WorldWideScience

Sample records for experimental storage ring

  1. Experimental modelling of the dipole magnet for the electron storage ring DELSY

    CERN Document Server

    Meshkov, I N; Syresin, E M

    2003-01-01

    In the Joint Institute for Nuclear Research (Dubna) the project of Dubna Electron Synchrotron (DELSY) with an electron energy of 1.2 GeV is developed. The electron storage ring in the DELSY project is planned to be created on the basis of magnetic elements, which were used earlier in the storage ring AmPS (NIKHEF, Amsterdam). The optics of the ring is necessary to be changed, its perimeter to be reduced approximately in one and a half time, the energy of electrons to be increased. The paper is devoted to the development of a modified dipole magnet of the storage ring. The preliminary estimation of geometry of the magnet pole is carried out by means of computer modelling using two- and three- dimensional codes of the magnetic field calculation SUPERFISH and RADIA. The experimental stand for the measurements of the dipole magnetic field is described. As the result of calculational and experimental modelling for the dipole magnet, the geometry of its poles was estimated, providing in the horizontal aperture +- 3...

  2. Experimental demonstration and visual observation of dust trapping in an electron storage ring

    Directory of Open Access Journals (Sweden)

    Yasunori Tanimoto

    2009-11-01

    Full Text Available Sudden decreases in the beam lifetime, which are attributed to the dust trappings, sometimes occur at the electron storage ring Photon Factory Advanced Ring (PF-AR. Since these dust events cause difficulties in user operations, we have been carefully observing this phenomenon for many years. Our observations indicated that the dust trappings could be caused by electric discharges in vacuum ducts. In order to demonstrate this hypothesis experimentally, we designed a new vacuum device that intentionally generates electric discharges and installed it in PF-AR. Using this device, we could repeatedly induce sudden decreases in the beam lifetime because of the generated electric discharge. We also detected decreases in the beam lifetime caused by mechanical movement of the electrodes in the device. Moreover, we could visually observe the dust trapping phenomenon; the trapped dust particle was observed by two video cameras and appeared as a luminous body that resembled a shooting star. This was the first direct observation of a luminous dust particle trapped by the electron beam.

  3. Storage Ring EDM Experiments

    Directory of Open Access Journals (Sweden)

    Semertzidis Yannis K.

    2016-01-01

    Full Text Available Dedicated storage ring electric dipole moment (EDM methods show great promise advancing the sensitivity level by a couple orders of magnitude over currently planned hadronic EDM experiments. We describe the present status and recent updates of the field.

  4. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Sanjari, Mohammad Shahab

    2013-04-26

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  5. Autumn study on storage rings

    CERN Multimedia

    1974-01-01

    The first two weeks of October have seen storage ring people from accelerator Laboratories throughout the world at CERN to study the fundamental problems of very high energy protonproton colliding beam machines.

  6. A new storage-ring light source

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  7. Nuclear physics experiments with ion storage rings

    NARCIS (Netherlands)

    Litvinov, Yu. A.; Bishop, S.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, L. X.; Dillmann, I.; Egelhof, P.; Geissel, H.; Grisenti, R. E.; Hagmann, S.; Heil, M.; Heinz, A.; Kalantar-Nayestanaki, N.; Knoebel, R.; Kozhuharov, C.; Lestinsky, M.; Ma, X. W.; Nilsson, T.; Nolden, F.; Ozawa, A.; Raabe, R.; Reed, M. W.; Reifarth, R.; Sanjari, M. S.; Schneider, D.; Simon, H.; Steck, M.; Stoehlker, T.; Sun, B. H.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wakasugi, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Zhang, Y. H.

    2013-01-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new

  8. Fourth-generation storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, J. N.

    1999-11-16

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number.

  9. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  10. Storage ring proton EDM experiment

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    sensitivity of 10^-29 e-cm.  The strength of the method originates from the fact that there are high intensity polarized proton beams available and the fact that the so-called geometric phase systematic error background cancels with clock-wise and counter-clock-wise storage possible in electric rings. The ultimate sensitivity of the method is 10^-30 e-cm. At this level it will either detect a non-zero EDM or it will eliminate electro-weak baryogenesis.

  11. The cryogenic storage ring CSR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. von; Becker, A.; Berg, F.; Blaum, K.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); and others

    2016-06-15

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm{sup −3} is derived, equivalent to a room-temperature pressure below 10{sup −14} mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  12. The Cryogenic Storage Ring CSR

    CERN Document Server

    von Hahn, Robert; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A; Heber, Oded; Herwig, Philipp; Karthein, Jonas; Krantz, Claude; Kreckel, Holger; Lange, Michael; Laux, Felix; Lohmann, Svenja; Menk, Sebastian; Meyer, Christian; Mishra, Preeti M; Novotný, Oldřich; Connor, Aodh P O; Orlov, Dmitry A; Rappaport, Michael L; Repnow, Roland; Saurabh, Sunny; Schippers, Stefan; Schröter, Claus Dieter; Schwalm, Dirk; Schweikhard, Lutz; Sieber, Thomas; Shornikov, Andrey; Spruck, Kaija; Kumar, Sudhakaran Sunil; Ullrich, Joachim; Urbain, Xavier; Vogel, Stephen; Wilhelm, Patrick; Wolf, Andreas; Zajfman, Daniel

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 $\\pm$ 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion) and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas den...

  13. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  14. Low-emittance Storage Rings

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  15. The "g-2" Muon Storage Ring

    CERN Document Server

    CERN PhotoLab

    1974-01-01

    The "g-2" muon storage ring, shortly before completion in June 1974. Bursts of pions (from a target, hit by a proton beam from the 26 GeV PS) are injected and polarized muons from their decay are captured on a stable orbit. When the muons decay too, their precession in the magnetic field of the storage ring causes a modulation of the decay-electron counting rate, from which the muon's anomalous magnetic moment can be determined. In 1977, the "g-2" magnets were modified to build ICE (Initial Cooling Experiment), a proton and antiproton storage ring for testing stochastic and electron cooling. Later on, the magnets had a 3rd life, when the ion storage ring CELSIUS was built from them in Uppsala. For later use as ICE, see 7711282, 7802099, 7809081,7908242.

  16. Nuclear-matter radius studies from 58Ni(α ,α ) experiments at the GSI Experimental Storage Ring with the EXL facility

    Science.gov (United States)

    Zamora, J. C.; Aumann, T.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, Th.; Kuilman, M.; Litvinov, S.; Litvinov, Yu. A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.

    2017-09-01

    A novel method for measuring nuclear reactions in inverse kinematics with stored ion beams was successfully used to extract the nuclear-matter radius of 58Ni. The experiment was performed at the experimental heavy-ion storage ring at the GSI facility using a stored 58Ni beam at energies of 100 and 150 MeV/u and an internal helium gas-jet target. Elastically scattered α -recoils at low momentum transfers were measured with an in-ring detector system compatible with ultrahigh vacuum. Experimental angular distributions were fitted using density-dependent optical model potentials within the eikonal approximation. This permitted the extraction of the point-matter root-mean-square radius of 58Ni with an average value of 3.70(7) fm. Results from this work are in good agreement with several experiments performed in the past in normal kinematics. This pioneering experiment demonstrates a major breakthrough towards future investigations with far-from-stability stored beams using the present technique.

  17. Astrochemistry at the Cryogenic Storage Ring

    Science.gov (United States)

    Kreckel, Holger; Becker, Arno; Blaum, Klaus; Breitenfeldt, Christian; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth; Heber, Oded; Karthein, Jonas; Krantz, Claude; Meyer, Christian; Mishra, Preeti; Novotny, Oldrich; O'Connor, Aodh; Saurabh, Sunny; Schippers, Stefan; Spruck, Kaija; Kumar, S. Sunil; Urbain, Xavier; Vogel, Stephen; von Hahn, Robert; Wilhelm, Patrick; Wolf, Andreas; Zajfman, Daniel

    2017-01-01

    Almost 200 different molecular species have been identified in space, and this number continues to grow steadily. This surprising molecular diversity bears witness to an active reaction network, in which molecular ions are the main drivers of chemistry in the gas phase. To study these reactions under controlled conditions in the laboratory is a major experimental challenge. The new Cryogenic Storage Ring (CSR) that has recently been commissioned at the Max Planck Institute for Nuclear Physics in Heidelberg will serve as an ideal testbed to study cold molecular ions in the gas phase. With residual gas densities of CSR will allow for merged beams collision studies involving molecular ions, neutral atoms, free electrons and photons under true interstellar conditions.

  18. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    Science.gov (United States)

    King, F.; Kruppi, T.; Müller, J.; Dörner, R.; Schmidt, L. Ph H.; Schmidt-Böcking, H.; Stiebing, K. E.

    2015-11-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections.

  19. Experimental results from the small isochronous ring

    Energy Technology Data Exchange (ETDEWEB)

    Eduard Pozdeyev

    2005-05-01

    The Small Isochronous Ring (SIR) is a compact, low-energy storage ring designed to investigate the beam dynamics of high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The ring was developed at Michigan State University (MSU) and has been operational since December 2003. It stores 20 keV hydrogen beams with a peak current of 10-20 microamps for up to 200 turns. The transverse and longitudinal profiles of extracted bunches are measured with an accuracy of approximately 1 mm. The high accuracy of the measurements makes the experimental data attractive for validation of multi-particle space charge codes. The results obtained in the ring show a fast growth of the energy spread induced by the space charge forces. The energy spread growth is accompanied by a breakup of the beam bunches into separated clusters that are involved in the vortex motion specific to the isochronous regime. The experimental results presented in the paper show a remarkable agreement with simulations performed with the code CYCO. In this paper, we discuss specifics of space charge effects in the isochronous regime, present results of experiments in SIR, and conduct a detailed comparison of the experimental data with results of simulations.

  20. Electron Storage Ring Development for ICS Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Roderick [Lyncean Technologies, Inc., Palo Alto, CA (United States)

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  1. Transient jitter from injection in storage rings

    Directory of Open Access Journals (Sweden)

    Kai Meng Hock

    2009-09-01

    Full Text Available Injection of fresh bunches into a storage ring can induce jitter in the stored bunches. For machines demanding beams of very low emittance and high stability, such as the damping rings of a future linear collider or the storage rings of a super flavor factory, this could be a potential performance limitation. We present an analysis, for the International Linear Collider (ILC damping rings, of the transverse jitter induced on the extracted bunches from the jitter on the injected bunches, with the coupling between bunches mediated by the resistive-wall wakefield of the vacuum chamber. We find that it is important to include details of the local transverse focusing around the ring. We consider the impact of the finite thickness of the beam pipe wall, and of nonevaporable getter coating on the inside surface: in the parameter regime of the ILC damping rings, we find that the results are only slightly modified compared to an approximation to the resistive-wall wakefield based on a single-layer wall of infinite thickness. The results from our simulations indicate a tight specification on the jitter of the injected bunches.

  2. Investigation of the isochronous mode of the experimental storage ring (ESR) and the collector ring (CR). Decay spectroscopy of highly charged stored {sup 140}Pr ions at the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, Sergey A.

    2008-11-15

    The combination of the present fragment separator FRS and the cooler-storage ring ESR at GSI provides conditions for accurate mass and unique half-life measurements of exotic nuclei. A major part of this doctoral work has been devoted to investigations of the isochronous ion-optical operating mode of the present ESR facility and the planned Collector Ring (CR) facility at FAIR. A detailed ion-optical study of the isochronous storage ring with the emphasis on the main parameters has been done. For example, a simple scaling law providing a quantitative estimate for the mass resolving power as a function of the transverse acceptance has been derived. The ion-optical matching of the FRS-ESR has been calculated and experimentally verified for both the standard and the isochronous operating modes of the ESR. In addition, the dispersion function of a stored ion beam has been measured for both ion-optical modes at the straight section. The improved setting for higher transmission in the standard mode has been used in an experiment on the half-life measurements of highly-charged ions. Orbital electron capture (EC) and/or {beta}{sup +}-decay rates of {sup 140}Pr ions with zero-, one- and two- bound electrons have been measured. A complementary future study of EC-decay in highly-charged {sup 64}Cu ions is discussed. Based on the present experience, the ion-optical matching between the future in-flight fragment separator Super-FRS and the CR has been calculated. The isochronous mode of the CR has been calculated. A dedicated Monte-Carlo code (ISOCHRON) has been developed in order to investigate the influence of the transverse acceptance, the closed orbit distortions, the fringe fields of the quadrupoles, the magnetic field imperfections of the magnets on the mass resolving power. The influence of chromaticity on the isochronicity has been investigated. The correction of the chromaticity and of second-order isochronicity has been performed employing sextupole magnets in the

  3. Radiation safety design for SSRL storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) had upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500-mA stored beam current and 3-GeV energy. The 234-m circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60- or 90-cm-thick concrete ratchet walls. A total of 3.5x10{sup 15}e{sup -}/y will be injected into the ring with an injection power of 4W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-min injection period, an instantaneous power loss of 0.05W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and the stored beams is equivalent to an average loss of 2mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16mW for the injection septum, 47mW for the beam abort dump, and 13mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.

  4. Design studies for the electron storage ring EUTERPE

    Energy Technology Data Exchange (ETDEWEB)

    Xi Boling

    1995-05-18

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI).

  5. Heavy ion storage ring without linear dispersion

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2004-12-01

    Full Text Available A possible method to realize a dispersion-free storage ring is described. The simultaneous use of a magnetic field B and an electric field E in bending regions, where the two fields are set perpendicular to each other, enables us to control the effect of momentum dispersion. When the relation (1+1/γ_{0}^{2}E(ρ=-v_{0}×B is satisfied for a beam with the velocity v_{0}, the linear dispersion can be completely eliminated all around the ring. It is shown that the acceleration and deceleration induced by the electrostatic deflector counteracts the heating mechanism due to the shearing force from dipole magnets. The dispersion-free system is thus beneficial to producing ultracold beams. It looks probable that the technique will allow one to achieve three-dimensional crystalline beams. At ICR Kyoto University, an ion cooler storage ring S-LSR oriented for various beam physics purposes is now under construction. The application of the present idea to S-LSR is discussed and the actual design of the dispersionless bend is given.

  6. The KACST Heavy-Ion Electrostatic Storage Ring

    Science.gov (United States)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  7. FLSR - The Frankfurt low energy storage ring

    Science.gov (United States)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  8. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  9. Storage ring development at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  10. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  11. Gross properties of exotic nuclei investigated at storage rings and ion traps

    CERN Document Server

    Scheidenberger, G; Bosch, F; Casares, A; Geissel, H; Kholomeev, A; Münzenberg, G; Weick, H; Wollnik, H

    2000-01-01

    Properties of exotic nuclei like atomic masses, decay modes, and half-lives can be ideally investigated in storage rings and ion traps. Some experiments can be carried out under conditions which prevail in hot stellar plasmas. The experimental potential of storage and cooling of exotic nuclei is illustrated with recent experimental results and an outlook to future experiments is presented.

  12. Microwave instability in electron storage rings

    CERN Document Server

    Mosnier, A

    1999-01-01

    Tracking simulations, with the aim of studying the microwave regime with short and intense bunches, suggest different instability mechanisms, according to the impedance model. In order to get a better insight of the source of the instability, i.e. azimuthal or radial mode coupling, we choose to follow the Sacherer (IEEE Trans. Nucl. Sci. NS-24, 1977 1393) approach to investigate the stability of the stationary solution. The generalized Sacherer's integral, including mode coupling and potential well distortion, is then solved by using the 'step function technique' for the expansion of the radial function, as proposed by Oide and Yokoya (KEK Preprint-90-10, April, 1990). For illustration, the effect of the resonant frequency of a broadband resonator in the SOLEIL storage ring is studied. When the resonator frequency is much higher than the bunch spectrum width, azimuthal mode coupling can occur before radial mode coupling. When the resonator frequency is lower, radial mode coupling comes usually first, but two ...

  13. Introductory statistical mechanics for electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Jowett, J.M.

    1986-07-01

    These lectures introduce the beam dynamics of electron-positron storage rings with particular emphasis on the effects due to synchrotron radiation. They differ from most other introductions in their systematic use of the physical principles and mathematical techniques of the non-equilibrium statistical mechanics of fluctuating dynamical systems. A self-contained exposition of the necessary topics from this field is included. Throughout the development, a Hamiltonian description of the effects of the externally applied fields is maintained in order to preserve the links with other lectures on beam dynamics and to show clearly the extent to which electron dynamics in non-Hamiltonian. The statistical mechanical framework is extended to a discussion of the conceptual foundations of the treatment of collective effects through the Vlasov equation.

  14. QCD physics at hadron storage rings: From COSY to FAIR

    Indian Academy of Sciences (India)

    QCD physics at hadron storage rings. 3.2 Hadron spectroscopy with antiproton annhilation at PANDA. The PANDA experiment, located at an internal target position of the high energy storage ring for anti-protons is one of the large installations at the future FAIR fa- cility [4]. It is being planned by a multi-national collaboration, ...

  15. The phase slip factor of the electrostatic cryogenic storage ring CSR

    Science.gov (United States)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  16. Cooler Storage Ring at China Institute of Modern Physics

    CERN Document Server

    Wen-Xia, Jia; Zhan, W

    2005-01-01

    CSR, a new ion cooler-storage-ring project in China IMP, is a double ring system, and consists of a main ring (CSRm) and an experimental ring (CSRe). The two existing cyclotrons SFC (K=69) and SSC (K=450) of the Heavy Ion Research Facility in Lanzhou (HIRFL) will be used as its injector system. The heavy ion beams with the energy range of 7-30 MeV/nucleus from the HIRFL will be accumulated, cooled and accelerated to the higher energy range of 100-500 MeV/ nucleus in CSRm, and then extracted fast to produce radioactive ion beams or highly charged heavy ions. Those secondary beams will be accepted and stored or decelerated by CSRe for many internal-target experiments or high precision spectroscopy with beam cooling. On the other hand, the beams with the energy range of 100-1000MeV/ nucleus will also be extracted from CSRm by using slow extraction or fast extraction for many external-target experiments. CSR project was started in the end of 1999 and will be finished in 2006. In this paper the outline and the act...

  17. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  18. Astrochemistry in TSR and CSR Ion Storage Rings

    Science.gov (United States)

    Novotny, Oldrich

    2017-04-01

    Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.

  19. CESAR, 2 MeV electron storage ring; general view.

    CERN Multimedia

    CERN PhotoLab

    1964-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  20. CESAR, 2 MeV electron storage ring.

    CERN Multimedia

    CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  1. Estimates of CSR Instability Thresholds for Various Storage Rings

    CERN Document Server

    Zimmermann, Frank

    2010-01-01

    We review the key predictions and conditions by several authors for the onset of longitudinal instabilities due to coherent synchrotron radiation (CSR), and evaluate them numerically for various storage rings, namely the KEKB High Energy Ring (HER) & Low Energy Ring (LER), SuperKEKB HER & LER, old and new designs of the SuperKEKB Damping Ring (DR), SuperB HER & LER, CLIC DR (2009 and 2010 design parameters), SLC DR, and ATF DR. We show that the theoretical uncertainty in the instability onset is at least at the level of 20-30% in bunch intensity. More importantly, we present some doubts about the general applicability for many of these storage rings of some commonly used formulae. To cast further light on these questions, an experiment at lower beam energy on the ATF Damping Ring is proposed.

  2. Correction of multiple nonlinear resonances in storage rings

    OpenAIRE

    R. Bartolini; I. P. S. Martin; J. H. Rowland; P. Kuske; F. Schmidt

    2008-01-01

    The correct implementation of the nonlinear lattice model is crucial to achieving the design performance in storage rings. We describe here a method for the simultaneous correction of multiple nonlinear resonances based on local resonance measurements and numerical fits of the sextupole components. This method has been applied for the simultaneous correction of two sextupole resonances excited in the Diamond storage ring. The local correction of these resonances has been achieved with unprece...

  3. Storage ring at HIE-ISOLDE Technical design report

    NARCIS (Netherlands)

    Grieser, M.; Litvinov, Yu. A.; Raabe, R.; Blaum, K.; Blumenfeld, Y.; Butler, P. A.; Wenander, F.; Woods, P. J.; Aliotta, M.; Andreyev, A.; Artemyev, A.; Atanasov, D.; Aumann, T.; Balabanski, D.; Barzakh, A.; Batist, L.; Bernardes, A. -P.; Bernhardt, D.; Billowes, J.; Bishop, S.; Borge, M.; Borzov, I.; Boston, A. J.; Brandau, C.; Catford, W.; Catherall, R.; Cederkall, J.; Cullen, D.; Davinson, T.; Dillmann, I.; Dimopoulou, C.; Dracoulis, G.; Duellmann, Ch. E.; Egelhof, P.; Estrade, A.; Fischer, D.; Flanagan, K.; Fraile, L.; Fraser, M. A.; Freeman, S. J.; Geissel, H.; Gerl, J.; Greenlees, P.; Grisenti, R. E.; Habs, D.; von Hahn, R.; Hagmann, S.; Hausmann, M.; He, J. J.; Heil, M.; Huyse, M.; Jenkins, D.; Jokinen, A.; Jonson, B.; Joss, D. T.; Kadi, Y.; Kalantar-Nayestanaki, N.; Kay, B. P.; Kiselev, O.; Kluge, H. -J.; Kowalska, M.; Kozhuharov, C.; Kreim, S.; Kroell, T.; Kurcewicz, J.; Labiche, M.; Lemmon, R. C.; Lestinsky, M.; Lotay, G.; Ma, X. W.; Marta, M.; Meng, J.; Muecher, D.; Mukha, I.; Mueller, A.; Murphy, A. St J.; Neyens, G.; Nilsson, T.; Nociforo, C.; Noertershaeuser, W.; Page, R. D.; Pasini, M.; Petridis, N.; Pietralla, N.; Pfuetzner, M.; Podolyak, Z.; Regan, P.; Reed, M. W.; Reifarth, R.; Reiter, P.; Repnow, R.; Riisager, K.; Rubio, B.; Sanjari, M. S.; Savin, D. W.; Scheidenberger, C.; Schippers, S.; Schneider, D.; Schuch, R.; Schwalm, D.; Schweikhard, L.; Shubina, D.; Siesling, E.; Simon, H.; Simpson, J.; Smith, J.; Sonnabend, K.; Steck, M.; Stora, T.; Stoehlker, T.; Sun, B.; Surzhykov, A.; Suzaki, F.; Tarasov, O.; Trotsenko, S.; Tu, X. L.; Van Duppen, P.; Volpe, C.; Voulot, D.; Walker, P. M.; Wildner, E.; Winckler, N.; Winters, D. F. A.; Wolf, A.; Xu, H. S.; Yakushev, A.; Yamaguchi, T.; Yuan, Y. J.; Zhang, Y. H.; Zuber, K.; Bosch, F.M.

    We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams

  4. Storage life of silicone rubber sealing ring used in solid rocket motor

    Directory of Open Access Journals (Sweden)

    Liu Weikai

    2014-12-01

    Full Text Available It is urgent to carry out detailed research on storage performance of rubber sealing ring to get the criterion for its storage life. This paper acquires material ageing regularity by theoretical analysis and experimental confirmation. On this condition, failure mode and failure criterion of typical sealing structure is studied, and the failure mechanism is found. Thus by analyzing the stress distribution, the relationship between ageing state and sealing condition is established. Rationalization proposal is put forward and storage life of sealing ring is evaluated. The research mentioned-above has special reference to the design of sealing structures and can provide reference for prolonging their service life.

  5. Exact solutions for the spin tune for model storage rings

    CERN Document Server

    Mane, S R

    2002-01-01

    We present exact analytical expressions for the spin tune for arbitrary values of the orbital action for several storage ring models. The models we treat contain Siberian Snakes, the use of which is essential to preserve the polarization of beams in high-energy proton storage rings. Our solutions contain some novel features. We also prove a previously conjectured claim about the behavior of spin tuneshifts in rings with multiple Snakes. The conjecture is based on numerical simulations, but our proof is analytical, and also nonperturbative.

  6. Correction of multiple nonlinear resonances in storage rings

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2008-10-01

    Full Text Available The correct implementation of the nonlinear lattice model is crucial to achieving the design performance in storage rings. We describe here a method for the simultaneous correction of multiple nonlinear resonances based on local resonance measurements and numerical fits of the sextupole components. This method has been applied for the simultaneous correction of two sextupole resonances excited in the Diamond storage ring. The local correction of these resonances has been achieved with unprecedented precision. We also point out that this method has the potential to lead to an effective reconstruction of the local sextupole component errors around the whole ring circumference.

  7. Local Feedback System To Correct Synchrotron Radiation Beam Position At Siberia-2 Storage Ring

    CERN Document Server

    Valentinov, A; Krylov, I; Rezvov, V; Yupinov, I

    2004-01-01

    After beginning of long experimental runs at SIBERIA-2 storage ring users of synchrotron radiation (SR) found that SR beam position in experimental stations slowly changed. To correct this, local orbit correction feedback system was organized. The system is based on SR beam position monitor forming TV image of SR beam at experimental station entry (15 meters far from radiation point). PC calculates position of beam center and sends it to storage ring control system one time in a few seconds. Control system forms local orbit bump to correct SR beam position. Achieved accuracy of stabilization is 10 microns. Now two such systems operate at SIBERIA-2 and we plan to extend this number. Reasons of SR beam movement, monitor design, data transmission system are described in the report. Features of storage ring correction system and optic are discussed.

  8. A practical method to generate brilliant hard x-rays with a tabletop electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H. [Ritsumeikan Univ., Shiga (Japan); Amano, D.; Miyade, H. [Sumitomo Heavy Industries, Ltd., Tanashi-City (Japan)

    1995-12-31

    With electron storage rings not only synchrotron radiation(SR) but also bremsstrahlung(BS) from a thin target placed in the electron orbit are mechanisms to generate brilliant x-ray beams. The calculated brilliance of BS with a 50 MeV storage ring, which is nearly 10{sup 13} photons/s, mrad{sup 2}, mm{sup 2}, 0.1% band width for 100 keV x-rays, exceeds that of SR from a 1 GeV storage ring. This photon energy spectrum is almost constant and extend up to the electron energy. The reasons for this high brilliance with this new radiation scheme is that the electron beams penetrating the thin target are utilized repeatedly, the narrow angular divergence of BS is determined by the kinematics of relativistic electron as same as SR, and the x-ray source size of the order of 1 {mu}m is determined by the size of thin target instead of electron beam sizes. Continuous injection of electron beam to the storage ring at full energy is the way to keep high and constant beam current. Peak current and repetition rate determine x-ray out put power. Note that the power of x-ray beam is also provided from a RF cavity of the storage ring. In this paper we will report some experimental results and discuss further application on a coherent bremsstrahlung generated from a set of stacked foils placed in the electron orbit of the ring. Resulting from these investigations the photon storage ring which is based on a 50 MeV exact circular electron storage ring could provide wide range of coherent and incoherent radiations from far infrared to hard x-ray in a practical amount of radiation power.

  9. Spin tune mapping as a novel tool to probe the spin dynamics in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hejny, V.; Hempelmann, N.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Pesce, A.; Prasuhn, D.; Pretz, J.; Rosenthal, M.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Soltner, H.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Engblom, P. Thörngren; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Zurek, M.; JEDI Collaboration

    2017-07-01

    Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called spin tune mapping, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 using polarized deuterons stored in the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8 μ rad .

  10. Nonlinear interaction of colliding beams in particle storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, J C; Month, M

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z/sub 0/ and W/sup + -/), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed.

  11. Mass and lifetime measurements of exotic nuclei in storage rings.

    Science.gov (United States)

    Franzke, Bernhard; Geissel, Hans; Münzenberg, Gottfried

    2008-01-01

    Mass and lifetime measurements lead to the discovery and understanding of basic properties of matter. The isotopic nature of the chemical elements, nuclear binding, and the location and strength of nuclear shells are the most outstanding examples leading to the development of the first nuclear models. More recent are the discoveries of new structures of nuclides far from the valley of stability. A new generation of direct mass measurements which allows the exploration of extended areas of the nuclear mass surface with high accuracy has been opened up with the combination of the Experimental Storage Ring ESR and the FRragment Separator FRS at GSI Darmstadt. In-flight separated nuclei are stored in the ring. Their masses are directly determined from the revolution frequency. Dependent on the half-life two complementary methods are applied. Schottky Mass Spectrometry SMS relies on the measurement of the revolution frequency of electron cooled stored ions. The cooling time determines the lower half-life limit to the order of seconds. For Isochronous Mass Spectrometry IMS the ring is operated in an isochronous ion-optical mode. The revolution frequency of the individual ions coasting in the ring is measured using a time-of-flight method. Nuclides with lifetimes down to microseconds become accessible. With SMS masses of several hundreds nuclides have been measured simultaneously with an accuracy in the 2 x 10(-7)-range. This high accuracy and the ability to study large areas of the mass surface are ideal tools to discover new nuclear structure properties and to guide improvements for theoretical mass models. In addition, nuclear half-lives of stored bare and highly charged ions have been measured. This new experimental development is a significant progress since nuclear decay characteristics are mostly known for neutral atoms. For bare and highly charged ions new nuclear decay modes become possible, such as bound-state beta decay. Dramatic changes in the nuclear lifetime

  12. ELISA - an electrostatic storage ring for low-energy ions

    Science.gov (United States)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  13. Workshop on compact storage ring technology: applications to lithography

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  14. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    Directory of Open Access Journals (Sweden)

    M. P. Ehrlichman

    2016-04-01

    Full Text Available A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  15. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Directory of Open Access Journals (Sweden)

    A. Wolski

    2011-07-01

    Full Text Available We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  16. New Storage Ring Light Sources on the Horizon

    CERN Document Server

    Podobedov, Boris

    2005-01-01

    The world's appetite for light sources keeps growing as new ones are under construction or being proposed for every continent but Antarctica. While some viable alternatives are emerging, the great majority of new light sources are based on mature electron storage ring technology. We review the design and performance of the new machines worldwide and speculate on the future directions.

  17. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  18. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, T., E-mail: yamaguti@phy.saitama-u.ac.jp [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Suzaki, F. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Izumikawa, T. [RI Center, Niigata University, Niigata 951-8510 (Japan); Miyazawa, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Morimoto, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Tokanai, F. [Department of Physics, Yamagata University, Yamagata 990-8560 (Japan); Furuki, H.; Ichihashi, N.; Ichikawa, C. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Momota, S. [School of Environmental Science and Engineering, Kochi University of Technology, Kochi 782-8502 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Nagashima, M.; Nakamura, Y. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Nishikiori, R.; Niwa, T. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); and others

    2013-12-15

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments.

  19. Historic moment as SESAME begins storage ring installation

    CERN Multimedia

    JORDAN

    2016-01-01

    The first of the 16 cells of SESAME (link is external)’s storage ring was installed recently in the shielding tunnel in the Centre’s experimental hall in Allan, Jordan. SESAME will be the Middle East’s first synchrotron light source. The installation was led by SESAME’s Technical Director, Erhard Huttel, with help from members of CERN forming part of the CESSAMag (CERN-EC Support for SESAME Magnets) team as well as scientists and technicians from the SESAME region. Each cell consists of magnets (dipole, quadrupoles and sextupoles) and the vacuum chamber, supported by a girder. After many years in the making, commissioning of SESAME is scheduled to begin in 2016, serving a growing community of some 300 scientists from the region. The initial research programme will cover topics as diverse as the search for new cancer drugs to the exploration of the regions shared cultural heritage. SESAME is also a pioneer in promoting international cooperation in the region. The laboratory is expected

  20. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  1. Characterisation of the MAX II storage ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestroem, M. [MAX-Laboratory, Ole Roemersvaegen 1, Box 118, SE-22100 Lund (Sweden)]. E-mail: magnus.sjostrom@maxlab.lu.se; Tarawneh, H. [MAX-Laboratory, Ole Roemersvaegen 1, Box 118, SE-22100 Lund (Sweden); Wallen, E. [MAX-Laboratory, Ole Roemersvaegen 1, Box 118, SE-22100 Lund (Sweden); Eriksson, M. [MAX-Laboratory, Ole Roemersvaegen 1, Box 118, SE-22100 Lund (Sweden)

    2007-07-11

    Several unconventional accelerator technology solutions were introduced in the MAX II electron storage ring during the 1990s, such as quadrupole magnets with integrated sextupoles, non-zero dispersion in the straight sections and a common girder for all magnets in the same cell. The lattice of the MAX II ring has been characterised in order to evaluate these solutions, to assist in MAX II operation and in preparation of the planned MAX IV project. Characterisation was done primarily through a combination of response matrix analysis and transverse and longitudinal beam size measurements, with additional dispersion and tune measurements.

  2. CONSIDERATIONS ABOUT PROTON - NEUTRON INTERACTIONS IN THE INTERSECTING STORAGE RINGS

    CERN Document Server

    Bartl, W; Steuer, M; Hubner, K

    1969-01-01

    The pos'sibility of proton-neutron scattering experiments at the CERN Intersecting Storage Rings is studied. The use of proton-deuteron collisions to measure the reaction p+d •*• p*pv+n,witheitherp.orn,asspectator nucléon is discussed. An analysing magnet around the deuteron beamline allows to detect both nucléons of the deuteron up to the zero-momentum-transfer" région. Accélération and storage of deuteron beams is considered.

  3. Feasibility of beam crystallization in a cooler storage ring

    Directory of Open Access Journals (Sweden)

    Yosuke Yuri

    2005-11-01

    Full Text Available It has been known theoretically that a charged-particle beam circulating in a storage ring exhibits an “ordered” configuration at the space-charge limit. Such an ultimate state of matter is called a crystalline beam whose emittance is ideally equal to zero except for quantum noise. This paper discusses how close one can come to various ordered states by employing currently available accelerator technologies. The dynamic nature of ultracold beams and conditions required for crystallization are briefly reviewed. Molecular dynamics simulations are performed to study the feasibility of this unique phenomenon, considering practical situations in general cooling experiments. It is pointed out that several essential obstacles must be overcome to reach a three-dimensional crystalline state in a storage ring. Doppler laser cooling of ion beams is also numerically simulated to explore the possibility of beam crystallization in an existing machine.

  4. Survey of Digital Feedback Systems in High Current Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2003-06-06

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions.

  5. Bunch lengthening with bifurcation in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-San; Hirata, Kohji [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    The mapping which shows equilibrium particle distribution in synchrotron phase space for electron storage rings is discussed with respect to some localized constant wake function based on the Gaussian approximation. This mapping shows multi-periodic states as well as double bifurcation in dynamical states of the equilibrium bunch length. When moving around parameter space, the system shows a transition/bifurcation which is not always reversible. These results derived by mapping are confirmed by multiparticle tracking. (author)

  6. RF Phase Modulation at the LNLS Electron Storage Ring

    CERN Document Server

    Abreu, Natalia P; Tavares, Pedro

    2005-01-01

    In the Brazilian Electron Storage Ring, we observed that modulating the phase of accelerating fields at twice the synchrotron frequency suppressed remarkably well a longitudinal coupled-bunch mode of the beam driven by one of the RF cavities. We present results of a set of systematic measurements, in single and multi-bunch mode, aimed at characterizing the effects of the modulation on the beam. We also compare those experiments with the results of tracking simulations.

  7. Mass and lifetime measurements at the storage ring ESR

    CERN Document Server

    Attallah, F; Litvinov, Y A; Radon, T; Stadlmann, J; Beckert, Karl; Bosch, F; Falch, M; Franzke, B; Geissel, H; Kerscher, T; Klepper, O; Kluge, H J; Kozhuharov, C; Löbner, K E G; Münzenberg, G; Nolden, F; Novikov, Y N; Patyk, Z; Quint, W; Schatz, H; Scheidenberger, C; Schlitt, B; Steck, Markus; Sümmerer, K; Weick, H; Wollnik, H

    2002-01-01

    We present results from two methods of direct mass measurements of relativistic exotic nuclei stored in the storage ring ESR. Schottky Mass Spectrometry (SMS) with electron-cooled ions is well suited for long-lived nuclei (T sub 1 sub / sub 2>=10 s), and the Isochronous mass measurements (IMS) for hot fragments (T sub 1 sub / sub 2>=1 mu s). In addition, SMS provides information on nuclear lifetime for bare and highly ionized atoms.

  8. Design of the Main Magnets of the SESAME Storage Ring

    CERN Document Server

    Milanese, A; Shehab, M

    2014-01-01

    This paper describes the magnetic design of the main magnets of the SESAME storage ring. The 16 dipoles are combined function bending magnets, designed with an adjustable iron shimming scheme. The 64 quadrupoles are of two different lengths and strengths. The 64 sextupoles are optimized for field quality in 3D without end pole chamfers and they include additional coils to provide a horizontal/vertical dipole and a skew quadrupole terms.

  9. Spin tune mapping as a novel tool to probe the spin dynamics in storage rings

    Directory of Open Access Journals (Sweden)

    2017-07-01

    Full Text Available Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called spin tune mapping, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 using polarized deuterons stored in the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8  μ  rad.

  10. Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank

    2010-01-01

    The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring

  11. Observation of Magnetic Resonances in Electron Clouds in a Positron Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, Cherrill M.; Raubenheimer, T.O.; Wang, L.F.; /SLAC

    2011-08-24

    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  12. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...... confinement. The experimentally observed stability conditions for stationary crystals comply remarkably well with current theory of crystalline plasmas and beams....

  13. Analysis of multi-bunch instabilities at the Diamond storage ring

    CERN Document Server

    Bartolini, Riccardo; Rehm, Guenther; Smaluk, Victor

    2017-01-01

    We present the result of the analytical, numerical and experimental analysis of multi-bunch instabilities at the Diamond storage ring. This work compares the impedance estimates with CST with the analysis of the growth rates of the excited multi-bunch modes in different machine configurations. The contribution of a number of wakefield sources has been identified with very high precision thanks to high quality data provided by the existing TMBF diagnostics.

  14. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend

  15. Magnet design for an ultralow emittance storage ring

    Directory of Open Access Journals (Sweden)

    F. Saeidi

    2016-03-01

    Full Text Available The Iranian Light Source Facility (ILSF is a new 3 GeV synchrotron radiation laboratory which is in the design stage. The ILSF storage ring (SR is based on a Five-Bend Achromat (5BA lattice providing an ultra-low beam emittance of 0.48 nm rad. The ring is comprised of 100 pure dipole magnets, 320 quadrupoles, and 320 sextupoles with additional coils for dipole and skew quadrupole correctors. In this paper, we present some design features of the SR magnets and discuss the detailed physical design of these electromagnets. The related electrical and cooling calculations and mechanical design issues have been investigated as well.

  16. Ionization cooling in a low-energy proton storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David V.; /Fermilab

    2006-03-01

    At the FFAG05 meeting, Mori and Okabe presented a scenario in which the lifetime of protons in a low-energy storage ring ({approx}10 MeV) is extended by energy-loss in a wedge foil, and this enables greater neutron production from the foil. The lifetime extension is due to the cooling effect of this energy loss. We have previously analyzed ionization cooling for muons at optimal cooling energies. The same equations, with appropriate adaptations, can be used to analyze the dynamic situation for proton-material interactions at low energies. In this note we discuss this extension and calculate cooling and heating effects at these very different parameters. The ring could provide a practical application of ionization cooling methods.

  17. Radiation Damage of Polypropylene Fiber Targets in Storage Rings

    CERN Document Server

    Rohdjess, H; Bisplinghoff, J; Bollmann, R; Büsser, K; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Igelbrink, M; Langkau, R; Maier, R; Mosel, F; Müller, M; Muenstermann, M; Prasuhn, D; Von Rossen, P; Scheid, H; Schirm, N; Schwandt, F; Scobel, W; Trelle, H J; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    2004-01-01

    Thin polypropylene (CH$_2$) fibers have been used for internal experiments in storage rings as an option for hydrogen targets. The change of the hydrogen content due to the radiation dose applied by the circulating proton beam has been investigated in the range $1\\cdot10^6$ to $2\\cdot10^8$~Gy at beam momenta of 1.5 to 3 GeV/c by comparing the elastic pp-scattering yield to that from inelastic p-carbon reactions. It is found that the loss of hydrogen as a function of applied dose receives contributions from a fast and a slow component.

  18. Radiation damage of polypropylene fiber targets in storage rings

    Science.gov (United States)

    Rohdjeß, H.; Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Diehl, O.; Dohrmann, F.; Engelhardt, H.-P.; Eversheim, P. D.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Igelbrink, M.; Langkau, R.; Maier, R.; Mosel, F.; Müller, M.; Münstermann, M.; Prasuhn, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

    2006-01-01

    Thin polypropylene fibers have been used for internal experiments in storage rings as an option for hydrogen targets. The change of the hydrogen content due to the radiation dose applied by the circulating proton beam has been investigated in the range 1 × 106-2 × 108 Gy at beam momenta of 1.5-3 GeV/c by comparing the elastic pp-scattering yield to that from inelastic p-carbon reactions. It is found that the loss of hydrogen as a function of applied dose receives contributions from a fast and a slow component.

  19. Theory of Microwave Instability and Coherent Synchrotron Radiation in Electron Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; /SLAC

    2011-12-09

    Bursting of coherent synchrotron radiation has been observed and in fact used to generate THz radiation in many electron storage rings. In order to understand and control the bursting, we return to the study of the microwave instability. In this paper, we will report on the theoretical understanding, including recent developments, of the microwave instability in electron storage rings. The historical progress of the theories will be surveyed, starting from the dispersion relation of coasting beams, to the work of Sacherer on a bunched beam, and ending with the Oide and Yokoya method of discretization. This theoretical survey will be supplemented with key experimental results over the years. Finally, we will describe the recent theoretical development of utilizing the Laguerre polynomials in the presence of potential-well distortion. This self-consistent method will be applied to study the microwave instability driven the impedances due to the coherent synchrotron radiation. Over the past quarter century, there has been steady progress toward smaller transverse emittances in electron storage rings used for synchrotron light sources, from tens of nm decades ago to the nm range recently. In contrast, there is not much progress made in the longitudinal plane. For an electron bunch in a typical ring, its relative energy spread {sigma}{sub {delta}} remains about 10{sup -3} and its length {sigma}{sub z} is still in between 5 mm to 10 mm. Now the longitudinal emittance ({sigma}{sub {delta}}{sigma}{sub z}) becomes a factor of thousand larger than those in the transverse dimensions. In this paper, we will address questions of: How short a bunch can be? What is the fundamental limit? If there is a limit, is there any mitigation method? Since the synchrotron radiation is so fundamental in electron storage rings, let us start with the coherent synchrotron radiation (CSR).

  20. Modeling colliding beams with an element by element representation of the storage ring guide field

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2006-01-01

    Full Text Available A detailed model of the Cornell Electron Storage Ring (CESR guide field, including beam-beam interaction computed in the weak-strong regime, is the basis for a multiturn simulation of luminosity. The simulation reproduces the dependence of luminosity on bunch current that is measured in the storage ring, at both high-energy (5.3   GeV/beam and in the wiggler-dominated low energy (CESR-c configuration (1.9   GeV/beam. Dynamics are determined entirely by the physics of propagation through the individual guide field elements with no free parameters. Energy dependence of the compensation of the transverse coupling introduced by the experimental solenoid is found to significantly degrade specific luminosity. The simulation also indicates a strong dependence of limiting beam-beam tune shift parameter on the geometric mean of synchrotron tune and bunch length.

  1. Phase Locking the Spin Precession in a Storage Ring

    Science.gov (United States)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Stephenson, E.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Etzkorn, F.-J.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Hanraths, T.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Soltner, H.; Stahl, A.; Stassen, R.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2017-07-01

    This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV /c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121 kHz ) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ =0.21 rad . The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad /s . Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.

  2. Ion beam polarization in storage rings. Production, controlling and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Prozorov, A. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics; Labzowsky, L. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics]|[St. Petersburg Nuclear Physics Institute (Russian Federation); Plunien, G. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik; Liesen, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.; Bosch, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.]|[Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany); Surzhykov, A. [Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany)

    2008-03-15

    The present paper reports on the actual status of the theoretical concepts for the production of polarized heavy ion beams in storage rings and for methods to control online the degree of polarization as well as investigations of the preservation of the polarization during the ion movement across the magnetic system of the ring. It is argued that for hydrogen-like ions beam polarization can be built up efficiently by optical pumping of the Zeeman sublevels of ground-state hyperfine levels and that the maximal achievable nuclear polarization exceeds 90%. Of special interest are polarized helium-like ions which can be produced by the capture of one electron, because in selected cases parity nonconservation effects are found to be of unprecedented size in Atomic Physics. The measurements of these effects require online-diagnostics of the degree of the ion beam polarization. It is shown that this can be accomplished by an online-detection of the linear polarization of the X-rays which are emitted with the capture of the electron. In order to investigate the preservation of the polarization of the ions stored in the ring, the concept of an instantaneous quantization axis is introduced. The dynamics of this axis and the behaviour of the polarization with respect to it are explored in detail. (orig.)

  3. A Linear Theory of Microwave Instability in Electron Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2011-07-06

    The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in electron storage rings below a threshold current. Yet, how to accurately determine this threshold, above which the Haissinski distribution becomes unstable, is not firmly established in theory. In this paper, we will show how to apply the Laguerre polynomials in an analysis of this stability that are associated with the potential-well distortion. Our approach provides an alternative to the discretization method proposed by Oide and Yokoya. Moreover, it reestablishes an essential connection to the theory of mode coupling originated by Sacherer. Our new and self-consistent method is applied to study the microwave instability driven by commonly known impedances, including coherent synchrotron radiation in free space.

  4. Pulsed neutron fields measurements around a synchrotron storage ring

    Science.gov (United States)

    Caresana, Marco; Ballerini, Marcello; Ulfbeck, David Garf; Hertel, Niels; Manessi, Giacomo Paolo; Søgaard, Carsten

    2017-09-01

    A measurement campaign was performed for characterizing the neutron ambient dose equivalent, H*(10), in selected positions at ISA, Aarhus, Denmark, around the ASTRID and ASTRID2 storage rings. The neutron stray radiation field is characterized here by very intense radiation bursts with a low repetition rate, which result in a comparatively low average H*(10) rate. As a consequence, devices specifically conceived for operating in pulsed neutron fields must be employed for efficiently measuring in this radiation environment, in order to avoid severe underestimations of the H*(10) rate. The measurements were performed with the ELSE NUCLEAR LUPIN 5401 BF3-NP rem counter, a detector characterized by an innovative working principle that is not affected by dead time losses. This allowed characterizing both the H*(10) and the time structure of the radiation field in the pre-selected positions.

  5. A polarized sup 3 He internal target for storage rings

    CERN Document Server

    Poolman, H R; Bulten, H J; Doets, M; Ent, R; Ferro-Luzzi, M; Geurts, D G; Harvey, M; Mul, F A

    2000-01-01

    A polarized sup 3 He internal target was employed at the internal target facility of the Amsterdam electron Pulse Stretcher and Storage ring (AmPS) at the Dutch National Institute for Nuclear and High-Energy Physics (NIKHEF). The unique features of internal targets such as chemical and isotopic purity, high and rapidly reversible polarization, and the ability to manipulate the target spin orientation were successfully demonstrated. A nuclear polarization of 0.50 (0.42) at a sup 3 He gas flow of 1.0 (2.0)x10 sup 1 sup 7 at s sup - sup 1 could be obtained. Operation at a nominal flow of 1x10 sup 1 sup 7 at s sup - sup 1 resulted in a target thickness of 0.7x10 sup 1 sup 5 at cm sup - sup 2 at a target temperature of 17 K.

  6. Numerical simulation of crystalline ion beams in storage ring

    CERN Document Server

    Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H

    2004-01-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...

  7. Accelerator complex of ion and electron storage rings

    CERN Document Server

    Noda, A

    2000-01-01

    An accelerator complex consisting of storage rings of ions and electrons with their booster synchrotron of combined-function type is proposed as one of the candidates of the facility for the new campus of Kyoto University. Maximum energies for ions and electrons are 290 and 1500 MeV, respectively. Aimed beam intensities are 10 sup 1 sup 0 and 4x10 sup 1 sup 1 per pulse for ions and electrons, respectively. With use of this accelerator complex, merging of highly ionized ions and trial of laser beam cooling to ultimate low temperature might be possible. The possibility of laser cooling with use of free electron laser is also to be studied.

  8. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  9. Emittance growth induced by electron cloud in proton storage rings

    CERN Document Server

    Benedetto, Elena; Coppa, G

    2006-01-01

    In proton and positron storage rings with many closely spaced bunches, a large number of electrons can accumulate in the beam pipe due to various mechanisms (photoemission, residual gas ionization, beam-induced multipacting). The so-formed electron cloud interacts with the positively charged bunches, giving rise to instabilities, emittance growth and losses. This phenomenon has been observed in several existing machines such as the CERN Super Proton Synchrotron (SPS), whose operation has been constrained by the electron-cloud problem, and it is a concern for the Large Hadron Collider (LHC), under construction at CERN. The interaction between the beam and the electron cloud has features which cannot be fully taken into account by the conventional and known theories from accelerators and plasma physics. Computer simulations are indispensable for a proper prediction and understanding of the instability dynamics. The main feature which renders the beam-cloud interactions so peculiar is that the the electron cloud...

  10. Proceedings of the workshop on polarized targets in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.J. (ed.)

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  11. Experimental assessment of bacterial storage yield

    DEFF Research Database (Denmark)

    Karahan-Gül, Ö.; Artan, N.; Orhon, D.

    2002-01-01

    An experimental procedure was developed for the respirometric determination of bacterial storage yield as defined in the Activated Sludge Model No. 3. The proposed approach is based on the oxygen utilization rate (OUR) profile obtained from a batch test and correlates the area under the OUR curve...... to the amount of oxygen associated with substrate storage. Model simulation was used to evaluate the procedure for different initial experimental conditions. The procedure was tested on acetate. The same storage yield value of 0.76 gCOD/gCOD was calculated for two experiments, starting with different F/M ratios...

  12. Analytical solutions for spin response functions in model storage rings with Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S.R. [Convergent Computing Inc., P.O. Box 561, Shoreham, NY 11786 (United States)], E-mail: srmane@optonline.net

    2009-03-01

    I present analytical solutions for the spin response functions for radial field rf dipole spin flippers in models of storage rings with one Siberian Snake or two diametrically opposed orthogonal Siberian Snakes. The solutions can serve as benchmarks tests for computer programs. The spin response functions can be used to calculate the resonance strengths for radial field rf dipole spin flippers in storage rings.

  13. Proposal of a relationship between dynamic aperture adn intensity evolution in a storage ring

    CERN Document Server

    Giovannozzi, M

    2010-01-01

    A scaling law for the time-dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, was proposed in previous papers, about ten years ago. The use of fundamental theorems of the theory of dynamical systems allowed showing that the dynamic aperture has a logarithmic dependence on time. In this paper this result, proved by mean of numerical simulations, is used as a basis for deriving a scaling law for the intensity evolution in a storage ring. The proposed scaling law is also tested against experimental data showing a remarkable agreement.

  14. Single bunch longitudinal measurements at the Cornell Electron-Positron Storage Ring

    Directory of Open Access Journals (Sweden)

    R. Holtzapple

    2000-03-01

    Full Text Available Measurements of the beam's bunch length in the Cornell Electron-Positron Storage Ring (CESR have been made using a streak camera. The streak camera uses visible synchrotron radiation produced by the beam to measure its longitudinal distribution. A description of CESR, the experimental setup, the streak camera used, and systematic errors and analysis techniques of the streak camera are described in this paper. The dependence of the bunch distribution on the current and accelerating rf voltage for a single bunch CESR was measured and compared with a theoretical model of CESR. The CESR vacuum chamber impedance is determined from the measured bunch distributions and is presented in this paper.

  15. Vertical instability with transient characteristics in KEK-Photon Factory electron storage ring

    Directory of Open Access Journals (Sweden)

    A. Mochihashi

    2001-02-01

    Full Text Available A vertical instability of the KEK-Photon Factory electron storage ring was observed in a multibunch mode with empty buckets (bunch gap using a bunch-by-bunch beam diagnostic system that consisted of a high-speed light shutter and an optical betatron oscillation detector. It was clearly seen that vertical betatron frequencies of individual bunches varied along a bunch train. The dependence of the betatron frequencies on the bunch positions in the train was explained by modulation of trapped-ion density caused by passage of the beam. Agreement between experimental results and the theoretical prediction was quite good.

  16. Low-energy ions in the heavy ion cooler storage ring TSR

    Energy Technology Data Exchange (ETDEWEB)

    Artikova, Sayyora

    2012-05-02

    Deceleration is required to produce multicharged ion beams in the energy range from few keV to few MeV. It should be noted that the idea of decelerating ions in storage rings to lower energies dates back to H. Poth (1990). During deceleration of the charged particle beam, the influence of residual gas interaction, intrabeam scattering (IBS) as well as the incoherent space charge tune shift increase. These phenomena are mostly dominant in storage rings and become important at low velocities. The purpose of this PhD thesis is the generation of low-velocity ion beams by deceleration at the heavy ion cooler storage ring TSR and the study of the accompanying processes. Deceleration experiments concentrated on {sup 12}C{sup 6+} ions to identify the mechanisms which have an influence on the behavior and evolution of the beam. To explore the deceleration cycle, the {sup 12}C{sup 6+} ions are decelerated from 73.3 MeV to 9.77 MeV with an efficiency of 90%. To achieve this low energy two cooling steps at the initial and final energies of the beam are applied. Electron pre-cooling results in a dense ion beam where IBS has to be taken into account to describe the development of beam size during deceleration. An approximated model of IBS is proposed to interpret the experimental data. A decrease of the ion beam revolution frequency during the deceleration cycle reduces the beam current, which makes it difficult to measure with a common current transformer. Hence, new techniques are applied at low ion currents to determine the stored number of particles. Also incoherent tune shift effects, limiting the maximum number of stored particles are investigated. The availability of low-energy ion beams will expand the range of multicharged beam energies for precision studies of ion-atom collision in-ring MOT-Remi experiments.

  17. Commissioning of the Cryogenic Plant for the Cryogenic Storage Ring (CSR) at Heidelberg

    CERN Document Server

    von Hahn, R; Grieser, M; Haberstroh, C; Kaiser, D; Lange, M; Laux, F; Menk, S; Orlov, D A; Repnow, R; Sieber, T; Quack, H; Varju, J; Wolf A

    2009-01-01

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg a next generation electrostatic storage ring for low velocity atomic and molecular ion beams is under construction. In contrast to existing electrostatic storage rings, the Cryogenic Storage Ring CSR will be cooled down to temperatures below 2 K. Thus acting as a large cryopump it will provide long storage times and, in addition, open a new field of quantum state controlled molecular physics due to a low heat radiation background from space-like environment. A concept for cooling the storage ring has been developed and is presently tested by means of a linear trap as a prototype with a length of 1/10 of the planned ring. A commercial refrigerator with 21 W at 2 K has been successfully commissioned and was connected to the prototype. This paper presents the status of the cryogenic plant after the commissioning and one year of operation.

  18. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  19. Resonant beam behavior studies in the Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    S. Cousineau

    2003-07-01

    Full Text Available We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  20. Beam position determination for the Test Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Peter

    1987-01-01

    The Test Storage Ring (TSR) for heavy ions, currently under design and construction at the Max Planck Institute for Nuclear Physics in Heidelberg, requires an extensive beam diagnostics system in order to enable it to operate without friction. This thesis concerns the beam position determination sub-system of this diagnostics system which is intended to determine the beam center of gravity of a bunched beam inside the cross section of the beam tube in a non-destructive manner. An electrostatic pickup is used to sense the location of the beam; the mode of operation of this device will be explained in detail. The signals go to a preamplifier from where they are then sent via a multiplex system to the measuring unit. This point also represents the interface to the computer system that controls the TSR. The prototype developed here was tested with the aid of a particle beam, as well as with other measurement methods. Resolutions of better than 1 mm about the center have been measured. In order to achieve or even improve such resolutions later in actual operation, it is possible to determine the properties of the preamplifiers with the aid of calibration signals and to take these into account in the course of the signal evaluation in the computer. The differences between the individual electrodes of a given pickup must also be compensated. These procedures and their associated electronic circuits are also described in this paper.

  1. Electron cooling of D sup - at the ASTRID storage ring

    CERN Document Server

    Nielsen, J S; Andersen, L H; Balling, P; Raarup, M K

    2000-01-01

    A report of recent results on electron cooling of D sup - at an energy of 1.6 MeV in the ASTRID storage ring is given. The longitudinal velocity spread has been reduced from approx 4x10 sup - sup 4 (FWHM) to approx 7x10 sup - sup 5 (FWHM) at a current of approx 0.1 mu A. A drift in the mean velocity of the cooled beam has been reduced by application of a small RF signal on four sets of plates in the cooler. Initially, the velocity spread is found to decrease with ion current, indicating equilibrium between cooling and intra-beam scattering, whereas at later times (lower current) the velocity spread becomes constant, indicating equilibrium with the electron beam. To diagnose cooling, a simple system allowing to follow the frequency width and position of a Schottky harmonic on a sub-second time-scale, has been developed. The system uses a standard data acquisition card to digitize a down-mixed Schottky-signal and a FFT routine in Labview on a standard PC. The electron-cooled ion-beam is used for high-resolution...

  2. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    Energy Technology Data Exchange (ETDEWEB)

    Talman, Richard [Cornell Univ., Ithaca, NY (United States)

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  3. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Straub, K.D.; Barnett, G.; Burnham, B. [and others

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  4. Electron-bunch lengthening on higher-harmonic oscillations in storage-ring free-electron lasers.

    Science.gov (United States)

    Sei, Norihiro; Ogawa, Hiroshi; Okuda, Shuichi

    2017-09-01

    The influence of higher-harmonic free-electron laser (FEL) oscillations on an electron beam have been studied by measuring its bunch length at the NIJI-IV storage ring. The bunch length and the lifetime of the electron beam were measured, and were observed to have become longer owing to harmonic lasing, which is in accord with the increase of the FEL gain. It was demonstrated that the saturated FEL power could be described by the theory of bunch heating, even for the harmonic lasing. Cavity-length detuning curves were measured for the harmonic lasing, and it was found that the width of the detuning curve was proportional to a parameter that depended on the bunch length. These experimental results will be useful for developing compact resonator-type FELs by using higher harmonics in the extreme-ultraviolet and the X-ray regions.

  5. Experimental Investigation of Piston Rings for Internal Combustion Engines

    DEFF Research Database (Denmark)

    Christiansen, Jens; Klit, Peder; Vølund, Anders

    2007-01-01

    One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. A very important condition for describing the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external...... load may be established by measuring the pressure distribution, i.e. the pressure drop in the piston ring package. Speed and temperature may also be established. The amount and distribution of oil present is, however, not easily determined. It is often assumed that it operates under fully flooded...... conditions, but this is not the case in real life operation. These problems forms the basis for the experimental investigation. In large two-stroke engines the cylinder oil is supplied to the bearing at discrete locations on the cylinder liner at a specific rate at a certain time. The shifting in lubrication...

  6. Beam-beam interaction studies at the Cornell Electron Storage Ring

    Directory of Open Access Journals (Sweden)

    M. G. Billing

    2006-12-01

    Full Text Available The Cornell Electron Storage Ring (CESR operates with 2 GeV multibunch electron and positron beams in a single beam pipe. Electrostatic separators are used to separate the two counterrotating beams at the parasitic crossings. When the beam energy was lowered from 5 GeV in 2003, the strength of the beam-beam interaction became a more important factor in beam-current limitations, resulting in extensive experimental and modeling studies of their characteristics. The CESR lattice design procedure has been modified recently to account explicitly for their dynamic consequences. We describe our modeling of the beam-beam interaction, experimental validation techniques, and investigations into compensation strategies.

  7. Ring wall storages. An essential contribution of the geotechnics to te energy storage; Ringwallspeicher. Ein essentieller Beitrag der Geotechnik zur Energiespeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Matthias [Matthias Popp Ingenieurbuero Erneuerbare Energien, Energiespeicherung, Wuppertal (Germany)

    2012-11-01

    The author of the contribution under consideration reports on ring wall storages as an essential contribution to the geotechnical engineering for energy storage. At first, renewable energies as well as the storage requirements for the compensation of the volatility of electricity from wind power and solar energy are described. Subsequently, the storage technologies for energy management requirements as well as the need for water and land area of pumped storage systems are presented with special emphasis of ring wall storages.

  8. Plane deformation monitoring network and computational method of the NSRL storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoye, He; Guicheng, Wang; Shengkuan, Lu [National Synchrotron Radiation Lab., USTC, Hefei, P.R. (China); Xingzhou, Wang [Wuhan Technical University of Surveying and Mapping, Wuhan, P.R. (China)

    1999-07-01

    The NSRL (National Synchrotron Radiation Laboratory, China) accelerator consists of 3 major parts: the 800 MeV electron storage ring, the transport line and the 200 MeV electron linac. The storage ring contains 12 dipoles, 32 quadrupoles, 14 sextupoles, some kickers and septums, etc. During the installation of the storage ring, an alignment network was established, which is called the Construction Control Network (CCN). This network is a trilateration network. Dipoles were chosen as the primary reference for the alignment and installation. All other components were easily aligned from the 2 adjacent dipoles by means of optical instrumentation and other techniques. Differing from CCN, the purpose of Deformation Monitoring Network (DMN) is to monitor the displacement of the components in the storage ring, DMN requires high precision and being able to repeat positions. This article presents both networks and the method used to calculate the plane deformation monitoring network.

  9. CESAR, 2 MeV electron storage ring; general view from above.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  10. Design, Modeling and Control of Magnetic Bearings for a Ring-Type Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    Chow-Shing Toh

    2016-12-01

    Full Text Available This study is concerned with the magnetic force models of magnetic bearing in a flywheel energy storage system (FESS. The magnetic bearing is of hybrid type, with axial passive magnetic bearing (PMB and radial hybrid magnetic bearing (HMB. For the PMB, a pair of ring-type Halbach arrays of permanent magnets are arranged vertically to support the rotor weight. For the HMB, a set of ring-type Halbach array is placed on the rotor side, which corresponds to coil sets on the stator side. The HMB can produce both attraction and repulsion forces on the radial direction, depending on the direction of the coil currents. It is found that the ring-type configuration and the differential winding scheme for coil sets can yield linear magnetic force models for both PMB and HMB. Based on the obtained magnetic force model, an integral sliding mode controller is designed for the stable rotor levitation in the radial direction. The experimental results show that the rotor can be stabilized to the bearing center, verifying the accuracy of the magnetic force models and effectiveness of the levitation controller.

  11. Experimental investigation of vortex rings impinging on inclined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Lauren D. [Southern Methodist University, Department of Mechanical Engineering, Dallas, TX (United States); Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA (United States); Krueger, Paul S. [Southern Methodist University, Department of Mechanical Engineering, Dallas, TX (United States)

    2011-10-15

    Vortex-ring interactions with oblique boundaries were studied experimentally to determine the effects of plate angle on the generation of secondary vorticity, the evolution of the primary vorticity and secondary vorticity as they interact near the boundary, and the associated energy dissipation. Vortex rings were generated using a mechanical piston-cylinder vortex ring generator at jet Reynolds numbers 2,000-4,000 and stroke length to piston diameter ratios (L/D) in the range 0.75-2.0. The plate angle relative to the initial axis of the vortex ring ranged from 3 to 60 . Flow analysis was performed using planar laser-induced fluorescence (PLIF), digital particle image velocimetry (DPIV), and defocusing digital particle tracking velocimetry (DDPTV). Results showed the generation of secondary vorticity at the plate and its subsequent ejection into the fluid. The trajectories of the centers of circulation showed a maximum ejection angle of the secondary vorticity occurring for an angle of incidence of 10 . At lower incidence angles (<20 ), the lower portion of the ring, which interacted with the plate first, played an important role in generation of the secondary vorticity and is a key reason for the maximum ejection angle for the secondary vorticity occurring at an incidence angle of 10 . Higher Reynolds number vortex rings resulted in more rapid destabilization of the flow. The three-dimensional DDPTV results showed an arc of secondary vorticity and secondary flow along the sides of the primary vortex ring as it collided with the boundary. Computation of the moments and products of kinetic energy and vorticity magnitude about the centroid of each vortex ring showed increasing asymmetry in the flow as the vortex interaction with the boundary evolved and more rapid dissipation of kinetic energy for higher incidence angles. (orig.)

  12. Soft end dipole magnet design for the MAX-IV storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Tarawneh, Hamed E-mail: hamed.tarawneh@maxlab.lu.se; Wallen, Erik

    2004-07-21

    The future 3 GeV MAX-IV storage ring at MAX-Lab will be a low emittance storage ring for the production of synchrotron radiation. The vertical aperture in the straight sections, as well as in the bends, of the storage rings will be small. It is foreseen to use, among other insertion devices, superconducting cold bore short period undulators as insertion devices in order to obtain undulator radiation with short wavelengths. The cold bore insertion devices are sensitive to the deposited heat from the stored beam in the storage ring. An important contribution to the heat load to the cold core insertion devices comes from the synchrotron radiation from the upstream dipole adjacent to the insertion device. The synchrotron radiation from the upstream dipole adjacent to a superconducting insertion device can be minimized by the introduction of a soft end to the dipole. This note describes the proposed design of the dipoles with soft ends adjacent to the insertion devices in the 3 GeV MAX-IV storage ring. The soft ends of the dipole magnets have reduced the impinging heat load from synchrotron radiation on the superconducting undulators by a factor of 5.8 and they have also reduced the overall circumference of the storage ring.

  13. A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, R

    2004-02-02

    Thomson scattering infrared photons off energetic electrons provides a mechanism to produce hard X-rays desirable for applied sciences research. Using a small, modest energy (25MeV) electron storage ring together with a resonantly-driven optical storage cavity, a narrow spectrum of hard X-rays could be produced with the quality and monochromatic intensity approaching that of beamline sources at large synchrotron radiation laboratories. The general design of this X-ray source as well as its technical feasibility are presented. In particular, the requirements of optical pulse gain enhancement in an external cavity are described and experimentally demonstrated using a CW mode-locked laser.

  14. CESAR, 2 MeV electron storage ring; construction period; general view.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    A general view of the 2-MeV electron storage-ring model during the last stages of assembly. The injection line for the electrons enters at the bottom of the picture (under the ladder) and meets the ring at the back, to the right. Near there, Joseph Karouanton (S.G.T.E, Paris) (inside the ring), and Marcel Bernasconi (AR Division) are seen testing for leaks in the vacuum system. In white coats are Mervin Barnes (left) and Boony Bruggerman (AR Division), considering the reading shown by one of the vacuum gauges.

  15. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  16. Observations and Measurements of Anomalous Hollow Electron Beams in a Storage Ring

    CERN Document Server

    Wu, Y K; Wu, Juhao

    2005-01-01

    This paper reports first observations and measurements of anomalous hollow electron beams in a storage ring. In a lattice with a negative chromaticity, hollow electron beams consisting of a solid core beam inside and a large ring beam outside have been created and studied in the Duke storage ring. We report the detailed measurements of the hollow beam phenomenon, including its distinct image pattern, spectrum signature, and its evolution with time. By capturing the post-instability bursting beam, the hollow beam is a unique model system for studying the transverse instabilities, in particular, the interplay of the wake field and the lattice nonlinearity. In addition, the hollow beam can be used as a powerful tool to study the linear and nonlinear particle dynamics in the storage ring.

  17. A Method for Simultaneous Optimisation of Orbit and Dispersion in Storage Rings

    CERN Document Server

    Assmann, R W; Roy, G; Wenninger, J

    2000-01-01

    An algorithm for the simultaneous optimisation of orbit and dispersion in a storage ring is presented. Based on orbit and dispersion measurements the algorithm determines the optimal corrector settings in order to simultaneously minimize the r.m.s orbit, the r.m.s dispersion and the r.m.s strenght of the dipoles correctors. A number of different options for error handling of beam position monitors, weighting, and correction have been introduced to ensure the stability of the algorithm in the environment of a large accelerator. Experimental results are presented for the LEP collider demonstrating the efficiency of the method. The use of this correction algorithm for LEP in 1999 allowed achieving about a factor of two smaller vertical emittances than in previous years.

  18. Observation of fusion-like residues in energetic nuclear collisions at the Celsius storage ring

    CERN Document Server

    Yañez, R; Aleklett, K; Kuznetsov, A; Westerberg, L; Avdeichikov, V; Siwek, A; Jakobsson, B

    2002-01-01

    Recent experiments at the CELSIUS storage ring of Uppsala, Sweden, have revealed the existence of high momentum transfer target-like fragments contrary to expectations. Recoiling heavy fragments in the reaction of 250 MeV/nucleon sup 1 sup 4 N on sup 1 sup 3 sup 1 Xe have been measured at lO with respect to the beam direction with specially designed recoil telescopes. Simulations with the Boltzmann-Uehling-Uhlenbeck (BUU) transport equation are not able to reproduce the experimental observations. Intermediate mass fragments (IMF: 3 <= Z <= 8) were also measured using three elements of the CHICSi DELTA E-E telescopes. Single energy spectra of IMFs suggest that the larger fragments (Z = 7, 8) are preferentially emitted from a single equilibrated, but very hot source (T approx 9 MeV). (Author)

  19. Storage Ring Cross Section Measurements for Electron Impact Ionization of Fe 7+

    CERN Document Server

    Hahn, M; Bernhardt, D; Grieser, M; Krantz, C; Lestinsky, M; Müller, A; Novotný, O; Repnow, R; Schippers, S; Spruck, K; Wolf, A; Savin, D W

    2015-01-01

    We have measured electron impact ionization (EII) for Fe 7+ from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurement to remove most metastables, resulting in a beam of 94% ground state ions. Comparing with the previously recommended atomic data, we find that the Arnaud & Raymond (1992) cross section is up to about 40\\% larger than our measurement, with the largest discrepancies below about 400~eV. The cross section of Dere (2007) agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between measurement and the most recent theory are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.

  20. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    CERN Document Server

    Koscielniak, Shane Rupert; Lindroos, M

    2001-01-01

    Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell (1969) for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition) if the impedance is inductive (or resistive) or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coast...

  1. Theory of a modified wadsworth monochromator matched to a low energy storage ring source

    Science.gov (United States)

    Howells, Malcolm R.

    1982-04-01

    The concave diffraction grating in the Wadsworth mounting has been popular with synchrotron radiation spectroscopists because of its use of parallel light. This is well mathced to experimental stations which are a great distance away from the source as would be the case in using a high energy synchrotron. For low energy storage rings the working distance is quite small and in this case it is appropriate to use a collimating mirror. Large collection angles are possible with this arrangement and reasonable resolution can be obtained using spherical surfaces. Astigmatism is much lower than for Rowland circle mountings. These questions are analyzed using an optical path function development and calculations are presented which include the aberrations both in the two optics and those caused by the large extension of the source in the direction of the radiation emission.

  2. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Byrd, J. M.; Billing, M.; Palmer, M.; Sikora, J.; Carlson, B.

    2010-01-02

    A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J.M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M.T.F. Pivi, and K.G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  3. TSR: A Storage Ring for HIE-ISOLDE

    CERN Document Server

    Butler, P A; Blaum, K; Grieser, M; Davinson, T; Woods, P J; Flanagan, K; Freeman, S J; Lazarus, I H; Litvinov, Yu A; Raabe, R; Siesling, E; Wenander, F

    2016-01-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  4. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    Science.gov (United States)

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  5. Photoswichable Molecular Rings for Solar-Thermal Energy Storage

    Science.gov (United States)

    Durgun, Engin; Kolpak, Alexie M.; Grossman, Jeffrey C.

    2012-02-01

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density and short lifetime in the photo-excited state, rendering their practical use unfeasible. We present a new approach to design systems for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, and/or the type of linkers.

  6. A Study of Storage Ring Requirements for an Explosive Detection System Using NRA Method

    CERN Document Server

    Wang, Tai-Sen

    2005-01-01

    The technical feasibility of an explosives detection system based on the nuclear resonance absorption (NRA) of gamma rays in nitrogen-rich materials was demonstrated at Los Alamos National Laboratory (LANL) in 1993 by using an RFQ proton accelerator and a tomographic imaging prototype.* The study is being continued recently to examine deployment of such an active interrogation system in realistic scenarios. The approach is to use a cyclotron and electron-cooling-equipped storage rings(s) to provide the high quality and high current proton beam needed in a practical application. In this work, we investigate the storage ring requirements for a variant of the airport luggage inspection system considered in the earlier LANL experiments. Estimations are carried out based on the required inspection throughput, the gamma ray yield, the proton beam emittance growth due to scattering with the photon-production target, beam current limit in the storage ring, and the electron cooling rate. Studies using scaling and reas...

  7. DESIREE A Double Electrostatic Storage Ring for Low Energy Ion-Ion Collisions

    CERN Document Server

    Liljeby, Leif; Bagge, Lars; Blom, Mikael; Cederquist, Henrik; Danared, Håkan; Källberg, Anders; Larsson, Mats; Leontein, Sven; Löfgren, Patrik; Paal, Andras; Rensfelt, Karl-Gunnar; Schmidt, Henning T; Schmidt, Kjell; Simonsson, Ansgar; Skeppstedt, Örjan

    2005-01-01

    The advantages of storage rings with only electrostatic elements were first demonstrated in ELISA at Aarhus University and later in other places. At MSL and the Physics Department at Stockholm University the ideas have been developed further in the Double Electrostatic Storage Ion Ring ExpEriment, DESIREE. Beams of negative and positive atomic or molecular ions will be merged in a common straight section of two storage rings for studies of low energy collisions. The whole system may be cooled to below 20 K in order to relax internal excitations in stored molecules. This project is now fully financed and the final design work is in progress. A status report will be given in this paper together with a brief review of the planned physics program.

  8. Experimental and trial-based study of Resilient Packet Ring

    Science.gov (United States)

    Ramnath, Vasudha; Cheng, Heng Seng; Ngoh, Lek Heng

    2002-08-01

    An experimental study of the Resilient Packet Ring (RPR) media access control (MAC) technology that is optimized for IP traffic in the metropolitan-area-network (MAN) environment is described. The study involved the deployment and trials of a RPR testbed encompassing a public optical fiber infrastructure in which Cisco Systems' Dynamic Packet Transport (DPT) Ring Technology - a prestandard RPR implementation - was used. We focus on a number of important RPR protocol features that are vital to the future success of RPR as a MAN/wide-area-network (WAN) network technology. Related research on RPR/DPT has been done so far through simulation studies only. Standardization of RPR is currently being performed by the Institute of Electrical and Electronics Engineers (IEEE) 802.17 working group and is expected to be completed in 2003. Also, we present and discuss the experiments and tests performed to investigate the key features of RPR, along with the results obtained.

  9. The beam loss monitoring system for HLS storage ring

    CERN Document Server

    Li Yu Xiong; Li Wei; Li Jue Xin; Liu Zu Ping; Shao Bei Bei

    2001-01-01

    A beam loss monitoring system has been established at HLS. This paper gives its principle and scientific grounds. Study on the ring's TBA structure and utilization of Monte-Carlo calculation to the shower electrons is important in its design. The system composition and performance are also introduced. The detector BLMs, data acquisition devices and host PC are linked via CAN bus. This system is helpful to analyze beam loss distribution and regulate the machine operation parameters.

  10. Dynamical states of a system due to localized wake forces in a BEPC storage ring

    CERN Document Server

    Nam, S K; Zhang, C; Kim, E S

    1999-01-01

    We examine the dynamical states of a system in the storage ring of the Beijing electron-positron collider (BEPC) by using an extended model with the combination of a constant wake and a delta wake function. The influences of parameters on the stable equilibrium states and the transitions of the states in the BEPC ring are also investigated by using a new extended model with a constant wake function and a delta wake function.

  11. RESONANCE METHOD OF ELECTRIC-DIPOLE-MOMENT MEASUREMENTS IN STORAGE RINGS.

    Energy Technology Data Exchange (ETDEWEB)

    ORLOV, Y.F.; MORSE, W.M.; SEMERTZIDIS, Y.K.

    2006-05-10

    A ''resonance method'' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  12. Betatron phase and coupling measurements at the Cornell Electron/Positron Storage Ring

    Directory of Open Access Journals (Sweden)

    D. Sagan

    2000-09-01

    Full Text Available Measurement of the betatron phase in the vertical and horizontal planes as well as the transverse horizontal-vertical coupling is a standard procedure now used at the Cornell Electron/Positron Storage Ring. The measurement is made by shaking the beam and observing the phase of oscillation at detectors located around the ring. The measurements allow quadrupolar errors to be corrected.

  13. Beam loss distribution calculation and collimation efficiency simulation of a cooler storage ring in a heavy ion research facility

    Directory of Open Access Journals (Sweden)

    Peng Li

    2014-08-01

    Full Text Available The Heavy Ion Research Facility in Lanzhou is an ion cooler storage ring facility in China’s Institute of Modern Physics. The beams are accumulated, electron cooled, accelerated, and extracted from the main cooler storage ring (CSRm to the experimental ring or different terminals. The heavy ion beams are easily lost at the vacuum chamber along the CSRm when it is used to accumulate intermediate charge state particles. The vacuum pressure bump due to the ion-induced desorption in turn leads to an increase in beam loss rate. In order to avoid the complete beam loss, the collimation system is investigated and planned to be installed in the CSRm. First, the beam loss distribution is simulated considering the particle charge exchanged process. Then the collimation efficiency of the lost particles is calculated and optimized under different position and geometry of the collimators and beam emittance and so on. Furthermore, the beam orbit distortion that is caused by different types of errors in the ring will affect the collimation efficiency. The linearized and inhomogeneous equations of particle motion with these errors are derived and solved by an extended transfer matrix method. Actual magnet alignment errors are adopted to investigate the collimation efficiency of the lost particles in the CSRm. Estimation of the beam loss positions and optimization of the collimation system is completed by a newly developed simulation program.

  14. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  15. Development of a large streamer chamber for the Intersecting Storage Rings at CERN

    CERN Document Server

    Eckardt, V; Meinke, R; Sander, O R

    1973-01-01

    A streamer chamber system has been constructed surrounding as completely as possible one of the intersection regions of the CERN Intersecting Storage Rings. The system consists of two identical streamer chambers with ground electrodes shaped to fit the vacuum tubes of the storage rings. To detect photons, lead oxide plates have been inserted into the sensitive volume of the chambers. To have a very short and constant memory time, a system which measures and regulates the memory time within a few per cent is used. (4 refs).

  16. Design consideration for Tohoku light source storage ring equipped with UV free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. E-mail: hama@lns.tohoku.ac.jp; Hinode, F.; Shinto, K.; Miyamoto, A.; Tanaka, T

    2004-08-01

    An integrated photon source facility has been planed at Laboratory of Nuclear Science, Tohoku University. A 1.5 GeV main ring designed as a synchrotron light source of VUV and soft X-ray region contains straight sections with very low beta function to accept high field superconducting wigglers for X-ray. One of two 8-m long straight sections is allocated for storage ring free electron laser (SRFEL) in the UV region. The beam property in the ring is evaluated and then the beam quality for the SRFEL oscillation is also discussed including possibility of coherent higher harmonic generation by showing results of numerical simulation.

  17. Air Temperature Analysis and Control Improvement for the Storage Ring Tunnel

    CERN Document Server

    Chang, Jui-Chi; Ke, Ming-Tsun; Tsai, Zong-Da

    2005-01-01

    The stability of the electron beam orbit had been observed to be sensitive to the utility conditions. The stability of air temperature in the storage ring tunnel is one of the most critical factors. Accordingly, a series of air conditioning system upgrade studies and projects have been conducted at the Taiwan Light Source (TLS). Computational fluid dynamics (CFD) is applied to simulate the flow field and the spatial temperature distribution in the storage ring tunnel. The circumference and the height of the storage tunnel are 120m and 2.8m, respectively. The temperature data and the flow rates at different locations around the storage ring tunnel are collected as the boundary conditions. The k-epsilon turbulence model is applied to simulate the flow field in the three dimensional space. The global air temperature variation related to time in the storage ring tunnel is currently controlled within ±0.1 degree C. However, the temperature difference between two different locations is as high as 2 degree ...

  18. Spin tracking for a deuteron EDM storage ring

    Science.gov (United States)

    Skawran, A.; Lehrach, A.

    2017-07-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity.

  19. Wakefield measurement using principal component analysis on bunch-by-bunch information during transient state of injection in a storage ring

    Directory of Open Access Journals (Sweden)

    Zhichu Chen

    2014-11-01

    Full Text Available Wakefields and beam instabilities are important issues for a storage ring and are described by various theoretical formalisms. Direct measurements of the beam motion related to different dynamical mechanisms are a useful input to accelerator optimization. This paper reports on an experimental method based on a simplified wakefield model, where bunch-by-bunch position information were monitored during the transient injection process at the Shanghai Synchrotron Radiation Facility. Processing the bunch-by-bunch data by means of the principal component analysis allowed for immediate operational improvements—such as in situ compensation of the kicker leakage, and energy matching between the booster and the storage ring.

  20. Electromagnetic Wave Excitation, Propagation, and Absorption in High Current Storage Rings

    Science.gov (United States)

    Novokhatski, A.; Seeman, J.; Sullivan, M.; Wienands, U.

    2016-04-01

    We analyze a variety of electromagnetic effects in storage rings with extremely high currents. Specifically, we discuss our experience in the operation of the PEP-II (SLAC B-factory). We present some outstanding and sometimes unpredictable effects of the behavior of electromagnetic waves excited by intense beams inside a vacuum chamber in storage rings. Although the impedance of the rings is usually designed to be small, intense high-current beams can still generate significant microwave power. This power can be enough to damage vacuum beam chamber elements, which may absorb electromagnetic waves. The most sensitive elements are RF seals, vacuum valves, shielded bellows, beam position monitor buttons, and ceramic tiles. Additionally, microwave heating leads to vacuum pressure spikes or even vacuum pressure instabilities that brings high detector background. Resonance excitation of the electromagnetic field may lead to a very high electric component amplitude that can cause breakdowns leading to sparks and discharges. Finally, high-power electromagnetic waves can be responsible for beam instabilities in the ring. Proper absorption of these generated waves may eliminate these effects. We feel our experience will be helpful in the design of new high current synchrotron light sources and storage rings.

  1. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  2. Compact storage ring to search for the muon electric dipole moment

    NARCIS (Netherlands)

    Adelmann, A.; Kirch, K.; Onderwater, C. J. G.; Schietinger, T.

    We present the concept of a compact storage ring of less than 0.5 m orbit radius to search for the electric dipole moment (EDM) of the muon (d(mu)) by adapting the 'frozen spin' method. At existing muon facilities a statistics limited sensitivity of d(mu) similar to 7 x 10(-23) e cm can be achieved

  3. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  4. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.; Qiang, J.; Venturini, M.

    2013-08-28

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailing magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.

  5. New apparatus for precise synchronous phase shift measurements in storage rings

    Directory of Open Access Journals (Sweden)

    Boris Podobedov

    1998-11-01

    Full Text Available Measuring a synchronous phase shift as a function of beam current is commonly done in accelerator physics to estimate the longitudinal impedance of a storage ring vacuum chamber. This measurement is normally done with RF techniques that do not have enough accuracy to detect small phase shifts typical to the newer storage rings. In this paper we report results from a new method for precise measurement of a synchronous phase shift. Our method involves downmixing from the RF frequency to a kHz range and then using an audio DSP lock-in amplifier for the actual phase detection. This paper describes the idea and the advantages of a new method as well as its practical implementation in the apparatus we build for precise synchronous phase measurements in the Stanford Linear Collider damping rings. The results of those measurements are also presented.

  6. NSLS-II storage ring insertion device and front-end commissioning and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.; Bassi, G.; Bengtsson, J.; Blednykh, A.; Blum, E.; Cheng, W.; Choi, J.; Chubar, O.; Corwin, T.; Davidsaver, M.; Doom, L.; Guo, W.; Harder, D.; Hidaka, Y.; Hu, Y.; Ilinski, P.; Kitegi, C.; Kramer, S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2016-07-27

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed. We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.

  7. Intrabeam scattering studies at the Cornell Electron Storage Ring Test Accelerator

    Directory of Open Access Journals (Sweden)

    M. P. Ehrlichman

    2013-10-01

    Full Text Available Intrabeam scattering (IBS limits the emittance and single-bunch current that can be achieved in electron or positron storage ring colliders, damping rings, and light sources. Much theoretical work on IBS exists, and while the theories have been validated in hadron and ion machines, the presence of strong damping makes IBS in lepton machines a different phenomenon. We present the results of measurements at CesrTA of IBS-dominated beams, and compare the data with theory. The beams we study have parameters typical of those specified for the next generation of wiggler-dominated storage rings: low emittance, small bunch length, and an energy of a few GeV. Our measurements are in good agreement with IBS theory, provided a tail-cut procedure is applied.

  8. Nonlinear and long-term beam dynamics in low energy storage rings

    Directory of Open Access Journals (Sweden)

    A. I. Papash

    2013-06-01

    Full Text Available Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF^{+} ions at 93  keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3–30 keV ions with a gas jet target are summarized.

  9. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    Science.gov (United States)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  10. Search for electric dipole moments at storage rings

    CERN Document Server

    Onderwater, Gerco

    2012-01-01

    Permanent electric dipole moments (EDMs) violate parity and time reversal symmetry. Within the Standard Model (SM) they are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of "new physics". Until recently it was believed that only electrically neutral systems could be used for sensitive searches of EDMs. With the introduction of a novel experimental method, high precision for charged systems will be within reach as well. The features of this method and its possibilities are discussed.

  11. Spin dynamics in storage rings and linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J. [Stanford Univ., CA (United States)

    1994-12-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  12. Symplectic orbit and spin tracking code for all-electric storage rings

    Science.gov (United States)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the

  13. Accelerators and storage rings. TS Workshop 2005. Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ciriani, P.; Magnin, B.; Oliveira, R. de; Chevalley, J.; Artoos, K.; Bertone, C.; Minginette, P.; Corso, J.P.; Grillot, S.; Weisz, S.; Prodon, S.; Sakkinen, J.; Foraz, K.; Funken, A.; Bangert, N.; Hakulinen, T.; Boncompagni, Y.; Delamare, C.; Folch, R.; Poehler, M.; Bertarelli, A.; Martel, C.; Butin, F.; Osborne, J.; Evrard, S.; Lacarrere, D.; Gayde, J.C.; Renaglia, T.; Batz, M.; Tsesmelis, E.; Wijnands, T.; Perrot, A.L.; Gastal, M.; Atieh, S.; Cherif, A.; Costa Pinto, P.; Calatroni, S.; Ninin, P.; Battistin, M.; Arnau Izquierdo, G.; Favre, G.; Mathot, S.; Mainaud, H.; Podevin, C.; Jones, M.; Stowisek, J.; Roy, S.; Sanchez-Corral, E.; Petit, S.; Martel, P.; Colloca, C.; Van Der Bij, E.; Vadon, M.; Kahle, K.; Principe, R.; Macina, D.; Schmidt, R.; Ridewood, J.; Lopez-Hernandez, L.A

    2005-07-01

    This document gathers the abstracts of the papers presented at the workshop. This workshop was dedicated to the status of the technical support of the LHC (large hadron collider) in CERN. The different issues concern: -) the installation of the equipment in the LHC tunnel (super-conducting magnets, cold boxes, PS magnets...), -) underground logistics, -) the installation of experimental areas, -) the new CERN control center, and -) special technologies. (A.C.)

  14. Tree- Rings Link Climate and Carbon Storage in a Northern Mixed Hardwood Forest

    Science.gov (United States)

    Chiriboga, A.

    2007-12-01

    The terrestrial biosphere is a variable sink for atmospheric carbon dioxide. It is important to understand how carbon storage in trees is affected by natural climate variability to better characterize the sink. Quantifying the sensitivity of forest carbon storage to climate will improve carbon budgets and have implications for forest management practices. Here we explore how climate variability affects the ability of a northern mixed hardwood forest in Michigan to sequester atmospheric carbon dioxide in woody tissues. This site is ideal for studies of carbon sequestration; The University of Michigan Biological Station is an Ameriflux site, and has detailed meteorological and biometric records, as well as CO2 flux data. We have produced an 82- year aspen (Populus grandidentata) tree-ring chronology for this site, and measured ring widths at several heights up the bole. These measurements were used to estimate annual wood volume, which represents carbon allocated to aboveground carbon stores. Standard dendroclimatological techniques are used to identify environmental factors (e.g. temperature or precipitation) that drive tree-ring increment variability in the past century, and therefore annual carbon storage in this forest. Preliminary results show that marker years within the tree- ring chronology correspond with years that have cold spring temperatures. This suggests that trees at this site are temperature sensitive.

  15. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  16. Shaping of cluster-jet beams for storage ring experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hergemoeller, Ann-Katrin; Grieser, Silke; Koehler, Esperanza; Taeschner, Alexander; Ortjohann, Hans-Werner; Bonaventura, Daniel; Khoukaz, Alfons [Muenster Univ. (Germany). Inst. fuer Kernphysik

    2013-07-01

    With a cluster-jet target high and constant densities at the interaction point can be achieved and adjusted continuously during operation. At the University of Muenster the prototype of the cluster-jet target for the PANDA experiment was built up in PANDA geometry and set successfully into operation. Due to observed structures within the cluster beam, a tilting system was installed, allowing for an adjustment of the nozzle system relative to the experimental setup. With this installation target densities of more than 2 x 10{sup 15} atoms/cm{sup 2} were achieved at 2.1 m behind the nozzle. By the use of special shaped skimmers it is possible to determine the size and shape of the cluster beam at the later scattering chamber. Beside the absolutely target density also a low residual gas background at the interaction region is of high interest. Thus the identification of an optimized skimmer geometry will be of high relevance for the experimental conditions at PANDA. From measured cluster beam profiles it is possible to calculate both the expected areal density at the interaction point as well as the gas background. The results of target beam properties with a shaped cluster beam by slit collimators are presented and discussed.

  17. Studies on cluster beam shapes for storage ring experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hergemoeller, Ann-Katrin; Koehler, Esperanza; Taeschner, Alexander; Ortjohann, Hans-Werner; Bonaventura, Daniel; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany)

    2012-07-01

    One of the two planned internal targets for the PANDA experiment at the accelerator center FAIR will be a cluster-jet target. With this type of target high and constant densities at the interaction point can be achieved and adjusted continuously during operation. At the University of Muenster the prototype of this cluster-jet target was built up in PANDA geometry and set successfully into operation. With this installation hydrogen target densities of 1.5 x 10{sup 15} atoms/cm{sup 2} were achieved at 2 m behind the cluster source. By the use of special shaped skimmers it is possible to determine the size and shape of the cluster beam at the later scattering chamber. Since parallel to the absolute target density also a low residual gas background at the interaction region is of high interest, the identification of an optimized skimmer geometry will be of high relevance for the experimental conditions at PANDA. From measured cluster beam profiles it is possible to calculate both the expected areal density at the interaction point as well as the gas background. First results of beam properties with a shaped cluster beam by slit collimators are presented and discussed.

  18. Experimental Investigation of Piston Rings for Internal Combustion Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Vølund, Anders

    2008-01-01

    assembly. The aim of this paper is to investigate the tribological condition between a piston ring and cylinder. A test apparatus is used to study the interaction between a piston ring and a cylinder liner. In large two stroke engines with cross head bearings the piston height is small compared to smaller...... four stroke engines where the skirt transfers the guide forces to the cylinder liner. The power loss due to piston skirt friction is estimated by comparing two different piston designs. The piston ring experiences hydrodynamic, mixed and boundary lubrication and the squeeze effect of the piston ring......One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. A very important condition for describing the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external...

  19. STUDY OF THE STABILITY OF PARTICLE MOTION IN STORAGE RINGS. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jack J. Shi

    2012-09-07

    During this period, our research was concentrated on the study of beam-beam effects in large storage-ring colliders and coherent synchrotron radiation (CSR) effect in light sources. Our group was involved in and made significant contribution to several international accelerator projects such as the US-LHC project for the design of the LHC interaction regions, the luminosity upgrade of Tevatron and HERA, the design of eRHIC, and the U.S. LHC Accelerator Research Program (LARP) for the future LHC luminosity upgrade.

  20. Transverse coupling impedance of the storage ring at the European Synchrotron Radiation Facility

    Directory of Open Access Journals (Sweden)

    T. F. Günzel

    2006-11-01

    Full Text Available The vertical and horizontal impedance budgets of the European Synchrotron Radiation Facility (ESRF storage ring are calculated by element-by-element wake potential calculation. Resistive wall wakes are calculated analytically; the short range geometrical wakes are calculated by a 3D electromagnetic field solver. The effect of the quadrupolar wakes due to the flatness of most ESRF vacuum chambers is included in the model. It can well explain the sensitivity of the horizontal single bunch threshold on vacuum chamber changes, in particular, in low-gap sections of the ESRF storage ring. The values of the current thresholds on the transverse planes could be predicted correctly by the model within a factor of 2.

  1. Operation of the OK-4/Duke storage ring FEL below 200 nm

    CERN Document Server

    Litvinenko, V N; Pinayev, I V; Wu Yin

    2001-01-01

    For a number of years the wavelength of 200 nm was a psychological barrier for FEL oscillators. The progress towards short wavelength was marginal since the OK-4/VEPP-3 storage ring FEL lased at 240 nm in 1988. After 10 years, in 1998, the OK-4/Duke FEL and the NIJI-IV FEL group moved the limit to 217 and 212 nm, respectively. Improvements of the OK-4/Duke storage ring FEL gain above 10% and the use of custom manufactured mirror coatings brought the success in August 1999. The OK-4 FEL lased in the range from 193.7 to 209.8 nm using electron energies from 500 to 800 MeV. In this paper, we present the description of the OK-4/Duke FEL up-grades and the lasing results below 200 nm obtained in August and October of 1999.

  2. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Doose, C.; Dejus, R.; Jaski, M.; Jansma, W.; Collins, J.; Donnelly, A.; Liu, J.; Cease, H.; Decker, G.; Jain, A.; DiMarco, J.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.

  3. Intense inverse compton {gamma}-ray source from Duke storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)

    1995-12-31

    We suggest using FEL intracavity power in the Duke storage ring fortrays production via Inverse Compton Backscattering (ICB). The OK-4 FEL driven by the Duke storage ring will tens of watts of average lasing power in the UV/VUV range. Average intracavity power will be in kilowatt range and can be used to pump ICB source. The {gamma}-rays with maximum energy from 40 MeV to 200 MeV with intensity of 0.1-5 10{sup 10}{gamma} per second can be generated. In this paper we present expected parameters of {gamma}-ray beam parameters including its intensity and distribution. We discuss influence of e-beam parameters on collimated {gamma}-rays spectrum and optimization of photon-electron interaction point.

  4. An ion-beam injection line for the ELASR storage ring at KACST

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazaly, M.O.A., E-mail: Mohamed.El.Ghazaly@jpl.nasa.gov [Astrophysics and Space Sciences Section, Jet Propulsion Laboratory/Caltech, Pasadena, CA 91109 (United States); Institute of Condensed Matter and Nanosciences, Catholic University of Louvain, B-1348 Louvain-la-Neuve (Belgium); Behery, S.A.; Almuqhim, A.A.; Almalki, M.H.; Alshammari, S.M.; Alrashdi, A.O.; Alamer, H.S.; Jabr, A.S.; Lanazi, A.Z. [King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-01-11

    A versatile ion injector beam-line has been developed for the specific use in the multi-purpose low-energy, storage ring facility at the King Abdulaziz City for Sciences and Technology (KACST) in Riyadh, Saudi Arabia. It incorporates a purpose-developed, high-resolution mass analyzing magnet and it is thereby dedicated to provide the ELASR storage ring with beams of ions of specific mass. It is also intended to operate independently as a single-pass experiment. This versatile ion-injection line was constructed in a staged approach, in which an axial injection version was built first, commissioned and is currently operating. The injection line in its final design is now being assembled and commissioned at KACST.

  5. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  6. Betatron phase and coupling correction at the Cornell Electron/Positron Storage Ring

    Directory of Open Access Journals (Sweden)

    D. Sagan

    2000-10-01

    Full Text Available The presence of quadrupole errors in a storage ring will lead to errors in the Twiss parameters and/or errors in the horizontal-vertical coupling. This in turn can lead to degradation of machine performance, such as a decrease in the luminosity. At the Cornell Electron/Positron Storage Ring, the measurement of the betatron phase along with the horizontal-vertical coupling has led to the ability to locate the position of any quadrupole errors and to calculate its strength. This is analogous to using orbit data to locate the source of a kick. Once the source of the error is known, steps can be taken to remove it or to nullify its effect.

  7. Alignment of Duke free electron laser storage ring and optical beam delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Emamian, M.; Hower, N. [Duke Univ., FEL Lab., Physics Dept., Durham, NC (United States)

    1999-07-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the {gamma}-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  8. Steady-State Microbunching in a Storage Ring for Generating Coherent Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ratner, Daniel F.; /Stanford U., Appl. Phys. Dept.; Chao, Alexander W.; /SLAC

    2011-05-19

    Synchrotrons and storage rings deliver radiation across the electromagnetic spectrum at high repetition rates, and free electron lasers (FELs) produce radiation pulses with high peak brightness. However, at present few light sources can generate both high repetition rate and high brightness outside the optical range. We propose to create steady-state microbunching (SSMB) in a storage ring to produce coherent radiation at a high repetition rate or in continuous wave (CW) mode. In this paper we describe a general mechanism for producing SSMB and give sample parameters for EUV lithography and sub-millimeter sources. We also describe a similar arrangement to produce two pulses with variable spacing for pump-probe experiments. With technological advances, SSMB could reach the soft X-ray range (< 10 nm).

  9. Intensity-sensitive and position-resolving cavity for heavy-ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X., E-mail: x.chen@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg (Germany); Sanjari, M.S., E-mail: s.sanjari@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Hülsmann, P. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Litvinov, Yu.A. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Nolden, F. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Piotrowski, J. [AGH University of Science and Technology, 30-059 Krakow (Poland); Steck, M. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Walker, P.M. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2016-08-01

    A heavy-ion storage ring can be adapted for use as an isochronous mass spectrometer if the ion velocity matches the transition energy of the ring. Due to the variety of stored ion species, the isochronous condition cannot be fulfilled for all the ions. In order to eliminate the measurement uncertainty stemming from the velocity spread, an intensity-sensitive and position-resolving cavity is proposed. In this paper we first briefly discuss the correction method for the anisochronism effect in the measurement with the cavity. Then we introduce a novel design, which is operated in the monopole mode and offset from the central beam orbit to one side. The geometrical parameters were optimized by analytic and numerical means in accordance with the beam dynamics of the future collector ring at FAIR. Afterwards, the electromagnetic properties of scaled prototypes were measured on a test bench. The results were in good agreement with the predictions.

  10. Multiple bunch longitudinal dynamics measurements at the Cornell Electron-Positron Storage Ring

    Directory of Open Access Journals (Sweden)

    R. Holtzapple

    2001-01-01

    Full Text Available The Cornell Electron-Positron Storage Ring (CESR has a longitudinal dipole-coupled-bunch instability that limits the total amount of current that can be stored in the ring without feedback. As a result, it is one of the major limitations for higher stored current and luminosity. This paper reports the measurements of multiple bunch longitudinal dynamics done on CESR with a streak camera. The camera was used to measure the dependence of the bunch distribution on current and accelerating rf voltage, for multiple bunches stored in CESR, as well as the effects of the longitudinal instability on the bunch distribution. Measurements of the beam's longitudinal bunch distribution with multiple bunches present in the ring help give an understanding of the instability, how it affects the bunch distribution, and possibly give insight into a cure of the instability.

  11. BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider

    Energy Technology Data Exchange (ETDEWEB)

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.

  12. Dynamical aspects on FEL interaction in single passage and storage ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Renieri, A. [ENEA, Frascati (Italy)

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  13. A storage ring experiment to detect a proton electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, V. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Andrianov, S. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3, Canada; Baessler, S. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA; Bai, M. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Benante, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Berz, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Blaskiewicz, M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Bowcock, T. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Brown, K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Casey, B. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Conte, M. [Physics Department and INFN Section of Genoa, 16146 Genoa, Italy; Crnkovic, J. D. [Brookhaven National Laboratory, Upton, New York 11973, USA; D’Imperio, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fanourakis, G. [Institute of Nuclear and Particle Physics NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece; Fedotov, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fierlinger, P. [Technical University München, Physikdepartment and Excellence-Cluster “Universe,” Garching, Germany; Fischer, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Gaisser, M. O. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Giomataris, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex, France; Grosse-Perdekamp, M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Guidoboni, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Hacıömeroğlu, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Hoffstaetter, G. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Huang, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Incagli, M. [Physics Department, University and INFN Pisa, Pisa, Italy; Ivanov, A. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Kawall, D. [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA; Kim, Y. I. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; King, B. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Koop, I. A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia; Lazarus, D. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lebedev, V. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Lee, M. J. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, Y. H. [Korea Research Institute of Standards and Science, Daejeon 34141, South Korea; Lehrach, A. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Lenisa, P. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Levi Sandri, P. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Luccio, A. U. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lyapin, A. [Royal Holloway, University of London, Egham, Surrey, United Kingdom; MacKay, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Maier, R. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Makino, K. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Malitsky, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Marciano, W. J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meng, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meot, F. [Brookhaven National Laboratory, Upton, New York 11973, USA; Metodiev, E. M. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Harvard College, Harvard University, Cambridge, Massachusetts 02138, USA; Miceli, L. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Moricciani, D. [Dipartimento di Fisica dell’Univ. di Roma “Tor Vergata” and INFN Sezione di Roma Tor Vergata, Rome, Italy; Morse, W. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Nagaitsev, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Nayak, S. K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Orlov, Y. F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Ozben, C. S. [Istanbul Technical University, Istanbul 34469, Turkey; Park, S. T. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pesce, A. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Petrakou, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pile, P. [Brookhaven National Laboratory, Upton, New York 11973, USA; Podobedov, B. [Brookhaven National Laboratory, Upton, New York 11973, USA; Polychronakos, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Pretz, J. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Ptitsyn, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Ramberg, E. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973, USA; Rathmann, F. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Rescia, S. [Brookhaven National Laboratory, Upton, New York 11973, USA; Roser, T. [Brookhaven National Laboratory, Upton, New York 11973, USA; Kamal Sayed, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Semertzidis, Y. K. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; Senichev, Y. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Sidorin, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Silenko, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Research Institute for Nuclear Problems of Belarusian State University, Minsk, Belarus; Simos, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Stahl, A. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Stephenson, E. J. [Indiana University Center for Spacetime Symmetries, Bloomington, Indiana 47405, USA; Ströher, H. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Syphers, M. J. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Talman, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Talman, R. M. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Tishchenko, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Touramanis, C. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Tsoupas, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Venanzoni, G. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Vetter, K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; Vlassis, S. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Won, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Physics Department, Korea University, Seoul 02841, South Korea; Zavattini, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Zioutas, K. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}e\\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.

  14. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  15. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.

    Science.gov (United States)

    Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2017-10-06

    Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.

  16. Radiation Safety Considerations for Design of the SPEAR3 Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed H.

    2003-03-17

    The SPEAR3 storage ring at the Stanford Synchrotron Radiation Laboratory (SSRL) is an upgrade of the existing SPEAR2 ring to a 3rd-generation storage ring with beam parameters of 3 GeV of electron beam energy, 18 nm-radian emittance and up to 500 mA of circulating current. While the existing injector will not be changed, the 234-m-circumference SPEAR2 ring components will be completely replaced with new components including C-shaped dipoles. The concrete shielding walls are to remain unchanged. This restriction, when considered in conjunction with the significant increase in the current and loss of self-shielding in the dipole magnets, requires careful study of the SPEAR3 shielding. This paper describes the methodology used for calculating the required shielding in a generic method. The criteria used for the design of shielding and beam loss estimates for various modes of beam operation are also presented. FLUKA Monte Carlo code was used extensively in generating source term data (dose rate as a function of angle for photons and neutrons) for both thin and thick targets. Attenuation profiles of neutrons and photons in concrete and lead shield materials are also presented. These data are being used to evaluate the shielding requirements for the lateral and ratchet walls. The current status of this approach will be discussed. Other issues presented include the use of active devices that are part of the radiation safety systems for the SPEAR3.

  17. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance

    Directory of Open Access Journals (Sweden)

    Yi Jiao

    2011-05-01

    Full Text Available In the continuing efforts to reduce the beam emittance of an electron storage ring composed of theoretical minimum emittance (TME lattice, down to a level of several tens of picometers, nonlinear dynamics grows to be a great challenge to the performance of the storage ring because of the strong sextupoles needed to compensate for its large global natural chomaticities coupled with its small average dispersion function. To help in dealing with the challenge of nonlinear optimization, we propose a novel variation of theoretical minimum emittance (TME lattice, named as “modified-TME” lattice, with minimal emittance about 3 times of the exact theoretical minimum, while with more compact layout, lower phase advance per cell, smaller natural chromaticities, and more relaxed optical functions than that in a TME cell, by using horizontally defocusing quadrupole closer to the dipole or simply combined-function dipole with horizontally defocusing gradient. We present approximate scaling formulas to describe the relationships of the design parameters in a modified-TME cell. The applications of modified-TME lattice in the PEP-X storage ring design are illustrated and the proposed lattice appears a good candidate for synchrotron radiation light source with extremely low emittance.

  18. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Directory of Open Access Journals (Sweden)

    S. De Santis

    2010-07-01

    Full Text Available A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J. M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M. T. F. Pivi, and K. G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008.PRLTAO0031-900710.1103/PhysRevLett.100.094801]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  19. Experimental Piston Ring Tribology for Marine Diesel Engines

    DEFF Research Database (Denmark)

    Klit, Peder; Vølund, Anders

    2008-01-01

    A very important condition for describing the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. It is often assumed that piston rings operate under fully flooded conditions, but this is not the case in real life operation. In large two-stroke engin...

  20. Spin motion at and near orbital resonance in storage rings with Siberian snakes I. At orbital resonance

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.P.; Vogt, M.

    2006-12-15

    Here, and in a sequel, we invoke the invariant spin field to provide an in-depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarization at and near so-called snake resonances in proton storage rings. (orig.)

  1. Lifetime improvement and beam stabilization by longitudinal phase modulation at the DELTA electron storage ring; Lebensdauerverbesserung und Strahlstabilisierung durch longitudinale Phasenmodulation am Elektronenspreicherring DELTA

    Energy Technology Data Exchange (ETDEWEB)

    Fuersch, Jonathan

    2014-10-16

    In DELTA especially at high beam currents often the occurence of an instability of a longitudinal oscillation mode is observed. In the framework of the present thesis first with different procedure the cause of the longitudinal oscillation mode, which is especially strongly excited at high beam currents, is searched for. Thereby connections between the occurrence of this mode and parameters from the region of the storage-ring high-frequency system is observed. It is shown by comparison of different procedures, simulation calculations, and experimental pre-examinations, that especially by a phase modulation of the storage-ring high frequency an essential improvement of especially the longitudinal beam stability and the beam lifetime can be reached. For the durable and reliable improvement of these beam properties in the framework of the present thesis a system for the longitudinal phase modulation of the after-acceleration voltage in the cavity resonator of the DELTA storage ring is concipated, developed, constructed, taken in operation, and tested. Finally the results aimed hereby are presented and discussed.

  2. Present status of the NIJI-IV storage-ring free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T.; Yamada, K.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    The tunable region of the free-electron-laser (FEL) wavelength with the NIJI-IV system is now 348{approximately}595 nm. After the lasing at 352 nm in 1994, the quality of the electron beam stored in the ring has been improved further, and the highest peak intensity of the laser obtained so far is more than 300 times as high as that of the resonated spontaneous emission. The macro-temporal structure of the lasing has been greatly improved. Recently, a single-bunch injection system was completed, and the system has been installed in the injector linac, which is expected to increase the peak stored-beam current. The commissioning and the test of the new system is under way. The beam transporting system from the linac to the ring is also being modified by increasing the number of quadrupole magnets. The experiments related to the FEL in the ultraviolet wavelength region will be begun in this coming May. The results and the status of the FEL experiments will be presented at the Conference.

  3. Longitudinal injection scheme using short pulse kicker for small aperture electron storage rings

    Directory of Open Access Journals (Sweden)

    M. Aiba

    2015-02-01

    Full Text Available Future light sources aim at achieving a diffraction limited photon beam both in the horizontal and vertical planes. High gradient quadrupoles and strong chromaticity correction sextupoles in a corresponding ultra-low emittance ring may restrict the physical and dynamic aperture of the storage ring such that off-axis injection and accumulation may become impossible. We propose a longitudinal injection scheme, i.e., injecting an electron bunch onto the closed orbit with a time offset with respect to the circulating bunches. The temporal separation enables a pulsed dipole kicker to situate the injected bunch transversely on-axis without disturbing the circulating bunches if the pulse length is shorter than the bunch spacing. The injected bunch is finally merged to a circulating bunch through synchrotron radiation damping. We present the scheme in detail and its application to the lattice of the MAX IV 3 GeV storage ring. The requirements and feasibility of the pulsed dipole kicker are also discussed.

  4. Symplectic orbit and spin tracking code for all-electric storage rings

    Directory of Open Access Journals (Sweden)

    Richard M. Talman

    2015-07-01

    Full Text Available Proposed methods for measuring the electric dipole moment (EDM of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10^{-29}e-cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual, to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation this code performs exact tracking in an idealized (approximate lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”. Any residual spurious damping or antidamping is sufficiently small to

  5. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Directory of Open Access Journals (Sweden)

    Kentaro Harada

    2007-12-01

    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  6. Low-emittance tuning at the Cornell Electron Storage Ring Test Accelerator

    Directory of Open Access Journals (Sweden)

    J. Shanks

    2014-04-01

    Full Text Available In 2008 the Cornell Electron/Positron Storage Ring (CESR was reconfigured from an electron/positron collider to serve as a test bed for the International Linear Collider damping rings. One of the primary goals of the CESR Test Accelerator (CesrTA project is to develop a fast low-emittance tuning method which scales well to large rings such as the ILC damping rings, and routinely achieves a vertical emittance of order 10 pm at 2.085 GeV. This paper discusses the tuning methods developed at CesrTA to achieve low-emittance conditions. One iteration of beam-based measurement and correction requires about 10 min. A minimum vertical emittance of 10.3(+3.2/−3.4^{sys}(±0.2^{stat}  pm has been achieved at 2.085 GeV. In various configurations and beam energies the correction technique routinely achieves vertical emittance around 10 pm after correction, with rms coupling <0.5%. The measured vertical dispersion is dominated by beam position monitor systematics. The propagation of uncertainties in the emittance measurement is described in detail. Simulations modeling the effects of magnet misalignments, beam position monitor errors, and the emittance correction algorithm suggest the residual vertical emittance measured at the conclusion of the tuning procedure is dominated by sources other than optics errors and misalignments.

  7. Dispersion and betatron function correction in the Advanced Photon Source storage ring using singular value decomposition.

    Energy Technology Data Exchange (ETDEWEB)

    Emery, L.

    1999-04-13

    Magnet errors and off-center orbits through sextuples perturb the dispersion and beta functions in a storage ring (SR), which affects machine performance. In a large ring such as the Advanced Photon Source (APS), the magnet errors are difficult to determine with beam-based methods. Also the non-zero orbit through sextuples result from user requests for steering at light source points. For expediency, a singular value decomposition (SVD) matrix method analogous to orbit correction was adopted to make global corrections to these functions using strengths of several quadrupoles as correcting elements. The direct response matrix is calculated from the model of the perfect lattice. The inverse is calculated by SVD with a selected number of singular vectors. Resulting improvement in the lattice functions and machine performance will be presented.

  8. Effects of magnetic non-linearities on a stored proton beam and their implications for superconducting storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, M.; Evans, L.

    1985-06-01

    A nonlinear lens may be used to study the effect of high-order multipolar field imperfections on a stored proton beam. Such a nonlinear lens is particulary suitable to simulate field imperfections of the types encountered in coil dominated superconducting magnets. We have studied experimentally at the SPS the effect of high order (5th and 8th) single isolated resonances driven by the nonlinear lens. The width of these resonances is of the order one expects to be caused by field errors in superconducting magnets of the SSC type. The experiment shows that, in absence of tune modulation, these resonances are harmless. Slow crossings of the resonance, on the other hand, have destructive effects on the beam, much more so than fast crossings caused by synchrotron oscillations. In the design of future storage rings, sources of low-frequency tune modulation should be avoided as a way to reduce the harmful effects of high order multipolar field imperfection.

  9. ETEAPOT: symplectic orbit/spin tracking code for all-electric storage rings

    OpenAIRE

    Talman, Richard M.; Talman, John D.

    2015-01-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the ...

  10. Proposal to detect an emission of unusual super-high energy electrons in electron storage rings

    Directory of Open Access Journals (Sweden)

    Da-peng Qian

    2014-01-01

    Full Text Available According to an extended Lorentz–Einstein mass formula taken into the uncertainty principle, it is predicted that the electron beams passing accelerating electric field should with a small probability generate abnormal super-high energy electrons which are much higher than the beam energy. Author’s preliminary experiment result at electron storage ring has hinted these signs, so suggests to more strictly detect this unusual phenomenon, and thus to test the extended mass formula as well as a more perfect special relativity.

  11. Experimental Cooling of Bunched Beams in FNAL’s Accumulator Ring

    Energy Technology Data Exchange (ETDEWEB)

    Claus, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1990-02-01

    This report describes some experiments on stochastic cooling of bunched beams which were performed in FNAL's Accumulator ring in the beginning of September 1989. I precede that description with a rough overview of that ring in order to make the interpretation of the experimental results easier.

  12. Design of coupler for the NSLS-II storage ring superconducting RF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Yeddulla, M.; Rose, J.

    2011-03-28

    NSLS-II is a 3GeV, 500mA, high brightness, 1 MW beam power synchrotron facility that is designed with four superconducting cavities working at 499.68 MHz. To operate the cavities in over-damped coupling condition, an External Quality Factor (Qext) of {approx}65000 is required. We have modified the existing coupler for the CESR-B cavity which has a Qext of {approx}200,000 to meet the requirements of NSLS-II. CESR-B cavity has an aperture coupler with a coupler 'tongue' connecting the cavity to the waveguide. We have optimized the length, width and thickness of the 'tongue' as well as the width of the aperture to increase the coupling using the three dimensional electromagnetic field solver, HFSS. Several possible designs will be presented. We have modified the coupler of the CESR-B cavity to be used in the storage ring at the NSLS-II project using HFSS and verified using CST Microwave Studio. Using a combination of increasing the length and width of the coupler tongue and increasing the width of the aperture, the external Q of the cavity coupler was decreased to {approx}65000 as required for the design of the NSLS-II storage ring design.

  13. Exact transfer functions for the PEP storage ring magnets and some general characteristics and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1982-05-01

    The exact, ion-optical transfer functions for the dipoles, quadrupoles and sextupoles of the PEP standard PODC cell are calculated for any single particle with initial coordinates (r, p, s). Modifications resulting from radiative energy loss are also calculated and discussed. These functions allow one to characterize individual magnets or classes of magnets by their aberrations and thereby simplify their study and correction. In contrast to high-energy spectrometers where aberrations are often analyzed away, those in storage rings drive series of high order resonances, even for perfect magnets (2), that can produce stop bands and other effects which can seriously limit performance. Thus, one would like to eliminate them altogether or failing this to develop local and global correction schemes. Even then, one should expect higher order effects to influence injection, extraction or single-pass systems either because of orbit distortions or overly large phase spece distortions such as may occur in low-beta insertions or any final-focus optics. The term exact means that the results here are based on solving the relativistic Lorentz force equation with accurate representations of measured magnetostatic fields. Such fields satisfy Maxwell's equations and are the actual fields seen by a particle as it propagates around a real storage ring. This is discussed in detail and illustrated with examples that show that this is possible, practical and may even be useful.

  14. Status of the low-energy electron cooler for the Cryogenic Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude; Becker, Arno; Blaum, Klaus; Shornikov, Andrey; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Novotny, Oldrich [Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027 (United States); Schippers, Stefan; Spruck, Kaija [Institut fuer Atom- und Molekuelphysik, Leihgesterner Weg 217, 35392 Giessen (Germany)

    2012-07-01

    The Cryogenic Storage Ring (CSR) under construction at the Max-Planck Institute for Nuclear Physics in Heidelberg is a next-generation electrostatic storage ring for atomic, molecular, and cluster ions. The CSR beam pipe will be cooled to {proportional_to}10 K, thereby reducing the residual gas density and the black body radiation background to very low values. This will allow precision experiments on IR-active or very massive ionic species that are not possible in room-temperature setups. The CSR features an electron-ion merged beams section that can be used both for electron cooling of the stored ions and for low-energetic electron-ion collision experiments. The design of the cooler must comply with the requirements of the CSR with regard to its very large range of operating and bakeout temperatures and the target vacuum of 10{sup -13} mbar. The cooler will use a combination of superconducting and cold copper coils for magnetic guiding of the electron beam. The latter will be produced by a cold photocathode source already in operation. The cooler entered its construction phase in 2011 and is expected to become operational for the commissioning phase of the CSR.

  15. An ultra-precise storage ring for the muon g -- 2 measurement

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.; DeWinter, T.; Hazen, E.; Heisey, C.; Kerosky, B.; Krienen, F.; Loomba, D.; McIntyre, E.; Magaud, D.; Meng, W.; Miller, J.; Posnick, L.; Roberts, B.; Stassinopoulos, D.; Sulak, L.; Worstell, W.; Bunce, G.; Brown, H.; Chertok, B.; Cottingham, G.; Cullen, J.; Danby, G.; Jackson, J.; May, M.; Mills, J.; Pai, C.; Pendzick, A.; Polk, I.; Prodell, A.; Snydstrup, L.; Shutt, R.; Woodle, K.; Becker, K.; Lubell, M.; Kinoshita, T.

    1989-01-01

    An ultra precise 3 GeV/c storage ring with a 14.5 kG super-ferric magnet is under construction at the Brookhaven AGS for the measurement of the muon anomalous magnetic moment to 0.35 ppM accuracy. This requires a magnetic field with is constant to {approx} 1 ppM and is known sufficiently well that the magnetic field integral averaged over the muon orbits can be calculated to 0.1 ppM. First the magnetic field will be statically shimmed by various techniques. Pole face winding will be used for final small static and dynamic corrections. Very elaborate NMR field monitoring techniques are required. A movable trolley'' located inside the vacuum chamber and the electrostatic focusing quadrupoles will measure the field throughout the muon storage volume. The trolley siding'' is 180{degree} from the injection point where no electric quadrupoles are located. Injection can be interrupted so the trolley can circle the ring. Also {approx}200 NMR probes located outside the vacuum chamber monitor the field during physics running and control the pole face windings. The very large ({approx}15 m diameter) superconducting coils (SC) are designed. Test winding will soon commence. Orders for the magnet steel can now be placed. R and D on various pulsed and SC dc injection methods is ongoing. 4 refs., 4 figs., 4 tabs.

  16. Measurement and compensation of horizontal crabbing at the Cornell Electron Storage Ring Test Accelerator

    Directory of Open Access Journals (Sweden)

    M. P. Ehrlichman

    2014-04-01

    Full Text Available In storage rings, horizontal dispersion in the rf cavities introduces horizontal-longitudinal (xz coupling, contributing to beam tilt in the xz plane. This coupling can be characterized by a “crabbing” dispersion term ζ_{a} that appears in the normal mode decomposition of the 1-turn transfer matrix. ζ_{a} is proportional to the rf cavity voltage and the horizontal dispersion in the cavity. We report experiments at the Cornell Electron Storage Ring Test Accelerator where xz coupling was explored using three lattices with distinct crabbing properties. We characterize the xz coupling for each case by measuring the horizontal projection of the beam with a beam size monitor. The three lattice configurations correspond to (i 16 mrad xz tilt at the beam size monitor source point, (ii compensation of the ζ_{a} introduced by one of two pairs of rf cavities with the second, and (iii zero dispersion in rf cavities, eliminating ζ_{a} entirely. Additionally, intrabeam scattering is evident in our measurements of beam size vs rf voltage.

  17. Quasiperiodic spin-orbit motion and spin tunes in storage rings

    Directory of Open Access Journals (Sweden)

    D. P. Barber

    2004-12-01

    Full Text Available We present an in-depth analysis of the concept of spin precession frequency for integrable orbital motion in storage rings. Spin motion on the periodic closed orbit of a storage ring can be analyzed in terms of the Floquet theorem for equations of motion with periodic parameters, and a spin precession frequency emerges in a Floquet exponent as an additional frequency of the system. To define a spin precession frequency on nonperiodic synchrobetatron orbits we exploit the important concept of quasiperiodicity. This allows a generalization of the Floquet theorem so that a spin precession frequency can be defined in this case, too. This frequency appears in a Floquet-like exponent as an additional frequency in the system in analogy with the case of motion on the closed orbit. These circumstances lead naturally to the definition of the uniform precession rate and a definition of spin tune. A spin tune is a uniform precession rate obtained when certain conditions are fulfilled. Having defined spin tune we define spin-orbit resonance on synchrobetatron orbits and examine its consequences. We give conditions for the existence of uniform precession rates and spin tunes (e.g., where small divisors are controlled by applying a Diophantine condition and illustrate the various aspects of our description with several examples. The formalism also suggests the use of spectral analysis to “measure” spin tune during computer simulations of spin motion on synchrobetatron orbits.

  18. Vacuum Performance and Beam Life Time in the PEP-II Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Wienands, Uli

    2002-08-21

    The vacuum systems of the storage rings of the PEP-II B-Factory have had by now over two years of production running at high beam current and seen synchrotron radiation from almost 4 kAh High Energy Ring (HER) and 10 kAh Low Energy Ring (LER) of integrated beam current. The systems have performed well, reaching the design pressures and being able to cope with beam currents of almost 1 A HER and in excess of 2 A LER. The photo-desorption coefficient {eta} was found in the HER to have reached values as low as 10{sup -7}. The shielded bellows have performed very well, with only one pair of bellows assemblies damaged due to higher-order mode generation from a known, nearby source. Issues encountered during normal operation have been a significant amount of dust trapping in the HER and the effect of a cloud of photo-electrons around the positron beam affecting the LER beam size. A couple of chambers in the HER failed; these failures arose from a combination of design and fabrications issues. The beam life time in the LER has been lower than expected based on the vacuum pressure and has been determined to be Touschek limited.

  19. Toward a New Test of the Relativistic Time Dilation Factor by Laser Spectroscopy of Fast Ions in a Storage Ring

    Science.gov (United States)

    Saathoff, G.; Eisenbarth, U.; Hannemann, S.; Hoog, I.; Huber, G.; Karpuk, S.; Krohn, S.; Lassen, J.; Schwalm, D.; Weidemüller, M.; Wolf, A.; Gwinner, G.

    The frequency measurement of Doppler-shifted optical lines of ions circulating in a storage ring at high speed permits a sensitive test of the relativistic Doppler-formula and, hence, the time dilation factor γSR of special relativity. Previous measurements at the storage ring TSR with 7Li+ at v=0.065c gave a new, improved limit, but were hampered by the large observed linewidth, exceeding the natural width 15-fold. Recently we have identified the broadening to be caused by velocity-changing processes in the storage ring. Saturation spectroscopy has proven to be largely immune against these effects and has yielded linewidths only a few MHz larger than the natural one. This is the major ingredient for an improved test of γSR, which is now under way.

  20. Experimental Evaluation of Sugar Cane Bagasse Storage in Bales System

    Directory of Open Access Journals (Sweden)

    J. Lois-Correa

    2010-12-01

    Full Text Available An experimental evaluation was carried out on three bagasse storage piles with the following characteristics: wetbaled raw bagasse, wet baled depithed bagasse and pre-dried baled depithed bagasse. In each of these formerlymentioned alternatives, the storage time influence was analyzed on temperature profile, humidity behavior,granulometry and morphology, with and without mechanical treatment, solubility in hot water, NaOH and alcoholbenzeneextractives. In the same way, the behavior of brightness in mechanical pulps produced from stored bagassewas studied. Storage losses were calculated for each alternative on the basis of obtained results and it wasdemonstrated that pre-dried bagasse as compared with wet bagasse storage, yields lower losses and betterconservation of its characteristics.

  1. LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source

    Science.gov (United States)

    Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang

    2009-06-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.

  2. Design considerations for a digital feedback system to control self-bunching in ion-storage rings

    Directory of Open Access Journals (Sweden)

    V. Ziemann

    2001-04-01

    Full Text Available We discuss the feasibility of a digital feedback system to cure self-bunching of the electron-cooled coasting ion beam in ion-storage rings such as CELSIUS [S. Holm, A. Johansson, S. Kullander, and D. Reistad, Phys. Scr. 34, 513–532 (1986]. Such a system is based on a fast digital filter that acts as a tunable artificial wake potential. It may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production.

  3. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  4. An ultimate storage ring lattice with vertical emittance generated by damping wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)

    2015-01-06

    We discuss the approach of generating round beams for ultimate storage rings using vertical damping wigglers (with horizontal magnetic field). The vertical damping wigglers provide damping and excite vertical emittance. This eliminates the need to generate large linear coupling that is impractical with traditional off-axis injection. We use a PEP-X compatible lattice to demonstrate the approach. This lattice uses separate quadrupole and sextupole magnets with realistic gradient strengths. Intrabeam scattering effects are calculated. As a result, the horizontal and vertical emittances are 22.3 pm and 10.3 pm, respectively, for a 200 mA, 4.5 GeV beam, with a vertical damping wiggler of a total length of 90 m, a peak field of 1.5 T and a wiggler period of 100 mm.

  5. Distributed Non-evaporable Getter pumps for the storage ring of the APS

    Energy Technology Data Exchange (ETDEWEB)

    Dortwegt, R.; Benaroya, R.

    1993-07-01

    A pair of distributed Non-evaporable Getter (NeG) strip assemblies is installed in each of 236 aluminum vacuum chambers of the 1104-m storage ring of the Advanced Photon Source. Distributed pumping is provided to remove most of the gas resulting from photon-stimulated desorption occurring along the outer walls of the chambers. This is an efficient way of pumping because conductance is limited along the beam axis. The St-707 NeG strips are conditioned at 450{degree}C for 45 min. with 42 A. Base pressures obtained are also as low as 4 {times} 10{sup 11} Torr. The NeG strip assemblies are supported by a series of electrically isolated, 125-mm-long, interlocking stainless steel carriers. These unique interlocking carrier elements provide flexibility along the vacuum chamber curvature (r=38.96 m) and permit removal and installation of assemblies with as little as 150 mm external clearance between adjacent chambers.

  6. The trigger system for the external target experiment in the HIRFL cooling storage ring

    Science.gov (United States)

    Li, Min; Zhao, Lei; Liu, Jin-Xin; Lu, Yi-Ming; Liu, Shu-Bin; An, Qi

    2016-08-01

    A trigger system was designed for the external target experiment in the Cooling Storage Ring (CSR) of the Heavy Ion Research Facility in Lanzhou (HIRFL). Considering that different detectors are scattered over a large area, the trigger system is designed based on a master-slave structure and fiber-based serial data transmission technique. The trigger logic is organized in hierarchies, and flexible reconfiguration of the trigger function is achieved based on command register access or overall field-programmable gate array (FPGA) logic on-line reconfiguration controlled by remote computers. We also conducted tests to confirm the function of the trigger electronics, and the results indicate that this trigger system works well. Supported by the National Natural Science Foundation of China (11079003), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the CAS Center for Excellence in Particle Physics (CCEPP).

  7. Research and Development on the Storage Ring Vacuum System for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, B.; Brajuskovic, B.; Carter, J.; Cease, H.; Lill, R.; Navrotski, G.; Noonan, J.; Suthar, K.; Walters, D.; Wiemerslage, G.; Zientek, J.; Sangroula, M.

    2016-01-01

    A number of research and development activities are underway at Argonne National Laboratory to build confidence in the designs for the storage ring vacuum system required for the Advanced Photon Source Up-grade project (APS-U) [1]. The predominant technical risks are: excessive residual gas pressures during operation; insufficient beam position monitor stability; excessive beam impedance; excessive heating by induced electrical surface currents; and insufficient operational reliability. Present efforts to mitigate these risks include: building and evaluating mockup assemblies; performing mechanical testing of chamber weld joints; developing computational tools; investigating design alternatives; and performing electrical bench measurements. Status of these activities and some of what has been learned to date will be shared.

  8. Observation of microwave radiation using low-cost detectors at the ANKA storage ring*

    CERN Document Server

    Judin, V; Hofmann, A; Huttel, E; Kehrer, B; Klein, M; Marsching, S; Müller, A S; Nasse, M; Smale, N; Caspers, F; Peier, P

    2011-01-01

    Synchrotron light sources emit Coherent Synchrotron Radiation (CSR) for wavelengths longer than or equal to the bunch length. At most storage rings CSR cannot be observed, because the vacuum chamber cuts off radiation with long wavelengths. There are different approaches for shifting the CSR to shorter wavelengths that can propagate through the beam pipe, e.g.: the accelerator optics can be optimized for a low momentum compaction factor, thus reducing the bunch length. Alternatively, laser slicing can modulate substructures on long bunches [1]. Both techniques extend the CSR spectrum to shorter wavelengths, so that CSR is emitted at wavelengths below the waveguide shielding cut off. Usually fast detectors, like superconducting bolometer detector systems or Schottky barrier diodes, are used for observation of dynamic processes in accelerator physics. In this paper, we present observations of microwave radiation at ANKA using an alternative detector, a LNB (Low Noise Block) system. These devices are usually use...

  9. The Heidelberg High Current Injector A Versatile Injector for Storage Ring Experiments

    CERN Document Server

    Von Hahn, R; Repnow, R; Schwalm, D; Welsch, C P

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated injector for the Test Storage Ring in Heidelberg to deliver mainly singly charged Li- and Be-ions. After start for routine operation in 1999 the HCI delivered stable beams during the following years for about 50 % of the experiments with very high reliability. Due to the requirements from the experiment the HCI changed during that period from a machine for singly charged positive ions to an injector for a large variety of molecules as well as positively or negatively charged light ions. After successful commissioning of the custom built 18 GHz high power ECR-source at its present test location various modifications and additions were made in preparation of a possible conversion into an injector for highly charged heavy ions as a second phase. This paper gives an overview of the experience gained in the passed 5 years and presents the status of the upgrade of the HCI.

  10. Electron-muon coincidences in proton-proton collisions at the CERN Intersecting Storage Rings

    CERN Document Server

    Clark, A G; Darriulat, Pierre; Eggert, K; Hungerbühler, V; Jenni, Peter; Lapuyade, C; Modis, T; Pérez, P; Renshall, H; Richter, Burton; Smadja, G; Strauss, J; Strolin, P; Tarnopolsky, G J; Teiger, J; Tur, C; Vialle, J P; Zaccone, Henri; Zallo, A; Zylberstejn, A

    1978-01-01

    In an experiment carried out at the CERN Intersecting Storage Rings with a highly selective electron spectrometer system and a magnetized iron filter to detect muons, the authors have observed 32+or-16 dilepton events of the type p+p to mu /sup +or-/+e/sup -or+/+... The integrated luminosity of the experiment was (2.0+or-0.1)*10/sup 37/ cm /sup -2/, and the over-all detection efficiency 0.14+or-0.07. Interpreting this signal as due to charmed meson-pair production, the authors estimate a model-dependent acceptance of 6.5*10/sup -5/ per event, and a cross-section sigma (p+p to D+D+...)=(18+or-9) mu b, with a scale uncertainty of 50% due to the detection efficiency. (9 refs).

  11. Coherent synchrotron radiation and bunch stability in a compact storage ring

    Directory of Open Access Journals (Sweden)

    Marco Venturini

    2005-01-01

    Full Text Available We examine the effect of the collective force due to coherent synchrotron radiation (CSR in an electron storage ring with small bending radius. In a computation based on time-domain integration of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced by CSR alone. The model accounts for suppression of radiation at long wavelengths due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth bunch of rms length much greater than the shielding cutoff.

  12. Development of a Bragg spectrometer for experiments with highly charged ions at storage rings

    Science.gov (United States)

    Banas, D.; Jagodzinski, P.; Pajek, M.; Stöhlker, Th; Trassinelli, M.; Beyer, H. F.; Reuschl, R.; Spillmann, U.

    2007-03-01

    The construction and results of the Monte-Carlo ray-tracing simulations for a low energy x-ray crystal spectrometer designed for future experiments at the ESR storage ring with fast highly charged ions are presented. The spectrometer has a radius of the Rowland circle R = 0.5 m and operates in the Johann geometry. The x-rays emitted from a source are di.racted by spherically bent silicon Si(111) crystal and registered by two-dimensional deep depleted back-illuminated CCD camera. The estimated spectrometer e.ciency, calculated according to a dynamical theory of x-ray di.raction is about 10-6. The energy resolution of the spectrometer obtained from the simulations is about 0.5 eV. influence of the source size and Doppler broadening on the spectrometer resolution is discussed.

  13. Coupling field maps of combined function bending magnets to linear optics for the SESAME storage ring

    CERN Document Server

    Milanese, A

    2013-01-01

    This note provides several analyses of the combined function bending magnets of the SESAME storage ring. The objective is to develop tools to couple the magnetic design to the linear optics specifications. Such tools can be used to carry out a 3D field optimization, at the design phase and following magnetic measurements, in particular in order to fine tune the end shims on the poles. The analyses take as input field maps on the midplane, which are then processed in different ways to obtain linear transfer matrices for the optics, in the horizontal and vertical planes. Some peculiarities of this kind of magnet are also highlighted, for example, the slight variation of gradient along the arc. For convenience, the relative codes and scripts are included in the appendix.

  14. Precision analog signal processor for beam position measurements in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Hinkson, J.A. [Lawrence Berkeley Lab., CA (US); Unser, K.B. [Consultant, Genis-Pouilly (France)

    1995-05-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y posit ion entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM.

  15. PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric Achromats

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; Bane, Karl; Hettel, Robert; Nosochkov, Yuri; Wang, Min-Huey; /SLAC

    2012-04-06

    We have designed an 'ultimate' storage ring for the PEP-X light source that achieves the diffraction limited emittances (at 1.5 {angstrom}) of 12 pm-rad in both horizontal and vertical planes with a 4.5-GeV beam. These emittances include the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron radiation having a spectral brightness above 10{sup 22} [photons/s/mm{sup 2}/mrad{sup 2}/0.1% BW] at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though challenging, are achievable. A ring with all these properties is only possible because of several major advances in mitigating the effects of nonlinear resonances.

  16. Streak Camera Studies of Vertical Synchro-Betatron-Coupled Electron Beam Motion in the APS Storage Ring

    CERN Document Server

    Yang Bing Xin; Guo, Weiming; Harkay, Katherine C; Sajaev, Vadim

    2005-01-01

    We present experimental studies of synchro-betatron-coupled electron beam motion in the Advanced Photon Source storage ring. We used a vertical kicker to start the beam motion. When the vertical chromaticity is nonzero, electrons with different initial synchrotron phases have slightly different betatron frequencies from the synchronous particle, resulting in a dramatic progression of bunch-shape distortion. Depending on the chromaticity and the time following the kick, images ranging from a simple vertical tilt in the bunch to more complicated twists and bends are seen with a visible light streak camera. Turn-by-turn beam position monitor data were taken as well. We found that the experimental observations are well described by the synchro-betatron-coupled equations of motion. We are investigating the potential of using the tilted bunch to generate picosecond x-ray pulses. Also note that the fast increase in vertical beam size after the kick is dominated by the internal synchro-betatron-coupled motion of the ...

  17. A long-term observation of the DC component of the horizontal COD in the storage ring of SPring-8

    CERN Document Server

    Daté, S

    1999-01-01

    The SPring-8 storage ring is under the operation dedicated to synchrotron light users. The stability of the electron beam orbit during long term operation is one of the main goals to be achieved. Data on the beam orbit taken for this purpose show variations in time including a very clear signature of an effect of the earth tide.

  18. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  19. Estimates of neutron leakage through penetrations of the CERN intersecting storage rings by Monte Carlo albedo calculations

    CERN Document Server

    Routti, J T

    1975-01-01

    The monokinetic and multigroup Monte Carlo albedo methods applicable to estimating neutron leakage through penetrations in the shielding of high-energy accelerators are reviewed. They are used to calculate attenuation factors and dose levels in the tunnels of the CERN intersecting storage rings. (28 refs).

  20. Grazing-incidence monochromator for the 15-800 Å wavelength range at the storage ring VEPP-2M

    Science.gov (United States)

    Gluskin, E. S.; Kuzminykh, V. S.; Trakhtenberg, E. M.; Koscheev, S. V.; Devyatov, V. G.; Cherkashin, A. E.; Blau, W.; Meisel, A.; Ehrhardt, H.

    1989-07-01

    A new Rowland monochromator with a fixed output slit, which operates according to the grazing-incidence scheme, is described. The device is notable for the capability to change the Rowland radius within 1-3 m. The monochromator was tested using synchrotron radiation from the storage ring VEPP-2M.

  1. Experimental lead toxicity in the ring-necked duck.

    Science.gov (United States)

    Mautino, M; Bell, J U

    1986-12-01

    Ring-necked ducks (Aythya collaris) were administered a single lead shot by gastric intubation. At weekly intervals over a 7-week period, the birds were weighed and blood samples obtained for measurement of hematocrit, free erythrocyte protoporphyrin (FEP), blood lead and delta-aminolevulinic acid dehydratase (delta-ALAD) activity. The birds were fluoroscoped weekly to ensure that the pellets had been retained. Blood lead concentrations peaked 1 week after dosing at a concentration of 7.75 micrograms/ml and then fell to control levels by Week 4. FEP concentrations in the treated ducks also peaked 1 week after dosing at levels which were roughly 1200% of control concentrations. The return of FEP concentrations to normal paralleled blood lead. ALAD activity was inhibited by approximately 85% by Week 1; however, there was a gradual but steady recovery of ALAD activity through Week 7. Four of the treated birds died within 2 to 3 weeks of lead administration. Physical signs of lead toxicity were maximal 7 to 10 days postdosing and included ataxia, loss of body weight, impaction of the upper gastrointestinal tract, and bile green diarrhea. In surviving birds, overt signs of toxicity declined with time and all birds appeared normal by Week 7.

  2. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. [Institute for Molecular Science, Okazaki (Japan)]|[Graduate Univ. for Advanced Stuides, Okazaki (Japan); Yamazaki, J.; Kinoshita, T. [Institute for Molecular Science, Okazaki (Japan)] [and others

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  3. Preparing side charging of PCM storage: theoretical and experimental investigation

    Science.gov (United States)

    Tesfay, A. H.; Hagos, F. Y.; Yohannes, K. G.; Nydal, O. J.; Kahsay, M. B.

    2015-12-01

    In Ethiopia, there is an abundant source of solar energy that is estimated to 5.3 kWh/m2/day. However, more than 90% of the society uses biomass as a main source of energy for cooking due to lack of technologies to convert this energy. Replacing these cooking activities by using renewable energy resources decreases pollution and reduces deforestation significantly. Using the solar energy in day time has no problem. For night time however, the system needs some kind of back-up system to make the daytime solar energy available. This back-up should have high-density energy storage and constant working temperature to perform a specific application. Latent heat storage using phase change materials (PCM) is one way of storing thermal energy. In the current study, a latent heat storage that uses a PCM material is used to store the solar energy aimed at utilizing solar energy for cooking Injera, main staple bread in Ethiopia. The PCM is a mixture of 60% NaNO3 and 40% KNO3 that are known as solar salts. The storage has a welded parallel aluminum fins with a gap of 40 mm in between to enhance the thermal conductivity during the charging-discharging process of the storage. The fins are extruded outside of the storage container to enable a side charging technique for the PCM. A prototype was developed with a solar salt of 17.5 kg and is tested for charging-discharging. The numerical simulation done on ANSYS and experimental results show an agreement and the system registered a 41.6% efficiency.

  4. Experimental and Theoretical Analysis of Storage Friendly TCP Performance in Distributed Storage Area Network

    Directory of Open Access Journals (Sweden)

    Suresh Muknahallipatna

    2007-08-01

    Full Text Available Fibre channel storage area networks (SAN are widely implemented in production data center environments. Recently the storage industry has moved towards deployment of distributed SANs (DSAN, geographically dispersed across large physical distances. In a DSAN, specialized gateway devices interconnect the individual Fibre Channel (FC fabrics over IP networks using TCP/IP based protocols (iFCP or FCIP or over metro to long distance optical networks such as Dense Wavelength Division Multiplexing (DWDM based networks that utilize native FC ports supporting large numbers of link credits. When using TCP/IP based storage networking protocols to interconnect local FC fabrics in a DSAN, the sustained throughput achievable depends upon the link characteristics and TCP/IP stack implementation. Sustaining maximum possible storage traffic throughput across the wide area network enables practical DSAN deployments by maintaining the required site to site service level agreements.This study explores the effects of several TCP/IP modifications on sustained traffic throughput for a DSAN interconnected via iFCP gateways across an impaired network. The TCP/IP stack modifications, known as storage friendly, include changes to the window scaling, congestion avoidance, and fast recovery algorithms. The theoretical background and experimental results are presented to explain and illustrate these modifications.

  5. Proposed scaling law for intensity evolution in hadron storage rings based on dynamic aperture variation with time

    Directory of Open Access Journals (Sweden)

    M. Giovannozzi

    2012-02-01

    Full Text Available A scaling law for the time dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, has been proposed in previous papers [M. Giovannozzi, W. Scandale, E. Todescoand , Part. Accel. 56, 195 (1996PLACBD0031-2460; M. Giovannozzi, W. Scandale, and E. Todesco, in Proceedings of the 1997 Particle Accelerator Conference, edited by M. Comyn, M. K. Craddock, M. Reiser, and J. Thomson (IEEE Service Center, Piscataway, NJ, 1997, p. 1445; M. Giovannozzi, W. Scandale, and E. Todesco, Phys. Rev. E 57, 3432 (1998PLEEE81063-651X10.1103/PhysRevE.57.3432]. This law, based on the analysis of numerical simulations data, is not entirely phenomenological, but motivated by some fundamental theorems of the theory of dynamical systems and indicates that the dynamic aperture has a logarithmic dependence on time. This result is used in turn as a basis for deriving a scaling law for the intensity evolution in hadron storage rings. This relationship is presented and discussed in detail in this paper. Furthermore, experimental data were compared to the predictions of this law and showed a remarkable agreement.

  6. Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Groza, Voicu; Isleifsson, Fridrik Rafn

    2012-01-01

    Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads......Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads...

  7. Analytical and experimental studies of natural vibrations modes of ring-stiffened truncated-cone shells with variable theoretical ring fixity

    Science.gov (United States)

    Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.

    1971-01-01

    Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.

  8. On the Exact Circular Tabletop Synchrotron for the Photon Storage Ring

    CERN Document Server

    Yamada, H

    2005-01-01

    The photon storage ring (PhSR) is based on an exact circular synchrotron. Yamada and his colleague have successfully produced two synchrotrons [1,2]. Both have 0.156 m small electron orbit radius. One is the 20 MeV version for PhSR, and the other is the 6 MeV version for brilliant hard X-ray production. The brilliance of this machine is comparable to the large conventional SR source. These tabletop synchrotrons are realized by the special beam injection scheme using resonance in betatron motion. This scheme provides nearly 100% beam injection efficiency leading to 3 A accumulated beam current as 100 mA peak current is injected from 6 or 20 MeV microtron. The beam lifetime is an order of 10 ms, and we perform the injection at 400 Hz. Interesting feature is the 10μsecond order fast radiation damping that appears due to the residual gas [3]. We think that the radiation from electrons caused by the residual gas enhances the stochastic radiation damping. This technology is useful for the low energy synch...

  9. Efficient cascaded parameter scan approach for studying top-off safety in storage rings

    Directory of Open Access Journals (Sweden)

    Yongjun Li

    2011-03-01

    Full Text Available We introduce a new algorithm, which we call the cascaded parameter scan method, to efficiently carry out the scan over magnet parameters in the safety analysis for top-off injection in synchrotron radiation storage rings. In top-off safety analysis, one must track particles populating phase space through a beam line containing magnets and apertures and clearly demonstrate that, for all possible magnet settings and errors, all particles are lost on scrapers within the properly shielded region. In the usual approach, if one considers m magnets and scans each magnet through n setpoints, then one must carry out n^{m} tracking runs. In the cascaded parameter scan method, the number of tracking runs is reduced to n×m. This reduction of exponential to linear dependence on the number of setpoints n greatly reduces the required computation time and allows one to more densely populate phase space and to increase the number n of setpoints scanned for each magnet.

  10. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  11. Recent developments at 3rd generation storage ring light sources (2/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Over the last decade, many 3rd generation storage ring light sources have been built and put into operation. Progressively, significant improvements have been brought to the machine performances and experiences developed at the first facilities have benefited to the most recently built ones. Most of the recent facilities are now featuring small emittances, high current together with high position stability. The small sizes of the electron beam at the source points impose achieving position stabilities in the sub micron range. The technology to build the insertion devices that produce the photon beams has reached a very mature state and enables 3 GeV medium energy /medium size machines to produce high brilliance beams up to the hard X-Ray range (10 - 30 keV). The designing of the optical set-up of a beamline includes now the choice of the best suited undulator. All these facilities are operated as “photon factories” and deliver their beams to many beamlines over several thousands hours per year. Some re...

  12. Recent developments at 3rd generation storage ring light sources (1/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Over the last decade, many 3rd generation storage ring light sources have been built and put into operation. Progressively, significant improvements have been brought to the machine performances and experiences developed at the first facilities have benefited to the most recently built ones. Most of the recent facilities are now featuring small emittances, high current together with high position stability. The small sizes of the electron beam at the source points impose achieving position stabilities in the sub micron range. The technology to build the insertion devices that produce the photon beams has reached a very mature state and enables 3 GeV medium energy /medium size machines to produce high brilliance beams up to the hard X-Ray range (10 - 30 keV). The designing of the optical set-up of a beamline includes now the choice of the best suited undulator. All these facilities are operated as “photon factories” and deliver their beams to many beamlines over several thousands hours per year. Some re...

  13. Recent developments at 3rd generation storage ring light sources (4/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Over the last decade, many 3rd generation storage ring light sources have been built and put into operation. Progressively, significant improvements have been brought to the machine performances and experiences developed at the first facilities have benefited to the most recently built ones. Most of the recent facilities are now featuring small emittances, high current together with high position stability. The small sizes of the electron beam at the source points impose achieving position stabilities in the sub micron range. The technology to build the insertion devices that produce the photon beams has reached a very mature state and enables 3 GeV medium energy /medium size machines to produce high brilliance beams up to the hard X-Ray range (10 - 30 keV). The designing of the optical set-up of a beamline includes now the choice of the best suited undulator. All these facilities are operated as “photon factories” and deliver their beams to many beamlines over several thousands hours per year. Some re...

  14. Recent developments at 3rd generation storage ring light sources (3/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Over the last decade, many 3rd generation storage ring light sources have been built and put into operation. Progressively, significant improvements have been brought to the machine performances and experiences developed at the first facilities have benefited to the most recently built ones. Most of the recent facilities are now featuring small emittances, high current together with high position stability. The small sizes of the electron beam at the source points impose achieving position stabilities in the sub micron range. The technology to build the insertion devices that produce the photon beams has reached a very mature state and enables 3 GeV medium energy /medium size machines to produce high brilliance beams up to the hard X-Ray range (10 - 30 keV). The designing of the optical set-up of a beamline includes now the choice of the best suited undulator. All these facilities are operated as “photon factories” and deliver their beams to many beamlines over several thousands hours per year. Some re...

  15. Automated tune measurements in the Advanced Light Source storage ring using a LabVIEW application

    Energy Technology Data Exchange (ETDEWEB)

    Hinkson, J.A.; Chin, M.; Kim, C.H.; Nishimura, H.

    1994-06-01

    Horizontal and vertical betatron tunes and the synchrotron tune are measured frequently during storage ring commissioning. The measurements are tedious and subject to human errors. Automating this kind of repetitive measurement is underway using LabVIEW for Windows, a software application supplied by National Instruments Corporation, that provides acquisition, graphing, and analysis of data as well as instrument control through the General Purpose Interface Bus (GPIB). We have added LabVIEW access to the Advanced Light Source (ALS) data base and control system. LabVIEW is a fast and efficient tool for accelerator commissioning and beam physics studies. Hardware used to perform tune measurements include a tracking generator (or a white noise generator), strip line electrodes for external ``citation of the beam, button monitors, and a spectrum analyzer. All three tunes are displayed simultaneously on the spectrum analyzer. Our program automatically identifies three tunes by applying and analyzing small variations and reports the results. This routine can be encapsulated in other applications, for instance, in a chromaticity measurement and correction program.

  16. Dynamic Aperture and Tolerances for PEP-X Ultimate Storage Ring Design

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; /Argonne; Cai, Y.; Nosochkov, Y.; Wang, M.-H.; /SLAC; Hettel, R.O.; /SLAC

    2011-12-13

    A lattice for the PEP-X ultimate storage ring light source, having 11 pm-rad natural emittance at a beam energy of 4.5 GeV at zero current, using 90 m of damping wiggler and fitting into the existing 2.2-km PEP-II tunnel, has been recently designed. Such a low emittance lattice requires very strong sextupoles for chromaticity correction, which in turn introduce strong non-linear field effects that limit the beam dynamic aperture. In order to maximize the dynamic aperture we choose the cell phases to cancel the third and fourth order geometric resonances in each 8-cell arc. Four families of chromatic sextupoles and six families of geometric (or harmonic) sextupoles are added to correct the chromatic and amplitude-dependent tunes. To find the best settings of the ten sextupole families, we use a Multi-Objective Genetic Optimizer employing elegant to optimize the beam lifetime and dynamic aperture simultaneously. Then we evaluate dynamic aperture reduction caused by magnetic field multipole errors, magnet fabrication errors and misalignments. A sufficient dynamic aperture is obtained for injection, as well as workable beam lifetime.

  17. The search for electric dipole moments of light ions in storage rings

    Science.gov (United States)

    Rathmann, Frank; Saleev, Artem; Nikolaev, N. N.; Jedi; srEdm Collaborations

    2013-07-01

    The Standard Model (SM) of Particle Physics is not capable of accounting for the apparent matter-antimatter asymmetry of our universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and reducing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches for proton and deuteron EDMs bear the potential to reach sensitivities beyond 10-29 e·cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [1], while the newly founded Jülich-based JEDI collaboration [2] is pursuing an approach using a combined electric-magnetic lattice, which shall provide access to the EDMs of protons, deuterons, and 3He ions in the same machine. In addition, JEDI has recently proposed making a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters.

  18. Search for electric dipole moments of light ions in storage rings

    Science.gov (United States)

    Rathmann, F.; Saleev, A.; Nikolaev, N. N.

    2014-01-01

    The Standard Model (SM) of Particle Physics is not capable to account for the apparent matterantimatter asymmetry of our Universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal ( T) and parity ( P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and pushing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches of proton and deuteron EDMs bear the potential to reach sensitivities beyond 10-29 e cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [2], while the newly found Julich-based JEDI collaboration [1] is pursuing an approach using a combined electric-magnetic lattice which shall provide access to the EDMs of protons, deuterons, and 3He ions in the same machine. In addition, JEDI has recently proposed to perform a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters.

  19. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  20. Force on a storage ring vacuum chamber after sudden turn-off of a magnet power supply

    Directory of Open Access Journals (Sweden)

    Gautam Sinha

    2011-10-01

    Full Text Available We are commissioning a 2.5 GeV synchrotron radiation source (SRS where electrons travel in high vacuum inside the vacuum chambers made of aluminum alloys. These chambers are kept between the pole gaps of magnets and are made to facilitate the radiation coming out of the storage ring to the experimental station. These chambers are connected by metallic bellows. During the commissioning phase of the SRS, the metallic bellows became ruptured due to the frequent tripping of the dipole magnet power supply. The machine was down for quite some time. In the case of a power supply trip, the current in the magnets decays exponentially. It was observed experimentally that the fast B field decay generates a large eddy current in the chambers and consequently the chambers are subjected to a huge Lorentz force. This motivated us to develop a theoretical model to study the force acting on a metallic plate when exposed to an exponentially decaying field and then to extend it for a rectangular vacuum chamber. The problem is formulated using Maxwell’s equations and converted to the inhomogeneous Helmholtz equation. After taking the Laplace transform, the equation is solved with appropriate boundary conditions. Final results are obtained after taking the appropriate inverse Laplace transform. The expressions for eddy current contour and magnetic field produced by the eddy current are also derived. Variations of the force on chambers of different wall thickness due to spatially varying and exponentially time decaying field are presented. The result is a general theory which can be applied to different geometries and calculation of power loss as well. Comparisons are made with results obtained by simulation using a finite element based code, for quick verification of the theoretical model.

  1. A long-term observation of the DC component of the horizontal COD in the storage ring of SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Date, S.; Kumagai, N. [Japan Synchrotron Radiation Research Institute, SPring-8, Mihara, Mikazuki-cho, Sayo-gun, Hyogo (Japan)

    1999-02-01

    The SPring-8 storage ring is under the operation dedicated to synchrotron light users. The stability of the electron beam orbit during long term operation is one of the main goals to be achieved. Data on the beam orbit taken for this purpose show variations in time including a very clear signature of an effect of the earth tide. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  3. Preparation of DLC strip targets for the tabletop storage ring synchrotrons MIRRORCLE

    Energy Technology Data Exchange (ETDEWEB)

    Minkov, D. [21st Century COE SLLS, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan)], E-mail: minkov@se.ritsumei.ac.jp; Yamada, H. [21st Century COE SLLS, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); PPL Company, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Zeisler, S.K. [TRIUMF, Applied Technology Group, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Toyosugi, N. [PPL Company, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan); Okoye, E.K. [Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga 525-8577 (Japan)

    2009-06-11

    The tabletop storage ring synchrotrons MIRRORCLE-6X and MIRRORCLE-20SX can generate powerful extreme ultraviolet (EUV) radiation. They are applicable as sources for EUV lithography and for EUV photoemission spectroscopy. EUV radiation is emitted from a strip target consisting of a vertical strip with a width of {approx}3 mm mounted on a frame with an inter-arm distance of 10 mm. The highest EUV power is expected to be achieved by using a diamond-like carbon (DLC) strip with a thickness of 55-150 nm. Two technologies were developed for preparation of such DLC strip targets. In the first technology, the DLC strip is backed by a 15-nm-thick formvar layer. Such a strip is floated on a water surface, and lifted from there directly onto an open frame. Since the strip tends to curl around its vertical axis while being lifted from the water, it curls mostly around the inter-arm center, and hence has its smallest width there. In the second technology, the DLC strip is not backed. A temporarily closed frame is constructed using two extra blades, and the foil is attached easily to that frame. Subsequently, the two free strip edges are formed, via cutting with a surgical blade along the edges of the two extra blades. Lastly, the extra blades are released and left to fall. Using these two technologies, strip targets containing a 55 nm DLC+15-nm-thick formvar strip, as well as 85-nm-thick and 150-nm-thick DLC-only strips were prepared.

  4. Preparation of DLC strip targets for the tabletop storage ring synchrotrons MIRRORCLE

    Science.gov (United States)

    Minkov, D.; Yamada, H.; Zeisler, S. K.; Toyosugi, N.; Okoye, E. K.

    2009-06-01

    The tabletop storage ring synchrotrons MIRRORCLE-6X and MIRRORCLE-20SX can generate powerful extreme ultraviolet (EUV) radiation. They are applicable as sources for EUV lithography and for EUV photoemission spectroscopy. EUV radiation is emitted from a strip target consisting of a vertical strip with a width of ˜3 mm mounted on a frame with an inter-arm distance of 10 mm. The highest EUV power is expected to be achieved by using a diamond-like carbon (DLC) strip with a thickness of 55-150 nm. Two technologies were developed for preparation of such DLC strip targets. In the first technology, the DLC strip is backed by a 15-nm-thick formvar layer. Such a strip is floated on a water surface, and lifted from there directly onto an open frame. Since the strip tends to curl around its vertical axis while being lifted from the water, it curls mostly around the inter-arm center, and hence has its smallest width there. In the second technology, the DLC strip is not backed. A temporarily closed frame is constructed using two extra blades, and the foil is attached easily to that frame. Subsequently, the two free strip edges are formed, via cutting with a surgical blade along the edges of the two extra blades. Lastly, the extra blades are released and left to fall. Using these two technologies, strip targets containing a 55 nm DLC+15-nm-thick formvar strip, as well as 85-nm-thick and 150-nm-thick DLC-only strips were prepared.

  5. Measurements of Nuclear Masses and HALF-LIVES in the Storage Ring Esr

    Science.gov (United States)

    Klepper, O.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Fujita, Y.; Geissel, H.; Irnich, H.; Kozhuharov, C.; Kraus, G.; Menzel, G.; Münzenberg, G.; Nickel, F.; Nolden, F.; Reich, H.; Scheidenberger, C.; Schlitt, B.; Schwab, W.; Steck, M.; Sümmerer, K.; Suzuki, K.; Winkler, Th.; Jung, H. C.; Hausmann, M.; Magel, A.; Przewloka, A.; Radon, T.; Wollnik, H.; Beha, T.; Kerscher, Th.; Löbner, K. E. G.; Novikov, Yu.

    Secondary beams of 58Ni, 197Au, and 209Bi fragments have been produced at energies of 200-370 A-MeV by projectile fragmentation, separated with the fragment separator FRS and injected into the storage-cooler ring ESR for mass and half-life measurements. Radioactive beams have also been generated by completely stripping all electrons from 163Dy and 187Re ions to investigate the resulting bound-state β decay. For these studies the revolution frequencies and beam intensities of the stored and cooled unstable nuclei were measured via Schottky spectroscopy. In the 58Ni case the achieved relative momentum spread of 9-10-7 (FWHM) allowed us to resolve the ground and isomeric states of cooled 52Mn and 53Fe. The circulating beams were fully ionized which rendered possible, for the first time, to measure pure β+ branches of ground states (52Fe9, 53Fe9) and the sum of pure β+ and γ branches of isomers (52Mnm, 53Fem). In the experiment with the heavier fragments the main goal was to study nuclei which are members of α-decay chains with unknown masses. We systematically mapped the "mass surface" in the holmium to polonium region from nuclei close to stability up to nuclei with unknown masses as far as their half-lives are ≳ 0.5 min. Relative accuracies for the measured mass values in the order of 1.10-6 and below can be achieved. Via a-decay energies from the literature the "mass surface" up to the proton drip-line can be accessed. Due to the high sensitivity of the Schottky diagnosis also small number of daughter nuclei of stored ions with half-lives up to years can be detected. In this way 187Re was identified as a second case of bound-state β-decay. The status of the on-going analysis of these experiments is presented.

  6. Experimental comparison of ring and diamond shaped planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2015-01-01

    Planar Hall effect magnetic field sensors with ring and diamond shaped geometries are experimentally compared with respect to their magnetic field sensitivity and total signal variation. Theoretically, diamond shaped sensors are predicted to be 41% more sensitive than corresponding ring shaped...... improvement varied from 0% to 35% where the largest improvement was observed for sensor stacks with comparatively strong exchange bias. This is explained by the ring sensors being less affected by shape anisotropy than the diamond sensors. To study the effect of shape anisotropy, we also characterized sensors...... that were surrounded by the magnetic stack with a small gap of 3 lm. These sensors were found to be less effected by shape anisotropy and thus showed higher low-field sensitivities....

  7. "Tie over ring" sutureless compression based gastrointestinal anastomotic method: experimental rat model.

    Science.gov (United States)

    Hiradfar, Mehran; Shojaeian, Reza; Zabolinejad, Nona; Gharavifard, Mohammad; Sabzevari, Alireza; Joodi, Marjan; Yal, Nazila; Saeedi Sharifabad, Parisa; Hajian, Sara; Nazarzadeh, Reza; Lotfinejad, Nasim

    2014-03-01

    Giving the ever-rising trend of pediatric minimally invasive surgery besides early neonatal surgical interventions, intestinal anastomosis turns out to be a time consuming stage due to several anatomical as well as technical difficulties. A perfect bowel anastomosis method should be easy, rapid, safe and reliable in creation of bowel continuity with minimal tissue damage. In this light, sutureless anastomotic methods have been introduced, using compression based anastomosis with biofragmentable rings or powerful magnets. Accordingly, this experimental animal model study has evaluated the result of an easy, rapid intestinal sutureless anastomotic technique via simple tying over an intraluminal ring, in comparison with conventional handsewn bowel anastomosis. Thirty Wistar-Albino male rats were enrolled and small bowel was transected via a midline laparotomy. A grooved plastic ring was inserted into the ileal lumen and both intestinal cutting ends were fixed over the ring with a simple tie in the first group. On the other hand, enteroenterostomy was performed by the conventional method of handsewn anastomosis in the second group. After 14 days, rats were sacrificed to evaluate for intraperitoneal adhesion and abscess formation in addition to other evidences of anastomotic leakage. Furthermore, the anastomotic site integrity, tensile strength and healing stage were assessed microscopically. The mean operative time and intraoperative bleeding in the tie over ring group were significantly less than those in the handsewn anastomosis group. Anastomotic stricture was more common in the conventional anastomosis group while the anastomotic tensile strength was significantly higher in the tie over ring group. Histopathological healing parameters and final healing score were almost similar in both groups but mean inflammatory cell infiltration in handsewn anastomosis was significantly higher. "Tie over ring" is a simple method of anastomosis that is feasible, fast, safe and

  8. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  9. An Experimental ASON Based on OADM Rings and a GMPLS Control Plane

    Science.gov (United States)

    Munoz, R.; Pinart, C.; Martinez, R.; Junyent, A.; Junyent, G.

    This article presents the architecture of an ASON testbed implemented in the EMPIRICO project, focusing on design and implementation issues of real-time provisioning of bidirectional optical connections supported by a distributed GMPLS-based control plane and triggered by the network management system. Experimental performance is evaluated over a unidirectional and a bidirectional all-optical OADM ring in which neither wavelength converters nor optical resources discovery are employed. Performance analysis evaluates the blocking probability and the connection setup time.

  10. Assessment of neutron skyshine near unmodified Accumulator Debuncher storage rings under Mu2e operational conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.Donald; /Fermilab

    2010-12-01

    Preliminary plans for providing the proton beam needed by the proposed Mu2e experiment at Fermilab will require the transport of 8 GeV protons to the Accumulator/Debuncher where they be processed into an intensity and time structure useful for the experiment. The intensities involved are far greater that those encountered with antiprotons of the same kinetic energy in the same beam enclosures under Tevatron Collider operational conditions, the operating parameters for which the physical facilities of the Antiproton Source were designed. This note explores some important ramifications of the proposed operation for radiation safety and demonstrates the need for extensive modifications of significant portions of the shielding of the Accumulator Debuncher storage rings; notably that underneath the AP Service Buildings AP10, AP30, and AP50. While existing shielding is adequate for the current operating mode of the Accumulator/Debuncher as part of the Antiproton Source used in the Tevatron Collider program, without significant modifications of the shielding configuration in the Accumulator/Debuncher region and/or beam loss control systems far more effective than seen in most applications at Fermilab, the proposed operational mode for Mu2e is not viable for the following reasons: 1. Due to skyshine alone, under normal operational conditions large areas of the Fermilab site would be exposed to unacceptable levels of radiation where most of the Laboratory workforce and some members of the general public who regularly visit Fermilab would receive measurable doses annually, contrary to workforce, public, and DOE expectations concerning the As Low as Reasonably Achievable (ALARA) principle. 2. Under normal operational conditions, a sizeable region of the Fermilab site would also require fencing due to skyshine. The size of the areas involved would likely invite public inquiry about the significant and visible enlargement of Fermilab's posted radiological areas. 3. There

  11. Measurements of nuclear masses and half-lives in the storage ring ESR

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, O. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1996-06-01

    Secondary beams of {sup 58}Ni, {sup 197}Au, and {sup 209}Bi fragments have been produced at energies of 200-370 A-MeV by projectile fragmentation, separated with the fragment separator FRS and injected into the storage-cooler ring ESR for mass and half-life measurements. Radioactive beams have also been generated by completely stripping all electrons from {sup 163}Dy and {sup 187}Re ions to investigate the resulting bound-state {beta} decay. For these studies the revolution frequencies and beam intensities of the stored and cooled unstable nuclei were measured via Schottky spectroscopy. In the {sup 58}Ni case the achieved relative momentum spread of 9.10{sup -7} (FWHM) allowed us to resolve the ground and isomeric states of cooled {sup 52}Mn and {sup 53}Fe. The circulating beams were fully ionized which rendered possible, for the first time, to measure pure {beta}{sup +} branches of ground states ({sup 52}Fe{sup g}, {sup 53}Fe{sup g}) and the sum of pure {beta}{sup +} and {gamma} branches of isomers ({sup 52}Mn{sup m}, {sup 53}Fe{sup m}). In the experiment with the heavier fragments the main goal was to study nuclei which are members of {alpha}-decay chains with unknown masses. We systematically mapped the ``mass surface`` in the holmium to polonium region from nuclei close to stability up to nuclei with unknown masses as far as their half-lives are >or{approx}0.5 min. Relative accuracies for the measured mass values in the order of 1.10{sup -6} and below can be achieved. Via {alpha}-decay energies from the literature the ``mass surface`` up to the proton drip-line can be accessed. Due to the high sensitivity of the Schottky diagnosis also small number of daughter nuclei of stored ions with half-lives up to years can be detected. In this way {sup 187}Re was identified as a second case of bound-state {beta}-decay. The status of the only partly completed analysis of these experiments is presented. (orig.)

  12. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    Science.gov (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  13. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, B.; Billett, B.; Brajuskovic, B.; Carter, J.; Kirkus, E.; Lale, M.; Lerch, J.; Noonan, J.; O' Neill, M.; Rocke, B.; Suthar, K.; Walters, D.; Wiemerslage, G.; Zientek, J.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  14. Three-dimensional stress analysis of O-ring under uniform squeeze and internal pressure by photoelastic experimental hybrid method

    Science.gov (United States)

    Hawong, J. S.; Nam, J. H.; Liu, Y.; Shin, D. C.

    2010-03-01

    Until now, it is known that stresses on the plane (y-z plane) perpendicular to the circumferential direction (x axis) of Oring exist and stresses on the plane (x-y plane and x-z plane) parallel to the circumferential direction of O-ring does not exist when O-ring is under uniform squeeze rate and internal pressure. But it was known that stresses of x-y plane and xz plane of O-ring under uniform squeeze and internal pressure were existed by this research. To analyze 3 dimensional stress distributions of O-ring under those loadings, stress distributions of every plane should be analyzed. Therefore, photoelastic experimental hybrid method for 3 dimensional stress distributions of O-ring under uniform squeeze and internal pressure were developed in this research. Photoelastic experimental procedures for 3 dimensional stress distributions of O-ring under those loadings were introduced. Stress distributions of O-ring under those loadings were analyzed by photoelastic experimental hybrid method developed in this research. Von Mises equivalent stresses at arbitrary point of O-ring under those loadings were analyzed.

  15. Experimental teaching and training system based on volume holographic storage

    Science.gov (United States)

    Jiang, Zhuqing; Wang, Zhe; Sun, Chan; Cui, Yutong; Wan, Yuhong; Zou, Rufei

    2017-08-01

    The experiment of volume holographic storage for teaching and training the practical ability of senior students in Applied Physics is introduced. The students can learn to use advanced optoelectronic devices and the automatic control means via this experiment, and further understand the theoretical knowledge of optical information processing and photonics disciplines that have been studied in some courses. In the experiment, multiplexing holographic recording and readout is based on Bragg selectivity of volume holographic grating, in which Bragg diffraction angle is dependent on grating-recording angel. By using different interference angle between reference and object beams, the holograms can be recorded into photorefractive crystal, and then the object images can be read out from these holograms via angular addressing by using the original reference beam. In this system, the experimental data acquisition and the control of the optoelectronic devices, such as the shutter on-off, image loaded in SLM and image acquisition of a CCD sensor, are automatically realized by using LabVIEW programming.

  16. The High Intensity g-ray Source (HIgS) based on the OK-5/Duke storage ring FEL

    Science.gov (United States)

    Litvinenko, Vladimir

    2001-10-01

    We report on the progress with the High Intensity g-ray Source (HIgS) facility and the plans. The OK-5/Duke electron storage ring free electron laser (FEL) is in operation since 1996 and generates coherent radiation in 193-730 nm (1.7 6.4 eV). The OK-4 FEL generates intense beams of g-ray via intra-cavity Compton back-scattering of FEL photons on ultra-relativistic electrons [1]. The HIgS facility, based on this source, provides the g-ray beams with tunable energy from 1.8 MeV to 58 MeV and total flux up to 5 108 g-rays per second for the extensive user program. A dedicated 100 m2 shielded g-ray vault for nuclear physics experiments and a 35-m long the g-ray beam-line were commissioned two years ago. A special shielded collimator hut is located at the end of the g-ray beam-line for reduction of the background in the g-ray vault. The generated g-ray beams are 100polarized. The high quality of the electron and FEL beam provides for high degree of correlation between the angle and the energy of g-rays. It allows monochromatizing the g-rays using simple on-axis collimators. The energy spread as low as 0.2Up-to-date, more than 2,000 hours of the beam time from the HIgS facility was provided for nuclear physics experiments. Within next four years, the HIgS facility will undergo major up-grades which will extend the available g-ray energy range to about 200 MeV and will We report on the present performance of the HIgS facility, its experimental program for next two years and the plans for HIgS facility up-grades. [1] V.N.Litvinenko et al., Phys. Rev. Lett. V. 78, N. 24 (1997) 4569. V.N. Litvinenko and J.M.J.Madey, SPIE vol. 2521 (1995) 55 [2] S.H.Park, Thesis, Duke University, January 2000

  17. Parameter optimization for Doppler laser cooling of a low-energy heavy ion beam at the storage ring S-LSR

    Science.gov (United States)

    Osaki, Kazuya; Okamoto, Hiromi

    2014-05-01

    S-LSR is a compact ion storage ring constructed at Kyoto University several years ago. The ring is equipped with a Doppler laser cooling system aimed at beam crystallization. Bearing in mind hardware limitations in S-LSR, we try to find an optimum set of primary experimental parameters for the production of an ultracold heavy ion beam. Systematic molecular dynamics simulations are carried out for this purpose. It is concluded that the detuning and spot size of the cooling laser should be chosen around -42 MHz and 1.5 mm, respectively, for the most efficient cooling of 40 keV ^{24}Mg^+ beams in S-LSR. Under the optimum conditions, the use of the resonant coupling method followed by radio-frequency field ramping enables us to reach an extremely low beam temperature on the order of 0.1 K in the transverse degrees of freedom. The longitudinal degree of freedom can be cooled to close to the Doppler limit; i.e., to the mK range. We also numerically demonstrate that it is possible to establish a stable, long one-dimensionally ordered state of ions.

  18. Low-Beta insertions inducing chromatic aberrations in storage rings and their local and global correction

    CERN Document Server

    Fartoukh, S

    2010-01-01

    The chromatic aberrations induced by low-β insertions can seriously limit the performance of circular colliders. The impact is twofold: (1) a substantial off-momentum beta-beating wave traveling around the ring and leading to a net reduction of the mechanical aperture of the lowbeta quadrupoles but also impacting on the hierarchy of the collimator and protection devices of the machine, (2) a huge non-linear chromaticity which, when combined with the magnetic imperfections of the machine, could substantially reduce the momentum acceptance of the ring by pushing slightly off-momentum particles towards non-linear resonances. These effects will be analyzed and illustrated in the framework of the LHC insertions upgrade Phase I [1] and a strategy for correction will be developed, requiring a deep modification of the LHC overall optics.

  19. Concepts for a low emittance-high capacity storage ring for the Diamond Light Source

    CERN Document Server

    Bartolini, Riccardo; Evans, Gwyndaf; Sawhney, Kawal; Zegenhagen, Joerg

    2017-01-01

    The Diamond Light Source is investigating several paths for a possible machine upgrade to Diamond II. The exercise is driven by a joint assessment of the science capabilities opened by a very low emittance ring and the machine design that will underpin them. The consultation is made on a beamline-by-beamline basis and has highlighted a significant preference for lattices that combine both a low emittance and large capacity for IDs.

  20. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  1. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  2. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  3. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    NARCIS (Netherlands)

    Airapetian, A.; Blok, H.P.; Chen, T.; Hesselink, W.H.A.; Laziev, A.; Volmer, J.; Wang, S.; Smit, G.P.

    2005-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA

  4. ACCELERATOR PHYSICS CHALLENGES IN THE DESIGN OF MULTI-BEND-ACHROMAT-BASED STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Hettel, R.; Leemann, S. C.; Robin, D. S.

    2017-06-01

    With the recent success in commissioning of MAX IV, the multi-bend achromat (MBA) lattice has begun to deliver on its promise to usher in a new generation of higher-brightness synchrotron light sources. In this paper, we begin by reviewing the challenges, recent success, and lessons learned of the MAX-IV project. Drawing on these lessons, we then describe the physics challenges in even more ambitious rings and how these can be met. In addition, we touch on engineering issues and choices that are tightly linked with the physics design.

  5. Photo excitation and laser detachment of C60 − anions in a storage ring

    DEFF Research Database (Denmark)

    Støchkel, Kristian; Andersen, Jens Ulrik

    2013-01-01

    We have studied the photo physics of C60 − anions in the electrostatic storage ring ELISA with ions produced in a plasma source and cooled and bunched in a He filled ion trap. A previous study using delayed electron detachment as a signal of resonance-enhanced multiphoton electron detachment...... (REMPED) has been repeated both at room temperature and with the trap cooled to liquid nitrogen temperature. However, wavelength dependence of the overlap of the strongly focused laser beam with the ion beam introduces distortions of the absorption spectrum. We have therefore applied a new method......, combining the IR light with a slightly delayed, powerful UV pulse (266 nm). After absorption of three UV photons, the ions decay by delayed (thermal) electron emission, and time spectra are recorded for varying wavelength. The fraction of ions heated by absorption of a single IR photon is then extracted...

  6. Electron beam qualities with and without free electron laser oscillations in the compact storage ring NIJI-IV

    CERN Document Server

    Sei, N; Ogawa, H; Yasumoto, M; Mikado, T

    2003-01-01

    The electron-beam qualities with and without free electron laser (FEL) oscillations were investigated in the compact storage ring NIJI-IV. The peak-electron density in a bunch was suppressed by beam instabilities, so that it was limited to about 1.0 x 10 sup 1 sup 7 m sup - sup 3. The maximum FEL gain estimated for 215 and 300 nm using a well-known one-dimension theory was about 2.8% and 4.6%. The cavity loss at 300 nm was evaluated to be about 2% from the threshold beam current. The bunch length and energy spread with FEL oscillations increased by 1.3 times or more due to bunch heating. The ratio of the FEL gain to a cavity loss estimated from the beam qualities with and without FEL oscillations was almost in accord with the ratio evaluated directly with the measured data of the FEL gain and the cavity loss.

  7. Single-particle detection of products from atomic and molecular reactions in a cryogenic ion storage ring

    Science.gov (United States)

    Krantz, C.; Novotný, O.; Becker, A.; George, S.; Grieser, M.; Hahn, R. von; Meyer, C.; Schippers, S.; Spruck, K.; Vogel, S.; Wolf, A.

    2017-04-01

    We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (∼keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ∼ 6 K , the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.

  8. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  9. experimental characterization of the performances of a storage ...

    African Journals Online (AJOL)

    eobe

    material absorbs the surplus thermal energy when the temperature of the air in the building exceeds its melting point. At this melting point (phase shift) the air can be cooled off, ii) at night, the current of draught from outside the building cools off and solidifies the. PCM. Over the years, two methods of storage of energy in.

  10. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    NARCIS (Netherlands)

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for

  11. Phenomena of spin rotation and oscillation of particles (atoms, molecules) containing in a trap blowing on by wind of high energy particles in storage ring

    OpenAIRE

    Baryshevsky, Vladimir

    2013-01-01

    Spin rotation and oscillation phenomena of particles captured in a gas target through which beam of high energy particles passes is discussed. Such experiment arrangement make it realizable for storage ring and allows to study zero-angle scattering amplitude at highest possible energies.

  12. Experimental analysis of drainage and water storage of litter layers

    Directory of Open Access Journals (Sweden)

    A. Guevara-Escobar

    2007-10-01

    Full Text Available Many hydrological studies of forested ecosystems focus on the study of the forest canopy and have partitioned gross precipitation into throughfall and stemflow. However, the presence of forest litter can alter the quantities of water available for soil infiltration and runoff. Little information exists regarding the value of storage and drainage parameters for litter layers. Vegetation parameters of this kind are required in physically-based and lumped conceptual models to quatify the availabilty and distribution of water. Using a rainfall simulator and laboratory conditions two main objectives were investigated using layers of recently seneced poplar leaves, fresh grass or woodchips:

    1 Effect of rain intensity on storage. With this respect we found that: maximum storage (Cmax, defined as the detention of water immediately before rainfall cessation, increased with rainfall intensity. The magnitude of the increment was up to 0.5 mm kg−1 m−2 between the lowest (9.8 mm h−1 and highest (70.9 mm h−1 rainfall intensities for poplar leaves. Minimum storage (Cmin, defined as the detention of water after drainage ceased, was not influenced by rainfall intensity. Repeated wetting-draining cycles or layer thickness have no effect on Cmax or Cmin.

    2 The evaluation of drainage coefficient for the Rutter model. This model was found accurate to predict storage and drainage in the case of poplar leaves, was less accurate for fresh grass and resulted in overestimations for woodchips.

    Additionally, the effect of an underlaying soil matrix on lateral movement of water and storage of poplar leaves was studied. Results indicated that the soil matrix have no effect on Cmax or Cmin of the litter layer. Lateral movement of water in the poplar layer was observed at intermediate rainfall

  13. Novel carbazole derivatives with quinoline ring: Synthesis, electronic transition, and two-photon absorption three-dimensional optical data storage

    Science.gov (United States)

    Li, Liang; Wang, Ping; Hu, Yanlei; Lin, Geng; Wu, Yiqun; Huang, Wenhao; Zhao, Quanzhong

    2015-03-01

    We designed carbazole unit with an extended π conjugation by employing Vilsmeier formylation reaction and Knoevenagel condensation to facilitate the functional groups of quinoline from 3- or 3,6-position of carbazole. Two compounds doped with poly(methyl methacrylate) (PMMA) films were prepared. To explore the electronic transition properties of these compounds, one-photon absorption properties were experimentally measured and theoretically calculated by using the time-dependent density functional theory. We surveyed these films by using an 800 nm Ti:sapphire 120-fs laser with two-photon absorption (TPA) fluorescence emission properties and TPA coefficients to obtain the TPA cross sections. A three-dimensional optical data storage experiment was conducted by using a TPA photoreaction with an 800 nm-fs laser on the film to obtain a seven-layer optical data storage. The experiment proves that these carbazole derivatives are well suited for two-photon 3D optical storage, thus laying the foundation for the research of multilayer high-density and ultra-high-density optical information storage materials.

  14. A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt.

    Science.gov (United States)

    Baker, D N; Kanekal, S G; Hoxie, V C; Henderson, M G; Li, X; Spence, H E; Elkington, S R; Friedel, R H W; Goldstein, J; Hudson, M K; Reeves, G D; Thorne, R M; Kletzing, C A; Claudepierre, S G

    2013-04-12

    Since their discovery more than 50 years ago, Earth's Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.

  15. Experimental Study on Electromagnetic Shielding Characteristics of Conductive O-rings at High Frequencies

    Science.gov (United States)

    Yamamoto, Shinnichiro; Hatakeyama, Kennichi; Yamada, Takeshi

    The O-rings have been usually applied to mechanically moving parts for sealing oil and air and preventing dust so far. In order to measure the electromagnetic shielding effectiveness of the conductive O-rings, we proposed a electromagnetic shielding evaluation setup for the O-ring. There are two ways to apply O-rings in narrow gaps, cylinder-fixing and plane-fixing. By the use of this setup, the electromagnetic shielding effectiveness of conductive O-rings can be evaluated from 10kHz to 1GHz for both fixing types. The reflection and transmission characteristics of this setup and measured results of electromagnetic shielding effects are described. Anisotropic conductivity of the ring material and an equivalent circuit of the O-rings are discussed.

  16. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Center for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-12-15

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  17. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.

    Science.gov (United States)

    Minati, Ludovico

    2015-12-01

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  18. Near-infrared photoabsorption by C60 dianions in a storage ring

    Science.gov (United States)

    Kadhane, U.; Andersen, J. U.; Bonderup, E.; Concina, B.; Hvelplund, P.; Kirketerp, M.-B. Suhr; Liu, B.; Nielsen, S. Brøndsted; Panja, S.; Rangama, J.; Støchkel, K.; Tomita, S.; Zettergren, H.; Hansen, K.; Sundén, A. E. K.; Canton, S. E.; Echt, O.; Forster, J. S.

    2009-07-01

    We present a detailed study of the electronic structure and the stability of C60 dianions in the gas phase. Monoanions were extracted from a plasma source and converted to dianions by electron transfer in a Na vapor cell. The dianions were then stored in an electrostatic ring, and their near-infrared absorption spectrum was measured by observation of laser induced electron detachment. From the time dependence of the detachment after photon absorption, we conclude that the reaction has contributions from both direct electron tunneling to the continuum and vibrationally assisted tunneling after internal conversion. This implies that the height of the Coulomb barrier confining the attached electrons is at least ˜1.5 eV. For C602- ions in solution electron spin resonance measurements have indicated a singlet ground state, and from the similarity of the absorption spectra we conclude that also the ground state of isolated C602- ions is singlet. The observed spectrum corresponds to an electronic transition from a t1u lowest unoccupied molecular orbital (LUMO) of C60 to the t1g LUMO+1 level. The electronic levels of the dianion are split due to Jahn-Teller coupling to quadrupole deformations of the molecule, and a main absorption band at 10723 cm-1 corresponds to a transition between the Jahn-Teller ground states. Also transitions from pseudorotational states with 200 cm-1 and (probably) 420 cm-1 excitation are observed. We argue that a very broad absorption band from about 11 500 cm-1 to 13 500 cm-1 consists of transitions to so-called cone states, which are Jahn-Teller states on a higher potential-energy surface, stabilized by a pseudorotational angular momentum barrier. A previously observed, high-lying absorption band for C60- may also be a transition to a cone state.

  19. Experimental analysis of Hybridised Energy Storage Systems for automotive applications

    Science.gov (United States)

    Sarwar, Wasim; Engstrom, Timothy; Marinescu, Monica; Green, Nick; Taylor, Nigel; Offer, Gregory J.

    2016-08-01

    The requirements of the Energy Storage System (ESS) for an electrified vehicle portfolio consisting of a range of vehicles from micro Hybrid Electric Vehicle (mHEV) to a Battery Electric Vehicle (BEV) vary considerably. To reduce development cost of an electrified powertrain portfolio, a modular system would ideally be scaled across each vehicle; however, the conflicting requirements of a mHEV and BEV prevent this. This study investigates whether it is possible to combine supercapacitors suitable for an mHEV with high-energy batteries suitable for use in a BEV to create a Hybridised Energy Storage System (HESS) suitable for use in a HEV. A passive HESS is found to be capable of meeting the electrical demands of a HEV drive cycle; the operating principles of HESSs are discussed and factors limiting system performance are explored. The performance of the HESS is found to be significantly less temperature dependent than battery-only systems, however the heat generated suggests a requirement for thermal management. As the HESS degrades (at a similar rate to a specialised high-power-battery), battery resistance rises faster than supercapacitor resistance; as a result, the supercapacitor provides a greater current contribution, therefore the energy throughput, temperature rise and degradation of the batteries is reduced.

  20. Improving the precision of linear optics measurements based on turn-by-turn beam position monitor data after a pulsed excitation in lepton storage rings

    Science.gov (United States)

    Malina, L.; Coello de Portugal, J.; Persson, T.; Skowroński, P. K.; Tomás, R.; Franchi, A.; Liuzzo, S.

    2017-08-01

    Beam optics control is of critical importance for machine performance and protection. Nowadays, turn-by-turn (TbT) beam position monitor (BPM) data are increasingly exploited as they allow for fast and simultaneous measurement of various optics quantities. Nevertheless, so far the best documented uncertainty of measured β -functions is of about 10‰ rms. In this paper we compare the β -functions of the ESRF storage ring measured from two different TbT techniques—the N-BPM and the Amplitude methods—with the ones inferred from a measurement of the orbit response matrix (ORM). We show how to improve the precision of TbT techniques by refining the Fourier transform of TbT data with properly chosen excitation amplitude. The precision of the N-BPM method is further improved by refining the phase advance measurement. This represents a step forward compared to standard TbT measurements. First experimental results showing the precision of β -functions pushed down to 4‰ both in TbT and ORM techniques are reported and commented.

  1. Spectator tagging in quasi-free proton-neutron interactions in deuterium using an internal cluster-jet target at a storage ring

    Science.gov (United States)

    Bilger, R.; Brodowski, W.; Calén, H.; Clement, H.; Dunin, V.; Dyring, J.; Ekström, C.; Fransson, K.; Greiff, J.; Gustafsson, L.; Höistad, B.; Johanson, J.; Johansson, A.; Johansson, T.; Kilian, K.; Koch, I.; Kullander, S.; Kupsc, A.; Marciniewski, P.; Morosov, B.; Neubauer, T.; Oelert, W.; Ruber, R. J. M. Y.; Shwartz, B.; Stepaniak, J.; Sukhanov, A.; Sundberg, P.; Turowiecki, A.; Wagner, G. J.; Wilhelmi, Z.; Wilkin, C.; Zabierowski, J.; Złomańczuk, J.

    2001-01-01

    Low-energy spectator protons (p s) from quasi-free proton-neutron interactions on deuterium have been measured for the pd→dπ 0p s and pd→pnπ 0p s reactions at the CELSIUS storage ring of the The Svedberg Laboratory. The experiment used 320 MeV protons incident on a deuterium cluster-jet target. The spectator protons were detected inside the scattering chamber using a silicon detector system which is compatible with a high vacuum. The low target density allows the spectator proton emerge without undergoing significant secondary scattering. Its measurement is therefore a useful tag upon such reactions, allowing cross-sections for quasi-free reactions to be deduced at well-defined centre-of-mass energies. The comparison with the simulation for the pd→dπ 0p s reaction shows that the energy dependence of the pn→dπ 0 cross-section can be extracted near the threshold. The method greatly improves the experimental resolution achievable in quasi-free p-n reaction studies.

  2. Experimental analysis of drainage and water storage of litter layers

    Science.gov (United States)

    Guevara-Escobar, A.; Gonzalez-Sosa, E.; Ramos-Salinas, M.; Hernandez-Delgado, G. D.

    2007-06-01

    Leaf litter overlying forested floors are important for erosion control and slope stability, but also reduces pasture growth in silvopastoral systems. Little information exists regarding the value of percolation and storage capacity parameters for litter layers. These estimates are needed for modelling better management practices for leaf litter. Therefore, this work measured the effect of four rainfall intensities: 9.8, 30.2, 40.4 and 70.9 mm h-1 on the hydrological response of layers of three materials: recently senesced poplar leaves, fresh grass and woodchips. Maximum storage (Cmax), defined as the detention of water immediately before rainfall cessation, increased with rainfall intensity. The magnitude of the increment was 0.2 mm between the lowest and highest rainfall intensities. Mean values of Cmax were: 1.27, 1.51, 1.67 and 1.65 mm for poplar leaves; 0.63 0.77, 0.73 and 0.76 for fresh grass and; 1.64, 2.23, 2.21 and 2.16 for woodchips. Drainage parameters were: 9.9, 8.8 and 2.2 mm-1 for poplar, grass and woodchips layers. An underlying soil matrix influenced the drainage flow from poplar leaf layers producing pseudo-Hortonian overland flow, but this occurred only when the rainfall intensity was 40.4 and 70.9 mm h-1 and accounted for 0.4 and 0.8‰ of total drainage. On the other hand, the presence of a poplar leaf layer had a damping effect on the drainage rate from the underlying soil matrix, particularly at intermediate rainfall intensities: 30.2 or 40.4 mm h-1.

  3. A Design Report of the Baseline for PEP-X: an Ultra-Low Emittance Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl; Bertsche, Kirk; Cai, Yunhai; Chao, Alex; Corbett, Willian; Fox, John; Hettel, Robert; Huang, Xiaobiao; Huang, Zhirong; Ng, Cho-Kuen; Nosochkov, Yuri; Novokhatski, Sasha; Radedeau, Thomas; Raubenheimer, Tor; Rivetta, Claudio; Safranek, James; Seeman, John; Stohr, Joachim; Stupakov, Gennady; Wang, Lanfa; Wang, Min-Huey; /SLAC

    2010-06-02

    Over the past year, we have worked out a baseline design for PEP-X, as an ultra-low emittance storage ring that could reside in the existing 2.2-km PEPII tunnel. The design features a hybrid lattice with double bend achromat (DBA) cells in two arcs and theoretical minimum emittance (TME) cells in the remaining four arcs. Damping wigglers are used to reduce the horizontal emittance to 86 pm-rad at zero current for a 4.5 GeV electron beam. At a design current of 1.5 A, the horizontal emittance increases, due to intrabeam scattering, to 164 pm-rad when the vertical emittance is maintained at a diffraction limited 8 pm-rad. The baseline design will produce photon beams achieving a brightness of 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV in a 3.5-m conventional planar undulator. Our study shows that an optimized lattice has adequate dynamic aperture, while accommodating a conventional off-axis injection system. In this report, we present the results of study, including the lattice properties, nonlinear dynamics, intra-beam scattering and Touschek lifetime, RF system, and collective instabilities. Finally, we discuss the possibility of partial lasing at soft X-ray wavelengths using a long undulator in a straight section.

  4. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  5. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Harkay, K.; Sajaev, V.; Shang, H.

    2017-06-25

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016 and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.

  6. External meeting - Geneva University: Proposal to measure the muon electric dipole moment with a compact storage ring at PSI

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 ? Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 16th May  2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Proposal to measure the muon electric dipole moment with a compact storage ring at PSI by Dr. Thomas Schietinger, PSI - Villigen In the Standard Model, lepton electric dipole moments (EDM) arise from the CP-violating phase in the CKM matrix at the three-loop level only, resulting in values that are many orders of magnitude below the sensitivity of current and future experiments. Lepton EDMs therefore offer an excellent opportunity to discover unambiguous evidence for new CP-violating phases, as called for by the baryon-antibaryon asymmetry of the universe. The muon EDM is one of the least constrained fundamental properties in elementary particle physics. We propose to utilize the large available flux of polarized muons at PSI to search for a muon EDM ...

  7. Generation of femtosecond soft x-ray pulse by interaction between laser and electron beam in an electron storage ring

    CERN Document Server

    Inoue, T; Amano, S; Mochizuki, T; Yatsuzaka, M

    2002-01-01

    A femtosecond synchrotron radiation pulse train can be extracted from an electron storage ring by interaction between an ultrashort laser pulse and an electron beam in an undulator. Generation system of a femtosecond soft x-ray pulse by the slicing technique was studied with numerical calculations for its performance, as applicable for the NewSUBARU synchrotron radiation facility at LASTI. The femtosecond electron pulse, that is energy-modulated with a Ti:sapphire laser at a pulse energy of 100 mu J, a pulse width of 150 fs, and repetition frequency of 20 kHz, can be sufficiently separated in a bending magnet. A femtosecond soft x-ray pulse (the critical photon energy of 0.69 keV and a pulse width of 250 fs) is obtained with a collimator (diameter of 800 mu m phi), and it has an average brightness 3 x 10 sup 6 photons/s/mm sup 2 /mrad sup 2 /0.1 %BW and an average photon flux 10 sup 5 photons/s/0.1 %BW. (author)

  8. Archiving and retrieval of experimental data using SAN based centralized storage system for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, Manisha, E-mail: manisha@ipr.res.in; Masand, Harish; Kumar, Aveg; Patel, Kirit; Dhongde, Jasraj; Gulati, Hitesh; Mahajan, Kirti; Chudasama, Hitesh; Pradhan, Subrata

    2016-11-15

    Highlights: • SAN (Storage Area Network) based centralized data storage system of SST-1 has envisaged to address the need of centrally availability of SST-1 storage system to archive/retrieve experimental data for the authenticated users for 24 × 7. • The SAN based data storage system has been designed/configured with 3-tiered architecture and GFS cluster file system with multipath support. • The adopted SAN based data storage for SST-1 is a modular, robust, and allows future expandability. • Important considerations has been taken like, Handling of varied Data writing speed from different subsystems to central storage, Simultaneous read access of the bulk experimental and as well as essential diagnostic data, The life expectancy of data, How often data will be retrieved and how fast it will be needed, How much historical data should be maintained at storage. - Abstract: SAN (Storage Area Network, a high-speed, block level storage device) based centralized data storage system of SST-1 (Steady State superconducting Tokamak) has envisaged to address the need of availability of SST-1 operation & experimental data centrally for archival as well as retrieval [2]. Considering the initial data volume requirement, ∼10 TB (Terabytes) capacity of SAN based data storage system has configured/installed with optical fiber backbone with compatibility considerations of existing Ethernet network of SST-1. The SAN based data storage system has been designed/configured with 3-tiered architecture and GFS (Global File System) cluster file system with multipath support. Tier-1 is of ∼3 TB (frequent access and low data storage capacity) comprises of Fiber channel (FC) based hard disks for optimum throughput. Tier-2 is of ∼6 TB (less frequent access and high data storage capacity) comprises of SATA based hard disks. Tier-3 will be planned later to store offline historical data. In the SAN configuration two tightly coupled storage servers (with cluster configuration) are

  9. Simulation of longitudinal dynamics of laser-cooled and RF-bunched C3+ ion beams at heavy ion storage ring CSRe

    Science.gov (United States)

    Li, Xiao-Ni; Wen, Wei-Qiang; Du, Heng; Li, Peng; Zhang, Xiao-Hu; Hu, Xue-Jing; Qu, Guo-Feng; Li, Zhong-Shan; Ge, Wen-Wen; Li, Jie; Wang, Han-Bing; Xia, Jia-Wen; Yang, Jian-Cheng; Ma, Xin-Wen; Yuan, You-Jin

    2017-07-01

    Laser cooling of Li-like C3+ and O4+ relativistic heavy ion beams is planned at the experimental Cooler Storage Ring (CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic 12C3+ ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the 12C3+ion beams by scanning the frequency of the RF-buncher or continuous wave (CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained. Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe. Supported by National Natural Science Foundation of China (11405237, 11504388)

  10. Numerical Simulation and Experimental Study on Temperature Distribution of Self-Lubricating Packing Rings in Reciprocating Compressors

    Directory of Open Access Journals (Sweden)

    Jia Xiaohan

    2016-01-01

    Full Text Available The nonuniform abrasion failure and high-temperature thermal failure of packing rings have a significant influence on compressor reliability, particularly that of oil-free compressors. In this study, a test rig was constructed to measure the dynamic temperature of packing rings under different operational conditions in an oil-free reciprocating compressor. The dynamic axial and radial temperature distributions of the packing rings were obtained using an innovative internal temperature testing device that kept the thermocouples and packing box relatively static during compressor operation. A three-dimensional heat transfer model was also developed to analyze the temperature distribution of the packing boxes, piston rod, and cylinder during such operation. Good agreement was observed between the simulation results and experimental data, which showed an average relative error of less than 2.35%. The results indicate that the pressure ratio exerts a significant effect on the axial temperature distribution and determines which packing ring reaches the maximum temperature. They also show the average temperature to rise with an increase in the rotational speed and to fall with an improvement in the external cooling conditions. Finally, the material of the packing rings was found to affect the temperature gradient from their inner to outer surface.

  11. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Ladekar, Chandrakishor; Choudhary, S. K. [RTM Nagpur University, Wardha (India); Khandare, S. S. [B. D. College of Engineering, Wardha (India)

    2017-06-15

    We investigated the optimum performance of heat pipe in Latent heat thermal energy storage (LHTES), and compared it with copper pipe. Classical plan of experimentation was used to optimize the parameters of heat pipe. Heat pipe fill ratio, evaporator section length to condenser section length ratio i.e., Heat pipe length ratio (HPLR) and heat pipe diameter, was the parameter used for optimization, as result of parametric analysis. Experiment with flow rate of 10 lit./min. was conducted for different fill ratio, HPLR and different diameter. Fill ratio of 80 %, HPLR of 0.9 and heat pipe with diameter of 18 mm showed better trend in charging and discharging. Comparison between the storage tank with optimized heat pipe and copper pipe showed almost 186 % improvement in charging and discharging time compared with the copper pipe embedded thermal storage. Heat transfer between Heat transferring fluid (HTF) and Phase change material (PCM) increased with increase in area of heat transferring media, but storage density of storage tank decreased. Storage tank with heat pipe embedded in place of copper pipe is a better option in terms of charging and discharging time as well heat storage capacity due to less heat lost. This justifies the better efficiency and effectiveness of storage tank with embedded optimized heat pipe.

  12. Experimental adhesives with different hydrophilicity: microshear test in after 1, 7, and 90 days' storage.

    Science.gov (United States)

    Hori, Frederico Seidi; de Carvalho, Rubens Côrte

    2012-04-01

    To assess the microshear bond strength of 3 experimental adhesives with different degrees of hydrophilicity after 1, 7 and 90 days of storage. The bonding effectiveness of three experimental two-step etch-and-rinse adhesives (bis- GMA, bis-EMA/bis-GMA, polybutadiene [C6H12]) and one commercial adhesive (Single Bond) to sound hydrated dentin was determined using the microshear test with delimitation of the adhesive area after 1, 7, and 90 days of storage in water at 37°C. Two-way ANOVA was performed at the 0.05 probability level. The fractures were classified as adhesive, cohesive in dentin, cohesive in resin, and mixed. The experimental adhesives showed values in the range of 11.31 to 12.96 MPa, with polybutadiene (PBH) showing the lowest bond strengths, bis-GMA the highest, and bis-EMA/bis-GMA intermediary values. Single Bond yielded bond strengths of approximately 24 MPa. Water storage decreased the bond strength in all adhesives. Adhesive fractures were predominant in experimental adhesives, while mixed fractures were the most frequent type in the Single Bond group. The experimental dentin adhesives of this study were able to form resin tags, but they could not penetrate into the collagen fibers and form hybrid layers. The resulting low bond strength decreased with increasing length of storage.

  13. Experimental results from a laboratory-scale molten salt thermocline storage

    Science.gov (United States)

    Seubert, Bernhard; Müller, Ralf; Willert, Daniel; Fluri, Thomas

    2017-06-01

    Single-tank storage presents a valid option for cost reduction in thermal energy storage systems. For low-temperature systems with water as storage medium this concept is widely implemented and tested. For high-temperature systems very limited experimental data are publicly available. To improve this situation a molten salt loop for experimental testing of a single-tank storage prototype was designed and built at Fraunhofer ISE. The storage tank has a volume of 0.4 m3 or a maximum capacity of 72 kWhth. The maximum charging and discharging power is 60 kW, however, a bypass flow control system enables to operate the system also at a very low power. The prototype was designed to withstand temperatures up to 550 °C. A cascaded insulation with embedded heating cables can be used to reduce the effect of heat loss on the storage which is susceptible to edge effects due to its small size. During the first tests the operating temperatures were adapted to the conditions in systems with thermal oil as heat transfer fluid and a smaller temperature difference. A good separation between cold and hot fluid was achieved with temperature gradients of 95 K within 16 cm.

  14. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2016-03-01

    Full Text Available In the presented study the shell and tube type latent heat storage (LHS has been designed for solar dryer and paraffin wax is used as heat storage material. In the first part of the study, the thermal and heat transfer characteristics of the latent heat storage system have been evaluated during charging and discharging process using air as heat transfer fluid (HTF. In the last section of the study the effectiveness of the use of an LHS for drying of food product and also on the drying kinetics of a food product has been determined. A series of experiments were conducted to study the effects of flow rate and temperature of HTF on the charging and discharging process of LHS. The temperature distribution along the radial and longitudinal directions was obtained at different time during charging process to analyze the heat transfer phenomenon in the LHS. Thermal performance of the system is evaluated in terms of cumulative energy charged and discharged, during the charging and discharging process of LHS, respectively. Experimental results show that the LHS is suitable to supply the hot air for drying of food product during non-sunshine hours or when the intensity of solar energy is very low. Temperature gain of air in the range of 17 °C to 5 °C for approximately 10 hrs duration was achieved during discharging of LHS.

  15. Experimental and numerical investigation of a scalable modular geothermal heat storage system

    Science.gov (United States)

    Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof

    2017-04-01

    Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days

  16. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  17. Investigation of transient processes at the DELTA electron storage ring using a digital bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Hoener, Markus

    2015-07-01

    At the 1.5-GeV synchrotron radiation source DELTA, operated by the TU Dortmund University, intensive synchrotron radiation in the spectral range from hard X-rays to THz radiation is generated by the circular deflection of highly relativistic electron bunches. Interacting with the vacuum chamber wall, the electron bunches create electric fields, which can act back on subsequent bunches. With increasing beam current, the excitation is enhanced so that the electron beam is unstable, which means that the electron bunches oscillate longitudinally or transversely relative to their reference position. The oscillations reduce the quality of the synchrotron radiation and limit the maximum storable beam current. Within the scope of this thesis, the beam instabilities at the storage ring were systematically investigated. A digital bunch-by-bunch feedback system was installed and commissioned, which allows to detect and digitize the position of each electron bunch at each turn. Based on the input signal, a correction signal is calculated in order to suppress transverse and longitudinal oscillation of the bunches. In addition, it is possible to excite dedicated bunches. The systematic excitation of all coupled-bunch modes allowed for the first time to determine the damping rates of all 192 eigenmodes of the electron beam. The current dependence of the damping rates was investigated and an instability threshold was found. Besides the investigation of multibunch instabilities, single-bunch instabilities are discussed. In addition, the acquisition unit of the digital feedback system can be triggered on external events. This was used to investigate the injection process and beam losses. It was shown that the transverse feedback system increases the injection efficiency. Another aspect of this thesis is the improvement of the signal quality of ultrashort coherent synchrotron radiation pulses, which are generated by the short-pulse facility at DELTA. The short-pulse facility is based

  18. Experimental evidence for large ring metallacycle intermediates in polyethylene chain growth using homogeneous chromium catalysts.

    Science.gov (United States)

    Tomov, Atanas K; Chirinos, Juan J; Jones, David J; Long, Richard J; Gibson, Vernon C

    2005-07-27

    Deuterio-ethylene labeling studies on two homogeneous chromium ethylene oligomerization catalysts show that chain propagation proceeds via metallacyclic intermediates; reactions performed in the presence of 1-nonene show no incorporation of the higher olefin, strongly implicating the involvement of large ring metallacycles.

  19. Study on Hot Ring Compression Test of Nimonic 115 Superalloy Using Experimental Observations and 3D FEM Simulation

    Science.gov (United States)

    Shahriari, D.; Amiri, A.; Sadeghi, M. H.

    2010-07-01

    In hot forging of Nimonic 115, it is desirable to determine friction coefficients. Changing magnitudes of temperature and type of lubricant at the surface of the workpiece and dies influence friction coefficient. This paper describes an experimental investigation of friction under hot forging conditions using the ring compression test. The 3D FEM simulations were used to derive the friction calibration curves and to evaluate material deformation, geometric changes, and load-displacement results. A series of ring compression tests were carried out to obtain friction coefficients for a number of lubricants including mica plate, glass powder, graphite powder, and dry condition. The experiments show how the variations in temperature at the interface affected frictional behavior. On the basis of these results, mica is recommended for hot forging of Nimonic 115 and its friction coefficient is approximately 0.3.

  20. Modeling a photovoltaic energy storage system based on super capacitor, simulation and evaluation of experimental performance

    Science.gov (United States)

    Ben Fathallah, Mohamed Ali; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    Photovoltaic energy is very important to meet the consumption needs of electrical energy in remote areas and for other applications. Energy storage systems are essential to avoid the intermittent production of photovoltaic energy and to cover peaks in energy demand. The super capacitor, also known as electrochemical double layer capacitor, is a storage device which has a very high power density compared to conventional battery and is capable of storing a large amount of electrical energy in short time periods, which reflects its interest to be used for the storage of photovoltaic energy. From this principle, this paper represents a three-branch RC model of super capacitor to describe its different dynamics of operation during the charging, discharging and rest phases. After having validated the good functioning of this model with the experimental study of Zubieta, The super capacitor performance has been demonstrated and compared with a conventional battery in a photovoltaic converter chain to power AC machine.

  1. An experimental study on the formation of negatively-buoyant vortex rings

    Science.gov (United States)

    Wu, Jeff X.; Hunt, Gary R.

    2015-11-01

    Experiments to examine the formation of dense saline vortex rings projected vertically upwards into a quiescent freshwater environment were conducted. The setup was designed to dispense a cylindrical column of source fluid with aspect ratio L / D (the length L of dispensed saline column to the nozzle diameter D) over a pre-set time interval. In an effort to execute an impulsive start and finish, a controlled flow circulation driven by a gear pump was developed to approximate a top-hat profile of source exit velocity versus time. Our measurements focus on describing the evolving morphology of the vortex rings with time and with source conditions (L / D and source Froude number). Our results reveal distinct formation regimes and our estimates of time required for formation as a function of density difference confirm predictions from previously published numerical simulations. The volume-based approach we adopt provides potentially a new angle for investigating the physics of these flows.

  2. Methods for organizing the interaction of circulating particle beams with internal targets in nuclear physics experiments at synchrotrons and storage rings

    Science.gov (United States)

    Artiomov, A. S.

    2017-05-01

    The first methods for using internal targets and their further development for organization of nuclear physics experiments at synchrotrons and storage rings are reviewed. With these methods, new results are obtained and discoveries are made in physics of interactions of elementary particles and nuclei. Current uses of various internal targets and circulating particle beams in ongoing and projected research in particle physics, relativistic nuclear and spin physics, and physics of interactions of exotic and radioactive nuclei and for producing fluxes of secondary particles (mesons, neutrons, exotic and radioactive nuclei, etc.) for physics experiments are described.

  3. On the role of delocalization in benzene: Theoretical and experimental investigation of the effects of strained ring fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faust, Rudiger [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    When an important compound`s discovery dates back as far as 1825, one would imagine that every facet of its chemical and physical properties has been illuminated in the meantime. Benzene, however, has not ceased to challenge the chemist`s notion of structure and bonding since its first isolation by Michael Faraday. This report is divided into the following six chapters: 1. Aromaticity -- Criteria, manifestations, structural limitations; 2. The role of delocalization in benzene; 3. The thermochemical properties of benzocyclobutadienologs; 4. Ab initio study of benzenes fused to four-membered rings; 5. Non-planar polycyclic aromatic hydrocarbons; and 6. Experimental details and input decks. 210 Refs.

  4. Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Logerais

    2013-01-01

    Full Text Available The storage of photovoltaic energy by supercapacitors is studied by using two approaches. An overview on the integration of supercapacitors in solar energy conversion systems is previously provided. First, a realized experimental setup of charge/discharge of supercapacitors fed by a photovoltaic array has been operated with fine data acquisition. The second approach consists in simulating photovoltaic energy storage by supercapacitors with a faithful and accessible model composed of solar irradiance evaluation, equivalent electrical circuit for photovoltaic conversion, and a multibranch circuit for supercapacitor. Both the experimental and calculated results are confronted, and an error of 1% on the stored energy is found with a correction largely within ±10% of the transmission line capacitance according to temperature.

  5. Experimental analysis of the performance of optimized fin structures in a latent heat energy storage test rig

    Science.gov (United States)

    Johnson, Maike; Hübner, Stefan; Reichmann, Carsten; Schönberger, Manfred; Fiß, Michael

    2017-06-01

    Energy storage systems are a key technology for developing a more sustainable energy supply system and lowering overall CO2 emissions. Among the variety of storage technologies, high temperature phase change material (PCM) storage is a promising option with a wide range of applications. PCM storages using an extended finned tube storage concept have been designed and techno-economically optimized for solar thermal power plant operations. These finned tube components were experimentally tested in order to validate the optimized design and simulation models used. Analysis of the charging and discharging characteristics of the storage at the pilot scale gives insight into the heat distribution both axially as well as radially in the storage material, thereby allowing for a realistic validation of the design. The design was optimized for discharging of the storage, as this is the more critical operation mode in power plant applications. The data show good agreement between the model and the experiments for discharging.

  6. An experimental study on the influence of composite materials used to reinforce masonry ring beams

    OpenAIRE

    Sisti, Romina; Corradi, Marco; Borri, Antonio

    2016-01-01

    For historic masonry constructions the out-of-plane wall behavior is critical to seismic performance. Because the main cause of out-of-plane collapses is the wall-to-wall level of connection, the application of a reinforced concrete (RC) ring beam at the eaves level of historic masonry buildings is an effective method to prevent an out-of-plane mechanism of a wall panel. However this effective reinforcing method presents some drawbacks. In order to address this, this paper describes the probl...

  7. The mechanistic basis for storage-dependent age distributions of water discharged from an experimental hillslope

    Science.gov (United States)

    Pangle, Luke A.; Kim, Minseok; Cardoso, Charlene; Lora, Marco; Meira Neto, Antonio A.; Volkmann, Till H. M.; Wang, Yadi; Troch, Peter A.; Harman, Ciaran J.

    2017-04-01

    Distributions of water transit times (TTDs), and related storage-selection (SAS) distributions, are spatially integrated metrics of hydrological transport within landscapes. Recent works confirm that the form of TTDs and SAS distributions should be considered time variant—possibly depending, in predictable ways, on the dynamic storage of water within the landscape. We report on a 28 day periodic-steady-state-tracer experiment performed on a model hillslope contained within a 1 m3 sloping lysimeter. Using experimental data, we calibrate physically based, spatially distributed flow and transport models, and use the calibrated models to generate time-variable SAS distributions, which are subsequently compared to those directly observed from the actual experiment. The objective is to use the spatially distributed estimates of storage and flux from the model to characterize how temporal variation in water storage influences temporal variation in flow path configurations, and resulting SAS distributions. The simulated SAS distributions mimicked well the shape of observed distributions, once the model domain reflected the spatial heterogeneity of the lysimeter soil. The spatially distributed flux vectors illustrate how the magnitude and directionality of water flux changes as the water table surface rises and falls, yielding greater contributions of younger water when the water table surface rises nearer to the soil surface. The illustrated mechanism is compliant with conclusions drawn from other recent studies and supports the notion of an inverse-storage effect, whereby the probability of younger water exiting the system increases with storage. This mechanism may be prevalent in hillslopes and headwater catchments where discharge dynamics are controlled by vertical fluctuations in the water table surface of an unconfined aquifer.

  8. REVIEW ARTICLE: From single photons to milliwatt radiant power—electron storage rings as radiation sources with a high dynamic range

    Science.gov (United States)

    Klein, Roman; Thornagel, Reiner; Ulm, Gerhard

    2010-10-01

    The spectral radiant intensity of synchrotron radiation from electron storage rings can be calculated from basic electrodynamic relations (Schwinger equation) and it is directly proportional to the stored electron beam current, i.e. the number of stored electrons. With the necessary equipment installed to measure and control the electron beam current over a wide dynamic range, the radiant intensity of the synchrotron radiation can be adjusted accordingly without changing the spectrum. This is done, e.g., at the Metrology Light Source (MLS), the dedicated electron storage ring of the Physikalisch-Technische Bundesanstalt. The MLS is operated as a primary radiation source standard from the near IR up to the soft x-ray region and its operational parameters can be adjusted and accurately measured in a wide range: the electron beam current can be varied from 1 pA (one stored electron) up to 200 mA and thus the radiant intensity can be changed by more than 11 decades. The photon flux or radiant power for typical angular acceptances can thus be varied from single photons to milliwatts. This is a very powerful tool, e.g., for the characterization of the linearity of the response of radiation detectors or for the calibration of photon counting detectors. In this article we present an overview of past, current and possible future activities exploiting this feature.

  9. First Measurement of the $^{96}$Ru(p,$\\gamma$)$^{97}$Rh Cross Section for the p-Process with a Storage Ring

    CERN Document Server

    Mei, Bo; Bishop, Shawn; Blaum, Klaus; Boretzky, Konstanze; Bosch, Fritz; Brandau, Carsten; Bräuning, Harald; Davinson, Thomas; Dillmann, Iris; Dimopoulou, Christina; Ershova, Olga; Fülöp, Zsolt; Geissel, Hans; Glorius, Jan; Gyürky, György; Heil, Michael; Käppeler, Franz; Kelic-Heil, Aleksandra; Kozhuharov, Christophor; Langer, Christoph; Bleis, Tudi Le; Litvinov, Yuri; Lotay, Gavin; Marganiec, Justyna; Münzenberg, Gottfried; Nolden, Fritz; Petridis, Nikolaos; Plag, Ralf; Popp, Ulrich; Rastrepina, Ganna; Reifarth, René; Riese, Björn; Rigollet, Catherine; Scheidenberger, Christoph; Simon, Haik; Sonnabend, Kerstin; Steck, Markus; Stöhlke, Thomas; Szücs, Tamás; Sümmerer, Klaus; Weber, Günter; Weick, Helmut; Winters, Danyal; Winters, Natalya; Woods, Philip; Zhong, Qiping

    2015-01-01

    This work presents a direct measurement of the $^{96}$Ru($p, \\gamma$)$^{97}$Rh cross section via a novel technique using a storage ring, which opens opportunities for reaction measurements on unstable nuclei. A proof-of-principle experiment was performed at the storage ring ESR at GSI in Darmstadt, where circulating $^{96}$Ru ions interacted repeatedly with a hydrogen target. The $^{96}$Ru($p, \\gamma$)$^{97}$Rh cross section between 9 and 11 MeV has been determined using two independent normalization methods. As key ingredients in Hauser-Feshbach calculations, the $\\gamma$-ray strength function as well as the level density model can be pinned down with the measured ($p, \\gamma$) cross section. Furthermore, the proton optical potential can be optimized after the uncertainties from the $\\gamma$-ray strength function and the level density have been removed. As a result, a constrained $^{96}$Ru($p, \\gamma$)$^{97}$Rh reaction rate over a wide temperature range is recommended for $p$-process network calculations.

  10. Experimental Study on Melting and Solidification of Phase Change Material Thermal Storage

    Science.gov (United States)

    Ambarita, H.; Abdullah, I.; Siregar, C. A.; Siregar, R. E. T.; Ronowikarto, A. D.

    2017-03-01

    Melting and solidification process of Phase Change Materials (PCMs) are investigated experimentally. The tested PCMs are Paraffin wax and Steric acid which typically used for solar water heater. The objective is to explore the characteristics of the PCM when it is being melted and solidified. The experiments are performed in a glass box. One side of the box wall is heated while the opposite wall is kept constant and other walls are insulated. Temperature of the heated wall are kept constant at 80°C, 85°C, and 90°C, respectively. Every experiment is carried out for 600 minutes. Temperatures are recorded and the melting and solidification processes are pictured by using camera. The results show that the melting process starts from the upper part of the thermal storage. In the solidification process, it starts from the lower part of the thermal storage. As a thermal energy storage, Paraffin wax is better than Steric acid. This is because Paraffin wax can store more energy. At heat source temperature of 90°C, thermal energy stored by Paraffin wax and Stearic acid is 61.84 kJ and 57.39 kJ, respectively. Thus it is better to used Paraffin wax in the solar water heater as thermal energy storage.

  11. Experimental study of the effect of top-ring clearance volume on unburned hydrocarbon concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Muammer Ozkan; Orhan Deniz; Tarkan Sandalci [Yildiz Technical University, Istanbul (Turkey). Mechanical Engineering Dept.

    2002-07-01

    The clearance volume between the piston, the cylinder and the top compression ring in an internal combustion engine has a significant effect on the unburned hydrocarbon concentration. The high heat transfer from the burning mixture to the cylinder surface extinguishes the flame front, and this is the main reason for increased unburned hydrocarbon concentrations. The heat transfer between the mixture and the clearance volume surface is affected by the ratio of coolant surface to the clearance volume. In this study the effect of the ratio of the coolant surface to the clearance volume on the unburned hydrocarbon concentration was investigated using three different purpose-built pistons. A decrease of this ratio reduced the unburned hydrocarbon concentration by 40%. (author)

  12. Experimental proof of concept of a pilot-scale thermochemical storage unit

    Science.gov (United States)

    Tescari, Stefania; Singh, Abhishek; de Oliveira, Lamark; Breuer, Stefan; Agrafiotis, Christos; Roeb, Martin; Sattler, Christian; Marcher, Johnny; Pagkoura, Chrysa; Karagiannakis, George; Konstandopoulos, Athanasios G.

    2017-06-01

    The present study presents installation and operation of the first pilot scale thermal storage unit based on thermochemical redox-cycles. The reactive core is composed of a honeycomb ceramic substrate, coated with cobalt oxide. This concept, already analyzed and presented at lab-scale, is now implemented at a larger scale: a total of 280 kg of storage material including 90 kg of cobalt oxide. The storage block was implemented inside an existing solar facility and connected to the complete experimental set-up. This experimental set-up is presented, with focus on the measurement system and the possible improvement for a next campaign. Start-up and operation of the system is described during the first complete charge-discharge cycle. The effect of the chemical reaction on the stored capacity is clearly detected by analysis of the temperature distribution data obtained during the experiments. Furthermore two consecutive cycles show no evident loss of reactivity inside the material. The system is cycled between 650°C and 1000°C. In this temperature range, the total energy stored was about 50 kWh, corresponding to an energy density of 630 kJ/kg. In conclusion, the concept feasibility was successfully shown, together with a first calculation on the system performance.

  13. Experimental investigation on AC unit integrated with sensible heat storage (SHS)

    Science.gov (United States)

    Aziz, N. A.; Amin, N. A. M.; Majid, M. S. A.; Hussin, A.; Zhubir, S.

    2017-10-01

    The growth in population and economy has increases the energy demand and raises the concerns over the sustainable energy source. Towards the sustainable development, energy efficiency in buildings has become a prime objective. In this paper, the integration of thermal energy storage was studied. This paper presents an experimental investigation on the performance of an air conditioning unit integrated with sensible heat storage (SHS) system. The results were compared to the conventional AC systems in the terms of average electricity usage, indoor temperature and the relative humidity inside the experimented room (cabin container). Results show that the integration of water tank as an SHS reduces the electricity usage by 5%, while the integration of well-insulated water tank saves up to 8% of the electricity consumption.

  14. Experimental and data analysis techniques for deducing collision-induced forces from photographic histories of engine rotor fragment impact/interaction with a containment ring

    Science.gov (United States)

    Yeghiayan, R. P.; Leech, J. W.; Witmer, E. A.

    1973-01-01

    An analysis method termed TEJ-JET is described whereby measured transient elastic and inelastic deformations of an engine-rotor fragment-impacted structural ring are analyzed to deduce the transient external forces experienced by that ring as a result of fragment impact and interaction with the ring. Although the theoretical feasibility of the TEJ-JET concept was established, its practical feasibility when utilizing experimental measurements of limited precision and accuracy remains to be established. The experimental equipment and the techniques (high-speed motion photography) employed to measure the transient deformations of fragment-impacted rings are described. Sources of error and data uncertainties are identified. Techniques employed to reduce data reading uncertainties and to correct the data for optical-distortion effects are discussed. These procedures, including spatial smoothing of the deformed ring shape by Fourier series and timewise smoothing by Gram polynomials, are applied illustratively to recent measurements involving the impact of a single T58 turbine rotor blade against an aluminum containment ring. Plausible predictions of the fragment-ring impact/interaction forces are obtained by one branch of this TEJ-JET method; however, a second branch of this method, which provides an independent estimate of these forces, remains to be evaluated.

  15. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    Science.gov (United States)

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  16. Experimental lead toxicity in the ring-necked duck. [Aythya collaris

    Energy Technology Data Exchange (ETDEWEB)

    Mautino, M.; Bell, J.U.

    1985-12-01

    Ring-necked ducks (Aythya collaris) were administered a single lead shot by gastric intubation. At weekly intervals over a 7-week period, the birds were weighed and blood samples obtained for measurement of hematocrit, free erythrocyte protoporphyrin (FEP), blood lead and delta-aminolevulinic acid dehydratase (delta-ADAD) activity. The birds were fluoroscoped weekly to ensure that the pellets had been retained. Blood lead concentrations peaked 1 week after dosing at a concentration of 7.75 ..mu..g/ml and then fell to control levels by Week 4. FEP concentrations in the treated ducks also peaked 1 week after dosing at levels which were roughly 1200% of control concentrations. The return of FEP concentrations to normal paralleled blood lead. ALAD activity was inhibited by approximately 85% by Week 1; however, there was a gradual but steady recovery of ALAD activity through Week 7. Four of the treated birds died within 2 to 3 weeks of lead administration. Physical signs of lead toxicity were maximal 7 to 10 days postdosing and included ataxia, loss of body weight, impaction of the upper gastrointestinal tract, and bile green diarrhea. In surviving birds, overt signs of toxicity declined with time and all birds appeared normal by Week 7.

  17. Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events

    Directory of Open Access Journals (Sweden)

    Mohsen Besharat

    2017-01-01

    Full Text Available An experimental assessment of an air pocket (AP, confined in a compressed air vessel (CAV, has been investigated under several different water hammer (WH events to better define the use of protection devices or compressed air energy storage (CAES systems. This research focuses on the size of an AP within an air vessel and tries to describe how it affects important parameters of the system, i.e., the pressure in the pipe, stored pressure, flow velocity, displaced volume of water and water level in the CAV. Results present a specific range of air pockets based on a dimensionless parameter extractable for other real systems.

  18. Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators

    Science.gov (United States)

    Tian, Yonghui; Liu, Zilong; Ying, Tonghe; Xiao, Huifu; Meng, Yinghao; Deng, Lin; Zhao, Yongpeng; Guo, Anqi; Liao, Miaomiao; Liu, Guipeng; Yang, Jianhong

    2018-01-01

    Currently, the reversible logic circuit is a popular research topic in the field of information processing as it is a most effective approach to minimize power consumption, which can achieve the one-to-one mapping function to identify the input signals from its corresponding output signals. In this letter, we propose and experimentally demonstrate an optical Feynman gate for reversible logic operation using silicon micro-ring resonators (MRRs). Two electrical input signals (logic operands) are applied across the micro-heaters above MRRs to determine the switching states of MRRs, and the reversible logic operation results are directed to the output ports in the form of light, respectively. For proof of concept, the thermo-optic modulation scheme is used to achieve MRR's optical switching function. At last, a Feynman gate for reversible logic operation with the speed of 10 kbps is demonstrated successfully.

  19. Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators

    Directory of Open Access Journals (Sweden)

    Tian Yonghui

    2018-01-01

    Full Text Available Currently, the reversible logic circuit is a popular research topic in the field of information processing as it is a most effective approach to minimize power consumption, which can achieve the one-to-one mapping function to identify the input signals from its corresponding output signals. In this letter, we propose and experimentally demonstrate an optical Feynman gate for reversible logic operation using silicon micro-ring resonators (MRRs. Two electrical input signals (logic operands are applied across the micro-heaters above MRRs to determine the switching states of MRRs, and the reversible logic operation results are directed to the output ports in the form of light, respectively. For proof of concept, the thermo-optic modulation scheme is used to achieve MRR’s optical switching function. At last, a Feynman gate for reversible logic operation with the speed of 10 kbps is demonstrated successfully.

  20. Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrier-injection micro-ring resonators.

    Science.gov (United States)

    Tian, Yonghui; Liu, Zilong; Xiao, Huifu; Zhao, Guolin; Liu, Guipeng; Yang, Jianhong; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2017-07-25

    We experimentally demonstrate a reconfigurable electro-optic directed logic circuit which can perform any combinatorial logic operation using cascaded carrier-injection micro-ring resonators (MRRs), and the logic circuit is fabricated on the silicon-on-insulator (SOI) substrate with the standard commercial Complementary Metal-Oxide-Semiconductor (CMOS) fabrication process. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. The operands are represented by electrical signals, which are applied to the corresponding MRRs to control their switching states. The operation result is directed to the output port in the form of light. For proof of principle, several logic operations of three-operand with the operation speed of 100 Mbps are demonstrated successfully.

  1. Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen Storage: A Combined Computational/Experimental Approach

    Energy Technology Data Exchange (ETDEWEB)

    Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Kung, Harold H. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemical and Biological Engineering; Yang, Jun [Ford Scientific Research Lab., Dearborn, MI (United States); Hwang, Sonjong [California Inst. of Technology (CalTech), Pasadena, CA (United States). Dept. of Chemistry and Chemical Engineering; Shore, Sheldon [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry and Biochemistry

    2016-11-28

    The objective of the proposed program is to discover novel mixed hydrides for hydrogen storage, which enable the DOE 2010 system-level goals. Our goal is to find a material that desorbs 8.5 wt.% H2 or more at temperatures below 85°C. The research program will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization. We will combine materials from distinct categories (e.g., chemical and complex hydrides) to form novel multicomponent reactions. Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH2+NH3BH3] and nitrogen-hydrogen based borohydrides [e.g. Al(BH4)3(NH3)3]. The 2010 and 2015 FreedomCAR/DOE targets for hydrogen storage systems are very challenging, and cannot be met with existing materials. The vast majority of the work to date has delineated materials into various classes, e.g., complex and metal hydrides, chemical hydrides, and sorbents. However, very recent studies indicate that mixtures of storage materials, particularly mixtures between various classes, hold promise to achieve technological attributes that materials within an individual class cannot reach. Our project involves a systematic, rational approach to designing novel multicomponent mixtures of materials with fast hydrogenation/dehydrogenation kinetics and favorable thermodynamics using a combination of state-of-the-art scientific computing and experimentation. We will use the accurate predictive power of first-principles modeling to understand the thermodynamic and microscopic kinetic processes involved in hydrogen release and uptake and to design new material/catalyst systems with improved properties. Detailed characterization and atomic-scale catalysis experiments will elucidate the effect of dopants and nanoscale catalysts in achieving fast kinetics and reversibility. And

  2. Measurement of electroweak effects and topological branching conditions in the reaction e(+)e(-) yields tau(+)tau(-) in the storage ring PETRA

    Science.gov (United States)

    Wiedenmann, Werner

    1988-10-01

    The detection of the electroweak interference in the production of tau-lepton-pairs at the highest obtainable energies in e(+)e(-) storage rings was investigated. Using the detector CELLO and Monte Carlo simulations, total cross section and charge asymmetry, for the production of tau-pairs are obtained. The measured cross sections are in agreement with theoretical expectations, from quantum electrodynamics and the Glashow-Salam-Weinberg (GSW) theory. The observed electroweak effects, leading to a charge asymmetry in the differential cross sections concord with GSW-expectations, and with the axial vector coupling constants of the tau-lepton. The tau-coupling constants agree with those of the electrons and muons, supporting the hypothesis of the universal coupling of leptons to the weak current. The measurement of the topological branching conditions of the tau-lepton is improved and previous measurements are confirmed.

  3. Experimental and numerical investigation of a packed-bed thermal energy storage device

    Science.gov (United States)

    Yang, Bei; Wang, Yan; Bai, Fengwu; Wang, Zhifeng

    2017-06-01

    This paper presents a pilot-scale setup built to study a packed bed thermal energy storage device based on ceramic balls randomly poured into a cylindrical tank while using air as heat transfer fluid. Temperature distribution of ceramic balls throughout the packed bed is investigated both experimentally and numerically. Method of characteristic is adopted to improve the numerical computing efficiency, and mesh independence is verified to guarantee the accuracy of numerical solutions and the economy of computing time cost at the same time. Temperature in tests is as high as over 600 °C, and modeling prediction shows good agreements with experimental results under various testing conditions when heat loss is included and thermal properties of air are considered as temperature dependent.

  4. Simulation of the Beam-Beam Effects in e+e- Storage Rings with a Method of Reducing the Region of Mesh

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2000-08-31

    A highly accurate self-consistent particle code to simulate the beam-beam collision in e{sup +}e{sup -} storage rings has been developed. It adopts a method of solving the Poisson equation with an open boundary. The method consists of two steps: assigning the potential on a finite boundary using the Green's function, and then solving the potential inside the boundary with a fast Poisson solver. Since the solution of the Poisson's equation is unique, the authors solution is exactly the same as the one obtained by simply using the Green's function. The method allows us to select much smaller region of mesh and therefore increase the resolution of the solver. The better resolution makes more accurate the calculation of the dynamics in the core of the beams. The luminosity simulated with this method agrees quantitatively with the measurement for the PEP-II B-factory ring in the linear and nonlinear beam current regimes, demonstrating its predictive capability in detail.

  5. The g-2 ring

    CERN Multimedia

    1974-01-01

    The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.

  6. Injector for CESAR (2 MeV electron storage ring): 2-beam, 2 MV van de Graaff generator.

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    The van de Graaff generator in its tank. For voltage-holding, the tank was filled with pressurized extra-dry nitrogen. 2 beams emanated from 2 separate electron-guns. The left beam, for injection into the CESAR ring, was pulsed at 50 Hz, with currents of up to 1 A for 400 ns. The right beam was sent to a spectrometer line. Its pulselength was also 400 ns, but the pulse current was 12 microA, at a rate variable from 50 kHz to 1 MHz. This allowed stabilization of the top-terminal voltage to an unprecedented stability of +- 100 V, i.e. 6E-5. Although built for a nominal voltage of 2 MV, the operational voltage was limited to 1.75 MV in order to minimize voltage break-down events.

  7. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Science.gov (United States)

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  8. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    Science.gov (United States)

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  9. Dream of Isochronous Ring Again

    CERN Document Server

    Hama, H

    2005-01-01

    More than 20 years ago, D.A.G. Deacon proposed an isochronous storage ring for FEL to avoid bunch heating and decreasing instantaneous gain [1]. Some of low momentum compaction (alpha) operations have been carried out, and recently coherent infrared radiation are observed on a 3rd generation light source. Because the 3rd generation rings are optimized to obtain very low emittance beam, the dispersion function in the arc sections are much reduced by introducing large bending radius, so that those are very big machines. Meanwhile N.A. Vinokurov et al. recently proposed a ring type SASE FEL based on a complete isochronous bending transport [2]. At least, experimental and theoretical study of the isochronous ring so far suggests nonlinear effects resulted from higher order dispersion and chromaticity declines the "complete" isochronous system. On the other hand, in a wavelength region of THz, tolerance of the path length along a turn of the ring seems to be within our reach. A concept to preserve of a form factor...

  10. Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation

    Science.gov (United States)

    2011-01-01

    Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH3−nRn (R = Me, Et; n = 0−3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2−nRn (R = Me, Et; n = 0−2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine−alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of ΔG° for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system. PMID:22962624

  11. An open-source data storage and visualization back end for experimental data.

    Science.gov (United States)

    Nielsen, Kenneth; Andersen, Thomas; Jensen, Robert; Nielsen, Jane H; Chorkendorff, Ib

    2014-04-01

    In this article, a flexible free and open-source software system for data logging and presentation will be described. The system is highly modular and adaptable and can be used in any laboratory in which continuous and/or ad hoc measurements require centralized storage. A presentation component for the data back end has furthermore been written that enables live visualization of data on any device capable of displaying Web pages. The system consists of three parts: data-logging clients, a data server, and a data presentation Web site. The logging of data from independent clients leads to high resilience to equipment failure, whereas the central storage of data dramatically eases backup and data exchange. The visualization front end allows direct monitoring of acquired data to see live progress of long-duration experiments. This enables the user to alter experimental conditions based on these data and to interfere with the experiment if needed. The data stored consist both of specific measurements and of continuously logged system parameters. The latter is crucial to a variety of automation and surveillance features, and three cases of such features are described: monitoring system health, getting status of long-duration experiments, and implementation of instant alarms in the event of failure.

  12. Thermodynamic Control System for cryogenic propellant storage : experimental and analytical performance assessment

    Science.gov (United States)

    Mer, Samuel; Thibault, Jean-Paul; Corre, Christophe

    2016-11-01

    Future operations in space exploration require to store cryogens for long duration. Residual heat loads induce cryogenic propellant vaporization and tank self-pressurization (SP), eventually leading to storage failure for large enough mission duration. The present study focuses on the Thermodynamic Venting System (TVS) control strategy : liquid propellant is pumped from the tank, cooled down by a heat exchanger and re-injected, as a jet, inside the tank. The injection is followed by vapor condensation and liquid bath destratification due to mixing. The system cold source is created thanks to a Vented Branch where a liquid fraction is withdrawn from the tank and expanded through a Joule-Thomson valve. The vented branch vaporization permits to cool down the injection loop. Quantitative analyses of SP and TVS control have been experimentally performed using a 110 L tank and a simulant fluid. A database of accurate temperature and pressure dynamics has been gathered and used to validate a homogeneous thermodynamic model which provides a fast prediction of the tank dynamics. The analytical model has been coupled with a multi-objective optimizer to identify system components and regulation strategies that maximize the tank storage duration for various mission types. The authors acknowledge the joint support of the Centre National d'Etudes Spatiales and Air Liquide Advanced Technologies.

  13. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  14. An experimental investigation of performance of a double pass solar air heater with thermal storage medium

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax.

  15. Injector for CESAR (2 MeV electron storage ring): 2-beam, 2 MV van de Graaff generator; tank removed.

    CERN Multimedia

    CERN PhotoLab

    1968-01-01

    The van de Graaff generator in its tank. For voltage-holding, the tank was filled with pressurized extra-dry nitrogen. 2 beams emanated from 2 separate electron-guns. The left beam, for injection into the CESAR ring, was pulsed at 50 Hz, with currents of up to 1 A for 400 ns. The right beam was sent to a spectrometer line. Its pulselength was also 400 ns, but the pulse current was 12 microA, at a rate variable from 50 kHz to 1 MHz. This allowed stabilization of the top-terminal voltage to an unprecedented stability of +- 100 V, i.e. 6E-5. Although built for a nominal voltage of 2 MV, the operational voltage was limited to 1.75 MV in order to minimize voltage break-down events. CESAR was terminated at the end of 1967 and dismantled in 1968. R.Nettleton (left) and H.Burridge (right) are preparing the van de Graaff for shipment to the University of Swansea.

  16. Physics of quantum rings

    CERN Document Server

    Fomin, Vladimir M

    2013-01-01

    This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is po

  17. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage

    Science.gov (United States)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  18. An experimental determination of the hot electron ring geometry in a Bumpy Torus and its implications for Bumpy Torus stability

    Energy Technology Data Exchange (ETDEWEB)

    Hillis, D.L.; Wilgen, J.B.; Bigelow, T.S.; Jaeger, E/F.; Swain, D.W.; Hankins, O.E.; Juhala, R.E.

    1986-10-01

    The hot electron rings of the ELMO Bumpy Torus (EBT) (Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1975), Vol. II, p. 141) are formed by electron cyclotron resonance heating (ECRH) and have an electron temperature of 350 to 500 keV. The original intention of these hot electron rings was to provide a local minimum in the magnetic field and, thereby, stabilize the simple interchange and flute modes, which are inherent in a closed field line bumpy torus. To evaluate the electron energy density of the EBT rings and determine if enough stored energy is present to provide a local minimum in the magnetic field, a detailed understanding of the spatial distribution of the rings is imperative. The purpose of this report is to measure the ring thickness and investigate its implications for bumpy torus stability. The spatial location and radial profile of the hot electron ring are measured with a unique metal ball pellet injector, which injects small metallic balls into the EBT ring plasma. From these measurements the radial extent (or ring thickness) is about 5 to 7 cm full width at half maximum for typical EBT operation, which is much larger than previously expected. These measurements and recent modeling of the EBT plasma indicate that the hot electron ring's stored energy may not be sufficient to produce a local minimum in the magnetic field.

  19. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  20. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  1. Antiproton cooling in the Fermilab Recycler Ring

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S.; Bolshakov, A.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, G.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G; Schmidt, C.W.; Seletskiy, S.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Zenkevich, P.; /Fermilab /Moscow, ITEP /Novosibirsk, IYF /Rochester U.

    2005-12-01

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  2. First-Principles Modeling and Experimental Investigation of Novel Materials for Energy Storage

    Science.gov (United States)

    Markus, Isaac M.

    ,2-dimethoxyethane (DME) is investigated in order to identify different contributions to the failure mechanism of this class of battery. Combined experimental and computational results indicated that the TFSI anion was susceptible to decomposition, which contributed to cathode passivation in cells employing saturated electrolyte, and to kinetic limitations in cells using dilute electrolytes. The combined work of this dissertation serves to demonstrate the capabilities of a combined experimental and computational approach to understanding and solving the challenges revolving energy storage and conversion materials. The ability to provide atomistic insights to experimental results allows the creation of design criteria for next generation materials, that leverage the insights gained from this combined approach.

  3. Experimental and theoretic investigations of thermal behavior of a seasonal water pit heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Chatzidiakos, Angelos

    Seasonal heat storages are considered essential for district heating systems because they offer flexibility for the system to integrate different fluctuating renewable energy sources. Water pit thermal storages (PTES) have been successfully implemented in solar district heating plants in Denmark...

  4. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit

    OpenAIRE

    Johnson, Maike; Fiss, Michael; Klemm, Torsten

    2016-01-01

    For solar process heat applications with steam as the working fluid and varying application parameters, a novel latent heat storage concept has been developed using an adaptation of a flat plate heat exchanger as the storage concept. Since the pressure level in these applications usually does not exceed 30 bar, an adaptation with storage material chambers arranged between heat transfer medium chambers is possible. Phase change materials are used as the storage medium, so that the isotherma...

  5. On the scaling law of single bunch transverse instability threshold current vs. the chromaticity in electron storage rings

    CERN Document Server

    Gao, J

    2002-01-01

    Based on the single bunch transverse instability theory established by Gao (Nucl. Instr. and Meth. A 416 (1998) 186), it is shown that the functional relation between the instability threshold bunch current and the chromaticity of the machine is I sub t sub h propor to xi sub c sup d , with d approx 1.3 and d approx 2.3 at potential well and microwave instability dominated bunch lengthening regimes, respectively. These scaling laws are confirmed by the experimental results from ESRF.

  6. Experimental investigation into a packed bed thermal storage solution for solar gas turbine systems

    CSIR Research Space (South Africa)

    Klein, P

    2013-09-01

    Full Text Available High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage...

  7. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    Science.gov (United States)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  8. Determinations of the angular and energy dependence of hard constituent scattering from $\\pi^{0}$ pair events at the CERN Intersecting Storage Rings

    CERN Document Server

    Angelis, A L S; Blumenfeld, B; Camilleri, L L; Chapin, T J; Cool, R L; del Papa, C; Di Lella, L; Dimcovski, Zlatomir; Hollebeek, R J; Lederman, Leon Max; Levinthal, D A; Linnemann, J T; Newman, C B; Phinney, N; Pope, B G; Pordes, S H; Rothenberg, A F; Rusack, R W; Segar, A M; Singh-Sidhu, J; Smith, A M; Tannenbaum, M J; Vidal, R A; Wallace-Hadrill, J S; Yelton, J M; Young, K K

    1982-01-01

    The authors present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back\\pi^{0}s of high transverse momentum (p/sub T/) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy \\sqrt{s} of the proton- proton collision. The cross-sections d sigma /dm at the two values of \\sqrt{s} satisfy a scaling law of the form d sigma /dm=G(x)/m/sup n/, where x=m(\\pi^{0},\\pi^{0})/ \\sqrt{s} and n =6.5+or-0.5. They show from the data that the leading\\pi^{0} carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and they exploit this to determine the angular dependence of the hard-scattering subprocess. They also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelast...

  9. Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring.

    Science.gov (United States)

    Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo

    2014-11-24

    Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.

  10. Low-energy direct photon production in p p and alpha alpha collisions at the cern intersecting storage rings

    CERN Document Server

    Choi, Young-il

    1986-01-01

    High transverse momentum (p(,T)) direct photons have given us some of our best evidence for low order perturbative QCD proces- ses in hadron collisions. It is also important to examine hadronic collisions with a weakly interacting probe in the low p(,T) region, where hadron interactions involve very complicated phenomena. A previous experiment at SQRT.(s) = 12 GeV has observed an excess of low p(,T) direct photons. The present experiment has studied direct soft photons in pp interactions at SQRT.(s) = 63 GeV and alpha-alpha interactions at SQRT.(s(,NN)) = 31.5 GeV at the CERN ISR. Comparisons of photon production with respect to track production in pp minimum bias events with that in pp events with high transverse energy (E(,T)) and with alpha-alpha minimum bias events are investigated. For alpha-alpha minimum bias data, within experimental errors there was no excess of photons with respect to tracks, compared with pp minimum bias data. But for pp high E(,T) data, we observed an interesting effect: as p(,T) i...

  11. Experimental Verification of a Battery Energy Storage System for Integration with Photovoltaic Generators

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2017-01-01

    Full Text Available This paper presents the experimental verification of a 2 kW battery energy storage system (BESS. The BESS comprises a full-bridge bidirectional isolated dc-dc converter and a PWM converter that is intended for integration with a photovoltaic (PV generator, resulting in leveling of the intermittent output power from the PV generator at the utility side. A phase-shift controller is also employed to manage the charging and discharging operations of the BESS based on PV output power and battery voltage. Moreover, a current controller that uses the d-q synchronous reference frame is proposed to regulate the dc voltage at the high-voltage side (HVS to ensure that the voltage ratio of the HVS with low-voltage side (LVS is equivalent to the transformer turns ratio. The proposed controllers allow fast response to changes in real power requirements and results in unity power factor current injection at the utility side. In addition, the efficient active power injection is achieved as the switching losses are minimized. The peak efficiency of the bidirectional isolated dc-dc converter is measured up to 95.4% during battery charging and 95.1% for battery discharging.

  12. Experimental characterization of a solar cooker with thermal energy storage based on solar salt

    Science.gov (United States)

    Coccia, G.; Di Nicola, G.; Tomassetti, S.; Gabrielli, G.; Chieruzzi, M.; Pierantozzi, M.

    2017-11-01

    High temperature solar cooking allows to cook food fast and with good efficiency. An unavoidable drawback of this technology is that it requires nearly clear-sky conditions. In addition, evening cooking is difficult to be accomplished, particularly on the winter season during which solar radiation availability is limited to a few hours in the afternoon in most of countries. These restrictions could be overcome using a cooker thermal storage unit (TSU). In this work, a TSU based on solar salt was studied. The unit consists of two metal concentric cylindrical vessels, connected together to form a double-walled vessel. The volume between walls was filled with a certain amount of nitrate based phase change material (solar salt). In order to characterize the TSU, a test bench used to assess solar cooker performance was adopted. Experimental load tests with the TSU were carried out to evaluate the cooker performance. The obtained preliminary results show that the adoption of the solar salt TSU seems to allow both the opportunity of evening cooking and the possibility to better stabilize the cooker temperature when sky conditions are variable.

  13. Experimental study on a small scale of gas hydrate cold storage apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yingming; Li, Gang; Liu, Daoping; Liu, Ni; Qi, Yingxia [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liang, Deqing; Guo, Kaihua; Fan, Shuanshi [Guangzhou Institute of Energy Conversion, The Chinese Academy of Sciences, Guangzhou (China)

    2010-11-15

    To have an overall investigation of cold storage characteristics to help to promote the application, a novel small scale of gas hydrate cold storage apparatus was designed. The amount of cold energy, growth rate, Hydrate Packed Factor (HPF) and overall heat transfer coefficient during the cold storage process were calculated and analyzed under different heat exchangers, sodium dodecyl benzene sulfonate (SDS) concentrations, hydration enhancement ways, inlet coolant temperatures and flow rates, etc. Results show that the cold storage performance could be improved greatly by adding a heat exchanger with vertical metal fins; SDS with concentration of 0.04 wt.% could help to improve the cold storage performance effectively. In addition, decreasing of the coolant temperature or increasing of the coolant flow rate could also make the amount of cold storage increased; it was found that mechanical blending for 5 min was the better hydration enhancement way than others, which presents the perspective for practical application. (author)

  14. Vertical beam size measurement in the CESR-TA e{sup +}e{sup −} storage ring using x-rays from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M.P.; Fontes, E. [Cornell University, Ithaca, NY 14853 (United States); Heltsley, B.K., E-mail: bkh2@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Hopkins, W.; Lyndaker, A.; Peterson, D.P.; Rider, N.T.; Rubin, D.L.; Savino, J.; Seeley, R.; Shanks, J. [Cornell University, Ithaca, NY 14853 (United States); Flanagan, J.W. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2014-06-01

    We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e{sup +} and e{sup −} beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10–100μm on a turn-by-turn, bunch-by-bunch basis at e{sup ±} beam energies of ∼2GeV. At such beam energies the xBSM images X-rays of ϵ≈1–10keV (λ≈0.1–1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×10{sup 9} particles) per bunch and inter-bunch spacing of as little as 4 ns. At E{sub b}=2.1GeV, systematic precision of ∼1μm is achieved for a beam size of ∼12μm; this is expected to scale as ∝1/σ{sub b} and ∝1/E{sub b}. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.

  15. CHICSi-a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. III. readout system

    Science.gov (United States)

    Carlén, L.; Førre, G.; Golubev, P.; Jakobsson, B.; Kolozhvari, A.; Marciniewski, P.; Siwek, A.; van Veldhuizen, E. J.; Westerberg, L.; Whitlow, H. J.; Østby, J. M.

    2004-01-01

    (CHICSi) Celsius Heavy Ion Collaboration Si detector system is a high granularity, modular detector telescope array for operation around the cluster-jet target/circulating beam intersection of the CELSIUS storage ring at the The. Svedberg Laboratory in Uppsala, Sweden. It is able to provide identity and momentum vector of up to 100 charged particles and fragments from proton-nucleus and nucleus-nucleus collisions at intermediate energies, 50-1000AMeV. All detector telescopes as well as the major part of electronic readout system are placed inside the target chamber in ultra-high vacuum (UHV, 10-9-10-7Pa). This requires Very Large Scale Integrated (VLSI) microchip for the spectroscopic signal processing and the generation and transport of digital control signals. Eighteen telescopes, read out with chip-on-board technique by ceramics Mother Boards (MB) and corresponding 18 microchips are mounted on a 450×45mm2 Grand Mother Board (GMB), processed on FR4 glass-fibre material. Each of these 28GMB units contains a daisy-chain organisation of the VLSI chips and associated protection circuits. Analogue-to-digital conversion of the spectroscopic signals is performed on a board outside the chamber which is connected on one side to a power distribution board, directly attached to a UHV mounting flange, and on the other side to the VME-based data acquisition system (CHICSiDAQ). This in its turn is connected via a fibre-optic link to the general TSL acquisition system (SVEDAQ), and in this way data from auxiliary detector systems, read out in CAMAC mode, can be stored in coincidence with CHICSi data.

  16. Experimental Study of Thermal Energy Storage Characteristics using Heat Pipe with Nano-Enhanced Phase Change Materials

    Science.gov (United States)

    Krishna, Jogi; Kishore, P. S.; Brusly Solomon, A.

    2017-08-01

    The paper presents experimental investigations to evaluate thermal performance of heat pipe using Nano Enhanced Phase Change Material (NEPCM) as an energy storage material (ESM) for electronic cooling applications. Water, Tricosane and nano enhanced Tricosane are used as energy storage materials, operating at different heating powers (13W, 18W and 23W) and fan speeds (3.4V and 5V) in the PCM cooling module. Three different volume percentages (0.5%, 1% and 2%) of Nano particles (Al2O3) are mixed with Tricosane which is the primary PCM. This experiment is conducted to study the temperature distributions of evaporator, condenser and PCM during the heating as well as cooling. The cooling module with heat pipe and nano enhanced Tricosane as energy storage material found to save higher fan power consumption compared to the cooling module that utilities only a heat pipe.

  17. Experimental and numerical investigations of a small scale double-reflector concentrating solar system with latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Woh, Foong Chee

    2011-07-01

    The main aim of this doctoral thesis is to analyze a small scale double- reflector concentrating solar system with latent heat storage in temperature range 230 to 250 Celsius so that cooking can be done efficiently and effectively in the late evening or at night time. Many solar heat collection systems are based on transportation of heat from the focal point to the storage by a circulating heat transfer fluid. In this study, double-reflector arrangement is designed and tested to heat up the thermal heat storage directly without using any heat transport fluid. This makes the system more simple and easy to fabricate. NaNO3-KNO3 binary mixture is selected as the latent heat storage medium because the melting temperature of around 220 Celsius is in a suitable range.There are several objectives in this study. First of all, characterization of phase change materials has been carried out using differential scanning calorimeter (DSC). Important information such as heat capacity as a function of temperature, melting temperature, solid-solid phase transition temperature, enthalpy of fusion, and enthalpy of solid-solid phase transition can be obtained and used in the phase change numerical simulations.After the characterization and selection of a phase change material, a double-reflector system with thermal energy storage was designed and constructed. In order to test the concept of the design, a reflection system using laser diode technique was used in a smoke chamber. Focal point of the primary reflector was determined experimentally and compared with the theoretical calculations. The latent heat storage unit was filled with the NaNO3-KNO3 binary mixture until 90% full. Copper top plate and fin was used to increase the heat transfer rate into the phase change material. With the double-reflector system, thermal charging of the heat storage was carried out under the sun.Numerical simulations of the thermal charging process have been done using finite element model from COMSOL

  18. DESY: Synchrotron and storage rings

    CERN Multimedia

    1972-01-01

    An improvement programme has been under way for several years at the 7.5 GeV électron synchrotron at DESY. In particular it has been designed to increase the accelerated beam intensity, to achieve better quality of the ejected électron beams and photon beams and to improve machine reliability.

  19. The CERN Intersecting Storage Rings

    CERN Document Server

    Myers, Stephen

    2016-01-01

    The following sections are included: Introduction and history ; Phase displacement and stacking ; Vacuum ; Working lines and space charge compensation ; Schottky scans ; Centring the accumulated beam in the aperture ; Inserting markers in the stack ; Acceleration by phase displacement ; Computer control of accelerators ; Working close to the integer ; Low β insertions and luminosity ; Stochastic cooling ; Summary: What did ISR teach us? ; References

  20. Ground Movement in SSRL Ring

    Energy Technology Data Exchange (ETDEWEB)

    Sunikumar, Nikita; /UCLA /SLAC

    2011-08-25

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  1. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage

    OpenAIRE

    Peiró Bell-lloch, Gerard; Gasia, Jaume; Miró, Laia; Cabeza, Luisa F.

    2015-01-01

    The present paper provides on one hand, a literature review of the different studies available in the scientific literature where the concept of multiple phase change materials (PCM) configuration, also named cascaded or multi-stage, has been presented and on the other hand, an experimental evaluation of the advantages of using the multiple PCM configuration instead of the single PCM configuration in thermal energy storage (TES) systems at pilot plant to fill the gap of experiment...

  2. CO2 Leakage, Storage and Injection Monitoring by Using Experimental, Numerical and Analytical Methods

    Directory of Open Access Journals (Sweden)

    A. Namdar

    2014-09-01

    Full Text Available The maintaining environment is priority to any plan in human life. It is planned for monitoring CO2 injection, storage and leakage by using geophysical, numerical and analytical methods in seismic zone. In this regard the mineralogy, chemical composite, lithology, seismic wave propagation, small earthquake, accelerating natural earthquake, thermal stress-strain modeling, ground movement level and fault activation will be consider. It is expected to better understand CO2 leakage, storage and injection process and problems.

  3. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit

    Science.gov (United States)

    Johnson, Maike; Fiß, Michael; Klemm, Torsten

    2016-05-01

    For solar process heat applications with steam as the working fluid and varying application parameters, a novel latent heat storage concept has been developed using an adaptation of a flat plate heat exchanger as the storage concept. Since the pressure level in these applications usually does not exceed 30 bar, an adaptation with storage material chambers arranged between heat transfer medium chambers is possible. Phase change materials are used as the storage medium, so that the isothermal evaporation of steam during discharging of the storage is paired with the isothermal solidification of the storage material. Heat transfer structures can be inserted into the chambers to adjust the power level for a given application. By combining the required number of flat plate heat exchanger compartments and inserting the appropriate heat transfer structure, the design can easily be adjusted for the required power level and capacity for a specific application. Within this work, the technical feasibility of this concept is proven. The dependence of the operating characteristics on the geometry of the heat exchanger is identified. A focus is on varying the power density by integrating conductive heat structures in the PCM.

  4. EBT ring physics

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A. (ed.)

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  5. 'Slow'- and 'fast'-light in a single ring-resonator circuit: theory, experimental observations, and sensing applications

    NARCIS (Netherlands)

    Uranus, H.P.; Zhuang, L.; Roeloffzen, C.G.H.; Hoekstra, Hugo

    2007-01-01

    Transfer matrix method (TMM) was used to study the phenomena of ‘slow’- and ‘fast’-light in a single two-port ring-resonator (TPRR) circuit theoretically. Their classifications into ‘slow’- and ‘fast’-light with negative and positive group velocity (v_g), where ‘slow’ means |v_g|

  6. Experimental investigation of influence of Reynolds number on synthetic jet vortex rings impinging onto a solid wall

    Science.gov (United States)

    Xu, Yang; He, GuoSheng; Kulkarni, Varun; Wang, JinJun

    2017-01-01

    Time-resolved particle image velocimetry was employed to study the effect of Reynolds number ( Re sj) on synthetic jet vortex rings impinging onto a solid wall. Four Reynolds numbers ranging from 166 to 664 were investigated for comparison while other parameters were kept constant. It is found that the Reynolds number has a significant impact on the spatial evolution of near-wall vortical structures of the impinging synthetic jet. Velocity triple decomposition reveals that periodic Reynolds shear stresses produced by both impinging and secondary vortex rings agree well with a four-quadrant-type distribution rule, and the random velocity fluctuations are strengthened as Re sj increases. For radial wall jet, radial velocity profiles exhibit a self-similar behavior for all Re sj, and this self-similar profile gradually deviates from the laminar solution as Re sj is increased. In particular, the self-similar profile for low Re sj (166) coincides with the laminar solution indicating that periodic velocity fluctuations produced by vortex rings have little effect on the velocity profile of the laminar wall jet. This also provides evidence that the impinging synthetic jet is more effective in mixing than the continuous jet for the laminar flow. For the high Re sj, the mean skin friction coefficient has a slower decay rate after reaching peak, and the radial momentum flux has a higher value at locations far away from the impingement region, both of these can be attributed to the enhanced random fluctuations.

  7. Laser system for cooling of relativistic C{sup 3+}-ion beams in storage rings; Lasersystem zur Kuehlung relativistischer C{sup 3+}-Ionenstrahlen in Speicherringen

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Tobias

    2015-02-15

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results

  8. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  9. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel

    KAUST Repository

    Ybyraiymkul, Doskhan

    2017-07-08

    One of the main challenges in the adsorbed natural gas (ANG) storage system is the thermal effect of adsorption, which significantly lowers storage capacity. These challenges can be solved by efficient thermal management system. In this paper, influence of thermal management on storage capacity of the ANG vessel was studied experimentally and numerically. 3D numerical model was considered in order to understand heat transfer phenomena and analyze influence of thermal control comprehensively. In addition, a detailed 2D axisymmetric unit cell model of adsorbent layer with heat exchanger was developed, followed by optimization of heat exchanging device design to minimize volume occupied by fins and tubes. Heat transfer, mass transfer and adsorption kinetics, which occur in ANG vessel during charging process, are accounted for in models. Nelder-Mead method is implemented to obtain the geometrical parameters, which lead to the optimal characteristics of heat exchange. A new optimized configuration of ANG vessel was developed with compact heat exchanger. Results show that storage capacity of the ANG vessel increased significantly due to lowering of heat exchanger volume for 3 times from 13.5% to 4.3% and effective temperature control.

  10. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Science.gov (United States)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  11. An Open-Source Data Storage and Visualization Back End for Experimental Data

    DEFF Research Database (Denmark)

    Nielsen, Kenneth; Andersen, Thomas; Jensen, Robert

    2014-01-01

    In this article, a flexible free and open-source software system for data logging and presentation will be described. The system is highly modular and adaptable and can be used in any laboratory in which continuous and/or ad hoc measurements require centralized storage. A presentation component f...

  12. Prevention of spontaneous combustion in coal stockpiles : Experimental results in coal storage yard

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Arriaga, A.; Schmal, D.; Visser, G.H.

    1999-01-01

    The spontaneous ignition of coal stockpiles is a serious economic and safety problem. This paper deals with oxidation and spontaneous combustion of coal piles laid in coal storage yard and the measures to avoid the heat losses produced. Investigations on self heating were carried out with five test

  13. Design and building of a new experimental setup for testing hydrogen storage materials

    DEFF Research Database (Denmark)

    Andreasen, A.

    2005-01-01

    For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applications such as cars. To test potential hydrogen storage materials with respect to capacity, kinetics andthermodynamics the Materials Research...

  14. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  15. Experimental investigation on the characteristics of polyethylene glycol/cement composites as thermal energy storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Department of Material Science and Engineering, Nanjing University, Nanjing (China); Fang, G.Y. [School of Physics, Nanjing University, Nanjing (China)

    2010-10-15

    The polyethylene glycol/cement composites as thermal energy storage materials were prepared by blending polyethylene glycol and cement. In composite materials, polyethylene glycol (PEG) is used as the phase change material for thermal energy storage and cement acts as the supporting material. A Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD), and scanning electronic microscope (SEM) were used to determine the chemical structure, the crystalloid phase, and microstructure of the polyethylene glycol/cement composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The SEM results showed that the polyethylene glycol was well dispersed in the porous network of the cement. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Neptune's rings

    Science.gov (United States)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  17. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua

    2011-01-01

    Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...... to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests...

  18. Operating Wireless Sensor Nodes without Energy Storage: Experimental Results with Transient Computing

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed

    2016-12-01

    Full Text Available Energy harvesting is increasingly used for powering wireless sensor network nodes. Recently, it has been suggested to combine it with the concept of transient computing whereby the wireless sensor nodes operate without energy storage capabilities. This new combined approach brings benefits, for instance ultra-low power nodes and reduced maintenance, but also raises new challenges, foremost dealing with nodes that may be left without power for various time periods. Although transient computing has been demonstrated on microcontrollers, reports on experiments with wireless sensor nodes are still scarce in the literature. In this paper, we describe our experiments with solar, thermal, and RF energy harvesting sources that are used to power sensor nodes (including wireless ones without energy storage, but with transient computing capabilities. The results show that the selected solar and thermal energy sources can operate both the wired and wireless nodes without energy storage, whereas in our specific implementation, the developed RF energy source can only be used for the selected nodes without wireless connectivity.

  19. Comparison Study of Two Semi-Active Hybrid Energy Storage Systems for Hybrid Electric Vehicle Applications and Their Experimental Validation

    Directory of Open Access Journals (Sweden)

    Haitao Min

    2017-02-01

    Full Text Available Both the battery/supercapacitor (SC and SC/battery are two common semi-active configurations of hybrid energy storage systems (HESSs in hybrid electric vehicles, which can take advantage of the battery’s and supercapacitor’s respective characteristics, including the energy ability, power ability and the long lifetime. To explore in depth the characteristics and applicability of the two kinds of HESS, an analysis and comparison study is proposed in this paper. Based on the data collected from public transit hybrid electric bus (PTHEB with battery-only on-board energy storage, the range and distribution probability of electric power/energy demand is comprehensively statistically analyzed with the decomposing and normalizing methods. Accordingly, the performance of each topology under different parameter matching conditions but same mass, volume and cost values with battery-only energy storage, are presented and compared quantitatively. The results show that both HESS configurations can meet the electric power demand of the hybrid electric vehicle (HEV through reasonable design. In particular, the SC/battery can make better use of the SC features resulting in high efficiency and long life cycles compared with the battery/SC. Equally, it proves that the SC/battery topology is a better choice for the HEV. Finally, an experimental validation of a real HEV is carried out, which indicated that a 7% fuel economy improvement can be achieved by a SC/battery system compared with battery-only topology.

  20. A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Qiao Zhang

    2016-01-01

    Full Text Available In this paper, a simple and efficient rule based energy management system for battery and supercapacitor hybrid energy storage system (HESS used in electric vehicles is presented. The objective of the proposed energy management system is to focus on exploiting the supercapacitor characteristics and on increasing the battery lifetime and system efficiency. The role of the energy management system is to yield battery reference current, which is subsequently used by the controller of the DC/DC converter. First, a current controller is designed to realize load current distribution between battery and supercapacitor. Then a voltage controller is designed to ensure the supercapacitor SOC to fluctuate within a preset reasonable variation range. Finally, a commercial experimental platform is developed to verify the proposed control strategy. In addition, the energy efficiency and the cost analysis of the hybrid system are carried out based on the experimental results to explore the most cost-effective tradeoff.

  1. Ring theory

    CERN Document Server

    Rowen, Louis H

    1991-01-01

    This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers:**""As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of non

  2. Five-membered rings as diazo components in optical data storage devices: An ab initio investigation of the lowest singlet excitation energies

    DEFF Research Database (Denmark)

    Åstrand, P.-O.; Sommer-Larsen, P.; Hvilsted, Søren

    2000-01-01

    The two lowest singlet excitation energies of 18 azo dyes have been studied by ab initio quantum-chemical methods within the second-order polarization propagator approximation (SOPPA). Various combinations of five-membered rings (furan, thiophene, pyrrole, oxazole, thiazole, and imidazole) have...

  3. Experimental evaluation of sand fly collection and storage methods for the isolation and molecular detection of Phlebotomus-borne viruses.

    Science.gov (United States)

    Remoli, Maria Elena; Bongiorno, Gioia; Fortuna, Claudia; Marchi, Antonella; Bianchi, Riccardo; Khoury, Cristina; Ciufolini, Maria Grazia; Gramiccia, Marina

    2015-11-09

    Several viruses have been recently isolated from Mediterranean phlebotomine sand flies; some are known to cause human disease while some are new to science. To monitor the Phlebotomus-borne viruses spreading, field studies are in progress using different sand fly collection and storage methods. Two main sampling techniques consist of CDC light traps, an attraction method allowing collection of live insects in which the virus is presumed to be fairly preserved, and sticky traps, an interception method suitable to collect dead specimens in high numbers, with a risk for virus viability or integrity. Sand flies storage requires a "deep cold chain" or specimen preservation in ethanol. In the present study the influence of sand fly collection and storage methods on viral isolation and RNA detection performances was evaluated experimentally. Specimens of laboratory-reared Phlebotomus perniciosus were artificially fed with blood containing Toscana virus (family Bunyaviridae, genus Phlebovirus). Various collection and storage conditions of blood-fed females were evaluated to mimic field procedures using single and pool samples. Isolation on VERO cell cultures, quantitative Real time-Retro-transcriptase (RT)-PCR and Nested-RT-PCR were performed according to techniques commonly used in surveillance studies. Live engorged sand flies stored immediately at -80 °C were the most suitable sample for phlebovirus identification by both virus isolation and RNA detection. The viral isolation rate remained very high (26/28) for single dead engorged females frozen after 1 day, while it was moderate (10/30) for specimens collected by sticky traps maintained up to 3 days at room temperature and then stored frozen without ethanol. Opposed to viral isolation, molecular RNA detection kept very high on dead sand flies collected by sticky traps when left at room temperature up to 6 days post blood meal and then stored frozen in presence (88/95) or absence (87/88) of ethanol. Data were

  4. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results

    Science.gov (United States)

    Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects

  5. An experimental study of dolomite dissolution kinetics at conditions relevant to CO2 geological storage

    NARCIS (Netherlands)

    Baritantonaki, Angeliki; Bolourinejad, Panteha; Herber, Rien

    The kinetics of dolomite dissolution have been experimentally investigated under subsurface conditions characteristic of the Rotliegend gas fields in the NE of The Netherlands. Experiments were performed in closed, stirred, batch reactors at far from equilibrium conditions, with dolomite powders of

  6. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    1999-05-01

    electrons is negligibly small. We introduce the ion plasma frequency squared defined by ω[over ^]_{pb}^{2}=4πn[over ^]_{b}Z_{b}^{2}e^{2}/γ_{b}m_{b}, and the fractional charge neutralization defined by f=n[over ^]_{e}/Z_{b}n[over ^]_{b}, where n[over ^]_{b} and n[over ^]_{e} are the characteristic ion and electron densities. The equilibrium and stability analysis is carried out for arbitrary normalized beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}, and arbitrary fractional charge neutralization f, consistent with radial confinement of the beam particles. For the moderately high beam intensities envisioned in the proton linacs and storage rings for the Accelerator for Production of Tritium and the Spallation Neutron Source, the normalized beam intensity is typically ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}≲ 0.1. For heavy ion fusion applications, however, the transverse beam emittance is very small, and the space-charge-dominated beam intensity is much larger, with ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}≲ 2γ_{b}^{2}. The stability analysis shows that the instability growth rate Imω increases with increasing normalized beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}} and increasing fractional charge neutralization f. In addition, the instability is strongest (largest growth rate for perturbations with azimuthal mode number ℓ=1, corresponding to a simple (dipole transverse displacement of the beam ions and the background electrons. For the case of overlapping step-function density profiles for the beam ions and background electrons, corresponding to monoenergetic ions and electrons, a key result is that there is no threshold in beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}} or fractional charge neutralization f for the onset of instability. Finally, for the case of continuously varying density profiles with parabolic profile shape, a semiquantitative estimate is made of the effects of the corresponding spread in (depressed betatron frequency on stability

  7. Experimental comparison of noise and resolution for 2k and 4k storage phosphor radiography systems.

    Science.gov (United States)

    Flynn, M J; Samei, E

    1999-08-01

    The purpose of this study was to compare the image quality for a digital storage phosphor system using 1760 x 2140 (2k) and 3520 x 4280 (4k) image arrays. Measurements were made on a chest radiography system (Fuji FCR-9501) with special provisions to be operated in both 2k (standard) and 4k (HQ) modes. Presampled modulation transfer functions (MTF) were measured using an edge method. Noise power spectra (NPS) were determined for different input exposures by two-dimensional Fourier analysis. These measures along with exposure measurements and an x-ray spectral model were used to determine the frequency-dependent detective quantum efficiency DQE (f) of the system for the 4k and the 2k modes. The magnitude of the NPS for the 4k mode was about 1/2 that of the 2k mode. A MTF value of 0.5 was found at 1.25 cycles/mm for the 4k system and 1.50 cycles/mm for the 2k system. The 4k images had an extended MTF of 0.1 at 4.5 cycles/mm in the plate-scan direction. Overall, the DQE (f) of the 4k mode was slightly better than that for the 2k mode by about 0.02 due primarily to its better noise characteristics.

  8. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  9. INVESTIGATIONS OF THE FLOW INTO A STORAGE TANK BY MEANS OF ADVANCED EXPERIMENTAL AND THEORETICAL METHODS

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    Advanced experimental methods were applied to study flow structures of a water jet entering a tank from the bottom. A squared experimental glass tank with a volume of about 140 l was used. Above the inlet pipe a flat plate was installed, as shown in the figure. The goal of the investigations...... that the luminescence intensity depends on the water temperature, the temperature fields in the tank can be visualized and also be recorded with a camera. The measurements were compared with calculations of the flow and temperature fields carried out with the Computational Fluid Dynamics (CFD) tool Fluent. In future...... is to study the influence of the inlet device geometry and of the operating conditions (the flow rate, draw-off volume, and temperatures) on the thermal stratification in the tank. Measurements of the flow and temperature fields were carried out with two visualization techniques: - To visualize the flow field...

  10. Recent progress on the hydrogen storage properties of ZrCo-based alloys applied in International Thermonuclear Experimental Reactor (ITER

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-02-01

    Full Text Available Under the development of International Thermonuclear Experimental Reactor (ITER system aimed at realizing the controllable fusion reaction to solve the energy crisis fundamentally, there is an urgent need to find an appropriate material for tritium handling. ZrCo alloy is considered to be a promising candidate for the storage and delivery of hydrogen isotopes due to the favorable characteristics such as low plateau pressure for absorption, high dissociation pressure at moderate temperature and better ability of trapping 3He. However, the hydrogen induced disproportionation and the slower recovery/deliverty rate of ZrCo-based alloys have limited their further application in ITER system. This review summarizes the efforts towards enhancing the hydrogen storage properties of ZrCo-based alloys including element substitution, surface modification, disproportionation mechanism investigation and the isotope effect study. Element substitution and surface modification play positive role to improve the anti-disproportionation ability and kinetic property of the alloys. However, the ZrCo-based alloys require to be further modified by more attempts such as new composition, novelty modification method or catalyst addition in order to better satisfy the application demands for tritium handling. Moreover, new insight for further understanding the inner disproportionation mechanisms of this material is needed by combining the advance characterization and theoretical analysis, which is in favor of addressing the disproportionation problem of the ZrCo-based alloys essentially.

  11. The white SR spectrum experimental station

    CERN Document Server

    Ancharov, A I; Tolochko, B P; Sukhorukov, A V; Baru, S E; Savinov, G A; Kosov, A V; Sheromov, M A; Sikka, S K; Momin, S N

    2000-01-01

    A new experimental station for working with white synchrotron radiation is described. Radiation from the bending magnet of the VEPP-4 storage ring is used. The station is destined for study of structures at high pressure by energy-dispersive and Laue diffraction methods.

  12. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization.

    Science.gov (United States)

    Morrell, William C; Birkel, Garrett W; Forrer, Mark; Lopez, Teresa; Backman, Tyler W H; Dussault, Michael; Petzold, Christopher J; Baidoo, Edward E K; Costello, Zak; Ando, David; Alonso-Gutierrez, Jorge; George, Kevin W; Mukhopadhyay, Aindrila; Vaino, Ian; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Garcia Martin, Hector

    2017-12-15

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDD and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.

  13. Numerical Determination and Experimental Validation of a Technological Specimen Representative of High-Pressure Hydrogen Storage Vessels

    Science.gov (United States)

    Gentilleau, B.; Touchard, F.; Grandidier, J.-C.; Mellier, D.

    2015-09-01

    A technological specimen representative of type IV high-pressure hydrogen storage vessels is developed. An analytical model is used to compute fiber orientations in the specimen in order to be as representative as possible of the stress level reached in a tank during pressurization. A three-dimensional finite-element model is used to determine the best stacking sequence with these fiber orientations. A validation is done by performing tests with digital image correlation in order to measure displacements on the lateral side of the specimen. A comparison between the calculated and experimentally found strain fields is made. The results obtained highlight the influence of stacking sequence on the development of damage and the difficulty arising in designing representative specimens.

  14. Experimental study of soil water storage capacity on rocky slopes in the Negev Highlands, Israel

    Science.gov (United States)

    Hikel, Harald; Kuhn, Nikolaus; Schwanghart, Wolfgang

    2010-05-01

    - February) were analyzed. Based on experiments, analysis of rainfall records, soil properties and infiltration rates, it was possible to estimate the recurrence interval of events generating sufficient runoff to wet soil patches to a degree that is suitable for plant growth. The preliminary results indicate that a minimum effective rainfall amount of 2.5 mm in the soil patch contribution area is required to saturate soil patches with water. Such low rainfall events are relatively frequent in this region of the Negev, indicating that there is potential to frequently fill soil pore volume. The storage capacity of the soil is particularly relevant for plant water supply during periods without rain. Our results therefore show that the impact of climate change in drylands can only be predicted by taking the soil water storage capacity into account. The study also illustrates how rainfall simulation experiments and the analysis of meteorological records can be combined as a tool for the assessment of environmental change.

  15. Experimental measurements of thermal properties of high-temperature refractory materials used for thermal energy storage

    Science.gov (United States)

    El-Leathy, Abdelrahman; Jeter, Sheldon; Al-Ansary, Hany; Abdel-Khalik, Said; Golob, Matthew; Danish, Syed Noman; Saeed, Rageh; Djajadiwinata, Eldwin; Al-Suhaibani, Zeyad

    2016-05-01

    This paper builds on studies conducted on thermal energy storage (TES) systems that were built as a part of the work performed for a DOE-funded SunShot project titled "High Temperature Falling Particle Receiver". In previous studies, two small-scale TES systems were constructed for measuring heat loss at high temperatures that are compatible with the falling particle receiver concept, both of which had shown very limited heat loss. Through the course of those studies, it became evident that there was a lack of information about the thermal performance of some of the insulating refractory materials used in the experiments at high temperatures, especially insulating firebrick and perlite concrete. This work focuses on determining the thermal conductivities of those materials at high temperatures. The apparatus consists of a prototype cylindrical TES bin built with the same wall construction used in previous studies. An electric heater is placed along the centerline of the bin, and thermocouples are used to measure temperature at the interfaces between all layers. Heat loss is measured across one of the layers whose thermal conductivity had already been well established using laboratory experiments. This value is used to deduce the thermal conductivity of other layers. Three interior temperature levels were considered; namely, 300°C, 500°C, and 700°C. Results show that the thermal conductivity of insulating firebrick remains low (approximately 0.22 W/m.K) at an average layer temperature as high as 640°C, but it was evident that the addition of mortar had an impact on its effective thermal conductivity. Results also show that the thermal conductivity of perlite concrete is very low, approximately 0.15 W/m.K at an average layer temperature of 360°C. This is evident by the large temperature drop that occurs across the perlite concrete layer. These results should be useful for future studies, especially those that focus on numerical modeling of TES bins.

  16. Experimental constraints on silicic magma storage at Hekla volcano (Iceland) and potential implications for pre-eruptive deformation

    Science.gov (United States)

    Weber, Gregor; Castro, Jonathan

    2017-04-01

    Understanding the conditions that culminate in explosive eruptions of silicic magma is important for volcanic hazards mitigation. However, geological records of volcanoes typically show a wide range of eruptive behaviour and magnitude for individual eruptive centres. In order to evaluate future scenarios of eruption precursors, namely pre-eruptive deformation, magmatic system variables for different eruption types need to be constrained. Here we use experimental petrology and microanalysis of plagioclase crystals to clarify the P-T-x state under which rhyodacitic melts accumulated prior to Hekla Volcano's H3 eruption; the largest Holocene Plinian eruption in Iceland. Cobalt-buffered, H2O-saturated phase equilibrium experiments reproduce the natural H3 pumice phenocryst assemblage (pl>fa+cpx>ilm+mt>ap+zrc) and glass chemistry, at 850±15˚C and PH2O of 130 to 175 MPa, implying shallow crustal magma storage between 5 and 6.6 km. The systematics of FeO and anorthite (CaAl2Si2O8) content in plagioclase reveal that thermal gradients were more important than compositional mixing or mingling within this magma reservoir. As these findings indicate magma storage much shallower than is currently thought of Hekla's mafic system, we use the constrained storage depth combined with deformation modelling to help forecast surface uplift patterns that could stem from the input of magma in reservoirs at different depth prior to an eruption. Using finite element modelling, we show that the vertical surface displacements for silicic magma accumulation sourced from about 6 km depths could potentially be more focussed than those observed in recent mafic events, which are fed from a lower crustal storage zone. Our results show how petrological reconstruction of magmatic system variables can link signs of pre-eruptive geophysical unrest to magmatic processes occurring in reservoirs at shallow depths. This will enhance our abilities to use deformation measurements (e.g. InSAR and GPS) in

  17. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall...

  18. Mechanism of Alkoxy Groups Substitution by Grignard Reagents on Aromatic Rings and Experimental Verification of Theoretical Predictions of Anomalous Reactions

    Science.gov (United States)

    Jiménez-Osés, Gonzalo; Brockway, Anthony J.; Shaw, Jared T.; Houk, K. N.

    2013-01-01

    The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated. PMID:23601086

  19. On the embryonic cell division beyond the contractile ring mechanism: experimental and computational investigation of effects of vitelline confinement, temperature and egg size

    Directory of Open Access Journals (Sweden)

    Evgeny Gladilin

    2015-12-01

    Full Text Available Embryonic cell division is a mechanical process which is predominantly driven by contraction of the cleavage furrow and response of the remaining cellular matter. While most previous studies focused on contractile ring mechanisms of cytokinesis, effects of environmental factors such as pericellular vitelline membrane and temperature on the mechanics of dividing cells were rarely studied. Here, we apply a model-based analysis to the time-lapse imaging data of two species (Saccoglossus kowalevskii and Xenopus laevis with relatively large eggs, with the goal of revealing the effects of temperature and vitelline envelope on the mechanics of the first embryonic cell division. We constructed a numerical model of cytokinesis to estimate the effects of vitelline confinement on cellular deformation and to predict deformation of cellular contours. We used the deviations of our computational predictions from experimentally observed cell elongation to adjust variable parameters of the contractile ring model and to quantify the contribution of other factors (constitutive cell properties, spindle polarization that may influence the mechanics and shape of dividing cells. We find that temperature affects the size and rate of dilatation of the vitelline membrane surrounding fertilized eggs and show that in native (not artificially devitellinized egg cells the effects of temperature and vitelline envelope on mechanics of cell division are tightly interlinked. In particular, our results support the view that vitelline membrane fulfills an important role of micromechanical environment around the early embryo the absence or improper function of which under moderately elevated temperature impairs normal development. Furthermore, our findings suggest the existence of scale-dependent mechanisms that contribute to cytokinesis in species with different egg size, and challenge the view of mechanics of embryonic cell division as a scale-independent phenomenon.

  20. Summary of the AccNet-EuCARD Workshop on Optics Measurements, Corrections and Modelling for High-Performance Storage Rings “OMCM”, CERN, Geneva, 20-22 June 2011

    CERN Document Server

    Bartolini, R; Calaga, R; Einfeld, D; Giovannozzi, M; Koutchouk, J-P; Milardi, C; Safranek, J; Tomás, R; Wenninger, J; Zimmermann, F

    2012-01-01

    The LHC, its luminosity upgrade HL-LHC, its injectors upgrade LIU and other high performance storage rings around the world are facing challenging requirements for optics measurements, correction and modelling. This workshop aims to do a review of the existing techniques to measure and control linear and non-linear optics parameters. The precise optics determination has proven to be a key ingredient to improve the performance of the past and present accelerators. From 20 to 22 June 2011 an international workshop, “OMCM,” was held at CERN with the goal of assessing the limits of the present techniques and evaluating new paths for improvement. The OMCM workshop was sponsored and supported by CERN and by the European Commission under the FP7 “Research Infrastructures” project EuCARD, grant agreement no. 227579.

  1. The eRHIC Ring-Ring Collider Design

    CERN Document Server

    Wang, Fuhua; Beebe-Wang, Joanne; Deshpande, Abhay A; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Litvinenko, Vladimir N; MacKay, William W; Milner, Richard; Montag, Christoph; Ozaki, Satoshi; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Trbojevic, Dejan; Tschalär, C; Wang, Dong; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.

  2. SRB O-ring free response analysis

    Science.gov (United States)

    Moore, Carleton J.

    1986-01-01

    The free response of viton O-rings were investigated. Two different response mechanisms of viton O-rings are identified and a theoretical representation of the two mechanisms is compared with experimental results for various temperatures.

  3. Storage of gastrointestinal nematode infective larvae for species preservation and experimental infections.

    Science.gov (United States)

    Chylinski, C; Cortet, J; Sallé, G; Jacquiet, P; Cabaret, J

    2015-02-01

    Techniques to preserve the infective third-stage larvae (L3) of gastrointestinal nematodes are of considerable interest to preserve rare species and to maintain a stable source for routine experimental infections. This study compares the relative pros and cons of the two most common techniques, cryopreservation and refrigeration by comparing how they influence consequent infection outcome parameters in terms of life-history traits and fitness as a function of time using the gastrointestinal nematode of sheep Haemonchus contortus as a study species. Establishment capacity was found to be significantly reduced in cryopreserved stocks of L3 compared to refrigerated stocks, but this was followed by significant increases in their fecundity. Refrigeration did not affect L3 stocks consequent fitness by 16 months (the maximum examined) although they did incur a significant reduction in establishment, followed once again by an augmentation in fecundity. The study highlights potential areas for bias in comparing studies using L3 larvae maintained for different periods of time under different techniques.

  4. Vascular ring

    DEFF Research Database (Denmark)

    Schmidt, Anne Mette S; Larsen, Signe H; Hjortdal, Vibeke E

    2018-01-01

    BACKGROUND: Vascular ring is a rare cause of recurrent respiratory infections, dysphagia and stridor. Surgical repair is considered safe but the long-term outcomes are unclear. The purpose of this study was to investigate the mortality and morbidity following vascular ring surgery in a single...... age of 1.4 years (range 0.008-64 years) were operated for vascular ring. Median follow-up was 6.8 years (range 2.4-34 years). Presenting symptoms were stridor (52%), dysphagia or vomiting (52%) and recurrent respiratory infections (48%). There were no early or late deaths. Three months postoperatively...

  5. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  6. Mitigation of the electron-cloud effect in the PSR and SNS protonstorage rings by tailoring the bunch profile

    CERN Document Server

    Pivi, M T

    2003-01-01

    For the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and for the Proton Storage Ring (PSR) at Los Alamos, both with intense and very long bunches, the electron cloud develops primarily by the mechanism of trailing-edge multipacting. We show, by means of simulations for the PSR, how the resonant nature of this mechanism may be effectively broken by tailoring the longitudinal bunch profile at fixed bunch charge, resulting in a significant decrease in the electron-cloud effect. We briefly discuss the experimental difficulties expected in the implementation of this cure.

  7. Determinantal rings

    CERN Document Server

    Bruns, Winfried

    1988-01-01

    Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a ...

  8. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  9. Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

    CERN Multimedia

    1969-01-01

    Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

  10. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models

    OpenAIRE

    Li, Hailong; Jakobsen, Jana P.; Wilhelmsen, Øivind; Yan, Jinyue

    2011-01-01

    The knowledge about pressure–volume–temperature–composition (PVTxy) properties plays an importantrole in the design and operation of many processes involved in CO2 capture and storage (CCS) systems.A literature survey was conducted on both the available experimental data and the theoreticalmodels associated with the thermodynamic properties of CO2 mixtures within the operation windowof CCS. Some gaps were identified between available experimental data and requirements of the systemdesign and ...

  11. International Conference on Energy Storage, Brighton, Sussex, England, April 29-May 1, 1981, Proceedings

    Science.gov (United States)

    Current developmental, experimental, and production prototype energy storage systems are surveyed, with an emphasis on European programs and products. Attention is given to chemical, thermochemical/heat pump combinations, and reversible reaction heat storage methods. Applications of zeolite, hydrogenated cyclohexane, and fluidized media are examined, as are thermal storage options for industry and utilities. Phase change materials in bulk, encapsulated, and sodium acetate forms are reviewed, particularly for solar energy thermal storage. The compatibility of construction materials with latent heat storage is discussed. Battery systems for transport vehicles, load leveling, and storage of solar and wind-derived electricity are described. Aquifer storage is explored, together with underground pumped hydro and compressed air energy storage, a two-basin tidal power scheme, and kinetic energy rings such as flywheels.

  12. Calibration of the nonlinear ring model at the Diamond Light Source

    CERN Document Server

    Bartolini, R; Rehm, G; Martin, I P S

    2011-01-01

    Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration ...

  13. Kinetics study of solid ammonia borane hydrogen release--modeling and experimental validation for chemical hydrogen storage.

    Science.gov (United States)

    Choi, Young Joon; Rönnebro, Ewa C E; Rassat, Scot; Karkamkar, Abhi; Maupin, Gary; Holladay, Jamie; Simmons, Kevin; Brooks, Kriston

    2014-05-07

    Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which maximum 16.2 wt% hydrogen can be released via an exothermic thermal decomposition below 200 °C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300 °C using both experiments and modeling. The hydrogen release rate at 300 °C is twice as fast as at 160 °C. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ∼20 °C lower than neat AB and at a faster release rate in that temperature range. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; auger and fixed bed. The current auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

  14. Kinetics Study of Solid Ammonia Borane Hydrogen Release – Modeling and Experimental Validation for Chemical Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

    2014-02-24

    Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200°C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300°C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20°C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

  15. Spin flipping in rings with Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S.R. [Convergent Computing Inc., P.O. Box 561, Shoreham, NY 11786 (United States)], E-mail: srmane@optonline.net

    2009-07-01

    I display numerical spin tracking simulations for spin flippers in model storage rings with full or nearly full Siberian Snakes. In many cases, the results differ from the predictions using the Froissart-Stora formula.

  16. Calculation of the ultracold neutron upscattering loss probability in fluid walled storage bottles using experimental measurements of the liquid thermomechanical properties of fomblin

    Science.gov (United States)

    Lamoreaux, S. K.; Golub, R.

    2002-10-01

    Presently, the most accurate values of the free neutron beta-decay lifetime result from measurements using fluid-coated ultacold neutron (UCN) storage bottles. The purpose of this work is to investigate the temperature-dependent UCN loss rate from these storage systems. To verify that the surface properites of fomblin films are the same as the bulk properties, we present experimental measurements of the properties of a liquid ``fomblin'' surface obtained by the quasielastic scattering of laser light. The properties include the surface tension and viscosity as functions of temperature. The results are compared to measurements of the bulk fluid properties. We then calculate the upscattering rate of UCNs from thermally excited surface capillary waves on the liquid surface and compare the results to experimental measurements of the UCN lifetime in fomblin-fluid-walled UCN storage bottles, and show that the excess storage loss rate for UCN energies near the fomblin potential can be explained. The rapid temperature dependence of the fomblin storage lifetime is explained by our analysis.

  17. Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis

    OpenAIRE

    Castellani, Beatrice; Gambelli, Alberto Maria; Morini, Elena; Nastasi, B.; Presciutti, Andrea; Filipponi, Mirko; Nicolini, Andrea; Rossi, Federico

    2017-01-01

    The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature, entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant fo...

  18. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  19. DESIGN AND DEVELOPMENT OF THE SNS RING VACUUM INSTRUMENTATION AND CONTROL SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    HSEUH,H.C.; SMART,L.A.; TANG,J.Y.

    2001-06-18

    BNL is undertaking the design, construction and commissioning of the Spallation Neutron Source (SNS) accumulator ring and the beam transport lines [l]. Ultrahigh vacuum of 10{sup {minus}9} Torr is required in the accumulator ring to minimize beam-gas ionization, a contributing factor to the e-p instability observed in a few high-intensity proton storage rings. All vacuum instrumentation must be capable of local and remote operation to achieve a reliable vacuum system, especially in this extremely high intensity accelerator. The design and development of the SNS ring vacuum instrumentation and control through the Experimental Physics and Industrial Control System (EPICS) distributed real-time software tools are presented.

  20. Ring interferometry

    CERN Document Server

    Malykin, Grigorii B; Zhurov, Alexei

    2013-01-01

    This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the

  1. Drinking waters interlaboratory ring test. Part 1. Scope, procedure and criteria of experimental data treatment; Circuito Interlaboratorio sulle acque potabili Unichim. Parte 1. Obiettivi, modalita' di svolgimento e criteri di elaborazione dei dati sperimentali

    Energy Technology Data Exchange (ETDEWEB)

    Cavaterra, E.; Divo, C.; Bottazzini, N. [Unichim Milan, Milan (Italy); Alava, F. [Ambiente e Servizi, Bergamo (Italy); Bettinelli, M. [Electric Power Production Company, Piacenza (Italy); Bonfiglioli, F. [Azienda Mediterranea Gas e Aqua, Genoa (Italy)

    2001-04-01

    In this first paper the aims of the project, the procedures of an interlaboratory ring test and the criteria of statistical treatment of data obtained from analytical determinations of some chemical parameters relevant to the assessment of potability of drinking waters are reported. Experimental results of specific parameters relevant to the assessment of potability of drinking waters are reported. Experimental results of specific parameters and precision and accuracy of pertinent analytical methods obtained in a number of cycles of interlaboratory ring test will be reported in subsequent papers. [Italian] In questo primo lavoro vengono riportati gli obiettivi e descritte le modalita' di svolgimento di un circuito interlaboratorio e i criteri di elaborazione statistica dei dati ottenuti in relazione alla determinazione analitica di specifiche caratteristiche di acque destinate al consumo umano ai fini dell'accertamento della loro potabilita'. I risultati e le esperienze conseguite nei vari cicli del circuito interlaboratorio saranno oggetto di successive specifiche pubblicazioni.

  2. Rheology modification with ring polymers

    Science.gov (United States)

    Vlassopoulos, Dimitris

    It is now established that experimental unconcatenated ring polymers can be purified effectively by means of fractionation at the critical condition. For molecular weights well above the entanglement threshold, purified rings relax stress via power-law (with an exponent of about -0.4), sharply departing from their linear counterparts. Experimental results are in harmony with modeling predictions and simulations. Here, we present results from recent interdisciplinary efforts and discuss two challenges: (i) the nonlinear shear rheology of purified ring melts is also very different from that of unlinked chains. Whereas the latter exhibit features that can be explained, to a first approach, in the framework in the tube model, the former behave akin to unentangled chains with finite extensibility and exhibit much small deformation at steady state. (ii) blends of rings and linear polymers exhibit unique features in different regimes: The addition of minute amounts of linear chains drastically affects ring dynamics. This relates to ring purity and the ability of unlinked linear chains to thread rings. With the help of simulations, it is possible to rationalize the observed surprisingly slow viscoelastic relaxation, which is attributed to ring-linear and ring-ring penetrations. On the other hand, adding small amounts of rings to linear polymers of different molecular weights influences their linear and nonlinear rheology in an unprecedented way. The blend viscosity exceeds that of the slower component (linear) in this non-interacting mixture, and its dependencies on composition and molecular weight ratio are examined, whereas the role of molecular architecture is also addressed. Consequently, closing the ends of a linear chain can serve as a powerful means for molecular manipulation of its rheology. This presentation reflects collaborative efforts with S. Costanzo, Z-C. Yan, R. Pasquino, M. Kaliva, S. Kamble, Y. Jeong, P. Lutz, J. Allgaier, T. Chang, D. Talikis, V

  3. Experimental and thermodynamic study of Co-Fe and Mn-Fe based mixed metal oxides for thermochemical energy storage application

    Science.gov (United States)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-06-01

    Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.

  4. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  5. LEP superconducting cavities go into storage

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Superconducting radio-frequency cavities from the LEP-2 phase (1996-2000) are put into storage in the tunnel that once housed the Intersecting Storage Rings (ISR), the world’s first proton collider, located at CERN.

  6. Experimental study of influence of inlet geometry on thermal stratification in thermal energy storage during charging process

    Directory of Open Access Journals (Sweden)

    Švarc Petr

    2014-03-01

    Full Text Available Various analyses of charging processes of real single-medium thermal energy storage were applied in this work. Two different inlet geometries of direct intakes into thermal energy storage were investigated for the process of charging in Richardson numbers 0.4 and 15. Temperature distributions for both cases are shown and compared in selected time steps. Several simple methods for assessment of an ability to maintain and support thermal stratification during charging processes were compared with exergy analysis.

  7. Theoretical and experimental analysis of the impacts of removable storage media and antivirus software on viral spread

    Science.gov (United States)

    Gan, Chenquan; Yang, Xiaofan

    2015-05-01

    In this paper, a new computer virus propagation model, which incorporates the effects of removable storage media and antivirus software, is proposed and analyzed. The global stability of the unique equilibrium of the model is independent of system parameters. Numerical simulations not only verify this result, but also illustrate the influences of removable storage media and antivirus software on viral spread. On this basis, some applicable measures for suppressing virus prevalence are suggested.

  8. Experimental characterization of elastomeric O-rings as reusable seals for mass spectrometric measurements: Application to in situ K-Ar dating on Mars

    Science.gov (United States)

    Cho, Yuichiro; Kameda, Shingo; Okuno, Mamoru; Horiuchi, Misa; Shibasaki, Kazuo; Wagatsuma, Ryo; Aida, Yusuke; Miura, Yayoi N.; Yoshioka, Kazuo; Okazaki, Ryuji; Sugita, Seiji

    2017-10-01

    Mass spectrometry has been widely used in lander missions to characterize the volatiles in rocks and soils on planetary surfaces. A good vacuum seal is very important for introducing such solid samples to a vacuum chamber and ejecting them. However, multiple measurements require many metal gaskets, leading to extra weight and complexity for the instruments. In this study, we investigate the capability of three kinds of elastomeric O-rings (Viton, Nexus-SLT, and Nexus-FV) as vacuum seals for mass spectrometric measurements, particularly for in situ K-Ar dating on Mars. First, thermal cycle tests revealed that low-temperature-resistant O-rings can maintain pressure rocks. The measured amounts were rock with 5000 ppm K2O and an age of 4.2 Ga would yield. These results suggest that a Viton O-ring can maintain the Ar blank low under the Mars atmospheric pressure when temperatures are higher than -25 °C. A double O-ring seal using the low-temperature-resistant elastomers would be an alternative approach at lower temperatures. The elastomeric O-rings would be useful for constructing a small and light-weighted mass spectrometric instrument for in situ K-Ar dating on Mars.

  9. RING SYSTEM

    African Journals Online (AJOL)

    ); 0 “C1211; 30.13 ('BuP. o. J,.,_. = 12.2 1-11). @500 (OCH._,, dq,. J“. = 34.6. JR. = 15.8 H2). 124.39 (CF3. dq, JPF = 269.0, JR. = 9.7 Hz). 35.63 (PC. cl. .... The compound was prepared using the same technique from the boron ring [31 [2 g.

  10. Dynamics of neutral molecules stored in a ring

    NARCIS (Netherlands)

    Crompvoets, F.M.H.; Bethlem, H.L.; Kupper, J.; Roij, A.J.A. van; Meijer, G.J.M.

    2004-01-01

    A decelerated beam of neutral ammonia molecules is injected into an electrostatic storage ring. Electrostatic lenses are used to map the emittance of the decelerator onto the acceptance of the ring. The tangential velocity spread of the package of molecules in the ring is set to less than 1 m/s. The

  11. TOWARDS CRYSTALLINE ION BEAMS - THE PALLAS(1) RING TRAP.

    Energy Technology Data Exchange (ETDEWEB)

    SCHATZ,T.

    1998-10-01

    To experimentally elucidate fundamental issues of crystalline ion beams at low velocities we presently set up PALLAS, a table top circular RF quadrupole storage ring for acceleration and laser cooling of, e.g., {sup 24}Mg{sup +} ions. Employing the smooth approximation to PALLAS we compare its beam dynamics to heavy ion synchrotrons like TSR Heidelberg and thereby demonstrate the necessity of the highly symmetric lattice for the attainment of crystalline structures. Furthermore, dedicated molecular dynamics simulations are presented, affirming the feasibility of beam crystallization in PALLAS.

  12. Linear and Angular Deviations of Implants Placed in Experimental Casts with Stereolithographic Drill Guides Fixed by O'ring Ortho Implant Devices

    OpenAIRE

    Novellino,Marcelo Michele; Sesma,Newton; Lagana,Dalva Cruz; Ferrari, Glais

    2013-01-01

    The aim of this study was to evaluate whether the introduction of a device, resulting from the combination of an o'ring attachment with an orthodontic implant (o'ring ortho implant, O'ROI), to affix the surgical template of CAD/CAM-guided implant surgery contribute to minimizing the deviations in the position and inclination of implants at the time of their placement. Ten models simulating bone tissue were fabricated and randomly divided into 2 groups: 5 with the scanning and surgical templat...

  13. Relinkable Ring Signature

    Science.gov (United States)

    Suzuki, Koutarou; Hoshino, Fumitaka; Kobayashi, Tetsutaro

    In this paper, we propose the concept of a relinkable ring signature, which is a ring signature with ring reformation function, i.e., a signer can delegate ring reformation ability separately from signing ability to his/her proxy. The relinkable ring signature can be applicable to proxy ring reformation, anonymization of past-generated signature, or ring signature for dynamic group. We also propose a concrete relinkable ring signature scheme that uses pairing in the random oracle model.

  14. Technique for Resolving Low-lying Isomers in the Experimental Storage Ring (ESR) and the Occurrence of an Isomeric State in Re192

    Science.gov (United States)

    2012-01-01

    Heidelberg, Germany 3 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany 4 Physik-Department E12, Technische Universität München...Conference Series 381 (2012) 012058 doi:10.1088/1742-6596/381/1/012058 4 time that the single ions were observed in the ESR. Errors were analysed

  15. Ion Rings for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation

  16. Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis

    NARCIS (Netherlands)

    Castellani, Beatrice; Gambelli, Alberto Maria; Morini, Elena; Nastasi, B.; Presciutti, Andrea; Filipponi, Mirko; Nicolini, Andrea; Rossi, Federico

    2017-01-01

    The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and

  17. Experimental validation of control strategies for a microgrid test facility including a storage system and renewable generation sets

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Silvestro, Federico

    2012-01-01

    network and is fully controllable by the SCADA system. The control strategies, implemented on a local pc interfaced to the SCADA, are realized in Matlab-Simulink. The main purpose is to control the charge/discharge action of the storage system in order to present at the point of common coupling...

  18. Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Craig

    2016-07-01

    A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevated ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.

  19. Single-staged implant placement using bone ring technique with and without membrane placement: An experimental study in the Beagle dog.

    Science.gov (United States)

    Haga-Tsujimura, Maiko; Nakahara, Ken; Kobayashi, Eizaburo; Igarashi, Kensuke; Schaller, Benoit; Saulacic, Nikola

    2017-12-12

    To evaluate the impact of a collagen membrane on bone remodeling and osseointegration of implants placed simultaneously with a bone ring technique. Standardized, vertical alveolar bone defects in the mandibles of six dogs were created. Tapered dental implants designed for two-stage subcrestal placement were inserted simultaneously with a bone ring technique. On one side of the mandible, the augmented sites were covered with a collagenous membrane. Implants with (M Group) and without membranes (NM Group) were left for an osseointegration period of 3 and 6 months, respectively. Block biopsies of the implants with surrounding bone were harvested and analyzed histologically. Implant exposure was a common finding (2/3) concomitantly with loss of healing caps. It appeared to be related to advanced bone loss around the implants. Exposure of implants was more frequent in M Group, however, without significant differences when compared to NM Group. The total bone area within the region of the bone ring was greater in the NM Group compared to the M Group. Moreover, in the region of the pristine bone of the M Group, the total bone was greater than at the corresponding NM Group sites at both observation periods. A nonparametric analysis of variance (ANOVA) revealed no significant effects of membrane placement or healing period on the total area of the bone. The total bone-to-implant contact (BIC) for the two groups was similar at each observation time point. However, BIC increased significantly at 6-month compared with 3-month observation period (p = .0088) in both groups. In vertical bone augmentation applying the bone ring technique, the disruption of soft tissue was a frequent complication. Membrane placement yielded no significant advantage on the osseointegration (BIC) of implants or bone characteristics. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Storage Ring Technology for Free Electron Lasers.

    Science.gov (United States)

    1984-04-01

    and 1,,) call be obtained quickly from F(.)) by dividing out the detector response P(W). If 1,(/) is modeled the inverse bunch length can be estimated...If a single harmonic of the comb spectrum of l(.’) is examined the change in the amplitude will be inversely proportional to the bunch-length change...obtained while operating the SRFEL as an amplier to an externa ’ laser [8,)]. All of the measurements presented here were obtained with svnchronous

  1. Modes of storage ring coherent instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  2. A storage ring for neutral molecules

    NARCIS (Netherlands)

    Crompvoets, F.M.H.

    2005-01-01

    Time-varying inhomogeneous electric fields can be used to manipulate the motion of neutral molecules in phase-space, i.e., position-momentum space, via their electric dipole moment. A theoretical background is given on the motion of the molecules in phase-space. As the forces exerted on the

  3. Experimental demonstration of relativistic electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, Grigory M.; Kroc, T.; Prost, L.; Pruss, S.; Sutherland, M.; Schmidt,; Seletskiy, S.; Shemyakin, A.; Tupikov, V.; Warner, A.; /Fermilab /Novosibirsk, IYF /Rochester U.

    2005-11-01

    We report on an experimental demonstration of electron cooling of high-energy antiprotons circulating in a storage ring. In our experiments, electron cooling, a well-established method at low energies (< 500 MeV/nucleon), was carried out in a new region of beam parameters, requiring a multi-MeV dc electron beam and an unusual beam transport line. In this letter we present the results of the longitudinal cooling force measurements and compare them with theoretical predictions.

  4. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  5. Mineralogical and experimental study of serpentine minerals and ultramafic rocks with application to carbon capture and storage by mineralisation

    OpenAIRE

    Lacinska, Alicja M.

    2016-01-01

    The type of feedstock and host rock utilised in ex situ and in situ Carbon Capture and Storage by Mineralisation (CCSM) is an important aspect of these technologies, and detailed appraisal of candidate mineral/rock performance in the presence of CO2 may greatly improve CCSM efficiency. Here, a detailed mineralogical and geochemical investigation of serpentine minerals and ultramafic rocks under laboratory-controlled experiments simulating ex situ and in situ process conditions is presented. ...

  6. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications

    OpenAIRE

    Álvarez Criado, Yolanda; Huille, Alfred; Rougé, Sylvie; Abanades García, Juan Carlos

    2016-01-01

    The CaO/Ca(OH)2 hydration/dehydration chemical loop has long been recognized as a potential candidate for application in energy storage systems for concentrated solar plants. However, the technology still remains at a conceptual level because little information has been published on the performance of the key reactors in the system. In this work, we experimentally investigate the hydration and dehydration reactors in a 5.5 kWth batch fluidized bed reactor, in conditions relevant to larger sys...

  7. Multiscale modeling and experimental interpretation of perovskite oxide materials in thermochemical energy storage and conversion for application in concentrating solar power

    Science.gov (United States)

    Albrecht, Kevin J.

    storage in CSP plants are presented. Comparisons of sweep gas and vacuum pumping reduction as well as hot storage conditions indicate that solar-to-electric efficiencies are higher for sweep gas reduction system at equivalent values of energy storage if the energy parasitics of commercially available devices are considered. However, if vacuum pump efficiency between 15% and 30% can be achieved, the reduction methods will be approximately equal. Reducing condition oxygen partial pressures below 10-3 bar for sweep gas reduction and 10-2 bar for vacuum pumping reduction result in large electrical parasitics, which significantly reduce solar-to-electric efficiency. A model based interpretation of experimental measurements made for perovskite redox cycling using sweep gas in a packed bed is presented. The model indicates that long reduction times for equilibrating perovskites with low oxygen partial pressure sweep gas, compared to reoxidation, are primarily due to the oxygen carrying capacity of high purity sweep gas and not surface kinetic limitations. Therefore, achieving rapid reduction in the limited receiver residence time will be controlled by the quantity of sweep gas introduced. Effective kinetic parameters considering surface reaction and radial particle diffusion are fit to the experimental data. Variable order rate expressions without significant particle radial diffusion limitations are shown to be capable of representing the reduction and oxidation data. Modeling of a particle reduction receiver using continuous flow of perovskite solid and sweep gas in counter-flow configuration has identified issues with managing the oxygen evolved by the solid as well as sweep gas flow rates. Introducing sweep gas quantities necessary for equilibrating the solid with oxygen partial pressures below 10-2 are shown to result in gas phase velocities above the entrainment velocity of 500 um particles. Receiver designs with considerations for gas management are investigated and the

  8. Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged partridge (Alectoris rufa).

    Science.gov (United States)

    Pérez-Rodríguez, Lorenzo; Viñuela, Javier

    2008-09-01

    Carotenoid pigments cannot be synthesized by vertebrates but must be ingested through the diet. As they seem to be a limited resource, carotenoid-based ornaments are particularly interesting as possible honest signals of individual quality, in particular of foraging efficiency and nutritional status. Some studies have demonstrated the condition dependence of carotenoid-based plumage in birds. However, many other carotenoid-pigmented bare parts (i.e. skin, caruncles, bills, cere, and tarsi) are present in birds but, in comparison with plumage, little is known about these traits as indicators of individual quality. Here, we show that the eye ring pigmentation and bill redness of the red-legged partridge (Alectoris rufa) are positively associated to body condition and recent changes in body mass. Also, we found a negative relationship between these two traits and heterophil-to-lymphocyte ratio, an indicator of physiological stress (the relationship with bill redness being significant only for males). In an experiment, we found that after a period of reduction in food intake (with the consequent loss of body mass), food-restricted birds showed lower eye ring pigmentation than ad-libitum-fed birds. Therefore, different ornaments seem to reflect changes in body condition but at different speeds or intensities (eye ring, a fleshy ornament, appears to respond more rapidly to changes in the nutritional status than a keratinized structure as the bill). These results indicate that carotenoid-based ornaments are condition-dependent traits in the red-legged partridge, being therefore susceptible to be employed as honest signals of quality in sexual selection.

  9. Use of information-retrieval languages in automated retrieval of experimental data from long-term storage

    Science.gov (United States)

    Khovanskiy, Y. D.; Kremneva, N. I.

    1975-01-01

    Problems and methods are discussed of automating information retrieval operations in a data bank used for long term storage and retrieval of data from scientific experiments. Existing information retrieval languages are analyzed along with those being developed. The results of studies discussing the application of the descriptive 'Kristall' language used in the 'ASIOR' automated information retrieval system are presented. The development and use of a specialized language of the classification-descriptive type, using universal decimal classification indices as the main descriptors, is described.

  10. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion (Briefing Charts)

    Science.gov (United States)

    2014-07-01

    performance of 28,100 kg, shuttle launched spacecraft for LEO-GEO transfer Engine Type LO2-H2 Ion Solar 1 Solar 2 ΔV (m/s) 4,270 5,850 5,850 4,800...Comparison Metrics Solar Thermal w/o Energy Storage Chemical Thrusters Electric Propulsion • Eliminated PCM and TPV • Reduced solar collector ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) July 2014 2. REPORT TYPE Briefing

  11. Experimental, Numerical and Analytical Characterization of Slosh Dynamics Applied to In-Space Propellant Storage, Management and Transfer

    Science.gov (United States)

    Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.

    2015-01-01

    Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.

  12. Experimental Research and Control Strategy of Pumped Storage Units Dispatching in the Taiwan Power System Considering Transmission Line Limits

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2013-07-01

    Full Text Available Taiwan’s power system is isolated and not supported by other interconnected systems. Consequently, the system frequency immediately reflects changes in the system loads. Pumped storage units are crucial for controlling power frequency. These units provide main or auxiliary capacities, reducing the allocation of frequency-regulating reserve (FRR and further reducing generation costs in system operations. Taiwan’s Longmen Nuclear Power Plant is set to be converted for commercial operations, which will significantly alter the spinning reserves in the power system. Thus, this study proposes a safe and economic pumped storage unit dispatch strategy. This strategy is used to determine the optimal FRR capacity and 1-min recovery frequency in a generator failure occurrence at the Longmen Power Plant. In addition, this study considered transmission capacity constraints and conducted power flow analysis of the power systems in Northern, Central, and Southern Taiwan. The results indicated that, in the event of a failure at Longmen Power Plant, the proposed strategy can not only recover the system frequency to an acceptable range to prevent underfrequency load-shedding, but can also mitigate transmission line overloading.

  13. Radical theory of rings

    CERN Document Server

    Gardner, JW

    2003-01-01

    Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation

  14. The A Experimental Division (of the Werner Heisenberg Institute for Physics)

    Science.gov (United States)

    Buschhorn, G.; Schmitz, N.

    1990-12-01

    Progress achieved within the A experimental division from Oct. 1989 to Sep. 1990 is reported, on the following themes: the interaction of neutrinos and antineutrinos with protons in the bubble chamber, the interaction of neutrinos and antineutrinos with neon neuclei in the bubble chamber, the deep inelastic lepton nucleon scattering in muon stream, the shocks of relativistic ions on atom nuclei, the tevatron accelerator of the Fermi laboratory, the PETRA electron positron storage ring with CELLO detector, the H1 detector for the HERA electron proton storage ring, the development of a low energy particle detector, electronics for experiments, data processing, and evaluating system.

  15. Saturn's Spectacular Ring System

    Science.gov (United States)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  16. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  17. Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  18. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado

    Science.gov (United States)

    Sandra E. Ryan; Erica L. Bishop; J. Michael Daniels

    2014-01-01

    Large fallen wood can have a significant impact on channel form and process in forested mountain streams. In this study, four small channels on the Fraser Experimental Forest near Fraser, Colorado, USA, were surveyed for channel geometries and large wood loading, including the size, source, and characteristics of individual pieces. The study is part of a larger effort...

  19. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  20. Rock core-based pre-stress evaluation experimental validation: A case study on Yutengping Sandstone as CO2 storage reservoir rock

    Directory of Open Access Journals (Sweden)

    Jian-Hong Wu

    2017-01-01

    Full Text Available Yutengping Sandstone in Tieh-chan-shan, Taiwan is a potential reservoir for geological CO2 storage. Cyclic loadings were applied to rock samples taken from an outcrop to create artificial pre-stress. The pre-stress evaluation accuracies using two core-based techniques, acoustic emission (AE and deformation rate analysis (DRA, were investigated under different pre-stresses, delay times and curing temperatures. The experimental results validate the pre-stress evaluations using AE and DRA. The delay time and curing temperature were shown to have minor impacts on the measurement accuracy. However, although both axial strain and lateral strain can be used in DRA, the stress memory fades as the delay time increases. Therefore, delay time, which represents the time from the borehole drilling to the DRA test, must be carefully considered when applying these techniques to evaluate the in situ stress of Yutengping sandstone.

  1. Experimental biological effects assessment associated with on-shore brine discharge from the creation of gas storage caverns

    Science.gov (United States)

    Quintino, Victor; Rodrigues, Ana Maria; Freitas, Rosa; Ré, Ana

    2008-09-01

    Most of the studies on biological and ecological effects associated with brine discharge into the marine environment are related to the operation of desalination plants, for the production of freshwater. In this study we analysed the biological effects of a brine effluent from a completely different source, produced from the lixiviation of rock salt caves, for the creation of natural gas storage caverns. Lethal and sub-lethal endpoints following exposure to the brine were studied in a range of macrofauna species characteristic of the soft and hard bottom habitats in the vicinity of the discharge area, namely the isopod Eurydice pulchra, the annelids Sabellaria alveolata and Ophelia radiata, the sea-urchin Paracentrotus lividus and the bivalve Mytilus galloprovincialis. In a first series of experiments, brine, with salinity above 300, was diluted in distilled water to a salinity value close to that of the seawater in the discharge area (salinity 36) and, surprisingly, none of the exposed species was able to survive or develop into viable larvae. A second series of experiments exposed the species to brine diluted with seawater, simulating more realistic discharge circumstances. All the tested species at all the measured endpoints (adult survival, larval abnormal development, sperm fertilization success) showed negative biological effects in brine solutes always at a lower salinity than that of a salinity control obtained with concentrated seawater. The sub-lethal experiments with larval development of P. lividus, S. alveolata and M. galloprovincialis, and the fertilization success of P. lividus gave EC 50 values for the brine solute with salinity in the range of 40.9-43.5, whereas the EC 50 values for the concentrated seawater were in the range of salinity 44.2-49.0. It is hypothesised that differences in the ionic composition of the brine cause the inability of the species to tolerate the exposure to brine.

  2. Process Design by FEM Simulation for Shape Ring Rolling of Large-Sized Ring

    Science.gov (United States)

    Lee, Y. S.; Lee, M. W.; Park, S. S.; Lee, I.; Moon, Y. H.

    2010-06-01

    Ring rolling process is usually used to fabricate large-sized ring, such as, tower flange for wind power electric generator. Many kinds of seamless ring are used in wind power electric generator and manufactured by ring rolling process. In general, final part is machined after forming with shape of plain square section. Since interests for near net shaping of seamless ring have been increased gradually because of green energy, it is necessary to develop the technology for shape ring rolling with respect to the market demands and cost. Therefore, we studied the process and die design for shape ring rolling of large sized ring over 3,500 mm out diameter by experiment and FEM simulation. Ring rolling process is very difficult to solve by FEM method because of equilibrium state and size effect, etc. Moreover, shape ring rolling is more difficult to solve the problem that two plastic deformation zones are different each other, that is main roll and conical roll. Also since conical roll has a shape, deformation velocity field is very much complex and the deformed section passed axial roll is different section and velocity field. The FE simulations are performed to analyze process variables affected in forming of profiled ring. Therefore, the main features of used FE model are: (1) it adopts a transient or unsteady state full ring mesh to model the deformation processes and shape development; (2) the mandrel and conical rolls are modeled using coupled heat-transfer elements; (3) the model involves the full process from blank through perform to final profiled ring. From these calculated results, we have proposed the mechanisms of various tools, such as mandrel and conical roll. The calculated results are compared experimental results. Calculated results can predict the tilting of profiled ring and then process variables to form large sized ring.

  3. A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2016-09-01

    Full Text Available In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester’s three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.

  4. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  5. Synchrotron radiation in the interaction region for a Ring-Ring and Linac-Ring LHeC

    CERN Document Server

    Bernard, N; Thompson, L; Holzer, B; Tomas, R; Zimmermann, F; Klein, M; Kostka, P; Nagorny, B; Schneekloth, U

    2011-01-01

    The Large Hadron electron Collider (LHeC) aims at bringing hadron-lepton collisions to CERN with centre of mass energies in the TeV scale. The LHeC will utilise the existing LHC storage ring with the addition of a 60 GeV electron accelerator. The electron beam will be stored and accelerated in either a storage ring in the LHC tunnel (Ring-Ring) or a linac tangent to the LHC tunnel (Linac- Ring). Synchrotron Radiation (SR) in the Interaction Region (IR) of this machine requires an iterative design process in which luminosity is optimised while the SR is minimised. This process also requires attention to be given to the detector as the beam pipe must be designed such that disturbing effects, such as out-gassing and background scattering, are minimised while the tracker remains close to the IP thus maximising the acceptance of the experiment. The machinery of GEANT4 has been used to simulate the SR load in the IR and also to design absorbers/masks to shield SR from backscattering into the detector or propagating...

  6. New scheme for the design and operation of proton--proton storage accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Claus, J.; Herrera, J.; Humphrey, J.; Marx, M.; Month, M.

    1977-01-01

    A new system is presented for storage accelerating rings which allows many options for operation. During injection, acceleration, and collision, the beams are maintained in the form of azimuthally long bunches. Current is built up in a low-energy, small circumference accumulator ring. Injection into the storage accelerators is carried out with the bunches phased so that they do not collide. The rf buckets can be matched to the incoming long bunches with only a small dilution. Operation of the storage rings consists of: (1) accelerating the formed bunches to any desired energy; and (2) bringing the bunches into collision by relative phasing of the rf in the two rings. This system provides considerable simplification in the design and operation of high energy p-p facilities. For example, it reduces the beam stacking time, relaxes the impedance tolerances relating to longitudinal stability, reduces the aperture utilization, and avoids radiation background problems associated with beam manipulations. A prototype design is considered, using as a basis the parameters of the ISABELLE facility. Performance characteristics and operational procedures are presented. The many advantages related to the machine and experimental aspects are discussed. In particular, cycling the energy during collisions is an interesting option. Lastly, the significance of extending such a facility to higher energy p-p collisions is outlined.

  7. A Compact Ring Design with Tunable Momentum Compaction

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; /SLAC

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  8. Saturn's largest ring.

    Science.gov (United States)

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  9. Calculations of spin response functions in rings with Siberian Snakes and spin rotators

    Directory of Open Access Journals (Sweden)

    Yu. M. Shatunov

    2009-02-01

    Full Text Available The so-called spin response formalism, which is linear response theory applied to spin dynamics in storage rings, can calculate the resonance strengths for spin flippers in storage rings of arbitrary structure, including rings with Siberian Snakes and spin rotators. We calculate so-called spin response functions for a model of the RHIC lattice, for various scenarios of spin rotator settings.

  10. Characterization and Experimental Investigation of NaNO3 : KNO3 as Solar Thermal Energy Storage for Potential Cooking Application

    Directory of Open Access Journals (Sweden)

    Elias Wagari Gabisa

    2016-01-01

    Full Text Available Household cooking is a major energy intensive activity in most of the Ethiopian households. Replacing the existing inefficient cooking stoves and the polluting energy source with a renewable source of energy plays a paramount role in conserving the environment and reducing the indoor pollution. In this study an energy storage phase change material is proposed to store solar thermal energy for a potential household cooking application. The selected phase change material has a melting point range which is well fitted to the operating range of temperatures for most of the household cooking activities. The solar energy source is simulated with electrical heating for experimental investigation of the thermal characteristics. Also it is intended to study the thermal characteristics of the mixture using deferential scanning calorimeter to identify at which mass ratio the mixture shows better thermal characteristics. From the laboratory analysis it is found that the 60% NaNO3 and 40% KNO3 by mass have shown promising thermal characteristics. For applying the selected salt mixture for cooking application, an experiment was conducted on two Ethiopian local meals, shiro wet and potato meal, to know how much energy is required to cook them and what amount of the PCM is required to store the required energy. The result reveals that 2.38 kWh energy is required for cooking the two meals for five family members for lunch and dinner. To store the energy required 4 kg of the PCM was required. Experiments were conducted to see the charging and discharging time of 60% NaNO3 and 40% KNO3 by mass. From the experimental result for 1.4 kg of the PCM, charging time of 50 minutes up to 300°C and a discharging time of 4.5 hours (from 300°C to 100°C are required.

  11. Experimental Techniques

    DEFF Research Database (Denmark)

    Wyer, Jean

    2013-01-01

    Gas-phase ion spectroscopy requires specialised apparatus, both when it comes to measuring photon absorption and light emission (fluorescence). The reason is much lower ion densities compared to solution-phase spectroscopy. In this chapter different setups are described, all based on mass spectro...... in data interpretation, and the advantages and disadvantages of the different techniques are clarified. New instrumental developments involving cryo-cooled storage rings, which show great promise for the future, are briefly touched upon....

  12. On the vortex ring state

    Science.gov (United States)

    Green, Richard; Gillies, E.; Giuni, M.; Hislop, J.; Savas, Omer

    2014-11-01

    The investigation considers the vortex ring state, a phenomenon normally associated with the collapse of a trailing, helical vortex wake into a unstable vortex ring, and is a problem encountered when a helicopter rotor descends into its own wake. A series of wind tunnel and towing tank experiments on rotor systems have been performed, and a comparison is then made with the behaviour of a specially designed open core, annular jet system that generates a mean flow velocity profile similar to that observed below a rotor. In experimentally simulated descents the jet system forms flow patterns that are topologically similar to the vortex ring state of a rotor system. Furthermore the dynamic behaviour of the flow shares many of the important characteristics of the rotor flow. This result suggests that the phenomenon of the vortex ring state of a rotor wake is decoupled from the detailed vortex dynamics of the helical vortex filaments themselves. The presentation will describe the principle behind the investigation, the details of the annular jet system and the results gained using PIV and flow visualisation of the wake and jet systems.

  13. Calibration of the nonlinear ring model at the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2011-05-01

    Full Text Available Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration of the nonlinear model that can accurately reproduce the nonlinear beam dynamics in Diamond.

  14. Experimental and modeling results on geochemical impacts of leaking CO2 from subsurface storage reservoirs to an unconfined oxidizing carbonate aquifer

    Science.gov (United States)

    Qafoku, N. P.; Bacon, D. H.; Shao, H.; Lawter, A.; Wang, G.; Brown, C. F.

    2013-12-01

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate risks to groundwater quality and develop a systematic understanding on how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Solid materials (rocks and slightly weathered rocks) from an unconfined aquifer, i.e., the Edwards Aquifer in Texas, were used in this investigation. The experimental part consisted of: 1) wet chemical acid extractions (8M HNO3 solution at 90 0C); 2) batch experiments conducted at low solid to solution ratios to study time-dependent releases of major, minor and trace elements during periodic or continuous exposure to CO2 gas; 3) hydraulically saturated column experiments conducted under continuous and stop-flow conditions using a CO2 gas saturated synthetic groundwater; 4) pre- and post-treatment solid phase characterization studies. Major variables tested included reaction time (0-336 hours), CO2 flow rate (50 to 350 ml/min), brine concentration (0.1 and 1 M NaCl), rock type and particle size fraction. We are currently investigating the solution composition effects (i.e., presence of contaminants in the initial solution) on the fate and behavior of potential contaminants (As, Pb and Cd) in these systems. Results from the solid phase characterization studies showed that the mineralogy of the Edwards aquifer materials was dominated by calcite. Quartz and montmorillonite were also present in some samples. Acid extractions confirmed that the solid phase had appreciable amounts of potential contaminants (As, Cd, Cr, Cu, Pb and Zn). However, the results from the batch and column experiments demonstrated that these contaminants

  15. Ring extension of entire ring with conjugation; arithmetic in entire rings

    OpenAIRE

    Laugier, Alexandre

    2013-01-01

    Some basic properties of the ring of integers $\\mathbb{Z}$ are extended to entire rings. In particular, arithmetic in entire principal rings is very similar than arithmetic in the ring of integers $\\mathbb{Z}$. These arithmetic properties are derived from a $\\star$-ring extension of the considered entire ring (ring extension with conjugation) equipped with a real function which is a multiplicative structure-preserving map between two algebras. The algebra of this ring extension is studied in ...

  16. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  17. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  18. Ordered Rings and Fields

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2017-03-01

    Full Text Available We introduce ordered rings and fields following Artin-Schreier’s approach using positive cones. We show that such orderings coincide with total order relations and give examples of ordered (and non ordered rings and fields. In particular we show that polynomial rings can be ordered in (at least two different ways [8, 5, 4, 9]. This is the continuation of the development of algebraic hierarchy in Mizar [2, 3].

  19. Radioactive gold ring dermatitis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.A.; Aldrich, J.E. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  20. Saturn's dynamic D ring

    Science.gov (United States)

    Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.

    2007-01-01

    The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.

  1. Capacitive energy storage and recovery for synchrotron magnets

    Science.gov (United States)

    Koseki, K.

    2014-06-01

    Feasibility studies on capacitive energy storage and recovery in the main-ring synchrotron of the Japan Proton Accelerator Research Complex were conducted by circuit simulation. The estimated load fluctuation was 96 MVA in total for dipole magnets, which is likely to induce a serious disturbance in the main grid. It was found that the energy stored in the magnets after the excitation period can be recovered to the storage capacitor by controlling the voltage across the energy-storage capacitor using a pulse-width-modulation converter and reused in the next operational cycle. It was also found that the power fluctuation in the main grid can be reduced to 12 MVA. An experimental evaluation of an aluminum metalized film capacitor revealed that capacitance loss was induced by a fluctuating voltage applied to the storage capacitor when applying the proposed method. The capacitance loss was induced by corona discharge around the edges of segmented electrodes of a self-healing capacitor. The use of aluminum-zinc alloy was evaluated as a countermeasure to mitigate the effect induced by the corona discharge. For a zinc content of 8%, which was optimized experimentally, a capacitor with a sufficient life time expectancy of 20 years and a working potential gradient of 250 V/μm was developed.

  2. Hybrid silicon ring lasers

    Science.gov (United States)

    Liang, Di; Fiorentino, Marco; Bowers, John E.; Beausoleil, Raymond G.

    2011-01-01

    Hybrid silicon platform provides a solution to integrate active components (lasers, amplifiers, photodetectors, etc.) with passive ones on the same silicon substrate, which can be used for building an optical interconnect system. Owing to the advantages in footprint, power consumption, and high-speed modulation, hybrid silicon microring lasers have been demonstrated as a potential candidate for on-chip silicon light source. In this paper we review the progress to improve the performance of recently demonstrated compact microring lasers with ring diameter of 50 μm. A simple approach to enhance optical mode and electron-hole recombination, which results in threshold reduction and efficiency improvement is developed. This is done by appropriately undercutting the multiple quantum well (MQW) region to force carriers to flow towards the outer edge of the microring for better gain/optical mode overlap. We observe a reduction of the threshold of over 20% and up to 80% output power enhancement. The model and the experimental results highlight the benefits, as well as the negative effects from excessive undercutting, including lower MQW confinement, higher modal loss and higher thermal impedance. A design rule for MQW undercutting is therefore provided. Application as on-chip optical interconnects is discussed from a system perspective.

  3. Algorithms for finite rings

    NARCIS (Netherlands)

    Ciocanea Teodorescu I.,

    2016-01-01

    In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis is a solution to the module isomorphism problem in

  4. Relativistic ring models

    Energy Technology Data Exchange (ETDEWEB)

    Ujevic, Maximiliano [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Letelier, Patricio S.; Vogt, Daniel [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Matematica, Estatistica e Computacao Cientifica. Dept. de Matematica Aplicada

    2011-07-01

    Full text: Relativistic thick ring models are constructed using previously found analytical Newtonian potential-density pairs for flat rings and toroidal structures obtained from Kuzmin-Toomre family of discs. This was achieved by inflating previously constructed Newtonian ring potentials using the transformation |z|{yields}{radical}z{sup 2} + b{sup 2}, and then finding their relativistic analog. The models presented have infinite extension but the physical quantities decays very fast with the distance, and in principle, one could make a cut-off radius to consider it finite. In particular, we present systems with one ring, two rings and a disc with a ring. Also, the circular velocity of a test particle and its stability when performing circular orbits are presented in all these models. Using the Rayleigh criterion of stability of a fluid at rest in a gravitational field, we find that the different systems studied present a region of non-stability that appears in the intersection of the disc and the ring, and between the rings when they become thinner. (author)

  5. Illustration of Saturn's Rings

    Science.gov (United States)

    2001-01-01

    This illustration shows a close-up of Saturn's rings. These rings are thought to have formed from material that was unable to form into a Moon because of tidal forces from Saturn, or from a Moon that was broken up by Saturn's tidal forces.

  6. Smoke Ring Physics

    Science.gov (United States)

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  7. Imaging rings in ring imaging Cherenkov counters

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Blair N

    2002-11-25

    The general concepts used to form images in Ring Imaging Cherenkov (RICH) counters are described and their performance properties compared. Particular attention is paid to issues associated with imaging in the time dimension, especially in Detectors of Internally Reflected Cherenkov light (DIRCs).

  8. Rings and their modules

    CERN Document Server

    Bland, Paul E

    2011-01-01

    This book is an introduction to the theory of rings and modules that goes beyond what one normally obtains in a graduate course in abstract algebra. In addition to the presentation of standard topics in ring and module theory, it also covers category theory, homological algebra and even more specialized topics like injective envelopes and projective covers, reflexive modules and quasi-Frobenius rings, and graded rings and modules. The book is a self-contained volume written in a very systematic style: allproofs are clear and easy for the reader to understand and allarguments are based onmaterials contained in the book. A problem sets follow each section. It is suitable for graduate and PhD students who have chosen ring theory for their research subject.

  9. Levitating states of superconducting rings in the field of a fixed ring with constant current

    Science.gov (United States)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Denisyuk, A. I.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2014-06-01

    We consider the possibility of designing a plasma trap with a magnetic system formed by super-conducting rings and coils levitating in the field of a fixed coaxial coil carrying constant current. An analytic dependence of the potential energy of such a system with one or two levitating superconducting rings having trapped preset magnetic fluxes on their coordinates in the uniform gravitational field is obtained in the thin ring approximation. Calculations performed in the Mathcad system show that equilibrium states of such a system exist for certain values of parameters. Levitating states of a single superconducting ring and two superconducting rings in the field of the coil with constant current are observed experimentally in positions corresponding to calculated values.

  10. Annual Report: Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Strazisar, Brian [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Guthrie, George [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2012-09-30

    Activities include laboratory experimentation, field work, and numerical modeling. The work is divided into five theme areas (or first level tasks) that each address a key research need: Flow Properties of Reservoirs and Seals, Fundamental Processes and Properties, Estimates of Storage Potential, Verifying Storage Performance, and Geospatial Data Resources. The project also includes a project management effort which coordinates the activities of all the research teams.

  11. Unidirectional ring-laser operation using sum-frequency mixing

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented....

  12. Nanoscale borromean rings.

    Science.gov (United States)

    Cantrill, Stuart J; Chichak, Kelly S; Peters, Andrea J; Stoddart, J Fraser

    2005-01-01

    The molecular expression of topologically interesting structures represents a formidable challenge for synthetic chemists. The nontrivial link known as the Borromean rings has long been regarded as one of the most ambitious targets in this field. Of ancient provenance, this symbol comprises three interlocked rings in an inseparable union, but cut any one of the rings and the whole assembly unravels into three separate pieces. This Account delineates different strategies that can be applied to the formation of molecules possessing this distinctive topology, culminating with two successful syntheses of such compounds, thus cutting the Gordian knot of topological chemistry.

  13. Saturn's Rings are Fractal

    OpenAIRE

    Li, Jun; Ostoja-Starzewski, Martin

    2012-01-01

    Over the past few decades, various conjectures were advanced that Saturn's rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. We focus on the images sent by the Cassini spacecraft mission: slide #42 "Mapping Clumps in Saturn's Rings" and slide #54 "Scattered Sunshine". Using the box-counting method, we determine the fractal dimension of rings seen here (and in several other images from the same source) to be consistently about 1.6~1.7. This...

  14. Modified Newton's rings: II

    OpenAIRE

    Chaitanya, T. Sai; Kumar, Rajiv; Krishna, V. Sai; Anandh, B Shankar; Umesh, K S

    2010-01-01

    In an earlier work (Shankar kumar Jha, A Vyas, O S K S Sastri, Rajkumar Jain & K S Umesh, 'Determination of wavelength of laser light using Modified Newton's rings setup', Physics Education, vol. 22, no.3, 195-202(2005)) reported by our group, a version of Newton's rings experiment called Modified Newton's rings was proposed. The present work is an extension of this work. Here, a general formula for wavelength has been derived, applicable for a plane of observation at any distance. A relation...

  15. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...... with the probe L1.26 confirmed the derivation from chromosome 13 and DNA polymorphism analysis showed maternal origin of the ring chromosome. Our results, together with a review of previous reports of cases with ring chromosome 13 with identified breakpoints, could neither support the theory of distinct clinical...

  16. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  17. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Peter [The Ohio State Univ., Columbus, OH (United States); Bohrer, Gil [The Ohio State Univ., Columbus, OH (United States); Gough, Christopher [Virginia Commonwealth Univ., Richmond, VA (United States); Nadelhoffer, Knute [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest C storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation

  18. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...... is dedicated to vortex rings. Source rings are only briefly mentioned....

  19. Ringed Seal Distribution Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) of the five subspecies of ringed seals (Phoca hispida). It was produced...

  20. Integrations on rings

    Directory of Open Access Journals (Sweden)

    Banič Iztok

    2017-04-01

    Full Text Available In calculus, an indefinite integral of a function f is a differentiable function F whose derivative is equal to f. The main goal of the paper is to generalize this notion of the indefinite integral from the ring of real functions to any ring. We also investigate basic properties of such generalized integrals and compare them to the well-known properties of indefinite integrals of real functions.