stress analysis and low cycle fatigue test of one 24 in. x 24 in. x 10 in. schedule 160 carbon steel, ANSI B16.9 tee performed by Combustion Engineering, Inc. are described. The tee was instrumented with 230 rectangular strain gage rosettes. Elastic data was obtained for 12 loading conditions consisting of internal pressure and orthogonal pure moments and orthogonal direct forces applied individually to the free branch and run ends of the tee. One of the run ends of the tee was ''built in'' throughout the test. All loads were applied through pipe extensions welded to the tee. The tee was tested to failure in a low cycle pressure fatigue test with a cyclic internal pressure between 100 psi and 7000 psi. A through-the-wall fatigue crack occurred at 15,084 cycles. Significant test results are summarized and compared with design values tabulated in the ASME Boiler and Pressure Vessel Code, Section III, 1971. (U.S.)

  8. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    Science.gov (United States)

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  9. Experimental investigation on the hydrodynamics of a gas–liquid–solid fluidized bed using vibration signature and pressure fluctuation analyses

    International Nuclear Information System (INIS)

    Sheikhi, Amir; Sotudeh-Gharebagh, Rahmat; Mostoufi, Navid; Zarghami, Reza

    2013-01-01

    Highlights: • Bed shell vibration fluctuation is introduced as a novel non-invasive monitoring method in three-phase fluidized beds. • Analyses of vibration signatures and pressure fluctuations were performed to characterize gas–liquid–solid fluidized beds. • These enabled further investigation on the dual effect of solid particles on the local and global bed hydrodynamics. -- Abstract: Simultaneous analyses of vibration signatures and pressure fluctuations were performed to investigate the hydrodynamics of a conventional three-phase gas–liquid–solid fluidized bed over a wide range of operating conditions. Non-intrusive vibration signature and pressure fluctuation signals were acquired by means of accelerometers and a piezoresistive pressure transducer, respectively. Comprehensive study on the standard deviation of pressure fluctuations was conducted simultaneously with two new statistical analyses on the pressure fluctuations, namely signal energy and average cycle frequency, which presented a new method of determining minimum liquid-fluidization velocity. This enabled further investigation on the dual effect of solid particles on the local hydrodynamics in the three-phase beds. The vibration analysis of the bed was introduced as a novel and non-invasive tool, which proved to be a robust representative of the global governing regimes suggesting a new approach on the dual effect of solid particles on the bed global hydrodynamics. These methods can pave the way towards the non-invasive hydrodynamic characterization of industrial three-phase reactors

  10. Influence of Bone Remodeling Inhibition on the Development of Experimental Stress Fractures

    National Research Council Canada - National Science Library

    Schaffler, Mitchell B

    2005-01-01

    .... Using a bisphosphonate (BIS) to suppress remodeling in the rabbit tibial stress fracture model, we found that antiresorptive therapy reduced the intensity of the stress fracture response in this model...

  11. Experimental and calculating study on the stressed state of superconducting coils of toroidal field in the T-15 tokamak

    International Nuclear Information System (INIS)

    Vaulina, I.G.; Gusev, S.V.; Sivkova, G.N.

    1987-01-01

    Results of calculational and experimental atudy of stress-deformed state of superconducting coils of the T-15 tokamak toroidal field are presented. The calculations are made using the method of finite elements and refined theory of cores. Experimental studies were carried out using elastic tensometric model of polymer materials. Test results are compared with the calculational results. Divergence between calculational and experimental values of displacement of characteristic points in the unit does not exceed 20 %. Results of model studies confirm the expediency of the calculational model used for designing SOTP unit for the T-15 tokamak

  12. Panel manipulation in social stress testing:The Bath experimental stress test for children (BEST-C)

    OpenAIRE

    Cheetham, Tara J.; Turner-Cobb, Julie M.

    2016-01-01

    BackgroundWhilst acute stress paradigms in adults make use of adult panel members, similar paradigms modified for child participants have not manipulated the panel. Most work has utilised an audience of adult confederates, regardless of the age of the population being tested. The aim of this study was to trial a social stress test for children that provided a meaningful environment using age-matched child peers as panel actors.MethodsThirty-three participants (7-11 years) underwent the Bath E...

  13. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  14. Experimental study of residual stresses in laser clad AISI P20 tool steel on pre-hardened wrought P20 substrate

    International Nuclear Information System (INIS)

    Chen, J.-Y.; Conlon, K.; Xue, L.; Rogge, R.

    2010-01-01

    Research highlights: → Laser cladding of P20 tool steel. → Residual stress analysis of laser clad P20 tool steel. → Microstructure of laser clad P20 tool steel. → Tooling Repair using laser cladding. → Stress reliving treatment of laser clad P20 tool steel. - Abstract: Laser cladding is to deposit desired material onto the surface of a base material (or substrate) with a relatively low heat input to form a metallurgically sound and dense clad. This process has been successfully applied for repairing damaged high-value tooling to reduce their through-life cost. However, laser cladding, which needs to melt a small amount of a substrate along with cladding material, inevitably introduces residual stresses in both clad and substrate. The tensile residual stresses in the clad could adversely affect mechanical performance of the substrate being deposited. This paper presents an experimental study on process-induced residual stresses in laser clad AISI P20 tool steel onto pre-hardened wrought P20 base material and the correlation with microstructures using hole-drilling and neutron diffraction methods. Combined with X-ray diffraction and scanning electron microscopic analyses, the roles of solid-state phase transformations in the clad and heat-affected zone (HAZ) of the substrate during cladding and post-cladding heat treatments on the development and controllability of residual stresses in the P20 clad have been investigated, and the results could be beneficial to more effective repair of damaged plastic injection molds made by P20 tool steel.

  15. Experimental evidence of off-diagonal transport term and the discrepancy between energy/particle balance and perturbation analyses

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Fukuda, Takeshi

    1991-12-01

    Evidence of temperature gradient driven particle flux was observed from the sawtooth induced density propagation phenomenon in JT-60. This off-diagonal particle flux was confirmed using the numerical calculation of measured chord integrated electron density. It was shown that the discrepancies between thermal and particle diffusivities estimated from the perturbation method and energy/particle balance analysis can be explained by considering the flux equations with off-diagonal transport terms. These flux equations were compared with the E x B convective fluxes in an electro-static drift wave instability and it was found that the E x B fluxes are consistent with several experimental observations. (author)

  16. Diffusion model analyses of the experimental data of /sup 12/C+/sup 27/Al, /sup 40/Ca dissipative collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weng-qing, SHEN; Wei-men, QIAO; Yong-tai, ZHU; Wen-long, ZHAN

    1984-11-01

    Assuming that the intermediate system decays with a statistical lifetime, the general behavior of the threefold differential cross section d/sup 3/sigma/dZEdtheta in the dissipative collisions of 68 MeV /sup 12/C+/sup 27/Al and 68.6 MeV /sup 12/C+/sup 40/Ca system are analyzed in the diffusion model framework. The lifetime of the intermediate system and the separation distance for the completely damped deep inelastic component are obtained. The calculated results and the experimental data of the angular distributions and Wilczynski plots are compared. The probable reasons of the differences between them are briefly discussed.

  17. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    Science.gov (United States)

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  18. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2014-02-01

    Full Text Available In this paper, a new severe plastic deformation method called equal channel forward extrusion (ECFE process has been proposed and investigated by experimental and numerical approaches on the commercial pure copper billets. The experimental results indicated that the magnitudes of yield strength, ultimate tensile strength and Vickers micro-hardness have been markedly improved from 114 MPa, 204 MPa and 68 HV as the annealed condition to 269 MPa, 285 MPa and 126 HV after the fourth pass of ECFE process, respectively. In addition, scanning electron microscopy observation of the samples showed that the average grain size of the as-received state which is about 22 μm has been reduced to 1.4 μm after the final pass. The numerical investigation suggested that although one pass ECFE process fabricates material with the mean effective strain magnitude of about 1, the level of imposed effective plastic strain gradually diminishes from the circumference to the center of the deformed billet.

  19. Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis.

    Science.gov (United States)

    Zhang, Yidan; Zhou, Zhi; Wang, Lingui; Huang, Bo

    2018-02-12

    Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.

  20. Microarray and growth analyses identify differences and similarities of early corn response to weeds, shade, and nitrogen stress

    Science.gov (United States)

    Weed interference with crop growth is often attributed to water, nutrient, or light competition; however, specific physiological responses to these stresses are not well described. This study’s objective was to compare growth, yield, and gene expression responses of corn to nitrogen (N), low light (...

  1. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress.

    Directory of Open Access Journals (Sweden)

    Wen Huang

    Full Text Available The Pacific white shrimp (Litopenaeus vannamei is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824 and Metabolic pathways (ko01100 were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.

  2. The effectiveness of telehealth care on caregiver burden, mastery of stress, and family function among family caregivers of heart failure patients: a quasi-experimental study.

    Science.gov (United States)

    Chiang, Li-Chi; Chen, Wan-Chou; Dai, Yu-Tzu; Ho, Yi-Lwun

    2012-10-01

    Telehealth care was developed to provide home-based monitoring and support for patients with chronic disease. The positive effects on physical outcome have been reported; however, more evidence is required concerning the effects on family caregivers and family function for heart failure patients transitioning from the hospital to home. To evaluate the effectiveness of nursing-led transitional care combining discharge plans and telehealth care on family caregiver burden, stress mastery and family function in family caregivers of heart failure patients compared to those receiving traditional discharge planning only. This is a quasi-experimental study design. Sixty-three patients with heart failure were assessed for eligibility and invited to participate in either telehealth care or standard care in a medical centre from May to October 2010. Three families refused to participate in data collection. Thirty families who chose telehealth care after discharge from the hospital to home comprised the experimental group; the others families receiving discharge planning only comprised the comparison group. Telenursing specialist provided the necessary family nursing interventions by 24-h remote monitoring of patients' health condition and counselling by telephone, helping the family caregivers successfully transition from hospital to home. Data on caregiver burden, stress mastery and family function were collected before discharge from the hospital and one month later at home. Effects of group, time, and group×time interaction were analysed using Mixed Model in SPSS (17.0). Family caregivers in both groups had significantly lower burden, higher stress mastery, and better family function at one-month follow-up compared to before discharge. The total score of caregiver burden, stress mastery and family function was significantly improved for the family caregivers in the experimental group compared to the comparison group at posttest. Two subscales of family function

  3. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    Science.gov (United States)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in

  4. Oxidative Stress in Wild Boars Naturally and Experimentally Infected with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Diana Gassó

    Full Text Available Reactive oxygen and nitrogen species (ROS-RNS are important defence substances involved in the immune response against pathogens. An excessive increase in ROS-RNS, however, can damage the organism causing oxidative stress (OS. The organism is able to neutralise OS by the production of antioxidant enzymes (AE; hence, tissue damage is the result of an imbalance between oxidant and antioxidant status. Though some work has been carried out in humans, there is a lack of information about the oxidant/antioxidant status in the presence of tuberculosis (TB in wild reservoirs. In the Mediterranean Basin, wild boar (Sus scrofa is the main reservoir of TB. Wild boar showing severe TB have an increased risk to Mycobacterium spp. shedding, leading to pathogen spreading and persistence. If OS is greater in these individuals, oxidant/antioxidant balance in TB-affected boars could be used as a biomarker of disease severity. The present work had a two-fold objective: i to study the effects of bovine TB on different OS biomarkers (namely superoxide dismutase (SOD, catalasa (CAT, glutathione peroxidase (GPX, glutathione reductase (GR and thiobarbituric acid reactive substances (TBARS in wild boar experimentally challenged with Mycobacterium bovis, and ii to explore the role of body weight, sex, population and season in explaining the observed variability of OS indicators in two populations of free-ranging wild boar where TB is common. For the first objective, a partial least squares regression (PLSR approach was used whereas, recursive partitioning with regression tree models (RTM were applied for the second. A negative relationship between antioxidant enzymes and bovine TB (the more severe lesions, the lower the concentration of antioxidant biomarkers was observed in experimentally infected animals. The final PLSR model retained the GPX, SOD and GR biomarkers and showed that 17.6% of the observed variability of antioxidant capacity was significantly correlated

  5. Experimentally studied laser fluorescence method for remote sensing of plant stress situation induced by improper plants watering

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2014-01-01

    Full Text Available Stressful situations of plants can be caused by a lack of nutrients; mechanical damages; diseases; low or high temperatures; lack of illumination; insufficient or excess humidity of the soil; soil salinization; soil pollution by oil products or heavy metals; the increased acidity of the soil; use of pesticides, herbicides, insecticides, etc.At early stages it is often difficult to detect seemingly that the plants are in stressful situations caused by adverse external factors. However, the fluorescent analysis potentially allows detection of the stressful situations of plants by deformation of laser-induced fluorescence spectra. The paper conducts experimental investigations to learn the capabilities of the laser fluorescent method to monitor plant situations at 532nm wavelength of fluorescence excitation in the stressful situations induced by improper watering (at excess of moisture in the soil and at a lack of moisture.Researches of fluorescence spectra have been conducted using a created laboratory installation. As a source to excite fluorescence radiation the second harmonica of YAG:Nd laser is used. The subsystem to record fluorescence radiation is designed using a polychromator and a highly sensitive matrix detector with the amplifier of brightness.Experimental investigations have been conducted for fast-growing and unpretentious species of plants, namely different sorts of salad.Experimental studies of laser-induced fluorescence spectra of plants for 532nm excitement wavelength show that the impact of stressful factors on a plant due to the improper watering, significantly distorts a fluorescence spectrum of plants. Influence of a stressful factor can be shown as a changing profile of a fluorescence spectrum (an identifying factor, here, is a relationship of fluorescence intensities at two wavelengths, namely 685 nm and 740 nm or (and as a changing level of fluorescence that can be the basis for the laser method for monitoring the plant

  6. Effect of Camel Milk on Oxidative Stresses in Experimentally Induced Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Esraa Tantawy

    2010-06-01

    Full Text Available Camel milk has an importance in the treatment of diabetes. It has been shown that the patients who drink camel milk daily, their need to insulin decrease. Therefore, this study aimed to investigate the effect of camel milk in comparison with insulin treatment in experimentally-induced diabetes. This study was carried out on forty male New Zealand rabbits, divided into four groups with ten rabbits in each. The first group G1 was considered as control non-diabetic group and received only normal saline solution. The other animals were injected intravenously with alloxan for induction of diabetes mellitus and then divided into three groups' ten rabbits each as the follows: G2 considered as control diabetic and left untreated, G3 was considered as diabetic and treated with insulin, and G4 was considered as diabetic and received camel milk. At the end of the experiment (4 weeks, blood (whole blood & serum and tissue samples (liver, kidney and pancreas were collected from all the animals for analysis of: enzymatic SOD and catalase, non-enzymatic GSH antioxidant enzyme activities. Serum malondialdeyde, glucose, insulin and lipid profile also were analyzed. The results showed that the camel milk was effective in the treatment of diabetes in comparison to insulin treatment alone. In addition to its hypoglycemic effect, camel milk improved the diabetes-induced oxidative stress. The histopathological evaluations demonstrated that there was a regeneration in β cells and the islets of Langerhans among the pancreatic acini in rabbits receiving camel milk. Our findings suggested that the camel milk administration in case of insulin dependant diabetes mellitus might be recommended as an oral anti-diabetic remedy.

  7. Baking system for ports of experimental advanced super-conducting tokamak vacuum vessel and thermal stress analysis

    International Nuclear Information System (INIS)

    Cheng Yali; Bao Liman; Song Yuntao; Yao Damao

    2006-01-01

    The baking system of Experimental Advanced Super-Conducting Toakamk (EAST) vacuum vessel is necessary to obtain the baking temperature of 150 degree C. In order to define suitable alloy heaters and achieve their reasonable layouts, thermal analysis was carried out with ANSYS code. The analysis results indicate that the temperature distribution and thermal stress of most parts of EAST vacuum vessel ports are uniform, satisfied for the requirement, and are safe based on ASME criterion. Feasible idea on reducing the stress focus is also considered. (authors)

  8. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera.

    Directory of Open Access Journals (Sweden)

    Gianpiero Marconi

    Full Text Available Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone and salinity-sensitive (Toccata rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4 and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site

  9. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Yang, Xiaozhen; Li, Hao; Yang, Yongchao; Wang, Yongqi; Mo, Yanling; Zhang, Ruimin; Zhang, Yong; Ma, Jianxiang; Wei, Chunhua; Zhang, Xian

    2018-01-01

    Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.

  10. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Yang

    Full Text Available Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III and five subgroups (IIa-IIe in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.

  11. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    Science.gov (United States)

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  12. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    Science.gov (United States)

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  13. EXPERIMENTAL DATA, THERMODYNAMIC MODELING AND SENSITIVITY ANALYSES FOR THE PURIFICATION STEPS OF ETHYL BIODIESEL FROM FODDER RADISH OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    R. C. Basso

    Full Text Available Abstract The goals of this work were to present original liquid-liquid equilibrium data of the system containing glycerol + ethanol + ethyl biodiesel from fodder radish oil, including the individual distribution of each ethyl ester; to adjust binary parameters of the NRTL; to compare NRTL and UNIFAC-Dortmund in the LLE representation of the system containing glycerol; to simulate different mixer/settler flowsheets for biodiesel purification, evaluating the ratio water/biodiesel used. In thermodynamic modeling, the deviations between experimental data and calculated values were 0.97% and 3.6%, respectively, using NRTL and UNIFAC-Dortmund. After transesterification, with 3 moles of excess ethanol, removal of this component until a content equal to 0.08 before an ideal settling step allows a glycerol content lower than 0.02% in the ester-rich phase. Removal of ethanol, glycerol and water from biodiesel can be performed with countercurrent mixer/settler, using 0.27% of water in relation to the ester amount in the feed stream.

  14. Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses.

    Science.gov (United States)

    D'Urso, Gianluca; Giardini, Claudio

    2016-08-11

    The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated.

  15. Cation-π interactions: computational analyses of the aromatic box motif and the fluorination strategy for experimental evaluation.

    Science.gov (United States)

    Davis, Matthew R; Dougherty, Dennis A

    2015-11-21

    Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4(+) and NMe4(+) to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the "fluorination strategy" to study cation-π interactions in vivo.

  16. Numerical and experimental depth profile analyses of coated and attached layers by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ardakani, H. Afkhami [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran (Iran, Islamic Republic of); Tavassoli, S.H., E-mail: h-tavassoli@sbu.ac.i [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2010-03-15

    Laser-induced breakdown spectroscopy (LIBS) is applied for depth profile analysis of different thicknesses of copper foils attached on steel and aluminum substrates. In order to account interfacial effects, depth profile analysis of copper coated on steel is also carried out. Experiments are done at ambient air and at two different wavelengths of 266 and 1064 nm of a Nd:YAG laser with pulse durations of 5 ns. A three-dimensional model of multi-pulse laser ablation is introduced on the base of normal evaporation mechanism and the simulation results are compared with the experiments. A normalized concentration (C{sup N}) is introduced for determination of interface position and results are compared with the usually used normalized intensity (I{sup N}). The effect of coating thickness on average ablation rate and resolution of depth profiling are examined. There is a correlation coefficient higher than 0.95 between the model and experimental depth profiles based on the C{sup N} method. Depth profile analysis on the base of C{sup N} method shows a better depth resolution in comparison with I{sup N} method .Increase in the layer thickness, leads to a decrease in the ablation rate.

  17. Delineating sampling procedures: Pedagogical significance of analysing sampling descriptions and their justifications in TESL experimental research reports

    Directory of Open Access Journals (Sweden)

    Jason Miin-Hwa Lim

    2011-04-01

    Full Text Available Teaching second language learners how to write research reports constitutes a crucial component in programmes on English for Specific Purposes (ESP in institutions of higher learning. One of the rhetorical segments in research reports that merit attention has to do with the descriptions and justifications of sampling procedures. This genre-based study looks into sampling delineations in the Method-related sections of research articles on the teaching of English as a second language (TESL written by expert writers and published in eight reputed international refereed journals. Using Swales’s (1990 & 2004 framework, I conducted a quantitative analysis of the rhetorical steps and a qualitative investigation into the language resources employed in delineating sampling procedures. This investigation has considerable relevance to ESP students and instructors as it has yielded pertinent findings on how samples can be appropriately described to meet the expectations of dissertation examiners, reviewers, and supervisors. The findings of this study have furnished insights into how supervisors and instructors can possibly teach novice writers ways of using specific linguistic mechanisms to lucidly describe and convincingly justify the sampling procedures in the Method sections of experimental research reports.

  18. Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition

    International Nuclear Information System (INIS)

    Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.

    2015-01-01

    In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30° angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50 and 100%) and four water mass flow rates (50, 40, 30 and 20 g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition. - Highlights: • A vortex generator heat exchanger is used for diesel exhaust heat recovery. • A thermodynamic analysis is performed for experimental data. • Exergy recovery, irreversibility are calculated in different exhaust gases amount. • Optimization study is performed using response surface method

  19. Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses

    Directory of Open Access Journals (Sweden)

    Gianluca D’Urso

    2016-08-01

    Full Text Available The present study was carried out to evaluate how the friction stir spot welding (FSSW process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated.

  20. Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses

    Directory of Open Access Journals (Sweden)

    Zhi-Juan eFeng

    2015-12-01

    Full Text Available It was reported that Nuclear Factor Y (NF-Y genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica, an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam NtERD10, NtLEA5, NtCAT, NtSOD or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC and contents of chlorophyll, superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and malondialdehyde (MDA in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5 and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.

  1. Conversations between scientists and the public in radio phone-ins: an experimental approach to analyse public perception of science

    Directory of Open Access Journals (Sweden)

    Merzagora Matteo

    2002-03-01

    Full Text Available “Il ciclotrone” is the weekly science programme of “Radio Popolare - Popolare Network”, the most important independent news radio network in Italy, based in Milan. During the last 12 years, once or twice a month listeners have been able to directly ask questions to the guest scientists in the studios, or to express their point of view on some controversial scientific issue. Among mass-media, the radio has several characteristics which tend to enhance the sense of friendliness and belonging - essential to any true communication. Phone-ins at Radio Popolare are not filtered; regular and occasional listeners are used to communicate with or through the radio, and in doing so they contribute to the sense of spontaneity which characterise the programmes. During “Il ciclotrone”, very often the ''anchor'' tends to disappear, and phone-ins become a lively conversation between the scientists and the public (whose members seldom agree with each other. In this presentation, phone-ins on science - over the years they involved internationally famous scientists (such as Lewontin, Damasio, Amaldi, Rotblat, Di Chiara, …, and less well-known but reputed Italian researchers - are analysed in terms of their capabilities of providing a tool to understand public perception of science. Moreover, the authors believe that science journalism shouldn't only inform or educate the public on the work of scientists, but also inform or educate the scientists on how their work is perceived. Indeed, scientists seldom have a chance to hear the criticism (positive or negative of a large, unselected audience and to have a first-hand grasp of public feelings concerning their work.

  2. The use of reduced temperatures for reversible developmental arrest of organ cultures prior to spaceflight experimentation and for postflight analyses

    Energy Technology Data Exchange (ETDEWEB)

    Klement, B.J. [Space Medicine and Life Sciences Research Center Department of Anatomy Morehouse School of Medicine 720 Westview Dr. S.W. Atlanta, Georgia30310-1495 (United States); van Twest, J. [The Bionetics Corporation Life Sciences Support Facility Hanger L Mailcode Bio-3 Kennedy Space Center, Florida32899 (United States); Staudenmaier, R.A.; Brittain, H.; Spooner, B.S. [NASA Specialized Center of Research and Training Division of Biology Kansas State University Manhattan, Kansas66506 (United States)

    1997-01-01

    One complication of using rapidly growing and developing tissues for spaceflight experimentation is that, due to early turnover and launch delays, the tissues often undergo complete development before orbit is achieved. We conducted a series of studies using three different types of tissue, chick pre-cardiac explants, embryonic mouse lung rudiments and embryonic mouse pre-metatarsal mesenchyme, to examine the use of reduced temperature as an inexpensive means to slow growth and development, before the experiment begins. Pre-cardiac explants could be held at 4{degree}C (277K), 13{degree}C (286K), or 22{degree}C (295K) for up to 48 hours and still begin normal beating within 24 hours of culture at 37{degree}C (310K). Lung explants could be held at 5{degree}C (278K), 15{degree}C (288K), and 24{degree}C (297K) for 3{endash}6 days without clefts changing in appearance, but would resume branching morphogenesis and growth after being placed at 37{degree}C (310K). Pre-metatarsal cultures could be held at 15{degree}C (288K), 22{degree}C (295K) and 24{degree}C (297K) for 6 days with very little change in rod length. After additional incubation at 37{degree}C (310K) the rods increased in length and mineralized. These results suggest that incubation at temperatures below standard culture temperature are capable of slowing tissue growth, but growth and development will resume after standard incubation. {copyright} {ital 1997 American Institute of Physics.}

  3. Numerical and experimental study of moisture-induced stress and strain field developments in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2013-01-01

    shrinkage and the inhomogeneity of the material. To obtain a better understanding of how stresses develop during climatic variations, the field histories of stresses (and strains) in cross sections in their entirety need to be studied. The present paper reports on experiments and numerical simulations...

  4. Computational and experimental investigation of local stress fiber orientation in uniaxially and biaxially constrained microtissues

    NARCIS (Netherlands)

    Obbink - Huizer, C.; Foolen, J.; Oomens, C.W.J.; Borochin, M.A.; Chen, C.S.; Bouten, C.V.C.; Baaijens, F.P.T.

    2014-01-01

    The orientation of cells and associated F-actin stress fibers is essential for proper tissue functioning. We have previously developed a computational model that qualitatively describes stress fiber orientation in response to a range of mechanical stimuli. In this paper, the aim is to quantitatively

  5. Experimental determination and theoretical analysis of local residual stress at grain scale

    NARCIS (Netherlands)

    Basu, Indranil; Ocelík, Václav; De Hosson, Jeff Th M.

    2017-01-01

    Grain/phase boundaries contribute significantly to build up of residual stresses, owing to varied plastic/thermal response of different grain orientations or phases during thermomechanical treatment. Hence, accurate quantification of such local scale stress gradients in commercial components is

  6. Experimental study of chemical-mechanical coupling during percolation of reactive fluid through rocks under stress, in the context of the CO2 geological sequestration

    International Nuclear Information System (INIS)

    Le Guen, Y.

    2006-10-01

    CO 2 injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO 2 . Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10 -12 s -1 on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO 2 -rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO 2 which increases rock solubility and reaction kinetics. On the opposite, small effect of CO 2 on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)

  7. NUMERICAL AND EXPERIMENTAL ANALYSIS OF RESIDUAL STRESSES GENERATED DURING HARDENING OFAISI 4140 BAR

    Directory of Open Access Journals (Sweden)

    Edwan Anderson Ariza Echeverri

    2012-09-01

    Full Text Available The aim of this work is to analyze the distribution of residual stresses resulting from the combination of volumetric changes due to heat gradients and phase changes occurring during the quenching process of an AISI/SAE 4140 steel cylinder. The mathematical model used for this objective is the AC3 modeling software of thermal treatments (transformation curves, cooling curves and microstructure, whose results were input in an finite element model, considering thermalmechanical coupling and non-linear elastic-plastic behavior, aiming the assessment of residual stresses in quenched 4140 steel cylinders. The observed microstructure confirms quantitatively and qualitatively the previsions of the AC3 Software. The results of the modeling are compared with the residual stresses measurements made using X-Ray diffraction techniques. The finite element numerical simulation shows the existence of 350 MPa compressive residual stresses in the surface region and indicates that the most significant stresses are tangential.

  8. Stress control in electrodeposited CoFe films—Experimental study and analytical model

    International Nuclear Information System (INIS)

    Brankovic, Stanko R.; Kagajwala, Burhanuddin; George, Jinnie; Majkic, Goran; Stafford, Gery; Ruchhoeft, Paul

    2012-01-01

    Work investigating the effect of saccharin as an additive on growth stress and structure of electrodeposited CoFe films is presented. The saccharin concentrations were in the range between 0 g L −1 and 1.5 g L −1 . The stress measurements are performed in situ during electrodeposition of CoFe films using cantilever-bending method (curvature measurements). The structure of CoFe films was studied by transmission electron microscopy and X-ray diffraction. Results show that growth stress is a decreasing function of saccharin concentration. No appreciable change in composition, grain size, orientation or texture of CoFe films are observed with increasing saccharin content in solution. The growth stress dependence on saccharin concentration is discussed within the framework of analytical model, which directly links the observed stress decrease with the apparent saccharin coverage of the CoFe film surface during the electrodeposition process.

  9. Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders

    Science.gov (United States)

    Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2017-03-01

    The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.

  10. The influence of die geometry on stress distribution by experimental and FEM simulation on electrolytic copper wiredrawing

    Directory of Open Access Journals (Sweden)

    Leonardo Kyo Kabayama

    2009-09-01

    Full Text Available The study of die geometry is vital in determining the surface and mechanical properties of drawn wires, and consequently, their application. In this work, annealed electrolytic copper wire (ETP, with 0.5 mm original diameter was reduced by 19% in dies with 2β = 10º and 18º and Hc = 35 and 50%. The best experimental results were then studied by the Finite Element Method to simulate residual stress distribution. The experimental results show that the friction coefficient decreases as the wire drawing speed increases, and that low 2β and Hc values bring about the most favorable wiredrawing conditions. The simulation shows a variation in the axial and radial tensions, both for the compression and traction stresses on all regions during the wire drawing process. In conclusion, the influence of the internal die geometry on the drawn wire is clarified.

  11. Violation of specific indicators pigment and lipid metabolism in experimental pneumonia in an immobilization stress and correction of corvitin

    Directory of Open Access Journals (Sweden)

    N. M. Ferenc

    2015-09-01

      Abstract   The aim of study was to investigate the features change cholesterol and bilirubin in the blood serum of guinea pigs (males with experimental pneumonia (EP under conditions of immobilization stress (IS and prove the feasibility of Corvitin. The study was conducted on 48 guinea pigs (males were divided into 6 groups. The research results make it possible to detect liver damage in terms of IS EP and in violation of its functional state. Application domestic preparation Corvitin led to a significant reduction in the changed parameters bilirubin and cholesterol under conditions of formation of EP and IP, which indicates its positive corrective effect.   Keywords: experimental pneumonia, stress, liver, cholesterol, bilirubin.

  12. Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in a long-lived seabird

    OpenAIRE

    Herborn, Katherine A.; Heidinger, Britt J.; Boner, Winnie; Noguera, Jose C.; Adam, Aileen; Daunt, Francis; Monaghan, Pat

    2014-01-01

    Exposure to stressors early in life is associated with faster ageing and reduced longevity. One important mechanism that could underlie these late life effects is increased telomere loss. Telomere length in early post-natal life is an important predictor of subsequent lifespan, but the factors underpinning its variability are poorly understood. Recent human studies have linked stress exposure to increased telomere loss. These studies have of necessity been non-experimental and are consequentl...

  13. Experimental study on critical breaking stress of float glass under elevated temperature

    International Nuclear Information System (INIS)

    Wang, Yu; Wang, Qingsong; Shao, Guangzheng; Chen, Haodong; Sun, Jinhua; He, Linghui; Liew, K.M.

    2014-01-01

    Highlights: • Critical breaking stresses of clear, ground and coated glass were measured. • Breaking stress and strain of smooth glass were measured from 25 °C to 400 °C. • At approximately 100 °C, critical stress reached the minimum value. • Surface treatment and ambient temperature have notable effects on glass breaking. - Abstract: Cracking and subsequent fallout of glass may significantly affect fire dynamics in compartments. Moreover, the breaking tensile stress of glass, a crucial parameter for breakage occurrence, is the least well known among mechanical properties. In this work, a series of experiments were conducted, through mechanical tensile tests, to directly measure the breaking stress of float glass using Material Testing System 810 apparatus. Clear, ground and coated glass samples with a thickness of 6 mm were measured under ambient conditions, with a room temperature of 25 °C. The breaking stress of smooth glass samples was also measured at 75 °C, 100 °C, 125 °C, 150 °C, 200 °C, 300 °C and 400 °C, respectively. The results show that surface treatment may decrease the critical tensile stress of glass panes. The average breaking stress also fluctuates considerably, from 26.60 to 35.72 MPa with the temperature variations investigated here. At approximately 100 °C, critical stress reached the minimum value at which glass breakage occurs more easily. In addition, the thermal expansion coefficient was established using a thermal dilatometer, to obtain the maximum temperature difference float glass can withstand. It is intended that these results will provide some practical guidelines for fire safety engineers

  14. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.Y.; Jing, X.; Sheng, J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Sun, G.F. [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Yan, Z. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Lu, J.Z., E-mail: jzlu@ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-07-15

    The effects of massive laser shock peening (LSP) treatment on micro-hardness, residual stress and microstructure in four different zones of laser cladding coating was investigated. Furthermore, micro-hardness curves and residual stress distributions with and without massive LSP treatment were presented and compared, and typical microstructure in different zones of both coatings were characterized by transmission electron microscope (TEM) and cross-sectional optical microscope (OM) observations. Results and analyses showed that massive LSP treatment had an important influence on micro-hardness and residual stress of the cladding coating. Special attempt was made to the effects of massive LSP treatment on microstructure in three zones of the cladding coating. In addition, the underlying mechanism of massive LSP treatment on microstructure and mechanical properties of the cladding coating was revealed clearly. - Highlights: • Micro-hardness and residual stress curves of both coatings were presented and compared. • Typical microstructure in different zones of both coatings were characterized and analyzed. • LSP causes increased micro-activities, and induces plastic deformation layer in three zones. • Underlying mechanism of LSP on mechanical properties of cladding coating was revealed.

  15. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Zhong, Bao; Liu, Xun; Chan, Zhulong

    2014-11-01

    As an important second messenger, calcium is involved in plant cold stress response, including chilling (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non-enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation. © 2014 Institute of Botany, Chinese Academy of Sciences.

  16. [Effects of chronic experimental stress and endogenous opioids on histophysiological parameters of the thyroid gland].

    Science.gov (United States)

    Krasnoperov, R A; Glumova, V A; Riashchikov, S N; Proshutina, N E

    1992-01-01

    In adult rabbits stress was modelled by electrostimulation of the hypothalamus ventromedial nucleus (15-hour-long session during 30 days) and medulla's raphe big nucleus which is one of the central places of the opioid peptides synthesis was irritated. It is revealed, that under stress thyroid gland responds by serum T3 increase in comparison with control animals with statistically significant variability of the T4 profile. Chronicity of the emotional agitation involves destructive changes in the thyroid parenchyma the hurting effect of the negative emotional factor is expressed less during opioid peptides complex activation. It is suggested that there are its own stress-limiting mechanisms in thyroid gland.

  17. Fracture permeability under effect of normal and shear stress: A preliminary experimental investigation

    International Nuclear Information System (INIS)

    Mohanty, S.; Manteufel, R.D.; Chowdhury, A.H.

    1995-01-01

    The change in fracture permeability under mechanical loads have been investigated. An apparatus has been developed to measure change in fracture permeability, when a single fracture is subjected to normal and shear stress. Both radial and linear flow experiments have been conducted by modifying a direct shear test apparatus. Preliminary results suggest a 35-percent change in fracture permeability under normal stress to 8 MPa and nearly 350 percent under shear displacement of 9.9254 m (1 in.) at 5 MPa normal stress. Effort is underway to separate the permeability change due to gouge material production from that of due to dilation

  18. How narrow-band and broad-band uvb irradiation influences the immunohistochemistry analyses of experimental animals’ skin – a comparative study. Part II

    Directory of Open Access Journals (Sweden)

    Katarzyna Borowska

    2017-09-01

    Full Text Available This is the second part of the artcle series impact narrow-band UVB radiation (NB-UVB and broad-band UVB radiation (BB-UVB on experimental animals’ skin (white Wistar female rats. The aim of this comparative study was immunohistochemistry analyses containing expression of p53 protein. Expression of p53 protein was performed on two experimental groups. One – exposed to NB-UVB; the other – exposed to BB-UVB radiation. The results indicate that p53 protein takes an active part in the process of apoptosis that is induced by both NB-UVB and BB-UVB. The results showed an increase in p53 expressing cells following BB-UVB than NB-UVB phototherapy.

  19. Experimental analysis of minimum shear stress to drag particles in a horizontal bed; Analise experimental da tensao de cisalhamento minima para arraste de particulas em um leito horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Dornelas, Breno Almeida; Soares, Edson Jose [Universidade Federal do Espirito Santo. Departamento de Engenharia Mecanica (Brazil)], e-mails: bad@ucl.br, edson@ct.ufes.br; Quirino Filho, Joao Pedro; Loureiro, Bruno Venturini [Faculdade do Centro Leste (UCL). Laboratorio de Fluidos e Fenomenos de Transporte (Brazil)], e-mails: joaoquirino@ucl.br, brunovl@ucl.br

    2009-12-15

    Efficient hole cleaning is still a challenge in well bore drilling to produce oil and gas. The critical point is the horizontal drilling that inherently tends to form a bed of sediment particles at the well bottom during drilling. The cuttings bed erosion depends mainly on the shear stress promoted by the drilling fluid flow. The shear stress required to cause drag in the cuttings bed is investigated according to the fluid and particles properties, using an experimental assembly, composed of: a system for fluid circulation, a particle box, a pump system and measuring equipment. The observation area is a box below the flow line in an acrylic duct used to calibrate sand particles. The test starts with the pumps in a low frequency which is increased in steps. At each frequency level, images are captured of carried particles and the established flow rate is recorded. The images are analyzed when the dragged particle is no longer random and sporadic, but becomes permanent. The shear stress is identified by the PKN correlation (by Prandtl, von Karman, and Nikuradse) for the minimum flow rate necessary to cause drag. Results were obtained for just water and water-glycerin solution flows. (author)

  20. Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud

    International Nuclear Information System (INIS)

    Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.

    1996-01-01

    Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder

  1. Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses

    Directory of Open Access Journals (Sweden)

    Elide Formentin

    2018-03-01

    Full Text Available Salinity tolerance has been extensively investigated in recent years due to its agricultural importance. Several features, such as the regulation of ionic transporters and metabolic adjustments, have been identified as salt tolerance hallmarks. Nevertheless, due to the complexity of the trait, the results achieved to date have met with limited success in improving the salt tolerance of rice plants when tested in the field, thus suggesting that a better understanding of the tolerance mechanisms is still required. In this work, differences between two varieties of rice with contrasting salt sensitivities were revealed by the imaging of photosynthetic parameters, ion content analysis and a transcriptomic approach. The transcriptomic analysis conducted on tolerant plants supported the setting up of an adaptive program consisting of sodium distribution preferentially limited to the roots and older leaves, and in the activation of regulatory mechanisms of photosynthesis in the new leaves. As a result, plants resumed grow even under prolonged saline stress. In contrast, in the sensitive variety, RNA-seq analysis revealed a misleading response, ending in senescence and cell death. The physiological response at the cellular level was investigated by measuring the intracellular profile of H2O2 in the roots, using a fluorescent probe. In the roots of tolerant plants, a quick response was observed with an increase in H2O2 production within 5 min after salt treatment. The expression analysis of some of the genes involved in perception, signal transduction and salt stress response confirmed their early induction in the roots of tolerant plants compared to sensitive ones. By inhibiting the synthesis of apoplastic H2O2, a reduction in the expression of these genes was detected. Our results indicate that quick H2O2 signaling in the roots is part of a coordinated response that leads to adaptation instead of senescence in salt-treated rice plants.

  2. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats.

    Science.gov (United States)

    Smaga, Irena; Pomierny, Bartosz; Krzyżanowska, Weronika; Pomierny-Chamioło, Lucyna; Miszkiel, Joanna; Niedzielska, Ewa; Ogórka, Agata; Filip, Małgorzata

    2012-12-03

    The growing body of evidence implicates the significance of oxidative stress in the pathophysiology of depression. The aim of this paper was to examine N-acetylcysteine (NAC) - a putative precursor of the most important tissue antioxidant glutathione - in an animal model of depression and in ex vivo assays to detect oxidative stress parameters. Imipramine (IMI), a classical and clinically-approved antidepressant drug was also under investigation. Male Wistar rats which underwent either bulbectomy (BULB; removal of the olfactory bulbs) or sham surgery (SHAM; olfactory bulbs were left undestroyed) were treated acutely or repeatedly with NAC (50-100mg/kg, ip) or IMI (10mg/kg, ip). Following 10-daily injections with NAC or IMI or their solvents, or 9-daily injections with a corresponding solvent plus acute NAC or acute IMI forced swimming test on day 10, and locomotor activity were performed; immediately after behavioral tests animals were decapitated. Biochemical tests (the total antioxidant capacity - TAC and the superoxide dismutase activity - SOD) were performed on homogenates in several brain structures. In behavioral studies, chronic (but not acute) administration of NAC resulted in a dose-dependent reduction in the immobility time seen only in BULB rats while chronic IMI produced a significant decrease in this parameter in both SHAM and BULB animals. On the other hand, chronic administration of NAC and IMI resulted in a significant increase in cellular antioxidant mechanisms (SOD activity) that reversed the effects of BULB in the frontal cortex, hippocampus and striatum. Our study further supports the antidepressant-like activity of NAC and links its effect as well as IMI actions with the enhancement of brain SOD activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Environmental stress responses and experimental handling artifacts of a model organism, the copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jepsen, Per Meyer; Bucklin, Ann

    2018-01-01

    for these genes between 15 min and 24 h following exposure. Since handling stress clearly affects transcriptional patterns, it is important to consider handling when designing experiments, by either including additional controls or avoiding focus on impacted genes. Not considering handling in gene expression...... studies can lead to inaccurate conclusions. The present study provides a baseline for studying handling stress in future studies using this model organism and others....

  4. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  5. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    Science.gov (United States)

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  6. Experimental and theoretical studies into the stress-strain state of the purlin supported by sandwich panels

    Directory of Open Access Journals (Sweden)

    Danilov Aleksandr Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors analyze the findings of the experimental and theoretical studies into the real behaviour of a thin-walled cold-formed purlin as part of the roof structure made of sandwich panels. The roof structure fragment was tested; displacements and stresses, that the purlin was exposed to, were identified in respect of each loading increment. NASTRAN software was employed to perform the numerical analysis of the roof structure, pre-exposed to experimental tests, in the geometrically and physically non-linear setting. The finite element model, generated as a result (the numerical analysis pattern, is sufficiently well-set, given the proposed grid of elements, and it ensures reasonably trustworthy results. The diagrams describing the stress/displacement to the load ratio and obtained numerically are consistent with those generated experimentally. The gap between the critical loading values reaches 4%. Analytical and experimental findings demonstrate their close conformity, and this fact may justify the application of the numerical model, generated within the framework of this research project, in the course of any further research actions. The co-authors have identified that the exhaustion of the bearing capacity occurs due to the loss of the buckling resistance as a result of the lateral torsional buckling.

  7. Experimental determination of the yield stress curve of the scotch pine wood materials

    Science.gov (United States)

    Günay, Ezgi; Aygün, Cevdet; Kaya, Şükrü Tayfun

    2013-12-01

    Yield stress curve is determined for the pine wood specimens by conducting a series of tests. In this work, pinewood is modeled as a composite material with transversely isotropic fibers. Annual rings (wood grain) of the wood specimens are taken as the major fiber directions with which the strain gauge directions are aligned. For this purpose, three types of tests are arranged. These are tensile, compression and torsion loading tests. All of the tests are categorized with respect to fiber orientations and their corresponding loading conditions. Each test within these categories is conducted separately. Tensile and compression tests are conducted in accordance with standards of Turkish Standards Institution (TSE) whereas torsion tests are conducted in accordance with Standards Australia. Specimens are machined from woods of Scotch pine which is widely used in boat building industries and in other structural engineering applications. It is determined that this species behaves more flexibly than the others. Strain gauges are installed on the specimen surfaces in such a way that loading measurements are performed along directions either parallel or perpendicular to the fiber directions. During the test and analysis phase of yield stress curve, orientation of strain gauge directions with respect to fiber directions are taken into account. The diagrams of the normal stress vs. normal strain or the shear stress vs. shear strain are plotted for each test. In each plot, the yield stress is determined by selecting the point on the diagram, the tangent of which is having a slope of 5% less than the slope of the elastic portion of the diagram. The geometric locus of these selected points constitutes a single yield stress curve on σ1-σ2 principal plane. The resulting yield stress curve is plotted as an approximate ellipse which resembles Tsai-Hill failure criterion. The results attained in this work, compare well with the results which are readily available in the literature.

  8. Prediction of stress- and strain-based forming limits of automotive thin sheets by numerical, theoretical and experimental methods

    Science.gov (United States)

    Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós

    2018-05-01

    Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.

  9. STUDIES ON SOIL LIQUEFACTION AND SETTLEMENT IN THE URAYASU DISTRICT USING EFFECTIVE STRESS ANALYSES FOR THE 2011 EAST JAPAN GREAT EARTHQUAKE

    Science.gov (United States)

    Fukutake, Kiyoshi; Jang, Jiho

    The 2011 East Japan Great Earthquake caused soil liquefaction over a wide area. In particular, severe soil liquefaction was reported in the northern parts of the reclaimed lands around Tokyo Bay, even though the seismic intensity in this area was only about 5 on the Japan scale with low acceleration. The authors surveyed the residual settlement in the Urayasu district and then conducted effective stress analyses of areas affected and not affected by liquefaction. The analyses compared with the acceleration waves monitored with K-NET Urayasu or ground settlements surveyed. It is based on the acceleration observed on the seismic bedrocks in earthquake engineering in some other districts adjacent to Urayasu. Much of the settlement was due to the long duration of the earthquake, with further settlement resulting from the aftershock. The study shows that the affects of aftershocks need to be monitored, as well as needs for improvement of simplified liquefaction prediction methods using the factor of safety, FL.

  10. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2013-05-01

    Full Text Available Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET, salicylic acid (SA, jasmonic acid (JA, and abscisic acid (ABA, hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.

  11. Modelling and experimental characterisation of a residual stress field in a ferritic compact tension specimen

    International Nuclear Information System (INIS)

    Wenman, M.R.; Price, A.J.; Steuwer, A.; Chard-Tuckey, P.R.; Crocombe, A.

    2009-01-01

    The aim of the work is to elucidate the influence of plasticity behaviour on the residual stress field in a ferritic reactor pressure vessel steel. To this end, we investigate two compressively pre-loaded compact tension (CT) specimens to generate a mechanical residual stress field. One specimen was subsequently pre-cracked by fatigue before both specimens were measured using high-energy synchrotron X-ray diffraction. A fine grain size microstructure (∼5-10 μm grain size) allowed a small X-ray beam slit size and therefore gauge volume. The results provide an excellent data set for validation of finite element (FE) modelling predictions against which they have been compared. The results of both mechanical testing and modelling suggest that the use of a combined hardening model is needed to accurately predict the residual stress field present in the specimen after pre-loading. Some discrepancy between the modelled crack tip stress values and those found by X-ray diffraction remain which can be partly explained by volume averaging effects in the presence of very high stress/strain gradients.

  12. Modelling and experimental characterisation of a residual stress field in a ferritic compact tension specimen

    Energy Technology Data Exchange (ETDEWEB)

    Wenman, M.R., E-mail: m.wenman@imperial.ac.u [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Price, A.J. [Faculty of Engineering and Physical Sciences (J5), University of Surrey, Guildford GU2 7XH (United Kingdom); Steuwer, A. [ESS Scandinavia, Stora Algatan 4, 22350 Lund (Sweden) and Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Chard-Tuckey, P.R. [Nuclear Department, Defence College of Management and Technology, HMS Sultan, Gosport, Hants PO12 3BY (United Kingdom); Crocombe, A. [Faculty of Engineering and Physical Sciences (J5), University of Surrey, Guildford GU2 7XH (United Kingdom)

    2009-12-15

    The aim of the work is to elucidate the influence of plasticity behaviour on the residual stress field in a ferritic reactor pressure vessel steel. To this end, we investigate two compressively pre-loaded compact tension (CT) specimens to generate a mechanical residual stress field. One specimen was subsequently pre-cracked by fatigue before both specimens were measured using high-energy synchrotron X-ray diffraction. A fine grain size microstructure (approx5-10 mum grain size) allowed a small X-ray beam slit size and therefore gauge volume. The results provide an excellent data set for validation of finite element (FE) modelling predictions against which they have been compared. The results of both mechanical testing and modelling suggest that the use of a combined hardening model is needed to accurately predict the residual stress field present in the specimen after pre-loading. Some discrepancy between the modelled crack tip stress values and those found by X-ray diffraction remain which can be partly explained by volume averaging effects in the presence of very high stress/strain gradients.

  13. Approach to Operational Experimental Estimation of Static Stresses of Elements of Mechanical Structures

    Science.gov (United States)

    Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.

    2018-01-01

    The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.

  14. Experimental analysis and application of the effect of stress on continental shale reservoir brittleness

    Science.gov (United States)

    Yin, Shuai; Lv, Dawei; Jin, Lin; Ding, Wenlong

    2018-04-01

    Hydraulic fracturing is an effective measure of reservoir modification for the development of shale gas. The evaluation of rock brittleness can provide a basis for the optimization of fracturing. In this paper, the effect of stress on the brittleness of shale is systematically analyzed by designing triaxial mechanics tests. The strain analysis method was used to evaluate the shale brittleness. The research indicates that, with the increase of effective confining pressure, the value of the brittleness index (B 1) decreases. There is a linear and positive correlation between the average reduction ratio of B 1 and the buried depth. The stress has a significant effect on the shale brittleness. Therefore, the rock brittleness can be overestimated without considering the influence of the buried depth or the stress of formation when using the mineral composition method. Being affected by the stress, when the brittle mineral content of the shale reservoir is 70%, 65%, 60%, and 55%, the lower limit depth of the shale gas development is 5000 m, 4400 m, 3000 m, and 1800 m, respectively. However, when the brittle mineral content of the shale is less than 50%, the brittleness index is less than 50% in all of the buried depths. In this case, the shale will not have any commercial development potential. The logging interpretation results of the brittleness index conducted with stress correction are more consistent with the real situation, and thus, this method can be better used to help the optimization of the fracturing intervals of shale gas.

  15. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    Science.gov (United States)

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.

  16. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Directory of Open Access Journals (Sweden)

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  17. Experimental analysis of residual stresses in pre-straightened SAE 1045 steel

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Carla Adriana Theis Soares; Rocha, Alexandre da Silva, E-mail: carla.adriana@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Formacao de Metais; Epp, Jérémy; Zoch, Hans-Werner [Stiftung Institut für Werkstofftechnik IWT, University of Bremen (Germany)

    2017-11-15

    This paper aims at analyzing the effects of the roller pre-straightening of wire-rods on residual stress distributions in SAE 1045 steel bars. The combined drawing process is used in industrial production of bars in order to obtain a good surface quality and improved mechanical properties complying with specifications of the final products. In this process, prior to the drawing step, a roller straightening of the steel wire-rod is essential, because it provides the minimum straightness necessary for drawing. Metallographic analysis and hardness test were done for selected samples after different processing steps. Also, residual stress analysis of pre-straightened wire-rods by X-ray diffraction and neutron diffraction were carried out. The hardness tests show higher values near the surface and lower in the center of the wire-rod. Besides, the residual stresses results show a big inhomogeneity from one peripheral position to another and also in the evaluated cross section. (author)

  18. Experimental analysis of residual stresses in pre-straightened SAE 1045 steel

    International Nuclear Information System (INIS)

    Diehl, Carla Adriana Theis Soares; Rocha, Alexandre da Silva

    2017-01-01

    This paper aims at analyzing the effects of the roller pre-straightening of wire-rods on residual stress distributions in SAE 1045 steel bars. The combined drawing process is used in industrial production of bars in order to obtain a good surface quality and improved mechanical properties complying with specifications of the final products. In this process, prior to the drawing step, a roller straightening of the steel wire-rod is essential, because it provides the minimum straightness necessary for drawing. Metallographic analysis and hardness test were done for selected samples after different processing steps. Also, residual stress analysis of pre-straightened wire-rods by X-ray diffraction and neutron diffraction were carried out. The hardness tests show higher values near the surface and lower in the center of the wire-rod. Besides, the residual stresses results show a big inhomogeneity from one peripheral position to another and also in the evaluated cross section. (author)

  19. Environmental stress responses and experimental handling artifacts of a model organism, the copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jepsen, Per Meyer; Bucklin, Ann

    2018-01-01

    Handling animals during experiments potentially affects the differential expression of genes chosen as biomarkers of sub-lethal stress. RNA sequencing was used to examine whole-transcriptome responses caused by laboratory handling of the calanoid copepod, Acartia tonsa. Salinity shock (S=35 to S=...... studies can lead to inaccurate conclusions. The present study provides a baseline for studying handling stress in future studies using this model organism and others....... for these genes between 15 min and 24 h following exposure. Since handling stress clearly affects transcriptional patterns, it is important to consider handling when designing experiments, by either including additional controls or avoiding focus on impacted genes. Not considering handling in gene expression...

  20. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque.

    Science.gov (United States)

    Zhou, Hui; Meng, Long; Zhou, Wei; Xin, Lin; Xia, Xiangxiang; Li, Shuai; Zheng, Hairong; Niu, Lili

    2017-07-29

    Studies have identified hemodynamic shear stress as an important determinant of endothelial function and atherosclerosis. In this study, we assess the influences of hemodynamic shear stress on carotid plaques. Carotid stenosis phantoms with three severity (30, 50, 70%) were made from 10% polyvinyl alcohol (PVA) cryogel. The phantoms were placed in a pulsatile flow loop with the same systolic/diastolic phase (35/65) and inlet flow rate (16 L/h). Ultrasonic particle imaging velocimetry (Echo PIV) and computational fluid dynamics (CFD) were used to calculate the velocity profile and shear stress distribution in the carotid stenosis phantoms. Inlet/outlet boundary conditions used in CFD were extracted from Echo PIV experiments to make sure that the results were comparable. Echo PIV and CFD results showed that velocity was largest in 70% than those in 30 and 50% at peak systole. Echo PIV results indicated that shear stress was larger in the upper wall and the surface of plaque than in the center of vessel. CFD results demonstrated that wall shear stress in the upstream was larger than in downstream of plaque. There was no significant difference in average velocity obtained by CFD and Echo PIV in 30% (p = 0.25). Velocities measured by CFD in 50% (93.01 cm/s) and in 70% (115.07 cm/s) were larger than those by Echo PIV in 50% (60.26 ± 5.36 cm/s) and in 70% (89.11 ± 7.21 cm/s). The results suggested that Echo PIV and CFD could obtain hemodynamic shear stress on carotid plaques. Higher WSS occurred in narrower arteries, and the shoulder of plaque bore higher WSS than in bottom part.

  1. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor

    Directory of Open Access Journals (Sweden)

    Kezhen Shen

    2017-01-01

    Full Text Available Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA, and connective tissue growth factor (CTGF; increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2; increased oxidative stress and reactive oxygen species- (ROS- inducing enzymes (NOX2 and iNOS; dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity. Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.

  2. An experimental study for the interface shear stress of near vertical air-water separated flow on evaporation

    International Nuclear Information System (INIS)

    Kwon, H.; Park, G. C.

    2000-01-01

    The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation

  3. Experimental study of the flow rules of a 316 stainless steel at high and low stresses

    International Nuclear Information System (INIS)

    Delobelle, P.; Oytana, C.

    1984-01-01

    Creep flow rules of 316L stainless steel are studied in tensile and axial-torsion experiments. Through tensile and biaxial proportional loadings it is shown that at low creep values of epsilonkT/DGb a single kinematical variable: the internal stress takes a part in these laws. This is confirmed in non-proportional experiments. The power law with the power of nsup(*)approx.=2 relates applied and internal stresses. At higher creep rates a second scalar internal variable must be introduced and the power law no longer applies. Limiting functions in steady creep are determined for hardening and recovery. (orig.)

  4. Experimental and Clinical Studies of Oxidative Stress in Pre-Eclampsia

    OpenAIRE

    Nash, Peppi

    2007-01-01

    Impaired placentation and oxidative stress are proposed to play major roles in the pathogenesis of pre-eclampsia (PE). It has recently been pointed out that PE might be more than one disease and may have several different pathogeneses. This thesis describes a new animal model for PE and examines the role of oxidative stress in early respective late onset PE. The effects of Suramin injections on day 10 and 11 of pregnancy were investigated in normal and diabetic rats of two strains (U and H), ...

  5. Experimental evaluation of the pure configurational stress assumption in the flow dynamics of entangled polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Bejenariu, Anca Gabriela; Hassager, Ole

    2010-01-01

    to the flow in the non-linear flow regime. This has allowed highly elastic measurements within the limit of pure orientational stress, as the time of the flow was considerably smaller than the Rouse time. A Doi-Edwards [J. Chem. Soc., Faraday Trans. 2 74, 1818-1832 (1978)] type of constitutive model...... with the assumption of pure configurational stress was accurately able to predict the startup as well as the reversed flow behavior. This confirms that this commonly used theoretical picture for the flow of polymeric liquids is a correct physical principle to apply. c 2010 The Society of Rheology. [DOI: 10.1122/1.3496378]...

  6. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2017-08-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  7. Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress.

    Science.gov (United States)

    Liu, Jianxia; Wang, Runmei; Liu, Wenying; Zhang, Hongli; Guo, Yaodong; Wen, Riyu

    2018-01-23

    Heat-shock proteins (HSPs) are ubiquitous proteins with important roles in response to biotic and abiotic stress. The 70-kDa heat-shock genes ( Hsp70s ) encode a group of conserved chaperone proteins that play central roles in cellular networks of molecular chaperones and folding catalysts across all the studied organisms including bacteria, plants and animals. Several Hsp70s involved in drought tolerance have been well characterized in various plants, whereas no research on Chenopodium quinoa HSPs has been completed. Here, we analyzed the genome of C. quinoa and identified sixteen Hsp70 members in quinoa genome. Phylogenetic analysis revealed the independent origination of those Hsp70 members, with eight paralogous pairs comprising the Hsp70 family in quinoa. While the gene structure and motif analysis showed high conservation of those paralogous pairs, the synteny analysis of those paralogous pairs provided evidence for expansion coming from the polyploidy event. With several subcellular localization signals detected in CqHSP70 protein paralogous pairs, some of the paralogous proteins lost the localization information, indicating the diversity of both subcellular localizations and potential functionalities of those HSP70s. Further gene expression analyses revealed by quantitative polymerase chain reaction (qPCR) analysis illustrated the significant variations of Cqhsp70s in response to drought stress. In conclusion, the sixteen Cqhsp70 s undergo lineage-specific expansions and might play important and varied roles in response to drought stress.

  8. Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history.

    Science.gov (United States)

    Crino, Ondi L; Johnson, Erin E; Blickley, Jessica L; Patricelli, Gail L; Breuner, Creagh W

    2013-06-01

    Roads have been associated with behavioral and physiological changes in wildlife. In birds, roads decrease reproductive success and biodiversity and increase physiological stress. Although the consequences of roads on individuals and communities have been well described, the mechanisms through which roads affect birds remain largely unexplored. Here, we examine one mechanism through which roads could affect birds: traffic noise. We exposed nestling mountain white-crowned sparrows (Zonotrichia leucophrys oriantha) to experimentally elevated traffic noise for 5 days during the nestling period. Following exposure to traffic noise we measured nestling stress physiology, immune function, body size, condition and survival. Based on prior studies, we expected the traffic noise treatment to result in elevated stress hormones (glucocorticoids), and declines in immune function, body size, condition and survival. Surprisingly, nestlings exposed to traffic noise had lower glucocorticoid levels and improved condition relative to control nests. These results indicate that traffic noise does affect physiology and development in white-crowned sparrows, but not at all as predicted. Therefore, when evaluating the mechanisms through which roads affect avian populations, other factors (e.g. edge effects, pollution and mechanical vibration) may be more important than traffic noise in explaining elevated nestling stress responses in this species.

  9. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses".

    Science.gov (United States)

    Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H

    2008-02-01

    The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed

  10. Stress Prevention through a Time Management Training Intervention: An Experimental Study

    Science.gov (United States)

    Häfner, Alexander; Stock, Armin; Pinneker, Lydia; Ströhle, Sabine

    2014-01-01

    The purpose of this study was to examine the effects of a short-term time management training programme on perceived control of time and perceived stress. The sample of 177 freshmen was randomly assigned to a time management training (n?=?89) and an active control group (CG) (n?=?88). We expected that an increase in external demands during the…

  11. Endocrinological and behavioural adaptations to experimentally induced physical stress in horses

    NARCIS (Netherlands)

    Graaf-Roelfsema, E. de

    2007-01-01

    The major objective of this thesis is to find parameters to diagnose early overtraining (a stress-related disorder) in horses. Diagnosing overtraining remains still a major challenge. In man, a decrease in performance despite normal training, is indicative for the syndrome. The diagnosis is made by

  12. Does uranium exposure induce oxidative stress and genotoxicity in the teleostean Danio rerio? first experimental results

    International Nuclear Information System (INIS)

    Barillet, S.; Devaux, A.; Simon, O.; Buet, A.; Pradines, C.

    2004-01-01

    Within the Envirhom research program, key advances have been obtained in uranium bioaccumulation and underlying mechanisms understanding in various biological models at the individual level. However, considering different scales of biological effects (from early to delayed ones, from low to high level of organization) is crucial to provide ecologically relevant indicators. Organisms counteract stress induced by pollutant exposure through a wide range of physiological responses being both dose and time dependent. Effects at higher hierarchical levels are always preceded by early changes in biological processes, from subtle biochemical disturbances to impaired physiological functions, increased susceptibility to other stresses, reduced life-span Within this global context, preliminary experiments were carried out on adult zebra fish (Danio rerio), to assess early changes after short-term uranium exposure. Among the subsequent primary subcellular damages oxidative stress and genotoxicity (characterizing both chemo-toxicity and radiotoxicity) are relevant endpoints, thus requiring the knowledge of dose-effects relationships as a first operational approach to provide useful tool in predicting possible effects of U exposure. Zebra fish has been selected due to its small size (facilitating its maintenance) and its extended use in eco-toxicological studies. Moreover, its short life-cycle will allow to carry out chronic exposure experiments (along the whole life-cycle). Four uranium concentrations (0, 20, 100 and 500μg.L -1 ) and five sampling times (0, 0.5, 1, 5 and 10 days) were selected. Catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were measured as oxidative stress bio-markers. DNA damage level was assessed in zebra fish erythrocytes using the comet assay. Uranium bioaccumulation was concurrently studied to understand observed bio-marker responses. Further experiments, dedicated to the assessment of the impact of chronic uranium

  13. Experimental analysis on stress wave in inhomogeneous multi-layered structures

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Ham, Hyo Sick

    1998-01-01

    The guided wave propagation in inhomogeneous multi-layered structures is experimentally explored based on theoretical dispersion curves. It turns out that proper selection of incident angle and frequency is critical for guided wave generation in multi-layered structures. Theoretical dispersion curves greatly depend on adhesive zone thickness, layer thickness and material properties. It was possible to determine the adhesive zone thickness of an inhomogeneous multi-layered structure by monitoring experimentally the change of dispersion curves.

  14. Theoretical and experimental investigation of shock wave stressing of metal powders by an explosion

    Directory of Open Access Journals (Sweden)

    Lukyanov Ya.L.

    2011-01-01

    Full Text Available Joint theoretical and experimental investigations have allowed to realize an approach with use of mathematical and physical modeling of processes of a shock wave loading of powder materials. Hugoniot adiabats of the investigated powder have been measured with a noncontact electromagnetic method. The mathematical model of elastic-plastic deformation of the powder media used in the investigation has been validated. Numerical simulation of shock wave propagation and experimental assembly deformation has been performed.

  15. Experimental and numerical analyses on the effect of increasing inflow temperatures on the flow mixing behavior in a T-junction

    International Nuclear Information System (INIS)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart

    2016-01-01

    Highlights: • Experimental and numerical analyses of three T-junction mixing cases. • Temperature difference (ΔT) between fluids are 51.5 K, 76 K and 97 K. • Thermally stratified flow behavior is observed in all cases in the mixing zone. • Temperature fluctuations have maximum amplitudes of about 6.3–9.9% of ΔT. • High amplitude fluctuations occur near stratification layer in the mixing region. • Power spectral density (PSD) of fluctuations contains energy in 0.1–2 Hz range. - Abstract: Thermal degradation of piping induced by high cycle thermal fatigue (HCTF) is of significant importance as operating Nuclear Power Plants (NPP) become older and lifetime extension activities are initiated. In particular, HCTF incidents related to turbulent thermal mixing of fluids in a T-junction piping system are not well understood and could not be adequately monitored using common thermocouple instrumentation. To investigate this phenomenon, an experimental T-junction test facility was commissioned at the University of Stuttgart, known as the Fluid Structure Interaction (FSI) test facility. The paper presents the experimental investigation and the corresponding numerical validation using the large eddy simulation (LES) method to study T-junction flow mixing. Three experimental test cases are investigated with temperature differences (∆T) of 51.5 K (Case 1), 76 K (Case 2) and 97 K (Case 3) between the mixing fluids. A constant mass flow rate ratio (main/branch) of 4:1 is maintained in all the investigated cases. Flow mixing is observed to be incomplete in all the cases, resulting in a thermally stratified flow with an oscillating stratification layer downstream of the T-junction. Mean temperature and root mean square (RMS) temperature fluctuations predicted by LES in the mixing region are found to be in good agreement with measurement data, with the exception of few positions. Amplitudes of temperature fluctuations are observed to be higher near the

  16. Violation of specific indicators pigment and lipid metabolism in experimental pneumonia in an immobilization stress and correction of corvitin

    OpenAIRE

    Ferenc, N. M.

    2015-01-01

    Ferenc N. M. Violation of specific indicators pigment and lipid metabolism in experimental pneumonia in an immobilization stress and correction of corvitin. Journal of Education, Health and Sport. 2015;5(9):709-713. ISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.32430 http://ojs.ukw.edu.pl/index.php/johs/article/view/2015%3B5%289%29%3A709-713 https://pbn.nauka.gov.pl/works/658656 Formerly Journal of Health Sciences. ISSN 1429-9623 / 2300-665X. Archives 2011–2014 http://journ...

  17. Dependence of ΔE effect on internal stresses in nickel: Experimental results by laser interferometry

    International Nuclear Information System (INIS)

    Chicharro, J.M.; Bayon, A.; Salazar, F.

    2006-01-01

    The speckle heterodyne interferometry is applied to the study of the dependence of Young's modulus on both the magnetic field and the internal stresses in a soft ferromagnetic material. Young's modulus is determined from the first natural longitudinal frequency of a slender magnetic rod positioned within a solenoid. Vibration of the sample is detected by an optical heterodyne system with a wide bandwidth. The samples are heated to above the Curie point and then cooled at several rates in order to induce different internal stresses. The study refers to nickel rods 10mm in diameter and 110mm in length. The grain sizes of the samples are also determined and related to changes in ΔE

  18. Dependence of {delta}E effect on internal stresses in nickel: Experimental results by laser interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Chicharro, J.M. [Dept. de Mecanica Aplicada e Ingenieria de Proyectos, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Avd. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)]. E-mail: josemanuel.chicharro@uclm.es; Bayon, A. [Dept. de Fisica Aplicada a los Recursos Naturales, E.T.S.I. Minas, Universidad Politecnica de Madrid, c/Rios Rosas, 21, 28003 Madrid (Spain); Salazar, F. [Dept. de Fisica Aplicada a los Recursos Naturales, E.T.S.I. Minas, Universidad Politecnica de Madrid, c/Rios Rosas, 21, 28003 Madrid (Spain)

    2006-02-15

    The speckle heterodyne interferometry is applied to the study of the dependence of Young's modulus on both the magnetic field and the internal stresses in a soft ferromagnetic material. Young's modulus is determined from the first natural longitudinal frequency of a slender magnetic rod positioned within a solenoid. Vibration of the sample is detected by an optical heterodyne system with a wide bandwidth. The samples are heated to above the Curie point and then cooled at several rates in order to induce different internal stresses. The study refers to nickel rods 10mm in diameter and 110mm in length. The grain sizes of the samples are also determined and related to changes in {delta}E.

  19. [The application of low-intensity electromagnetic radiation under immobilization stress conditions (an experimental study)].

    Science.gov (United States)

    Korolev, Iu N; Bobrovnitskiĭ, I P; Nikoulina, L A; Mikhaĭlik, L V; Geniatulina, M S; Bobkova, A S

    2014-01-01

    The experiments carried out on outbred male white rats with the use of optical, electron-microscopic, biochemical, and radioimmunological methods have demonstrated that the application of low-intensity electromagnetic radiation (LI-EMR) with a flow density of 1 mcW/cm2 and a frequency of around 1,000 MHz both in the primary prophylaxis regime and as the therapeuticpreventive modality arrested the development of post-stress disorders in the rat testicles, liver, and thymus; moreover, it promoted activation of the adaptive, preventive, and compensatory processes. The data obtained provide a rationale for the application of low-intensity electromagnetic radiation to protect the organism from negative effects of stressful factors.

  20. Experimental determination of the stress/strain situation in a sheared tunnel model with canister

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    A previous report concerned a technical matter which could be of great importance as regards the mechanical strength of canisters embedded in a bentonite/quartz buffer mass, i.e. the effect of a differential movement triggered by a critical deviatoric stress condition. Even if this is extremely unlikeley to occur it was considered to be of importance to verify the theoretical expressions for the maximum bending moment and maximum shear force. A special reason was to test the hypothesis that the contact pressure would soon reach a high value and then stay fairly constant when the displacement increased. The theoretical approach requires that the stress/strain properties of the fill are thoroghly investigated and described in therms of a mathematical model. Experience shows that this may be a tedions and difficult task. (L.E.)

  1. Stress transfer from pile group in saturated and unsaturated soil using theoretical and experimental approaches

    Directory of Open Access Journals (Sweden)

    al-Omari Raid R.

    2017-01-01

    Full Text Available Piles are often used in groups, and the behavior of pile groups under the applied loads is generally different from that of single pile due to the interaction of neighboring piles, therefore, one of the main objectives of this paper is to investigate the influence of pile group (bearing capacity, load transfer sharing for pile shaft and tip in comparison to that of single piles. Determination of the influence of load transfer from the pile group to the surrounding soil and the mechanism of this transfer with increasing the load increment on the tip and pile shaft for the soil in saturated and unsaturated state (when there is a negative pore water pressure. Different basic properties are used that is (S = 90%, γd = 15 kN / m3, S = 90%, γd = 17 kN / m3 and S = 60%, γd =15 kN / m3. Seven model piles were tested, these was: single pile (compression and pull out test, 2×1, 3×1, 2×2, 3×2 and 3×3 group. The stress was measured with 5 cm diameter soil pressure transducer positioned at a depth of 5 cm below the pile tip for all pile groups. The measured stresses below the pile tip using a soil pressure transducer positioned at a depth of 0.25L (where L is the pile length below the pile tip are compared with those calculated using theoretical and conventional approaches. These methods are: the conventional 2V:1H method and the method used the theory of elasticity. The results showed that the method of measuring the soil stresses with soil pressure transducer adopted in this study, gives in general, good results of stress transfer compared with the results obtained from the theoretical and conventional approaches.

  2. Liver mitochondrial dysfunction and oxidative stress in the pathogenesis of experimental nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Oliveira C.P.M.S.

    2006-01-01

    Full Text Available Oxidative stress and hepatic mitochondria play a role in the pathogenesis of nonalcoholic fatty liver disease. The aim of the present study was to evaluate the role of hepatic mitochondrial dysfunction and oxidative stress in the pathogenesis of the disease. Fatty liver was induced in Wistar rats with a choline-deficient diet (CD; N = 7 or a high-fat diet enriched with PUFAs-omega-3 (H; N = 7 for 4 weeks. The control group (N = 7 was fed a standard diet. Liver mitochondrial oxidation and phosphorylation were measured polarographically and oxidative stress was estimated on the basis of malondialdehyde and glutathione concentrations. Moderate macrovacuolar liver steatosis was observed in the CD group and mild liver steatosis was observed in the periportal area in the H group. There was an increase in the oxygen consumption rate by liver mitochondria in respiratory state 4 (S4 and a decrease in respiratory control rate (RCR in the CD group (S4: 32.70 ± 3.35; RCR: 2.55 ± 0.15 ng atoms of O2 min-1 mg protein-1 when compared to the H and control groups (S4: 23.09 ± 1.53, 17.04 ± 2.03, RCR: 3.15 ± 0.15, 3.68 ± 0.15 ng atoms of O2 min-1 mg protein-1, respectively, P < 0.05. Hepatic lipoperoxide concentrations were significantly increased and the concentration of reduced glutathione was significantly reduced in the CD group. A choline-deficient diet causes moderate steatosis with disruption of liver mitochondrial function and increased oxidative stress. These data suggest that lipid peroxidation products can impair the flow of electrons along the respiratory chain, causing overreduction of respiratory chain components and enhanced mitochondrial reactive oxygen species. These findings are important in the pathogenesis of nonalcoholic fatty liver disease.

  3. Design, rationale and feasibility of a multidimensional experimental protocol to study early life stress

    Directory of Open Access Journals (Sweden)

    M. Dillwyn Bartholomeusz

    2017-09-01

    Full Text Available There is a rapidly accumulating body of evidence regarding the influential role of early life stress (ELS upon medical and psychiatric conditions. While self-report instruments, with their intrinsic limitations of recall, remain the primary means of detecting ELS in humans, biological measures are generally limited to a single biological system. This paper describes the design, rationale and feasibility of a study to simultaneously measure neuroendocrine, immune and autonomic nervous system (ANS responses to psychological and physiological stressors in relation to ELS. Five healthy university students were recruited by advertisement. Exclusion criteria included chronic medical conditions, psychotic disorders, needle phobia, inability to tolerate pain, and those using anti-inflammatory medications. They were clinically interviewed and physiological recordings made over a two-hour period pre, during and post two acute stressors: the cold pressor test and recalling a distressing memory. The Childhood Trauma Questionnaire and the Parental Bonding Index were utilised to measure ELS. Other psychological measures of mood and personality were also administered. Measurements of heart rate, blood pressure, respiratory rate, skin conductance, skin blood flow and temporal plasma samples were successfully obtained before, during and after acute stress. Participants reported the extensive psychological and multisystem physiological data collection and stress provocations were tolerable. Most (4/5 participants indicated a willingness to return to repeat the protocol, indicating acceptability. Our protocol is viable and safe in young physically healthy adults and allows us to assess simultaneously neuroendocrine, immune and autonomic nervous system responses to stressors in persons assessed for ELS. Keywords: Childhood-stress, Adverse-childhood-events, Childhood-trauma questionnaire, Parental-bonding-instrument, Type D scale (DS14

  4. Experimental Study on Properties of Methane Diffusion of Coal Block under Triaxial Compressive Stress

    Science.gov (United States)

    Zhao, Hong-Bao

    2014-01-01

    Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters. PMID:25531000

  5. Selected spices and their combination modulate hypercholesterolemia-induced oxidative stress in experimental rats

    Directory of Open Access Journals (Sweden)

    Gloria A Otunola

    2014-01-01

    Full Text Available BACKGROUND: Effect of aqueous extracts of Allium sativum (garlic, Zingiber officinale (ginger, Capsicum fructensces (cayenne pepper and their mixture on oxidative stress in rats fed high Cholesterol/high fat diet was investigated. Rats were randomly distributed into six groups (n = 6 and given different dietary/spice treatments. Group 1 standard rat chow (control, group 2, hypercholesterolemic diet plus water, and groups 3, 4, 5, 6, hypercholesterolemic diet with 0.5 ml 200 mg · kg-1 aqueous extracts of garlic, ginger, cayenne pepper or their mixture respectively daily for 4 weeks. RESULTS: Pronounced oxidative stress in the hypercholesterolemic rats evidenced by significant (p < 0.05 increase in MDA levels, and suppression of the antioxidant enzymes system in rat's liver, kidney, heart and brain tissues was observed. Extracts of spices singly or combined administered at 200 mg.kg-1 body weight significantly (p < 0.05 reduced MDA levels and restored activities of antioxidant enzymes. CONCLUSIONS: It is concluded that consumption of garlic, ginger, pepper, or their mixture may help to modulate oxidative stress caused by hypercholesterolemia in rats.

  6. Theoretical and Experimental Investigation of Characteristics of Single Fracture Stress-Seepage Coupling considering Microroughness

    Directory of Open Access Journals (Sweden)

    Shengtong Di

    2017-01-01

    Full Text Available Based on the results of the test among the joint roughness coefficient (JRC of rock fracture, mechanical aperture, and hydraulic aperture proposed by Barton, this paper deduces and proposes a permeability coefficient formula of single fracture stress-seepage coupling considering microroughness by the introduction of effect variables considering the microparticle size and structural morphology of facture surface. Quasi-sandstone fracture of different particle size is made by the laboratory test, and the respective modification is made on the coupled shear-seepage test system of JAW-600 rock. Under this condition, the laboratory test of stress-seepage coupling of fracture of different particle size is carried out. The test results show that, for the different particle-sized fracture surface of the same JRC, the permeability coefficient is different, which means the smaller particle size, the smaller permeability coefficient, and the larger particle size, the larger permeability coefficient; with the increase of cranny hydraulic pressure, the permeability coefficient increases exponentially, and under the same cranny hydraulic pressure, there is relation of power function between the permeability coefficient and normal stress. Meanwhile, according to the theoretical formula, the microroughness coefficient of the fractures with different particle size is obtained by the calculation, and its accuracy and validity are verified by experiments. The theoretical verification values are in good agreement with the measured values.

  7. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    Science.gov (United States)

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  8. Survival and virulence of copper- and chlorine-stressed Yersinia enterocolitica in Experimentally infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; McFeters, G.A.

    1987-08-01

    The effect of gastric pH on the viability and virulence of Yersinia enterocolitica 0:8 after exposure to sublethal concentrations of copper and chlorine was determined in mice. Viability and injury were assessed with a nonselective TLY agar and two selective media, TLYD agar and CIN agar. Both copper and chlorine caused injury which was manifested by the inability of the cells to grow on selective media. CIN agar was more restrictive to the growth of injured cells than TLYD agar. Injury of the exposed cells was further enhanced in the gastric environment of mice. Besides injury, the low gastric pH caused extensive loss of viability in copper-exposed cells. Lethality in the chlorine-exposed cells was less extensive, and a portion of the inoculum reached the small intestine 5 min postinoculation. No adverse effect on the injured cells was apparent in the small intestine, and a substantial revival of the injury occurred in 3 to 4 h after intraluminal inoculation. The virulence of chlorine-stressed Y. enterocolitica in orally inoculated mice was similar to that of the control culture, but copper-stressed cells showed reduced virulence. Virulence was partly restored by oral administration of sodium bicarbonate before the inoculation of copper-exposed cells. Neutralization of gastric acidity had no effect on the virulence of the control of chlorine-stressed cells.

  9. Three Dimensional Parametric Analyses on Effect of Fibre Orientation for Stress Concentration Factor in Fibrous Composite Cantilever Plate with Central Circular Hole under Transverse Loading

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2012-10-01

    Full Text Available Normal 0 false false false EN-IN X-NONE X-NONE ABSTRACT: A number of analytical and numerical techniques are available for the two dimensional study of stress concentration around the hole(s in isotropic and composite plates subjected to in-plane or transverse loading conditions. The information on the techniques for three dimensional analyses of stress concentration factor (SCF around the hole in isotropic and composite plates subjected to transverse loading conditions is, however, limited. The present work emphasizes on the effect of fibre orientation (q on the stress concentration factor in fibrous composite plates with central circular hole under transverse static loading condition. The work is carried out for cantilever fibrous composite plates. The effects of thickness -to- width (T/A and diameter-to-width (D/A ratios upon SCF at different fibre orientation are studied. Plates of four different composite materials were considered for hole analysis in order to determine the sensitivity of SCF with elastic constants. Deflections in transverse direction were calculated and analysed. All results are presented in graphical form and discussed. The finite element formulation and its analysis were carried out using ANSYS package.ABSTRAK: Terdapat pelbagai teknik analitikal dan numerical untuk kajian tumpuan tegasan dua dimensi di sekeliling lubang-lubang dalam komposit isotropik dan plat pada satah atau keadaan bebanan melintang. Bagaimanapun, maklumat mengenai kaedah analisis tiga dimensi untuk faktor ketumpatan tegasan (SCF sekitar lubang dalam komposit isotropik dan plat pada keadaan bebanan melintang adalah terhad. Kertas ini menekankan kesan orientasi gentian (q pada faktor tumpuan tegasan dalam komposit plat bergentian dengan lubang berpusat di bawah keadaan bebanan melintang. Kajian ini dilkukan untuk cantilever plat komposit bergentian. Kesan ketebalan terhadap kelebaran plat (T/A dan diameter terhadap kelebaran komposit (D/A dengan SCF

  10. Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Santamouris, M.; Pavlou, C.; Doukas, P.; Synnefa, A.; Hatzibiros, A. [University of Athens, (Greece). Department of Physics, Division of Applied Physics, Laboratory of Meteorology; Mihalakakou, G. [University of Ioannina, Agrinion (Greece). Department of Environment and Natural Resources Management; Patargias, P. [University of Peloponnesus, Kalamata (Greece). Faculty of Human Sciences and Cultural Studies, Department of History, Archaeology and Cultural Heritage Management

    2007-09-15

    This paper deals with the experimental investigation and analysis of the energy and environmental performance of a green roof system installed in a nursery school building in Athens. The investigation was implemented in two phases. During the first phase, an experimental investigation of the green roof system efficiency was presented and analysed, while in the second one the energy savings was examined through a mathematical approach by calculating both the cooling and heating load for the summer and winter period for the whole building as well as for its top floor. The energy performance evaluation showed a significant reduction of the building's cooling load during summer. This reduction varied for the whole building in the range of 6-49% and for its last floor in the range of 12-87%. Moreover, the influence of the green roof system in the building's heating load was found insignificant, and this can be regarded a great advantage of the system as any interference in the building shell for the reduction of cooling load leads usually to the increase of its heating load. (author)

  11. An experimental study on the stress-strain relationship of concrete -about steel fiber concrete-

    International Nuclear Information System (INIS)

    Kim, Wha Jung; Kwon, Young Hwan; Lee, Sang Jae; Jun, Myoung Hoon

    1990-01-01

    The factors adopted in this experiment are volume fraction and the diameter and aspect ratio of fiber. The levels of factors are determined by existing studies. The effects of the diameter and mixing volume fraction and the aspect ratio for maximum strength, strain and tangent modulus are analysed based on the linear multiple regression and we obtained regression equations.(Author)

  12. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    International Nuclear Information System (INIS)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-01-01

    Highlights: • A 1/8th geometric-scale test facility that models the VHTR hot plenum is proposed. • Geometric scaling analysis is introduced for VHTR to analyze air-ingress accident. • Design calculations are performed to show that accident phenomenology is preserved. • Some analyses include time scale, hydraulic similarity and power scaling analysis. • Test facility has been constructed and shake-down tests are currently being carried out. - Abstract: A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time

  13. Oxidative Stress in The Hippocampus During Experimental Seizures Can Be Ameliorated With The Antioxidant Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Ítala Mônica Sales Santos

    2009-01-01

    Full Text Available Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group, ascorbic acid (500 mg/kg, i.p., AA group, pilocarpine (400 mg/kg, i.p., pilocarpine group, and the association of ascorbic acid (500 mg/kg, i.p. plus pilocarpine (400 mg/kg, i.p., 30 min before of administration of ascorbic acid (AA plus pilocarpine group. After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a

  14. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    Directory of Open Access Journals (Sweden)

    Ji-Won Kim

    2018-03-01

    Full Text Available Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5 and mid-strain (10−5 to 10−3 ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1 grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2 the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3 the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4 increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  15. Stress wave propagation in thin long-fiber carbon/epoxy composite panel. Numerical and experimental solutions

    Directory of Open Access Journals (Sweden)

    Kroupa T.

    2007-10-01

    Full Text Available The article deals with experimental and numerical analysis of stress wave propagation in a thin long fiber carbon/epoxy composite material. Experiments were performed on in-plane loaded square composite panels with dimensions 501mm x 501mm x 2:2 mm. The panels have several fiber orientations (0°, 30°, 60° and 90° measured from the loaded edge. They were loaded by in-plane impact of steel sphere. The impact area was on the edge, exactly 150mm from top left corners corner of the panels. The loading force was approximated by atime dependent function. Its shape was obtained from three dimensional contact analysis, which was performed on smaller area of panel. The function was used in further plane stress analysis of the whole panels. The comparison of the numerical and experimental results was executed. An attempt at determination of velocity of propagation of Rayleigh waves on the loaded edge was performed and the results are discussed in the paper. Further directions of the research are proposed.

  16. Medical ozone therapy reduces oxidative stress and testicular damage in an experimental model of testicular torsion in rats

    Directory of Open Access Journals (Sweden)

    Mustafa Tusat

    Full Text Available ABSTRACT Objective: Testicular torsion (TT refers to rotation of the testis and twisting of the spermatic cord. TT results in ischemia-reperfusion (I/R injury involving increased oxidative stress, inflammation and apoptosis, and can even lead to infertility. The aim of this study was to investigate the effect of ozone therapy on testicular damage due to I/R injury in an experimental torsion model. Materials and Methods: 24 male Sprague-Dawley rats were divided into 3 groups; shamoperated, torsion/detorsion (T/D, and T/D+ozone. Ozone (1mg/kg was injected intraperitoneally 120 minutes before detorsion and for the following 24h. Blood and tissue samples were collected at the end of 24h. Johnsen score, ischemia modified albumin (IMA, total antioxidant status (TAS, total oxidant status (TOS, and oxidative stress index (OSI levels were determined. Results: Levels of IMA, TOS, OSI, and histopathological scores increased in the serum/tissue of the rats in the experimental T/D group. Serum IMA, TOS, and OSI levels and tissue histopathological scores were lower in the rats treated with ozone compared with the T/D group. Conclusion: Our study results suggest that ozone therapy may exhibit beneficial effects on both biochemical and histopathological findings. Clinical trials are now necessary to confirm this.

  17. Theoretical and experimental study of stress corrosion cracking of pipeline steel in near neutral pH environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.; Fan, J.; Chudnovsky, A. [Illinois Univ., Chicago, IL (United States); Gogotsi, Y. [Drexel Univ., Philadelphia, PA (United States); Teitsma, A. [Gas Technology Inst., Chicago, IL (United States)

    2000-07-01

    Field observations indicate that stress corrosion cracking (SCC) in a near neutral pH environment starts with microcracks growing from corrosion pits on the external surface of the buried pipe. A complex phenomenon, SCC combines stochasticity and determinism resulting in the evolution of a SCC colony. The authors proposed a statistical model which generates a random field of corrosion pits and crack initiation at randomly selected pits. Using the framework of the Crack Layer theory, a thermodynamic model of individual stress corrosion growth was also developed recently. Relations between the crack growth, hydrogen diffusion and corrosion rates on one hand and corresponding thermodynamic forces on the other were used to develop the mathematical realization of the stress corrosion crack growth model. Additionally, there is a quick overview of the experimental program for determination of the kinetic coefficients employed in the crack growth equations. A simulation of SCC colony evolution, including a stage of the large-scale crack interaction is provided by applying the individual crack growth law to random configuration of multiple cracks. Finally, the FRANC2D Finite Element Methods resulted in a computer simulation of multi-crack cluster formation within the colony. 14 refs., 15 figs.

  18. Transient thermal stress wave and vibrational analyses of a thin diamond crystal for X-ray free-electron lasers under high-repetition-rate operation.

    Science.gov (United States)

    Yang, Bo; Wang, Songwei; Wu, Juhao

    2018-01-01

    High-brightness X-ray free-electron lasers (FELs) are perceived as fourth-generation light sources providing unprecedented capabilities for frontier scientific researches in many fields. Thin crystals are important to generate coherent seeds in the self-seeding configuration, provide precise spectral measurements, and split X-ray FEL pulses, etc. In all of these applications a high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a certain amount of heat load, potentially impairing the performance. In the present paper, transient thermal stress wave and vibrational analyses as well as transient thermal analysis are carried out to address the thermomechanical issues for thin diamond crystals, especially under high-repetition-rate operation of an X-ray FEL. The material properties at elevated temperatures are considered. It is shown that, for a typical FEL pulse depositing tens of microjoules energy over a spot of tens of micrometers in radius, the stress wave emission is completed on the tens of nanoseconds scale. The amount of kinetic energy converted from a FEL pulse can reach up to ∼10 nJ depending on the layer thickness. Natural frequencies of a diamond plate are also computed. The potential vibrational amplitude is estimated as a function of frequency. Due to the decreasing heat conductivity with increasing temperature, a runaway temperature rise is predicted for high repetition rates where the temperature rises abruptly after ratcheting up to a point of trivial heat damping rate relative to heat deposition rate.

  19. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays.

    Science.gov (United States)

    Oliveira, Letícia C; Saraiva, Tessália D L; Silva, Wanderson M; Pereira, Ulisses P; Campos, Bruno C; Benevides, Leandro J; Rocha, Flávia S; Figueiredo, Henrique C P; Azevedo, Vasco; Soares, Siomar C

    2017-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.

  20. A Preliminary Experimental Examination of Worldview Verification, Perceived Racism, and Stress Reactivity in African Americans

    Science.gov (United States)

    Lucas, Todd; Lumley, Mark A.; Flack, John M.; Wegner, Rhiana; Pierce, Jennifer; Goetz, Stefan

    2016-01-01

    Objective According to worldview verification theory, inconsistencies between lived experiences and worldviews are psychologically threatening. These inconsistencies may be key determinants of stress processes that influence cardiovascular health disparities. This preliminary examination considers how experiencing injustice can affect perceived racism and biological stress reactivity among African Americans. Guided by worldview verification theory, it was hypothesized that responses to receiving an unfair outcome would be moderated by fairness of the accompanying decision process, and that this effect would further depend on the consistency of the decision process with preexisting justice beliefs. Method A sample of 118 healthy African American adults completed baseline measures of justice beliefs, followed by a laboratory-based social-evaluative stressor task. Two randomized fairness manipulations were implemented during the task: participants were given either high or low levels of distributive (outcome) and procedural (decision process) justice. Glucocorticoid (cortisol) and inflammatory (C-reactive protein) biological responses were measured in oral fluids, and attributions of racism were also measured. Results The hypothesized 3-way interaction was generally obtained. Among African Americans with a strong belief in justice, perceived racism, cortisol and C-reactive protein responses to low distributive justice were higher when procedural justice was low. Among African Americans with a weak belief in justice however, these responses were higher when a low level of distributive justice was coupled with high procedural justice. Conclusions Biological and psychological processes that contribute to cardiovascular health disparities are affected by consistency between individual-level and contextual justice factors. PMID:27018728

  1. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  2. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    2016-01-01

    Full Text Available Oxidative stress and inflammation are important pathogenic factors contributing to the etiology of diabetic retinopathy (DR. Melatonin is an endogenous hormone that exhibits a variety of biological effects including antioxidant and anti-inflammatory functions. The goals of this study were to determine whether melatonin could ameliorate retinal injury and to explore the potential mechanisms. Diabetes was induced by a single intraperitoneal (i.p. injection of STZ (60 mg/kg in Sprague-Dawley rats. Melatonin (10 mg kg−1 daily, i.p. was administered from the induction of diabetes and continued for up to 12 weeks, after which the animals were sacrificed and retinal samples were collected. The retina of diabetic rats showed depletion of glutathione and downregulation of glutamate cysteine ligase (GCL. Melatonin significantly upregulated GCL by retaining Nrf2 in the nucleus and stimulating Akt phosphorylation. The production of proinflammatory cytokines and proteins, including interleukin 1β, TNF-α, and inducible nitric oxide synthase (iNOS, was inhibited by melatonin through the NF-κB pathway. At 12 weeks, melatonin prevented the significant decrease in the ERG a- and b-wave amplitudes under the diabetic condition. Our results suggest potent protective functions of melatonin in diabetic retinopathy. In addition to being a direct antioxidant, melatonin can exert receptor-mediated signaling effects to attenuate inflammation and oxidative stress of the retina.

  3. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress.

    Science.gov (United States)

    de Andrade Ferrazza, Rodrigo; Mogollón Garcia, Henry David; Vallejo Aristizábal, Viviana Helena; de Souza Nogueira, Camilla; Veríssimo, Cecília José; Sartori, José Roberto; Sartori, Roberto; Pinheiro Ferreira, João Carlos

    2017-05-01

    Heat stress (HS) adversely influences productivity and welfare of dairy cattle. We hypothesized that the thermoregulatory mechanisms vary depending on the exposure time to HS, with a cumulative effect on the adaptive responses and thermal strain of the cow. To identify the effect of HS on adaptive thermoregulatory mechanisms and predictors of caloric balance, Holstein cows were housed in climate chambers and randomly distributed into thermoneutral (TN; n=12) or HS (n=12) treatments for 16 days. Vaginal temperature (VT), rectal temperature (Tre), respiratory rate (RR), heart rate (HR), and dry matter intake (DMI) were measured. The temperature and humidity under TN were 25.9±0.2°C and 73.0±0.8%, respectively, and under HS were 36.3±0.3°C and 60.9±0.9%, respectively. The RR of the HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm, pcows from the third day (8.27±0.33kgd -1 in the HS vs. 14.03±0.29kgd -1 in the TN, pheat exchange. The difference in the responses to acute and chronic exposure to HS suggests an adaptive response. Thus, intense thermal stress strongly influence thermoregulatory mechanisms and the acclimation process depend critically on heat exposure time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  5. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  6. Sensory trigeminal ULF-TENS stimulation reduces HRV response to experimentally induced arithmetic stress: A randomized clinical trial.

    Science.gov (United States)

    Monaco, Annalisa; Cattaneo, Ruggero; Ortu, Eleonora; Constantinescu, Marian Vladimir; Pietropaoli, Davide

    2017-05-01

    Ultra Low Frequency Transcutaneous Electric Nervous Stimulation (ULF-TENS) is extensively used for pain relief and for the diagnosis and treatment of temporomandibular disorders (TMD). In addition to its local effects, ULF-TENS acts on the autonomic nervous system (ANS), with particular reference to the periaqueductal gray (PAG), promoting the release of endogenous opioids and modulating descending pain systems. It has been suggested that the PAG participates in the coupling between the emotional stimulus and the appropriate behavioral autonomic response. This function is successfully investigated by HRV. Therefore, our goal is to investigate the effects of trigeminal ULF-TENS stimulation on autonomic behavior in terms of HRV and respiratory parameters during an experimentally-induced arithmetic stress test in healthy subjects. Thirty healthy women between 25 and 35years of age were enrolled and randomly assigned to either the control (TENS stimulation off) or test group (TENS stimulation on). Heart (HR, LF, HF, LF/HF ratio, DET, RMSSD, PNN50, RR) and respiratory (BR) rate were evaluated under basal, T1 (TENS off/on), and stress (mathematical task) conditions. Results showed that HRV parameters and BR significantly changed during the arithmetic stress paradigm (pTENS and control group could be discriminated only by non-linear HRV data, namely RR and DET (p=0.038 and p=0.027, respectively). During the arithmetic task, LF/HF ratio was the most sensitive parameter to discriminate between groups (p=0.019). Our data suggest that trigeminal sensory ULF-TENS reduces the autonomic response in terms of HRV and BR during acute mental stress in healthy subjects. Future directions of our work aim at applying the HRV and BR analysis, with and without TENS stimulation, to individuals with dysfunctional ANS among those with TMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Experimental Analysis of Residual Stresses in Samples of Austenitic Stainless Steel Welded on Martensitic Stainless Steel Used for Kaplan Blades Repairs

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2011-01-01

    Full Text Available Residual stresses occur in materials as a result of mechanical processes: welding, machining, grinding etc. If residual stresses reach high values they can accelerate the occurrence of cracks and erosion of material. An experimental research was made in order to study the occurrence of residual stresses in the repaired areas of hydraulic turbine components damaged by cavitation erosion. An austenitic stainless steel was welded in various layer thicknesses on a martensitic stainless steel base. The residual stresses were determined using the hole drilling strain gage method.

  8. Mitochondrial dysfunction, oxidative stress and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Mark H.; Qian, Weijun; Wang, Haixing; Petyuk, Vladislav A.; Bloom, Joshua S.; Sforza, Daniel M.; Lacan, Goran; Liu, Dahai; Khan, Arshad H.; Cantor, Rita M.; Bigelow, Diana J.; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.

    2008-02-10

    The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson disease (PD) are not completely understood. Here we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 85 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA following neurotoxin treatment. The combined protein and gene list provides a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response and apoptosis. Additionally, codon usage and miRNAs may play an important role in translational control in the striatum. These results constitute one of the largest datasets integrating protein and transcript changes for these neurotoxin models with many similar endpoint phenotypes but distinct mechanisms.

  9. Are Trauma Memories Disjointed from other Autobiographical Memories in Posttraumatic Stress Disorder? An Experimental Investigation

    Science.gov (United States)

    Kleim, Birgit; Wallott, Franziska; Ehlers, Anke

    2008-01-01

    This study tested the hypothesis that trauma memories are disjointed from other autobiographical material in posttraumatic stress disorder (PTSD). Assault survivors with (n = 25) and without PTSD (n = 49) completed an autobiographical memory retrieval task during script-driven imagery of (a) the assault and (b) an unrelated negative event. When listening to a taped imagery script of the worst moment of their assault, survivors with PTSD took longer to retrieve unrelated non-traumatic autobiographical information than those without PTSD, but not when listening to a taped script of the worst moment of another negative life event. The groups also did not differ in general retrieval latencies, neither at baseline nor after the imagery tasks. The findings are in line with suggestions that traumatic memories are less integrated with other autobiographical information in trauma survivors with PTSD than in those without PTSD. PMID:21241538

  10. A preliminary experimental examination of worldview verification, perceived racism, and stress reactivity in African Americans.

    Science.gov (United States)

    Lucas, Todd; Lumley, Mark A; Flack, John M; Wegner, Rhiana; Pierce, Jennifer; Goetz, Stefan

    2016-04-01

    According to worldview verification theory, inconsistencies between lived experiences and worldviews are psychologically threatening. These inconsistencies may be key determinants of stress processes that influence cardiovascular health disparities. This preliminary examination considers how experiencing injustice can affect perceived racism and biological stress reactivity among African Americans. Guided by worldview verification theory, it was hypothesized that responses to receiving an unfair outcome would be moderated by fairness of the accompanying decision process, and that this effect would further depend on the consistency of the decision process with preexisting justice beliefs. A sample of 118 healthy African American adults completed baseline measures of justice beliefs, followed by a laboratory-based social-evaluative stressor task. Two randomized fairness manipulations were implemented during the task: participants were given either high or low levels of distributive (outcome) and procedural (decision process) justice. Glucocorticoid (cortisol) and inflammatory (C-reactive protein) biological responses were measured in oral fluids, and attributions of racism were also measured. The hypothesized 3-way interaction was generally obtained. Among African Americans with a strong belief in justice, perceived racism, cortisol, and C-reactive protein responses to low distributive justice were higher when procedural justice was low. Among African Americans with a weak belief in justice however, these responses were higher when a low level of distributive justice was coupled with high procedural justice. Biological and psychological processes that contribute to cardiovascular health disparities are affected by consistency between individual-level and contextual justice factors. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Solar Energy Gain and Space-Heating Energy Supply Analyses for Solid-Wall Dwelling Retrofitted with the Experimentally Achievable U-value of Novel Triple Vacuum Glazing

    Directory of Open Access Journals (Sweden)

    Saim Memon

    2017-06-01

    Full Text Available A considerable effort is devoted to devising retrofit solutions for reducing space-heating energy in the domestic sector. Existing UK solid-wall dwellings, which have both heritage values and historic fabric, are being improved but they tend to have meagre thermal performance, partly, due to the heat-loss through glazings. This paper takes comparative analyses approach to envisage space-heating supply required in order to maintain thermal comfort temperatures and attainable solar energy gains to households with the retrofit of an experimentally achievable thermal performance of the fabricated sample of triple vacuum glazing to a UK solid-wall dwelling. 3D dynamic thermal models (timely regimes of heating, occupancy, ventilation and internal heat gains of an externally-insulated solid-wall detached dwelling with a range of existing glazing types along with triple vacuum glazings are modelled. A dramatic decrease of space-heating load and moderate increase of solar gains are resulted with the dwelling of newly achievable triple vacuum glazings (having centre-of-pane U-value of 0.33 Wm-2K-1 compared to conventional glazing types. The space-heating annual cost of single glazed dwellings was minimised to 15.31% (≈USD 90.7 with the retrofit of triple-vacuum glazings. An influence of total heat-loss through the fabric of solid-wall dwelling was analysed with steady-state calculations which indicates a fall of 10.23 % with triple vacuum glazings compared to single glazings.

  12. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  13. Stress in the caregivers of Alzheimer's patients: an experimental investigation in Italy.

    Science.gov (United States)

    Aguglia, E; Onor, M L; Trevisiol, M; Negro, C; Saina, M; Maso, E

    2004-01-01

    In Italy, the family constitutes the major caregiving response to the needs of the elderly who are no longer self-sufficient. These caregivers are often wives or daughters who have chosen to keep the patient at home with them. On average, three-quarters of the caregiver's day is devoted to the patient, a proportion that tends to increase linearly as the disease progresses. The primary aim of our study was to describe a group of Italian caregivers of patients with a diagnosis of dementia to assess their levels of stress. We then correlated these caregivers with a number of sociodemographic variables and the patients' degree of cognitive impairment and independence in daily life activities. The study was conducted on a sample group of 236 caregivers of patients with a diagnosis of Alzheimer's disease (AD) according to the DSM-IV criteria. Each caregiver took part in a sociodemographic interview and filled in two questionnaires: the Caregiver Burden Inventory (CBI), to quantify the caregiving workload and the Brief Symptom Inventory (BSI), to assess the level of anxiety and depression. Patients were administered the Mini-Mental State Examination (MMSE) to evaluate their level of cognitive impairment and the Instrumental Activities of Daily Living (IADL) and Activities of Daily Living (ADL) tests to quantify their level of independence. The analysis of the results shows that the average Italian caregiver of an AD patient is a woman, approximately 60 years old. The majority of caregivers are spouses, followed by children. In general, these caregivers work at home, are housewives or retired, and are personally involved in caring for the patients. The greater the level of a patient's cognitive impairment and the less independent they are, the greater amount of care and supervision they require, leaving less free time for the caregiver; this leads to higher levels of anxiety related to caregiving. Toward the final stages of the disease, patient care tasks take up nearly

  14. Vigas mistas de madeira de reflorestamento e bambu laminado colado: análise teórica e experimental Composite beams of reforestation wood and glue-laminated bamboo: theoretical and experimental analyses

    Directory of Open Access Journals (Sweden)

    Humberto C. Lima Júnior

    2001-12-01

    Full Text Available Neste trabalho, apresenta-se e se discute a análise teórica e experimental de vigas de madeira, reforçadas com bambu. Para tanto, o comportamento mecânico de cinco vigas mistas e duas de madeira foi estudado. A parte interna das vigas mistas foi constituída de Pinus elliottii e o reforço de bambu Dendrocalamus giganteus; este reforço foi disposto tanto na parte inferior como na superior das vigas, além de analisadas diferentes espessuras de reforço. São apresentadas curvas carga vs. deslocamentos e carga vs. deformação. Observou-se aumento da ordem de 50% na rigidez das vigas de Pinus elliottii, quando da presença do reforço de bambu. Finalmente, um estudo numérico em que se utilizou o método dos elementos finitos é apresentado, observando-se boa correlação entre os valores numéricos e experimentais.This paper presents and discusses the experimental and theoretical analyses of layer composite beams of wood strengthened with bamboo. For this, the mechanical behavior of five composite beams and two wood beams was studied. The beam's stuffing was composed of Pinus elliottii and the reinforcement of bamboo Dendrocalamus giganteus. The bamboo reinforcement was placed on the top and at the bottom of the beams. Different thicknesses of reinforcement were investigated. Curves of load vs. displacement and load vs. strain are presented. An increase of 50% was observed in the stiffness, when the composite beams are compared with the wood one. Finally, a numerical study was carried out applying the finite element method and a good agreement was observed between the theoretical and experimental values.

  15. Experimental Study on the Effects of Stress Variations on the Permeability of Feldspar-Quartz Sandstone

    Directory of Open Access Journals (Sweden)

    Fugang Wang

    2017-01-01

    Full Text Available The multistage and discontinuous nature of the injection process used in the geological storage of CO2 causes reservoirs to experience repeated loading and unloading. The reservoir permeability changes caused by this phenomenon directly impact the CO2 injection process and the process of CO2 migration in the reservoirs. Through laboratory experiments, variations in the permeability of sandstone in the Liujiagou formation of the Ordos CO2 capture and storage (CCS demonstration project were analyzed using cyclic variations in injection pressure and confining pressure and multistage loading and unloading. The variation in the micropore structure and its influence on the permeability were analyzed based on micropore structure tests. In addition, the effects of multiple stress changes on the permeability of the same type of rock with different clay minerals content were also analyzed. More attention should be devoted to the influence of pressure variations on permeability in evaluations of storage potential and studies of CO2 migration in reservoirs in CCS engineering.

  16. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  17. Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats.

    Science.gov (United States)

    Prakash, Usha N S; Srinivasan, Krishnapura

    2010-04-01

    Spices are traditionally known to have digestive stimulant action and to cure digestive disorders. In this study, the protective effect of dietary spices with respect to activities of antioxidant enzymes in gastric and intestinal mucosa was examined. Groups of Wistar rats were fed for 8 weeks with diets containing black pepper (0.5%), piperine (0.02%), red pepper (3.0%), capsaicin (0.01%), and ginger (0.05%). All these spices significantly enhanced the activities of antioxidant enzymes--superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase--in both gastric and intestinal mucosa, suggesting a gastrointestinal protective role for these spices. In a separate study, these dietary spices were found to alleviate the diminished activities of antioxidant enzymes in gastric and intestinal mucosa under conditions of ethanol-induced oxidative stress. The gastroprotective effect of the spices was also reflected in their positive effect on mucosal glycoproteins, thereby lowering mucosal injury. The amelioration of the ethanol-induced decrease in the activities of antioxidant enzymes in gastric and intestinal mucosa by dietary spices suggests their beneficial gastrointestinal protective role. This is the first report on the gastrointestinal protective potential of dietary spices.

  18. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  19. Critical assessment of precracked specimen configuration and experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate

    Science.gov (United States)

    Domack, M. S.

    1985-01-01

    A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.

  20. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  1. Analysis of residual stresses due to roll-expansion process: Finite element computation and validation by experimental tests

    International Nuclear Information System (INIS)

    Aufaure, M.; Boudot, R.; Zacharie, G.; Proix, J.M.

    1987-01-01

    The steam generator heat exchangers of pressurized water reactors are made of U-shaped tubes, both ends of them being fixed to a plate by roll-expansion. This process consists in increasing the tube section by means of a rotating tool in order to apply its outer side to the surface of the hole through the plate. As reported by de Keroulas (1986), in service cracks appeared on these tubes in the transition from expanded to nonexpanded portions. So we developed a program to compute residual stresses at the surface of the tubes, which caused their cracking, and to endeavour to lower their level by acting on some parameters. This program was validated by experimental tests. (orig.)

  2. The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses.

    Science.gov (United States)

    He, Peng; Zhao, Peng; Wang, Limin; Zhang, Yuzhou; Wang, Xiaosi; Xiao, Hui; Yu, Jianing; Xiao, Guanghui

    2017-07-03

    Cell elongation and expansion are significant contributors to plant growth and morphogenesis, and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about PIN-FORMED (PIN) efflux carriers in cotton is known. In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium hirsutum (G. hirsutum) genome. We found that PIN1-3 and PIN2 genes originated from the At subgenome were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were significantly up-regulated by exogenous hormone treatment. Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.

  3. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Directory of Open Access Journals (Sweden)

    Ming Qin

    Full Text Available FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10−7–5.748 × 10−7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa m. The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface. Keywords: FV520B, Wedge opening loading specimen, Stress corrosion cracking, Hydrogen sulfide

  4. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice.

    Science.gov (United States)

    Li, Bin; Cui, Wei; Liu, Jia; Li, Ru; Liu, Qian; Xie, Xiao-Hua; Ge, Xiao-Li; Zhang, Jing; Song, Xiu-Juan; Wang, Ying; Guo, Li

    2013-12-01

    Sulforaphane (SFN) is an organosulfur compound present in vegetables and has potent anti-oxidant and anti-inflammatory activities. This study was aimed at investigating the effect of treatment with SFN on inflammation and oxidative stress, and the potential mechanisms underlying the action of SFN in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Treatment with SFN significantly inhibited the development and severity of EAE in mice, accompanied by mitigating inflammatory infiltration and demyelination in the spinal cord of mice. The protective effect of SFN was associated with significantly improved distribution of claudin-5 and occludin, and decreased levels of MMP-9 expression, preserving the blood-brain barrier. Furthermore, the protection of SFN was also related to decreased levels of oxidative stress in the brains of mice by enhanced activation of the Nrf2/ARE pathway and increased levels of anti-oxidant HO-1 and NQO1 expression. In addition, treatment with SFN inhibited antigen-specific Th17 responses and enhanced IL-10 responses. Our data indicated that treatment with SFN inhibited EAE development and severity in mice by its anti-oxidant activity and antagonizing autoimmune inflammation. Our findings suggest that SFN and its analogues may be promising reagents for intervention of multiple sclerosis and other autoimmune diseases. © 2013.

  5. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Science.gov (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  6. A study on stress analysis of small punch-creep test and its experimental correlations with uniaxial-creep test

    International Nuclear Information System (INIS)

    Lee, Song In; Baek, Seoung Se; Kwon, Il Hyun; Yu, Hyo Sun

    2002-01-01

    A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9CrlMoVNb steel. It was shown that the initial maximum equivalent stress, σ eq · max from FE analysis was correlated with steady-state equivalent creep strain rate, ε qf-ss , rupture time, t r , activation energy, Q and Larson-Miller parameter, LMP during SP-creep deformation. The simple correlation laws, σ SP - σ TEN , P SP -σ TEN and Q SP -Q TEN adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at 650 deg. C as follows : Q SP-P =1.37 Q TEN , Q SP-σ =1.53 Q TEN

  7. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Fadel Elie

    2011-09-01

    Full Text Available Abstract Background Involvement of inflammation in pulmonary hypertension (PH has previously been demonstrated and recently, immune-modulating dendritic cells (DCs infiltrating arterial lesions in patients suffering from idiopathic pulmonary arterial hypertension (IPAH and in experimental monocrotaline-induced PH have been reported. Occurrence of perivascular inflammatory cells could be linked to local increase of oxidative stress (OS, as it has been shown for systemic atherosclerosis. The impact of OS on vascular remodeling in PH is still to be determined. We hypothesized, that augmented blood-flow could increase OS and might thereby contribute to DC/inflammatory cell-recruitment and smooth-muscle-cell-proliferation. Methods We applied a monocrotaline-induced PH-model and combined it with permanent flow-challenge. Thirty Sprague-Dawley rats were assigned to following groups: control, monocrotaline-exposure (MCT, monocrotaline-exposure/pneumonectomy (MCT/PE. Results Hemodynamic exploration demonstrated most severe effects in MCT/PE, corresponding in histology to exuberant medial and adventitial remodeling of pulmonary muscular arteries, and intimal remodeling of smaller arterioles; lung-tissue PCR evidenced increased expression of DCs-specific fascin, CD68, proinflammatory cytokines (IL-6, RANTES, fractalkine in MCT/PE and to a lesser extent in MCT. Major OS enzyme NOX-4 was maximal in MCT/PE. Antioxidative stress enzymes Mn-SOD and glutathion-peroxidase-1 were significantly elevated, while HO-1 showed maximal expression in MCT with significant decrease in MCT/PE. Catalase was decreased in MCT and MCT/PE. Expression of NOX-4, but also of MN-SOD in MCT/PE was mainly attributed to a highly increased number of interstitial and perivascular CXCR4/SDF1 pathway-recruited mast-cells. Stress markers malonedialdehyde and nitrotyrosine were produced in endothelial cells, medial smooth muscle and perivascular leucocytes of hypertensive vasculature

  8. Experimental study on the thermo-mechanical behaviour of stiff clay under non-isotropic stress state

    International Nuclear Information System (INIS)

    Tang, Anh Minh; Cui, Yu-Jun; Li, Xiang-Ling

    2012-01-01

    Document available in extended abstract form only. Stiff clay is usually considered as possible host-rock for geological radioactive waste disposal due to its low permeability and its self-sealing capacity. Boom Clay, for instance, is one of the clays currently considered by the Belgian radioactive waste management agency Ondraf/Niras as a potential host for a geological repository. In order to analyse the performance of this material, it is important to understand its behaviour under the coupled thermo-hydro-mechanical solicitations. In laboratory, several studies have been performed to study the volume change of clay under coupled thermomechanical loading. The results show that heating under drained conditions can induce thermal dilation at low confining stress and thermal contraction at high confining stress. On the other hand, compression tests performed at constant temperature show that the compressibility parameters of soil can be modified by temperature change. These features are now well considered in constitutive laws based on the framework of elasto-plasticity. Under undrained conditions, heating can increase pore-water pressure and this behaviour can be simulated using the theoretical thermo-poro-elastic framework. The temperature effect on the soil behaviour under triaxial compression is also often considered. It is commonly accepted that heating decreases the shear strength of clay but this softening can be hidden by the thermal contraction that occurs during heating which can induce at the same time soil hardening. In spite of these existing works, laboratory tests considering the thermo-mechanical loading path that the soil can be subjected to are still rare. Actually, in the case of geological radioactive waste disposal, after the installation of waste canisters, the soil is expected to be heated under non-isotropic stress state. Most of the existing laboratory works show heating tests in odometer cell or triaxial cell under isotropic stress

  9. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    Science.gov (United States)

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is

  10. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    International Nuclear Information System (INIS)

    Sandoval-Pineda, J M; Garcia-Lira, J; Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R

    2009-01-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  11. Numerical and experimental evaluation of the residual stress relaxation and the influence zone due to application of the crack compliance method

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Pineda, J M; Garcia-Lira, J [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Unidad profesional, Azcapotzalco, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. Mexico (Mexico); Urriolagoitia-Sosa, G; Urriolagoitia-Calderon, G; Hernandez-Gomez, L H; Beltran-Fernandez, J A; RodrIguez-Martinez, R, E-mail: jsandovalp@ipn.m, E-mail: guiurri@hotmail.co [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. Mexico (Mexico)

    2009-08-01

    This paper presents the results concerning an evaluation of the crack compliance method. The research was focused on the relaxation caused by a cut induced to obtain the data required to calculate the residual stress field. The main objective in this research is to establish the optimum place to cut in a specimen that has suffered a failure and how extended is the zone of relaxed stresses. It has been recognized that a crack vanishes the beneficial or detrimental effects of the residual stress fields. This research has been performed in a numerical and experimental way, so results can be compared and FEM on this topic can be assessed.

  12. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes, through x-ray diffraction method

    International Nuclear Information System (INIS)

    Guimaraes, L.R.

    1990-01-01

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  13. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes through x-rays diffraction method

    International Nuclear Information System (INIS)

    Guimaraes, L.R.

    1990-01-01

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  14. Stress and corticosteroids aggravate morphological changes in the dentate gyrus after early-life experimental febrile seizures in mice

    NARCIS (Netherlands)

    van Campen, Jolien S.; Hessel, Ellen V.S.; Bohmbach, Kirsten; Rizzi, Giorgio; Lucassen, Paul J.; Turimella, Sada Lakshmi; Umeoka, Eduardo H.L.; Meerhoff, Gideon F.; Braun, Kees P.J.; de Graan, Pierre N.E.; Joëls, Marian

    2018-01-01

    Stress is the most frequently self-reported seizure precipitant in patients with epilepsy. Moreover, a relation between ear stress and epilepsy has been suggested. Although ear stress and stress hormones are known to influence seizure threshold in rodents, effects on the development of epilepsy

  15. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  16. Effects of isolated vitamin B6 supplementation on oxidative stress and heart function parameters in experimental hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Roberta Hack Mendes

    2017-07-01

    Full Text Available Introduction: The purpose of this study was to investigate the effects of isolated vitamin B6 (VB6 supplementation on experimental hyperhomocysteinemia (Hhe induced by homocysteine thiolactone (HcyT. Methods: Fifteen male Wistar rats were divided into three groups according to their treatment. Animals received water and food ad libitum and an intragastric probe was used to administer water for 60 days (groups: CB6, HcyT, and HB6. On the 30th day of treatment, two groups were supplemented with VB6 in the drinking water (groups: CB6 and HB6. After 60 days of treatment, homocysteine (Hcy, cysteine, and hydrogen peroxide concentration, nuclear factor (erythroid-derived 2-like 2 (NRF2 and glutathione S-transferase (GST immunocontent, and superoxide dismutase (SOD, catalase (CAT, and GST activities were measured. Results: The HcyT group showed an increase in Hcy concentration (62% in relation to the CB6 group. Additionally, GST immunocontent was enhanced (51% in the HB6 group compared to the HcyT group. Also, SOD activity was lower (17% in the HB6 group compared to the CB6 group, and CAT activity was higher in the HcyT group (53% compared to the CB6 group. Ejection fraction (EF was improved in the HB6 group compared to the HcyT group. E/A ratio was enhanced in the HB6 group compared to the CB6 group. Correlations were found between CAT activity with myocardial performance index (MPI (r = 0.71; P = 0.06 and E/A ratio (r = 0.6; P = 0.01, and between EF and GST activity (r = 0.62; P = 0.02. Conclusions: These findings indicate that isolated VB6 supplementation may lead to the reduction of Hcy concentration and promotes additional benefits to oxidative stress and heart function parameters.   Keywords: Homocysteine; oxidative stress; vitamin B6.

  17. The Role of Stress-Effected Subgrain Size Distribution in Anelastic Recovery: An Experimental Study on Polycrystalline Ice-Ih

    Science.gov (United States)

    Caswell, T. E.; Goldsby, D. L.; Cooper, R. F.; Prior, D. J.

    2013-12-01

    Anelasticity, or time-dependent and recoverable strain, is the source of attenuation at seismic and sub-seismic frequencies, yet the processes governing anelastic recovery are poorly resolved. Numerous experimental studies [e.g., 1-3] have demonstrated that anelasticity occurs via diffusion-effected relaxation along grain boundaries, which leads to a significant grain size sensitivity. Similar studies, however, conducted on deformed single crystals [e.g. 4], coarse-grained metals deforming in dislocation creep [e.g., 5] and polycrystalline ice deforming via a dislocation-accommodated mechanism [6] demonstrate the same frequency dependence, consistent with the grain boundary mechanism, but with no sensitivity to grain size. We postulate that it is the deformation-effected distribution of subgrains, which possesses unique diffusive properties relative to a defect-free lattice, that dominates attenuation in these situations. To test this idea we are conducting creep and stress-drop experiments on polycrystalline ice-Ih with concurrent high-resolution microstructural analysis conducted via Electron Backscatter Diffraction (EBSD) [7] to characterize the relationship between subgrain size distribution and diffusion-effected anelasticity. Our experiments establish the subgrain size distribution in steady-state creep of fine-grained ice-1h at compressional stresses between 0.1-4 MPa, which for the grain sizes and temperatures of our experiments places the rheology squarely within the regime of grain boundary sliding that is accommodated by basal dislocation slip [8]. We then explore the dynamics of the established microstructure, which includes subgrain formation [cf. 9], via stress-drop experiments [e.g. 10]. Experiments of this type allow the characterization of microstructural 'hardness,' i.e., the viscosity of the polycrystalline solid as effected by finite strain, from which we can discern the diffusive kinetics of subgrain boundaries [11, 12]. We are currently

  18. Spatiotemporal proteomic analyses during pancreas cancer progression identifies serine/threonine stress kinase 4 (STK4) as a novel candidate biomarker for early stage disease.

    Science.gov (United States)

    Mirus, Justin E; Zhang, Yuzheng; Hollingsworth, Michael A; Solan, Joell L; Lampe, Paul D; Hingorani, Sunil R

    2014-12-01

    Pancreas cancer, or pancreatic ductal adenocarcinoma, is the deadliest of solid tumors, with a five-year survival rate of pancreas cancer. Mouse models that accurately recapitulate the human condition allow disease tracking from inception to invasion and can therefore be useful for studying early disease stages in which surgical resection is possible. Using a highly faithful mouse model of pancreas cancer in conjunction with a high-density antibody microarray containing ∼2500 antibodies, we interrogated the pancreatic tissue proteome at preinvasive and invasive stages of disease. The goal was to discover early stage tissue markers of pancreas cancer and follow them through histologically defined stages of disease using cohorts of mice lacking overt clinical signs and symptoms and those with end-stage metastatic disease, respectively. A panel of seven up-regulated proteins distinguishing pancreas cancer from normal pancreas was validated, and their levels were assessed in tissues collected at preinvasive, early invasive, and moribund stages of disease. Six of the seven markers also differentiated pancreas cancer from an experimental model of chronic pancreatitis. The levels of serine/threonine stress kinase 4 (STK4) increased between preinvasive and invasive stages, suggesting its potential as a tissue biomarker, and perhaps its involvement in progression from precursor pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Immunohistochemistry of STK4 at different stages of disease revealed a dynamic expression pattern further implicating it in early tumorigenic events. Immunohistochemistry of a panel of human pancreas cancers confirmed that STK4 levels were increased in tumor epithelia relative to normal tissue. Overall, this integrated approach yielded several tissue markers that could serve as signatures of disease stage, including early (resectable), and therefore clinically meaningful, stages. © 2014 by The American Society for

  19. Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of magnetic therapy on experimental myopathy in rats.

    Science.gov (United States)

    Vignola, María Belén; Dávila, Soledad; Cremonezzi, David; Simes, Juan C; Palma, José A; Campana, Vilma R

    2012-12-01

    The effect of pulsed electromagnetic field (PEMF) therapy, also called magnetic therapy, upon inflammatory biomarkers associated with oxidative stress plasma fibrinogen, nitric oxide (NO), L-citrulline, carbonyl groups, and superoxide dismutase (SOD) was evaluated through histological assessment, in rats with experimental myopathy. The groups studied were: (A) control (intact rats that received PEMF sham exposures); (B) rats with myopathy and sacrificed 24 h later; (C) rats with myopathy; (D) rats with myopathy and treated with PEMF; and (E) intact rats treated with PEMF. Groups A, C, D, and E were sacrificed 8 days later. Myopathy was induced by injecting 50 μl of 1% carrageenan λ (type IV) once sub-plantar. Treatment was carried out with PEMF emitting equipment with two flat solenoid disks for 8 consecutive days in groups D and E, at 20 mT and 50 Hz for 30 min/day/rat. The biomarkers were determined by spectrophotometry. The muscles (5/8) were stained with Hematoxylin-Eosin and examined by optic microscopy. Quantitative variables were statistically analyzed by the Fisher test, and categorical applying Pearson's Chi Squared test at p < 0.05 for all cases. In Groups B and C, the biomarkers were significantly increased compared to A, D, and E groups: fibrinogen (p < 0.001); NO, L-citrulline and carbonyl groups (p < 0.05); SOD (p < 0.01) as well as the percentage of area with inflammatory infiltration (p < 0.001). PEMF caused decreased levels of fibrinogen, L-citrulline, NO, SOD, and carbonyl groups and significant muscle recovery in rats with experimental myopathies.

  20. Are psychophysiological arousal and self-reported emotional stress during an oncological consultation related to memory of medical information? : An experimental study

    NARCIS (Netherlands)

    Visser, L.N.C.; Tollenaar, M.S.; Bosch, J.A.; van Doornen, L.J.P.; de Haes, H.C.J.M.; Smets, E.M.A.

    Patients forget 20-80% of information provided during medical consultations. The emotional stress often experienced by patients during consultations could be one of the mechanisms that lead to limited recall. The current experimental study therefore investigated the associations between (analog)

  1. Are psychophysiological arousal and self-reported emotional stress during an oncological consultation related to memory of medical information? An experimental study

    NARCIS (Netherlands)

    Visser, Leonie N. C.; Tollenaar, Marieke S.; Bosch, Jos A.; van Doornen, Lorenz J. P.; de Haes, Hanneke C. J. M.; Smets, Ellen M. A.

    2017-01-01

    Patients forget 20-80% of information provided during medical consultations. The emotional stress often experienced by patients during consultations could be one of the mechanisms that lead to limited recall. The current experimental study therefore investigated the associations between (analog)

  2. Experimental stress during molt suggests the evolution of condition-dependent and condition-independent ornaments in the king penguin.

    Science.gov (United States)

    Schull, Quentin; Robin, Jean-Patrice; Dobson, F Stephen; Saadaoui, Hédi; Viblanc, Vincent A; Bize, Pierre

    2018-01-01

    Sexual selection and social selection are two important theories proposed for explaining the evolution of colorful ornamental traits in animals. Understanding signal honesty requires studying how environmental and physiological factors during development influence the showy nature of sexual and social ornaments. We experimentally manipulated physiological stress and immunity status during the molt in adult king penguins ( Aptenodytes patagonicus ), and studied the consequences of our treatments on colourful ornaments (yellow-orange and UV beak spots and yellow-orange auricular feather patches) known to be used in sexual and social contexts in this species. Whereas some ornamental features showed strong condition-dependence (yellow auricular feather chroma, yellow and UV chroma of the beak), others were condition-independent and remained highly correlated before and after the molt (auricular patch size and beak UV hue). Our study provides a rare examination of the links between ornament determinism and selection processes in the wild. We highlight the coexistence of ornaments costly to produce that may be honest signals used in mate choice, and ornaments for which honesty may be enforced by social mediation or rely on genetic constraints.

  3. The Involvement of a Polyphenol-Rich Extract of Black Chokeberry in Oxidative Stress on Experimental Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Manuela Ciocoiu

    2013-01-01

    Full Text Available The aim of this study is to characterize the content of Aronia melanocarpa Elliott (black chokeberry extract and also to estimate the influence of polyphenolic compounds contained in chokeberries on oxidative stress, on an L-NAME-induced experimental model of arterial hypertension. The rat blood pressure values were recorded using a CODA Noninvasive Blood Pressure System. HPLC/DAD coupled with ElectroSpray Ionization-Mass Spectrometry allowed identification of five phenolic compounds in berries ethanolic extract as follows: chlorogenic acid, kuromanin, rutin, hyperoside, and quercetin. The serous activity of glutathione-peroxidase (GSH-Px has significantly lower values in the hypertensive (AHT group as compared to the group protected by polyphenols (AHT + P. The total antioxidant capacity (TAC values are lower in the AHT group and they are significantly higher in the AHT + P group. All the measured blood pressure components revealed a biostatistically significant blood pressure drop between the AHT group and the AHT + P group. The results reveal the normalization of the reduced glutathion (GSH concentration as well as a considerable reduction in the malondialdehyde (MDA serum concentration in the AHT + P group. Ethanolic extract of black chokeberry fruits not only has a potential value as a prophylactic agent but also may function as a nutritional supplement in the management of arterial hypertension.

  4. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    Directory of Open Access Journals (Sweden)

    Francisca Guadalupe Cabrera-Covarrubias

    2016-12-01

    Full Text Available The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε; therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%, such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content are those of: σ (elastic ranges and failure maximum, ε (elastic ranges and failure maximum, and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  5. Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress.

    Science.gov (United States)

    Szpilewska, Hanna; Czyz, Agata; Wegrzyn, Grzegorz

    2003-11-01

    The origin and function of bioluminescence was considered a problematic question of the Charles Darwin theory. Early evolution of bacterial luminescence and its current physiological importance seem to be especially mysterious. Recently, it was proposed that stimulation of DNA repair may be a physiological role for production of light by bacterial cells. On the other hand, it was also proposed that primary role of luminescent systems could be detoxification of the deleterious oxygen derivatives. Although some previous results might suggest that this hypothesis can be correct, until now experimental evidence for such a mechanism operating in bacterial cells and having physiological importance was generally lacking. Here we demonstrate that in the presence of various oxidants (hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, and ferrous ions) at certain concentrations in the culture medium, growth of Vibrio harveyi mutants luxA and luxB, but not of the mutant luxD, is severely impaired relative to wild-type bacteria. This deleterious effect of oxidants on the mutants luxA and luxB could be significantly reduced by addition of the antioxidants A-TEMPO or 40H-TEMPO. We conclude that bacterial luciferase may indeed play a physiological role in the protection of cells against oxidative stress.

  6. The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension.

    Science.gov (United States)

    Ciocoiu, Manuela; Badescu, Laurentiu; Miron, Anca; Badescu, Magda

    2013-01-01

    The aim of this study is to characterize the content of Aronia melanocarpa Elliott (black chokeberry) extract and also to estimate the influence of polyphenolic compounds contained in chokeberries on oxidative stress, on an L-NAME-induced experimental model of arterial hypertension. The rat blood pressure values were recorded using a CODA Noninvasive Blood Pressure System. HPLC/DAD coupled with ElectroSpray Ionization-Mass Spectrometry allowed identification of five phenolic compounds in berries ethanolic extract as follows: chlorogenic acid, kuromanin, rutin, hyperoside, and quercetin. The serous activity of glutathione-peroxidase (GSH-Px) has significantly lower values in the hypertensive (AHT) group as compared to the group protected by polyphenols (AHT + P). The total antioxidant capacity (TAC) values are lower in the AHT group and they are significantly higher in the AHT + P group. All the measured blood pressure components revealed a biostatistically significant blood pressure drop between the AHT group and the AHT + P group. The results reveal the normalization of the reduced glutathion (GSH) concentration as well as a considerable reduction in the malondialdehyde (MDA) serum concentration in the AHT + P group. Ethanolic extract of black chokeberry fruits not only has a potential value as a prophylactic agent but also may function as a nutritional supplement in the management of arterial hypertension.

  7. An experimental study of the influence of stress history on fault slip during injection of supercritical CO2

    Science.gov (United States)

    Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.

    2018-04-01

    The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.

  8. Determination of the contact stresses in double-row tapered roller bearings using the finite element method, experimental analysis and analytical models

    Energy Technology Data Exchange (ETDEWEB)

    Lostado, Ruben [University of La Rioja, Logroño (Spain); Martinez, Roberto Fernandez [University of Basque Country UPV/EHU, Bilbao (Spain); MacDonald, Bryan J. [Dublin City University, Dublin (Ireland)

    2015-11-15

    Double-row Tapered roller bearings (TRBs) are mechanical devices that are designed to support high axial, radial and torque loads. This combination of loads produces high contact stresses on the bearing raceways that are difficult to predict and validate experimentally, and can cause defects like pitting and fatigue spalling. In response, theoretical models have been proposed by many researchers to calculate the approximate distribution of contact stresses over the bearing raceways. More recently, numerical methods that are based on the Finite element method (FEM) have been used to obtain the contact stresses, although this method requires that the mesh size first be adjusted. This paper shows a process for adjusting a double-row TRB Finite element (FE) model. It is based on generating successive nonlinear FE submodels to calculate the distribution of contact stresses. A theoretical model and contact pressure sensors were used to adjust and validate the Finite element (FE) model.

  9. Jaw-motor effects of experimental jaw-muscle pain and stress in patients with deep bite and matched control subjects

    DEFF Research Database (Denmark)

    Sonnesen, Liselotte; Svensson, Peter

    2013-01-01

    clenching, during evoked pain and stress between deep bite patients and controls was investigated. DESIGN: In 30 deep bite patients and in 30 sex-/age-matched controls with neutral occlusion EMG activity was recorded bilaterally from masseter and anterior temporalis muscles before and during evoked pain......OBJECTIVE: The effect of experimental jaw-muscle pain and stress on masticatory muscle activity in TMD-patients has been discussed. Furthermore, associations between TMD and deep bite patients have been studied. Accordingly in the present study, comparison of EMG responses at rest, maximal...... and before and during a stress task. Evoked pain was induced by injections of glutamate into the masseter (local pain) and brachioradialis (remote pain) muscles and resting EMG activity was recorded before and after 1, 2, 3, 4, 5 and 10min. A precision task was used to simulate a stressful condition and EMG...

  10. How Psychological Stress Affects Emotional Prosody.

    Science.gov (United States)

    Paulmann, Silke; Furnes, Desire; Bøkenes, Anne Ming; Cozzolino, Philip J

    2016-01-01

    We explored how experimentally induced psychological stress affects the production and recognition of vocal emotions. In Study 1a, we demonstrate that sentences spoken by stressed speakers are judged by naïve listeners as sounding more stressed than sentences uttered by non-stressed speakers. In Study 1b, negative emotions produced by stressed speakers are generally less well recognized than the same emotions produced by non-stressed speakers. Multiple mediation analyses suggest this poorer recognition of negative stimuli was due to a mismatch between the variation of volume voiced by speakers and the range of volume expected by listeners. Together, this suggests that the stress level of the speaker affects judgments made by the receiver. In Study 2, we demonstrate that participants who were induced with a feeling of stress before carrying out an emotional prosody recognition task performed worse than non-stressed participants. Overall, findings suggest detrimental effects of induced stress on interpersonal sensitivity.

  11. How Psychological Stress Affects Emotional Prosody

    Science.gov (United States)

    Paulmann, Silke; Furnes, Desire; Bøkenes, Anne Ming; Cozzolino, Philip J.

    2016-01-01

    We explored how experimentally induced psychological stress affects the production and recognition of vocal emotions. In Study 1a, we demonstrate that sentences spoken by stressed speakers are judged by naïve listeners as sounding more stressed than sentences uttered by non-stressed speakers. In Study 1b, negative emotions produced by stressed speakers are generally less well recognized than the same emotions produced by non-stressed speakers. Multiple mediation analyses suggest this poorer recognition of negative stimuli was due to a mismatch between the variation of volume voiced by speakers and the range of volume expected by listeners. Together, this suggests that the stress level of the speaker affects judgments made by the receiver. In Study 2, we demonstrate that participants who were induced with a feeling of stress before carrying out an emotional prosody recognition task performed worse than non-stressed participants. Overall, findings suggest detrimental effects of induced stress on interpersonal sensitivity. PMID:27802287

  12. Extracellular Matrix Remodeling and Modulation of Inflammation and Oxidative Stress by Sulforaphane in Experimental Diabetic Peripheral Neuropathy.

    Science.gov (United States)

    Moustafa, Passant E; Abdelkader, Noha F; El Awdan, Sally A; El-Shabrawy, Osama A; Zaki, Hala F

    2018-04-27

    The peripheral nervous system is one of many organ systems that can be profoundly impacted in diabetes mellitus. Diabetic peripheral neuropathy has a significant negative effect on patients' quality of life as it begins with loss of limbs' sensation and may result in lower limb amputation. This investigation aimed at exploring the effect of sulforaphane on peripheral neuropathy in diabetic rats. Experimental diabetes was induced through single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were divided into five groups. Two groups were treated with saline or sulforaphane (1 mg/kg, p.o.). Three diabetic groups were either untreated or given sulforaphane (1 mg/kg, p.o.) or pregabalin (10 mg/kg, i.p.). Two weeks after drugs' administration, biochemical, behavioral, histopathological, and immunohistochemical investigations were carried out. Treatment with sulforaphane restored animals' body weight, reduced blood glucose, glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of tail flick test, increased the latency withdrawal time of cold allodynia test, and ameliorated histopathological changes. Treatment of sulforaphane, likewise, decreased sciatic nerve malondialdehyde, nitric oxide, interleukin-6, and matrix metalloproteinase-2 and -9 contents. Similarly, it reduced sciatic nerve DNA fragmentation and expression of cyclooxygenase-2 and nuclear factor kappa-B p65. Meanwhile, it increased sciatic nerve superoxide dismutase and interleukin-10 contents. These results reveal the neuroprotective effect of sulforaphane against peripheral neuropathy in diabetic rats possibly through modulating oxidative stress, inflammation, and extracellular matrix remodeling. Graphical Abstract Diagram that illustrates the effects of sulforaphane in treating experimental diabetic peripheral neuropathy. In NA-STZ model of diabetes mellitus, sulforaphane, restored

  13. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation.

    Science.gov (United States)

    Nakamura, Tomohiro; Lipton, Stuart A

    2016-03-01

    Reactive nitrogen species, such as nitric oxide (NO), exert their biological activity in large part through post-translational modification of cysteine residues, forming S-nitrosothiols. This chemical reaction proceeds via a process that we and our colleagues have termed protein S-nitrosylation. Under conditions of normal NO production, S-nitrosylation regulates the activity of many normal proteins. However, in degenerative conditions characterized by nitrosative stress, increased levels of NO lead to aberrant S-nitrosylation that contributes to the pathology of the disease. Thus, S-nitrosylation has been implicated in a wide range of cellular mechanisms, including mitochondrial function, proteostasis, transcriptional regulation, synaptic activity, and cell survival. In recent years, the research area of protein S-nitrosylation has become prominent due to improvements in the detection systems as well as the demonstration that protein S-nitrosylation plays a critical role in the pathogenesis of neurodegenerative and other neurological disorders. To further promote our understanding of how protein S-nitrosylation affects cellular systems, guidelines for the design and conduct of research on S-nitrosylated (or SNO-)proteins would be highly desirable, especially for those newly entering the field. In this review article, we provide a strategic overview of designing experimental approaches to study protein S-nitrosylation. We specifically focus on methods that can provide critical data to demonstrate that an S-nitrosylated protein plays a (patho-)physiologically-relevant role in a biological process. Hence, the implementation of the approaches described herein will contribute to further advancement of the study of S-nitrosylated proteins, not only in neuroscience but also in other research fields.

  14. Experimental analysis of an adsorptive cooling system with heat-regeneration; Analyse experimentale d'une machine frigorifique a adsorption a regeneration de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Szarzynski, St.

    1998-07-01

    For ecological reasons, the solid sorption systems applied to refrigeration or air conditioning are in a favourable context for their development. The aim of this work is to perform the experimental analysis of an adsorption refrigerating machinery which is based on a heat regeneration process (non-uniform temperature). Having a strong thermal gradient along the adsorber allows to increase the internal heat exchange and the performances of the system. An experimental device has been designed which uses this process. It is characterized by a new adsorbing composite, inserts inside the tubes and the use of a non-classical evaporator. An experimental analysis is performed which shows heat recovery factors greater than 0.5. The COP remains close to 0.4 whatever the refrigerant flow rate and the cycle length while PSF is easily greater than 100 W.kg{sup -1} of zeolite. The performances are mainly reduced by the thermal losses and by the important inert thermal masses inside the adsorber. In order to understand the operation of the adsorber, a numerical model integrating the distribution of heat losses and inert masses inside the adsorber has been used. The parameters of the model have been adjusted in order to fit with the experimental results. This model has permitted to predict the performances of the machine when the limiting factors are reduced. An analysis of the experimental setup according to the second principle of thermodynamics complete this study and shows the distribution of the different irreversibilities responsible for the weakness of the experimental performances. (J.S.)

  15. Evolution of the stress fields in the Zagros Foreland Folded Belt using focal mechanisms and kinematic analyses: the case of the Fars salient, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Zafarmand, Bahareh; Oveisi, Behnam

    2018-03-01

    The NW-SE trending Zagros orogenic belt was initiated during the convergence of the Afro-Arabian continent and the Iranian microcontinent in the Late Cretaceous. Ongoing convergence is confirmed by intense seismicity related to compressional stresses collision-related in the Zagros orogenic belt by reactivation of an early extensional faulting to latter compressional segmented strike-slip and dip-slip faulting. These activities are strongly related either to the deep-seated basement fault activities (deep-seated earthquakes) underlies the sedimentary cover or gently dipping shallow-seated décollement horizon of the rheological weak rocks of the infra-Cambrian Hormuz salt. The compressional stress regimes in the different units play an important role in controlling the stress conditions between the different units within the sedimentary cover and basement. A significant set of nearly N-S trending right-lateral strike-slip faults exists throughout the study area in the Fars area in the Zagros Foreland Folded Belt. Fault-slip and focal mechanism data were analyzed using the stress inversion method to reconstruct the paleo and recent stress conditions. The results suggest that the current direction of maximum principal stress averages N19°E, with N38°E that for the past from Cretaceous to Tertiary (although a few sites on the Kar-e-Bass fault yield a different direction). The results are consistent with the collision of the Afro-Arabian continent and the Iranian microcontinent. The difference between the current and paleo-stress directions indicates an anticlockwise rotation in the maximum principle stress direction over time. This difference resulted from changes in the continental convergence path, but was also influenced by the local structural evolution, including the lateral propagation of folds and the presence of several local décollement horizons that facilitated decoupling of the deformation between the basement and the sedimentary cover. The obliquity of

  16. An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm "de Marke"

    NARCIS (Netherlands)

    Calker, van K.J.; Berentsen, P.B.M.; Boer, de I.J.M.; Giesen, G.W.J.; Huirne, R.B.M.

    2004-01-01

    Farm level modelling can be used to determine how farm management adjustments and environmental policy affect different sustainability indicators. In this paper indicators were included in a dairy farm LP (linear programming)-model to analyse the effects of environmental policy and management

  17. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement

    NARCIS (Netherlands)

    Bitter, T.; Khan, I.; Marriott, T.; Lovelady, E.; Verdonschot, N.J.; Janssen, D.W.

    2017-01-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental

  18. Determination of processing-induced stresses and properties of layered and graded coatings: Experimental method and results for plasma-sprayed Ni-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Finot, M.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering

    1997-08-01

    An experimental method is proposed which enables the determination of processing-induced intrinsic stresses, elastic modulus, and coefficients of thermal expansion of surface coatings of homogeneous and graded compositions. In this method, a number of identical substrate specimens are coated simultaneously with surface layers of fixed or graded compositions, and specimens with different layer thicknesses are periodically removed from the deposition chamber. It is shown that the following results can be obtained from a knowledge of the strain or curvature and thermal history of the coated specimens, in conjunction with simple four-point bend tests and thermal loading/cycling at different temperatures: (i) the magnitude of the processing-induced intrinsic stresses through the thickness of the coating, (ii) the in-plane Young`s modulus, E, as a function of the coating thickness, (iii) the coefficient of thermal expansion, {alpha}, as a function of the coating thickness, (iv) the variation of E and {alpha} as a function of temperature at any thickness location within the coating, and (v) the separation of internal stresses arising from thermal expansion mismatch between different constituent phases or layers from those arising from the deposition process (so-called intrinsic or quench stresses). The thermomechanical analyses underlying this method are discussed in detail, and its significance and limitations are addressed. The proposed method is used to determine the evolution of processing-induced stresses during the successive build-up of plasma-sprayed Ni-Al{sub 2}O{sub 3} coatings of homogeneous and graded compositions.

  19. An experimental study on the effects of compressive stress on the fatigue crack growth of low-alloy steel

    International Nuclear Information System (INIS)

    Jones, D.P.; Hoppe, R.G.; James, B.A.

    1993-01-01

    A series of fatigue crack growth rate tests was conducted in order to study effects of negative stress ratio on fatigue crack growth rate of low-alloy steel in air. Four-point bend specimens were used to simulate linear stress distributions typical of pressure vessel applications. This type of testing adds to knowledge on negative stress ratio effects for low-alloy steels obtained in the past from uniform tension-compression tests. Applied bending stress range was varied over twice the yield strength. Load control was used for tests for which the stress range was less than twice the yield strength and deflection control was used for the higher stress range tests. Crack geometries were both short and long fatigue cracks started at notches and tight fatigue cracks for which crack closure could occur over the full crack face. Results are presented in terms of the stress intensity factor ratio R = K MIN /K MAX . The negative R-ratio test results were correlated to an equation of the form da/dN = C[ΔK/(A-R)] n , where A, C, and n are curve fitting parameters. It was found that effects of negative R-ratio on fatigue crack growth rates for even the high stress range tests could be bounded by correlating the above equation to only positive R-ratio test results and extending the resulting equation into the negative R-ratio regime

  20. "Learn Young, Learn Fair", a Stress Management Program for Fifth and Sixth Graders: Longitudinal Results from an Experimental Study

    Science.gov (United States)

    Kraag, Gerda; Van Breukelen, Gerard J. P.; Kok, Gerjo; Hosman, Clemens

    2009-01-01

    Background: This study examined the effects of a universal stress management program (Learn Young, Learn Fair) on stress, coping, anxiety and depression in fifth and sixth grade children. Methods: Fifty-two schools (1467 children) participated in a clustered randomized controlled trial. Data was collected in the fall of 2002, the spring of 2003,…

  1. Elastic/plastic analyses of advanced composites investigating the use of the compliant layer concept in reducing residual stresses resulting from processing

    Science.gov (United States)

    Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.

    1990-01-01

    High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.

  2. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2013-11-01

    Polyamines conferred enhanced abiotic stress tolerance in multiple plant species. However, the effect of polyamines on abiotic stress and physiological change in bermudagrass, the most widely used warm-season turfgrasses, are unknown. In this study, pretreatment of exogenous polyamine conferred increased salt and drought tolerances in bermudagrass. Comparative proteomic analysis was performed to further investigate polyamines mediated responses, and 36 commonly regulated proteins by at least two types of polyamines in bermudagrass were successfully identified, including 12 proteins with increased level, 20 proteins with decreased level and other 4 specifically expressed proteins. Among them, proteins involved in electron transport and energy pathways were largely enriched, and nucleoside diphosphate kinase (NDPK) and three antioxidant enzymes were extensively regulated by polyamines. Dissection of reactive oxygen species (ROS) levels indicated that polyamine-derived H2O2 production might play dual roles under abiotic stress conditions. Moreover, accumulation of osmolytes was also observed after application of exogenous polyamines, which is consistent with proteomics results that several proteins involved in carbon fixation pathway were mediated commonly by polyamines pretreatment. Taken together, we proposed that polyamines could activate multiple pathways that enhance bermudagrass adaption to salt and drought stresses. These findings might be applicable for genetically engineering of grasses and crops to improve stress tolerance.

  3. Experimental determination of the micro-scale strength and stress-strain relation of an epoxy resin

    DEFF Research Database (Denmark)

    Zike, Sanita; Sørensen, Bent F.; Mikkelsen, Lars Pilgaard

    2016-01-01

    An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments in an en......An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments......-scale (5–6%). The hardening exponent of a power law hardening material was obtained by the use of the J-integral, estimating the strain energy density around the notch. The hardening exponent was found to be within the range of 5–6 and the corresponding micro-scale failure stress was in the range of 220...

  4. Changes in individual indicators of protein metabolism in experimental pnevmonia in a imobilizatsiynoho stress and correction corvitin

    Directory of Open Access Journals (Sweden)

    Nataliya M. Ferents

    2015-02-01

    Lviv National Medical University Daniel Galician               Реферат             Изучение сдвигов отдельных показателей белкового обмена, в частности белка, альбуминов, глобулиновых фракций при экспериментальной пневмонии в условиях иммобилизацийного стресса, и их коррекция с помощью корвитина, даёт основание утверждать, что этот антиоксидант оказывает положительное влияние, которое особенно хорошо видно по повышением содержания в плазме крови альбуминов и снижение уровня глобулинов в условиях его применения. Ключевые слова: белковый обмен, пневмония, иммобилизационный стресс, Корвитин.                 Abstract             Study of changes of selected indicators of protein metabolism, including protein, albumin, globulin fractions in experimental pneumonia in aimobilizatsiynoho stress, and their correction using Corvitin gives reason to believe that this antioxidant reveals positive effect, which is particularly well illustrated by the increasing of plasma blood albumin and globulin by reducing conditions of use. Keywords: protein metabolism, pneumonia, immobilization stress, Corvitin.

  5. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines.

    Science.gov (United States)

    Mead, Emma J; Chiverton, Lesley M; Spurgeon, Sarah K; Martin, Elaine B; Montague, Gary A; Smales, C Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.

  6. Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    Science.gov (United States)

    Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.

    2017-12-01

    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.

  7. FEM Analyses for T-H-M-M Coupling Processes in Dual-Porosity Rock Mass under Stress Corrosion and Pressure Solution

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2012-01-01

    Full Text Available The models of stress corrosion and pressure solution established by Yasuhara et al. were introduced into the 2D FEM code of thermo-hydro-mechanical-migratory coupling analysis for dual-porosity medium developed by the authors. Aiming at a hypothetical model for geological disposal of nuclear waste in an unsaturated rock mass from which there is a nuclide leak, two computation conditions were designed. Then the corresponding two-dimensional numerical simulation for the coupled thermo-hydro-mechanical-migratory processes were carried out, and the states of temperatures, rates and magnitudes of aperture closure, pore and fracture pressures, flow velocities, nuclide concentrations and stresses in the rock mass were investigated. The results show: the aperture closure rates caused by stress corrosion are almost six orders higher than those caused by pressure solution, and the two kinds of closure rates climb up and then decline, furthermore tend towards stability; when the effects of stress corrosion and pressure solution are considered, the negative fracture pressures in near field rise very highly; the fracture aperture and porosity are decreases in the case 1, so the relative permeability coefficients reduce, therefore the nuclide concentrations in pore and fracture in this case are higher than those in case 2.

  8. Stress response assessment of Lactobacillus sakei strains selected as potential autochthonous starter cultures by flow cytometry and nucleic acid double-staining analyses.

    Science.gov (United States)

    Bonomo, M G; Milella, L; Martelli, G; Salzano, G

    2013-09-01

    The aim of this study was to apply the flow cytometry to Lactobacillus sakei strains, selected as potential autochthonous starters, to investigate dynamics and physiological heterogeneity of microbial behaviour under different stress conditions. A simultaneous nucleic acid double-staining assay was applied to discriminate cell populations in different physiological states after exposure to heat (50 and 55°C) and acid (pH 2·5 and 3·0) stresses. Alive cells with intact membranes, damaged cells still alive but with injured membranes, so with even a recovery ability, and dead cells with a permanent membrane damage were differentiated with a significant increase in damaged cells after stronger stress treatments. The existence and characteristics of subpopulations displaying heterogeneity in particular conditions are highly relevant, because specific subpopulations may show improved survival, changes and dynamics under stress conditions. This assay has potential for physiological research on lactic acid bacteria and for application in the food industry. The assessment of intermediate physiological states in Lb. sakei strains with recovery possibility could be an important criterion for application of potential starter cultures. Application of flow cytometry and characterization of sorted subpopulations may contribute to further understanding of diversity and heterogeneity in physiology of bacterial populations. © 2013 The Society for Applied Microbiology.

  9. The Relationship of Violence and Traumatic Stress to Changes in Weight and Waist Circumference: Longitudinal Analyses from the Study of Women’s Health Across the Nation (SWAN)

    Science.gov (United States)

    Garcia, Lorena; Qi, Lihong; Rasor, Marianne; Gold, Ellen B; Clark, Cari; Bromberger, Joyce

    2013-01-01

    Objective To investigate the associations of violence and traumatic stress with changes in weight and waist circumference, hypothesizing that violence in midlife would be associated with increases or decreases in weight and waist circumference. Methods The longitudinal cohort of the Study of Women’s Health Across the Nation (SWAN) comprised the study sample, which included an ethnically/racially and socially diverse group of 2870 women between the ages of 42 and 52 years at baseline. Women were followed annually for 10 years and assessments included weight and waist circumference measures and data on violence, health outcomes and confounders. Results At baseline, 8.6% Caucasian, 10.8% African American, 9.2% Chinese and 5.0% Japanese women reported violence and traumatic stress. Reporting violence and traumatic stress during follow-up was significantly associated with weight gain (OR=2.39, 95% CI= 1.28, 4.47), weight loss (OR=3.54, 95% CI=1.73, 7.22), and gain (OR=2.44, 95% CI =1.37, 4.37) or loss (OR=2.66, 95% CI=1.23, 5.77) in waist circumference, adjusting for age, race/ethnicity, education, marital status, and smoking. Conclusion Violence and traumatic stress against midlife women was associated with gains or losses in weight and waist circumference. PMID:24212978

  10. The relationship of violence and traumatic stress to changes in weight and waist circumference: longitudinal analyses from the study of women's health across the nation.

    Science.gov (United States)

    Garcia, Lorena; Qi, Lihong; Rasor, Marianne; Clark, Cari Jo; Bromberger, Joyce; Gold, Ellen B

    2014-05-01

    This article investigates the associations of violence and traumatic stress with changes in weight and waist circumference, hypothesizing that violence in midlife would be associated with increases or decreases in weight and waist circumference. The longitudinal cohort of the Study of Women's Health Across the Nation comprised the study sample, which included an ethnically/racially and socially diverse group of 2,870 women between the ages of 42 and 52 years at baseline. Women were followed annually for 10 years, and assessments included weight and waist circumference measures and data on violence, health outcomes, and confounders. At baseline, 8.6% Caucasian, 10.8% African American, 9.2% Chinese, and 5.0% Japanese women reported violence and traumatic stress. Reporting violence and traumatic stress during follow-up was significantly associated with weight gain (odds ratio [OR] = 2.39, 95% confidence interval [CI] = [1.28-4.47]), weight loss (OR = 3.54, 95% CI = [1.73-7.22]), and gain (OR = 2.44, 95% CI = [1.37-4.37]) or loss (OR = 2.66, 95% CI = [1.23-5.77]) in waist circumference, adjusting for age, race/ethnicity, education, marital status, and smoking. Violence and traumatic stress against midlife women were associated with gains or losses in weight and waist circumference.

  11. Multilocus analyses of renin-angiotensin-aldosterone system gene variants on blood pressure at rest and during behavioral stress in young normotensive subjects

    NARCIS (Netherlands)

    Ge, Dongliang; Zhu, Haidong; Huang, Ying; Treiber, Frank A.; Harshfield, Gregory A.; Snieder, Harold; Dong, Yanbin

    The renin-angiotensin-aldosterone system (RAAS) is a proteolytic cascade that regulates and maintains blood pressure (BP). This study aimed to explore the interactive and integrative effects of multiple RAAS polymorphisms on BP at rest and during behavioral stress in a normotensive population. A

  12. Assessment of the RELAP4/MOD6 thermal-hydraulic transient code for PWR experimental applications. Addendum. Analyses completed and reported in FY 1979. Interim report

    International Nuclear Information System (INIS)

    1979-09-01

    The results of three subtasks that complete the assessment of the RELAP4/MOD6 computer code are reported. These subtasks constitute the remainder of a broadly scoped assessment matrix defined and described in detail in a previously published document. The specific subtasks provide comparisons of code calculations with experimental results from core blowdown and critical-flow separate-effects experiments and from an integral systems-effects loss-of-coolant experiment. The basic emphasis of the comparisons is in the presentation of the study results in error form suitable for statistical analysis

  13. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: Comparing the early molecular response using time-series transcriptomic and metabolomic analyses

    Directory of Open Access Journals (Sweden)

    Dutta Bhaskar

    2010-12-01

    Full Text Available Abstract Background In this study, we investigated the individual and combinatorial effect of elevated CO2 conditions and salinity stress on the dynamics of both the transcriptional and metabolic physiology of Arabidopsis thaliana liquid hydroponic cultures over the first 30 hours of continuous treatment. Both perturbations are of particular interest in plant and agro-biotechnological applications. Moreover, within the timeframe of this experiment, they are expected to affect plant growth to opposite directions. Thus, a major objective was to investigate whether this expected "divergence" was valid for the individual perturbations and to study how it is manifested under the combined stress at two molecular levels of cellular function, using high-throughput analyses. Results We observed that a high salinity has stronger effect than elevated CO2 at both the transcriptional and metabolic levels, b the transcriptional responses to the salinity and combined stresses exhibit strong similarity, implying a robust transcriptional machinery acting to the salinity stress independent of the co-occurrence of elevated CO2, c the combinatorial effect of the two perturbations on the metabolic physiology is milder than of the salinity stress alone. Metabolomic analysis suggested that the beneficial role of elevated CO2 on salt-stressed plants within the timeframe of this study should be attributed to the provided additional resources; these allow the plants to respond to high salinity without having to forfeit other major metabolic functions, and d 9 h-12 h and 24 h of treatment coincide with significant changes in the metabolic physiology under any of the investigated stresses. Significant differences between the acute and longer term responses were observed at both molecular levels. Conclusions This study contributes large-scale dynamic omic data from two levels of cellular function for a plant system under various stresses. It provides an additional example

  14. Chronic Administration of Oil Palm (Elaeis guineensis Leaves Extract Attenuates Hyperglycaemic-Induced Oxidative Stress and Improves Renal Histopathology and Function in Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    Varatharajan Rajavel

    2012-01-01

    Full Text Available Oil palm (Elaeis guineensis leaves extract (OPLE has antioxidant properties and because oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN, we tested the hypothesis that OPLE prevents diabetes renal oxidative stress, attenuating injury. Sprague-Dawley rats received OPLE (200 and 500 mg kg−1 for 4 and 12 weeks after diabetes induction (streptozotocin 60 mg kg−1. Blood glucose level, body and kidney weights, urine flow rate (UFR, glomerular filtration rate (GFR, and proteinuria were assessed. Oxidative stress variables such as 8-hydroxy-2′-deoxyguanosine (8-OHdG, glutathione (GSH, and lipid peroxides (LPO were quantified. Renal morphology was analysed, and plasma transforming growth factor-beta1 (TGF-β1 was measured. Diabetic rats demonstrated increase in blood glucose and decreased body and increased kidney weights. Renal dysfunction (proteinuria, elevations in UFR and GFR was observed in association with increases in LPO, 8-OHdG, and TGF-β1 and a decrease in GSH. Histological evaluation of diabetic kidney demonstrated glomerulosclerosis and tubulointerstitial fibrosis. OPLE attenuated renal dysfunction, improved oxidative stress markers, and reduced renal pathology in diabetic animals. These results suggest OPLE improves renal dysfunction and pathology in diabetes by reducing oxidative stress; furthermore, the protective effect of OPLE against renal damage in diabetes depends on the dose of OPLE as well as progression of DN.

  15. The effects of antenatal education on fear of childbirth, maternal self-efficacy and post-traumatic stress disorder (PTSD) symptoms following childbirth: an experimental study.

    Science.gov (United States)

    Gökçe İsbir, Gözde; İnci, Figen; Önal, Hatice; Yıldız, Pelin Dıkmen

    2016-11-01

    Fear of birth and low childbirth self-efficacy is predictive of post-traumatic stress disorder symptoms following childbirth. The efficacy of antenatal education classes on fear of birth and childbirth self-efficacy has been supported; however, the effectiveness of antenatal classes on post-traumatic stress disorder symptoms after childbirth has received relatively little research attention. This study examined the effects of antenatal education on fear of childbirth, maternal self-efficacy and post-traumatic stress disorder symptoms following childbirth. Quasi-experimental study. The study was conducted in a city located in the Middle Anatolia region of Turkey and data were collected between December 2013 and May 2015. Two groups of women were compared-an antenatal education intervention group (n=44), and a routine prenatal care control group (n=46). The Wijma Delivery Expectancy/Experience Questionnaire, Version A and B, Childbirth Self-efficacy Inventory and Impact of Event Scale-Revised was used to assess fear of childbirth, maternal self-efficacy and PTSD symptoms following childbirth. Compared to the control group, women who attended antenatal education had greater childbirth self-efficacy, greater perceived support and control in birth, and less fear of birth and post-traumatic stress disorder symptoms following childbirth (all comparisons, ppost-traumatic stress disorder symptoms after childbirth. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Fit of experimental points to the sum of two (or one) exponentials with background. Program for ODRA 1305 computer. Part 2: for time analysers with constant dead time after each registered pulse (AC-256 type)

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka-Drozdowicz, E.

    1979-01-01

    The LAMA program (in FORTRAN 1900 language), which fits the set of decaying experimental values to the sum of the two (or one) exponentials with background, is described. The method of calculation and its accuracy and the interpretation of the program results are given. The changes and the extensions of the calculation, referred to the dead time effect taken into account for time analysers having the constant dead time after each registered pulse, are described. (author)

  17. A combined experimental and finite element approach to analyse the fretting mechanism of the head-stem taper junction in total hip replacement.

    Science.gov (United States)

    Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis

    2017-09-01

    Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.

  18. Are psychophysiological arousal and self-reported emotional stress during an oncological consultation related to memory of medical information? An experimental study.

    Science.gov (United States)

    Visser, Leonie N C; Tollenaar, Marieke S; Bosch, Jos A; van Doornen, Lorenz J P; de Haes, Hanneke C J M; Smets, Ellen M A

    2017-01-01

    Patients forget 20-80% of information provided during medical consultations. The emotional stress often experienced by patients during consultations could be one of the mechanisms that lead to limited recall. The current experimental study therefore investigated the associations between (analog) patients' psychophysiological arousal, self-reported emotional stress and their (long term) memory of information provided by the physician. One hundred and eighty one cancer-naïve individuals acted as so-called analog patients (APs), i.e. they were instructed to watch a scripted video-recoding of an oncological bad news consultation while imagining themselves being in the patient's situation. Electrodermal and cardiovascular activity (e.g. skin conductance level and heart rate) were recorded during watching. Self-reported emotional stress was assessed before and after watching, using the STAI-State and seven Visual Analog Scales. Memory, both free recall and recognition, was assessed after 24-28 h. Watching the consultation evoked significant psychophysiological and self-reported stress responses. However, investigating the associations between 24 psychophysiological arousal measures, eight self-reported stress measures and free recall and recognition of information resulted in one significant, small (partial) correlation (r = 0.19). Considering multiple testing, this significant result was probably due to chance. Alternative analytical methods yielded identical results, strengthening our conclusion that no evidence was found for relationships between variables of interest. These null-findings are highly relevant, as they may be considered to refute the long-standing, but yet untested assumption that a relationship between stress and memory exists within this context. Moreover, these findings suggest that lowering patients' stress levels during the consultation would probably not be sufficient to raise memory of information to an optimal level. Alternative

  19. Evaluation of residual stresses in composite materials by using neutron diffraction; study of elasto-plasticity; Etude des composites a matrice metallique par la technique de la diffraction de neutrons: analyse du comportement elastoplastique et evaluation des contraintes residuelles

    Energy Technology Data Exchange (ETDEWEB)

    Levy-Tubiana, R

    1999-11-05

    This work deals with the study of Metal Matrix Composites (MMC) using neutrons diffraction method and the analysis of the elastoplastic behavior in such materials. First, we evaluated macro-stresses in aluminium MMC reinforced with 17%vol. of SiC particles. One of the analyzed sample has been 4 point bending deformed, measurements have been performed after relaxation. The difference between the coefficients of thermal expansion constrains the matrix to be in tensile state and the particles in compressive state in the sample which has not be deformed. In the sample deformed, the MMC response is predicted by the science of Resistance Materials applied to a bent bar. We assume that macro-stresses are the sum of stresses with different origins (elastic, plastic, thermal mismatch): elastic mismatch is evaluated by Eshelby model and we determined micro-stresses in the unbent bar: they are equivalent and constant along width direction. For the bent bar, we observe relaxation of thermal stresses in the surface region. Theses results are confirmed by measurements of tensile/compressive sample using neutrons diffraction method. We also observed the influence of mechanical and thermal treatment on such MMC: the shear stress (established by the auto-coherent model) depends only on the way of cooling. Finally, a study was performed on titanium MMC for SNECMA on rotor beings used in the gas turbine engine industry. Evolution of stresses between felloe and boring is confirmed by a finite elements modeling and they are the first experimental results in this application. (author)

  20. Improved sample manipulation at the STRESS-SPEC neutron diffractometer using an industrial 6-axis robot for texture and strain analyses

    International Nuclear Information System (INIS)

    Randau, C.; Brokmeier, H.G.; Gan, W.M.; Hofmann, M.; Voeller, M.; Tekouo, W.; Al-hamdany, N.; Seidl, G.; Schreyer, A.

    2015-01-01

    The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC

  1. Improved sample manipulation at the STRESS-SPEC neutron diffractometer using an industrial 6-axis robot for texture and strain analyses

    Energy Technology Data Exchange (ETDEWEB)

    Randau, C. [Institute for Materials Science and Engineering, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld (Germany); Brokmeier, H.G., E-mail: heinz-guenter.brokmeier@tu-clausthal.de [Institute for Materials Science and Engineering, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld (Germany); Institute of Materials Research, Helmholtz-Centre Geesthacht, D-21502 Geesthacht (Germany); Gan, W.M. [Institute of Materials Research, Helmholtz-Centre Geesthacht, D-21502 Geesthacht (Germany); Hofmann, M.; Voeller, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, D-85747 Garching (Germany); Tekouo, W. [Institute for Machine Tools and Industrial Management, TU München, D-85747 Garching (Germany); Al-hamdany, N. [Institute for Materials Science and Engineering, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld (Germany); Seidl, G. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, D-85747 Garching (Germany); Schreyer, A. [Institute of Materials Research, Helmholtz-Centre Geesthacht, D-21502 Geesthacht (Germany)

    2015-09-11

    The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC.

  2. Three Dimensional Parametric Analyses of Stress Concentration Factor and Its Mitigation in Isotropic and Orthotropic Plate with Central Circular Hole Under Axial In-Plane Loading

    Science.gov (United States)

    Nagpal, Shubhrata; Jain, Nitin Kumar; Sanyal, Shubhashis

    2016-01-01

    The problem of finding the stress concentration factor of a loaded rectangular plate has offered considerably analytical difficulty. The present work focused on understanding of behavior of isotropic and orthotropic plate subjected to static in-plane loading using finite element method. The complete plate model configuration has been analyzed using finite element method based software ANSYS. In the present work two parameters: thickness to width of plate (T/A) and diameter of hole to width of plate (D/A) have been varied for analysis of stress concentration factor (SCF) and its mitigation. Plates of five different materials have been considered for complete analysis to find out the sensitivity of stress concentration factor. The D/A ratio varied from 0.1 to 0.7 for analysis of SCF and varied from 0.1 to 0.5 for analyzing the mitigation of SCF. 0.01, 0.05 and 0.1 are considered as T/A ratio for all the cases. The results are presented in graphical form and discussed. The mitigation in SCF reported is very encouraging. The SCF is more sensitive to D/A ratio as compared to T/A.

  3. Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Wang, Xin; Tan, Dun-Xian; Reiter, Russel J; Chan, Zhulong

    2015-08-01

    The fact of melatonin as an important antioxidant in animals led plant researchers to speculate that melatonin also acts in the similar manner in plants. Although melatonin has significant effects on alleviating stress-triggered reactive oxygen species (ROS), the involvement of melatonin in direct oxidative stress and the underlying physiological and molecular mechanisms remain unclear in plants. In this study, we found that exogenous melatonin significantly alleviated hydrogen peroxide (H2O2)-modulated plant growth, cell damage, and ROS accumulation in Bermuda grass. Additionally, 76 proteins significantly influenced by melatonin during mock or H2O2 treatment were identified by gel-free proteomics using iTRAQ (isobaric tags for relative and absolute quantitation). Metabolic pathway analysis showed that several pathways were markedly enhanced by melatonin and H2O2 treatments, including polyamine metabolism, ribosome pathway, major carbohydrate metabolism, photosynthesis, redox, and amino acid metabolism. Taken together, this study provides more comprehensive insights into the physiological and molecular mechanisms of melatonin in Bermuda grass responses to direct oxidative stress. This may relate to the activation of antioxidants, modulation of metabolic pathways, and extensive proteome reprograming. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved.......The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...

  5. Responses of zooplankton in lufenuron-stressed experimental ditches in the presence or absence of uncontaminated refuges

    NARCIS (Netherlands)

    López-Mancisidor, P.; Brink, van den P.J.; Crum, S.J.H.; Maund, S.J.; Carbonell, G.; Brock, T.C.M.

    2008-01-01

    Outdoor experimental ditches were used to evaluate the influence of untreated refuges on the recovery of zooplankton communities following treatment with the fast-dissipating insecticide lufenuron. Each experimental ditch was divided into three sections of the same surface area. The treatments

  6. Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys

    International Nuclear Information System (INIS)

    Wang, Y. D.; Brown, D. W.; Choo, H.; Liaw, P. K.; Benson, M. L.; Cong, D. Y.; Zuo, L.

    2007-01-01

    The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigations provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community

  7. Experimental study of the large-scale axially heterogeneous liquid-metal fast breeder reactor at the fast critical assembly: Power distribution measurements and their analyses

    International Nuclear Information System (INIS)

    Iijima, S.; Obu, M.; Hayase, T.; Ohno, A.; Nemoto, T.; Okajima, S.

    1988-01-01

    Power distributions of the large-scale axially heterogeneous liquid-metal fast breeder reactor were studied by using the experiment results of fast critical assemblies XI, XII, and XIII and the results of their analyses. The power distributions were examined by the gamma-scanning method and fission rate measurements using /sup 239/Pu and /sup 238/U fission counters and the foil irradiation method. In addition to the measurements in the reference core, the power distributions were measured in the core with a control rod inserted and in a modified core where the shape of the internal blanket was determined by the radial boundary. The calculation was made by using JENDL-2 and the Japan Atomic Energy Research Institute's standard calculation system for fast reactor neutronics. The power flattening trend, caused by the decrease of the fast neutron flux, was observed in the axial and radial power distributions. The effect of the radial boundary shape of the internal blanket on the power distribution was determined in the core. The thickness of the internal blanket was reduced at its radial boundary. The influence of the internal blanket was observed in the power distributions in the core with a control rod inserted. The calculation predicted the neutron spectrum harder in the internal blanket. In the radial distributions of /sup 239/Pu fission rates, the space dependency of the calculated-to-experiment values was found at the active core close to the internal blanket

  8. Experimental and numerical investigation on cold flat rolling processes of DC04 sheets with special focus on residual stresses

    International Nuclear Information System (INIS)

    Bauer, A; Binotsch, C; Awiszus, B; Mehner, T; Sieber, M; Lampke, T

    2016-01-01

    The process of cold flat rolling is a widespread industrial technique to manufacture semi-finished products, e.g., for the automotive or homewares industry. Basic knowledge of the process regarding dimensioning and adjustment of defined characteristics is already state of the art. However, a detailed consideration and analysis with respect to local inhomogeneous residual stresses in several process steps mostly remains disregarded. A broad understanding of the process due to the distribution of residual stresses in the workpiece and the direction of the stress tensors allows for a definition of the characteristics of the workpiece even before the actual manufacturing process. For that purpose, it is necessary to perform numerical investigations by means of the finite element analysis (FEA) of cold flat rolling processes. Within this contribution, several approaches for the calibration of the FEA with the real flat rolling process will be addressed and discussed. To ensure that the numerical consideration provides realistic results, this calibration is indispensable. General parameters such as geometry, height reduction, rolling temperature, process time, and the rolling speed are considered as well as a photogrammetric survey, and calculated residual stresses with results of X-ray diffraction (XRD) will be compared. In the course of the experiments, a good agreement between the stress results of the FEA and the XRD was found in the center of the specimen. In combination with the allocation of the stress orientations, the agreement close to the edges is also fine. Some issues that cause differences between the FEA and the experiment are dis-cussed. (paper)

  9. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    Science.gov (United States)

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 318-323, 2003

  10. EXPERIMENTAL AND THEORETICAL STUDIES OF THE STRESS-STRAIN STATE OF WOOD-CONCRETE AND WOOD-GYPSUM MASONRY

    Directory of Open Access Journals (Sweden)

    Likhacheva Svetlana Yur'evna

    2012-12-01

    The findings of the prototype testing include identification of the two areas of deformations: areas of elastic deformations and areas of intensive development of deformations. The first area of partial elastic deformations is characterized by the linear stress function, while the second area demonstrates that this relationship is nonlinear. Permanent deformations appear as of the startup of the loading process and disproportionate stress is demonstrated throughout the deformation process. However, in the first area (partial elastic deformations residual deformations are so small that this area is considered as the area of "the area of incomplete elasticity".

  11. Development of a measuring and evaluation method for X-ray analysis of residual stresses in the surface region of polycrystalline materials; Entwicklung eines Mess- und Auswerteverfahrens zur roentgenographischen Analyse des Eigenspannungszustandes im Oberflaechenbereich vielkristalliner Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, C.

    2000-11-01

    The topic of the habilitation thesis is the development of an X-ray diffraction method for measurement and depth-resolved analysis of internal stresses in the surface region of polycrystalline materials. The method relies on the basic approach of varying {tau}, the penetration depth of the X-rays in the materials, by the scattering vector g{sub theta{psi}} via stepwise specimen rotation. Thus, depth profiles of the interlattice plane distances d(hkl) in the specimen system can be derived for given direction and inclination angles {theta} and {psi} of the scattering vector. This offers the possibility to identify individual components of the stress tensors of the basic equation of the X-ray diffraction analysis, and to perform separate analyses of those components. For calculation of the relevant internal stress distributions {sigma}{sub ij}({tau}) using the interlattice plane distance profiles, a self-consistent method is established which takes into account the high sensitivity of the derived internal stresses in relation to the interlattice plane distance d{sub 0}(hkl) in the stress-free crystal lattice. The evaluation yields results describing the depth profiles as well as the strain-free interlattice plane distance d{sub 0}(hkl), so that a quantitative analysis is possible of tri-axial internal stress states in the surface region of the materials. (orig./CB) [German] Den Gegenstand der vorliegenden Arbeit bildet die Entwicklung eines roentgenographischen Mess- und Auswerteverfahrens zur tiefenaufgeloesten Analyse des oberflaechennahen Eigenspannungszustandes in vielkristallinen Werkstoffen. Der Grundgedanke der Methode besteht darin, die Eindringtiefe {tau} der Roentgenstrahlung in den Werkstoff durch schrittweise Drehung der Probe um den Streuvektor g{sub {theta}}{sub {psi}} zu variieren. Damit koennen Tiefenprofile der Netzebenenabstaende d(hkl) fuer fest vorgegebene Azimut- und Neigungswinkel {theta} und {psi} des Streuvektors im Probensystem ermittelt

  12. Analyses of experimental observations of electron temperatures in the near wake of a model in a laboratory-simulated solar wind plasma

    International Nuclear Information System (INIS)

    Intriligator, D.S.; Steele, G.R.

    1985-01-01

    Laboratory experiments have been performed that show the effect on the electron temperature of inserting a spherical conducting model, larger than the Debye length, into a free-streaming high-energy (1 kv) unmagnetized hydrogen plasma. These experiments are the first electron temperature experiments conducted at energies and compositions directly relevant to solar wind and astrophysical plasma phenomena. The incident plasma parameters were held constant. A large number of axial profiles of the electron temperature ratios T/sub e//sub in// T/sub e//sub out/ behind the model downstream in the model wake are presented. A rigorous statistical approach is used in the analysis of the electron temperature ratio data in both our experimental laboratory data and in our reanalysis of the published data of others. The following new results ae obtained: (1) In energetic plasma flow there is no overall temperature enhancement in the near wake since the best fit to the T/sub e//sub i/n/ T/sub e//sub out/ data is a horizontal straight line having a mean value of 1.05; (2) No statistically significant electron temperature enhancement peaks or depressions exist in the near-wake region behind a model at zero potential in a high-energy plasma even at distances less than or equal to Ma, where M is the acoustic Mach number and a is the model radius. This implies a ''filling in'' of electrons in the wake region which may be due to the higher mobility of these energetic electrons. This mechanism may permit the solar wind electrons to significantly contribute to the maintenance of the nightside ionosphere at Venus

  13. Nitrogen diffusion and nitrogen depth profiles in expanded austenite: experimental assessment, numerical simulation and role of stress

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2008-01-01

    during gaseous nitriding, a qualitative discussion of the role of stress on local equilibrium conditions of growing expanded austenite and a discussion of the erroneous concentration dependent diffusivity of nitrogen in expanded austenite as obtained from applying the Boltzmann-Matano method...

  14. Early Social Deprivation and the Social Buffering of Cortisol Stress Responses in Late Childhood: An Experimental Study

    Science.gov (United States)

    Hostinar, Camelia E.; Johnson, Anna E.; Gunnar, Megan R.

    2015-01-01

    The goal of the present study was to investigate the role of early social deprivation in shaping the effectiveness of parent support to alleviate hypothalamic-pituitary-adrenal (HPA)-axis-stress responses of children (ages 8.9-11, M = 9.83 years, SD = 0.55). The sample was equally divided between children who had been adopted internationally from…

  15. Self-reported Cognitive Biases Moderate the Associations Between Social Stress and Paranoid Ideation in a Virtual Reality Experimental Study

    NARCIS (Netherlands)

    Pot-Kolder, Roos; Veling, Wim; Counotte, Jacqueline; van der Gaag, Mark

    2017-01-01

    Introduction: Cognitive biases are associated with psychosis liability and paranoid ideation. This study investigated the moderating relationship between pre-existing self-reported cognitive biases and the occurrence of paranoid ideation in response to different levels of social stress in a virtual

  16. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Geeta; Kumar, Ashutosh [Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062 (India); Sharma, Shyam S., E-mail: sssharma@niper.ac.in [Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062 (India)

    2010-01-01

    Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidative stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).

  17. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  18. Genome-wide identification, phylogeny, and expression analyses of the 14-3-3 family reveal their involvement in the development, ripening and abiotic stress response in banana

    Directory of Open Access Journals (Sweden)

    meiying li

    2016-09-01

    Full Text Available Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana.

  19. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response

    Directory of Open Access Journals (Sweden)

    Xueyin Li

    2016-11-01

    Full Text Available Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon-intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138 and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar and leaf

  20. Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response

    Science.gov (United States)

    Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing

    2016-01-01

    Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon–intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll

  1. Grain scale stresses and strains determination by X-ray diffraction; Contribution a l'analyse par diffractometrie X des deformations et des contraintes a l'echelle des grains

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W

    2007-03-15

    A new methodology for strain and stress analysis by X ray diffraction (XRD) in single crystal was developed. It can be applied to determine the second order stress (in grain scale) in single and multi-crystal material with non-cubic lattice. This method is based on the method Ortner I. It has introduced the metric tensor G which is deduced from the lattice space measured by XRD. In the developed method, when the crystal reference is non-orthonormal, an orthonormal reference associated with the crystal basis is defined, so all calculation could be done with usual calculation laws. The use of the least square method allows the acquisition of many more measurements than the six absolute necessary. Then a better metric tensor G is calculated and the statistical error is obtained. This developed method was applied in a bi crystal copper. The experimental results have shown that this method is also effective. The second order residuals stresses for coarse Zn grains in a galvanized coating were determined after annealing. The four coarse grains with different orientations were also characterized and demonstrated the elastic and plastic deformation mechanism in a grain or between the grains during in situ tensile loading. So this method is well able to determine the strains and stresses in grain scale in a mono crystal or multi crystal with any crystalline structure. (author)

  2. A model for the stress-strain behavior of toughened polystyrene. Part 2

    NARCIS (Netherlands)

    Sjoerdsma, S.D.; Heikens, D.

    1982-01-01

    The general stress-strain relationship derived in an earlier paper is applied to analyse experimental stress-strain curves of polystyrene-polyethylene blends. It is concluded from the stress and temperature dependence of the rates of craze initiation and craze growth that these rates can be

  3. Experimental investigation of stresses and deformations of the model of a pod-boiler-prestressed concrete pressure vessel. Pt. 1

    International Nuclear Information System (INIS)

    Stoever, R.

    1973-01-01

    Investigations of elastic models are suitable to obtain independent values for stress states and deformations of thickwalled pressure vessels to check computer programs for three-dimensional elastic calculations. An elastic model of epoxy resin was constructed with the geometry of the pod boiler pressure vessel of the Hartlepool nuclear power station. With this model strains and deformations were measured for internal pressure. The stress states in the neighbourhood of the large vertical openings for the boiler pods and the horizontal gas ducts and at the junction of cylinder and plates were of special interest. Therefore most of the gauges were concentrated in these regions. A considerable number of strain gauges were embedded in the wall. The construction of the model is described in part one and results of the measurements are presented and discussed in part two of this report. (orig.) [de

  4. Experimental and numerical analysis of stress wave propagation in polymers and the role of interfaces in armour systems

    Science.gov (United States)

    Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.

    2012-12-01

    Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.

  5. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Effects of hyper- and hypo- thyroidism on oxidative stress of the eye in experimental acute anterior uveitis.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Diker, S; Ataoglu, O; Dolapci, M; Akata, F; Hasanreisôglu, B; Turkozkan, N

    1996-02-01

    Glutathione peroxidase activities and malondialdehyde levels were measured in the homogenated anterior segment of rat eyes with endotoxin induced acute anterior uveitis in euthyroid, hyperthyroid and hypothyroid rats. Malondialdehyde concentrations were found to be significantly increased (p 0.05). These results suggest that excess or deficiency of the thyroid hormones cause alterations in the malondialdehyde levels and glutathione peroxidase activities of the rat eyes in endotoxin induced uveitis, and hyperthyroidism may increase the oxidative stress in endotoxin induced acute anterior uveitis.

  7. Controlled reperfusion decreased reperfusion induced oxidative stress and evoked inflammatory response in experimental aortic-clamping animal model.

    Science.gov (United States)

    Jancsó, G; Arató, E; Hardi, P; Nagy, T; Pintér, Ö; Fazekas, G; Gasz, B; Takacs, I; Menyhei, G; Kollar, L; Sínay, L

    2016-09-12

    Revascularization after long term aortic ischaemia in vascular surgery induces reperfusion injury accompanied with oxidative stress and inflammatory responses. The hypothesis of this study was that the aortic occlusion followed by controlled reperfusion (CR) can reduce the ischaemia-reperfusion injury, the systemic and local inflammatory response induced by oxidative stress.Animal model was used. animals underwent a 4-hour infrarenal aortic occlusion followed by continuous reperfusion. Treated group: animals were treated with CR: after a 4-hour infrarenal aortic occlusion we made CR for 30 minutes with the crystalloid reperfusion solution (blood: crystalloid solution ratio 1:1) on pressure 60 Hgmm. Blood samples were collected different times. The developing oxidative stress was detected by the plasma levels of malondialdehyde, reduced glutathion, thiol groups and superoxide dismutase. The inflammatory response was measured by phorbol myristate acetate-induced leukocyte reactive oxygen species production and detection of change in myeloperoxidase levels. The animals were anaesthetized one week after terminating ligation and biopsy was taken from quadriceps muscle and large parenchymal organs.CR significantly reduced the postischaemic oxydative stress and inflammatory responses in early reperfusion period. Pathophysiological results: The rate of affected muscle fibers by degeneration was significantly higher in the untreated animal group. The infiltration of leukocytes in muscle and parenchymal tissues was significantly lower in the treatedgroup.CR can improve outcome after acute lower-limb ischaemia. The results confirm that CR might be also a potential therapeutic approach in vascular surgery against reperfusion injury in acute limb ischaemia. Supported by OTKA K108596.

  8. The Effectiveness of Self Management Program on Pain, Fatigue, Depression, Anxiety, and Stress in Sickle Cell Patients: A Quasi-Experimental Study

    Directory of Open Access Journals (Sweden)

    Ahmadi

    2015-10-01

    Full Text Available Background Patients with sickle cell disease, who must manage serious and unpredictable complications related to their disease, particularly chronic pain, suffer from numerous psychosocial problems such as depression, anxiety, stress, and disruption of interpersonal relationships; these problems often lead to fatigue and poor quality of life. Objectives This study aimed to determine the effectiveness of self-management programs targeting pain, fatigue, depression, anxiety, and stress in sickle cell patients. Patients and Methods This was a quasi-experimental study; participants were 53 patients with sickle cell disease who were referred to the Thalassemia Clinic of Ahvaz Shafa Hospital. Participants were recruited by census in 2013. Participants received a self-management program that was implemented in five sessions over 12 weeks. Levels of fatigue, depression, anxiety, and stress were assessed before and 24 weeks after the intervention; pain was assessed during the intervention and at a 24 week post-intervention follow-up using the fatigue severity scale (FSS, DASS21, and a pain record. Descriptive statistics, Fisher’s exact test, Chi-square, independent t-tests, paired t-tests, repeated measures tests and correlations were used to analyze the data. Results Scores for fatigue, anxiety, depression, and stress after the intervention were significantly decreased compared to before the intervention (P < 0.001. Repeated measures testing showed that mean scores for frequency and duration of pain decreased significantly during the 12 weeks of intervention, as well as during the 24 weeks of follow-up (P < 0.001. Conclusions The results suggest the effectiveness of self-management programs on the reduction of pain, fatigue, anxiety, depression, and stress in sickle cell patients. Therefore, self-management programs are advisable in order to empower patients and assist their management of health-related problems.

  9. Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

    Science.gov (United States)

    Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien

    2017-08-01

    Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.

  10. Experimental investigations and seismic analyses for benchmark study of 1000 MW WWER type (water-cooled and moderated reactor) nuclear power plant Kozloduy. Final report 15 June 1993 - 14 June 1994

    International Nuclear Information System (INIS)

    Sachansky, S.

    1995-01-01

    This report includes preparation and compilation of all existing studies related to seismic safety assessment of Kozloduy WWER-1000, i.e. Units 5 and 6; description of previous full scale testing of Unit 5; and the results obtained from seismic analyses performed under benchmark experimental studies. The results are concerned with analysis of the geological conditions; analysis of the seismic wave velocities in the soil layers; analysis of the predominant natural periods; dynamic characteristics of the Unit 5; soil-structure interaction and laboratory testing and analysis of the reactor containment tenders

  11. Experimental investigations and seismic analyses for benchmark study of 1000 MW WWER type (water-cooled and moderated reactor) nuclear power plant Kozloduy. Final report 15 June 1993 - 14 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sachansky, S [Building Research Institute (NISI), Sofia (Bulgaria)

    1995-07-01

    This report includes preparation and compilation of all existing studies related to seismic safety assessment of Kozloduy WWER-1000, i.e. Units 5 and 6; description of previous full scale testing of Unit 5; and the results obtained from seismic analyses performed under benchmark experimental studies. The results are concerned with analysis of the geological conditions; analysis of the seismic wave velocities in the soil layers; analysis of the predominant natural periods; dynamic characteristics of the Unit 5; soil-structure interaction and laboratory testing and analysis of the reactor containment tenders.

  12. [An experimental model for assessing the risk factors for work-related stress in four Italian universities].

    Science.gov (United States)

    Miscetti, G; Barberini, L; Chiocchini, D; Cirimbilli, A; Pippi, R; Pampanella, L; Caserta, G; Gargarella, L

    2011-01-01

    This study, a collaborative effort among the Local Health Authority 2 of Perugia, Italy, the National Coordination of Worker's Safety Representatives for University and Research Institutions and the National Coordination for Protection and Prevention Services for Universities and Research Institutions, describes the results of a method used to evaluate work-related stress. Personnel from four Italian universities, which we call University I, II, III and IV geographically distributed in nord (1), center (2) and south (1) of Italy, responded to a questionnaire regarding risk evaluation of work-related stress in response to the Italian Law 81/2008. The methodology includes a preliminary analysis of the physical/technological and organizational/relational aspects of the company in order to determine a risk factor of work-related stress. This is followed by an evaluation by agencies competent in the areas of prevention and protection, (Administrative personnel of the company, Medical support persons, heads of the Prevention and Protection Service, employee representatives, and others) that apply a specific algorithm and by the employees through the completion of a questionnaire. The employees, mostly men, of the various universities, completed 510 questionnaires. Based on the results of the questionnaires and on a comparison between the expectations of the administration and the employees, the preventative measures that need to be adopted were identified. The results of this study show that there is not complete agreement between the administration and the employees regarding the work-related expectations. This difference in viewpoints could be a source of work-related stress. Some aspects of the study were shown to be of common concern in the various universities, while for other aspects, there were significantly different perceptions between male and female employees. An immediate response is needed with respect to some aspects in the work context and to plan further

  13. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.

    Science.gov (United States)

    Uysal, Hakan; Kurtoglu, Cem; Gurbuz, Riza; Tutuncu, Naki

    2005-03-01

    The Cresco-Ti System uses a laser-welded process that provides an efficient technique to achieve passive fit frameworks. However, mechanical behavior of the laser-welded joint under biomechanical stress factors has not been demonstrated. This study describes the effect of Cresco-Ti laser-welding conditions on the material properties of the welded specimen and analyzes stresses on the weld joint through 3-dimensional finite element models (3-D FEM) of implant-supported fixed dentures with cantilever extensions and fixed partial denture designs. Twenty Grade III (ASTM B348) commercially pure titanium specimens were machine-milled to the dimensions described in the EN10002-1 tensile test standard and divided into test (n = 10) and control (n = 10) groups. The test specimens were sectioned and laser-welded. All specimens were subjected to tensile testing to determine yield strength (YS), ultimate tensile strength (UTS), and percent elongation (PE). The Knoop micro-indentation test was performed to determine the hardness of all specimens. On welded specimens, the hardness test was performed at the welded surface. Data were analyzed with the Mann-Whitney U test and Student's t test (alpha=.05). Fracture surfaces were examined by scanning electron microscopy to characterize the mode of fracture and identify defects due to welding. Three-dimensional FEMs were created that simulated a fixed denture with cantilever extensions supported by 5 implants (M1) and a fixed partial denture supported by 2 implants (M2), 1 of which was angled 30 degrees mesio-axially. An oblique load of 400 N with 15 degrees lingual-axial inclinations was applied to both models at various locations. Test specimens fractured between the weld and the parent material. No porosities were observed on the fractured surfaces. Mean values for YS, UTS, PE, and Knoop hardness were 428 +/- 88 MPa, 574 +/- 113 MPa, 11.2 +/- 0.4%, 270 +/- 17 KHN, respectively, for the control group and 642 +/- 2 MPa, 772 +/- 72

  14. SWATH label-free proteomics analyses revealed the roles of oxidative stress and antioxidant defensing system in sclerotia formation of Polyporus umbellatus

    Science.gov (United States)

    Li, Bing; Tian, Xiaofang; Wang, Chunlan; Zeng, Xu; Xing, Yongmei; Ling, Hong; Yin, Wanqiang; Tian, Lixia; Meng, Zhixia; Zhang, Jihui; Guo, Shunxing

    2017-01-01

    Understanding the initiation and maturing mechanisms is important for rational manipulating sclerotia differentiation and growth from hypha of Polyporus umbellatus. Proteomes in P. umbellatus sclerotia and hyphae at initial, developmental and mature phases were studied. 1391 proteins were identified by nano-liquid chromatograph-mass spectrometry (LC-MS) in Data Dependant Acquisition mode, and 1234 proteins were quantified successfully by Sequential Window Acquisition of all THeoretical fragment ion spectra-MS (SWATH-MS) technology. There were 347 differentially expressed proteins (DEPs) in sclerotia at initial phase compared with those in hypha, and the DEP profiles were dynamically changing with sclerotia growth. Oxidative stress (OS) in sclerotia at initial phase was indicated by the repressed proteins of respiratory chain, tricarboxylic acid cycle and the activation of glycolysis/gluconeogenesis pathways were determined based on DEPs. The impact of glycolysis/gluconeogenesis on sclerotium induction was further verified by glycerol addition assays, in which 5% glycerol significantly increased sclerotial differentiation rate and biomass. It can be speculated that OS played essential roles in triggering sclerotia differentiation from hypha of P. umbellatus, whereas antioxidant activity associated with glycolysis is critical for sclerotia growth. These findings reveal a mechanism for sclerotial differentiation in P. umbellatus, which may also be applicable for other fungi.

  15. Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Hattel, Jesper Henri; Løgstrup Andersen, Tom

    2012-01-01

    dependency on temperature and cure degree. Model predictions are compared to experimentally determined in-situ strains, determined using FBG sensors. It was found that both models offer good approximations of internal strain build-up. A general shortcoming is the lack of capturing rate-dependent effects...

  16. The Role of Three-Dimensional Boundary Stresses in Limiting the Occurrence and Size of Experimental Landslides

    Science.gov (United States)

    Prancevic, Jeffrey P.; Lamb, Michael P.; Palucis, Marisa C.; Venditti, Jeremy G.

    2018-01-01

    The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size.

  17. Experimental variation of social stress in virtual reality - Feasibility and first results in patients with psychotic disorders.

    Science.gov (United States)

    Hesse, Klaus; Schroeder, Philipp A; Scheeff, Jonathan; Klingberg, Stefan; Plewnia, Christian

    2017-09-01

    Social interaction might lead to increased stress levels in patients with psychotic disorders. Impaired social stress tolerance is critical for social functioning and closely linked with symptom relapse and hospitalization. We present an interactive office built-up in virtual reality (VR). Patients with psychotic disorders (PP, N = 26 including N = 5 dropouts) and matched healthy controls (HC, N = 20) were examined with a VR simulating an open-plan office. In a randomized, controlled cross-over design, participants were introduced to virtual co-workers (avatars) and requested to ask them for task assistance. Social feedback in each of the two sessions was either cooperative or rejective in randomized order. The office environment was tolerable for most PP and all HC, five PP and none of the HC dropped out for any reason. Drop-outs reported simulator sickness, influence on thoughts and symptom exacerbations. Statistical trends indicated heightened paranoid ideations for PP after social rejection. State measures of paranoid ideations showed high convergent validity with conventional measures of delusions. Of note, measures of presence were higher for PP than for HC. The exploratory design limits the robustness of the findings. Only statistical trends on paranoid ideation were found. The use of VR to assess the effects of social rejection is feasible and tolerable for most PP (87%). However, its implementation for PP is challenged by increased simulator sickness and an additional stress load for some patients. Further studies continuing on these first results that point towards an increased paranoid ideation evoked by negative social feedback and generally higher subjective presence are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4

    International Nuclear Information System (INIS)

    Zain-ul-abdein, Muhammad; Nelias, Daniel; Jullien, Jean-Francois; Deloison, Dominique

    2010-01-01

    Laser beam welding has recently found its application in the fabrication of aircraft structures where fuselage panels, made of thin sheets of AA 6056-T4 (an aluminium alloy), are welded with stiffeners of the same material in a T-joint configuration. The present work simulates laser beam welding induced residual stresses and distortions using industrially employed thermal and mechanical boundary conditions. Various measurements performed on small-scale welded test specimens provide a database of experimental results that serves as a benchmark for qualification of the simulation results. The welding simulation is performed with the commercial finite element software Abaqus and a Fortran programme encoding a conical heat source with Gaussian volumetric distribution of flux. A sequentially coupled temperature-displacement analysis is undertaken to simulate the weld pool geometry, transient temperature and displacement fields. The material is assumed to follow an elasto-plastic law with isotropic hardening behaviour (von Mises plasticity model). A comparison between the experimental and simulation results shows a good agreement. Finally, the residual stress and strain states in a T-joint are predicted.

  19. Haemophilus ducreyi Seeks Alternative Carbon Sources and Adapts to Nutrient Stress and Anaerobiosis during Experimental Infection of Human Volunteers.

    Science.gov (United States)

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R; Gao, Hongyu; Holley, Concerta L; Munson, Robert S; Liu, Yunlong; Spinola, Stanley M

    2016-05-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans. Copyright © 2016

  20. Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi.

    Science.gov (United States)

    Andersen, M; Magan, N; Mead, A; Chandler, D

    2006-09-01

    Entomopathogenic fungi are being used as biocontrol agents of insect pests, but their efficacy can be poor in environments where water availability is reduced. In this study, the potential to improve biocontrol by physiologically manipulating fungal inoculum was investigated. Cultures of Beauveria bassiana, Lecanicillium muscarium, Lecanicillium longisporum, Metarhizium anisopliae and Paecilomyces fumosoroseus were manipulated by growing them under conditions of water stress, which produced conidia with increased concentrations of erythritol. The time-course of germination of conidia at different water activities (water activity, aw) was described using a generalized linear model, and in most cases reducing the water activity of the germination medium delayed the onset of germination without affecting the distribution of germination times. The germination of M. anisopliae, L. muscarium, L. longisporum and P. fumosoroseus was accelerated over a range of aw levels as a result of physiological manipulation. However, the relationship between the effect of physiological manipulation on germination and the osmolyte content of conidia varied according to fungal species. There was a linear relationship between germination rate, expressed as the reciprocal of germination time, and aw of the germination medium, but there was no significant effect of fungal species or physiological manipulation on the aw threshold for germination. In bioassays with M. anisopliae, physiologically manipulated conidia germinated more rapidly on the surface of an insect host, the melon cotton aphid Aphis gossypii, and fungal virulence was increased even when relative humidity was reduced after an initial high period. It is concluded that physiological manipulation may lead to improvements in biocontrol in the field, but choice of fungal species/isolate will be critical. In addition, the population-based threshold model used in this study, which considered germination in terms of physiological

  1. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Sun, Weibo; Mohammadi, Kourosh; Almasi Zadeh Yaghuti, Amir; Wei, Hui; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2018-06-01

    Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Experimental Study of Pressure Drop and Wall Shear Stress Characteristics of γ /Al2O3-Water Nanofluid in a Circular pipe under Turbulent flow induced vibration.

    Directory of Open Access Journals (Sweden)

    Adil Abbas AL-Moosawy

    2016-09-01

    Full Text Available Experimental study of γ /Al2O3 with mean diameter of less than 50 nm was dispersed in the distilled water that flows through a pipe consist of five sections as work station ,four sections made of carbon steel metal and one sections made of Pyrex glass pipe, with five nanoparticles volume concentrations of 0%,0.1%,0.2%,0.3%,and 0.4% with seven different volume flow rates 100, 200 , 300, 400, 500, 600 ,and 700ℓ/min were investigated to calculated pressure distribution for the cases without rubber ,with 3mm rubber and with 6mm rubber used to support the pipe. Reynolds number was between 20000 and 130000. Frequency value through pipe was measured for all stations of pipe for all cases. The results show that the pressure drop and wall shear stress of the nanofluid increase by increasing the nanoparticles volume concentrations or Reynolds number, the values of frequency through the pipe increase continuously when wall shear stress increases and the ratio of increment increases as nanofluid concentrations increase. Increasing of vibration frequency lead to increasing the friction factor between the pipe and the wall and thus increasing in pressure drop. Several equations between the wall shear stress and frequency for all volume concentration and for thr