WorldWideScience

Sample records for experimental root surface

  1. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    Science.gov (United States)

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p  0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks in single‑rooted premolars, resected 3.0 mm from the root apex, using the Er: YAG laser, tungsten carbide bur, and diamond‑coated tip, by scanning electron microscopy (SEM). Experimental design: Thirty ...

  3. Surface physics : experimental

    International Nuclear Information System (INIS)

    Padalia, B.D.

    1978-01-01

    In this report, discussion is confined to some important ultra high vacuum surface techniques such as ultra-violet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and the low energy electron diffraction (LEED). An attempt is made to cover the basic principles and the experimental details of XPS and AES. Selected examples illustrating the potentialities of the above techniques to solve the important basic as well as applied problems relating to surfaces are presented. Salient features of the available commercial machines in which UPS, AES and LEED are combined to facilitate surface examination sequentially or simultaneously under identical experimental conditions are indicated. (auth.)

  4. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    Science.gov (United States)

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent

  5. Surface-based GPR underestimates below-stump root biomass

    Science.gov (United States)

    John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke

    2016-01-01

    Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...

  6. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    Science.gov (United States)

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Macroscopic and radiographic examination of proximal root surface caries

    International Nuclear Information System (INIS)

    Nordenram, G.; Bergvist, A.; Johnson, G.; Henriksen, C.O.; Anneroth, G.

    1988-01-01

    The purpose of the study was to compare macroscopic and radiographic examination of proximal root surface caries of extracted teeth from patients aged 65-95 years. Although the study conditions for macroscopic and radiographic diagnosis favored more sensitive evaluations than routine clinical conditions, there was a 24% disagreement in diagnosis. This finding indicates that under routine clinical conditions it is difficult to register with certainty all superficial root carious lesions. Even in the absence of clinically detectable root surface caries, preventive measures should be considered for elderly people with exposed root surfaces

  8. Biocompatibility of Er:YSGG laser radiated root surfaces

    Science.gov (United States)

    Benthin, Hartmut; Ertl, Thomas P.; Schmidt, Dirk; Purucker, Peter; Bernimoulin, J.-P.; Mueller, Gerhard J.

    1996-01-01

    Pulsed Er:YAG and Er:YSGG lasers are well known to be effective instruments for the ablation of dental hard tissues. Developments in the last years made it possible to transmit the laser radiation at these wavelengths with flexible fibers. Therefore the application in the periodontal pocket may be possible. The aim of this study was to evaluate the in-vitro conditions to generate a bioacceptable root surface. Twenty extracted human teeth, stored in an antibiotic solution, were conventionally scaled, root planed and axially separated into two halves. Two main groups were determined. With the first group laser radiation was carried out without and in the second group with spray cooling. The laser beam was scanned about root surface areas. Laser parameters were varied in a selected range. The biocompatibility was measured with the attachment of human gingival fibroblasts and directly compared to conventionally treated areas of the root surfaces. The fibroblasts were qualified and counted in SEM investigations. On conventionally treated areas gingival fibroblasts show the typical uniform cover. In dependance on the root roughness after laser treatment the fibroblasts loose the typical parallel alignment to the root surface. With spray cooling a better in-vitro attachment could be obtained. Without spray cooling the higher increase in temperature conducted to less bioacceptance by the human gingival fibroblasts to the root surface. These results show the possibility of producing bioacceptable root surfaces with pulsed laser radiation in the range of very high water absorption near 3 micrometer.

  9. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. ... fracture with LightSpeed (LS), ProTaper (PT) and EndoWave (Ew) rotary instruments.

  10. Effect of two storage solutions on surface topography of two root-end fillings.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh

    2009-12-01

    The effect of different storage solutions on surface topography of mineral trioxide aggregate (MTA) and new experimental cement (NEC) as root-end fillings was investigated. Twenty-four single-rooted teeth were cleaned, shaped and obturated in a same manner. After root-end resection, 3-mm deep root-end cavities were ultrasonically prepared. Samples were randomly divided into four test groups (A1-A2-B1-B2, n = 6). Root-end cavities in groups A and B were filled with MTA and NEC, respectively, and were then stored in 100% humidity for 24 h. The samples of groups 1 and 2 were, respectively, immersed in normal saline (NS) and phosphate buffer saline solutions for 1 week. The samples were imaged under stereomicroscope before and after immersion and were then investigated and analysed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). Results showed significant difference among studied groups. Surface topography of all samples was altered by crystal formation and precipitation on root-end fillings except for group A1 (MTA-NS). SEM and EDXA results showed that the composition and structure of precipitated crystals were comparable with that of standard hydroxyapatite. It was concluded that biocompatibility, sealing ability, and cementogenic activity of MTA and probably NEC may be attributed to this fundamental bioactive reaction.

  11. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    Science.gov (United States)

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root

  12. Root caries, root surface restorations and lifestyle factors in adult Danes

    DEFF Research Database (Denmark)

    Christensen, Lisa Bøge; Bardow, Allan; Ekstrand, Kim

    2015-01-01

    , tobacco use and oral hygiene routines were collected from 4369 adults aged 21-89 who took part in a survey covering 13 municipalities across Denmark. Uni- and multivariate logistic regression analyses were applied to analyse the relationship between the independent lifestyle variables and active caries...... consumption, as well as wearing dentures, were significantly associated with the occurrence of untreated caries and restored root surface lesions, especially in persons over 45. Thus, such lifestyle factors should be taken into consideration, identifying persons with a need of preventive dental services...

  13. Antistress activity of Argyreia speciosa roots in experimental animals

    Directory of Open Access Journals (Sweden)

    Nikunj B Patel

    2011-01-01

    Full Text Available The antistress effect of a seven-day treatment (100 and 200 mg / kg, p.o. of the hydroalcoholic extract of Argyreia speciosa root (ASE was evaluated by using the swimming endurance test, acetic acid-induced writhing test, pentylenetetrazole-induced convulsion test, anoxic tolerance test, cold-restraint, stress-induced gastric ulcers, aspirin-induced ulcers, and biochemical, and histopathological changes in the cold-restraint stress test. The immunomodulatory activity was also evaluated for the same doses, and treatment of ASE was done using the hemagglutination test. Both the doses of ASE showed antistress activity in all the tested models. The ASE-treated animals showed a decrease in immobility time and an increase in anoxic tolerance time in swimming endurance and the anoxic tolerance tests, respectively. The effect of glacial acetic acid and pentylenetetrazole were also reduced by decreasing the number of writhing responses and increasing the onset of convulsions, respectively. In the cold restrained stress and aspirin-induced gastric ulcer models, ASE showed a significant reduction in the ulcer index. Pretreatment with ASE significantly ameliorated the cold stress-induced variations in biochemical levels such as increased plasma cholesterol, triglyceride, glucose, total protein, and cortisol. ASE was also effective in preventing the pathological changes in the adrenal gland, due to cold restrained stress, in rats. In mice immunized with sheep red blood cells, the treatment groups subjected to restraint stress prevented the humoral immune response to the antigen. The immunostimulating activity of the ASE was indicated by an increase in the antibody titer in mice pre-immunized with sheep red blood cells and subjected to restraint stress. The findings of the present investigations indicate that the ASE has significant antistress activity, which may be due to the immunostimulating property and increased resistance, nonspecifically, against all

  14. Ultrastructural investigation of root canal dentine surface after application of active ultrasonic method

    Directory of Open Access Journals (Sweden)

    Mitić Aleksandar

    2008-01-01

    Full Text Available INTRODUCTION The basic work principle of all ultrasonic techniques is the piezoelectric effect of producing high frequency ultrasounds of small length, which are transmitted over the endodontic extensions or canal instruments into the root canal. When in contact with the tissue, ultrasonic vibrations are converted into mechanical oscillations. Ultrasonic waves and the obtained oscillations along with the synergic effect of irrigation bring about the elimination of smear layer from the root canal walls. OBJECTIVE The aim of the study was to ultrastucturally examine the effect of smear layer removal from the walls of canals by the application of the active ultrasonic method without irrigation, that is by the application of ultrasound and irrigation using distilled water and 2.5% NaOCl. METHOD The investigation comprised 35 single-canal, extracted human teeth. After removal of the root canal content, experimental samples were divided into three groups. According to the procedure required, the first group was treated by ultrasound without irrigation; the second one by ultrasound with irrigation using distilled water; and the third group was treated by ultrasound and irrigation using 2.5% NaOCl solution. The control samples were treated by machine rotating instruments (Pro-File and were rinsed by distilled water. RESULTS The obtained results showed that the ultrasonic treatment of the root canal without irrigation did not remove the smear layer. The dentine canals are masked, and big dentine particles are scattered on the intertubular dentine. The ultrasonic treatment by using irrigation with distilled water provides cleaner dentine walls and open dentine tubules but with smaller particles on the intertubular dentine. The ultrasound treatment by using irrigation with 2.5% NaOCl solution provides a clean intertubular dentine surface without a smear layer and clearly open dentine tubules. CONCLUSION Instrumentation of the root canal by application of

  15. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  16. Rehardening of caries-like lesions in root surfaces by saliva substitutes.

    Science.gov (United States)

    Turssi, Cecilia P; Lima, Renata Q V; Faraoni-Romano, Juliana J; Serra, Mônica C

    2006-12-01

    This study sought to evaluate whether root dentine caries-like lesions could be remineralised by saliva substitutes. Root dentine slabs (3 x 3 x 2 mm) were cut from bovine incisors, ground flat, polished and pre-tested for Knoop microhardness (KHN) at five locations spaced 500 microm apart and 500 microm from the left edge of each sectioned piece. After 60 out of the 100 slabs had been selected based upon their KHN values, specimens were coated with wax except for their outer surface. Specimens were then cycled through a highly cariogenic challenge model to induce caries-like lesions, whose formation was confirmed by KHN measurements located 500 microm from the right edge of the specimen. According to a randomised complete block design, the experimental units (n = 15) were exposed to 1.5 ml of saliva substitutes, based on either mucin (MC) or carboxymethylcellulose (CM), to natural human saliva (HS) or to 100% relative humidity (RH) over 20 days. Remineralisation was verified by KHN measurements located 1000 microm apart from the right edge of the specimen. Analysis of variance indicated a significant (p < 0.0001) difference among the KHN values attained by the carious root dentine after exposure to the remineralising agents. Tukey's test ascertained that remineralisation was greatest with MC, intermediate with CM and least with HS, but rehardening did not reach the pre-caries lesion formation values. Saliva substitutes may provide partial remineralisation to preformed caries-like lesions in root dentine.

  17. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  18. A scanning electron microscopy study of diseased root surfaces conditioned with EDTA gel plus Cetavlon after scaling and root planing.

    Science.gov (United States)

    Martins Júnior, Walter; De Rossi, Andiara; Samih Georges Abi Rached, Ricardo; Rossi, Marcos Antonio

    2011-01-01

    In the present investigation, a scanning electron microscopy analysis was performed to evaluate the effects of the topical application of ethylenediaminetetraacetic acid (EDTA) gel associated with Cetavlon (EDTAC) in removing the smear layer and exposing collagen fibers following root surface instrumentation. Twenty-eight teeth from adult humans, single rooted and scheduled for extraction due to periodontal reasons, were selected. Each tooth was submitted to manual (scaling and root planing) instrumentation alone or combined with ultrasonic instruments, with or without etching using a 24% EDTAC gel. Following extraction, specimens were processed and examined under a scanning electron microscope. A comparative morphological semi-quantitative analysis was performed; the intensity of the smear layer and the decalcification of cementum and dentinal surfaces were graded in 12 sets using an arbitrary scale ranging from 1 (area covered by a smear layer) to 4 (no smear layer). Root debridement with hand instruments alone or combined with ultrasonic instruments resulted in a similar smear layer covering the root surfaces. The smear layer was successfully removed from the surfaces treated with EDTAC, which exhibited numerous exposed dentinal tubules and collagen fibers. This study supports the hypothesis that manual instrumentation alone or instrumentation combined with ultrasonic instrumentation is unable to remove the smear layer, whereas the subsequent topical application of EDTAC gel effectively removes the smear layer, uncovers dentinal openings and exposes collagen fibers.

  19. The effect of MTAD, an endodontic irrigant, on fibroblast attachment to periodontally affected root surfaces: A SEM analysis

    Directory of Open Access Journals (Sweden)

    Mostafa Ghandi

    2013-01-01

    Full Text Available Background: Root surface debridement (RSD is necessary to create an environment suitable for reattachment of the periodontium. Root surface conditioning may aid the formation of a biocompatible surface suitable for cell reattachment. BioPure™ MTAD (mixture of Doxycycline, citric acid and a detergent is an endodontic irrigant with antibacterial properties and the ability to remove smear layer. It was hypothesized that MTAD may be useful for root surface conditioning. The efficacy of MTAD as a conditioner was measured by examining fibroblast attachment to root surfaces. Materials and Methods: Thirty-two specimens of human teeth with advanced periodontal disease were used. The surfaces were root planed until smooth. Half of the specimens were treated with 0.9% saline and the other samples with Biopure MTAD. As a negative control group, five further samples were left unscaled with surface calculus. Human gingival fibroblast cells HGF1-PI1 were cultured and poured over the tooth specimens and incubated. After fixation, the samples were sputter-coated with gold and examined with a SEM. The morphology and number of attached, fixed viable cells were examined. The data was analysed using the Mann-Whitney-U statistical test. Results: There was no significant difference between the numbers of attached cells in the experimental group treated with MTAD and the control group treated with saline. Little or no attached cells were seen in the negative control group. Conclusion: RSD created an environment suitable for cell growth and attachment in a laboratory setting. The use of MTAD did not promote the attachment and growth of cells on the surface of human roots following RSD.

  20. The effect of MTAD, an endodontic irrigant, on fibroblast attachment to periodontally affected root surfaces: A SEM analysis.

    Science.gov (United States)

    Ghandi, Mostafa; Houshmand, Behzad; Nekoofar, Mohammad H; Tabor, Rachel K; Yadeghari, Zahra; Dummer, Paul M H

    2013-03-01

    Root surface debridement (RSD) is necessary to create an environment suitable for reattachment of the periodontium. Root surface conditioning may aid the formation of a biocompatible surface suitable for cell reattachment. BioPure™ MTAD (mixture of Doxycycline, citric acid and a detergent) is an endodontic irrigant with antibacterial properties and the ability to remove smear layer. It was hypothesized that MTAD may be useful for root surface conditioning. The efficacy of MTAD as a conditioner was measured by examining fibroblast attachment to root surfaces. Thirty-two specimens of human teeth with advanced periodontal disease were used. The surfaces were root planed until smooth. Half of the specimens were treated with 0.9% saline and the other samples with Biopure MTAD. As a negative control group, five further samples were left unscaled with surface calculus. Human gingival fibroblast cells HGF1-PI1 were cultured and poured over the tooth specimens and incubated. After fixation, the samples were sputter-coated with gold and examined with a SEM. The morphology and number of attached, fixed viable cells were examined. The data was analysed using the Mann-Whitney-U statistical test. There was no significant difference between the numbers of attached cells in the experimental group treated with MTAD and the control group treated with saline. Little or no attached cells were seen in the negative control group. RSD created an environment suitable for cell growth and attachment in a laboratory setting. The use of MTAD did not promote the attachment and growth of cells on the surface of human roots following RSD.

  1. Root Surface Caries Occurence in Relation to Social and Dental ...

    African Journals Online (AJOL)

    Objective: To investigate the association between root caries and social and dental behaviour amongst adults in a selected suburband adult population. Methods: The setting, study design and root caries diagnosis were as described in the first part of this three part series. Subjects\\' social and dental health behaviour were ...

  2. Root plasticity buffers competition among plants: theory meets experimental data.

    Science.gov (United States)

    Schiffers, Katja; Tielbörger, Katja; Tietjen, Britta; Jeltsch, Florian

    2011-03-01

    Morphological plasticity is a striking characteristic of plants in natural communities. In the context of foraging behavior particularly, root plasticity has been documented for numerous species. Root plasticity is known to mitigate competitive interactions by reducing the overlap of the individuals' rhizospheres. But despite its obvious effect on resource acquisition, plasticity has been generally neglected in previous empirical and theoretical studies estimating interaction intensity among plants. In this study, we developed a semi-mechanistic model that addresses this shortcoming by introducing the idea of compensatory growth into the classical-zone-of influence (ZOI) and field-of-neighborhood (FON) approaches. The model parameters describing the belowground plastic sphere of influence (PSI) were parameterized using data from an accompanying field experiment. Measurements of the uptake of a stable nutrient analogue at distinct distances to the neighboring plants showed that the study species responded plastically to belowground competition by avoiding overlap of individuals' rhizospheres. An unexpected finding was that the sphere of influence of the study species Bromus hordeaceus could be best described by a unimodal function of distance to the plant's center and not with a continuously decreasing function as commonly assumed. We employed the parameterized model to investigate the interplay between plasticity and two other important factors determining the intensity of competitive interactions: overall plant density and the distribution of individuals in space. The simulation results confirm that the reduction of competition intensity due to morphological plasticity strongly depends on the spatial structure of the competitive environment. We advocate the use of semi-mechanistic simulations that explicitly consider morphological plasticity to improve our mechanistic understanding of plant interactions.

  3. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces

    Directory of Open Access Journals (Sweden)

    Thomas E. Rams

    2017-10-01

    Conclusions: Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  5. Effect of citric acid, tetracycline, and doxycycline on instrumented periodontally involved root surfaces: A SEM study

    Directory of Open Access Journals (Sweden)

    Gurparkash Singh Chahal

    2014-01-01

    Full Text Available Background: A surface smear layer consisting of organic and inorganic material is formed on the root surface following mechanical instrumentation and may inhibit the formation of new connective tissue attachment to the root surface. Modification of the tooth surface by root conditioning has resulted in improved connective tissue attachment and has advanced the goal of reconstructive periodontal treatment. Aim: The aim of this study was to compare the effects of citric acid, tetracycline, and doxycycline on the instrumented periodontally involved root surfaces in vitro using a scanning electron microscope. Settings and Design: A total of 45 dentin samples obtained from 15 extracted, scaled, and root planed teeth were divided into three groups. Materials and Methods: The root conditioning agents were applied with cotton pellets using the "Passive burnishing technique" for 5 minutes. The samples were then examined by the scanning electron microscope. Statistical Analysis Used: The statistical analysis was carried out using Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, version 15.0 for Windows. For all quantitative variables means and standard deviations were calculated and compared. For more than two groups ANOVA was applied. For multiple comparisons post hoc tests with Bonferroni correction was used. Results: Upon statistical analysis the root conditioning agents used in this study were found to be effective in removing the smear layer, uncovering and widening the dentin tubules and unmasking the dentin collagen matrix. Conclusion: Tetracycline HCl was found to be the best root conditioner among the three agents used.

  6. The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing.

    Science.gov (United States)

    Montevecchi, Marco; Parrilli, Annapaola; Fini, Milena; Gatto, Maria Rosaria; Muttini, Aurelio; Checchi, Luigi

    2016-10-01

    The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit.

  7. Root surface smoothness or roughness following open debridement. An in vivo study.

    Science.gov (United States)

    Schlageter, L; Rateitschak-Plüss, E M; Schwarz, J P

    1996-05-01

    Consensus has not been reached on the desired characteristics of the root surface following cleaning. It is also not clear what degree of roughness or smoothness results from use of different instruments. In the present human clinical study, various instruments for root surface cleaning were evaluated. 18 teeth destined for extraction for periodontal reasons were utilized. After reflection of soft tissue flaps, the 72 root surface aspects of the 18 teeth were uniformally treated with one of the following instruments: Gracey curette (GC), piezo ultrasonic scaler (PUS), Perioplaner curette (PPC), sonic scaler (SS), 75 microns diamond (75 D) and 15 microns diamond (15.D). The degree of roughness of each surface was measured after extraction. A planimetry apparatus was used to establish the average surface roughness (Ra) and the mean depth of the roughness profile (Rz). It was demonstrated that hand- and machine-driven curettes as well as very fine rotating diamonds created the smoothest root surfaces, while "vibrating" instruments such as sonic and ultrasonic scalers, as well as coarse diamonds, tended to roughen the root surface. Whether the root surface should be rough or smooth in order to enhance tissue healing remains an open question.

  8. Effects of Root Debridement With Hand Curettes and Er:YAG Laser on Chemical Properties and Ultrastructure of Periodontally-Diseased Root Surfaces Using Spectroscopy and Scanning Electron Microscopy

    Science.gov (United States)

    Amid, Reza; Gholami, Gholam Ali; Mojahedi, Masoud; Aghalou, Maryam; Gholami, Mohsen; Mirakhori, Mahdieh

    2017-01-01

    Introduction: The efficacy of erbium-doped yttrium aluminum garnet (Er:YAG) laser for root debridement in comparison with curettes has been the subject of many recent investigations. Considering the possibility of chemical and ultra-structural changes in root surfaces following laser irradiation, this study sought to assess the effects of scaling and root planing (SRP) with curettes and Er:YAG laser on chemical properties and ultrastructure of root surfaces using spectroscopy and scanning electron microscopy (SEM). Methods: In this in vitro experimental study, extracted sound human single-rooted teeth (n = 50) were randomly scaled using manual curettes alone or in conjunction with Er:YAG laser at 100 and 150 mJ/pulse output energies. The weight percentages of carbon, oxygen, phosphorous and calcium remaining on the root surfaces were calculated using spectroscopy and the surface morphology of specimens was assessed under SEM. Data were analyzed using one-way analysis of variance (ANOVA). Results: No significant differences (P > 0.05) were noted in the mean carbon, oxygen, phosphorous and calcium weight percentages on root surfaces following SRP using manual curettes with and without laser irradiation at both output energies. Laser irradiation after SRP with curettes yielded rougher surfaces compared to the use of curettes alone. Conclusion: Although laser irradiation yielded rougher surfaces, root surfaces were not significantly different in terms of chemical composition following SRP using manual curettes with and without Er:YAG laser irradiation. Er:YAG laser can be safely used as an adjunct to curettes for SRP. PMID:28652898

  9. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    2014-05-15

    May 15, 2014 ... exposed dentinal tubules, which may prevent the leakage ... stored in sterile distilled water at 37°C. Teeth with intact roots and mature apexes ..... 29. von Arx T, Kunz R, Schneider AC, Burgin W, Lussi A. Detection of dentinal.

  10. Root surface area measurement of permanent dentition in Indian population – CBCT analysis

    Directory of Open Access Journals (Sweden)

    Kanika Lakhani

    2017-01-01

    Full Text Available The area of the root surface of human teeth has been investigated extensively in the dental literature. All previous attempts mainly rely on the use of physical methods to calculate surface area on extracted teeth or use virtual 3D Models for the same. The aim is to develop an algorithm using MATLAB software that estimates the dimensions of 3-D image produced with the help of CBCT so that the same can be utilized to calculate the root surface area of teeth among Indian population. Present research utilizes CBCT images of samples of extracted teeth mounted on a customized jpg. A descriptive chart for statistical analysis has been prepared to obtain average root surface area of each tooth type. The currently developed algorithm has been successfully applied to the CBCT images of complete sample of teeth to obtain their root surface area. The algorithm developed to calculate root surface area of the teeth holds wide spread application in the field of dentistry pursuing its high expediency in even various specializations of dentistry including orthodontics, prosthodontics, periodontology and implantalogy. It is concluded that it has now become a reality to accurately determine the surface area of the root of human teeth without extracting them using the CBCT radiographs of the patients.

  11. Effect of the association between citric acid and EDTA on root surface etching.

    Science.gov (United States)

    Manzolli Leite, Fabio Renato; Nascimento, Gustavo Giacomelli; Manzolli Leite, Elza Regina; Leite, Amauri Antiquera; Cezar Sampaio, Josá Eduardo

    2013-09-01

    This study aims to compare the clot stabilization on root surfaces conditioned with citric acid and ethylenediamine-tetraacetic acid (EDTA). Scaled root samples (n = 100) were set in fve groups: group I-control group (saline solution); group II (24% EDTA); group III (25% citric acid); group IV (EDTA + citric acid); group V (citric acid + EDTA). Fifty samples were assessed using the root surface modifcation index (RSMI). The other 50 received a blood drop after conditioning. Clot formation was assessed using blood elements adhesion index (BEAI). A blind examiner evaluated photomicrographs. Statistical analysis considered p EDTA employment before citric acid (group-IV) reduced clot formation in comparison to citric acid use alone (group-III). Root conditioning with citric acid alone and before EDTA had the best results for smear layer removal and clot stabilization. EDTA inhibited clot stabilization on root surface and must have a residual activity once it has diminished clot adhesion to root even after citric acid conditioning. Thus, EDTA can be used to neutralize citric acid effects on periodontal cells without affecting clot stabilization. Clinical signifcance: To demonstrate that citric acid use on root surfaces previously affected by periodontal disease may favor clot stabilization and may have a benefcial effect on surgical outcomes. Also, EDTA can be used to neutralize citric acid effects on periodontal cells.

  12. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    Science.gov (United States)

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as relatively improve the control of thermal damagee.

  13. Bacterial action of carbon dioxide laser radiation in experimental dental root canals

    International Nuclear Information System (INIS)

    Zakariasen, K.L.; Dederich, D.N.; Tulip, John; DeCoste, Sandra; Jensen, S.E.; Pickard, M.A.

    1986-01-01

    The ability of a carbon dioxide laser to sterilize the root canal of human teeth has been investigated. Three oral bacteria, Streptococcus sanguis, Streptococcus mutans, and Actinomyces viscosus, and three other bacteria, Bacillus cereus, Staphyloccus aureus, and Pseudomonoas aeruginosa were used as experimental organisms. Exposure of cells on glass slides to laser radiation showed there was little difference in the exposure required to kill these six organisms. Complete recovery of bacteria from the root canal was initially a problem and was only achieved when bacterial manipulations and removal were carried out in rapid succession, within 5 min of inoculation. However, the geometry of the instrumented canal and the laser alignment were major factors in achieving consistent cell death of oral bacteria in the root canals. Using sets of 10 teeth, four repeated exposures of 10 W for 1 s was found to sterilize 4 or more of the teeth

  14. Morphological change study on root surfaces treated with curettes, sonic instruments or Er:YAG laser

    International Nuclear Information System (INIS)

    Guimaraes Filho, Arlindo Lopes

    2004-01-01

    Periodontal disease is caused by dental plaque and dental calculus on roots surfaces, specially on cervical areas. As dental plaque is the main cause and dental calculus a secondary one, it is practically impossible to separate one factor to the other one. In order to get periodontal tissue health it is necessary to eliminate dental plaque and calculus from root surfaces. In this sense, Er:YAG laser comes in as an excellent way to control periodontal disease, not only, by removing calculus and dental plaque but also for its bacteria reduction. The aim of this study is to compare, by S.E.M., root surfaces changing when they are treated with curettes and ultrasonic scaling or Er:YAG laser irradiation with two different energy levels of 60 mJ/pulse and 100 mJ/pulse and repetition tax of 10 Hz (in the display). It is also objective of this study to check a possible thermic damage to pulp tissue when the roots surfaces are irradiated with Er:YAG laser. We used for this study, five human dental roots, each one of them were cut into four samples, giving us a total of twenty samples, which were divided in five groups of four samples each one. The control group, we did not indicated any kind of treatment. The first group, the roots samples were scaled and planned with Gracey curettes 5/6 and 7/8. The second group, the roots samples were treated with ultrasonic instruments. The third group was irradiated with Er:YAG laser using 60 mJ/pulse , 10 Hz and energy density of 4 J/cm 2 (approximated). The fourth group was irradiated with Er:YAG laser using 100 mJ/pulse, 10 Hz and energy density of 7 J/cm 2 (approximated). The results analysis showed that roots scaling either with Gracey curettes or with ultrasonic instruments created smear layer covering roots surfaces; roots surfaces irradiated with Er:YAG laser showed few roughness in the third group; roots surfaces irradiated with Er:YAG laser showed no smear layer and the Er:YAG laser irradiation did not bring any thermic damage

  15. An In-Situ Root-Imaging System in the Context of Surface Detection of CO2

    Science.gov (United States)

    Apple, M. E.; Prince, J. B.; Bradley, A. R.; Zhou, X.; Lakkaraju, V. R.; Male, E. J.; Pickles, W.; Thordsen, J. J.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2009-12-01

    Carbon sequestration is a valuable method of spatially confining CO2 belowground. The Zero Emissions Research Technology, (ZERT), site is an experimental facility in a former agricultural field on the Montana State University campus in Bozeman, Montana, where CO2 was experimentally released at a rate of 200kg/day in 2009 into a 100 meter underground injection well running parallel to the ground surface. This injection well, or pipe, has deliberate leaks at intervals, and CO2 travels from these leaks upward to the surface of the ground. The ZERT site is a model system designed with the purpose of testing methods of surface detection of CO2. One important aspect of surface detection is the determination of the effects of CO2 on the above and belowground portions of plants growing above sequestration fields. At ZERT, these plants consist of a pre-existing mixture of herbaceous species present at the agricultural field. Species growing at the ZERT site include several grasses, Dactylis glomerata (Orchard Grass), Poa pratensis (Kentucky Bluegrass), and Bromus japonicus (Japanese Brome); the nitrogen-fixing legumes Medicago sativa, (Alfalfa), and Lotus corniculatus, (Birdsfoot trefoil); and an abundance of Taraxacum officinale, (Dandelion). Although the aboveground parts of the plants at high CO2 are stressed, as indicated by changes in hyperspectral plant signatures, leaf fluorescence and leaf chlorophyll content, we are interested in determining whether the roots are also stressed. To do so, we are combining measurements of soil conductivity and soil moisture with root imaging. We are using an in-situ root-imaging system manufactured by CID, Inc. (Camas, WA), along with image analysis software (Image-J) to analyze morphometric parameters in the images and to determine what effects, if any, the presence of leaking and subsequently upwelling CO2 has on the phenology of root growth, growth and turnover of individual fine and coarse roots, branching patterns, and root

  16. SEM Analysis of MTAD Efficacy for Smear Layer Removal from Periodontally Affected Root Surfaces

    Directory of Open Access Journals (Sweden)

    R. K. Tabor

    2011-12-01

    Full Text Available Objective: Biopure® MTAD (Dentsply Tulsa Dental, USA has been developed as a final irrigant following root canal shaping to remove intracanal smear layer. Many of the unique properties of MTAD potentially transfer to the conditioning process of tooth roots during periodontal therapy. The aim of this ex vivo studywas to evaluate the effect of MTAD on the removal of smear layer from root surfaces.Materials and Methods: Thirty two longitudinally sectioned specimens from 16 freshly extracted teeth diagnosed with advanced periodontal disease were divided into four groups. In group 1 and 2, the root surfaces were scaled using Gracey curettes. In group 3 and 4, 0.5 mm of the root surface was removed using a fissure bur. The specimens in group 1 and 3 were then irrigated by normal saline. Thespecimens in groups 2 and 4 were irrigated with Biopure MTAD.All specimens were prepared for SEM and scored according to the presence of smear layer.Results: MTAD significantly increased (P=0.001 the smear layer removal in both groups 2 and 4 compared to the associated control groups, in which only saline was used.Conclusion: MTAD increased the removal of the smear layer from periodontally affected root surfaces. Use of MTAD as a periodontal conditioner may be suggested.

  17. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    International Nuclear Information System (INIS)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-01-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25 x 25 x 25)μm 3 . The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively. (orig.)

  18. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    Science.gov (United States)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  19. Temperature increases on the external root surface during ...

    African Journals Online (AJOL)

    2015-02-25

    Feb 25, 2015 ... surface caused bone resorption and tooth ankyloses.[9] The .... thickness is important because it acts as a protective coating against thermal damage. .... heat stress proteins by human periodontal ligament cells. J Oral Pathol.

  20. Effects of wastewater discharge on formation of Fe plaque on root surface and radial oxygen loss of mangrove roots

    Energy Technology Data Exchange (ETDEWEB)

    Pi, N. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Tam, N.F.Y., E-mail: bhntam@cityu.edu.h [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Wong, M.H. [Croucher Institute for Environmental Sciences, Baptist University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2010-02-15

    Effects of wastewater discharge on radial oxygen loss (ROL), formation of iron (Fe) plaque on root surface, and their correlations in Bruguiera gymnorrhiza (L.) Poir and Excoecaria agallocha L. were investigated. ROL along a lateral root increased more rapidly in control than that in strong wastewater (with pollutant concentrations ten times of that in municipal sewage, 10NW) treatment, but less Fe plaque was formed in control for both plants. For B. gymnorrhiza receiving 10NW, Fe plaque formation was more at basal and mature zones than at root tip, while opposite trend was shown in E. agallocha. At day 0, the correlation between ROL and Fe plaque was insignificant, but negative and positive correlations were found in 10NW and control, respectively, at day 105, suggesting that more ROL was induced leading to more Fe plaque. However, excess Fe plaque also served as a 'barrier' to prevent excessive ROL in 10NW plants. - Correlation between Fe plaque formation and ROL.

  1. In vitro comparison of different 24% EDTA gel formulations efficacy on root surface conditioning

    OpenAIRE

    Sousa, Cliciane Portela; Frizzera, Fausto; Batista, Luiz Henrique Carvalho; Dantas, Andrea Abi Rached; Zandim-Barcelos, Daniela Leal; Sampaio, José Eduardo Cezar

    2013-01-01

    INTRODUCTION: The main goal of root biomodification is to modify the root surface in order to improve the repair of periodontal tissues destroyed by periodontal disease. OBJECTIVE: To evaluate the conditioning efficacy of 24% EDTA gel of different trademarks, considering the variables time and application method, by scanning electron microscopy. MATERIAL AND METHOD: 225 samples were randomly assigned to five groups: sterile saline solution (control); 24% EDTA (Santa Paula Pharmacy); 24% EDTA-...

  2. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  3. Core-level photoelectron study of Si(1 1 1) sq root 7x sq root 3-(Pb, Sn) surface

    CERN Document Server

    Soda, K; Takada, T; Yoshimoto, O; Kato, M; Yagi, S; Morita, K; Kamada, M

    2003-01-01

    The Sn 4d and Pb 5d core-level photoelectron spectra have been studied in order to clarify their bonding properties and atomic arrangement on a Si(1 1 1) sq root 7x sq root 3-(Pb, Sn) surface, which is formed by the coadsorption of 0.4 ML Pb and 0.4 ML Sn and shows two kinds of bright spots in the scanning tunneling microscopic (STM) images: (A) those aligned zigzag on the T sub 1 site and (B) those on the T sub 1 and H sub 3 sites along the [1 1 -2] direction. The Pb 5d spectrum shows a single spin-orbit-split feature with weak tailing towards the high binding energy side, while the Sn 4d spectrum exhibits shoulder structures at the high binding energy side of the main peaks. This definitely indicates at least two different Sn-Si bonds or inequivalent Sn adsorbing sites and single bond or site for Pb. Thus the spots A at the T sub 1 site and those B at the T sub 1 and H sub 3 sites in the STM images are ascribed to Pb and Sn adatoms, respectively. The formation process of this surface will be also discussed ...

  4. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  5. Experimental Salix shoot and root growth statistics on the alluvial sediment of a restored river corridor

    Science.gov (United States)

    Pasquale, N.; Perona, P.; Verones, F.; Francis, R.; Burlando, P.

    2009-12-01

    River restoration projects encompass not only the amelioration of flood protection but also the rehabilitation of the riverine ecosystem. However, the interactions and feedbacks between river hydrology, riparian vegetation and aquifer dynamics are still poorly understood. Vegetation interacts with river hydrology on multiple time scales. Hence, there is considerable interest in understanding the morphodynamics of restored river reaches in relation to the characteristics of vegetation that may colonize the bare sediment, and locally stabilize it by root anchoring. In this paper we document results from a number of ongoing experiments within the project RECORD (Restored CORridor Dynamics, sponsored by CCES - www.cces.ch - and Cantons Zurich and Thurgau, CH). In particular, we discuss both the above and below ground biomass growth dynamics of 1188 Salix cuttings (individual and group survival rate, growth of the longest shoots and number of branches and morphological root analysis) in relation to local river hydrodynamics. Cuttings were organized in square plots of different size and planted in spring 2009 on a gravel island of the restored river section of River Thur in Switzerland. By periodical monitoring the plots we obtained a detailed and quite unique set of data, including root statistics of uprooted samples derived from image analysis from a high-resolution scanner. Beyond describing the survival rate dynamics in relation to river hydrology, we show the nature and strength of correlations between island topography and cutting growth statistics. In particular, by root analysis and by comparing empirical histograms of the vertical root distribution vs satured water surface in the sediment, we show that main tropic responses on such environment are oxytropism, hydrotropism and thigmotropism. The main factor influencing the survival rate is naturally found in erosion by floods, of which we also give an interesting example that helps demonstrate the role of river

  6. EXPERIMENTAL EVALUATION OF WEDM MACHINED SURFACE WAVINESS

    Directory of Open Access Journals (Sweden)

    Katerina Mouralova

    2016-10-01

    Full Text Available Wire Electrical Discharge Machining (WEDM an unconventional machining technology which has become indispensable in many industries. The typical morphology of a surface machined using the electrical discharge technology is characterized with a large number of craters caused by electro-spark discharges produced during the machining process. The study deals with an evaluation of the machine parameter setting on the profile parameters of surface waviness on samples made of two metal materials Al 99.5 and Ti-6Al-4V. Attention was also paid to an evaluation of the surface morphology using 3D colour filtered and non-filtered images.

  7. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  8. Root surface caries occurrence, oral hygiene status and habits in a ...

    African Journals Online (AJOL)

    Objectives: The study evaluated root surface caries (RS C) occurrence in relation to oral hygiene status and habits in a suburban Nigerian Population. Methods: Seven hundred and twenty consecutive subjects, aged 20 years and above of both genders, attending the General Outpatient Department (GOPD) of Obafemi ...

  9. [Microbial Community Structure on the Root Surface of Patients with Periodontitis.

    Science.gov (United States)

    Zhang, Ju-Mei; Zhou, Jian-Ye; Bo, Lei; Hu, Xiao-Pan; Jiao, Kang-Li; Li, Zhi-Jie; Li, Yue-Hong; Li, Zhi-Qiang

    2016-11-01

    To study the microbial community structure on the root surface of patients with periodontitis. Bacterial plaque and tissues from the root neck (RN group),root middle (RM group) and root tine (RT group) of six teeth with mobility 3 in one patient with periodontitis were sampled.The V3V4 region of 16S rRNA was sequenced on the Illumina MiSeq platform.The microbial community structure was analyzed by Mothur,Qiime and SPSS software. The principal component analysis (PCoA) results indicated that the RM samples had a similar microbial community structure as that of the RT samples,which was significant different from that of the RN samples.Thirteen phyla were detected in the three groups of samples,which included 7 dominant phyla.29 dominant genera were detected in 184 genera.The abundance of Bacteroidetes _[G-6] and Peptostre ptococcaceae _[XI][G-4] had a positive correlation with the depth of the collection site of samples ( P microbial community structure on the root surface of patients with periodontitis.

  10. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    Science.gov (United States)

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  11. Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Xiaoqin, E-mail: xiaoqin_nie@163.com [Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang 621010 (China); Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Dong, Faqin, E-mail: fqdong2004@163.com [Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang 621010 (China); Liu, Ning [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Mingxue [Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang 621010 (China); Zhang, Dong; Kang, Wu [Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics, Mianyang 621900 (China); Sun, Shiyong; Zhang, Wei; Yang, Jie [Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang 621010 (China)

    2015-08-30

    Graphical abstract: - Highlights: • The proportion of uranium concentration approximate as 8:2:1 in the cell wall organelle and cytosol fractions of roots of S. punctata. • The particles including 35% Fe (wt%) released from the cells after 100 mg/L U treatment 48 h. • Most of the uranium bound onto the root surface and contacted with phosphorus ligands and formed as nano-scales U-P lamellar crystal. • FTIR and XPS analyses result indicates the uranium changed the band position and shapes of phosphate group, and the region of characteristic peak belongs to U(VI) and U(IV) were also observed. - Abstract: The subcellular distribution of uranium in roots of Spirodela punctata (duckweed) and the process of surface interaction were studied upon exposure to U (0, 5–200 mg/L) at pH 5. The concentration of uranium in each subcelluar fraction increased significantly with increasing solution U level, after 200 mg/L uranium solution treatment 120 h, the proportion of uranium concentration approximate as 8:2:1 in the cell wall organelle and cytosol fractions of roots of S. punctata. OM SEM and EDS showed after 5–200 mg/L U treatment 4–24 h, some intracellular fluid released from the root cells, after 100 mg/L U treatment 48 h, the particles including 35% Fe (wt%) and other organic matters such as EPS released from the cells, most of the uranium bound onto the root surface and contacted with phosphorus ligands and formed as nano-scales U-P lamellar crystal, similar crystal has been found in the cell wall and organelle fractions after 50 mg/L U treatment 120 h. FTIR and XPS analyses result indicates the uranium changed the band position and shapes of phosphate group, and the region of characteristic peak belongs to U(VI) and U(IV) were also observed.

  12. Evaluation of the morphological alteration of the root surface radiated with a diode laser

    International Nuclear Information System (INIS)

    Gulin, Mauricio

    2003-01-01

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of the

  13. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  14. Experimental and numerical analysis of microstructured surfaces

    OpenAIRE

    Diani, Andrea

    2014-01-01

    Heat dissipation is one of the most important issues for the reliability of electronics equipment. Up today, air represents the most safe, cheap, and common working fluid for electronics thermal management applications. Due to its poor heat transfer characteristics, air always flow through enhanced surfaces, such as plain and louvered fins, pin fins, offset strip fins and wire screens, in order to increase the heat transfer area and to create turbulence. Recently, metal foams have been propos...

  15. Response Surface Modelling of Noradrenaline Production in Hairy Root Culture of Purslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    Mehdi Ghorbani

    2015-03-01

    Full Text Available Common purslane (Portulaca oleracea L. is an annual plant as one of the natural sources for noradrenaline hormone. In this research, hairy root culture of purslane was established by using Agrobacterium rhizogenes strain ATCC 15834. In the following, Box-Behnken model of response surface methodology (RSM was employed to optimize B5 medium for the growth of P. oleracea L. hairy root line. According to the results, modelling and optimization conditions, including sucrose, CaCl2.H2O, H2PO4 and NO3-/NH4+ concentrations on maximum dry weight (0.155 g and noradrenaline content (0.36 mg.g-1 DW was predicted. These optimal conditions predicted by RSM were confirmed the enhancement of noradrenaline production as an application potential for production by hairy root cultures.

  16. Wound healing of dehiscence defects following different root conditioning modalities: an experimental study in dogs.

    Science.gov (United States)

    Zandim, Daniela Leal; Leite, Fábio Renato Manzolli; da Silva, Vanessa Camila; Lopes, Beatriz Maria Valério; Spolidorio, Luiz Carlos; Sampaio, José Eduardo Cezar

    2013-07-01

    The purpose of this study was to investigate the periodontal healing pattern of dehiscence-type defects following different chemical root conditioning modalities. Buccal osseous dehiscence defects were created on six teeth of seven dogs. After dental plaque accumulation, defects were treated with sterile saline solution (control group) or one chemical conditioning modality: citric acid (CA group), ethylenediaminetetraacetic acid (EDTA group), tetracycline (TTC group), citric acid + tetracycline (CA + TTC group), or tetracycline + citric acid (TTC + CA group). After 3 months of healing, clinical parameters were evaluated, and the animals were killed. Histological sections were processed, and a computer-assisted histometric analysis was used to evaluate the formation of new cementum, new bone, and epithelial apical migration. All treatments yielded significant improvements in terms of probing depth decrease and clinical attachment level gain compared to baseline values; however, without significant differences among the groups (p > 0.05; one-way ANOVA). The highest amount of new cementum was noted in the EDTA group (3.72 ± 0.83 mm, 77.6 %), while the lowest amount of new bone was observed in the TTC group (0.7 ± 0.94 mm, 14.3 %). However, no statistically significant differences could be observed among the groups regarding epithelial apical migration, new cementum, and alveolar bone formation (p > 0.05). Chemical root surface conditioning did not promote any significant improvement in periodontal healing pattern of dehiscence-type defects in dogs. Chemical root surface conditioning after surgical debridement did not promote positive or negative effects on periodontal healing pattern of dehiscence-type defects.

  17. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high-speed imaging.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Versluis, M; Kastrinakis, E; van der Sluis, L W M

    2010-05-01

    To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the effect of off-centre positioning of the needle inside the root canal. A CFD model was created to simulate irrigant flow from a side-vented needle inside a prepared root canal. Calculations were carried out for four different positions of the needle inside a prepared root canal. An identical root canal model was made from poly-dimethyl-siloxane (PDMS). High-speed imaging of the flow seeded with particles and Particle Image Velocimetry (PIV) were combined to obtain the velocity field inside the root canal experimentally. Computational, theoretical and experimental results were compared to assess the validity of the computational model. Comparison between CFD computations and experiments revealed good agreement in the velocity magnitude and vortex location and size. Small lateral displacements of the needle inside the canal had a limited effect on the flow field. High-speed imaging experiments together with PIV of the flow inside a simulated root canal showed a good agreement with the CFD model, even though the flow was unsteady. Therefore, the CFD model is able to predict reliably the flow in similar domains.

  18. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  19. Diversity effects on root length production and loss in an experimental grassland community

    NARCIS (Netherlands)

    Mommer, L.; Padilla, F.M.; Ruijven, van J.; Caluwe, de H.; Smit-Tiekstra, A.E.; Berendse, F.; Kroon, de H.

    2015-01-01

    Advances in root ecology have revealed that root standing biomass is higher in species-rich plant communities than in species-poor communities. Currently, we do not know whether this below-ground diversity effect is the result of enhanced root production or reduced root mortality or both, which is

  20. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  1. Experimental and theoretical studies of bombardment induced surface morphology changes

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Williams, J.S.

    1980-01-01

    In this review results of experimental and theoretical studies of solid surface morphology changes due to ion bombardment are discussed. An attempt is undertaken to classify the observed specific features of a structure, generated by ion bombardment [ru

  2. Chlorhexidine controlled-release profile after EDTA root surface etching: an in vivo study.

    Science.gov (United States)

    Gamal, Ahmed Y; Kumper, Radi M; Sadek, Hesham S; El Destawy, Mahmoud T

    2011-05-01

    The main objective of the present study was to quantify chlorhexidine (CHX) release after the use of CHX-EDTA root surface treatment as a local-delivery antimicrobial vehicle. Twenty non-smoking patients clinically diagnosed as having moderate-to-severe chronic periodontitis were selected to participate in this study. After cause-related therapy, one site in every patient received defect overfill with CHX gel 2% (20 sites). In addition, twenty contralateral sites received defect fill of CHX gel after 3 minutes of 24% EDTA gel root surface etching (20 sites). Gingival crevicular fluid samples were collected at 1, 3, 7, and 14 days post-therapy. The CHX-EDTA group showed statistically significantly higher levels of CHX than those of the control group at 1, 3, and 7 days. At 14 days, the CHX-EDTA group showed 0.8 mg/mL values. The use of CHX-EDTA root surface treatment as a local-delivery antimicrobial improves CHX substantivity.

  3. Effect of four dental varnishes on the colonization of cariogenic bacteria on exposed sound root surfaces.

    Science.gov (United States)

    Ekenbäck, S B; Linder, L E; Lönnies, H

    2000-01-01

    The aim of this study was to evaluate the effect of four different dental varnishes on the colonization of mutans streptococci, total streptococci and lactobacilli on exposed sound root surfaces. Sixty-five individuals were randomly allotted to one of four groups for treatment with Cervitec((R) ) varnish containing 1% chlorhexidine and 1% thymol, a thymol varnish or one of two different fluoride varnishes, Fluor Protector and Duraphat. The varnish was applied to three buccal root surfaces in each patient at baseline and after 1 week. Dental plaque from the root surfaces was collected and analysed on four different occasions: at baseline, after 1 week, 1 month and 6 months. The Cervitec varnish caused a statistically significant reduction in the number of mutans streptococci over time. The reduction was significant at 1 week and 1 month relative to baseline. The numbers of total streptococci and lactobacilli were not significantly affected by treatment with Cervitec. No statistically significant difference over time was found for mutans streptococci, lactobacilli or total streptococci after treatment with the fluoride varnishes or the thymol varnish.

  4. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.

    Science.gov (United States)

    Kalis, Erwin J J; Temminghoff, Erwin J M; Town, Raewyn M; Unsworth, Emily R; van Riemsdijk, Willem H

    2008-01-01

    The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.

  5. Radial Oxygen Loss in the Rhizosphere of Wild Rice as a Control On Root Surface Mineral Precipitation

    Science.gov (United States)

    Murphy, K.; Trejo, B.; LaFond-Hudson, S.

    2017-12-01

    Wild rice (Zizania palustris) is an aquatic plant native to the Great Lakes region that is culturally and nutritionally significant for the Ojibwe people of Northern Minnesota. Concern for the future health of wild rice populations has increased amidst ongoing pressures from proposed mining projects that risk sulfate contamination to natural waters. Although sulfate itself is not toxic to wild rice, bacteria living in anoxic sediments use the sulfate as an electron acceptor, converting it to sulfide, which subsequently precipitates in the form of iron-sulfide on the root surface of wild rice. These precipitates are linked to lowered viability of wild rice. Most wetland plants are able to shield against the harmful accumulation of these precipitates through a process known as radial oxygen loss (ROL), in which oxygen leaches from roots into anoxic sediments to form protective iron-oxide plaques. This mechanism, however, had yet to be experimentally confirmed in wild rice. In this study, we eliminated the potential for ROL to occur in wild rice prior to the reproductive phase, and measured the rates of iron-sulfide accumulation on the roots and in associated sediments. We compared these data with the geochemical composition of roots and sediment from wild rice that accumulated iron-sulfide precipitate during the reproductive phase. In doing so, we demonstrate that ROL is indeed a mechanism by which wild rice protects itself against sulfide exposure, and examine the nuances of ROL as it relates to the life cycle of wild rice. The better we understand the vulnerability of wild rice across its life cycle and comparative rates of both toxic and protective precipitate accumulation, the better we can approach wild rice conservation.

  6. Comparisons of orthodontic root resorption under heavy and jiggling reciprocating forces during experimental tooth movement in a rat model.

    Science.gov (United States)

    Hikida, Takuji; Yamaguchi, Masaru; Shimizu, Mami; Kikuta, Jun; Yoshino, Tomokazu; Kasai, Kazutaka

    2016-07-01

    Root mobility due to reciprocating movement of the tooth (jiggling) may exacerbate orthodontic root resorption (ORR). "Jiggling" describes mesiodistal or buccolingual movement of the roots of the teeth during orthodontic treatment. In the present study, buccolingual movement is described as "jiggling." We aimed to investigate the relationship between ORR and jiggling and to test for positive cell expression in odontoclasts in resorbed roots during experimental tooth movement (jiggling) in vivo. Male Wistar rats were divided into control, heavy force (HF), optimal force (OF), and jiggling force (JF) groups. The expression levels of cathepsin K, matrix metalloproteinase (MMP)-9 protein, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant 1 (CINC-1; an IL-8-related protein in rodents), receptor activator of nuclear factor κB ligand (RANKL), and osteoprotegerin protein in the dental root were determined using immunohistochemistry. On day 21, a greater number of root resorption lacunae, which contained multinucleated odontoclasts, were observed in the palatal roots of rats in the JF group than in rats from other groups. Furthermore, there was a significant increase in the numbers of cathepsin K-positive and MMP-9-positive odontoclasts in the JF group on day 21. Immunoreactivities for IL-6, CINC-1, and RANKL were stronger in resorbed roots exposed to jiggling than in the other groups on day 21. Negative reactivity was observed in the controls. These results suggest that jiggling may induce ORR via inflammatory cytokine production during orthodontic tooth movement, and that jiggling may be a risk factor for ORR.

  7. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2018-03-01

    We investigated the occurrence of and mechanisms responsible for acclimation of fine-root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine-root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine-root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots. © 2017 John Wiley & Sons Ltd.

  8. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    Science.gov (United States)

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent

  9. Uptake of radionuclides by wheat roots with respect to location of contamination below the surface

    International Nuclear Information System (INIS)

    Suvornmongkhol, Narumon.

    1996-01-01

    The behaviour of 85 Sr, 137 Cs, 54 Mn and 60 Co in terms of plant availability in near surface soil and their root uptake was studied as a function of the location of contamination in the soil profile. Wheat (Triticum aestivum) was employed and the study programme involved both column and hydroponic studies. In the column studies, columns were packed with sandy soil, and either homogeneously or discretely contaminated with the radionuclides, and the water table maintained manually at 3 cm from the bottom. In the discrete contamination, the location of contamination was varied (0-5, 25-30 or 45-50 cm from the top). Wheat plants were grown to maturity in these columns, and harvested at different growth stages to examine radioactivity uptake and its subsequent translocation within the plants. The movement of radionuclides within the soil as well as the soil physicochemical properties were also investigated. The short term uptake kinetics of the hydroponically grown plants during ontogenesis were also studied, both with excised roots and intact plants. The excised root experiment was aimed at investigating the radionuclide by roots of different orders. (author)

  10. Temperature increases on the external root surface during endodontic treatment using single file systems.

    Science.gov (United States)

    Özkocak, I; Taşkan, M M; Gökt Rk, H; Aytac, F; Karaarslan, E Şirin

    2015-01-01

    The aim of this study is to evaluate increases in temperature on the external root surface during endodontic treatment with different rotary systems. Fifty human mandibular incisors with a single root canal were selected. All root canals were instrumented using a size 20 Hedstrom file, and the canals were irrigated with 5% sodium hypochlorite solution. The samples were randomly divided into the following three groups of 15 teeth: Group 1: The OneShape Endodontic File no.: 25; Group 2: The Reciproc Endodontic File no.: 25; Group 3: The WaveOne Endodontic File no.: 25. During the preparation, the temperature changes were measured in the middle third of the roots using a noncontact infrared thermometer. The temperature data were transferred from the thermometer to the computer and were observed graphically. Statistical analysis was performed using the Kruskal-Wallis analysis of variance at a significance level of 0.05. The increases in temperature caused by the OneShape file system were lower than those of the other files (P file showed the highest temperature increases. However, there were no significant differences between the Reciproc and WaveOne files. The single file rotary systems used in this study may be recommended for clinical use.

  11. Er:YAG laser in defocused mode for scaling of periodontally involved root surfaces: an in vitro pilot study.

    NARCIS (Netherlands)

    Crespi, R.; Romanos, G.E.; Barone, A.; Sculean, A.; Covani, U.

    2005-01-01

    BACKGROUND: The Er:YAG laser may be used on periodontally involved teeth in combination with conventional periodontal therapy in order to improve the efficacy of root instrumentation. The aim of this study was to compare the effect of hand instrumentation on root surfaces of periodontally involved

  12. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  13. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  14. Evaluation of safety and protective effects of Potentilla fulgens root extract in experimentally induced diarrhoea in mice

    Directory of Open Access Journals (Sweden)

    V. Tangpu

    2014-06-01

    Methods: The protective effects of P. fulgens root extract was investigated against experimentally induced diarrhoea in mice, using four experimental models, i.e. measurement of faecal output, castor oil model, prostaglandin E2 (PGE2 enteropooling assay and gastrointestinal transit test. The safety assessment of root extract was done in mice on the basis of general signs and symptoms of toxicity, food water intake and mortality of animals following their treatment with various doses of extract (100 and ndash;3200 mg/kg. In addition, the serum glutamate oxaloacetate transaminase (SGOT, serum glutamate pyruvate transaminase (SGPT, cholesterol and total protein of experimental mice were also monitored to assess the toxicity of root extract. Results: In the safety assessment studies, P. fulgens root extract did not showed any visible signs of toxicity, but mortality was observed in a single animal at 3200 mg/kg dose of extract. The extract also did not showed any adverse effects on the studied serum parameters of experimental animals. In the antidiarrhoeal tests, administration of 800 mg/kg dose of extract to mice showed 50% protection from diarrhoea evoked by castor oil. In addition, the extract also showed 29.27% reduction in PGE2-induced intestinal secretion as compared to 30.31% recorded for loperamide, a standard anti-diarrhoeal drug. Conclusions: The results of this study indicate that P. fulgens root extract possesses significant anti-diarrhoeal properties. Therefore, the roots of this plant can be an effective traditional medicine for the protection from diarrhoea. [J Intercult Ethnopharmacol 2014; 3(3.000: 103-108

  15. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    Science.gov (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  16. Surface Resonance Bands on (001)W: Experimental Dispersion Relations

    DEFF Research Database (Denmark)

    Willis, R. F.; Feuerbacher, B.; Christensen, N. Egede

    1977-01-01

    A band of unbound surface states (resonances), located in an energy region above the vacuum threshold corresponding to an energy band gap in the electron states of the bulk crystal, has been observed by angle-resolved secondary-electron-emission spectroscopy. The experimental dispersion behavior...... is in agreement with the two-dimensional band structure of a clean (001)W surface recently proposed by Smith and Mittheiss....

  17. Experimental Assessment of Mechanical Night Ventilation on Inner Wall Surfaces

    DEFF Research Database (Denmark)

    Ji, Wenhui; Heiselberg, Per Kvols; Wang, Houhua

    2016-01-01

    The cooling potential of night ventilation largely depends on the heat exchange at the internal room surfaces. During night time, increased heat transfer on a vertical wall is expected due to cool supply air that flows along the internal wall surface from the top of the wall. This paper presents ...... an experimental study of the cooling of wall surfaces in a test room by mechanical night-time ventilation. Significant improvement of indoor thermal environment is presented resulting from the enhanced internal convection heat transfer....

  18. Experimental and numerical analyses of different extended surfaces

    International Nuclear Information System (INIS)

    Diani, A; Mancin, S; Zilio, C; Rossetto, L

    2012-01-01

    Air is a cheap and safe fluid, widely used in electronic, aerospace and air conditioning applications. Because of its poor heat transfer properties, it always flows through extended surfaces, such as finned surfaces, to enhance the convective heat transfer. In this paper, experimental results are reviewed and numerical studies during air forced convection through extended surfaces are presented. The thermal and hydraulic behaviours of a reference trapezoidal finned surface, experimentally evaluated by present authors in an open-circuit wind tunnel, has been compared with numerical simulations carried out by using the commercial CFD software COMSOL Multiphysics. Once the model has been validated, numerical simulations have been extended to other rectangular finned configurations, in order to study the effects of the fin thickness, fin pitch and fin height on the thermo-hydraulic behaviour of the extended surfaces. Moreover, several pin fin surfaces have been simulated in the same range of operating conditions previously analyzed. Numerical results about heat transfer and pressure drop, for both plain finned and pin fin surfaces, have been compared with empirical correlations from the open literature, and more accurate equations have been developed, proposed, and validated.

  19. Preparation and characterisation of glass surfaces for experimental purposes

    International Nuclear Information System (INIS)

    Serruys, Y.

    1986-01-01

    Experimental investigation of glasses, applied especially to the prevision of the behaviour of vitrified nuclear wastes, requires the preparation of well-defined and reproducibles surfaces, in order to separate the investigated phenomena from artifacts due to surface anomalies and to allow a valuable comparison between results obtained in different laboratories. The aim of the present report is to determine which characters, both physical and chemical, of glass surfaces, have to be controlled, because of their influence upon the investigated phenomena or the experimental processes employed in the investigation. A method is then presented for a surface preparation giving good guaranties of quality and reproducibility. The physical and chemical aspects of surface characterisation are successively considered. The relevant characters and their importance are described, then the corresponding techniques of characterisation are reviewed and it has been attempted to propose a set of techniques allowing a characterisation as complete as possible for laboratory purposes. A preparation method for experimental sample, aiming to satisfy all the previously defined criteria, is then proposed, and present results obtained with this method are described [fr

  20. The root flow of horizontal axis wind turbine blades : Experimental analysis and numerical validation

    NARCIS (Netherlands)

    Akay, B.

    2016-01-01

    Despite a long research history in the field of wind turbine aerodynamics, horizontal axis wind turbine (HAWT) blade's root flow aerodynamics is among the least understood topics. In this thesis work, a detailed investigation of the root flow is performed to gain a better insight into the features

  1. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    International Nuclear Information System (INIS)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat; Sriwilas, Patiyut; Midtboe, Marit

    2017-01-01

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm"2) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth

  2. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat [Dept. of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand); Sriwilas, Patiyut [Dept. of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Midtboe, Marit [Dept. of Clinical Dentistry - Orthodontics, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway)

    2017-06-15

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm{sup 2}) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

  3. The effect of root surface conditioning on smear layer removal in periodontal regeneration (a scanning electron microscopic study)

    Science.gov (United States)

    Fidyawati, D.; Soeroso, Y.; Masulili, S. L. C.

    2017-08-01

    The role of root surface conditioning treatment on smear layer removal of human teeth is affected by periodontitis in periodontal regeneration. The objective of this study is to analyze the smear layer on root surface conditioned with 2.1% minocycline HCl ointment (Periocline), and 24% EDTA gel (Prefgel). A total of 10 human teeth indicated for extraction due to chronic periodontitis were collected and root planed. The teeth were sectioned in thirds of the cervical area, providing 30 samples that were divided into three groups - minocycline ointment treatment, 24% EDTA gel treatment, and saline as a control. The samples were examined by scanning electron microscope. No significant differences in levels of smear layer were observed between the minocycline group and the EDTA group (p=0.759). However, there were significant differences in the level of smear layer after root surface treatment in the minocycline and EDTA groups, compared with the control group (p=0.00). There was a relationship between root surface conditioning treatment and smear layer levels following root planing.

  4. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  5. EXPERIMENTAL VALIDATION OF CUMULATIVE SURFACE LOCATION ERROR FOR TURNING PROCESSES

    Directory of Open Access Journals (Sweden)

    Adam K. Kiss

    2016-02-01

    Full Text Available The aim of this study is to create a mechanical model which is suitable to investigate the surface quality in turning processes, based on the Cumulative Surface Location Error (CSLE, which describes the series of the consecutive Surface Location Errors (SLE in roughing operations. In the established model, the investigated CSLE depends on the currently and the previously resulted SLE by means of the variation of the width of cut. The phenomenon of the system can be described as an implicit discrete map. The stationary Surface Location Error and its bifurcations were analysed and flip-type bifurcation was observed for CSLE. Experimental verification of the theoretical results was carried out.

  6. Comparison of connective tissue graft and guided tissue regeneration in covering root surfaces

    Directory of Open Access Journals (Sweden)

    LotfazarM.

    2002-08-01

    Full Text Available There are many researches evaluation different methods for covering the root surface. In the most of these studies, type I and II of Miller treatment had been searched. The purpose of this study was a comparison between connective tissue graft (CTG and guided tissue regeneration (GTR with a collagen membrane in the treatment of gingival recession defects (Miller class III. Six patients, each contributing a pair of Miller class III buccal gingival recessions, were treated. The clinical measurements were obtained at baseline and 1,2,4,6,12,18 months after surgery. Statistical analysis were performed using paired t-test between periods (baseline versus 6 months and baseline versus 18 months within each treatment group and also between treatment groups before treatment and 6, 12 and 18 months after the treatment. The treatments were compared by a triple analysis of variance along the time (treatment, patient, time. Both CTG and GTR with a bioabsorbable membrane demonstrated significant clinical and esthetic improvement for gingival recession coverage. The CTG and GTR procedures had mean root coverage of 55% and 47.5% respectively, in the end of study. The CTG group was statistically better than GTR for recession depth, recession width and keratinized tissue width. Also, passing the time (18 months as a distinct factor of treatment procedures was effective in increasing of clinical attachment level and keratinized tissue width.

  7. Experimental minimum threshold for Phytophthora cinnamomi root disease expression on Quercus suber

    Directory of Open Access Journals (Sweden)

    María Socorro SERRANO

    2015-12-01

    Full Text Available Quercus suber seedlings were potted in soils infested with increasing concentrations of Phytophthora cinnamomi chlamydospores and submitted to weekly flooding for 3 months to favour root infections. Increasing quantities of chlamydospores led to an exponential increase in their ability to germinate. Root symptoms (necrosis and/or absence of feeder roots were significantly more severe than those recorded in uninfested soil only for plants potted in soils infested with 61 cfu g-1 or more. Although generated using potting mix, this minimum threshold represents a tool for checking the potential infectivity of infested soils or to assess the effectiveness of some control methods to reduce soil inoculum. However, a low level of root infection was recorded even at 3 cfu g-1. Therefore, long-term disease risk may be present whenever the pathogen is detectable in oak forest soils.

  8. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    Science.gov (United States)

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  9. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    International Nuclear Information System (INIS)

    Patters, M.R.; Landsberg, R.L.; Johansson, L.-A.; Trummel, C.L.; Robertson, P.R.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated 45 Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis. (author)

  10. Analysis of root surface properties by fluorescence/Raman intensity ratio.

    Science.gov (United States)

    Nakamura, Shino; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Matsuo

    2017-11-01

    The aim of this study is to evaluate the existence of residual calculus on root surfaces by determining the fluorescence/Raman intensity ratio. Thirty-two extracted human teeth, partially covered with calculus on the root surface, were evaluated by using a portable Raman spectrophotometer, and a 785-nm, 100-mW laser was applied for fluorescence/Raman excitation. The collected spectra were normalized to the hydroxyapatite Raman band intensity at 960 cm -1 . Raman spectra were recorded from the same point after changing the focal distance of the laser and the target radiating angle. In seven teeth, the condition of calculus, cementum, and dentin were evaluated. In 25 teeth, we determined the fluorescence/Raman intensity ratio following three strokes of debridement. Raman spectra collected from the dentin, cementum, and calculus were different. After normalization, spectra values were constant. The fluorescence/Raman intensity ratio of calculus region showed significant differences compared to the cementum and dentin (p Raman intensity ratio decreased with calculus debridement. For this analysis, the delta value was defined as the difference between the values before and after three strokes, with the final 2 delta values close to zero, indicating a gradual asymptotic curve and the change in intensity ratio approximating that of individual constants. Fluorescence/Raman intensity ratio was effectively used to cancel the angle- and distance-dependent fluctuations of fluorescence collection efficiency during measurement. Changes in the fluorescence/Raman intensity ratio near zero suggested that cementum or dentin was exposed, and calculus removed.

  11. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    Energy Technology Data Exchange (ETDEWEB)

    Patters, M R; Landsberg, R L; Johansson, L A; Trummel, C L; Robertson, P R [Department of Periodontology, University of Connecticut, School of Dental Medicine, Farmington, Connecticut, U.S.A.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated /sup 45/Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis.

  12. A Low-Cost Imaging Method for the Temporal and Spatial Colorimetric Detection of Free Amines on Maize Root Surfaces

    Directory of Open Access Journals (Sweden)

    Truc H. Doan

    2017-08-01

    Full Text Available Plant root exudates are important mediators in the interactions that occur between plants and microorganisms in the soil, yet much remains to be learned about spatial and temporal variation in their production. This work outlines a method utilizing a novel colorimetric paper to detect spatial and temporal changes in the production of nitrogen-containing compounds on the root surface. While existing methods have made it possible to conduct detailed analysis of root exudate composition, relatively less is known about where in the root system exudates are produced and how this localization changes as the root grows. Furthermore, there is much to learn about how exudate localization and composition varies in response to stress. Root exudates are chemically diverse secretions composed of organic acids, amino acids, proteins, sugars, and other metabolites. The sensor utilized for the method, ninhydrin, is a colorless substance in solution that reacts with free amino groups to form a purple dye. A detection paper was developed by formulating ninhydrin into a print solution that was uniformly deposited onto paper with a commercial ink jet printer. This “ninhydrin paper” was used to analyze the chemical makeup of root surfaces from maize seedlings grown vertically on germination paper. Through contact between the ninhydrin paper and seedling root surfaces, combined with images of both the seedlings and dried ninhydrin papers captured using a standard flatbed scanner, nitrogen-containing substances on the root surface can be localized and concentration of signal estimated for over 2 weeks of development. The method was found to be non-inhibiting to plant growth over the analysis period although damage to root hairs was observed. The method is sensitive in the detection of free amines at concentrations as little as 140 μM. Furthermore, ninhydrin paper is stable, showing consistent color changes up to 2 weeks after printing. This relatively simple, low

  13. Fate of plutonium intercepted by leaf surfaces: leachability and translocation to seed and root tissues

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Klepper, E.L.; Craig, D.K.

    1975-01-01

    A low windspeed plant exposure chamber was employed for the generation and deposition of particulate 238 Pu as nitrate, citrate, and oxide (fresh and aged) onto foliage of Phaseolus vulgaris. Physical deposition characteristics and particle sizing were routinely measured and deposition parameters calculated. At wind speeds of 0.42 cm sec -1 , deposition velocities for these compounds were of the order 10 -3 cm sec -1 with deposition rates onto exposed foliage of 0.26 to 0.52 pg 238 Pu cm -2 sec -1 . The fate of surface deposited Pu compounds with respect to chemical modification and leachability was evaluated by leaching with synthetic rainwater and 0.1 percent HNO 3 solutions. Leaching of contaminated foliage with acidified solutions resulted in a 1-to-9 fold increase in Pu removal from foliar surfaces, depending upon chemical form, as compared to rainwater. Sequential leaching of foliage at 1, 7, 14, or 21 days after contamination indicated a reduced leachability of surface deposits with residence time on the leaf. The extent of leaching and concentration of soluble component was dependent on chemical form supplied (Pu-citrate greater than -nitrate greater than -aged oxide greater than -fresh oxide). The bioavailability of Pu as measured by translocation of foliarly deposited plutonium to root and seed tissue was markedly affected by the presence of a solution vector (i.e., simulated rainfall), and also the timing of its application

  14. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  15. Experimental and Theoretical Investigations of Glass Surface Charging Phenomena

    Science.gov (United States)

    Agnello, Gabriel

    Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing

  16. Effects of ischemic phrenic nerve root ganglion injury on respiratory disturbances in subarachnoid hemorrhage: an experimental study.

    Science.gov (United States)

    Ulvi, Hızır; Demir, Recep; Aygül, Recep; Kotan, Dilcan; Calik, Muhammet; Aydin, Mehmet Dumlu

    2013-12-30

    Phrenic nerves have important roles on the management of respiration rhythm. Diaphragm paralysis is possible in phrenic nerve roots ischemia in subarachnoid hemorrhage (SAH). We examined whether there is a relationship between phrenic nerve root ischemia and respiratory disturbances in SAH. This study was conducted on 5 healthy control and 14 rabbits with experimentally induced SAH by injecting autologous blood into their cisterna magna. Animals were followed up via monitors for detecting the heart and respiration rhythms for 20 days and then decapitaed by humanely. Normal and degenerated neuron densities of phrenic nerve root at the level of C4 dorsal root ganglia (C4DRG) were estimated by Stereological methods. Between the mean numerical density of degenerated neurons of C4DRG and respiratory rate/minute of groups were compared statistically. Phrenic nerve roots, artery and diaphragm muscles degeneration was detected in respiratory arrest developed animals. The mean neuronal density of C4DRG was 13272 ±1201/mm3 with a mean respiration rate of 23 ±4/min in the control group. The mean degenerated neuron density was 2.240 ±450/mm(3) and respiration rhythm was 31 ±6/min in survivors. But, the mean degenerated neuron density was 5850 ±650/mm(3) and mean respiration rhythm was 34 ±7/min in respiratory arrest developed animals (n = 7). A linear relationship was noticed between the degenerated neuron density of C4DRG and respiraton rate (r = -0.758; p Phrenic nerve root ischemia may be an important factor in respiration rhythms deteriorations in SAH which has not been mentioned in the literature.

  17. [Optimization of dissolution process for superfine grinding technology on total saponins of Panax ginseng fibrous root by response surface methodology].

    Science.gov (United States)

    Zhao, Ya; Lai, Xiao-Pin; Yao, Hai-Yan; Zhao, Ran; Wu, Yi-Na; Li, Geng

    2014-03-01

    To investigate the effects of superfine comminution extraction technology of ginseng total saponins from Panax ginseng fibrous root, and to make sure the optimal extraction condition. Optimal condition of ginseng total saponins from Panax ginseng fibrous root was based on single factor experiment to study the effects of crushing degree, extraction time, alcohol concentration and extraction temperature on extraction rate. Response surface method was used to investigate three main factors such as superfine comminution time, extraction time and alcohol concentration. The relationship between content of ginseng total saponins in Panax ginseng fibrous root and three factors fitted second degree polynomial models. The optimal extraction condition was 9 min of superfine comminution time, 70% of alcohol, 50 degrees C of extraction temperature and 70 min of extraction time. Under the optimal condition, ginseng total saponins from Panax ginseng fibrous root was average 94. 81%, which was consistent with the predicted value. The optimization of technology is rapid, efficient, simple and stable.

  18. The Origin of Mercury's Surface Composition, an Experimental Investigation

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Introduction: Results from MESSENGER spacecraft have confirmed the reduced nature of Mercury, based on its high core/mantle ratio and its FeO-poor and S-rich surface. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting major melting stages of the Mercurian mantle. In addition, MESSENGER has provided the most precise data to date on major elemental compositions of Mercury's surface. These results revealed considerable chemical heterogeneities that suggested several stages of differentiation and re-melting processes. This interpretation was challenged by our experimental previous study, which showed a similar compositional variation in the melting products of enstatite chondrites, which are a possible Mercury analogue. However, these experimental melts were obtained over a limited range of pressure (1 bar to 1 gigapascal) and were not compared to the most recent elemental maps. Therefore, here we extend the experimental dataset to higher pressures and perform a more quantitative comparison with Mercury's surface compositions measured by MESSENGER. In particular, we test whether these chemical heterogeneities result from mixing between polybaric melts. Our experiments and models show that the majority of chemical diversity of Mercury's surface can result from melting of a primitive mantle compositionally similar to enstatite chondrites in composition at various depths and degrees of melting. The high-Mg region's composition is reproduced by melting at high pressure (3 gigapascals) (Tab. 1), which is consistent with previous interpretation as being a large degraded impact basin based on its low elevation and thin average crust. While low-Mg NVP (North Volcanic Plains) are the result of melting at low pressure (1 bar), intermediate-Mg NVP, Caloris Basin and Rachmaninoff result from mixing of a high-pressure (3 gigapascals) and low-pressure components (1 bar for Rachmaninoff and 1 gigapascal for the other regions

  19. A comparison of root surface instrumentation using manual, ultrasonic and rotary instruments: an in vitro study using scanning electron microscopy.

    Science.gov (United States)

    Marda, Preeti; Prakash, Shobha; Devaraj, C G; Vastardis, S

    2012-01-01

    The commonly accepted idea concerning root planing is that excessive removal of cementum is not necessary for removal of endotoxins. The ideal instrument should enable the removal of all extraneous substances from the root surfaces, without causing any iatrogenic effects. To compare the remaining calculus, loss of tooth substance, and roughness of root surface after root planing with Gracey curette, ultrasonic instrument (Slimline insert FSI-SLI-10S), and DesmoClean rotary bur. The efficiency of calculus removal, the amount of lost tooth substance, and root surface roughness resulting from the use of hand curette, ultrasonic instrument, and rotary bur on 36 extracted mandibular incisors were examined by SEM. We used three indices to measure the changes: Remaining calculus index (RCI), Loss of tooth substance index (LTSI), and Roughness loss of tooth substance index (RLTSI). Twelve samples were treated with each instrument. The time required for instrumentation was also noted. Kruskal-Wallis ANOVA was used for multiple group comparisons and the Mann-Whitney test for group-wise comparisons. Analysis was carried out with SPSS software (version 13). The RCI and LTSI showed nonsignificant differences between the three groups. RLTSI showed a significant difference between Slimline and hand curette as well as Slimline and Desmo-Clean. Slimline showed the least mean scores for RCI, LTSI, and RLTSI. Thus, even though the difference was not statistically significant, Slimline insert was shown to be better than the other methods as assessed by the indices scores and the instrumentation time.

  20. Surface laser marking optimization using an experimental design approach

    Science.gov (United States)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  1. The inhibiting effects of components of stinging nettle roots on experimentally induced prostatic hyperplasia in mice.

    Science.gov (United States)

    Lichius, J J; Renneberg, H; Blaschek, W; Aumüller, G; Muth, C

    1999-10-01

    Direct implanting of fetal urogenital sinus (UGS) tissue into the ventral prostate gland of adult mice led to a 4-fold weight increase of the manipulated prostatic lobe. The induced growth could be reduced by the polysaccharide fraction (POLY-M) of the 20% methanolic extract of stinging nettle roots by 33.8%.

  2. Efficacy of different instrumentation techniques on reducing Enterococcus faecalis infection in experimentally infected root canals

    Directory of Open Access Journals (Sweden)

    Ebru Özsezer Demiryürek

    2014-03-01

    Conclusion: This study indicates that instruments with a greater taper play an important role in maximizing the effectiveness of mechanical preparation. However, since using mechanical instrumentation alone is insufficient to completely eliminate root canal infection, the use of complementary antibacterial compounds is necessary.

  3. An experimental study on decontamination by surface condition

    International Nuclear Information System (INIS)

    Lee, Young Hae

    1974-01-01

    Surface decontamination is one of the very important problem to be completely solved in the isotope laboratory where there is always the possibility of radioactive contamination, i.e., on the floors, walls, working tables and benches etc., Isotope laboratories require surface covering of material which can be easily and effectively decontaminated. These experiment were done to find an effective decontamination procedure for kind of surfaces which usually are found in radioisotope laboratories and the best type of surface material, that is, one which is easily decontaminated from the point of view of radiation health and safely. This study is presented to guide radioisotope laboratories in Korea which may need to renovate existing unsafe facilities. In some contaminated facilities entirely new installations may be required. Twelve types of surface material are used for study in this experiment. These include 10 cm square of stainless steel, aluminum, ceramic and mosaic tiles, glass, acrylic, formica board, asphalt tile and coated wood with 4 kinds of paints. Stepwise decontamination was performed with various decontamination procedures following a spill of I 1 31 on the center of the surface material being tested. Twelve different decontamination procedures were tested. These included wet wiping with water and detergent, or dry wiping, or removing with gummed paper. Additional chemical procedures used 10% solution of hydrochloric acid, or surface acid, or ammonium citrate, or potassium iodide, or acetone or carbon tetrachloride. The final testing method was abrasion of the test surfaces. Brief analysis of experimental results on the decontaminability on the tested surface showed: 1. Metallic surfaces such as stainless steel or aluminum, or glass, or a piece of ceramic tile or acrylic are recommended as the surface materials for isotope laboratories because these are easily decontaminated by wet wiping only. 2. Formica board, asphalt tile and wood are not easily

  4. Experimental Paper. Intrapopulation variability of flavonoid content in roots of Baikal skullcap (Scutellaria baicalensis Georgi

    Directory of Open Access Journals (Sweden)

    Kosakowska Olga

    2017-03-01

    Full Text Available Introduction: Baikal skullcap (Scutellaria baicalensis Georgi is an important medicinal plant, indigenous to Asia. Due to a wide range of pharmacological activities, its roots has been used for ages in Traditional Chinese Medicine. Recently, the species has become an object of interest of Western medicine, as well. Objective: The aim of the study was to determine the variability of Baikal skullcap population originated from Mongolia and cultivated in Poland, in terms of content and composition of flavonoids in the roots. Methods: The objects of the study were 15 individual plants, selected within examined population and cloned in order to obtain a sufficient amount of raw material. The total content of flavonoids in roots was determined according to Polish Pharmacopeia 6th. The qualitative analysis of flavonoids was carried out using HPLC, Shimadzu chromatograph. Results: The dry mass of roots ranged from 25.88 to 56.14 g × plant-1. The total content of flavonoids (expressed as a quercetin equivalent varied between 0.17 and 0.52% dry matter (DM. Nine compounds were detected within the group, with oroxylin A 7-Oglucuronide (346.90-1063.00 mg × 100 g-1 DM as a dominant, which differentiated investigated clones at the highest degree (CV=0.27. Baicalin (391.40-942.00 mg × 100 g-1 DM, wogonoside (324.00-641.10 mg × 100 g-1 DM and hesperetine 7-O-glucoside (163.00-346.32 mg × 100 g-1 DM were also present in a considerable amounts. Clone 7 was distinguished by the highest content of all investigated compounds, except wogonin and oroxylin A 7-O-glucuronide. Conclusions: Results obtained in present study show a high variability within Baical skullcap investigated population in respect of flavonoid compounds detected in roots. Thus, the results may be used in future investigations concerning the selection and breeding of this species.

  5. Soil respiration patterns in root gaps 27 years after small scale experimental disturbance in Pinus contorta forests

    Science.gov (United States)

    Baker, S.; Berryman, E.; Hawbaker, T. J.; Ewers, B. E.

    2015-12-01

    While much attention has been focused on large scale forest disturbances such as fire, harvesting, drought and insect attacks, small scale forest disturbances that create gaps in forest canopies and below ground root and mycorrhizal networks may accumulate to impact regional scale carbon budgets. In a lodgepole pine (Pinus contorta) forest near Fox Park, WY, clusters of 15 and 30 trees were removed in 1988 to assess the effect of tree gap disturbance on fine root density and nitrogen transformation. Twenty seven years later the gaps remain with limited regeneration present only in the center of the 30 tree plots, beyond the influence of roots from adjacent intact trees. Soil respiration was measured in the summer of 2015 to assess the influence of these disturbances on carbon cycling in Pinus contorta forests. Positions at the centers of experimental disturbances were found to have the lowest respiration rates (mean 2.45 μmol C/m2/s, standard error 0.17 C/m2/s), control plots in the undisturbed forest were highest (mean 4.15 μmol C/m2/s, standard error 0.63 C/m2/s), and positions near the margin of the disturbance were intermediate (mean 3.7 μmol C/m2/s, standard error 0.34 C/m2/s). Fine root densities, soil nitrogen, and microclimate changes were also measured and played an important role in respiration rates of disturbed plots. This demonstrates that a long-term effect on carbon cycling occurs when gaps are created in the canopy and root network of lodgepole forests.

  6. Experimental determinations of the performances of heat transfer surfaces

    International Nuclear Information System (INIS)

    Pirovano, Alain; Viannay, Stephane; Mazeas, C.Y.

    1974-01-01

    With the help of flow schemes and of assumptions on the heat transfer, it is possible, in some cases, to predict the thermal and aerodynamical performances of a new heat transfer surface with moderate accuracy. These estimates, valid for an approximate classification of a new surface among known surfaces, are not accurate enough to be taken as a basis for the design of heat exchangers. In the present state of knowledge, the performances of a new heat transfer surface can only be determined accurately with experimental measurements. Bertin and Co have at their disposal two air test rigs especially designed for this purpose. The first one, more directly concerned with the measurements on tube bundles with fluid flow perpendicular to the generatrices of the tubes, is a semi-closed loop equipped with a high-efficiency ejector which amplifies the air flow rate supplied by an external source and thus allows high values of Reynolds number to be reached. The second one is adapted to other types of surfaces: tubes with external flow parallel to the generatrices, tubes with sophisticated cross section and with internal flow, compact surfaces with finned plates, etc. Both test rigs, the relevant equipment, the methods of data acquisition and of test results analysis are described in this paper. During the 5 past years, 60 configurations were tested. It was possible to compare some of the test results with the results of measurements performed later, on entire heat exchangers working with numbers of tubes, fluids, and temperature levels different from those prevailing during the tests on the small scale mock-up; the agreement is quite good [fr

  7. Atmospheric emissions of methyl isothiocyanate and chloropicrin following soil fumigation and surface containment treatment in bare-root forest nurseries

    Science.gov (United States)

    D. Wang; J. Juzwik; S.W. Fraedrich; K. Spokas; Y. Zhang; W.C. Koskinen

    2005-01-01

    Methylisothiocyanate (MITC) and chloropicrin (CP) are alternatives to methyl bromide for soil fumigation. However, surface transport of MITC emission has been cited as the cause for seedling damage in adjacent fields at several bare-root forest-tree nurseries. Field experiments were conducted at nurseries to measure air emissions of MITC and CP after fumigation....

  8. Experimental study of liquid drop impact onto a powder surface

    KAUST Repository

    Marston, Jeremy; Thoroddsen, Sigurdur T; Ng, Waikiong; Tan, Reginald

    2010-01-01

    The initial dynamics of liquid drop impact onto powder surfaces is studied experimentally using high-speed photography. For a range of bed packing fractions, φ, liquid physical properties and impact velocities, ui, we observe a variety of phenomena that can be representative of a hydrophobic surface, a rough surface or a porous medium. The solids packing fraction in the bed, 0.38≤φ≤0.65, and the impact Weber number, 3.5≤We=ρDui 2/φ≤750, (where ρ, D and φ are the drop density, diameter and surface tension respectively) are shown to be the critical parameters governing the outcome of an impact. For high packing fractions, φ≳0.5, we show that the observed spreading, rebound and splashing can be broadly characterised in terms of the Weber number while for looser packing fractions, φ≲0.5, we observe powder ejectas and provide a qualitative description of the granule nucleation at the centre of the impact sites. © 2010 Elsevier B.V.

  9. Experimental study of liquid drop impact onto a powder surface

    KAUST Repository

    Marston, Jeremy

    2010-11-01

    The initial dynamics of liquid drop impact onto powder surfaces is studied experimentally using high-speed photography. For a range of bed packing fractions, φ, liquid physical properties and impact velocities, ui, we observe a variety of phenomena that can be representative of a hydrophobic surface, a rough surface or a porous medium. The solids packing fraction in the bed, 0.38≤φ≤0.65, and the impact Weber number, 3.5≤We=ρDui 2/φ≤750, (where ρ, D and φ are the drop density, diameter and surface tension respectively) are shown to be the critical parameters governing the outcome of an impact. For high packing fractions, φ≳0.5, we show that the observed spreading, rebound and splashing can be broadly characterised in terms of the Weber number while for looser packing fractions, φ≲0.5, we observe powder ejectas and provide a qualitative description of the granule nucleation at the centre of the impact sites. © 2010 Elsevier B.V.

  10. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    Science.gov (United States)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  11. Delayed tooth replantation after root surface treatment with sodium hypochlorite and sodium fluoride: histomorphometric analysis in rats.

    Science.gov (United States)

    Sottovia, André Dotto; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Lauris, José Roberto Pereira

    2006-04-01

    In cases of delayed tooth replantation, non-vital periodontal ligament remnants have been removed with sodium hypochlorite in an attempt to control root resorption. Nevertheless, reports of its irritating potential in contact with the alveolar connective tissue have been described. Therefore, this study evaluated the healing process on delayed replantation of rat teeth, after periodontal ligament removal by different treatment modalities. Twenty-four rats, assigned to 3 groups (n=8), had their upper right incisor extracted and left on the workbench for desiccation during 60 min. Afterwards, the teeth in group I were immersed in saline for 2 min. In group II, root surfaces were scrubbed with gauze soaked in saline for 2 min; and in group III, scrubbing was done with gauze soaked in 1% sodium hypochlorite solution. Thereafter, root surfaces were etched with 37% phosphoric acid and immersed in 2% acidulate-phosphate sodium fluoride solution, at pH 5.5. Root canals were filled with a calcium hydroxide-based paste and the teeth were replanted. The animals were sacrificed 60 days postoperatively and the pieces containing the replanted teeth were processed and paraffin- embedded. Semi-serial transversally sections were obtained from the middle third of the root and stained with hematoxylin and eosin for histomorphometric analysis. Data were analyzed statistically using Kruskal-Wallis and Dunn's tests. The results showed that root structure and cementum extension were more affected by resorption in group III (p<0.05). All groups were affected by root resorption but the treatment performed in group III was the least effective for its control. The treatment accomplished in groups I and II yielded similar results to each other.

  12. A scanning electron microscopy study of root surface smear layer removal after topical application of EDTA plus a detergent

    OpenAIRE

    Sampaio, José Eduardo Cezar; Campos, Flávia Pavan; Pilatti, Gibson Luiz; Theodoro, Letícia Helena; Leite, Fábio Renato Manzolli

    2005-01-01

    The aim of the present study was to compare root surface smear layer removal following topical application of EDTA and EDTA-T (Texapon). Extracted human teeth had their cementum removed and were mechanically scaled. A total of 220 root specimens were obtained and were randomly assigned to the following groups: I-saline solution(control), II-EDTA; III-EDTAT. Groups II and III specimens were assigned to different EDTA gel concentrations: 5%, 10%, 15%, 20% and 24%. Smear layer removal score was ...

  13. A scanning electron microscopy study of root surface smear layer removal after topical application of EDTA plus a detergent

    OpenAIRE

    Sampaio,José Eduardo Cezar; Campos,Flávia Pavan; Pilatti,Gibson Luiz; Theodoro,Letícia Helena; Leite,Fábio Renato Manzolli

    2005-01-01

    The aim of the present study was to compare root surface smear layer removal following topical application of EDTA and EDTA-T (Texapon). Extracted human teeth had their cementum removed and were mechanically scaled. A total of 220 root specimens were obtained and were randomly assigned to the following groups: I-saline solution (control), II-EDTA; III-EDTA-T. Groups II and III specimens were assigned to different EDTA gel concentrations: 5%, 10%, 15%, 20% and 24%. Smear layer removal score wa...

  14. Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes.

    Science.gov (United States)

    Chen, T. H.; Henderson-Sellers, A.; Milly, P. C. D.; Pitman, A. J.; Beljaars, A. C. M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C. E.; Dickinson, R. E.; Dümenil, L.; Ek, M.; Garratt, J. R.; Gedney, N.; Gusev, Y. M.;  Kim, J.;  Koster, R.;  Kowalczyk, E. A.;  Laval, K.;  Lean, J.;  Lettenmaier, D.;  Liang, X.;  Mahfouf, J.-F.;  Mengelkamp, H.-T.;  Mitchell, K.;  Nasonova, O. N.;  Noilhan, J.;  Robock, A.;  Rosenzweig, C.;  Schaake, J.;  Schlosser, C. A.;  Schulz, J.-P.;  Shao, Y.;  Shmakin, A. B.;  Verseghy, D. L.;  Wetzel, P.;  Wood, E. F.;  Xue, Y.;  Yang, Z.-L.;  Zeng, Q.

    1997-06-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m2 and 25 W m2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m2 for sensible heat flux and 10 W m2 for latent heat flux). Actual

  15. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher

  16. A fiber-optic setup for quantification of root surface demineralization

    NARCIS (Netherlands)

    vanderVeen, MH; tenBosch, JJ

    A fiber-optic fluorescence observation (FOFO) technique has been developed for the quantification of demineralized root dentin, The method was tested on 40 specimens of in vitro demineralized parts of human root dentin, Fluorescein sodium salt was used as a penetrating dye, The fluorescein sodium

  17. Estimation of surface absorptivity in laser surface heating process with experimental data

    International Nuclear Information System (INIS)

    Chen, H-T; Wu, X-Y

    2006-01-01

    This study applies a hybrid technique of the Laplace transform and finite-difference methods in conjunction with the least-squares method and experimental temperature data inside the test material to predict the unknown surface temperature, heat flux and absorptivity for various surface conditions in the laser surface heating process. In this study, the functional form of the surface temperature is unknown a priori and is assumed to be a function of time before performing the inverse calculation. In addition, the whole time domain is divided into several analysis sub-time intervals and then these unknown estimates on each analysis interval can be predicted. In order to show the accuracy of the present inverse method, comparisons are made among the present estimates, direct results and previous results, showing that the present estimates agree with the direct results for the simulated problem. However, the present estimates of the surface absorptivity deviate slightly from previous estimated results under the assumption of constant thermal properties. The effect of the surface conditions on the surface absorptivity and temperature is not negligible

  18. The gastroprotective effect of Memora nodosa roots against experimental gastric ulcer in mice

    Directory of Open Access Journals (Sweden)

    DAYANE M. SILVA

    2016-01-01

    Full Text Available ABSTRACT Memora nodosa is popularly known as "caroba" and widely found in the Cerrado regions of Brazil. In traditional medicine, the leaves and stems are used for the healing of external ulcer and the roots for abdominal pain. This study investigated the effect of ethanolic roots extract of Memora nodosa (EMN on the gastric mucosa of mice. In the indomethacin induced gastric ulcer model, the treatments of the animals with EMN at doses of 100, 300 and 1000 mg/kg, p.o., markedly reduced the index of lesions. In the gastric ulcer models induced by ethanol and cold restraint-stress the previous treatment with EMN at dose of 300 mg/kg showed 69% and 43% of protection, respectively. Seven days after food-restriction, the animals treated with EMN (300 mg/kg p.o. showed reduction in the index of lesion by 65% as compared to control group. The intraduodenal administration of EMN (300 mg/kg did not alter the gastric acid secretion parameters. The treatment with EMN (300 mg/kg p.o. did not alter glutathione levels (GSH, but showed an increase of adhered gastric mucus as compared to the control group with lesion. These results showed that EMN has gastroprotective activity probably due with an increase of adhered gastric mucus.

  19. CORROSION AND SURFACE PROTECTION IN MACHINE MATERIALS FRICTION HAVE DIFFERENT SURFACE PAIRS EXPERIMENTAL INVESTIGATION OF FACTORS

    Directory of Open Access Journals (Sweden)

    Senai YALCINKAYA

    2017-05-01

    Full Text Available Friction force, normal force, linear change. The normal force varies with the loads on the friction object. In order to determine the friction force and the friction coefficient, the friction object and the friction speed are used. The experimental work was carried out in three stages. In the first stage, the effect of normal force on the friction force was studied. In the second step, the friction force of the friction surface area is influenced. The effect of the change of the shear rate in step 3 on the friction force was investigated. At the last stage, the experimental study of the effect of the material selection on the friction force was made and it was seen that the aluminum / brass surface pair had the smallest friction coefficient as a result of the opening. The greatest coefficient of friction is found in the pair of glass / felt objects.

  20. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    Science.gov (United States)

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. CORROSION AND SURFACE PROTECTION IN MACHINE MATERIALS FRICTION HAVE DIFFERENT SURFACE PAIRS EXPERIMENTAL INVESTIGATION OF FACTORS

    OpenAIRE

    Senai YALCINKAYA

    2017-01-01

    Friction force, normal force, linear change. The normal force varies with the loads on the friction object. In order to determine the friction force and the friction coefficient, the friction object and the friction speed are used. The experimental work was carried out in three stages. In the first stage, the effect of normal force on the friction force was studied. In the second step, the friction force of the friction surface area is influenced. The effect of the change of the s...

  2. Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France

    Science.gov (United States)

    Canal, N.; Calvet, J.-C.; Decharme, B.; Carrer, D.; Lafont, S.; Pigeon, G.

    2014-12-01

    The simulation of root water uptake in land surface models is affected by large uncertainties. The difficulty in mapping soil depth and in describing the capacity of plants to develop a rooting system is a major obstacle to the simulation of the terrestrial water cycle and to the representation of the impacts of drought. In this study, long time series of agricultural statistics are used to evaluate and constrain root water uptake models. The inter-annual variability of cereal grain yield and permanent grassland dry matter yield is simulated over France by the Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) generic land surface model (LSM). The two soil profile schemes available in the model are used to simulate the above-ground biomass (Bag) of cereals and grasslands: a two-layer force-restore (FR-2L) bulk reservoir model and a multi-layer diffusion (DIF) model. The DIF model is implemented with or without deep soil layers below the root zone. The evaluation of the various root water uptake models is achieved by using the French agricultural statistics of Agreste over the 1994-2010 period at 45 cropland and 48 grassland départements, for a range of rooting depths. The number of départements where the simulated annual maximum Bag presents a significant correlation with the yield observations is used as a metric to benchmark the root water uptake models. Significant correlations (p value neutral impact of the most refined versions of the model is found with respect to the simplified soil hydrology scheme. This shows that efforts should be made in future studies to reduce other sources of uncertainty, e.g. by using a more detailed soil and root density profile description together with satellite vegetation products. It is found that modelling additional subroot-zone base flow soil layers does not improve (and may even degrade) the representation of the inter-annual variability of the vegetation above-ground biomass. These results are

  3. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    Science.gov (United States)

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  4. Immunolocalization of RANK and RANKL along the root surface and in the periodontal membrane of human primary and permanent teeth

    DEFF Research Database (Denmark)

    Bille, Marie-Louise Bastholm; Thomsen, Bjarke; Andersen, Thomas Levin

    2012-01-01

    Abstract Objective. Root resorption, impaired tooth eruption and early tooth loss have been described in relation to diseases that involve defects in the RANK-RANKL-OPG-expression. The aim of the present immunhistochemical study was to localize and compare the reactions for RANK and membrane...... in odontoblasts and in cells along denticles in one primary tooth. RANK was located in mononuclear cells in the pulp and in multinucleated odontoclasts along resorbed root surfaces and along resorbed dentin surfaces in the pulp in primary teeth and one permanent tooth. Conclusions. This study demonstrated RANK...... positivity in resorption areas in primary and permanent teeth. RANKL was positive in the pulp of one primary tooth. RANK expression in odontoclasts and RANKL expression in the pulp may indicate that RANK/RANKL play a role during resorption....

  5. Experimentally Reproducing Thermal Breakdown of Rock at Earth's Surface

    Science.gov (United States)

    Eppes, M. C.; Griffiths, L.; Heap, M. J.; Keanini, R.; Baud, P.

    2016-12-01

    Thermal stressing induces microcrack growth in rock in part due to thermal expansion mismatch between different minerals, mineral phases, or crystalline axes and/or thermal gradients in the entire rock mass. This knowledge is largely derived from experimental studies of thermal microcracking, typically under conditions of very high temperatures (hundreds of °C). Thermal stressing at lower temperatures has received significantly less attention despite the fact that it may play an important role in rock breakdown at and near Earth's surface (Aldred et al., 2015; Collins and Stock, 2016). In particular, Eppes et al. (2016) attribute recorded Acoustic Emissions (AE) from a highly instrumented granite boulder sitting on the ground in natural conditions to subcritical crack growth driven by thermal stresses arising from a combination of solar- and weather-induced temperature changes; however the maximum temperature the boulder experienced was just 65 °C. In order to better understand these results without complicating factors of a natural environment, we conducted controlled laboratory experiments on cylindrical samples (40 mm length and 20 mm diameter) cored from the same granite as the Eppes et al. (2016) experiment, subjecting them to temperature fluctuations that reproduced the field measurements. We used a novel experimental configuration whereby two high temperature piezo-transducers are each in contact with an opposing face of the sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. The system records AE, as well as P-wave velocity, both independent proxies for microfracture, as well as strain and temperature. Preliminary tests, heating and cooling granite at a rate of 1 °C/min, show that a large amount of AE occurs at temperatures as low as 100 °C. Ultimately, by

  6. A comparative evaluation of the increase in root canal surface area and canal transportation in curved root canals by three rotary systems: A cone-beam computed tomographic study

    Science.gov (United States)

    Prasanthi, Nalam NVD; Rambabu, Tanikonda; Sajjan, Girija S; Varma, K Madhu; Satish, R Kalyan; Padmaja, M

    2016-01-01

    Aim: The aim of this study was to measure the increase in root canal surface area and canal transportation after biomechanical preparation at 1, 3, and 5 mm short of the apex with three different rotary systems in both continuous rotary and reciprocating rotary motions. Materials and Methods: Sixty freshly extracted human mandibular molars with mesial root canal curvatures between 20° and 30° were included in the study. Teeth were randomly distributed into three groups (n = 20). Biomechanical preparations were done in all the mesial canals. In Group 1, instrumentation was done with ProTaper universal rotary files, Group 2, with K3XF rotary files, and Group 3, with LSX rotary files. Each group was further subdivided into subgroups A and B (n = 10) where instrumentation was done by continuous rotary and reciprocating rotary techniques, respectively. Increase in root canal surface area and canal transportation was measured using the preoperative and postoperative cone-beam computed tomography scans. Statistical Analysis: The data were analyzed by one-way ANOVA followed by Tukey pairwise multiple comparison tests. Results: Increase in root canal surface area was significantly more (P 0.05) in increase of root canal surface area and canal transportation between continuous rotary and reciprocating rotary techniques for ProTaper Universal, K3XF and LSX groups. Conclusion: LSX rotary system showed minimal increase of root canal surface area and minimal canal transportation when compared to ProTaper and K3XF rotary systems. PMID:27656062

  7. Return to Our Roots: Raising Radishes to Teach Experimental Design. Methods and Techniques.

    Science.gov (United States)

    Stallings, William M.

    1993-01-01

    Reviews research in teaching applied statistics. Concludes that students should analyze data from studies they have designed and conducted. Describes an activity in which students study germination and growth of radish seeds. Includes a table providing student instructions for both the experimental procedure and data analysis. (CFR)

  8. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  9. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  10. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  11. Effects of total glucosides from paeony (Paeonia lactiflora Pall) roots on experimental atherosclerosis in rats.

    Science.gov (United States)

    Li, Jing; Chen, Chang Xun; Shen, Yun Hui

    2011-05-17

    Total glucosides of paeony (TGP), compounds extracted from the roots of Paeonia lactiflora Pall, have been used as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) in China. Inflammation plays a critical role in the development of atherosclerotic vascular disease. Risk of cardiovascular diseases is significantly higher in patients with RA than in normal population. It has a great significance to study the effects of TGP on atherosclerosis. To investigate the effects of TGP on atherosclerosis induced by excessive administration of vitamin D and cholesterol in rats and study the mechanisms involved. Atherosclerosis was induced by excessive administration of vitamin D and cholesterol in rats. TGP was intragastrically administered for 15 weeks. The serum concentrations of total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C) were measured by automatic biochemistry analyzer. Apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB) were determined by immunoturbidimetry method, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and C-reactive protein (CRP) were measured by enzyme-linked immunosorbent assay (ELISA) method. The morphological changes of aorta were observed with optical microscopy. Compared to controls, TGP significantly lowered the serum level of TC, TG, LDL-C, ApoB, TNF-alpha, IL-6 and CRP, increased the ratios of HDL-C/LDL-C and ApoA1/ApoB, decreased the intima-media thickness (IMT) of abdominal aortal wall and improved the morphological change of the aorta. TGP may attenuate the development of atherosclerotic disease. The beneficial effects are associated with its lowering blood lipids and inhibiting the expression of inflammatory cytokines. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Said Abdel-Khalik

    2005-01-01

    Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores

  13. Experimental Evaluation of Several Key Factors Affecting Root Biomass Estimation by 1500 MHz Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    John C. Bain

    2017-12-01

    Full Text Available Accurate quantification of coarse roots without disturbance represents a gap in our understanding of belowground ecology. Ground penetrating radar (GPR has shown significant promise for coarse root detection and measurement, however root orientation relative to scanning transect direction, the difficulty identifying dead root mass, and the effects of root shadowing are all key factors affecting biomass estimation that require additional research. Specifically, many aspects of GPR applicability for coarse root measurement have not been tested with a full range of antenna frequencies. We tested the effects of multiple scanning directions, root crossover, and root versus soil moisture content in a sand-hill mixed oak community using a 1500 MHz antenna, which provides higher resolution than the oft used 900 MHz antenna. Combining four scanning directions produced a significant relationship between GPR signal reflectance and coarse root biomass (R2 = 0.75 (p < 0.01 and reduced variability encountered when fewer scanning directions were used. Additionally, significantly fewer roots were correctly identified when their moisture content was allowed to equalize with the surrounding soil (p < 0.01, providing evidence to support assertions that GPR cannot reliably identify dead root mass. The 1500 MHz antenna was able to identify roots in close proximity of each other as well as roots shadowed beneath shallower roots, providing higher precision than a 900 MHz antenna. As expected, using a 1500 MHz antenna eliminates some of the deficiency in precision observed in studies that utilized lower frequency antennas.

  14. In situ investigation of the mechanisms of the transport to tissues of polycyclic aromatic hydrocarbons adsorbed onto the root surface of Kandelia obovata seedlings

    International Nuclear Information System (INIS)

    Li, Ruilong; Zhu, Yaxian; Zhang, Yong

    2015-01-01

    A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5–1240 ng/spot for phenanthrene, 1.0–1360 ng/spot for pyrene and 5.0–1220 ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. - Highlights: • A novel method in situ determination PAHs adsorbed onto root surface was established. • The mechanisms of PAHs transport from root surface to tissues are investigated. • Passive movement is the main process of B[a]P transport from root surface to tissues. • Effects of salinity on the PAHs transport from root surface to tissues are evaluated. - Passive movement for the PAHs adsorbed onto Kandelia obovata root surface to tissues was observed by a newly established in situ LITRF method

  15. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  16. The influence of surface and incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. II. Root growth and agronomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lucerne (Medicago sativa. L) root elongation in acid soils amended by gypsiferous coal combustion by-products was investigated in a glasshouse study. Lime, fluidised bed boiler ash (FBA), and flue gas desulfurisation gypsum (FGDG) were mixed into the surface 50 mm of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil column, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. Lucerne was grown on each column after it was leached with 400 mm of water. Whereas the lime treatment had no effect on root elongation in the acidic subsurface of the Patua soil, the FBA and FGDG treatments significantly improved lucerne root penetration into the subsurface soil. This was due to the `self liming effect` induced by sulfate adsorption. In contrast, topsoil incorporated amendments did not influence root penetration into the acidic subsurface of the Kaawa soil, which is dominated by permanently charged clay minerals. The `self-liming erect` caused by gypsum application is not a sustainable practice. Lime should be applied to neutralise the topsoil acidity, when gypsum is used as subsurface soil acidity ameliorant. FBA, which contains both lime and gypsum, can meet these requirements.

  17. Rice rhizosphere soil and root surface bacterial community response to water management changes

    Science.gov (United States)

    Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...

  18. Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data.

    Science.gov (United States)

    Suresh, Niraj; Stephens, Sean A; Adams, Lexor; Beck, Anthon N; McKinney, Adriana L; Varga, Tamas

    2016-04-26

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and crop management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving plants. X-ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. We aimed to develop a costless and efficient tool that approximates the surface and volume of the root regardless of its shape from three-dimensional (3D) tomography data. The root structure of a Prairie dropseed (Sporobolus heterolepis) specimen was imaged using XCT. The root was reconstructed, and the primary root structure was extracted from the data using a combination of licensed and open-source software. An isosurface polygonal mesh was then created for ease of analysis. We have developed the standalone application imeshJ, generated in MATLAB(1), to calculate root volume and surface area from the mesh. The outputs of imeshJ are surface area (in mm(2)) and the volume (in mm(3)). The process, utilizing a unique combination of tools from imaging to quantitative root analysis, is described. A combination of XCT and open-source software proved to be a powerful combination to noninvasively image plant root samples, segment root data, and extract quantitative information from the 3D data. This methodology of processing 3D data should be applicable to other material/sample systems where there is connectivity between components of similar X-ray attenuation and difficulties arise with segmentation.

  19. The effect of EDTA in attachment gain and root coverage.

    Science.gov (United States)

    Kassab, Moawia M; Cohen, Robert E; Andreana, Sebastiano; Dentino, Andrew R

    2006-06-01

    Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P<.01).

  20. Reducing surface tension in endodontic chelator solutions has no effect on their ability to remove calcium from instrumented root canals.

    Science.gov (United States)

    Zehnder, Matthias; Schicht, Olivier; Sener, Beatrice; Schmidlin, Patrick

    2005-08-01

    The aim of this study was to evaluate the effect of reducing surface tension in endodontic chelator solutions on their ability to remove calcium from instrumented root canals. Aqueous solutions containing 15.5% EDTA, 10% citric acid, or 18% 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP) were prepared with and without 1% (wt/wt) polysorbate (Tween) 80 and 9% propylene glycol. Surface tension in these solutions was measured using the Wilhelmy method. Sixty-four extracted, single-rooted human teeth of similar length were instrumented and irrigated with a 1% sodium hypochlorite solution and then randomly assigned (n = 8 per group) to receive a final one-minute rinse with 5 ml of test solutions, water, or the pure aqueous Tween/propylene glycol solution. Calcium concentration in eluates was measured using atomic absorption spectrometry. Incorporation of wetting agents resulted in a reduction of surface tension values by approximately 50% in all tested solutions. However, none of the solutions with reduced surface tension chelated more calcium from canals than their pure counterparts (p > 0.05).

  1. Experimental study on source efficiencies for estimating surface contamination level

    International Nuclear Information System (INIS)

    Ichiji, Takeshi; Ogino, Haruyuki

    2008-01-01

    Source efficiency was measured experimentally for various materials, such as metals, nonmetals, flooring materials, sheet materials and other materials, contaminated by alpha and beta emitter radioactive nuclides. Five nuclides, 147 Pm, 60 Co, 137 Cs, 204 Tl and 90 Sr- 90 Y, were used as the beta emitters, and one nuclide 241 Am was used as the alpha emitter. The test samples were prepared by placing drops of the radioactive standardized solutions uniformly on the various materials using an automatic quantitative dispenser system from Musashi Engineering, Inc. After placing drops of the radioactive standardized solutions, the test materials were allowed to dry for more than 12 hours in a draft chamber with a hood. The radioactivity of each test material was about 30 Bq. Beta rays or alpha rays from the test materials were measured with a 2-pi gas flow proportional counter from Aloka Co., Ltd. The source efficiencies of the metals, nonmetals and sheet materials were higher than 0.5 in the case of contamination by the 137 Cs, 204 Tl and 90 Sr- 90 Y radioactive standardized solutions, higher than 0.4 in the case of contamination by the 60 Co radioactive standardized solution, and higher than 0.25 in the case of contamination by the alpha emitter the 241 Am radioactive standardized solution. These values were higher than those given in Japanese Industrial Standards (JIS) documents. In contrast, the source efficiencies of some permeable materials were lower than those given in JIS documents, because source efficiency varies depending on whether the materials or radioactive sources are wet or dry. This study provides basic data on source efficiency, which is useful for estimating the surface contamination level of materials. (author)

  2. Road Surfaces And Earthquake Engineering: A Theoretical And Experimental Study

    International Nuclear Information System (INIS)

    Pratico, Filippo Giammaria

    2008-01-01

    As is well known, road surfaces greatly affect vehicle-road interaction. As a consequence, road surfaces have a paramount influence on road safety and pavement management systems. On the other hand, earthquakes produce deformations able to modify road surface structure, properties and performance. In the light of these facts, the main goal of this paper has been confined into the modelling of road surface before, during and after the seismic event. The fundamentals of road surface texture theory have been stated in a general formulation. Models in the field of road profile generation and theoretical properties, before, during and after the earthquake, have been formulated and discussed. Practical applications can be hypothesised in the field of vehicle-road interaction as a result of road surface texture derived from deformations and accelerations caused by seismic or similar events

  3. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    Science.gov (United States)

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    Directory of Open Access Journals (Sweden)

    Juan Liu

    Full Text Available A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs. Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1 in a minimal salts medium (MSM within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam, invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  5. Theoretical and Experimental Analysis of Adsorption in Surface-based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus

    The present Ph.D. dissertation concerns the application of surface plasmon resonance (SPR) spectroscopy, which is a surface-based biosensor technology, for studies of adsorption dynamics. The thesis contains both experimental and theoretical work. In the theoretical part we develop the theory...... cell of the surface-based biosensor, in addition to the sensor surface, is investigated. In the experimental part of the thesis we use a Biacore SPR sensor to study lipase adsorption on model substrate surfaces, as well as competitive adsorption of lipase and surfactants. A part of the experimental...

  6. Coupling surface and mantle dynamics: A novel experimental approach

    Science.gov (United States)

    Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea

    2015-05-01

    Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.

  7. [Observation of osteoclasts on the root surface during human deciduous teeth resorption].

    Science.gov (United States)

    Bao, Xiang-jun; Liang, Xing; Chen, Ming; Wang, Hang; Xie, Zhi-gang; Yang, Xiao-yu

    2004-08-01

    To observe osteoclasts on the resorbing surface of human deciduous teeth. After fixing the collected deciduous teeth, we prepared the tooth slices without decalcification, treated them with HE and TRAP dyestuff, and observed the osteoclasts under light and scanning electron microscope. There were large quantity of various forms of overlapping and huge osteoclasts with many nuclei and silk-like protuberances on the resorbing surface of deciduous teeth. The multinucleated osteoclasts align on the surface of coarse dentin. On the resorbing surface of human deciduous teeth there are large amount of osteoclasts which can be used as a source of studying human osteoclast.

  8. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  9. Autonomous Experimentation of Carbon Nanotube Using Response Surface Methods

    Science.gov (United States)

    2015-03-26

    minimizes variance (Myers et al., 2009:286). Orthogonality is a very useful property, because it eliminates multicollinearity in the regressor variables...Montgomery et al., 2012:118). Multicollinearity is a common problem in data that is not collected from an experimental design. Multicollinearity can

  10. Molecular approach of uranyl/mineral surfaces: experimental approach

    International Nuclear Information System (INIS)

    Drot, R.

    2009-01-01

    The author reports an experimental approach in which different spectroscopic approaches are coupled (laser spectroscopy, X-ray absorption spectroscopy, vibrational spectroscopy) to investigate the mechanisms controlling actinide sorption processes by different substrates, in order to assess radioactive waste storage site safety. Different substrates have been considered: monocrystalline or powdered TiO 2 , montmorillonite, and gibbsite

  11. Experimental studies of surface modified oscillating heat pipes

    Science.gov (United States)

    Leu, Tzong-Shyng; Wu, Cheng-Han

    2017-11-01

    Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.

  12. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  13. Experimental studies of ions and atoms interaction with insulating surface

    International Nuclear Information System (INIS)

    Villette, J.

    2000-10-01

    Grazing collisions ( + , Ne + , Ne 0 , Na + on LiF (001) single crystal, an ionic insulator, are investigated by a time of flight technique. The incident beam is chopped and the scattered particles are collected on a position sensitive detector providing differential cross section while the time of flight gives the energy loss. Deflection plates allow the charge state analysis. Secondary electrons are detected in coincidence allowing direct measurements of electron emission yield, angular and energetic distribution through time of flight measurements. The target electronic structure characterized by a large band gap, governs the collisional processes: charge exchange, electronic excitations and electron emission. In particular, these studies show that the population of local target excitations surface excitons is the major contribution to the kinetic energy transfer (stopping power). Auger neutralization of Ne + and He + ions reveals the population of quasi-molecular excitons, an exciton bound on two holes. Referenced in the literature as trion. A direct energy balance determines the binding energy associated with these excited states of the surface. Besides these electronic energy loss processes, two nuclear energy loss mechanisms are characterized. These processes imply momentum transfer to individual target atoms during close binary collisions or, if the projectile is charged, to collective mode of optical phonons induced by the projectile coulomb field. The effect of the temperature on the scattering profile, the contribution of topological surface defects to the energy loss profile and to skipping motion on the surface are analyzed in view of classical trajectory simulations. (author)

  14. Experimental study of gas entrainment from surface swirl

    Energy Technology Data Exchange (ETDEWEB)

    Moudjed, B., E-mail: brahim.moudjed@cea.fr; Excoffon, J.; Riva, R.; Rossi, L., E-mail: lionel.rossi@cea.fr

    2016-12-15

    Gas entrainment from surface swirls is characterized using water experiments. A free surface shear flow is generated in an open channel flow. A suction nozzle is set at the bottom of the test section to induce a downward flow and provoke gas entrainment. An important originality of these experiments is the possibility to change the inlet condition so as to generate different turbulent shear flows. This is done by adding obstacles of different sizes and shapes at the end of a flat plate separating the inlet flow from a “stagnant” water area. Velocity fields and profiles, measured with the PIV technique, are provided both to describe the inlet conditions corresponding to various geometries and flow rates, and to characterize the temporal average shear flow generated within the centre part of the channel. Gas entrainment mappings are established from direct observations of the different flow configurations. These new results show that the threshold for the suction velocities required to entrain gas are similar for the configurations with small obstacles and the flat plate configuration triggering a standard shear flow. Increasing the size of the obstacles promotes gas entrainment and reduces the threshold values of the suction velocity to trigger gas entrainment. Shadowgraphy with image processing is used to present new results characterizing the geometrical properties of surface swirls and the quantity of gas entrained. Inlet configurations with obstacles generate larger surface swirls which move upstream from the suction nozzle centre whereas they are situated downstream with the flat plate configuration. Moreover, dimensionless power laws are found to be good approximations for the surface swirl width and the quantity of gas entrained. In addition to provide new insights about gas entrainment in analytical configurations relevant to Sodium cooled fast nuclear reactor, these results should provide different test cases for the validation of MCFD codes.

  15. Prevention of root caries with dentin adhesives.

    Science.gov (United States)

    Grogono, A L; Mayo, J A

    1994-04-01

    This in vitro investigation determined the feasibility of using dentin adhesives to protect root surfaces against caries. The roots of 22 recently extracted human teeth were all painted with a protective lacquer leaving two unprotected small windows. On each specimen, one window (control) was left untreated and the other window (experimental) was treated using a dentin adhesive (Scotchbond Multi-Purpose). The roots were then immersed in an in vitro acetate/calcium/phosphate demineralization model at pH 4.3. After 70 days, the samples were removed and sectioned through the windows. The undecalcified ground sections were examined under transmitted and polarized light. Lesions characteristic of natural root caries were seen in the untreated control windows. No such lesions were apparent in the experimental windows. The results of this preliminary study suggest that dentin adhesives may provide protection against root caries.

  16. Importance of root HTO uptake in controlling land-surface tritium dynamics after an-acute HT deposition: a numerical experiment

    International Nuclear Information System (INIS)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2012-01-01

    To investigate the role of belowground root uptake of tritiated water (HTO) in controlling land-surface tritium (T) dynamics, a sophisticated numerical model predicting tritium behavior in an atmosphere-vegetation-soil system was developed, and numerical experiments were conducted using the model. The developed model covered physical tritiated hydrogen (HT) transport in a multilayered atmosphere and soil, as well as microbial oxidation of HT to HTO in the soil, and it was incorporated into a well-established HTO-transfer organically bound tritium (OBT)-formation model. The model performance was tested through the simulation of an existing HT-release experiment. Numerical experiments involving a hypothetical acute HT exposure to a grassland field with a range of rooting depths showed that the HTO release from the leaves to the atmosphere, driven by the root uptake of the deposited HTO, can exceed the HTO evaporation from the ground surface to the atmosphere when root water absorption preferentially occurs beneath the ground surface. Such enhanced soil-leaf-atmosphere HTO transport, caused by the enhanced root HTO uptake, increased HTO concentrations in both the surface atmosphere and in the cellular water of the leaf. Consequently, leaf OBT assimilation calculated for shallow rooting depths increased by nearly an order of magnitude compared to that for large rooting depths. - Highlights: ► A model that calculates HT deposition from atmosphere to soil was developed. ► Tritium dynamics after an-acute HT deposition was studied by numerical experiments. ► OBT formation highly depends on magnitude of uptake of the deposited HTO by roots.

  17. Experimental Investigations on Microshock Waves and Contact Surfaces

    Science.gov (United States)

    Kai, Yun; Garen, Walter; Teubner, Ulrich

    2018-02-01

    The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.

  18. Experimental support for physisorbed positronium at the surface of quartz

    International Nuclear Information System (INIS)

    Sferlazzo, P.; Berko, S.; Canter, K.F.

    1985-01-01

    We report temperature-dependent positronium (Ps) emission from a single crystal of SiO 2 using a monoenergetic positron beam. Slow positrons (e + ) from an electrostatic beam system were injected with variable energy (0--1600 eV) into the SiO 2 target and Ps emission from the target surface was studied as a function of incident e + energy (E) as well as target temperature (T). Our data suggest a physisorbed Ps surface state which is temperature activated into a ''slow'' Ps emission with an activation energy of approx.0.15 eV. In addition, a large Ps yield (40% of the incident positrons are emitted as Ps at 400 eV) is observed even for T→0, attributed to ''fast'' Ps produced by the bulk Ps formed within the SiO 2 target and diffusing to the surface. From the Ps yield vs E we find a bulk Ps diffusion constant of 0.047 +- 0.013 cm 2 /sec. We also observe a slow e + reemission yield of (15 +- 2)% at 400-eV incident e + energy

  19. Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots.

    Science.gov (United States)

    Chen, Hua-Hong; Zhao, Guo-Zhen; Park, Dong-Jin; Zhang, Yu-Qin; Xu, Li-Hua; Lee, Jae-Chan; Kim, Chang-Jin; Li, Wen-Jun

    2009-05-01

    A Gram-positive bacterial strain, designated YIM 56238(T), was isolated from plant roots (Aquilaria sinensis), and characterized by using a polyphasic approach. Strain YIM 56238(T) grew optimally at pH 7.0-8.0 and at 28 degrees C. Analysis of the 16S rRNA gene sequence of strain YIM 56238(T) indicated that it belongs to the genus Micrococcus. Chemotaxonomic data strongly supported the classification of this strain within the genus Micrococcus: the cell-wall peptidoglycan contained lysine, glutamic acid, alanine and glycine; the predominant menaquinones were MK-8(H(2)) (63.6 %) and MK-7(H(2)) (21.1 %); the phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown ninhydrin-negative phospholipid; and the major cellular fatty acids were iso-C(15 : 0) (30.95 %) and anteiso-C(15 : 0) (53.75 %). The G+C content of the genomic DNA was 72.9 mol%. A number of physiological features were found that clearly distinguished strain YIM 56238(T) from recognized species of the genus Micrococcus. DNA-DNA hybridization studies suggested that the novel strain represents a separate genomic species. On the basis of the data, therefore, strain YIM 56238(T) represents a novel species of the genus Micrococcus, for which the name Micrococcus endophyticus sp. nov. is proposed. The type strain is YIM 56238(T) (=DSM 17945(T)=KCTC 19156(T)).

  20. Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots.

    Science.gov (United States)

    Zhao, Guo-Zhen; Li, Jie; Qin, Sheng; Zhang, Yu-Qin; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-10-01

    In this study, strain YIM 65004(T), isolated from roots of Polyspora axillaris, was shown to represent a novel species of the genus Micrococcus by means of a polyphasic approach. Chemotaxonomic data gathered for peptidoglycan type, menaquinones, phospholipids and fatty acids strongly supported the classification of this strain within the genus Micrococcus: the cell-wall peptidoglycan contained lysine, glutamic acid, alanine, glycine and aspartic acid, the predominant menaquinones were MK-8(H(2)) (66.97 %) and MK-7(H(2)) (23.26 %), the phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown ninhydrin-negative phospholipid, and the major cellular fatty acids were anteiso-C(15 : 0) (61.98 %), iso-C(16 : 0) (14.25 %) and iso-C(15 : 0) (13.04 %). The G+C content of the genomic DNA was 71.7 mol%. A number of physiological features were found that clearly distinguished strain YIM 65004(T) from recognized Micrococcus species. DNA-DNA hybridization studies suggested that the novel strain represents a separate genomic species. Based on the above data, a novel species of the genus Micrococcus, Micrococcus yunnanensis sp. nov., is proposed, with the type strain YIM 65004(T) (=CCTCC AA 208060(T)=DSM 21948(T)).

  1. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem

    NARCIS (Netherlands)

    Li, Longhui; van der Tol, C.; Chen, Xuelong; Jing, C.; Su, Zhongbo; Luo, G.; Tian, Xin

    2013-01-01

    The ability of roots to take up water depends on both root distribution and root water uptake efficiency. The former can be experimentally measured, while the latter is extremely difficult to determine. Yet a correct representation of root water uptake process in land surface models (LSMs) is

  2. An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

    Science.gov (United States)

    Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

    2011-08-01

    An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

  3. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  4. Experimental studies on the surface confined quiescent plasma at INPE

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Alves, M.V.; Ludwig, G.O.; Montes, A.

    1988-06-01

    Quiescent plasma machines are being used in several experiments at the Associated Plasma Laboratory in INPE. The research activities comprises particle simulation studies on ion acoustic double Layers, and studies on the plasma production and loss in surface confined magnetic multidipole thermionic discharges. Recent results from these studies have shown a non-maxwellian plasma formed in most of the discharge conditions. The plasma leakage through the multidipole fields shows an anomalous diffusion process driven by ion acoustic turbulence in the magnetic sheath. The information derived from these studies are being used in the construction and characterization of ion sources for shallow ion implantation in semiconductors, in ion thruster for space propulsion and in the development of powerful ion sources for future use in neutral beam injection systems. (author) [pt

  5. Experimental studies on the surface confined quiescent plasma at INPE

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Alves, M.V.; Ludwig, G.O.; Montes, A.

    1988-01-01

    The quiescent plasma machines used in several experiments at the Associated Plasma Laboratory in INPE are presented. The research activities comprise particle simulation studies on ion acoustic double layers, and studies on the plasma production and loss in surface confined magnetic multidipole thermionic discharges. Recent results from these studies have shown a non-maxwellian plasma formed in most of the discharge conditions. The plasma leakage through the multidipole fields shows an anomalous diffusion process driven by ion acoustic turbulence in the magnetic sheath. The information derived from these studies are being used in the construction and characterization of ion sources for shallow ion implantation in semiconductors, in ion thruster for space propulsion and in the development of powerful ion sources for future use in neutral beam injection systems. (author) [pt

  6. The atomic structure of the Si(111) (2 root 3x2 root 3)R30 degrees-Sn reconstruction

    DEFF Research Database (Denmark)

    Levermann, A.H.; Howes, P.B.; Edwards, K.A.

    1996-01-01

    We have studied the atomic structure of the (2 root 3x2 root)R30 degrees reconstruction induced by adsorption of about 1.1 monolayers of Sn on Si(lll) using surface X-ray diffraction (SXRD) and scanning tunnelling microscopy (STM). The experimentally obtained structure factors in SXRD...

  7. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven

    Directory of Open Access Journals (Sweden)

    Mustafa MUTLU

    2016-04-01

    Full Text Available In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.

  8. Experimental Study of Plasma-Surface Interaction and Material Damage Relevant to ITER Type I Elms

    International Nuclear Information System (INIS)

    Makhlai, V.A.; Bandura, A.N.; Byrka, O.V. and others; Landman, I.; Neklyudov, I.M.

    2006-01-01

    The paper presents experimental investigations of main features of plasma surface interaction and energy transfer to the material surface in dependence on plasma heat loads. The experiments were performed with QSPA repetitive plasma pulses of the duration of 0.25 ms and the energy density up to 2.5 MJ/m 2 . Surface morphology of the targets exposed to QSPA plasma screams is analyzed. Relative contribution of the Lorentz force and plasma pressure gradient to the resulting surface profile is discussed. development of cracking on the tungsten surface and swelling of the surface are found to be in strong dependence on initial temperature of the target

  9. The VHCF experimental investigation of FV520B-I with surface roughness Ry

    Science.gov (United States)

    Wang, J. L.; Zhang, Y. L.; Ding, M. C.; Zhao, Q. C.

    2018-05-01

    Different surface roughness type (Ra and Ry) has different effect on the VHCF failure and life. Ra is widely employed as the quantitative expression of the surface roughness, but there are few fatigue failure mechanism analysis and experimental study under surface roughness Ry. The VHCF experiment is conducted out using the specimen with different surface roughness values. The surface roughness Ry is employed as the major research object to investigate the relationship and distribution tendency between the Ry, fatigue life and the distance between internal inclusion and surface, and a new VHCF failure character is proposed.

  10. In vitro assessment of 3 dentifrices containing fluoride in preventing demineralization of overdenture abutments and root surfaces.

    Science.gov (United States)

    Goettsche, Zachary S; Ettinger, Ronald L; Wefel, James S; Hogan, Mary M; Harless, Jeffery D; Qian, Fang

    2014-11-01

    Caries development under overdentures has been a continuing problem and requires the daily use of fluoride to prevent demineralization. The purpose of this in vitro study was to compare the effectiveness of dentifrices containing tricalcium phosphate or calcium phosphosilicate in combination with fluoride to prevent the demineralization of overdenture abutments and root surfaces. A total of 56 caries-free extracted teeth were prepared as overdenture abutments. The teeth were painted with acid-resistant varnish, leaving one 1×4-mm window on occlusal and root surfaces. The teeth were randomly divided into 4 groups: a control group treated with distilled/deionized water only, a group treated with ClinPro 5000, a group treated with ReNew, and a group treated with Prevident 5000 gel. Each tooth was subjected to a demineralizing/remineralizing cycling protocol for 12 days with the appropriate treatment products. The teeth were sectioned longitudinally through both windows. Photomicrographs were made of 3 representative sections from each tooth. A representative section was defined as one that included both windows and was cut from the part of the tooth that had the flattest surface to reduce the edge effect. The depths of the lesions were measured on representative sections from each group. A 1-way MANOVA and a 1-way ANOVA with the post hoc Tukey-Kramer test were used to evaluate the treatment effects on the criterion variables (α=.05). The total lesion depths of the control teeth on the occlusal surface were not statistically significantly deeper than for the 3 dentifrices (P=.7705). However, all 3 dentifrices had narrower cavitation depths than the control (mean cavitation band depth, 43.59 [ReNew] versus 37.99 [Prevident 5000 gel] versus 36.70 [ClinPro 5000] versus 246.86 [control]) (Pteeth treated with Prevident 5000 gel had the shallowest total lesion depth and were statistically significantly different from those treated with ReNew and Clin

  11. Mixed nano/micro-sized calcium phosphate composite and EDTA root surface etching improve availability of graft material in intrabony defects: an in vivo scanning electron microscopy evaluation.

    Science.gov (United States)

    Gamal, Ahmed Y; Iacono, Vincent J

    2013-12-01

    The use of nanoparticles of graft materials may lead to breakthrough applications for periodontal regeneration. However, due to their small particle size, nanoparticles may be eliminated from periodontal defects by phagocytosis. In an attempt to improve nanoparticle retention in periodontal defects, the present in vivo study uses scanning electron microscopy (SEM) to evaluate the potential of micrograft particles of β-tricalcium phosphate (β-TCP) to enhance the binding and retention of nanoparticles of hydroxyapatite (nHA) on EDTA-treated and non-treated root surfaces in periodontal defects after 14 days of healing. Sixty patients having at least two hopeless periodontally affected teeth designated for extraction were randomly divided into four treatment groups (15 patients per group). Patients in group 1 had selected periodontal intrabony defects grafted with nHA of particle size 10 to 100 nm. Patients in group 2 were treated in a similar manner but had the affected roots etched for 2 minutes with a neutral 24% EDTA gel before grafting of the associated vertical defects with nHA. Patients in group 3 had the selected intrabony defects grafted with a composite graft consisting of equal volumes of nHA and β-TCP (particle size 63 to 150 nm). Patients in group 4 were treated as in group 3 but the affected roots were etched with neutral 24% EDTA as in group 2. For each of the four groups, one tooth was extracted immediately, and the second tooth was extracted after 14 days of healing for SEM evaluation. Fourteen days after surgery, all group 1 samples were devoid of any nanoparticles adherent to the root surfaces. Group 2 showed root surface areas 44.7% covered by a single layer of clot-blended grafted particles 14 days following graft application. After 14 days, group 3 samples appeared to retain fibrin strands devoid of grafted particles. Immediately extracted root samples of group 4 had adherent graft particles that covered a considerable area of the root surfaces

  12. Experimental root mean square charge radii, isotope shifts, ground state magnetic dipole and electric quadrupole moments of 1≤A≤ 239 nuclei

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.

    1986-01-01

    A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison

  13. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  14. Three consecutive days of application of LED therapy is necessary to inhibit experimentally induced root resorption in rats: a microtomographic study.

    Science.gov (United States)

    Higashi, Dayla Thyeme; Andrello, Avacir Casanova; Tondelli, Pedro Marcelo; de Oliveira Toginho Filho, Dari; de Paula Ramos, Solange

    2017-01-01

    Previous studies have suggested that phototherapy may modulate orthodontic tooth movement and the incidence of root resorption. We aimed to identify a minimal dose-response relationship to LED therapy with regard to orthodontic tooth movement (OTM) and root resorption in rats. Forty-eight male Wistar rats were divided into six groups with equal and random distribution: control (C) no intervention; three daily LED irradiation (CLED); submitted only to OTM (RR); OTM and LED irradiation on the first day (LED1); OTM and two LED irradiation on the first and second days (LED2); and OTM and three LED irradiation on the first, second, and third days (LED3). Orthodontic appliance was installed in groups RR, LED1, LED2, and LED3 to promote OTM. Animals from groups CLED, LED1, LED2, and LED3 received LED therapy (940 nm, 4 J, 4 J/cm2) according to each group of treatment. After 7 days, all the animals were sacrificed. The jaws were fixed and scanned with microtomography (micro-CT). The micro-CT images were reconstructed on 2D and 3D models. These models were used to identify and measure root resorption number and dimensions (diameter, depth, and volume). The distance between the first and second molars was used to verify tooth displacement. The results showed that LED3 group had significantly lower number of root resorption. The root resorption dimensions (diameter and depth) had no significant differences among the experimental groups. LED3 group had significant tooth displacement in relation to C and CLED groups. In conclusion, three daily LED therapy doses are required to inhibit root resorption after appliance of orthodontic forces.

  15. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems.

    Science.gov (United States)

    Kottoor, Jojo; Velmurugan, Natanasabapathy; Gopikrishna, Velayutham; Krithikadatta, Jogikalmat

    2013-01-01

    The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF) and ProTaper (PT) rotary Ni-Ti file systems, using scanning electron microscope (SEM). Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at × 100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Fresh TF instruments showed no surface wear when compared to PT instruments (P 0.05), while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05). PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. PT instruments showed more resistance to fracture than TF instruments.

  16. Experimental surface charge density of the Si (100)-2x1H surface

    DEFF Research Database (Denmark)

    Ciston, J.; Marks, L.D.; Feidenhans'l, R.

    2006-01-01

    We report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (100) 2x1H surface. By paying careful attention to parameterizing the bulk Si bonding, we are able to locate the hydrogen atoms at the surface, which could not be done previously. In addition, we...

  17. Experimental and numerical studies on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Su, G.Y.; Gu, H.Y.; Cheng, X.

    2012-01-01

    Highlights: ► Experimental and CFD studies on free surface flow have been performed in a scaled windowless target. ► Flow structure inside spallation area can be divided into three typical zones. ► Under large Reynolds number, large scale vortex can be observed. ► CFD studies have been conducted by using both LES and RANS (k-ω SST) turbulence models. ► LES model provides better numerical prediction on free surface behavior and flow transient. - Abstract: The formation and control method of the coolant free surface is one of the key technologies for the design of windowless targets in the accelerator driven system (ADS). In the recent study, experimental and numerical investigations on the free surface flow have been performed in a scaled windowless target by using water as the model fluid. The planar laser induced fluorescence technique has been applied to visualize the free surface flow pattern inside the spallation area. Experiments have been carried out with the Reynolds number in the range of 30,000–50,000. The structure and features of flow vortex have been investigated. The experimental results show that the free surface is vulnerable to the vortex movement. In addition, CFD simulations have been performed under the experimental conditions, using LES and RANS (k-ω SST) turbulence models, respectively. The numerical results of LES model agree qualitatively well with the experimental data related to both flow pattern and free surface behavior.

  18. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  19. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  20. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  1. Comparison between syringe irrigation and RinsEndo in reduction of Enterococcus faecalis in experimentally infected root canal

    Directory of Open Access Journals (Sweden)

    Sharareh Mousavi Zahed

    2015-05-01

    Full Text Available Background and Aims: To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. Several irrigation devices have been recently introduced with the main objective of improving root canal disinfection.The purpose of this study was to evaluate the rinsing effect of RinsEndo system in reduction of enterococcus faecalis in comparison with conventional hand syringe in infected root canals.   Materials and Methods: 60 extracted single canal anterior teeth were infected with enterococcus faecalis and divided into 3 groups: RinsEndo system, conventional hand syringe and control group. The enterococcus faecalis colonies were counted in each group before and after rinsing. Data were analyzed using Variance and Kruskal Wallis test.   Results: The mean of enterococcus faecalis growth after rinsing was 3.50×103 in group with conventional syring rinsing, 2.04×103 in group with RinsEndo washing and 6.11×103 in control group. Reduction of enterococcus faecalis after rinsing was statistically significant in each group (P<0.001. The amount of reduction in number of colonies with RinsEndo and conventional syringe rinsing was higher in comparison with control group and this difference was significant (P<0.001. RinsEndo rinsing effect was statistically significantly higher in comparison to conventional syringe as well (P<0.001.   Conclusion: Rinsing with RinsEndo system was significantly more efficient in reduction of enterococcus faecalis from root canal in comparison with hand syringe washing.

  2. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species

    NARCIS (Netherlands)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M.; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-01-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such

  3. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species.

    Science.gov (United States)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-10-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake ( 15 N-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep- (thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow- (Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their

  4. Determination of the root-mean-square radius of the deuteron from present-day experimental data on neutron-proton scattering

    International Nuclear Information System (INIS)

    Babenko, V. A.; Petrov, N. M.

    2008-01-01

    The correlation between the root-mean-square matter radius of the deuteron, r m , and its effective radius, ρ, is investigated. A parabolic relationship between these two quantities makes it possible to determine the root-mean-square radius r m to within 0.01% if the effective radius ρ is known. The matter (r m ), structural (r d ), and charge (r ch ) radii of the deuteron are found with the aid of modern experimental results for phase shifts from the SAID nucleon-nucleon database, and their values are fully consistent with their counterparts deduced by using the experimental value of the effective deuteron radius due to Borbely and his coauthors. The charge-radius value of 2.124(6) fm, which was obtained with the aid of the SAID nucleon-nucleon database, and the charge-radius value of 2.126(12) fm, which was obtained with the aid of the experimental value of the effective radius ρ, are in very good agreement with the present-day chargeradius value of 2.128(11) fm, which was deduced by Sick and Trautmann by processing world-average experimental data on elastic electron scattering by deuterons with allowance for Coulomb distortions.

  5. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.

    Science.gov (United States)

    Guimarães, J R; Meili, M; Hylander, L D; de Castro e Silva, E; Roulet, M; Mauro, J B; de Lemos, R

    2000-10-16

    In aquatic systems, bottom sediments have often been considered as the main methylmercury (MeHg) production site. In tropical floodplain areas, however, floating meadows and flooded forests extend over large areas and can be important Hg methylating sites. We present here a cross-system comparison of the Hg net methylation capacity in surface sediments, flooded soils and roots of floating aquatic macrophytes, assayed by in situ incubation with 203Hg and extraction of formed Me203 Hg by acid leaching and toluene. The presence of mono-MeHg was confirmed by thin layer chromatography and other techniques. Study areas included floodplain lakes in the Amazon basin (Tapajós, Negro and Amazon rivers), the Pantanal floodplain (Paraguay river basin), freshwater coastal lagoons in Rio de Janeiro and oxbow lakes in the Mogi-Guaçú river, São Paulo state. Different Hg levels were added in assays performed in 1994-1998, but great care was taken to standardise all other test parameters, to allow data comparisons. Net MeHg production was one order of magnitude higher (mean 13.8%, range 0.28-35) in the living or decomposing roots of floating or rooted macrophyte mats (Eichhornia azurea, E. crassipes, Paspalum sp., Eleocharis sellowiana, Salvinia sp., S. rotundifolia and Scirpus cubensis) than in the surface layer of underlying lake sediments (mean 0.6%, range 0.022-2.5). Methylation in flooded soils presented a wide range and was in some cases similar to the one found in macrophyte roots but usually much lower. In a Tapajós floodplain lake, natural concentrations of MeHg in soil and sediment cores taken along a lake-forest transect agreed well with data on net methylation potentials in the same samples. E. azurea, E. crassipes and Salvinia presented the highest methylation potentials, up to 113 times higher than in sediments. Methylation in E. azurea from six lakes of the Paraguay and Cuiabá rivers, high Pantanal, was determined in the 1998 dry and wet seasons and ranged from

  6. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0/Ag2O nanoparticles exogenously in aqueous phase.

    Directory of Open Access Journals (Sweden)

    Peddisetty Pardha-Saradhi

    Full Text Available Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5-50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag(0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag(0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag(0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag(0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag(0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag(0, which generate Ag(0/Ag2O-NPs. Findings presented in this manuscript put

  7. Experimental investigation of pool boiling heat transfer and critical heat flux on a downward facing surface

    International Nuclear Information System (INIS)

    Gocmanac, M.; Luxat, J.C.

    2012-01-01

    A separate effects experimental study of heat transfer and Critical Heat Flux (CHF) on a downward facing plate in subcooled water pool boiling is described. Two geometries of downwards facing surfaces are studied. The first is termed the 'confined' study in which bubble motion is restricted to the heated surface. The second is termed the 'unconfined' study where individual bubbles are free to move along the heated surface and vent in any direction. The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The CHF as a function of angle of inclination of the surface is presented and is in good agreement with other experimental data from somewhat different test geometries. (author)

  8. Evaluation of the morphological alteration of the root surface radiated with a diode laser; Avaliacao da alteracao morfologica da superficie cimentaria irradiada com laser de diodo

    Energy Technology Data Exchange (ETDEWEB)

    Gulin, Mauricio

    2003-07-01

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of the

  9. Evaluation of the morphological alteration of the root surface radiated with a diode laser; Avaliacao da alteracao morfologica da superficie cimentaria irradiada com laser de diodo

    Energy Technology Data Exchange (ETDEWEB)

    Gulin, Mauricio

    2003-07-01

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of

  10. Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina.

    Science.gov (United States)

    Nielsen, J T; Liesack, W; Finster, K

    1999-04-01

    A sulfate-reducing bacterium, designated strain lacT, was isolated from surface-sterilized roots of the benthic macrophyte Zostera marina. Cells were motile by means of a single polar flagellum. Strain lacT utilized lactate, pyruvate, malate, ethanol, L-alanine, fumarate, choline and fructose with sulfate as electron acceptor. In addition, fumarate, pyruvate and fructose were also degraded without an external electron acceptor. Sulfate could be substituted with thiosulfate, sulfite and elemental sulfur. Optimal growth was observed between 32.5 and 34.5 degrees C, at an NaCl concentration of 0.2 M and in a pH range between 6.8 and 7.3. The G + C content of the DNA was 42.7 +/- 0.2 mol%. Desulfoviridin and catalase were present. Strain lacT contained c-type cytochromes. Comparative 16S rRNA gene sequence analysis and the fatty acid pattern grouped this isolate into the genus Desulfovibrio. However, strain lacT differs from all other described Desulfovibrio species on the bases of its 16S rRNA gene sequence, the G + C content, its cellular lipid pattern and the utilization pattern of substrates. These characteristics establish strain lacT (= DSM 11974T) as a novel species of the genus Desulfovibrio, for which the name Desulfovibrio zosterae sp. nov. is proposed.

  11. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  12. Evaluation and Visualization of Surface Defects - a Numerical and Experimental Study on Sheet-Metal Parts

    International Nuclear Information System (INIS)

    Andersson, A.

    2005-01-01

    The ability to predict surface defects in outer panels is of vital importance in the automotive industry, especially for brands in the premium car segment. Today, measures to prevent these defects can not be taken until a test part has been manufactured, which requires a great deal of time and expense. The decision as to whether a certain surface is of acceptable quality or not is based on subjective evaluation. It is quite possible to detect a defect by measurement, but it is not possible to correlate measured defects and the subjective evaluation. If all results could be based on the same criteria, it would be possible to compare a surface by both FE simulations, experiments and subjective evaluation with the same result.In order to find a solution concerning the prediction of surface defects, a laboratory tool was manufactured and analysed both experimentally and numerically. The tool represents the area around a fuel filler lid and the aim was to recreate surface defects, so-called 'teddy bear ears'. A major problem with the evaluation of such defects is that the panels are evaluated manually and to a great extent subjectivity is involved in the classification and judgement of the defects. In this study the same computer software was used for the evaluation of both the experimental and the numerical results. In this software the surface defects were indicated by a change in the curvature of the panel. The results showed good agreement between numerical and experimental results. Furthermore, the evaluation software gave a good indication of the appearance of the surface defects compared to an analysis done in existing tools for surface quality measurements. Since the agreement between numerical and experimental results was good, this indicates that these tools can be used for an early verification of surface defects in outer panels

  13. Experimental Comparison of the Tribological Properties of Selected Surfaces Created by Thermal Spraying Technology

    Directory of Open Access Journals (Sweden)

    František Tóth

    2016-01-01

    Full Text Available The scientific article titled “Experimental comparison of the tribological properties of selected surfaces created by thermal spraying technology” deals with the surface condition of selected pairs working within the mixed friction before and after experimental tests. Based on the chosen methodology, the experimental tests were performed on the Tribotestor M’06 testing machine. The ecological oil MOGUL HEES 46 (manufactured by Paramo was used as a lubricant. The tests were performed on selected material pairs. The first friction element was a shaft of steel 14 220. The second friction element was a steel plate of steel 11 373 with a friction surface created by two materials, i.e. CuSn10 and NP 40. The results are statistically elaborated and illustrated in figures and tables.

  14. Experimental determination of the thermal contact conductance between two solid surfaces by the energy pulse technique

    International Nuclear Information System (INIS)

    Rubin, Gerson Antonio

    1979-01-01

    An experimental procedure for the determination of the thermal contact conductance between two solid surfaces as a function of the contact pressure and the energy of the laser radiation has been developed using the laser pulse method. A rubi laser with variable energy levels was employed as a radiating pulse energy source. The laser beam was allowed to impinge perpendicularly on the front face of a electrolytic iron 73 4 . The temperature fluctuations resulting on the back surface of the sample was detected by a thermocouple, which Is coupled to a PDP-11/45 Computer 32 Kbytes of memory, through a Analog-Digital Converter. A theoretical function, derived exclusively for the problem mentioned in this work, was adjusted by a method of least square fitting of experimental results. This adjustment yielded the value of a parameter related to the contact conductance between two surfaces. The experimental error obtained for the thermal contact conductance was +- 4.9%. (author)

  15. Experimental studies of microwave interaction with a plasma-covered planar conducting surface

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; DeGrange, J.E.; Segalov, Z.

    1990-01-01

    The authors present experimental studies of the reflection and absorption of microwave radiation from a plasma-covered planar conducting surface. In the experiments, microwave radiation from both highpower, short pulse (10 GHz, 100 MW, 30 ns) and low power (10 GHz, 10 mW, CW) sources is radiated at a 30 cm diameter conducting plate. A time-varying plasma is created on the surface of the conductor by 19 coaxial plasma guns embedded in the surface of the plate and discharged using a fast-rise capacitor bank. The plasma density distribution on the conducting surface is a function of time and the charging voltage on the capacitor bank. Incident and reflected microwave radiation has been measured for a wide variety of experimental conditions

  16. Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Ahn, Ho Seon [Division of Mechanical System Engineering, Incheon National University, 406-772 (Korea, Republic of); Kim, Joonwon [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-10-15

    Highlights: • Heat transfer performance of a droplet on a modified zirconium surface is evaluated. • Modified (nano/micro-) surfaces enhanced heat transfer rate and Leidenfrost point. • A highly wettable condition of the modified surface contributes the enhancement. • Nano-scaled modification indicates the higher performance of droplet cooling. • Investigation via visualization of the droplet support the heat transfer experimental data. - Abstract: In this study, we observed the behavior of water droplets near the Leidenfrost point (LFP) on zirconium alloy surfaces with anodizing treatment and investigated the droplet cooling performance. The anodized zirconium surface, which consists of bundles of nanotubes (∼10–100 nm) or micro-mountain-like structures, improved the wetting characteristics of the surface. A deionized water droplet (6 μL) was dropped onto test surfaces heated to temperatures ranging from 250 °C to the LFP. The droplet dynamics were investigated through high-speed visualization, and the cooling performance was discussed in terms of the droplet evaporation time. The modified surface provided vigorous, intensive nucleate boiling in comparison with a clean, bare surface. Additionally, we observed that the structured surface had a delayed LFP due to the high wetting condition induced by strong capillary wicking forces on the structured surface.

  17. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: computational and experimental studies

    International Nuclear Information System (INIS)

    To, Thien Dien; Nguyen, Anh Tuan; Phan, Khoa Nhat Thanh; Truong, An Thu Thi; Doan, Tin Chanh Duc; Dang, Chien Mau

    2015-01-01

    Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES. (paper)

  18. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  19. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2013-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF and ProTaper (PT rotary Ni-Ti file systems, using scanning electron microscope (SEM. Materials and Methods: Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at ×100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Results: Fresh TF instruments showed no surface wear when compared to PT instruments (P 0.05, while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05. PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. Conclusion: PT instruments showed more resistance to fracture than TF instruments.

  20. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    International Nuclear Information System (INIS)

    Rodrigues, S R; Moraes, M; Youssef, M N; De Souza-Zaroni, W C; Hanashiro, F S; Brugnera Junior, A; Nobre-dos-Santos, M

    2016-01-01

    Although the cariostatic effects of CO 2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO 2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO 2 laser with an energy density of 6.0 J cm −2   +  non-fluoride dentifrice; and L  +  FD, CO 2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey–Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC–C group. It was concluded that CO 2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used. (paper)

  1. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer.

    Directory of Open Access Journals (Sweden)

    Xiaoguang Chen

    Full Text Available Humic acid (HA, not only promote the growth of crop roots, they can be combined with nitrogen (N to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD, peroxidase (POD, and Catalase (CAT as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index.

  2. Experimental High-Resolution Land Surface Prediction System for the Vancouver 2010 Winter Olympic Games

    Science.gov (United States)

    Belair, S.; Bernier, N.; Tong, L.; Mailhot, J.

    2008-05-01

    The 2010 Winter Olympic and Paralympic Games will take place in Vancouver, Canada, from 12 to 28 February 2010 and from 12 to 21 March 2010, respectively. In order to provide the best possible guidance achievable with current state-of-the-art science and technology, Environment Canada is currently setting up an experimental numerical prediction system for these special events. This system consists of a 1-km limited-area atmospheric model that will be integrated for 16h, twice a day, with improved microphysics compared with the system currently operational at the Canadian Meteorological Centre. In addition, several new and original tools will be used to adapt and refine predictions near and at the surface. Very high-resolution two-dimensional surface systems, with 100-m and 20-m grid size, will cover the Vancouver Olympic area. Using adaptation methods to improve the forcing from the lower-resolution atmospheric models, these 2D surface models better represent surface processes, and thus lead to better predictions of snow conditions and near-surface air temperature. Based on a similar strategy, a single-point model will be implemented to better predict surface characteristics at each station of an observing network especially installed for the 2010 events. The main advantage of this single-point system is that surface observations are used as forcing for the land surface models, and can even be assimilated (although this is not expected in the first version of this new tool) to improve initial conditions of surface variables such as snow depth and surface temperatures. Another adaptation tool, based on 2D stationnary solutions of a simple dynamical system, will be used to produce near-surface winds on the 100-m grid, coherent with the high- resolution orography. The configuration of the experimental numerical prediction system will be presented at the conference, together with preliminary results for winter 2007-2008.

  3. Experimental study of surface quality and damage when drilling unidirectional CFRP composites

    Directory of Open Access Journals (Sweden)

    Eshetu D. Eneyew

    2014-10-01

    Full Text Available In this study, an experimental investigation on the drilling of unidirectional carbon fiber reinforced plastic (UD-CFRP composite was conducted using polycrystalline diamond (PCD tipped eight facet drill. The quality of the drilled hole surface was examined through surface roughness measurements and surface damage by scanning electron microscopy (SEM. It was found that fiber pullout occurred in two specific sectors relative to the angle between the cutting direction and the fiber orientation. The thrust force was highly influenced by the feed rate than the cutting speed and it shows a significant variation throughout the rotation of the drill.

  4. An experimental method to determine the electrostatic field enhancement factor of a practical conductor surface

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1989-01-01

    A method of determining the field enhancement factor of a practical conductor is presented. The method is developed from a modified theory of discharge onset in a gaseous medium. This modification incorporates the influence of conductor surface roughness. Onset data from an experimental study...

  5. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  6. Experimental 3-D modelling of surface subsidence affected by underground mining activities

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina

    2009-01-01

    Roč. 109, č. 12 (2009), s. 739-744 ISSN 0038-223X R&D Projects: GA AV ČR IAA2119402 Institutional research plan: CEZ:AV0Z30460519 Keywords : undermining * subsidence of surface * 3-D experimental model Subject RIV: DO - Wilderness Conservation Impact factor: 0.216, year: 2009

  7. Experimental study of surface plasmon-phonon polaritons in GaAs-based microstructures

    Science.gov (United States)

    Galimov, A. I.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Melentyev, G. A.; Artemyev, A. A.; Firsov, D. A.; Vorobjev, L. E.; Klimko, G. V.; Usikova, A. A.; Komissarova, T. A.; Sedova, I. V.; Ivanov, S. V.

    2018-03-01

    Optical properties of a heavily-doped GaAs epitaxial layer with a regular grating at its surface have been experimentally investigated in the terahertz spectral range. Reflectivity spectra for the layer with a profiled surface drastically differ from those for the as-grown epilayer with a planar surface. For s-polarized radiation, this difference is totally caused by the electromagnetic wave diffraction at the grating. For p-polarized radiation, additional resonant dips arise due to excitation of surface plasmon-phonon polaritons. Terahertz radiation emission under significant electron heating in an applied pulsed electric field has also been studied. Polarization measurements revealed pronounced peaks related to surface plasmon-phonon polariton resonances of the first and second order in the emission spectra.

  8. Experimental study of lithium free-surface flow for IFMIF target design

    International Nuclear Information System (INIS)

    Kondo, H.; Fujisato, A.; Yamaoka, N.; Inoue, S.; Miyamoto, S.; Iida, T.; Nakamura, H.; Ida, M.; Matushita, I.; Muroga, T.; Horiike, H.

    2006-01-01

    Lithium free-surface flow experiments to verify the design of IFMIF target have been carried out at Osaka University. The present report summarizes experimental results of surface phenomena, and cavitation characteristics of the loop, so as to try to apply these results to design parameters. Waves on the lithium flow surface is similar to that on water, and can be predicted by a linear stability theory. The wave amplitude is measured by an electro-contact probe. Surface roughness on a target nozzle, caused for example by attached chemical compounds and/or wastages by erosion and corrosion, can lead to a significant loss of target flow stability as well as surface wakes. The need of a polishing manipulator or exchange of the nozzle may be anticipated. Cavitation characteristic of the loop was measured by an accelerometer. From the results, a friction factor could be estimated fort he lithium flow

  9. Comparison of positive-pressure, passive ultrasonic, and laser-activated irrigations on smear-layer removal from the root canal surface.

    Science.gov (United States)

    Sahar-Helft, Sharonit; Sarp, Ayşe Sena Kabaş; Stabholtz, Adam; Gutkin, Vitaly; Redenski, Idan; Steinberg, Doron

    2015-03-01

    The purpose of this study was to compare the efficacy of three irrigation techniques for smear-layer removal with 17% EDTA. Cleaning and shaping the root canal system during endodontic treatment produces a smear layer and hard tissue debris. Three irrigation techniques were tested for solution infiltration of this layer: positive-pressure irrigation, passive ultrasonic irrigation, and laser-activated irrigation. Sixty extracted teeth were divided into six equal groups; 17% EDTA was used for 60 sec irrigation of five of the groups. The groups were as follows: Group 1, treated only with ProTaper™ F3 Ni-Ti files; Group 2, positive-pressure irrigation, with a syringe; Group 3, passive ultrasonic irrigation, inserted 1 mm short of the working length; Group 4, passive ultrasonic irrigation, inserted in the upper coronal third of the root; Group 5, Er:YAG laser-activated irrigation, inserted 1 mm short of the working length; and Group 6, Er:YAG laser-activated irrigation, inserted in the upper coronal third of the root. Scanning electron microscopy showed that the smear layer is removed most efficiently using laser-activated irrigation at low energy with 17% EDTA, inserted either at the working length or only in the coronal upper third of the root. Amounts of Ca, P, and O were not significantly different on all treated dentin surfaces. Smear-layer removal was most effective when the root canals were irrigated using Er:YAG laser at low energy with 17% EDTA solution. Interestingly, removal of the smear layer along the entire canal was similar when the laser was inserted in the upper coronal third and at 1 mm short of the working length of the root canal. This effect was not observed with the ultrasonic and positive-pressure techniques.

  10. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  11. Incidence and severity of root resorption in orthodontically moved premolars in dogs.

    Science.gov (United States)

    Maltha, J C; van Leeuwen, E J; Dijkman, G E H M; Kuijpers-Jagtman, A M

    2004-05-01

    To study treatment-related factors for external root resorption during orthodontic tooth movement. An experimental animal study. Department of Orthodontics and Oral Biology, University Medical Centre Nijmegen, The Netherlands. Twenty-four young adult beagle dogs. Mandibular premolars were bodily moved with continuous or intermittent controlled orthodontic forces of 10, 25, 50, 100, or 200 cN according to standardized protocols. At different points in time histomorphometry was performed to determine the severity of root resorption. Prevalence of root resorptions, defined as microscopically visible resorption lacunae in the dentin. Severity of resorption was defined by the length, relative length, depth, and surface area of each resorption area. The incidence of root resorption increased with the duration of force application. After 14-17 weeks of force application root resorption was found at 94% of the root surfaces at pressure sides. The effect of force magnitude on the severity of root resorption was not statistically significant. The severity of root resorption was highly related to the force regimen. Continuous forces caused significantly more severe root resorption than intermittent forces. A strong correlation (0.60 < r < 0.68) was found between the amount of tooth movement and the severity of root resorption. Root resorption increases with the duration of force application. The more teeth are displaced, the more root resorption will occur. Intermittent forces cause less severe root resorption than continuous forces, and force magnitude is probably not decisive for root resorption.

  12. A novel approach to the use of doxycycline-loaded biodegradable membrane and EDTA root surface etching in chronic periodontitis: a randomized clinical trial.

    Science.gov (United States)

    Gamal, Ahmed Y; Kumper, Radi M

    2012-09-01

    The release profile of 25% doxycycline (DOX) gel loaded on a biodegradable collagen membrane (COL) after 24% EDTA root surface etching was evaluated. Thirty systemically healthy patients, each with at least one pair of contralateral interproximal intrabony defects ≥4 mm deep, along with an interproximal probing depth ≥6 mm and clinical attachment loss ≥4 mm, were randomized into two groups. Group 1 consisted of sites treated with open-flap debridement followed by placement of DOX gel-loaded COL (DOX-COL), whereas group 2 sites were treated with flap surgery followed by the placement of DOX-COL after EDTA etching of the exposed root surfaces (DOX-COL + EDTA). Samples of gingival crevicular fluid were obtained 1, 3, 7, 14, and 21 days after surgery. Separation was performed, and quantitative measurements of DOX were taken with a high-performance liquid chromatography. Clinical evaluation and follow-up for 6 months were performed. At 21 days, DOX-COL + EDTA group showed 5.3 μg/mL value. However, no DOX was detected in samples of the DOX-COL group. DOX-COL + EDTA-treated group retained more DOX during the periods of 3, 7, 10, and 14 days than did the DOX-COL group. EDTA root surface etching could enhance DOX availability in the gingival crevicular fluid after its release from the collagen membrane.

  13. Hepatoprotective potential of ethanolic extract of Ziziphus oenoplia (L.) Mill roots against antitubercular drugs induced hepatotoxicity in experimental models.

    Science.gov (United States)

    Rao, Ch V; Rawat, A K S; Singh, Anil P; Singh, Arpita; Verma, Neeraj

    2012-04-01

    To evaluate the hepatoprotective potential of ethanolic (50%) extract of Ziziphus oenoplia (L.) Mill (Z. oenoplia) root against isoniazid (INH) and rifampicin (RIF) induced liver damage in animal models. Five groups of six rats each were selected for the study. Ethanolic extract at a dose of 150 and 300 mg/kg as well as silymarin (100 mg/kg) were administered orally once daily for 21 d in INH + RIF treated groups. The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), and bilirubin were estimated along with activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione peroxidase, and hepatic melondialdehyde formation. Histopathological analysis was carried out to assess injury to the liver. The considerably elevated serum enzymatic activities of glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin due to INH + RIF treatment were restored towards normal in a dose dependent manner after the treatment with ethanolic extract of Z. oenoplia roots. Meanwhile, the decreased activities of superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase were also restored towards normal dose dependently. In addition, ethanolic extract also significantly prevented the elevation of hepatic melondialdehyde formation in the liver of INH + RIF intoxicated rats in a dose dependent manner. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethanolic extract of Z. oenoplia has a potent hepatoprotective action against INH + RIF induced hepatic damage in rats. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Morphology of root canal surface: A reflection on the process of cementation of the composite relined glass fiber post

    Directory of Open Access Journals (Sweden)

    Yasmine Mendes Pupo

    2017-01-01

    Full Text Available Background: The present study was conducted to evaluate the bond strength in the different root thirds (premolars and maxillary central incisors of composite relined glass fiber posts compared to untreated glass fiber posts cemented with dual- or chemical-cure cements. Materials and Methods: Sixty human single-rooted premolars (flat canal (n = 15 and 12 maxillary central incisors were used (round canal (n = 3. The teeth were sectioned, and the roots received endodontic treatment. The standardized preparation of the canals was carried out, and the roots were randomly divided into four groups according to the cementation systems: G1: cemented posts (dual: Ambar/Allcem; G2: relined posts (dual: Ambar/Allcem; G3: cemented posts (chemical: Fusion Duralink/Cement Post; and G4: relined posts (chemical: Fusion Duralink/Cement Post. The roots were cut to give two slices of each third of the root canal per specimen. Push-out test was conducted at a speed of 0.5 mm/min. Data were analyzed by analysis of variance and Tukey's post hoc test (α = 0.05. Results: There was no statistically significant difference between groups for the premolars (flat canal (P = 0.959. There was a significant difference in the central incisors between the middle and apical thirds in the cemented group when using the dual system (P = 0.04 and between the middle and apical thirds (P = 0.003 and cervical and apical thirds (P = 0.033 when using the chemical system. Conclusion: Due to the anatomy of the root canal, flat canal of the premolars does not require relining, but round canal of the maxillary central incisors demands it for more secure in the bond strength.

  15. Experimental Study on Tribological Properties of Laser Textured 45 Steel Surface

    Directory of Open Access Journals (Sweden)

    Li Zhi Peng

    2016-01-01

    Full Text Available In order to study the influence of pits’ size parameters on the tribological properties of textured friction pairs, using the Nd:YAG laser micro machining system and the “single pulse at the same point, interval more times” processing technics to process the pits on the surface of 45 steel. The dimension parameters of pits texture were obtained by orthogonal experimental design. The tribological experiment of GCr15 pin/45 steel disc was carried out by UMT-2 test machine. The surface morphology of the specimens was analyzed by using scanning electron microscopy. The experimental results show that the pits texture on the surface of 45 steel can effectively reduce the friction coefficient and the wear on the condition of oil-rich lubrication. The textured specimen with diameter 60μm, depth 6μm and surface density 10% has the lowest friction coefficient, and the friction coefficient is reduced by 21% compared with the smooth specimen. By analyzing the wear morphology on the surface of 45 steel, it is found that the surface of pits texture can obviously reduce the wear.

  16. Surface motility in Pseudomonas sp DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Koch, Birgit; Nielsen, T.H.

    2003-01-01

    Pseudomonas sp. DSS73 was isolated from the rhizoplane of sugar beet seedlings. This strain exhibits antagonism towards the root-pathogenic microfungi Pythium ultimum and Rhizoctonia solani. Production of the cyclic lipopeptide amphisin in combination with expression of flagella enables the growing......-pathogenic microfungi is shown to arise from amphisin-dependent surface translocation and growth by which the bacterium can lay siege to the fungi. The synergistic effects of surface motility and synthesis of a battery of antifungal compounds efficiently contain and terminate growth of the microfungi....

  17. Clinical attachment level gain and bone regeneration around a glass ionomer restoration on root surface wall of periodontal pocket

    Science.gov (United States)

    Biniraj, K. R.; Sagir, Mohammed; Sunil, M. M.; Janardhanan, Mahija

    2012-01-01

    A case describing perio-restorative management of an accidental trauma in the mid portion of root on an upper left canine tooth following an ostectomy surgery is presented here. The traumatized root area was undergoing fast resorption and a chronic periodontal abscess had developed in relation to the lesion. The article illustrates the clinical and radiographic photo series of a periodontal flap surgery done to gain access into a subgingival region for the placement of Glass ionomer restoration on the root and its periodic follow up. The clinical condition of the area suggests 8 mm clinical attachment gain over the restoration and the review radiographs at definite intervals up to 18 months revealed evidence of consistent bone regeneration around the restoration. The article also highlights the various other possibilities, where this restorative material can be effectively used in conjunction with periodontal surgical procedures. PMID:23162344

  18. Experimental and numerical study on free surface behavior of windowless target

    International Nuclear Information System (INIS)

    Su Guanyu; Gu Hanyang; Cheng Xu

    2012-01-01

    The formation and control method of coolant free surface is one of the key technologies for the design of windowless target in accelerator driven sub-critical system (ADS). Experimental and CFD investigations on free surface behavior were performed in a scaled windowless target model by using water as test fluid. Laser induced fluorescence was applied for flow field visualization. The free surface and flow field visualization were obtained at Re=30000-50000. Under high Re conditions, an unsteady vortex pair was obtained. By decreasing Re, the structure of the vortex becomes more turbulent. CFD simulation was performed using LES and kω-SST turbulence models, separately. The numerical results show that LES model can qualitatively reproduce the characteristics of flow field and free surface. (authors)

  19. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    Science.gov (United States)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  20. Effect of injury on S1 dorsal root ganglia in an experimental model of neuropathic faecal incontinence.

    LENUS (Irish Health Repository)

    Peirce, C

    2011-08-01

    An experimental model of neuropathic faecal incontinence has recently been established. This study aimed to quantify and compare the effect of crush and compression injury on first-order sensory neurones of the inferior rectal nerve (IRN) using a nuclear marker of axonal injury, activating transcription factor (ATF) 3.

  1. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  2. An experimental result of surface roughness machining performance in deep hole drilling

    Directory of Open Access Journals (Sweden)

    Mohamad Azizah

    2016-01-01

    Full Text Available This study presents an experimental result of a deep hole drilling process for Steel material at different machining parameters which are feed rate (f, spindle speed (s, the depth of the hole (d and MQL, number of drops (m on surface roughness, Ra. The experiment was designed using two level full factorial design of experiment (DoE with centre points to collect surface roughness, Ra values. The signal to noise (S/N ratio analysis was used to discover the optimum level for each machining parameters in the experiment.

  3. Experimental parameters for quantitative surface analysis by medium energy ion scattering, ch. 1

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Kersten, H.H.; Colenbrander, B.G.; Jongh, A.P. de; Saris, F.W.

    1976-01-01

    A new UHV chamber for surface and surface layer analysis by collision spectroscopy of backscattered ions at medium energies is described. Experimental parameters like energy, angular and depth resolution, crystal alignment and background pressure are discussed. Formulae based on the use of an electrostatic energy analyser show that the analysis can be quantitative. Effects of beam induced build-up of a hydro-carbon layer, sputter cleaning and creation of radiation damage have been investigated for Cu (110) and Ni (110). Detection sensitivity for Carbon, Oxygen and Sulfur on Cu and Ni has been found to be 0.2, 0.1 and 0.03 of a monolayer respectively

  4. Experimental analysis on removal factor of smear method in measurement of surface contamination

    International Nuclear Information System (INIS)

    Sugiura, Nobuyuki; Taira, Junichi; Takenaka, Keisuke; Yamanaka, Kazuo; Sugai, Kenji; Kosako, Toshiso

    2007-01-01

    The smear test is one of the important ways to measure surface contamination. The loose contamination under the high background radiation, which is more significant in handling non-sealed radioisotopes, can be evaluated by this method. The removal factor is defined as the ratio of the activity removed from the surface by one smear to the whole activity of the removable surface contamination. The removal factor is greatly changed by the quality and condition of surface materials. In this study, the values of removal factor at several typical surface conditions were evaluated experimentally and the practical application of those values was considered. It is required the smear should be pressed by moderate pressure when wiping the surface. The pressure from 1.0 kg to 1.5 kg per filter paper was recommended. The removal factor showed lower value in wiping by the pressure below 1.0 kg. The value of 0.5 for the removal factor could be applied to the smooth surface of linoleum, concrete coated with paint or epoxy resin, stainless steel and glass with the statistical allowance. (author)

  5. An Experimental Study on the Pool Boiling Heat Transfer on a Square Surface

    International Nuclear Information System (INIS)

    Kim, Jae Kwang

    2000-02-01

    An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux (CHF) on a square surface. The basic knowledge on the boiling heat transfer and CHF on the square surface is necessary for various engineering problems, such as the design of compact heat exchangers, cooling of CPU chips, and design of the external cooling mechanism for the reactor during the severe accidents in the nuclear power plants. The heater block made of copper with cartridge heaters in it is submerged in a water tank with windows for visualization. The heater surface has dimension of 70mm x 70mm and the maximum heat flux capacity is about 1.8MW/m 2 . The boiling heat transfer coefficient for the various flow regimes up to CHF has been measured for upward facing surface, vertical surface, and nearly horizontal downward facing surfaces. The temperatures of the heater block are measured by the thermocouples imbedded in the heater block. As the heat flux increases from 100kW/m 2 to 1.0MW/m 2 , the heat-transfer regime changes from the nucleate boiling to the CHF. Near 1.0MW/m 2 , the heat transfer regime suddenly changed from nucleate boiling to film boiling and it resulted in a rapid heat up of the heater block. The various boiling patterns on the vertical surface, upward facing surface, and downward facing surface are observed by a high speed video camera whose frame rate is 1000fps. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux and inclination angle, is observed

  6. Quantification of the Volume and Surface Area of Symbiosomes and Vacuoles of Infected Cells in Root Nodules of Medicago truncatula

    NARCIS (Netherlands)

    Gavrin, A.Y.; Fedorova, E.

    2015-01-01

    Legumes are able to form endosymbiotic interactions with nitrogen-fixing rhizobia. Endosymbiosis takes shape in formation of a symbiotic organ, the root nodule. Medicago truncatula (M. truncatula) nodules contain several zones representing subsequent stages of development. The apical part of the

  7. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.

    Science.gov (United States)

    Giansante, Carlo; Infante, Ivan

    2017-10-19

    Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.

  8. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  9. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  10. Hydrogen Adsorption on Ga2O3 Surface: A Combined Experimental and Computational Study

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yun-xiang; Mei, Donghai; Liu, Chang-jun; Ge, Qingfeng

    2011-05-03

    In the present work, hydrogen adsorption on the Ga2O3 surfaces was investigated using Fourier transform infrared spectroscopy (FTIR) measurements and periodic density functional theory (DFT) calculations. Both the FTIR and DFT studies suggest that H2 dissociates on the Ga2O3 surfaces, producing OH and GaH species. The FTIR bands at 3730, 3700, 3630 and 3600 cm-1 are attributed to the vibration of the OH species whereas those at 2070 and 1990 cm-1 to the GaH species. The structures of the species detected in experiments are established through a comparison with the DFT calculated stretching frequencies. The O atom of the experimentally detected OH species is believed to originate from the surface O3c atom. On the other hand, the H atom that binds the coordinately unsaturated Ga atom results in the experimentally detected GaH species. Dissociation of H2 on the perfect Ga2O3 surface, with the formation of both OH and GaH species, is endothermic and has an energy barrier of 0.90 eV. In contrast, H2 dissociation on the defective Ga2O3 surface with oxygen vacancies, which mainly produces GaH species, is exothermic, with an energy barrier of 0.61 eV. Accordingly, presence of the oxygen vacancies promotes H2 dissociation and production of GaH species on the Ga2O3 surfaces. Higher temperatures are expected to favor oxygen vacancy creation on the Ga2O3 surfaces, and thereby benefit the production of GaH species. This analysis is consistent with the FTIR results that the bands assigned to GaH species become stronger at higher temperatures. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. Some experimental data on accommodation coefficients for the noble ions on metal surfaces

    International Nuclear Information System (INIS)

    Gusev, K.I.; Rijov, Y.A.; Shkarban, I.I.

    1974-01-01

    Methods and results of experimental measurements of energy accommodation for Ar + , Kr + , and Xe + ions with initial energy E 0 - 100-500eV bombarding Cu, Mo, Ag and other (including Mo - monocrystal) foil target are presented. The angular dependencies for the energy accommodation coefficient are obtained within the range of angle phi=0+70 deg (phi is the angle between the target surface normal and the beam direction)

  12. First report of important causal relationship between the Adamkiewicz artery vasospasm and dorsal root ganglion cell degeneration in spinal subarachnoid hemorrhage: An experimental study using a rabbit model.

    Science.gov (United States)

    Turkmenoglu, Osman N; Kanat, Ayhan; Yolas, Coskun; Aydin, Mehmet Dumlu; Ezirmik, Naci; Gundogdu, Cemal

    2017-01-01

    The blood supply of the lower spinal cord is heavily dependent on the artery of Adamkiewicz. The goal of this study was to elucidate the effects of lumbar subarachnoid hemorrhage (SAH) on the lumbar 4 dorsal root ganglion (L4DRG) cells secondary to Adamkiewicz artery (AKA) vasospasm. This study was conducted on 20 rabbits, which were randomly divided into three groups: Spinal SAH ( n = 8), serum saline (SS) (SS; n = 6) and control ( n = 6) groups. Experimental spinal SAH was performed. After 20 days, volume values of AKA and neuron density of L4DRG were analyzed. The mean alive neuron density of the L4DRG was 15420 ± 1240/mm 3 and degenerated neuron density was 1045 ± 260/mm 3 in the control group. Whereas, the density of living and degenerated neurons density were 12930 ± 1060/mm 3 and 1365 ± 480/mm 3 in serum saline (SS), 9845 ± 1028/mm 3 and 4560 ± 1340/mm 3 in the SAH group. The mean volume of imaginary AKAs was estimated as 1,250 ± 0,310 mm 3 in the control group and 1,030 ± 0,240 mm 3 in the SF group and 0,910 ± 0,170 mm 3 in SAH group. Volume reduction of the AKAs and neuron density L4DRG were significantly different between the SAH and other two groups ( P < 0.05). Decreased volume of the lumen of the artery of Adamkiewicz was observed in animals with SAH compared with controls. Increased degeneration the L4 dorsal root ganglion in animals with SAH was also noted. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  13. A theoretical and experimental investigation of the interaction between gas molecules and cryogenic surfaces

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Chiriloaie, N.

    1992-01-01

    The cryo-pumping performance of a cryo-surface subjected to the impingement of low-pressure, thermal-velocity air flow is experimentally and theoretically investigated. Our purpose is to determine the angular dependence of capture coefficients for gas molecules incident on a cryogenic surface under conditions closely approximating those prevailing in cryo-pumped high vacuum chambers. The classical model for the interaction of gas atoms and the solid surface - the 'soft-tube' model - is developed and the basic assumption are examined. Starting from this theory we have calculated the capture coefficient of the Ag - N system and these values are discussed in terms of principal parameters considered. Despite the many simplifying assumptions, this model has the important attribute that it yields closed-form expressions for the capture coefficient of gas molecules. The molecular beam technique offers a direct experimental method for determining the capture coefficient for molecules with given angles of incidence by measuring the incident and reflected molecular fluxes. An experimental setup is also designed and the method for determining these coefficients is proposed. (Author)

  14. Experimental investigation of Surface Roughness and Cutting force in CNC Turning - A Review

    Directory of Open Access Journals (Sweden)

    Dhiraj Patel

    2014-08-01

    Full Text Available The main purpose of this review paper is to check whether quality lies within desired tolerance level which can be accepted by the customers. So, experimental investigation surface roughness and cutting force using various CNC machining parameters including spindle speed (N, feed rate (f, and depth of cut (d,flow rate (Q and insert nose radius (r. As such, a solemn attempt is made in this paper to investigate the response parameters, viz., Cutting force and Surface Roughness (Ra a by experimentation on EN 19 turning process. The Design of experiments is carried-out considering Taguchi Technique with four input parameters, namely, spindle speed, feed rate, and depth of cut, flow rate and insert nose radius .The experiments are conducted considering the above materials for L16 and then the impact of each parameter is estimated by ANOAVA. Then the regression analysis is carried-out to find the trend of the response of each material. This experimental study aims at taguchi method has been applied for finding the effect on surface roughness and cutting force by various process parameters. And after that we can easily find out that which parameter will be more affect.

  15. Experimental Investigation of Convective Heat Transfer during Night Cooling with Different Ventilation Systems and Surface Emissivities

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet...... air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...

  16. Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS

    Science.gov (United States)

    Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur

    2018-05-01

    Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the

  17. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  18. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, Arslanbey Campus, 41285, Kocaeli (Turkey)

    2017-02-15

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  19. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    International Nuclear Information System (INIS)

    Kibar, Ali

    2017-01-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  20. Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces

    International Nuclear Information System (INIS)

    Senthilkumar, Rajendran; Prabhu, Sethuramalingam; Cheralathan, Marimuthu

    2013-01-01

    Finned surface has been extensively used for free convection cooling of internal combustion engines and several electronic kits etc. Here rectangular brass fin was preferred for analysis. Thermocouples were attached all over the surface of the fin in equal distances. The measurement of surface temperature and calculated convective heat transfer rate were reported for several heat input values. The overall system performance can be improved by enhancing heat transfer rate of extended surfaces. Based on the above requirement, brass surface was coated by carbon nano tubes. The temperature and heat transfer characteristics were investigated using Taguchi method for experimental design. Finally the performances of coated and non-coated rectangular brass fins were compared. The average percentage of increase in heat transfer rate was proved around 12% for carbon nanocoated rectangular brass fins. - Graphical abstract: The designed Natural and Forced convection Heat Transfer Test Rig measures the enhanced rate of heat transfer for nano coated rectangular fins than in non-coated fins. Highlights: ► Rectangular brass fins were preferred for convective heat transfer process. ► The rectangular brass fins are coated with multi wall carbon nano tubes in EBPVD process with nanometer thickness. ► Temperature and heat transfer rate were investigated for nanocoated and non-coated fins by using Taguchi method. ► Multi wall carbon nanotubes act as a pin fin to enhance surface area for effective convective heat transfer rate.

  1. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF DRAGREDUCING SURFACE OF A REAL SHARK SKIN*

    Institute of Scientific and Technical Information of China (English)

    ZHANG De-yuan; LUO Yue-hao; LI Xiang; CHEN Hua-wei

    2011-01-01

    It is well known that shark skin surface can effectively inhabit the occurrence of turbulence and reduce the wall friction,but in order to understand the mechanism of drag reduction, one has to solve the problem of the turbulent flow on grooved-scale surface, and in that respect, the direct numerical simulation is an important tool.In this article, based on the real biological shark skin,the model of real shark skin is built through high-accurate scanning and data processing.The turbulent flow on a real shark skin is comprehensively simulated, and based on the simulation, the drag reduction mechanism is discussed.In addition, in order to validate the drag-reducing effect of shark skin surface, actual experiments were carried out in water tunnel, and the experimental results are approximately consistent with the numerical simulation.

  2. Direct Experimental Evidence of Back-Surface Acceleration from Laser-Irradiated Foils

    International Nuclear Information System (INIS)

    Allen, M; Patel, P; Mackinnon, A; Price, D; Wilks, S; Morse, E

    2004-01-01

    Au foils were irradiated with a 100-TW, 100-fs laser at intensities greater than 10 20 W/cm 2 producing proton beams with a total yield of ∼ 10 11 and maximum proton energy of > 9 MeV. Removing contamination from the back surface of Au foils with an Ar-ion sputter gun reduced the total yield of accelerated protons to less than 1% of the yield observed without removing contamination. Removing contamination the front surface (laser-interaction side) of the target had no observable effect on the proton beam. We present a one-dimensional particle-in-cell simulation that models the experiment. Both experimental and simulation results are consistent with the back-surface acceleration mechanism described in the text

  3. Experimental vortex breakdown topology in a cylinder with a free surface

    DEFF Research Database (Denmark)

    Lo Jacono, D.; Nazarinia, M.; Brøns, Morten

    2009-01-01

    The free SLII-face, flow in it circular cylinder driven by a rotating bottom disk IS Studied experimentally using particle image velocimetry. Results are compared With computational,11 results assuming I stress-free surface A dye visualization Study by Spohn et al ["Observations of vortex breakdown...... in in open cylindrical container with I rotating bottom," Exp. Fluids 14. 70 (1993)]v as well as several numerical computations. has found a range of different vortex breakdown Structures in this flow. We confirm the existence of a transition where the top of the breakdown bubble crosses from the axis...... to the surface, which has previously only been found numerically. We employ a technique by Brons et al ["Topology of vortex breakdown bubbles in I cylinder with rotating bottom and free surface J. Fluid Mech 428. 133 (2001)] to find the corresponding bifurcation curve in the parameter plane, which has hitherto...

  4. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., University Park, PA (United States); Im, Kyungjae [Pennsylvania State Univ., University Park, PA (United States); Guglielmi, Yves [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mattioli, Glen [Univ. of Texas, Arlington, TX (United States). UNAVCO

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristics (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).

  5. Effect of PDGF-BB combined with EDTA gel on adhesion and proliferation to the root surface.

    Science.gov (United States)

    Belal, Mahmoud Helmy; Watanabe, Hisashi; Ichinose, Shizuko; Ishikawa, Isao

    2012-07-01

    Periodontal regeneration using EDTA or PDGF showed promising results, but the effect of combined application was still unclear. This study aimed to verify the effect of EDTA and/or PDGF application on root adhesion and proliferation of PDL fibroblast cells. Eighty specimens were prepared from forty periodontitis teeth and made five groups: (1) diseased (untreated), (2) SRP (scaling root planing), (3) EDTA (24%), (4) PDGF (25 ng/ml) and (5) Combined application of EDTA and PDGF. Periodontal ligament cells were cultured on the above conditioned dentin plate, and SEM examination was preformed and cells were counted within a representative standard area for both cell morphology and density. All groups including untreated showed significantly increase of adhered cells from baseline to 7 days. Among them, rate of increase was much higher in EDTA, PDGF, and combined groups. ANOVA test indicated that the number of cells in PDGF and combined groups was significantly higher than diseased group at 1 day. On day 7, PDGF and combined groups showed significantly higher number of adhesion cells than that found in the diseased, SRP and EDTA groups. Thus, root conditioning with EDTA enhanced cell adhesion more than SRP alone. There was no significant difference of cell number between PDGF and combined group. Combined application of EDTA and PDGF increased significantly PDL cell adhesion than EDTA alone. PDGF alone, however, also showed comparable effect to combined application at all periods. Thus, synergistic effect between PDGF and EDTA was not observed.

  6. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Fish, F.F.

    1991-01-01

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NO x formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m 2 ), high heat-transfer rates (up to 310 kW/m 2 ), high density of energy conversion (up to 8 MW/m 3 ), as well as ultra-low emissions (NO x and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  7. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-12-01

    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  8. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  9. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  10. The attachment of V79 and human periodontal ligament fibroblasts on periodontally involved root surfaces following treatment with EDTA, citric acid, or tetracycline HCL: an SEM in vitro study.

    Science.gov (United States)

    Chandra, R Viswa; Jagetia, Ganesh Chandra; Bhat, K Mahalinga

    2006-02-15

    The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Commercially available V79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 microg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration.

  11. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots.

    Science.gov (United States)

    Rossi, Fernando Ariel; Medeot, Daniela Beatriz; Liaudat, Juan Pablo; Pistorio, Mariano; Jofré, Edgardo

    2016-09-01

    Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Experimental Study on GFRP Surface Cracks Detection Using Truncated-Correlation Photothermal Coherence Tomography

    Science.gov (United States)

    Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang

    2018-04-01

    In this paper, truncated-correlation photothermal coherence tomography (TC-PCT) was used as a nondestructive inspection technique to evaluate glass-fiber reinforced polymer (GFRP) composite surface cracks. Chirped-pulsed signal that combines linear frequency modulation and pulse excitation was proposed as an excitation signal to detect GFRP composite surface cracks. The basic principle of TC-PCT and extraction algorithm of the thermal wave signal feature was described. The comparison experiments between lock-in thermography, thermal wave radar imaging and chirped-pulsed photothermal radar for detecting GFRP artificial surface cracks were carried out. Experimental results illustrated that chirped-pulsed photothermal radar has the merits of high signal-to-noise ratio in detecting GFRP composite surface cracks. TC-PCT as a depth-resolved photothermal imaging modality was employed to enable three-dimensional visualization of GFRP composite surface cracks. The results showed that TC-PCT can effectively evaluate the cracks depth of GFRP composite.

  13. Thermal hydraulic numerical investigation of the heavy liquid metal free surface of MYRRHA spallation target experimental

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.

    2015-01-01

    The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load

  14. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Science.gov (United States)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  15. Experimental and theoretical study on transition boiling concerning downward-facing horizontal surface in confined space

    International Nuclear Information System (INIS)

    Zhao, D.W.; Su, G.H.; Tian, W.X.; Sugiyama, K.; Qiu, S.Z.

    2008-01-01

    Experimental study has been conducted to examine the pool boiling occurs on a relative large downward-facing round surface with a diameter of 300 mm in confined water pool at atmospheric pressure. An artificial neural network (ANN) has been trained successfully based on the experimental data for predicting Nusselt number of transition boiling in the present study. The input parameters of the ANN are wall superheat, ΔT w , the ratio of the gap size to the diameter of the heated surface, δ/D, Prandtl number and Rayleigh number. The output is Nusselt number, Nu. The results show that: Nu decreases with increasing ΔT w , and increases generally with an increase of δ/D. Nu increases with increasing Pr when gap size is smaller than 4.0 mm. And Nu decreases initially and then increases with increasing Pr as gap size bigger than 5.0 mm. The results also indicate that the influence of Grashof number, Gr, could be negligible. Finally, a new correlation was proposed to predict the transition boiling heat transfer under the present condition. The comparisons between the prediction of the new correlation and experimental data show a reasonable agreement

  16. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-02-01

    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  17. Experimental and QSAR study on the surface activities of alkyl imidazoline surfactants

    Science.gov (United States)

    Kong, Xiangjun; Qian, Chengduo; Fan, Weiyu; Liang, Zupei

    2018-03-01

    15 alkyl imidazoline surfactants with different structures were synthesized and their critical micelle concentration (CMC) and surface tension under the CMC (σcmc) in aqueous solution were measured at 298 K. 54 kinds of molecular structure descriptors were selected as independent variables and the quantitative structure-activity relationship (QSAR) between surface activities of alkyl imidazoline and molecular structure were built through the genetic function approximation (GFA) method. Experimental results showed that the maximum surface excess of alkyl imidazoline molecules at the gas-liquid interface increased and the area occupied by each surfactant molecule and the free energies of micellization ΔGm decreased with increasing carbon number (NC) of the hydrophobic chain or decreasing hydrophilicity of counterions, which resulted in a CMC and σcmc decrease, while the log CMC and NC had a linear relationship and a negative correlation. The GFA-QSAR model, which was generated by a training set composed of 13 kinds of alkyl imidazoline though GFA method regression analysis, was highly correlated with predicted values and experimental values of the CMC. The correlation coefficient R was 0.9991, which means high prediction accuracy. The prediction error of 2 kinds of alkyl imidazoline CMCs in the Validation Set that quantitatively analyzed the influence of the alkyl imidazoline molecular structure on the CMC was less than 4%.

  18. Experimentally obtained values of electric field of an atmospheric pressure plasma jet impinging on a dielectric surface

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Garcia-Caurel, E.

    2013-01-01

    We report on experimentally obtained values of the electric field magnitude on a dielectric surface induced by an impinging atmospheric pressure plasma jet. The plasma plume was striking the dielectric surface at an angle of 45¿, at 5mm from the surface measured at the axis of the jet. The results

  19. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    Science.gov (United States)

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    )-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.

  20. Influence of plant roots upon the mobility of radionuclides in soil, with respect to location of contamination below the surface

    International Nuclear Information System (INIS)

    Harvey, N.W.; Shaw, G.; Bell, N.J.B.

    1997-01-01

    The movement of 85 Sr, 137 Cs, 54 Mn and 60 Co in the 50 cm soil profile was studied with and without the presence of plant roots (triticum aestivum) in order to investigate the influence of roots and depth contamination upon the migration of radionuclides. The water table was maintained manually at 3 cm from the bottom. The physicochemical characteristics (E h Fe -2 , NH 4 + , pH and moisture content) as well as the total and extractable radioactivity were investigated. In the discrete contamination, where the location of contamination varied within the soil profile (0-5, 25-30 or 45-50 cm from the top), the influence of location upon the movement of these radionuclides was also studied. It was found that the changes in the soil physicochemical characteristics influenced the mobility of the four radionuclides. The extractability of 54 Mn and 60 Co was significantly increased in the reducing region of the soil, whereas that of 85 Sr, 137 Cs was not. Plant roots excerted significant effects upon the soil characteristics, via, reducing the E h pH and moisture content of the soil; increasing the extractability of both 54 Mn and 60 Co from the depth of 35 cm downwards. Radionuclide migration occurred via physicochemical and biological transport. The biological transport via plant roots was of particular importance for 137 Cs. Location of contamination had a significant influence upon the mobility of radionuclides. The migration of radionuclides was in the sequence of contamination in middle > bottom > top. The degree of the influence varied with radionuclides concerned. In the top layer contamination, the rank of the migration from the contamination layers, on the other hand 54 Mn, 60 Co and 137 Cs were more mobile and the movement was: 85 Sr ∼ 54 Mn ∼ 60 Co > 137 Cs. In the middle and bottom contamination layers, on the other hand, 54 Mn and 60 Co and 137 Cs were more mobile and the movement was 85 Sr ∼ 54 Mn ∼ 60 Co ∼ 137 Cs. (author)

  1. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations.

    Science.gov (United States)

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  2. Polymer-based surface plasmon resonance biochip: construction and experimental aspects

    Directory of Open Access Journals (Sweden)

    Cleumar da Silva Moreira

    Full Text Available Abstract Introduction: Surface plasmon resonance biosensors are high sensitive analytical instruments that normally employ glass materials at the optical substrate layer. However, the use of polymer-based substrates is increasing in the last years due to favorable features, like: disposability, ease to construction and low-cost design. Review Recently, a polymer-based SPR biochip was proposed by using monochromatic and polychromatic input sources. Its construction and experimental considerations are detailed here. Experimental considerations and results, aspects from performance characteristics (resonance parameters, sensitivity and full width at half maximum – FWHM – calculations are presented for hydrophilic and hydrophobic solutions. It is included also a brief description of the state of the art of polymer-based SPR biosensors.

  3. Design of Ag-Ge-Zn braze/solder alloys: Experimental thermodynamics and surface properties

    Directory of Open Access Journals (Sweden)

    Delsante S.

    2017-01-01

    Full Text Available The experimental investigation of the Ag-Ge-Zn phase diagram was performed by using combined microstructural and Differential Scanning Calorimeter (DSC analyses. The samples were subjected to thermal cycles by a heat-flux DSC apparatus with heating and cooling rate of 0.5 or 0.3°C/min. The microstructure of the samples, both after annealing and after DSC analysis, was studied by optical and scanning electron microscopy coupled with EDS (Energy Dispersive Spectroscopy analysis. Considering the slow heating and cooling rate adopted, the isothermal section at room temperature was established. No ternary compounds were observed. On the basis of the experimental investigations the invariant reactions were identified. Combining the thermodynamic data on the Ag-Ge, Ag-Zn and Ge-Zn liquid phases by means of Butler’s model the surface tension of Ag-Ge-Zn alloys was calculated.

  4. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    Science.gov (United States)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  5. Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem

    DEFF Research Database (Denmark)

    Arndal, M. F.; Schmidt, I. K.; Kongstad, J.

    2013-01-01

    growth would be matched by an increase in root nutrient uptake of NH4+-N and NO3- -N. Root growth was significantly increased by elevated CO2. The roots, however, did not fully compensate for the higher growth with a similar increase in nitrogen uptake per unit of root mass. Hence the nitrogen...... concentration in roots was decreased in elevated CO2, whereas the biomass N pool was unchanged or even increased. The higher net root production in elevated CO2 might be a strategy for the plants to cope with increased nutrient demand leading to a long-term increase in N uptake on a whole-plant basis. Drought...... reduced grass root biomass and N uptake, especially when combined with warming, but CO2 was the most pronounced main factor effect. Several significant interactions of the treatments were found, which indicates that the responses were nonadditive and that changes to multiple environmental changes cannot...

  6. Numerical and experimental determination of surface temperature and moisture evolution in a field soil

    Science.gov (United States)

    Akinyemi, Olukayode D.; Mendes, Nathan

    2007-03-01

    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  7. Comparative study of smear layer removal by different etching modalities and Er:YAG laser irradiation on the root surface: a scanning electron microscopy study

    International Nuclear Information System (INIS)

    Theodoro, Leticia Helena

    2001-01-01

    The aim of this study was to compare the effects of citric acid, EDTA, citric acid with tetracycline, and Er:YAG laser to smear layer removal on the root surface after scaling with manual instruments by SEM. Thirty specimens (n=30) of root surface before scaling were divided into 6 groups (n=5). The Control Group (G1) was not treated; Group 2 (G2) was conditioned with citric acid gel 24%, pH1, during 2 minutes; Group 3 (G3) was conditioned with EDTA gel 24%, pH 7, during 2 minutes; Group 4 (G4) was conditioned with citric acid and tetracycline gel 50%, pH1 during 2 minutes; Group 5 (G5) was irradiated with Er:YAG laser (2.94 μm), 47 mJ/10 Hz, focused, under water spray during 15 seconds and fluence of 0.58 J/cm 2 ; Group 6 (G6) was irradiated with Er:YAG laser (2.94μm), 83 mJ/10 Hz, focused, under water spray during 15 seconds and fluence of 1.03 J/cm 2 . The micrographic were analyzed by scores and following the statistical analysis with Kruskal Wallis (p<0.05) H=20,31. The G1 was significantly different of all groups (28.0); the G2 (13.4), G3 (11.7), and G4 (13.6) showed no difference in relation to G5 (20.3) and G6 (6.0), but the G6 was significantly different from G5. From the results, it can be conclude that: 1) there was intensity smear layer after scaling and root planing; 2) all treatments were effective to smear layer remove with significantly difference to G2, G3, G4, G5 and G6; G2, G3 and G4 were not statistically different from G5 and G6; 3) G6 was more effective in the smear layer remotion in relation to G5 and both presented irregular root surface. (author)

  8. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    Science.gov (United States)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-06-01

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  9. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk [Dept. of Mechanical Engineering, Chung Ang University, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed.

  10. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  11. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    International Nuclear Information System (INIS)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk

    2016-01-01

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed

  12. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  13. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  14. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J. G.; Gerzabek, M. H.; Mueck, K.

    1994-01-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broadbean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broadbean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plants during the experimental period are 68 % and 32 % for broadbean 47 % and 53 % for ryegrass respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (author)

  15. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J.; Gerzabek, M.H.; Mueck, K.

    1994-03-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broad bean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broad bean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plant during the experimental period are 68 % and 32 % for broadbean, 47 % and 53 % for ryegrass, respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (authors)

  16. Microbiological quality control of single-walled carbon-nanotubes-coated surfaces experimentally contaminated

    International Nuclear Information System (INIS)

    Natalizi, T.; Frioni, A.; Passeri, D.; Pantanella, F.

    2013-01-01

    The emergence of new nanotechnologies involves the spreading of nanoparticles in various fields of human life. Nanoparticles in general and, more specifically, carbon nanotubes have been adopted for many practical approaches i.e.: coatings for medical devices, food process industry and drug delivery. Humans will be increasingly exposed to nanoparticles but the susceptibility of nanostructured materials to microbial colonization in process of manufacturing and storage has not been thoroughly considered. Therefore, the microbiological quality control of nanoparticles plays a pivotal role. Different analytical methods have been attempted for detecting bacterial population contaminating a surface, but no one can be considered fully appropriate. Here, BioTimer Assay (BTA) and conventional sonication followed by colony forming units method (S-CFU) were applied for microbiological quality control of single-walled carbon nanotubes (SWCNTs)-coated surfaces experimentally contaminated with Streptococcus mutans and Pseudomonas aeruginosa. Our results demonstrated that S-CFU is unreliable to actually determine the number of bacteria, contaminating abiotic surfaces, as it does not detach all adherent bacteria and kills part of the bacterial population. Instead, BTA is a reliable method to enumerate bacteria colonizing SWCNTs-coated surfaces and can be considered a useful tool for microbiological quality control of nanomaterials for human use.

  17. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  18. Morphological change study on root surfaces treated with curettes, sonic instruments or Er:YAG laser; Estudo in vitro da alteracao morfologica em superficie radicular tratada com curetas, aparelho ultrasonico ou com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes Filho, Arlindo Lopes

    2004-07-01

    Periodontal disease is caused by dental plaque and dental calculus on roots surfaces, specially on cervical areas. As dental plaque is the main cause and dental calculus a secondary one, it is practically impossible to separate one factor to the other one. In order to get periodontal tissue health it is necessary to eliminate dental plaque and calculus from root surfaces. In this sense, Er:YAG laser comes in as an excellent way to control periodontal disease, not only, by removing calculus and dental plaque but also for its bacteria reduction. The aim of this study is to compare, by S.E.M., root surfaces changing when they are treated with curettes and ultrasonic scaling or Er:YAG laser irradiation with two different energy levels of 60 mJ/pulse and 100 mJ/pulse and repetition tax of 10 Hz (in the display). It is also objective of this study to check a possible thermic damage to pulp tissue when the roots surfaces are irradiated with Er:YAG laser. We used for this study, five human dental roots, each one of them were cut into four samples, giving us a total of twenty samples, which were divided in five groups of four samples each one. The control group, we did not indicated any kind of treatment. The first group, the roots samples were scaled and planned with Gracey curettes 5/6 and 7/8. The second group, the roots samples were treated with ultrasonic instruments. The third group was irradiated with Er:YAG laser using 60 mJ/pulse , 10 Hz and energy density of 4 J/cm{sup 2} (approximated). The fourth group was irradiated with Er:YAG laser using 100 mJ/pulse, 10 Hz and energy density of 7 J/cm{sup 2} (approximated). The results analysis showed that roots scaling either with Gracey curettes or with ultrasonic instruments created smear layer covering roots surfaces; roots surfaces irradiated with Er:YAG laser showed few roughness in the third group; roots surfaces irradiated with Er:YAG laser showed no smear layer and the Er:YAG laser irradiation did not bring any

  19. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  20. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Hibiki, T.

    2008-01-01

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions

  1. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    International Nuclear Information System (INIS)

    Fiereder, R; Riemann, S; Schilling, R

    2010-01-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  2. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fiereder, R; Riemann, S; Schilling, R, E-mail: fiereder@lhm.mw.tum.d [Department of Fluid Mechanics, Technische Universitaet Muenchen Bolzmannstrasse 15, Garching, 85748 (Germany)

    2010-08-15

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  3. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Science.gov (United States)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  4. Experimental verification on limit load estimation method for pipes with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Miura, Naoki; Hoshino, Katsuaki

    2010-01-01

    When a flaw is detected in stainless steel pipes during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in these codes, the limit load criterion is only provided for pipes containing a flaw with uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in pipes. In order to evaluate the integrity of the flawed pipes for general case, a limit load estimation method has been proposed by authors considering a circumferential surface flaw with arbitrary shape. The plastic collapse bending moment and corresponding stress are obtained by dividing the surface flaw into several segmented sub-flaws. In this paper, the proposed method was verified by comparing with experimental results. Four-point bending experiments were carried out for full scale stainless steel pipes with a symmetrical or non-symmetrical circumferential flaw. Estimated failure bending moments by the proposed method were found to be in good agreement with the experimental results, and the proposed method was confirmed to be effective for evaluating bending failure of pipes with flaw. (author)

  5. Experimental apparatus to investigate interactions of low energy ions with solid surfaces, 1

    International Nuclear Information System (INIS)

    Tsukakoshi, Osamu; Narusawa, Tadashi; Mizuno, Masayasu; Sone, Kazuho; Ohtsuka, Hidewo.

    1975-12-01

    Experimental apparatus to study the surface phenomena has been designed, which is intended to solve the vacuum wall problems in future thermonuclear fusion reactors and large experimental tokamak devices. An ion source and the beam transport optics are provided for bombarding solid target surface with an ion beam of energy from 0.1 to 6 keV. Measuring instruments include an ion energy analyser, a quadrupole mass spectrometer, an Auger electron spectrometer, an electro-micro-balance, a neutral particle energy spectrometer and its calibration system. Pumping system consists of oil-free ultrahigh vacuum pumps. Various kinds of experiments will be carried out by using the apparatus: 1) sputtering by low energy ion bombardment, 2) re-emission of the incident particles during and after ion bombardment, 3) release of adsorbed and occluded gases in the solids by ion bombardment, and 4) backscattering of fast ions. The combinations of measuring instruments for each experiment and their relative positions in the vacuum chamber are described through detailed drawings. The fundamental aspect in design of the ion beam transport optics for a low energy ion beam which can no longer neglect the space charge effect is also discussed. (auth.)

  6. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    Science.gov (United States)

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  7. Root exudation and root development of lettuce (Lactuca sativa L.cv. Tizian as affected by different soils

    Directory of Open Access Journals (Sweden)

    Günter eNeumann

    2014-01-01

    Full Text Available Development and activity of plant roots exhibits high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for ten years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian was used as a model plant, grown under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes. Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils, root growth characteristics (root length, fine root development as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue. The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  8. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    Science.gov (United States)

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  9. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  10. Experimental and theoretical study of surface tension of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene)

    International Nuclear Information System (INIS)

    Rafati, Amir Abbas; Ghasemian, Ensieh

    2009-01-01

    Surface properties of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene) have been measured by surface tension method at T = 298.15 K and atmospheric pressure. Also, the surface tension has been predicted based on the Suarez method. This method combines a model for the description of surface tension of liquid mixtures with a group contribution method for the calculation of activity coefficient. The mean relative standard deviations obtained from the comparison of experimental (measured) and calculated surface tension values for the eight binary systems are less than 1.5%, which leads to concluding that the model shows a good accuracy in different situations in comparison with other predicted equations. In addition, the relative Gibbs adsorption and the surface mole fraction have been evaluated using this model. The surface tension deviations were calculated from experimental results and have been fitted to the Redlich-Kister type polynomial relation

  11. Mirror-like slip surfaces in dolostone: natural and experimental constraints on a potential seismic marker

    Science.gov (United States)

    Fondriest, M.; Smith, S. A.; Di Toro, G.; Nielsen, S. B.

    2012-12-01

    The lack of clear geological markers of seismic faulting represents a major limitation in our current comprehension of earthquake physics. At present pseudotachylytes (i.e. friction-induced melts) are the only unambiguously identified indicator of ancient seismicity in exhumed fault zones, but pseudotachylytes are not found in many rock types, including carbonates. We report the occurrence of small-displacement, mirror-like slip surfaces from a fault zone cutting dolostones. A combination of field observations and rotary shear friction experiments suggests that such slip surfaces: 1) are formed only at seismic slip rates, and 2) could potentially be used to estimate power dissipation during individual slip events. The Foiana Line (FL) is a major NNE-SSW-trending sinistral transpressive fault in the Italian Southern Alps. The outcropping fault zone consists of a rotary-shear experiments using SHIVA (INGV, Rome) were performed on 3 mm thick layers of dolomite gouge (grain size friction coefficient (μ) from a peak value of ~0.7 to a steady-state value of ~0.25. The gouge starts to weaken above a threshold velocity in the range 0.19-0.49 m/s following a transient phase of strengthening. During the tests the instantaneous power density (shear stress*slip rate) dissipated on the sample reaches values of 6-10 MW/m2 over distances of 0.02-1 m, comparable to those of natural earthquakes. At 26 MPa normal stress a mirror-like slip surface is formed after only 0.03 m of slip. At intermediate slip rates (0.113 m/s) only moderate reductions in μ are observed. Instantaneous power density is ~1 MW/m2 and the mirror-like slip surface starts to develop after 0.1 m of slip. At sub-seismic slip rates (0.0001-0.0013 m/s) μ remains ~0.7, instantaneous power density is ~0.02 MW/m2, and no mirror-like slip surface develops. Microstructural observations suggest that the natural and experimental slip zones are comparable: both have a compacted layer up to 20 μm thick immediately below

  12. Does surface roughness influence the primary stability of acetabular cups? A numerical and experimental biomechanical evaluation.

    Science.gov (United States)

    Le Cann, Sophie; Galland, Alexandre; Rosa, Benoît; Le Corroller, Thomas; Pithioux, Martine; Argenson, Jean-Noël; Chabrand, Patrick; Parratte, Sébastien

    2014-09-01

    Most acetabular cups implanted today are press-fit impacted cementless. Anchorage begins with the primary stability given by insertion of a slightly oversized cup. This primary stability is key to obtaining bone ingrowth and secondary stability. We tested the hypothesis that primary stability of the cup is related to surface roughness of the implant, using both an experimental and a numerical models to analyze how three levels of surface roughness (micro, macro and combined) affect the primary stability of the cup. We also investigated the effect of differences in diameter between the cup and its substrate, and of insertion force, on the cups' primary stability. The results of our study show that primary stability depends on the surface roughness of the cup. The presence of macro-roughness on the peripheral ring is found to decrease primary stability; there was excessive abrasion of the substrate, damaging it and leading to poor primary stability. Numerical modeling indicates that oversizing the cup compared to its substrate has an impact on primary stability, as has insertion force. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Bosie; Stewart, Eric T.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  14. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  15. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  16. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  17. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    International Nuclear Information System (INIS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield

  18. Experimental Research upon the Quality of the Sanded Surfaces of Some Decorative Composite Panels

    Directory of Open Access Journals (Sweden)

    Luminita-Maria BRENCI

    2011-06-01

    Full Text Available The paper presents an experimental study uponthe quantitative assessment of the surface qualityafter sanding, in case of some lignocellulosecomposite panels with decorative structure, made oflamellas obtained from different wood species,randomly jointed and having as special characteristicthe surfaces with transversal structure. The analyzedpanels were built-up in two variants: poplar withspruce wood and cherry with walnut wood. Theconstituted lamellas were finger-jointed in length andedge-jointed in width. The sanding operation wasperformed using grit sizes of 50, 80, 120 and 150. Inorder to measure the roughness parameters Ra, Rz,Rk, Rpk and Rvk, a MicroProfFRT equipment (withlight beam was used. The results revealed that thevalues of the roughness parameters had a generaldecreasing tendency with grit size increasing. Theresulted values lead to the conclusion that the finalsanding grinding system applied on longitudinalsection of wood is not valid for the transversalsection of wood which is present on the surfaces ofthe studied panels. In this special case, whensurfaces have a transversal structure, an additionalsanding with a higher grit size is needed, in order toobtain a similar roughness value as for the surfaceswith longitudinal structure.

  19. Computational studies of experimentally observed structures of sulfur on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Dominic

    2011-09-01

    First-principles electronic structure calculations were carried out to examine the experimentally observed structures of sulfur on close packed surfaces of a number of important metals - Ag(111), Cu(111), Ni(111), Pt(111), Rh(111), Re(0001) and Ru(0001). At low coverages ({le} 1/3 ML), the prediction is consistent with the typical pattern of preferred sulfur occupancy of threefold hollow sites, notably the fcc site on the (111) surfaces and the hcp site on the (0001) surfaces. Theoretical confirmation for the existence of pure sulfur overlayer phases on Pt(111), Rh(111), Re(0001) and Ru(0001) at higher coverages (> 1/3 ML) was provided. For the ({radical}7 x {radical}7) phase seen on Ag(111), the most preferred structure identified for adsorbed S trimer consists of an S atom on the top site bonded to two S atoms situated on the nearest neighbor off-bridge site positions. Among the different densely packed mixed sulfur-metal overlayer models suggested for the ({radical}7 x {radical}7) phase on Cu(111), the structure which consists of metal and S atoms in a hexagonal-like arrangement on the top substrate was found to be the most energetically favorable. For the (5{radical}3 x 2) phase on Ni(111), the calculations confirm the existence of clock-reconstructed top layer metal atoms onto which sulfur atoms are adsorbed.

  20. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  1. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  2. Experimental Study of Thermo-hydraulic Characteristics of Surfaces with In-line Dimple Arrangement

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2015-01-01

    Full Text Available The paper presents a conducted experimental study of the heat exchange intensification on the surfaces covered with a regular vortex-generating relief that is an in-line array of the shallow hemispherical dimples. Using 12 configuration options with the Reynolds numbers in the range of (0.2-7.0 106 as an example, it analyses how a longitudinal and cross step of the in-line dimple array (density dimples effects on the processes of heat exchange intensification and resistance.The monocomponent strain-gauge balance allows us to define a value of the resistance coefficient by direct weighing of models (located in parallel in a flow of "relief" and smooth "reference" ones being under study. Distribution fields of heat – transfer factor are determined by recording a cooling process of the surface of studied models having high spatial and temporary resolution. All researches were conducted with one-shot data record of these thermal and hydraulic measurements for the smooth (reference surfaces and the studied surfaces covered with a regular vortex-generating relief (dimples. The error of determined parameters was no more than ±5%.The oil-sooty method allows us to visualize flow around a regular relief and obtain a flow pattern for 12 options of dimples configuration. The analysis has been carried out and a compliance of the flow patterns with the field of heat-transfer factors has been obtained.It has been found that for the in-line configuration a Reynolds analogy factor for most models is nonlinearly dependent on the Reynolds number. The friction intensification, at first, falls (to some Reynolds number and, further, starts increasing, tending to the friction intensification value with self-similarity flow around. Thus with increasing Reynolds number, the heattransfer factor intensification falls (more slowly than resistance intensification.

  3. An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence

    Science.gov (United States)

    Mish, Patrick F.; Devenport, William J.

    2003-01-01

    Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative

  4. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    Science.gov (United States)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  5. Experimental simulations of oxidizing conditions and organic decomposition on the surface of Mars

    International Nuclear Information System (INIS)

    Stoker, C.R.; Mancinelli, R.L.; Mckay, C.P.

    1988-01-01

    One important scientific objective of a Mars Rover Sample Return mission would be to look for traces of living and extinct life on Mars. An instrument to search for organic carbon may be the simplest instrument that could screen samples which are interesting from a biological point of view. An experimental program is described which would help to understand the nature of the oxidizing soil on Mars and the mechanism responsible for organic degradation on the Martian surface. This is approached by lab simulations of the actual conditions that occur on Mars, particularly the oxidant production by atmospheric photochemistry, and the combined effects of UV light and oxidants in decomposing organic compounds. The results will be used to formulate models of the photochemistry of the atmospheric, the atmosphere-soil interaction, and the diffusion of reactive compounds into the soils. This information will provide insights and constraints on the design of a sampling strategy to search for organic compounds on Mars

  6. Experimental assessment of film cooling performance of short cylindrical holes on a flat surface

    Science.gov (United States)

    Singh, Kuldeep; Premachandran, B.; Ravi, M. R.

    2016-12-01

    The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.

  7. Roots & Hollers

    OpenAIRE

    Kollman, Patrick L; Gorman, Thomas A

    2011-01-01

    Roots & Hollers, 2011 A documentary by Thomas Gorman & Patrick Kollman Master’s Project Abstract: Roots & Hollers uncovers the wild American ginseng trade, revealing a unique intersection between Asia and rural America. Legendary in Asia for its healing powers, ginseng helps sustain the livelihoods of thousands in Appalachia. A single root can sell for thousands of dollars at auction. Shot on-location in the mountains of Kentucky and West Virginia, this student doc...

  8. An experimental study of the attachment of bacteria to submerged surfaces in marine environment

    International Nuclear Information System (INIS)

    Fera, Ph.

    1985-09-01

    The seasonal variations of the bacterial settling of three materials (stainless steel, aluminium, polycarbonate filters) have been studied inside an open system of circulating seawater (0.7 m.s -1 ). The fixed bacteria counting have been carried out by scanning electron microscopy and epi-fluorescence microscopy. From the results of the first part of this work, it appears that the growth kinetics of the microbial bio-film, and the densities of the bacteria fixed after 15 days of immersion are higher during summer. Qualitatively, the composition of the number of fixed bacteria evolve with immersion time and with the season. The continuous injection of 0.1 ppm of chlorine in the seawater feeding the experimental system, seems not to be sufficient to prevent, for a long time, the settling of a great number of bacteria. The second part of this work deals with the experimental study of the settling of an aluminium surface by a pseudomonas, isolated of the seawater and submitted or not to conditions of preliminary fast. (O.M.)

  9. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  10. Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface

    International Nuclear Information System (INIS)

    Xiong, Jianyin; Xie, Guo; Zheng, Hongfei

    2013-01-01

    Highlights: • A novel multi-effect solar still with enhanced condensation surface is designed. • The overall desalination efficiency and performance ratio can reach 0.91 and 1.86. • A numerical model characterizing the heat and mass transfer process is developed. - Abstract: A novel multi-effect solar desalination system with enhanced condensation surface is designed. Compared to traditional solar still, it has two main merits: (1) the application of corrugated shape stacked trays decreases the condensation resistance, thus improves the desalination performance and (2) the simultaneous heating both from the collector in the bottom and coating in the top efficiently uses the solar energy, which increases the freshwater yield. Field test is then carried out to study the temperature and freshwater yield characteristics. It is observed that the solar still can generate freshwater not only in the daytime but also in the night, with the latter taking up about 40% of the total freshwater yield. When the starting temperature is relatively high, the overall desalination efficiency and performance ratio of the equipment can reach 0.91 and 1.86, respectively. Furthermore, a numerical model characterizing the heat and mass transfer process in the solar still is developed. The good agreement between the model prediction and experimental data demonstrates the effectiveness of the proposed model. For the present solar still, a phenomenon of reverse temperature difference in the second stacked tray is emerged due to the special simultaneous heating pattern, which is also validated by the numerical model

  11. Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study

    Science.gov (United States)

    Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2012-01-01

    Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220

  12. New nitrogen uptake strategy: specialized snow roots.

    Science.gov (United States)

    Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C

    2009-08-01

    The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.

  13. Comparison of Alterations in the Surface Topographies of HyFlex CM and HyFlex EDM Nickel-titanium Files after Root Canal Preparation: A Three-dimensional Optical Profilometry Study.

    Science.gov (United States)

    Uslu, Gülşah; Özyürek, Taha; Yılmaz, Koray

    2018-01-01

    The aims of the present study were to examine the surface topographies of intact HyFlex CM and HyFlex EDM nickel-titanium files and to compare alterations in the surface topographies of these files after root canal preparation of severely curved canals of molar teeth. Eight HyFlex CM (25/.08) and 8 HyFlex EDM (25/.08) files were included in the present study. In total, 64 severely curved canals of molar teeth, with curvature angles ranging between 50° and 70°, were prepared with HyFlex CM and EDM (n = 32 in each group). Quantitative and qualitative analyses of the files' surface deformation were performed by using three-dimensional optical profilometry before and after root canal preparation. The data were analyzed with the Student t test at the 5% significant level by using SPSS 21.0 software. In the HyFlex EDM group, the qualitative evaluation revealed the presence of cracks and microcavities after use of the file for root canal preparation, whereas only minor surface deformation was observed in the HyFlex CM group. The average roughness, root mean square roughness, and peak to valley height values of the HyFlex EDM group were significantly higher than those of the HyFlex CM group before and after root canal preparation (P EDM group was not statistically significant (P > .5). Within the limitations of the present study, the HyFlex CM files showed significantly higher surface alterations compared with the HyFlex EDM files after the preparation of severely curved root canals. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Optimal Experimental Design of Borehole Locations for Bayesian Inference of Past Ice Sheet Surface Temperatures

    Science.gov (United States)

    Davis, A. D.; Huan, X.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    Borehole data are essential for calibrating ice sheet models. However, field expeditions for acquiring borehole data are often time-consuming, expensive, and dangerous. It is thus essential to plan the best sampling locations that maximize the value of data while minimizing costs and risks. We present an uncertainty quantification (UQ) workflow based on rigorous probability framework to achieve these objectives. First, we employ an optimal experimental design (OED) procedure to compute borehole locations that yield the highest expected information gain. We take into account practical considerations of location accessibility (e.g., proximity to research sites, terrain, and ice velocity may affect feasibility of drilling) and robustness (e.g., real-time constraints such as weather may force researchers to drill at sub-optimal locations near those originally planned), by incorporating a penalty reflecting accessibility as well as sensitivity to deviations from the optimal locations. Next, we extract vertical temperature profiles from these boreholes and formulate a Bayesian inverse problem to reconstruct past surface temperatures. Using a model of temperature advection/diffusion, the top boundary condition (corresponding to surface temperatures) is calibrated via efficient Markov chain Monte Carlo (MCMC). The overall procedure can then be iterated to choose new optimal borehole locations for the next expeditions.Through this work, we demonstrate powerful UQ methods for designing experiments, calibrating models, making predictions, and assessing sensitivity--all performed under an uncertain environment. We develop a theoretical framework as well as practical software within an intuitive workflow, and illustrate their usefulness for combining data and models for environmental and climate research.

  15. Experimental test of a novel multi-surface trough solar concentrator for air heating

    International Nuclear Information System (INIS)

    Zheng Hongfei; Tao Tao; Ma Ming; Kang Huifang; Su Yuehong

    2012-01-01

    Highlights: ► We made a prototype novel multi-surface trough solar concentrator for air heating. ► Circular and rectangular types of receiver were chosen for air heating in the test. ► The changes of instantaneous system efficiency with different air flow were obtained. ► The system has the advantage of high collection temperature, which can be over 140 °C. ► The average efficiency can exceed 45% at the outlet temperature of above 60 °C. - Abstract: This study presents the experimental test of a novel multi-surface trough solar concentrator for air heating. Three receivers of different air flow channels are individually combined with the solar concentrator. The air outlet temperature and solar irradiance were recorded for different air flow rates under the real weather condition and used to determine the collection efficiency and time constant of the air heater system. The characteristics of the solar air heater with different airflow channels are compared, and the variation of the daily efficiency with the normalized temperature change is also presented. The testing results indicates that the highest temperature of the air heater with a circular glass receiver can be over 140 °C. When the collection temperature is around 60 °C, the collection efficiency can be over 45%. For the rectangular receivers, the system also has a considerable daily efficiency at a larger air flow rate. The air heater based on the novel trough solar concentrator would be suitable for space heating and drying applications.

  16. Attachment of associative diazotroph alcaligenes faecalis to rice roots

    International Nuclear Information System (INIS)

    Lin Min; Fang Xuanjun; You Chongbiao

    1993-01-01

    The process of attachment of diazotroph Alcaligenes faecalis to host plant rice was studied by using 15 N-labelled bacteria and Tn5-induced mutants. A three-step attachment mechanism of A. faecalis to rice root surface is proposed on the basis of experimental data. Adsorption is the first step. The number of adsorbed bacteria reaches maximal level after 3 h of inoculation, it consists 3.7% of the total number of bacteria inoculated. Adsorbed bacteria could be removed from rice root surface quantitatively by shaking in water. Therefore, the adsorption forces are weak. Anchoring is the second step. It begins only after 9h of inoculation and reaches a maximal level (21%) after 16 h. Anchored bacteria could not be removed by shaking. Colonization is the third step. After 20 h of inoculation. part of anchored bacteria colonizes on rice root surface tightly, and it can not be removed by vortex. At this time, the pectolytic activity of bacteria appears. Chemotaxis and exopolysaccharide (EPS) play important roles in the attachment of A. faecalis to rice root surface. EPS mutants (Exo - , Exo ++ ) showed less anchoring-capability in comparison with wild type of bacterium, but they remained the adsorption capability. While chemotaxis (Che - ) mutants are defective in adsorption, but not in anchoring. Che - , Exo - mutant lost both adsorption and anchoring capabilities. A. faecalis absorbed on all part of rice root, but the anchoring and colonization of bacteria were occurred mainly on root hairs, particularly on the joint area of main root and lateral root

  17. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu, India. (India); Rekha, T. N. [PG and Research Department of Physics, Lady Doak College, Madurai-625 002, Tamilnadu, India. (India)

    2016-05-06

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  18. Surface streamer propagations on an alumina bead: experimental observation and numerical modeling

    Science.gov (United States)

    Kang, Woo Seok; Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Lee, Jin Young; Kim, Dae-Woong; Hur, Min; Song, Young-Hoon

    2018-01-01

    A surface streamer in a simplified packed-bed reactor has been studied both experimentally (through time-resolved ICCD imaging) and theoretically (through two-dimensional numerical modeling). The propagation of streamers on an alumina spherical bead without catalytic coating shows three distinct phases—the generation and propagation of a primary streamer (PS) with a moderate velocity and electric field, fast PS acceleration with an enhanced electric field, and slow secondary streamer (SS) propagation. The velocity of the streamer is less than that of propagation in a gaseous media. The electric field and velocity at the streamer front are maximized when a PS propagates during the interval from the midpoint of the bead to the bottom electrode. The SS exhibits a much lower velocity and electric field compared with the PS. The PS velocity is affected by an external applied voltage, especially when it approaches the ground electrode. However, that of the SS remains constant regardless of the voltage change. The simulation shows that the PS exhibits a high electric field mainly created by the space charge induced by electrons, whereas the SS relies on ion movement with electron decay in a charge-filled thin streamer body.

  19. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin; Rekha, T. N.

    2016-01-01

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  20. Experimental investigation of impingement cooling with turbulators or surface enlarging elements

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Johan

    2000-02-01

    For the materials in modern gas turbines to sustain, a considerable amount of cooling is required. In cases where large amounts of heat need to be removed, impingement cooling with its high heat transfer coefficients may be the only alternative. In this work the possibilities of enhancing impingement cooling by introducing surface enlarging - turbulence enhancing elements are examined experimentally. A configuration consisting of a staggered array of 45 impingement jets distributed over 10 rows is used for the purpose. A thermo camera is used to measure the temperature distribution on the target plate, giving an opportunity to separately evaluate the Nusselt number enhancement for different areas. Experiments are conducted for five different area enlarging geometries: triangle, wing, cylinder, dashed rib, and angel, all made from aluminium. Comparison between each area enlarged surface and a flat plate is made, with results presented as Nusselt number enhancement factors. The effect of pumping power required is also investigated in order to maximize the cooling efficiency. Parameters varied are Reynolds number and jet to plate distance. Overall Nusselt number enhancement factors show values of 1 to 1.3, the trend being decreasing with increased jet to plane distance and Reynolds number. When taking into account pumping power the enhancement factors drop to 0.4 to 1.2. The best results are achieved with the rib geometry and when not using a too large value of enlarger height over jet to plate distance (h/z). Row wise evaluation of Nusselt number enhancement shows an increased enhancement with row number and thereby crossflow ratio (Gc/Gj). Typical increases in enhancement of 1 to 1.5 with Gc/Gj from 0 to 0.8 are found. The thermo camera pictures reveal that the enhancement is found in three different areas, on the enlarger base area, the area just downstream the enlarger and in diagonal streaks with increased turbulence caused by the enlargers. Tests using an

  1. Experimental investigations of sensor-based surface following performed by a mobile manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.; Baker, J.E.; Pin, F.G.

    1994-10-01

    We discuss a series of surface following experiments using a range finder mounted on the end of an arm that is mounted on a vehicle. The goal is to keep the range finder at a fixed distance from an unknown surface and to keep the orientation of the range finder perpendicular to the surface. During the experiments, the vehicle moves along a predefined trajectory while planning software determines the position and orientation of the arm. To keep the range finder perpendicular to the surface, the planning software calculates the surface normal for the unknown surface. We assume that the unknown surface is a cylinder (the surface depends on x and y but does not depend on z). To calculate the surface normal, the planning software must calculate the locations (x,y) of points on the surface in world coordinates. The calculation requires data on the position and orientation of the vehicle, the position and orientation of the arm, and the distance from the range finder to the surface. We discuss four series of experiments. During the first series of experiments, the calculated surface normal values had large high frequency random variations. A filter was used to produce an average value for the surface normal and we limited the rate of change in the yaw angle target for the arm. We performed the experiment for a variety of concave and convex surfaces. While the experiments were qualitative successes, the measured distance to the surface was significantly different than the target. The distance errors were systematic, low frequency, and had magnitudes up to 25 mm. During the second series of experiments, we reduced the variations in the calculated surface normal values. While reviewing the data collected while following the surface of a barrel, we found that the radius of the calculated surface was significantly different than the measured radius of the barrel.

  2. Experimental Study in Taguchi Method on Surface Quality Predication of HSM

    Science.gov (United States)

    Ji, Yan; Li, Yueen

    2018-05-01

    Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.

  3. Design of an experimental four-camera setup for enhanced 3D surface reconstruction in microsurgery

    Directory of Open Access Journals (Sweden)

    Marzi Christian

    2017-09-01

    Full Text Available Future fully digital surgical visualization systems enable a wide range of new options. Caused by optomechanical limitations a main disadvantage of today’s surgical microscopes is their incapability of providing arbitrary perspectives to more than two observers. In a fully digital microscopic system, multiple arbitrary views can be generated from a 3D reconstruction. Modern surgical microscopes allow replacing the eyepieces by cameras in order to record stereoscopic videos. A reconstruction from these videos can only contain the amount of detail the recording camera system gathers from the scene. Therefore, covered surfaces can result in a faulty reconstruction for deviating stereoscopic perspectives. By adding cameras recording the object from different angles, additional information of the scene is acquired, allowing to improve the reconstruction. Our approach is to use a fixed four-camera setup as a front-end system to capture enhanced 3D topography of a pseudo-surgical scene. This experimental setup would provide images for the reconstruction algorithms and generation of multiple observing stereo perspectives. The concept of the designed setup is based on the common main objective (CMO principle of current surgical microscopes. These systems are well established and optically mature. Furthermore, the CMO principle allows a more compact design and a lowered effort in calibration than cameras with separate optics. Behind the CMO four pupils separate the four channels which are recorded by one camera each. The designed system captures an area of approximately 28mm × 28mm with four cameras. Thus, allowing to process images of 6 different stereo perspectives. In order to verify the setup, it is modelled in silico. It can be used in further studies to test algorithms for 3D reconstruction from up to four perspectives and provide information about the impact of additionally recorded perspectives on the enhancement of a reconstruction.

  4. Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples

    Directory of Open Access Journals (Sweden)

    M. Rašković

    2010-11-01

    Full Text Available Accelerator performance, in particular the average accelerating field and the cavity quality factor, depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF cavity surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsuperconductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer, which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb presents an alternative surface preparation method to the commonly used buffered chemical polishing and electropolishing methods. We have optimized the experimental conditions in the microwave glow discharge system and their influence on the Nb removal rate on flat samples. We have achieved an etching rate of 1.7  μm/min⁡ using only 3% chlorine in the reactive mixture. Combining a fast etching step with a moderate one, we have improved the surface roughness without exposing the sample surface to the environment. We intend to apply the optimized experimental conditions to the preparation of single cell cavities, pursuing the improvement of their rf performance.

  5. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    Science.gov (United States)

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. Copyright © 2012 Wiley Periodicals, Inc.

  6. EDTA-S: A novel root conditioning agent

    Directory of Open Access Journals (Sweden)

    S Srirangarajan

    2012-01-01

    Full Text Available Background: To evaluate the efficacy of 15% ethylenediaminetetraacetic acid (EDTA-S (EDTA with soft soap preparation for the removal of smear layer at human root surfaces. Materials and Methods: Twenty teeth indicated for extraction due to periodontal disease were sectioned using high speed cylindrical bur under copious irrigation. The root surfaces were instrumented with Gracey 7-8 curette (Hu-Friedy, 12 times to induce an "experimental smear layer". Following root planning, the root surface was cut using diamond disc and separated from the crown. Samples were randomly distributed into five groups. One group was control, saline and test groups were EDTA 15% alone, by active and passive applications (groups 2 and 3, and EDTA 15%+soft soap, by active and passive applications (groups 4 and 5. Specimens were then subjected to scanning electron microscope study. Smear layer removal was evaluated according to Sampaio et al., index. Results: EDTA-S removed the smear layer better than plain EDTA and the control group, while active application of the root conditioning agent had significant difference than the passive application of the agent. Conclusion: EDTA-S has favorable benefits over EDTA alone, and active application is better in comparison with passive application of root conditioning agent. Clinical Relevance: Removal of smear layer has been considered as an important step in periodontal regenerative therapy. Scaling and root planning alone with saline irrigation does not remove the smear layer. EDTA is a commonly used root conditioning agent in periodontal therapy. The addition of a detergent to EDTA proved to remove smear layer more efficiently than EDTA alone.

  7. Experimental/Computational Approach to Accommodation Coefficients and its Application to Noble Gases on Aluminum Surface (Preprint)

    Science.gov (United States)

    2009-02-03

    computational approach to accommodation coefficients and its application to noble gases on aluminum surface Nathaniel Selden Uruversity of Southern Cahfornia, Los ...8217 ,. 0.’ a~ .......,..,P. • " ,,-0, "p"’U".. ,Po"D.’ 0.’P.... uro . P." FIG. 5: Experimental and computed radiometri~ force for argon (left), xenon

  8. Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: A multivariate perspective.

    Science.gov (United States)

    S. B. Cox; M. R. Willig; F. N. Scatena

    2002-01-01

    We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs...

  9. A method for the experimental determination of surface photoemission core-level shifts for 3d transition metals

    NARCIS (Netherlands)

    Shamsutdinov, N.R.; Sloof, W.G.; Böttger, A.J.

    2005-01-01

    A method is presented to determine the photoelectron surface core-level shift (SCLS) of 3d transition metals using x-ray photoelectron spectroscopy. The experimental difficulties arising from the relatively large broadening of photoemission lines in the 3d transition series can be overcome by the

  10. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  11. Surfaces of solids and their interactions with gaseous ambients. An introduction to the theory and experimental methods, with some examples

    International Nuclear Information System (INIS)

    Morgen, P.

    1977-10-01

    The physics and chemistry of ambient gases interacting with solid surfaces are discussed. The necessary theory and experimental techniques and apparatus used are described in detail. Results are presented for two semiconductor materials, silicon and zinc oxide. (W.D.L.)

  12. Root activity evaluation in tree crops using isotopic techniques

    International Nuclear Information System (INIS)

    Calvache, Marcelo

    1991-01-01

    This paper discusses the methdology used to evalute root activity of the crops utilizing the technique of soil injection with solutions marked with isotopes. Some of the experimental data obtained with coffee, citrus and oil palm are also presented. Ovel all, these tree crops present a higher root activity in soil layers close to the surface (0-20 cm) and to a distance from the trunk which varies with age, season and variety. The most important conclusions are: 1. The isotope injection technique using 3 2 P , 1 5 N , or 8 5 R b, allow direct and reliable determination of root activity in these tree crops. 2. Root activity of three crops depends on age of the tree, variety, moisture content of the soil and soil type. 3. Soil moisture is the most influencial factor affecting root activity. This is turn depends on the irrigation method employed. 4. From the practical view point, the best distance from the trunk to apply fertilizer in the one wich has highest root activity closest to the soil surface

  13. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots

    International Nuclear Information System (INIS)

    Jiao, X.C.; Xu, F.L.; Dawson, R.; Chen, S.H.; Tao, S.

    2007-01-01

    Rice roots and surrounding air, soil and water samples were collected for polycyclic aromatic hydrocarbon (PAH) analysis. The rice roots were separated into lateral roots and nodal roots, and the PAH concentration in the former was found to be higher than that in the latter. In addition, root physiological characteristics including root biotic mass, root lipid content and specific surface area are also discussed. When normalizing the total, adsorption and absorption PAH fractions on a dry root weight basis to root biomass, root lipid, and surface area bases respectively, the differences between PAHs in the two types of roots diminished by 2 to 3 times on average. Results from sequential extraction indicated that PAHs were more easily absorbed by interior rice roots than adsorbed on the surface. In addition, more than 60% of total PAHs accumulated in root tissue for both lateral and nodal roots. However, the results were highly related to the solvent used, extraction time and methodology. Correlation analysis between bioconcentration factors (root over environment) and K OA , K OW showed water to be more significant for PAH adsorption in rice roots than other environmental media. - A sequential extraction method was applied to divide the PAHs accumulated on rice roots into PAHs in root exudates, PAHs adsorbed on root surfaces, and PAHs absorbed in root tissue

  14. Spatial and temporal patterns of chickpea genotypes (Cicer arietinum L. root growth under waterlogging stress

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available The dynamic of root growth of chickpea genotypes; including Rupali (Desi and Flip 97-530 (Kabuli were evaluated under waterlogging stress in a Glasshouse experiment at CSIRO, Perth, WA. during 2005. Root growth boxes (0.1×0.24×1.0 m with one wall of glass were used as experimental units. Data were analyzed based on Randomized Complete Block Design with three replications. Waterlogging was induced when the first root reached 50cm. The water level was maintained on the soil surface for 12 days. After that, waterlogging was finished by draining the root growth boxes. In soil profile, root growth rate were calculated based on recorded information on transparent films during growing season. There was positive and strong linear correlation between the root traits that were measured in soil (direct measurment and transparent films (indirect measurment. Decay and death of roots caused a severe decrease on root growth rate during waterlogging, but root growth rate was sharply increased at the end of recovery period on 0-40 cm layer of soil surface. In both genotypes, spatial and temporal patterns of the root growth were different. Root growth rate was highest on distinc time for each layer of soil profile. In both genotypes, RLD decreased with increasing soil depth. Results showed that more distribution of root system on upper soil layers (0-40 cm is a strategy for chickpea plants, and so, soil management is very important on this layer. In stress and non stress environments, Flip 97-530 showed better root characteristics than the Rupali during growing season, so this genotype is probably more tolerate to water logging stress.

  15. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  16. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, 41285, Arslanbey Campus, Kocaeli (Turkey)

    2016-02-15

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°−40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy. (paper)

  17. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experim....... The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless......, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations...

  18. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    Science.gov (United States)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  19. Transcription of Small Surface Structures in Injection Moulding - An Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2000-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  20. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  1. An experimental investigation of evaporating sessile droplet on super-hydrophobic surface

    International Nuclear Information System (INIS)

    Shin, Dong Hwan; Lee, Seong Hyuk; Yoo, Jung Yul

    2008-01-01

    The objective of this study is to investigate the evaporation process of a water droplet on hydrophobic and hydrophilic surfaces. Time-dependent contact angle, height, radius, surface area, and volume were measured for three different surfaces, such as glass, OctadecylTrichloroSilane(OTS), and AlkylKetene Dimmer(AKD) using a digital image analysis technique. For hydrophilic surfaces, the measured contact angle, liquid volume, and height are also compared with numerical estimation. It is found that for super-hydrophobic surfaces, the contact line becomes no longer pinned during evaporation, and three distinct stages for hydrophobic surface cannot be found. For the super-hydrophobic surface, it takes the longest time for evaporation because the droplet maintains spherical shape even near the end of evaporation process

  2. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  3. Experimental study on surface properties of the PMMA used in high power spark gaps

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  4. Fungi in neotropical epiphyte roots.

    Science.gov (United States)

    Bermudes, D; Benzing, D H

    1989-01-01

    Roots of thirty-eight Ecuadoran vascular epiphytes, representing eleven angiosperm families, were examined for the presence of symbiotic microorganisms. Most orchid roots contained fungal endophytes like those that regularly infect terrestrial counterparts. Hyphae were also common in and on nonorchid roots, but assignments of these relationships to known mycorrhizal morphologies was not possible in all cases. Evidence of vesicular-arbuscular mycorrhizae (VAM) existed in a number of subjects while in Ericaceae and Campanulaceae a fungal association similar to the demateaceous surface fungi (DSF) described for alpine and prarie plants was usually present. Some associations were characterized by multicellular propagules on root surfaces. The significance of these findings and the factors likely to influence occurrence and consequences of root-fungus mutualisms in tropical forest canopies are discussed. Facts and considerations that could aid future inquiry on these systems are provided.

  5. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    Science.gov (United States)

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  6. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  7. The Effect of Root Coating with Titanium on Prevention of Root Resorption in Avulsed Teeth: An Animal Study

    Science.gov (United States)

    Heydari, Azar; Tahmasbi, Soodeh; Badiee, Mohammadreza; Izadi, SeyedSadra; Mashhadi Abbas, Fatemeh; Mokhtari, Sepideh

    2016-01-01

    Introduction: Tooth avulsion is a real dental emergency. If immediate replantation is not performed, the avulsed tooth may be lost due to inflammatory or replacement resorption. This animal study aimed to evaluate the bone response to the titanium coating of the root surface as an artificial barrier, and prevention of resorption of avulsed teeth. Methods and Materials: This experimental study was conducted on four male dogs. The dogs were randomly divided into two groups for assessment at two and eight weeks. Four teeth were extracted in each animal. The root surfaces of the test group were coated with a titanium layer using the Electron Beam Deposition system. After 24 h, replantation of the teeth was performed. Two animals were sacrificed after two weeks and the remaining dogs were killed after eight weeks. The presence of inflammation, inflammatory resorption, replacement resorption, periodontal regeneration, periapical granuloma and ankylosis were evaluated through histological analyses. Results: Inflammatory root resorption was not present in any tooth except one tooth in the coated group after eight weeks. Replacement resorption was noted just in three of the non-coated teeth after two weeks and two teeth after eight weeks. The McNemar's test revealed that the frequency of replacement resorption in the non-coated group was significantly higher than the coated group (P=0.031). Conclusion: Based on the results of this study, it seems that coating the root surfaces of avulsed teeth with titanium may control the replacement root resorption. PMID:27790261

  8. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  9. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux i...

  10. An Experimental Study of the Dropwise Condensation on Physically Processed Surface

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Chang, Soonheung; Watanabe, N.; Sambuichi, T.; Shiota, D.; Aritomi, M.

    2013-01-01

    Recent research by Kawakubo et al. derived empirical condensation heat transfer correlation suitable for wider range of operating condition in presence of non-condensable gas. However, their proposals of PCCS are focused on plane tube surface. To design better PCCS heat exchanger with high heat transfer coefficient new treatment on condensation surface can be considered in order to maintain dropwise condensation, the heat transfer coefficient of which has an order of magnitude larger than those of film condensation. Advanced research measure dropwise condensation heat transfer coefficient of Au and Cr coated surface based on number of droplet and droplet growth rate. However, coated surface is not desirable in power plant due to its duration of few years. On the other hand, physical processing (micro holes and patterns) on stainless steel and titanium surface is expected to perform better heat transfer, also is durable for the whole reactor lifetime. Since there is no published research about dropwise condensation for physically processed surface on SUS and Ti, the purposes of this research are to measure the condensation heat transfer coefficient and analyze its mechanism of enhanced heat transfer of treated SUS and Ti commonly used to nuclear plant. In the comparison of theoretical equation and experiment, it shows same result that heat transfer coefficient is proportional to maximum droplet diameter power to -0.321. Moreover, in the comparison of bare and processed surface, heat transfer coefficient decreases in processed surface

  11. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Directory of Open Access Journals (Sweden)

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  12. Temperature Development on the External Root Surface During Laser-Assisted Endodontic Treatment Applying a Microchopped Mode of a 980 nm Diode Laser.

    Science.gov (United States)

    Beer, Franziska; Farmakis, Eleftherios Terry R; Kopic, Josip; Kurzmann, Christoph; Moritz, Andreas

    2017-04-01

    The aim of this article was to investigate the temperature increase of the external root surface during laser-assisted endodontic treatment using a diode laser (980 nm) in a microchopped mode. Ten freshly extracted, human maxillary incisors with mature apices were collected, prepared to size F4 at working length (ProTaper; Dentsply Maillefer, Ballaigues, Switzerland), mounted to a holder, and irradiated (using spiral movements in coronal direction) with a diode laser (GENTLEray 980 Classic Plus; KaVo, Biberach, Germany) with a 200 μm fiber in four different treatment groups: Group 1 (control group) was irradiated in six cycles of 5-sec irradiation/20-sec pause with 2.5 W in the pulse mode. Groups 2 to 4 were irradiated at six cycles of 5-sec irradiation/20-sec pause in the microchopped mode (Group 2-1.6 W; Group 3-2.0 W; Group 4-2.5 W). The applied mode was 25 ms on/25 ms off. Within the on period, the laser delivered an intermittent sequence of energy complexes and the maximum output was equal to the nominated output of the device (12 W). Canals were kept moist by sterile saline irrigation in between irradiations, and temperature changes were continuously measured using a thermal imaging camera. Recordings were analyzed by a mixed model (analysis of variance [ANOVA] for repeated measurements). The highest mean of temperature rise, 1.94°C ± 1.07°C, was measured in Group 4, followed by Group 3 (1.74°C ± 1.22°C) and Group 2 (1.58°C ± 1.18°C). The lowest increase occurred in Group 1 (1.06°C ± 1.20°C). There was a significant difference (p = 0.041) between the groups. Significant differences were found between Groups 1 and 4 (p = 0.007) and 1 and 2 (p = 0.035). In addition, a marginally significant difference between Groups 1 and 2 (p = 0.052) was noted. There was no significant difference between Groups 2, 3, and 4. Despite the low mean values reported, the highest temperature increase (+5.7°C) was

  13. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Gong, Yadong; Zhou, Yun Guang; Wen, Xue Long [School of Mechanical Engineering and Automation, Northeastern University, Shenyang (China)

    2017-01-15

    Micro-milling is widely used as a method for machining of micro-parts with high precision and efficiency. Taking the nickel-based single-crystal superalloy DD98 as the research object, the crystal characteristics of single-crystal materials were analysed, and the removal mechanism of single-crystal micro-milled parts was described. Based on molecular dynamics, a simulation model for nickel-based single-crystal superalloy DD98 micro-milling was established. Based on the response surface method of central composite design, the influences of spindle speed, feed rate, and milling depth on the surface roughness were examined, and a second-order regression model of the DD98 surface roughness was established. Using analysis of variance and the residuals of the model, a significant influence on surface roughness was found in the following order from large to small: Feed rate, spindle speed, and milling depth. Comparisons were conducted between the micro-milling experimental values and the predicted model values for different process parameters. The results show that the model fit is relatively high, and the adaptability is good. Scanning electron microscopy analysis of the micro-milling surfaces was performed to verify the slip and the removal mechanism of single-crystal materials. These results offer a theoretical reference and experimental basis for micro-milling of single-crystal materials.

  14. Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Uesugi, Y. [Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192 (Japan)

    2015-11-30

    Highlights: • Initial growth process of fiber-form nanostructure on metal surfaces under helium ion irradiation is given based on experimental knowledge, where the pitting of original surface and forming nano-walls and/or loop-like nanostructure works as precursors. • The physical mechanism of fiber growth is discussed in terms of shear modulus of metals influenced by helium content as well as surface temperature. • The physical model explains the reason why tantalum does not make sufficiently grown nano-fibers, and the temperature dependence of surface morphology of titanium. - Abstract: The initial stage of fiber-form nanostructure growth on metal surface with helium plasma irradiation is illustrated, taking recent research knowledge using a flux gradient technique, and including loop-like nano-scale structure as precursors. The growth mechanism of fibers is discussed in terms of the shear modulus of various materials that is influenced by the helium content as well as the surface temperature, and the mobility of helium atoms, clusters and/or nano-bubbles in the bulk, loops and fibers. This model may explain the reason why tantalum does not provide fiber-form nanostructure although the loop-like structure was identified. The model also suggests the mechanism of an existence of two kinds of nanostructure of titanium depending on surface temperature. Industrial applications of such nanostructures are suggested in the properties and the possibilities of its growth on other basic materials.

  15. Experimental and numerical study of the high-temperature structure of copper single crystal surfaces

    International Nuclear Information System (INIS)

    Loisel, Bertrand

    1989-01-01

    The structure of copper single crystal surfaces has been investigated on an atomic scale using two complementary tools: helium beam diffraction experiments and computer simulations by molecular dynamics. In the case of stepped surfaces, the roughening transition occurs at low temperature. Our helium beam diffraction experiments in the range 70-1000 K reveal this transition at 650±50 K and 150±50 K respectively on the (331) and (310) surfaces. We emphasize the role of the terrace and step structure on the thermal roughness, which is ruled by microscopic energies related to the creation and interaction of defects on the step edges. Adsorbing oxygen on a rough (310) surface gives rise to ordered superstructures. In our computer simulations, the interatomic forces are derived from an empiric N-body potential which leads to a realistic description of the static and dynamical properties of the bulk metal and its surfaces. We analyze the results of high-temperature simulations on the (110) surface. Two types of disorder are distinguished: the creation of adatom-vacancy pairs and the enhancement of the vibrational amplitudes of the atoms near their equilibrium site. We establish that both phenomena take place in the same temperature range. These simulations also indicate the very anisotropic behaviour of the surface at high temperatures (> 1000 K). (author) [fr

  16. Experimental studies of photon-surface interaction dynamics in the alkali halides

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Tolk, N.H.

    1986-01-01

    We describe recent measurements which have provided, in unprecedented detail, insights into the electronic mechanisms through which energy carried into a material by photon irradiation is absorbed, localized and rechanneled to produce desorption, surface modification, erosion and damage. The specific object of these studies has been desorption induced by electronic transition in alkali halide crystals, with particular emphasis on the dynamics of changes in the surface and near-surface regions. In our experiments, the irradiating ultraviolet photons are provided by a synchrotron storage ring, and the dynamical information about desorption products is obtained from optical measurements of the quantum states, yields and velocity distributions of neutral ground-state and excited-state atoms ejected from the surface of the irradiating material. These studies have shown that the dominant exit channels in photon-induced particle emission are those producing ground-state and excited-state neutral atoms. Using dynamical information about these desorbing neutral species, obtained, for example, by laser-induced fluorescence and laser Doppler spectroscopy, we are generating an increasingly comprehensive picture of the dynamics of electronic energy flow into and out of pure crystalline surfaces in these prototypical dielectrics. We are also beginning to be able to relate desorption dynamics to specific materials properties, and to discriminate between pure surface and near-surface effects in these materials. Applications of these techniques to the problem of photon-induced surface damage and to analysis of surface dynamics in dielectric materials are discussed, and the relationships between these nearly ideal model materials and the non-crystalline, covalently bonded materials more typical of real optical elements are pointed out. 19 refs., 13 figs

  17. Experimental investigation on the motion of cathode spots in removing oxide film on metal surface by vacuum arc

    International Nuclear Information System (INIS)

    Shi Zongqian; Jia Shenli; Wang Lijun; Yuan Qingjun; Song Xiaochuan

    2008-01-01

    The motion of vacuum arc cathode spots has a very important influence on the efficiency of removing the oxide film on the metal surface. In this paper, the characteristics of cathode spot motion are investigated experimentally. Experiments were conducted in a detachable vacuum chamber with ac (50 Hz) arc current of 1 kA (rms). A stainless steel plate covered by an oxide layer was used as the cathode. The motion of cathode spots during the descaling process was photographed by a high-speed digital camera with an exposure time of 2 μs. Experimental results indicate that the motion of cathode spots is influenced by the interaction among individual cathode jets and the position of the anode as well as the surface condition. The waveform of arc voltage is also influenced by the motion of cathode spots

  18. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  19. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    Science.gov (United States)

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  20. Experimental determination of fuel surface temperature in the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khang, Ngo Phu; Huy, Ngo Quang; An, Tran Khac; Lam, Pham Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Measured fuel surface temperatures, obtained at various locations of the core of the Dalat Nuclear Research Reactor under normal operating conditions, are presented, and some thermal characteristics of the reactor are discussed. (author). 2 refs., 11 figs., 2 tabs.

  1. Pectin nanocoating of titanium implant surfaces - an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Dirscherl, Kai; Jørgensen, Bodil

    2017-01-01

    that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell...... wall-derived rhamnogalacturonan-I, on bone healing and osseointegration. MATERIAL AND METHODS: Machined titanium implants were coated with three modifications of rhamnogalacturonan-I (RG-I). Chemical and physical surface properties were examined before insertion of nanocoated implants (n = 96....... The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more...

  2. Dust Plate, Retina, Photograph: Imaging on Experimental Surfaces in Early Nineteenth-Century Physics.

    Science.gov (United States)

    Ramalingam, Chitra

    2015-09-01

    This article explores the entangled histories of three imaging techniques in early nineteenth-century British physical science, techniques in which a dynamic event (such as a sound vibration or an electric spark) was made to leave behind a fixed trace on a sensitive surface. Three categories of "sensitive surface" are examined in turn: first, a metal plate covered in fine dust; second, the retina of the human eye; and finally, a surface covered with a light-sensitive chemical emulsion (a photographic plate). For physicists Michael Faraday and Charles Wheatstone, and photographic pioneer William Henry Fox Talbot, transient phenomena could be studied through careful observation and manipulation of the patterns wrought on these different surfaces, and through an understanding of how the imaging process unfolded through time. This exposes the often-ignored materiality and temporality of epistemic practices around nineteenth-century scientific images said to be "drawn by nature."

  3. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  4. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  5. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  6. Effects of surface irregularities on intensity data from laser scanning: an experimental approach.

    Directory of Open Access Journals (Sweden)

    G. Teza

    2008-06-01

    Full Text Available The results of an experiment carried out with the aim to investigate the role of surface irregularities on the intensity data provided by a terrestrial laser scanner (TLS survey are reported here. Depending on surface roughness, the interaction between an electromagnetic wave and microscopic irregularities leads to a Lambertian-like diffusive light reflection, allowing the TLS to receive the backscattered component of the signal. The described experiment consists in a series of TLS-based acquisitions of a rotating artificial target specifically conceived in order to highlight the effects on the intensity data due to surface irregularity. This target is articulated in a flat plate and in an irregular surface, whose macro-roughness has a characteristic length with the same order of the spot size. Results point out the different behavior of the plates. The intensity of the signal backscattered by the planar element decreases if the incidence angle increases, whereas the intensity of the signal backscattered by the irregular surface is almost constant if the incidence angle varies. Since the typical surfaces acquired in a geological/geophysical survey are generally irregular, these results imply that the intensity data can be easily used in order to evaluate the reflectance of the material at the considered wavelength, e.g. for pattern recognition purposes.

  7. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite

    Science.gov (United States)

    De, Jyotiraman; Baxi, R. N., Dr.

    2017-08-01

    Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.

  8. Laser decontamination and cleaning of metal surfaces: modelling and experimental studies

    International Nuclear Information System (INIS)

    Leontyev, A.

    2011-01-01

    Metal surface cleaning is highly required in different fields of modern industry. Nuclear industry seeks for new methods for oxidized surface decontamination, and thermonuclear installations require the cleaning of plasma facing components from tritium-containing deposited layer. The laser ablation is proposed as an effective and safe method for metal surface cleaning and decontamination. The important factor influencing the laser heating and ablation is the in-depth distribution of laser radiation. The model of light propagation in a scattering layer on a metal substrate is developed and applied to analyse the features of light distribution. To simulate the contaminated surfaces, the stainless steel AISI 304L was oxidized by laser and in a furnace. Radioactive contamination of the oxide layer was simulated by introducing europium and/or sodium. The decontamination factor of more than 300 was demonstrated with found optimal cleaning regime. The decreasing of the corrosion resistance was found after laser cleaning. The ablation thresholds of ITER-like surfaces were measured. The cleaning productivity of 0.07 m 2 /hour.W was found. For mirror surfaces, the damage thresholds were determined to avoid damage during laser cleaning. The possibility to restore reflectivity after thin carbon layer deposition was demonstrated. The perspectives of further development of laser cleaning are discussed. (author) [fr

  9. Studies using 32P to determine the distribution and activity patterns of the oil palm root system in Nigeria

    International Nuclear Information System (INIS)

    Omoti, U.

    1982-01-01

    Results of studies of the root distribution and root activity which have been conducted by the Nigerian Institute for Oil Palm Research over the last twenty-three years are presented. Previous laborious studies involving washing the soil from the entire root system have shown that the oil palm root system is typically monocotyledonous with superficial and deeply penetrating primaries, ascending and descending secondaries with numerous tertiaries and quaternaries in the surface layers forming the main feeding roots. Radioisotope studies showed that the greatest concentration and activity of the nutrient absorbing roots occurred within the top 30 cm of soil. There were zones of root concentration and root activity close to the palm. High root activity was also obtained up to 4 m from the palm. During the dry season, the oil palm roots die back thus leading to a reduced zone of root activity. The implications of the findings for fertilizer placement for maximum efficiency of utilization by the whole plantation and the need for further experimentation are discussed. (author)

  10. Experimental investigation into the surface oxidation of lignite high temperature coke

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H G; Dallmann, W [Technische Hochschule Aachen (Germany, F.R.). Lehrgebiet Kokerei und Brikettierung

    1979-11-01

    It was intended to produce lignite high temperature coke (BHFK) in the laboratory comparable to that produced with the Salem-Lurgi-open hearth process and quench them according to the prescribed condition. By this means, the surface oxide formation could be continually recorded gravimetrically. The self-sustaining reaction of the physical and chemical adsorption on the loose material were observed under consideration that the adsorption or surface oxide can exist in a gaseous as well as in a liquid aggregate. The established steam isotherms and electron-microscope photos identified the product BFHK as a material which shows in the range of high-humidity capillary condensation. The continuous gravimetric adsorption leads to 1,9 per cent by weight on dry surface oxides. On the other hand, oxidized coke in the presence of water builds up on the surface to 2,3 per cent by weight. It became apparent that the finest capillary water is not involved in the formation of the oxide. For the dry accumulation, which is a reaction of the first degree, the equation for the accumulation of the oxygen is given. From the BET surface, made up from the graphite-like ring structure of the carbon surface, as well as the dposited quantity of oxide, the surface density of the oxygen atoms is indicated in relation to the quantity of carbon atoms, or alternatively the six-ring. The dry deposition leads to a proportion of 1,5 oxygen atoms to 10 carbon atoms. In a wet reaction, the ratio is 1,8 to 10. With increasing quantities of oxide, the content of volatile matter, the sparking point and reactivity increase, while the porosity diminishes as a consequence.

  11. A Novel Experimental Set-Up for Improving the Sensitivity of SV Waves to Shallow Surface-Breaking Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Pecorari, Claudio [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Aeronautical and Vehicle Engineering

    2006-03-15

    Conventional inspection procedures to detect surface-breaking defects in train axels and thick pipes often employ 45-degree incidence shear vertical (SV) waves as probing tool. Recently obtained theoretical and experimental results indicate that this method is considerably less sensitivity to shallow surface-breaking defects, than the one in which the angle of incidence is selected to be close to the critical angle of the longitudinal wave. This project has confirmed this thesis by experimentally investigating the backscattering of SV waves by surface-breaking cracks as a function o t the angle of incidence. To this end, three cracks of depth approximately equal to 0.3 mm, 0.5 mm and 0.7 were introduced on the surface of steel samples with a thickness of 47 mm. These cracks were insonified with transducers operating at 2.25 MHz, 3.5 MHz, and 5 MHz, which correspond to wavelengths in steel of 1.38 mm, 0.88 mm, and 0.62 mm, respectively. The increase in sensitivity has been assessed in the order of 15 dB.

  12. Study of surfaces and morphologies of proteic sol–gel derived barium aluminate nanopowders: An experimental and computational study

    International Nuclear Information System (INIS)

    Rezende, M.V. dos S.; Arrouvel, C.; Parker, S.C.; Rey, J.F.Q.; Valerio, M.E.G.

    2012-01-01

    BaAl 2 O 4 nanoparticles samples were prepared by sol–gel proteic route. The preparation of the precursor mixture and the formation of the ceramic product were monitored using TG/DTA, X-ray diffraction (XRD), electron microscopy (SEM, TEM). The results show that sol–gel proteic route is a reliable method for the synthesis of pure BaAl 2 O 4 powders and that irregular hexagonal facetted nanoparticles are observed. Atomistic modeling was used to calculate the structures and energies of 24 (hkl) surfaces and to evaluate morphologies of BaAl 2 O 4 at the thermodynamic and pseudo-kinetic equilibrium. The calculations show that the two most stable surfaces are the (001) and (011) with a surface energy of 1.33 J m −2 and 1.36 J m −2 respectively and that the predicted morphologies are in accord with experiment. -- Highlights: ► Experimental and atomistic simulation techniques to study surfaces and morphologies of pure hexagonal BaAl 2 O 4 phase. ► The irregular hexagonal facetted nanoparticles are observed. ► The kinetic morphology is elongated with a hexagonal termination. ► The most stable surfaces are the (001) and (011) with a surface energy of 1.33 J m −2 .

  13. [Distortion and vertical fracture of the root: effect produced by condenser design].

    Science.gov (United States)

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.

  14. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs

    DEFF Research Database (Denmark)

    Berglundh, T; Gotfredsen, K; Zitzmann, N U

    2007-01-01

    : The aim of the current experiment was to study the progression of peri-implantitis around implants with different surface roughness. MATERIAL AND METHODS: In five beagle dogs, three implants with either a sandblasted acid-etched surface (SLA) or a polished surface (P) were installed bilaterally......BACKGROUND: Peri-implantitis is associated with the presence of submarginal plaque, soft-tissue inflammation and advanced breakdown of the supporting bone. The progression of peri-implantitis following varying periods of continuing plaque accumulation has been studied in animal models. OBJECTIVE...... in the edentulous premolar regions. After 3 months on a plaque control regimen, experimental peri-implantitis was induced by ligature placement and plaque accumulation was allowed to progress until about 40% of the height of the supporting bone had been lost. After this 4-month period, ligatures were removed...

  15. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Liu, Qinfu, E-mail: lqf@cumtb.edu.cn [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Zeng, Fangui [Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-03-15

    Graphical abstract: Snapshot of the kaolinite–DMSO system after equilibrium is reached. - Highlights: • Dimethyl sulfoxide arranges a monolayer structure between kaolinite layers. • Weak hydrogen bonds exist between methyl groups of dimethyl sulfoxide and kaolinite silica layer. • Intercalated dimethyl sulfoxide forms strong hydrogen bonds with kaolinite alumina layer. - Abstract: Kaolinite intercalation complex with dimethyl sulfoxide (DMSO) was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry–differential scanning calorimetry (TG–DSC) combined with molecular dynamics simulation. The bands assigned to the OH stretching of inner surface of kaolinite were significantly perturbed after intercalation of DMSO into kaolinite. Additionally, the bands attributed to the vibration of gibbsite-like layers of kaolinite shifted to the lower wave number, indicating that the intercalated DMSO were strongly hydrogen bonded to the alumina octahedral surface of kaolinite. The slightly decreased intensity of 1031 cm{sup −1} and 1016 cm{sup −1} band due to the in-plane vibration of Si−O of kaolinite revealed that some DMSO molecules formed weak hydrogen bonds with the silicon tetrahedral surface of kaolinite. Based on the TG result of kaolinite–DMSO intercalation complex, the formula of A1{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}(DMSO){sub 0.7} was obtained, with which the kaolinite–DMSO complex model was constructed. The molecular dynamics simulation of kaolinite–DMSO complex directly confirmed the monolayer structure of DMSO in interlayer space of kaolinite, where the DMSO arranged almost parallel with kaolinite basal surface with all methyl groups being distributed near the interlayer midplane and oxygen atoms orienting toward to the alumina octahedral surface. The radial distribution function between kaolinite and intercalated DMSO verified the strong hydrogen bonds forming between hydroxyl hydrogen

  16. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    Science.gov (United States)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  17. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico.

    Science.gov (United States)

    Hongqing Wang; Joseph D. Cornell; Charles A.S. Hall; David P. Marley

    2002-01-01

    We developed a spatially-explicit version of the CENTURY soil model to characterize the storage and flux of soil organic carbon (SOC, 0–30 cm depth) in the Luquillo Experimental Forest (LEF), Puerto Rico as a function of climate, vegetation, and soils. The model was driven by monthly estimates of average air temperature, precipitation, and potential evapotranspiration...

  18. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2014-01-01

    -phase flow dynamics, the slug can be avoided or eliminated by proper facility design and control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key...

  19. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Stampe, Kasper

    2016-01-01

    , the slug can be avoided or eliminated by proper facility design or control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key operational parameters...

  20. Exercise in Experimental Plastics Technology: Hot Embossing of Polymers with surface microstructure

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Rasmussen, Henrik Koblitz

    2004-01-01

    Hot Embossing of polymers with surface microstructure Polymer materials have proven to be good materials for manufacturing nano/ and microstructure. There are three major processing techniques: hot embossing, injection moulding and casting. Hot embossing provides several advantages such as relati......Hot Embossing of polymers with surface microstructure Polymer materials have proven to be good materials for manufacturing nano/ and microstructure. There are three major processing techniques: hot embossing, injection moulding and casting. Hot embossing provides several advantages...... such as relatively low cost for embossing tools, simple operation and high replication accuracy for small features. Two different plastic materials will be used to replicate surface microstructures by hot embossing. The hot embossing will be done in a hydraulic press where it is easy to control temperature...

  1. An experimental study of the surface chemistry and evaporation kinetics of liquid sodium

    International Nuclear Information System (INIS)

    Becker, C.H.

    1983-01-01

    The evaporation rate and internal energy distribution of Na 2 evaporating from clean liquid Na and liquid Na exposed separately to O 2 and benzene were investigated by laser spectroscopy. The evaporating Na 2 was always found to be in thermal equilibrium with the surface. Oxygen increased the evaporation rate while benzene diminished it. A 3 keV Ar + beam was used to examine the surface by monitoring secondary ion emission. Ion emission from clean and oxygen exposed Na was extremely low; only limits could be established. Ion emission from sodium exposed to benzene could be observed only at lowered temperatures. The secondary ion emission, as well as visual observations of Na( 2 P-> 2 S) emission, are found to correspond to the evaporation rate behavior indicating that the Na surface remains very metal rich even while reacting with impinging oxygen at high (10 monolayers/s) rates. (orig.)

  2. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective

    Science.gov (United States)

    Navas, Javier; Araujo, Daniel; Piñero, José Carlos; Sánchez-Coronilla, Antonio; Blanco, Eduardo; Villar, Pilar; Alcántara, Rodrigo; Montserrat, Josep; Florentin, Matthieu; Eon, David; Pernot, Julien

    2018-03-01

    Phenomena related with the diamond surface of both power electronic and biosensor devices govern their global behaviour. In particular H- or O-terminations lead to wide variations in their characteristics. To study the origins of such aspects in greater depth, different methods to achieve oxygen terminated diamond were investigated following a multi-technique approach. DFT calculations were then performed to understand the different configurations between the C and O atoms. Three methods for O-terminating the diamond surface were performed: two physical methods with ozone at different pressures, and an acid chemical treatment. X-ray photoelectron spectroscopy, spectroscopic ellipsometry, HRTEM, and EELS were used to characterize the oxygenated surface. Periodic-DFT calculations were undertaken to understand the effect of the different ways in which the oxygen atoms are bonded to carbon atoms on the diamond surface. XPS results showed the presence of hydroxyl or ether groups, composed of simple Csbnd O bonds, and the acid treatment resulted in the highest amount of O on the diamond surface. In turn, ellipsometry showed that the different treatments led to the surface having different optical properties, such as a greater refraction index and extinction coefficient in the case of the sample subjected to acid treatment. TEM analysis showed that applying temperature treatment improved the distribution of the oxygen atoms at the interface and that this generates a thinner amount of oxygen at each position and higher interfacial coverage. Finally, DFT calculations showed both an increase in the number of preferential electron transport pathways when π bonds and ether groups appear in the system, and also the presence of states in the middle of the band gap when there are π bonds, Cdbnd C or Cdbnd O.

  3. Experimental constraints on forecasting the location of volcanic eruptions from pre-eruptive surface deformation

    Science.gov (United States)

    Guldstrand, Frank; Galland, Olivier; Hallot, Erwan; Burchardt, Steffi

    2018-02-01

    Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating magma intrusions in a brittle crust, during which the intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the centre of the uplifted zone and the point of maximum uplift, which systematically acted as a precursor to the eruption’s location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  4. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    Science.gov (United States)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  5. Experimental Constraints on Forecasting the Location of Volcanic Eruptions from Pre-eruptive Surface Deformation

    Directory of Open Access Journals (Sweden)

    Frank Guldstrand

    2018-02-01

    Full Text Available Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating the emplacement of viscous magma intrusions in a brittle, cohesive Coulomb crust under lithostatic stress conditions. The intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the center of the uplifted area and the point of maximum uplift, which systematically acted as a precursor to the eruption's location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes that are not in active rifts could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  6. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  7. Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity

    International Nuclear Information System (INIS)

    Fazey, Francesca M.C.; Ryan, Peter G.

    2016-01-01

    Recent estimates suggest that roughly 100 times more plastic litter enters the sea than is found floating at the sea surface, despite the buoyancy and durability of many plastic polymers. Biofouling by marine biota is one possible mechanism responsible for this discrepancy. Microplastics (<5 mm in diameter) are more scarce than larger size classes, which makes sense because fouling is a function of surface area whereas buoyancy is a function of volume; the smaller an object, the greater its relative surface area. We tested whether plastic items with high surface area to volume ratios sank more rapidly by submerging 15 different sizes of polyethylene samples in False Bay, South Africa, for 12 weeks to determine the time required for samples to sink. All samples became sufficiently fouled to sink within the study period, but small samples lost buoyancy much faster than larger ones. There was a direct relationship between sample volume (buoyancy) and the time to attain a 50% probability of sinking, which ranged from 17 to 66 days of exposure. Our results provide the first estimates of the longevity of different sizes of plastic debris at the ocean surface. Further research is required to determine how fouling rates differ on free floating debris in different regions and in different types of marine environments. Such estimates could be used to improve model predictions of the distribution and abundance of floating plastic debris globally. - Highlights: • We tested how fragment size affects the rate of buoyancy loss at sea due to biofouling for two low-density plastic polymers. • We found a strong direct relationship between fragment size and surface longevity. • Our longevity estimates ranged from 17 days for the thinnest microplastics to 66 days for thicker macroplastics. • Our results provide the first estimates of the longevity of different sizes of plastic debris at the ocean surface. • The results could be used to improve model predictions of the

  8. Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, M.; Kwapinski, T.; Jalochowski, M. [Institute of Physics and Nanotechnology Center, M. Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland)

    2005-02-01

    We study electronic and topographic properties of the Si(335) surface, containing Au wires parallel to the steps. We use scanning tunneling microscopy (STM) supplemented by reflection of high energy electron diffraction (RHEED) technique. The STM data show the space and voltage dependent oscillations of the distance between STM tip and the surface which can be explained within one band tight binding Hubbard model. We calculate the STM current using nonequilibrium Keldysh Green function formalism. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Experimental investigation on shrinkage and surface replication of injection moulded ceramic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2014-01-01

    Ceramic moulded parts are increasingly being used in advanced components and devices due to their unprecedented material and performance attributes. The surface finish, replication quality and material shrinkage are of immense importance for moulded ceramic parts intended for precision applications....... The current paper presents a thorough investigation on the process of ceramic moulding where it systematically characterizes the surface replication and shrinkage behaviours of precision moulded ceramic components. The test parts are moulded from Catamold TZP-A which is Y2O3-stabilised ZrO2 having widespread...... distribution for the moulded ceramic parts is presented....

  10. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  11. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  12. OpenSimRoot: widening the scope and application of root architectural models.

    Science.gov (United States)

    Postma, Johannes A; Kuppe, Christian; Owen, Markus R; Mellor, Nathan; Griffiths, Marcus; Bennett, Malcolm J; Lynch, Jonathan P; Watt, Michelle

    2017-08-01

    OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species. The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate the following: resource costs of developmental and anatomical traits; trait synergisms; and (interspecies) root competition. OpenSimRoot can model three-dimensional images from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) of roots in soil. New modules include: soil water-dependent water uptake and xylem flow; tiller formation; evapotranspiration; simultaneous simulation of mobile solutes; mesh refinement; and root growth plasticity. OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and to gain a mechanistic understanding at system scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Experimental investigation of nucleate boiling on heated surfaces under subcooled conditions

    International Nuclear Information System (INIS)

    Schneider, C.; Hampel, R.; Traichel, A.; Hurtado, A.; Meissner, S.; Koch, E.

    2011-01-01

    In case of an accident at pressurized water reactors (PWR), critical boiling conditions can appear at the transition from bubble- to film boiling. During full power operation, heat transfer phenomena of sub cooled nucleate boiling occur on the surface of the fuel rods. To investigate the microscopic processes in nucleate boiling, a test facility with optical measuring methods was constructed. This allows analyzing the effects on a single bubble system at different parameters. For the generation of nucleate boiling, an optically transparent, electrically conductive coating was applied as a heating surface on a borosilicate substrate. The so-called ITO (Indium-Tin-Oxide) coating with a sheet resistance of 20 ohms enables an electrical heating at an optical transparent surface. These properties are prerequisites for the study of microscopic phenomena in the bubble formation with optical coherence tomography (OCT). OCT, generally used in medical diagnostics, is an imaging modality providing cross sectional and volumetric high resolution images. To make sure that the bubble formation takes place at a specific site, artificial nucleation sites in form of micro cavity will be inserted into the surface. Furthermore a small test facility was constructed to dedicate the wall temperature of a heated metal foil during subcooled boiling in non degassed water, which is the content of this paper. (author)

  14. Experimental observations of surface electrostatic wave on KT-5B tokamak

    International Nuclear Information System (INIS)

    Zhu Shiyao; Han Shensheng

    1991-01-01

    Shear Alfven waves have been successfully excited in KT-5B small tokamak by means of the one turn longitudinal loop antenna located in the shadow area. The measured antenna loadings show their rich structure, and the loadings are also found to be sensitive to the plasma current. Preliminary evidence of surface electrostatic wave was observed

  15. The experimental study on positioning of the surface coil for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kyoji; Yotsui, Yoritaka; Koseki, Yonoshin [Osaka Dental Univ., Hirakata (Japan)

    2002-12-01

    We examined the correlation between signal intensity and setting angulations for magnetic resonance imagesobtained using a surface coil, which had a three inch surface coil, and dual coil, which and a three inch surface coil and an anterior neck coil. We took T2-3D weighted, T2-2D weighted and T1-2D weighted images with the angulated three-inch surface coil at 0-90 degrees with the magnetic direction. In every sequence, the maximum intensity with the dual coil was taken with angulations of 50-60 degrees. The intensity of the dual coil could be as much as the three times that of the single coil. As the angulations increased with the dual coil, the thickness of the effective intensity was decreased until it reached 50% of the maximum thickness. With the single coil it decreased until it reached 10%. When using a high-resolution coil that cannot be setup parallel with the magnetic direction, we recommend using a dual coil rather than a single coil to increase the signal intensity. In the oral cavity, the intraoral coil should be used with the extraoral coil as the phased array coil. This is the optimum condition of coil angulation for taking high resolution images. (author)

  16. Experimental research on free-surface vortices as transport mechanism in wastewater sumps

    NARCIS (Netherlands)

    Clemens, F.H.L.R.; Duinmeijer, S.P.A.

    2016-01-01

    Sumps of wastewater pumping station can experience problems due the formation of (solid) floating layers of fat and scum as a result of insufficient current guidelines for sump design with respect to transport of floating debris. To complimentary the guidelines, the use of free-surface vortices is

  17. Experimental Investigation of Membrane Materials used in Multilayer Surfacing Systems for Orthotropic Steel Deck Bridges

    NARCIS (Netherlands)

    Tzimiris, G.

    2017-01-01

    In the Netherlands asphaltic surfacings on orthotropic steel deck bridges (OSDB) mostly consist of two structural layers. The upper layer consists of what is known as very open porous asphalt (ZOAB) for noise reduction. For the lower layer Guss Asphalt (GA) is used. Earlier investigations have shown

  18. Experimental evidence and structural modeling of nonstoichiometric (010) surfaces coexisting in hydroxyapatite nano-crystals.

    Science.gov (United States)

    Ospina, C A; Terra, J; Ramirez, A J; Farina, M; Ellis, D E; Rossi, A M

    2012-01-01

    High-resolution transmission electron microscopy (HRTEM) and ab initio quantum-mechanical calculations of electronic structure were combined to investigate the structure of the hydroxyapatite (HA) (010) surface, which plays an important role in HA interactions with biological media. HA was synthesized by in vitro precipitation at 37°C. HRTEM images revealed thin elongated rod nanoparticles with preferential growth along the [001] direction and terminations parallel to the (010) plane. The focal series reconstruction (FSR) technique was applied to develop an atomic-scale structural model of the high-resolution images. The HRTEM simulations identified the coexistence of two structurally distinct terminations for (010) surfaces: a rather flat Ca(II)-terminated surface and a zig-zag structure with open OH channels. Density functional theory (DFT) was applied in a periodic slab plane-wave pseudopotential approach to refine details of atomic coordination and bond lengths of Ca(I) and Ca(II) sites in hydrated HA (010) surfaces, starting from the HRTEM model. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    DEFF Research Database (Denmark)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya

    2017-01-01

    , and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surfacespecific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice...

  20. Preparation and surface characteristics of Re3W matrix scandate cathode: An experimental and theoretical study

    Science.gov (United States)

    Lai, Chen; Wang, Jinshu; Zhou, Fan; Liu, Wei; Hu, Peng; Wang, Changhao; Wang, Ruzhi; Miao, Naihua

    2018-05-01

    The Scandia doped thermionic cathodes have received great attention owing to their high electron emission density in past two decades. Here, Scandia doped Re3W matrix scandate (RS) cathodes are fabricated by using Sc2O3 doped Re3W powders that prepared by spray drying method. The micromorphology, surface composition and chemical states of RS cathode are investigated with various modern technologies. It reveals that the reduction temperature of RS powders is dramatically increased by Sc2O3. On the surface of RS cathode, a certain amount of Sc2O3 nanoparticles and barium salt submicron particles are observed. According to the in situ Auger electron spectroscopy analysis, the concentration ratio of Ba:Sc:O is determined to be 2.9:1.1:2.7. The X-ray photoelectron spectroscopy data indicates that low oxidation state of Sc is clearly observed in scandate cathodes. The high atomic ratio of Ba on RS cathode surface is suggested due to the high adsorption of Re3W to Ba. Moreover, RS cathode shows better adsorption to Sc by comparison with conventional tungsten matrix scandate cathode. For RS cathode, the main depletion of Sc is suggested to -OSc desorbing from RS cathode surface. RS cathode is expected to be an impressive thermionic cathode with good emission properties and ion anti-bombarding insensitivity.

  1. Experimental Investigation of Coal Dust Wettability Based on Surface Contact Angle

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-01-01

    Full Text Available Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.

  2. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    International Nuclear Information System (INIS)

    Gensanne, D; Josse, G; Lagarde, J M; Vincensini, D

    2006-01-01

    Measuring spin-spin relaxation times (T 2 ) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T 2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T 2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T 2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T 2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T 2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm 3 for a conventional volume birdcage coil and only of 1.7 mm 3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T 2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a

  3. Experimental use of Land Surface Models in the La Plata Basin

    Science.gov (United States)

    Goncalves, L.; de Mattos, J. Z.; Sapucci, L. F.; Herdies, D. L.; Berbery, E. H.

    2009-12-01

    Soil moisture is a key variable that controls the partitioning between sensible and latent heat flux, and under favorable conditions, it can modulate precipitation. The overlying boundary layer can be affected by soil moisture anomalies when persisting for an enough period of time. Several studies have shown the influence of surface processes in the South American atmospheric circulation and precipitation patterns. However the absence of a comprehensive observation network over that region represents a disadvantage for determining and quantifying memory and coupling between the land surface and the atmosphere. The La Plata Basin (LPB) in southeastern South America is recognized as an area of great importance for the economic and social development of several countries. Vast areas of this basin have experienced changes in land cover conditions due to the expansion of the agriculture (replacing natural vegetation), but also due to changes in crop types. This work presents results from an ensemble of four land surface models (Noah, CLM, MOSAIC and SiB2) used for climatic characterization of the past 30 years of soil moisture and temperature over the LPB. The Modern Era Retrospective-Analysis for Research and Applications (MERRA), from NASA’s Global Modeling and Assimilation Office (GMAO) was downscaled to be used to force the land surface models at 10Km, 3-hourly resolutions. Two sets of runs were made for this study: first, the LSMs were forced using reanalysis data to characterize the climatological states at coarse resolution, and second, the models were run using South American LDAS forcing fields from 2000 until present at higher resolution. The resulting spread among the different models was used as a measure of uncertainty in the initial states. In particular, the surface states derived from the Noah model were rescaled and used as initial conditions for atmospheric model simulations using the coupled ETA/Noah models. The control run was performed using

  4. Hydrodynamic Study of a Hollow Fiber Membrane System Using Experimental and Numerical Derived Surface Shear Stresses

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Hunze, M.; Nopens, I.

    2012-01-01

    .39 – 0.69 Pa) were in good agreement, with an error less that 15 %. Based on comparison of the cumulative frequency distribution of shear stresses from experiments and simulation: (i) moderate shear stresses (i.e. 50th percentile) were found to be accurately predicted (model: 0.24 – 0.45 Pa; experimental......Computational Fluids Dynamics (CFD) models can be used to gain insight into the shear stresses induced by air sparging on submerged hollow fiber Membrane BioReactor (MBR) systems. It was found that the average range of shear stresses obtained by the CFD model (0.30 – 0.60 Pa) and experimentally (0......: 0.25 – 0.49 Pa) with an error of less than 5 %; (ii) high shear stresses (i.e. 90th percentile) predictions were much less accurate (model: 0.60 – 1.23 Pa; experimental: 1.04 – 1.90 Pa) with an error up to 38 %. This was attributed to the fact that the CFD model only considers the two-phase flow (50...

  5. Experimental research on microhardness and wear resistances of pure Cu subjected to surface dynamic plastic deformation by ultrasonic impact

    Science.gov (United States)

    Chen, Zhaoxia; He, Yangming

    2018-04-01

    Dynamic plastic deformation (DPD) has been induced in the surface of pure Cu by ultrasonic impact treating (UIT) with the varied impact current and coverage percentage. The microstructures of the treated surface were analyzed by a scanning electron microscope (SEM). And the wear resistance of pure Cu was experimentally researched both with the treated and untreated specimens. The effect of DPD on the hardness was also investigated using microhardness tester. The results show that the grains on the top surfaces of pure Cu are highly refined. The maximum depth of the plastic deformation layer is approximately 1400 µm. The larger the current and coverage percentage, the greater of the microhardness and wear resistance the treated surface layer of pure Cu will be. When the impact current is 2 A and coverage percentage is 300%, the microhardness and wear resistance of the treated sample is about 276.1% and 68.8% higher than that of the untreated specimen, respectively. But the properties of the treated sample deteriorate when the UIT current is 3 A and the coverage percentage is 300% because of the formation of a new phase forms in the treated surface.

  6. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaobo; Liu, Mimi; Zhang, Jingna; Ye, Ya; Lin, Ying; Luyckx, Jacques; Qu, Jia

    2009-09-01

    The disaccharide trehalose is a key element involved in anhydrobiosis (the capability of surviving almost complete dehydration) in many organisms. Its presence also confers resistance to desiccation and high osmolarity in bacterial and human cells by protecting proteins and membranes from denaturation. The present study used a novel murine dry eye model induced by controlled low-humidity air velocity to determine whether topically applied trehalose could heal ocular surface epithelial disorders caused by ocular surface desiccation. In addition, the efficacy of 87.6 mM trehalose eyedrops was compared with that of 20% serum, the efficacy of which has been well documented. Mice ocular surface epithelial disorders were induced by exposure of murine eyes to continuous controlled low-humidity air velocity in an intelligently controlled environmental system (ICES) for 21 days, which accelerated the tear evaporation. The mice were then randomized into three groups: the control group received PBS (0.01 M) treatment; a second group received 87.6 mM trehalose eyedrops treatment; and the third group received mice serum eyedrops treatment. Each treatment was administered as a 10 microl dose every 6 h for 14 days. The resultant changes in corneal barrier function and histopathologic examination of cornea and conjunctiva were analyzed and the level of apoptosis on the ocular surface was assessed using active caspase-3. After 14 days of treatment, the corneal fluorescein staining area, the ruffling and desquamating cells on the apical corneal epithelium, as well as the apoptotic cells on ocular surface epithelium had significantly reduced in eyes treated with trehalose compared with those treated with serum and PBS. In contrast, after 14 days of treatment, improvements in the thickness of the corneal epithelium, the squamous metaplasia in conjunctival epithelium and the number of goblet cells of the conjunctiva were less marked in eyes treated with trehalose compared with serum

  7. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2000-01-01

    ) TiO2-blasted with particles of grain size 10 to 53 microns; (3) TiO2-blasted, grain size 63 to 90 microns; (4) TiO2-blasted, grain size 90 to 125 microns; (5) titanium plasma-sprayed (TPS). The surface topography was determined by the use of an optical instrument. Twelve rabbits, divided into two...... groups, had a total of 120 implants inserted in the tibiae. One implant from each of the five surface categories was placed within the left tibia of each rabbit. By a second operation, implants were installed in the right tibia, after 2 weeks in group A and after 3 weeks in group B. Fluorochrome labeling...

  8. EXPERIMENTAL COMPARISON OF THE AEROSOL METHOD OF DISINFECTION OF AIR AND SURFACES CONTAMINATED BY M. TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    V. V. Kuzin

    2018-01-01

    Full Text Available The objective of the study: to analyze efficiency of an aerosol method of M. tuberculosis deactivation in the air and on surfaces versus the conventional methods of the disinfectants' application.Subjects and Methods. The article describes the evaluation of efficiency of the aerosol method of M. tuberculosis, H37Rv strain, deactivation on surfaces (tested objects made of linoleum and in the air using the disinfectant of Green Dez based on chlorine dioxide versus deactivation through wiping and irrigation.The efficiency of disinfectant was tested by the device of 099С А4224 manufactured by Glas-Col, USA, using the air sampler of PU-1B, Russia.The Mobile Hygienic Center (MNC, Russia, was used for application of the disinfectant, wiping and irrigation was done using the disperser of Avtomaks AO-2, Russia.The bacterial aerosol was generated in the Glass-Col chamber with the concentration 5 ± 2.5 × 102 CFU/cm3, by spraying the suspension of M. tuberculosis, H37Rv strain. After that, the disinfectant spray was supplied to the chamber, where linoleum objects were placed horizontally on a variety of surfaces. In order to evaluate efficiency of surface treatment by wiping, the test objects were wiped with a tissue, soaked with the solution of Green Dez, based on consumption of 100-150 ml/m2. In 15, 30 and 60 minutes, the samples of inactivated M. tuberculosis aerosol were collected using an aspirator, chambers with test objects were closed and placed in the vent hood. To monitor efficiency of disinfection of the test object surfaces, the rinse blanks were done by wiping the surface with a sterile gauze wad, soaked with 0.5% of sodium thiosulfate solution.The samples of deactivated aerosol and rinse blanks from the surfaces of test objects were put into Petri dishes with Middlebrook 7H11 medium. The cultures were incubated in the thermostat at the temperature of 37 ± 1° C for 10-21 days, and the number of colonies was counted.Sterile water was used

  9. Experimental and Theoretical Studies on Corrosion Inhibition of Niobium and Tantalum Surfaces by Carboxylated Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Valbonë Mehmeti

    2018-05-01

    Full Text Available The corrosion of two different metals, niobium and tantalum, in aqueous sulfuric acid solution has been studied in the presence and absence of carboxylated graphene oxide. Potentiodynamic measurements indicate that this nanomaterial inhibits corrosion due to its adsorption on the metal surfaces. The adsorbed layer of carboxylated graphene hinders two electrochemical reactions: the oxidation of the metal and the transport of metal ions from the metal to the solution but also hydrogen evolution reaction by acting as a protective barrier. The adsorption behavior at the molecular level of the carboxylated graphene oxide with respect to Nb, NbO, Ta, and TaO (111 surfaces is also investigated using Molecular Dynamic and Monte Carlo calculations.

  10. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2009-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak x2122 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  11. Experimental and numerical study on inlet and outlet conditions of a bulb turbine with considering free surface

    International Nuclear Information System (INIS)

    Zhao, Y P; Liao, W L; Feng, H D; Ruan, H; Luo, X Q

    2012-01-01

    For a bulb turbine, it has a low head and a big runner diameter, and the free surface influences the flow at the inlet and outlet of the turbine, which bring many problems such as vibration, cracks and cavitation to the turbine. Therefore, it is difficult to get the precise internal flow characteristics through a numerical simulation with conventional ideal flow conditions. In this paper, both numerical and experimental methods are adopted to investigate the flow characteristics at the inlet and outlet of the bulb turbine with considering free surface. Firstly, experimental and numerical studies in a low head pressure pipeline are conducted, and the corresponding boundary condition according with reality is obtained through the comparison between the model test result and the CFD simulation result. Then, through an analysis of the velocity and pressure fields at the inlet of the bulb turbine at different heads, the flow characteristics and rules at the entrance of the bulb turbine have been revealed with considering free surface; Finally, the performance predictions for a bulb turbine have been conducted by using the obtained flow rules at the inlet as the boundary condition of a turbine, and the causes that lead to non-uniform forces on blades, cavitation and vibration have been illustrated in this paper, which also provide a theory basis for an accurate numerical simulation and optimization design of a bulb turbine.

  12. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite, INRS, Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire, IRSN, Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette Cedex (France); Thomas, Dominique [Laboratoire des Sciences du Genie Chimique, LSGC/CNRS, Nancy Universite, BP 2041, 54001 Nancy Cedex (France)], E-mail: sebastien.bau@inrs.fr

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak{sup x2122} 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  13. Experimental Evaluation of Anti-Stripping Additives Mixing in Road Surface Pavement Materials

    OpenAIRE

    Tienfuan Kerh; Yu-Min Wang; Yulern Lin

    2005-01-01

    Most road surfaces in Taiwan are paved with asphalt concrete but the phenomena of rutting, cracking and stripping of the pavement are frequently occurring due to the effects of traffic flow, thermal variation and water erosion caused by rain. In this study, a series of experiments were performed to examine the effectiveness of anti-stripping fillers, which include; rock flour, rock flour with 1% lime and rock flour with 1% cement, respectively, in the mixture of asphalt concrete. The experime...

  14. Study of Surface Relief Evolution in Cyclically Strained Superalloy IN738LC Using Advanced Experimental Techniques

    Czech Academy of Sciences Publication Activity Database

    Juliš, M.; Kusmič, D.; Pospíšilová, S.; Průša, S.; Obrtlík, Karel; Dluhoš, J.; Podrábský, T.

    2011-01-01

    Roč. 105, S (2011), s. 814-815 ISSN 0009-2770. [Lokálne mechanické vlastnosti 2010. Smolenice, 10.11.2010-12.11.2010] R&D Projects: GA ČR(CZ) GAP107/11/2065 Institutional research plan: CEZ:AV0Z20410507 Keywords : Inconel 738LC * low cycle fatigue * surface relief Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.529, year: 2011

  15. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    OpenAIRE

    Sattar, S. A.; Springthorpe, V. S.; Karim, Y.; Loro, P.

    1989-01-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were...

  16. Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer

    Science.gov (United States)

    Wang, Jin; Agarwal, Karuna; Katz, Joseph

    2017-11-01

    On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.

  17. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  18. Analysis and experimental investigation for collimator reflective mirror surface deformation adjustment

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chan

    2017-01-01

    Full Text Available Collimator design is essential for meeting the requirements of high-precision telescopes. The collimator diameter should be larger than that of the target for alignment. Special supporting structures are required to reduce the gravitational deformation and control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors (M1. A ZERODURÂŽ mirror 620 mm in diameter for a collimator was analyzed using the finite element method to obtain the deformation induced by the supporting structures and adjustment mechanism. Zernike polynomials were also adopted to fit the optical surface and separate corresponding aberrations. The computed and measured wavefront aberration configurations for the collimator M1 were obtained complementally. The wavefront aberrations were adjusted using fine adjustment screws using 3D optical path differences map of the mirror surface. Through studies using different boundary conditions and inner ring support positions, it is concluded that the optical performance was excellent under a strong enough supporter. The best adjustment position was attained and applied to the actual collimator M1 to prove the correctness of the simulation results.

  19. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Sun, Bingli [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); Zhao, Na [National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Li, Qian, E-mail: qianli@zzu.edu.cn [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Hou, Jianhua; Feng, Weina [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China)

    2014-12-01

    Highlights: • Wetting behavior of four polymer melts on Pd-based bulk metallic glass was investigated. • From results, in general, the contact angle of polymer on Pd-based BMG decreases with temperature increasing. • We find a critical temperature for each polymer, above this temperature, contact angle on Pd-based BMG does not decrease with temperature increasing. • Surface free energy of Pd-based BMG was estimated by Owens–Wendt method. - Abstract: The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens–Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding.

  20. Structural dynamics of surfaces by ultrafast electron crystallography: experimental and multiple scattering theory.

    Science.gov (United States)

    Schäfer, Sascha; Liang, Wenxi; Zewail, Ahmed H

    2011-12-07

    Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials. © 2011 American Institute of Physics

  1. An experimental study of flow boiling chf with porous surface coatings and surfactant solutions

    International Nuclear Information System (INIS)

    Sarwar, Mohammad Sohail

    2007-02-01

    The boiling crisis or critical heat flux (CHF) phenomenon is an enormously studied topic of the boiling heat transfer. The great interest in the CHF is due to practical motives, since it is desirable to design an equipment (heat exchanger or boiler, etc) to operate at as high a heat flux as possible with optimum heat transfer rates but without the risk of physical burnout. This study consists of two parts of flow boiling CHF experiment: with porous surface coated tubes and by using surfactant solutions as working fluid. In first part, the effect of micro- and nano-porous inside surface coated vertical tubes on the CHF was determined for flow boiling of water in vertical round tubes at atmospheric pressure. CHF was measured for a smooth and three different coated tubes, at mass fluxes of 100∼300 kg/m 2 s and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Greater CHF enhancement was found with microporous coatings. Al 2 O 3 microporous coatings with particle size <10 μm and coating thickness of 50 μm showed the best CHF enhancement. The maximum increase in the CHF was about 25% for microporous Al 2 O 3 . A wettability test was performed to study the physical mechanism of increase of CHF with microporous coated surfaces and contact angle was measured for smooth and coated surfaces. Pressure drop measurements were also performed across the coated tubes using the DP-cell apparatus. In second part, surfactant effect on the CHF was determined for water flow boiling at atmospheric pressure in a closed loop filled with solution of tri-sodium phosphate (TSP, Na 3 PO 4 ·12H 2 O). The TSP is usually added to the containment sump water to adjust pH level during accident in nuclear power plants. The CHF was measured for four different surfactant solutions of water in vertical tubes, at different mass fluxes (100 ∼ 500 kg/m 2 s) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Surfactant solutions in the range of 0.05%∼0.2% at low mass

  2. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces

    Science.gov (United States)

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-01-01

    Background The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). Material/Methods This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. Results Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. Conclusions The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect. PMID:27058704

  3. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    Science.gov (United States)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  4. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces.

    Science.gov (United States)

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-04-08

    BACKGROUND The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). MATERIAL AND METHODS This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. RESULTS Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. CONCLUSIONS The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect.

  5. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    Science.gov (United States)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  6. Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach

    International Nuclear Information System (INIS)

    Vanossi, Davide; Benassi, Rois; Parenti, Francesca; Tassinari, Francesco; Giovanardi, Roberto; Florini, Nicola; De Renzi, Valentina; Arnaud, Gaelle; Fontanesi, Claudio

    2012-01-01

    Highlights: ► Glassy carbon is functionalized via electrochemical assisted grafting of amino acids. ► The grafting mechanism is suggested to involve the “zwitterionic” species. ► DFT calculations allowed to determine the electroactive species. ► An original grafting mechanism is proposed. - Abstract: Glassy carbon (GC) electrode surfaces are functionalized through electrochemical assisted grafting, in oxidation regime, of six amino acids (AA): β-alanine (β-Ala), L-aspartic acid (Asp), 11-aminoundecanoic acid (UA), 4-aminobenzoic acid (PABA), 4-(4-amino-phenyl)-butyric acid (PFB), 3-(4-amino-phenyl)-propionic acid (PFP). Thus, a GC/AA interface is produced featuring carboxylic groups facing the solution. Electrochemical (cyclic voltammetry and electrochemical impedance spectroscopy) and XPS techniques are used to experimentally characterize the grafting process and the surface state. The theoretical results are compared with the experimental evidence to determine, at a molecular level, the overall grafting mechanism. Ionization potentials, standard oxidation potentials, HOMO and electron spin distributions are calculated at the CCD/6-31G* level of the theory. The comparison of experimental and theoretical data suggests that the main electroactive species is the “zwitterionic” form for the three aliphatic amino acids, while the amino acids featuring the amino group bound to the phenyl aromatic moiety show a different behaviour. The comparison between experimental and theoretical results suggests that both the neutral and the zwitterionic forms are present in the acetonitrile solution in the case of 4-(4-amino-phenyl)-butyric acid (PFB) and 3-(4-amino-phenyl)-propionic acid.

  7. Experimental investigation of the material surface modification in microsecond plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V; Grigor` ev, S; Kharlov, A; Sinebryukhov, A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics; Burkov, P [Russian Academy of Scinces, Tomsk (Russian Federation). Institute of Strength Physics and Materials Control; Grigorev, V; Koval, T [Institute of Nuclear Physics, Tomsk (Russian Federation)

    1997-12-31

    The paper is devoted to the investigations of the material surface modification by high power ion beam generated in microsecond plasma opening switch (MPOS). Various types of steels were investigated: stainless steel 17-4PH, carbon steel C1020, pure iron. For all these materials, the optimal regimes for irradiation were defined. A significant increase in microhardness (1.5 to 2-fold) was obtained for these materials. Numerical calculations and theoretical estimations of the ion beam-matter interaction were also performed. The advantages and problems of this approach are discussed. (author). 8 figs., 3 refs.

  8. Comparative Observation of Ar, Ar-H2 and Ar-N2 DC Arc Plasma Jets and Their Arc Root Behaviour at Reduced Pressure

    International Nuclear Information System (INIS)

    Pan Wenxia; Meng Xian; Li Teng; Chen Xi; Wu Chengkang

    2007-01-01

    Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon-nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch

  9. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  10. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  11. Experimental study of the interaction of HO2 radicals with soot surface.

    Science.gov (United States)

    Bedjanian, Yuri; Lelièvre, Stéphane; Le Bras, Georges

    2005-01-21

    The reaction of HO2 with toluene and kerosene flame soot was studied over the temperature range 240-350 K and at P = 0.5-5 Torr of helium using a discharge flow reactor coupled to a modulated molecular beam mass spectrometer. A flat-flame burner was used for the preparation and deposition of soot samples from premixed flames of liquid fuels under well controlled and adjustable combustion conditions. The independent of temperature in the range 240-350 K value of gamma = (7.5 +/- 1.5) x 10(-2) (calculated with geometric surface area) was found for the uptake coefficient of HO2 on kerosene and toluene soot. No significant deactivation of soot surface during its reaction with HO2 was observed. Experiments on soot ageing under ambient conditions showed that the reactivity of aged soot is similar to that of freshly prepared soot samples. The results show that the HO2 + soot reaction could be a significant loss process for HOx in the urban atmosphere with a potential impact on photochemical ozone formation. In contrast this process will be negligible in the upper troposphere even in flight corridors.

  12. A surface evolution scheme to identify nanoscale intrinsic geometry from AFM experimental data

    International Nuclear Information System (INIS)

    Jang, Hong-Lae; Kim, Hyun-Seok; Park, Youmie; Cho, Seonho

    2013-01-01

    The geometrical properties of metallic nanoparticles such as the size and morphology have significant impacts on the structure and stability of the adsorbed biological entities as well as the nanoscale structural performances. To identify the nanoscale intrinsic geometry from the height images by atomic force microscopy (AFM), we developed a curvature-dependent evolution scheme that can eliminate the noise and smoothen the surfaces. The principal curvatures are computed directly from the first and second derivatives of the discrete AFM height data. The principal curvatures and directions correspond to the eigenvalues and eigenvectors of shape operator matrix, respectively. The evolution equation using the principal curvature flows smoothens the images in the corresponding principal directions. For an idealized model, κ 2 flow successfully identifies the major valley lines to represent the boundary of nanoparticles without referring to the phase information, whereas the mean curvature flow eliminates all the minor ones leaving only the major feature of the boundary. To demonstrate the capability of noise removal, smoothing surfaces, the identification of ridge and valley lines, and the extraction of intrinsic geometry, the developed numerical scheme is applied to real AFM data that include the silver nanoparticles of 24 nm diameter and the gold nanoparticles of 33–56 nm diameters

  13. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon; Kong, Byeong Tak [Incheon National University, Incheon (Korea, Republic of); Kim, Ji Min [POSTECH, Pohang (Korea, Republic of); and others

    2016-05-15

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  14. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    Science.gov (United States)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  15. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Kong, Byeong Tak; Kim, Ji Min

    2016-01-01

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  16. Experimental and modelling studies on the exposure of wall surfaces to tritium gas in ambient room conditions

    International Nuclear Information System (INIS)

    Housiadas, C.; Douglas, K.

    1995-01-01

    An experimental set-up is used to carry out static exposure tests to study the uptake and oxidation of tritium released in ambient room air, routinely or accidentally, in the presence of selected surface materials. Tritium, in its elemental form at concentrations of the order of approx.0.4 GBq/m 3 (10 -2 Ci/m 3 ), is injected into the glass exposure chamber containing the selected surface material and air at atmospheric pressure. Periodically, samples of the chamber atmosphere are analysed, using liquid scintillation counting, to obtain the concentrations of HTO and T 2 . The exposures have been performed using aluminium, 316L stainless steel and painted stainless steel plates, as the selected surface materials. Results are compared with predictions using the ITER approved TMAP4 code. The results indicate practically the same conversion rate, of about 0.02% per day, for both the aluminium and stainless steel samples and give reasonable agreement with modelling predictions. Strong absorption of both T 2 and HTO by the painted surface is observed, suggesting the use of high values for the solubility constant to correctly predict this behaviour. 19 refs., 5 figs., 1 tab

  17. Experimental Results and Model Calculations of a Hybrid Adsorption-Compression Heat Pump Based on a Roots Compressor and Silica Gel-Water Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.

    2013-10-15

    Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.

  18. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    Science.gov (United States)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  19. Experimental Validation of Surrogate Models for Predicting the Draping of Physical Interpolating Surfaces

    DEFF Research Database (Denmark)

    Christensen, Esben Toke; Lund, Erik; Lindgaard, Esben

    2018-01-01

    This paper concerns the experimental validation of two surrogate models through a benchmark study involving two different variable shape mould prototype systems. The surrogate models in question are different methods based on kriging and proper orthogonal decomposition (POD), which were developed...... to the performance of the studied surrogate models. By comparing surrogate model performance for the two variable shape mould systems, and through a numerical study involving simple finite element models, the underlying cause of this effect is explained. It is concluded that for a variable shape mould prototype...... hypercube approach. This sampling method allows for generating a space filling and high-quality sample plan that respects mechanical constraints of the variable shape mould systems. Through the benchmark study, it is found that mechanical freeplay in the modeled system is severely detrimental...

  20. EXPERIMENTAL INVESTIGATION OF THE ADHESIVE CONTACT WITH ELASTOMERS: EFFECT OF SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Lars Voll

    2015-04-01

    Full Text Available Adhesion between an elastomer and a steel indenter was studied experimentally and described with an analytical model. Cylindrical indenters having different roughness were brought into contact with an elastomer with various normal forces. After a “holding time”, the indenter was pulled with a constant velocity, which was the same in all experiments. We have studied the regime of relatively small initial normal loadings, large holding times and relatively large pulling velocities, so that the adhesive force did not depend on the holding time but did depend on the initially applied normal force and was approximately proportional to the pulling velocity. Under these conditions, we found that the adhesive force is inversely proportional to the roughness and proportional to the normal force. For the theoretical analysis, we used a previously published MDR-based model.

  1. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method

    Directory of Open Access Journals (Sweden)

    B. S. Pabla

    2016-08-01

    Full Text Available In manufacturing industries, the demand of WC-Co composite is flourishing because of the distinctive characteristics it offers such as: toughness (with hardness, good dimensional stability, higher mechanical strength etc. However, the difficulties in its machining restrict the application and competitiveness of this material. The current article has been targeted at evaluation of the effect of process conditions (varying power rating, cobalt content, tool material, part thickness, tool geometry, and size of abrasive particle on surface roughness in ultrasonic drilling of WC-Co composite. Results showed that abrasive grit size is most influential factor. From the microstructure analysis, the mode of material deformation has been observed and the parameters, i.e. work material properties, grit size, and power rating was revealed as the most crucial for the deformation mode.

  3. Experimental test of proximity effect theories by surface impedance measurements on the Pb-Sn system

    International Nuclear Information System (INIS)

    Hook, J.R.; Battilana, J.A.

    1976-01-01

    The proximity effect in the Pb-Sn system in zero magnetic field has been studied by measuring the surface impedance at 3 GHz of a thin film of tin evaporated on to a bulk lead substrate. The results are compared with the predictions of theories of the proximity effect. It is found that good agreement can be obtained by using a theory due to Hook and Waldram of the spatial variation of the superconducting order parameter Δ inside each metal together with suitable boundary conditions on Δ at the interface between the metals. The required boundary conditions are a generalization to the case of non-zero electron reflection at the interface of the boundary conditions given by Zaitsev for the Ginsburg-Landau equation. (author)

  4. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    Science.gov (United States)

    Sattar, S A; Springthorpe, V S; Karim, Y; Loro, P

    1989-06-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were selected for this study based on the findings of an earlier investigation with a human rotavirus. After 1 min exposure to 20 microliters of the disinfectant, the virus from the disks was immediately eluted into tryptose phosphate broth and plaque assayed. Using an efficacy criterion of a 3 log10 or greater reduction in virus infectivity titre and irrespective of the virus suspending medium, only the following five disinfectants proved to be effective against all the four viruses tested: (1) 2% glutaraldehyde normally used as an instrument soak, (2) a strongly alkaline mixture of 0.5% sodium o-benzyl-p-chlorophenate and 0.6% sodium lauryl sulphate, generally used as a domestic disinfectant cleaner for hard surfaces, (3) a 0.04% solution of a quaternary ammonium compound containing 7% hydrochloric acid, which is the basis of many toilet bowl cleaners, (4) chloramine T at a minimum free chlorine level of 3000 p.p.m. and (5) sodium hypochlorite at a minimum free chlorine concentration of 5000 p.p.m. Of those chemicals suitable for use as topical antiseptics, 70% ethanol alone or products containing at least 70% ethanol were ineffective only against coxsackievirus B3. These results emphasize the care needed in selecting chemical disinfectants for routine use in infection control.

  5. Submergence of Roots for Alveolar Bone Preservation. I. Endodontically Treated Roots.

    Science.gov (United States)

    1977-05-10

    With Endodontic Submerged Roots Scale 0 1 2 3 Periapical 15 0 1 0 Pericoronal 7 3 3 3 (3 cysts ) = 1 _ _ _ _ _ _ _ _ _ = REFERENCES 1. Lam, R.: Contour...with coronal portions of the roots. These epithe lial-lined cysts prevented the formation of osteo- cementum over the coronal surface . In this study...the endodontically treated roots appeared to be primarily a response to the excess root cana l sealer that was expressed coronally and periapically

  6. Response surface modeling of acid activation of raw diatomite using in sunflower oil bleaching by: Box-Behnken experimental design.

    Science.gov (United States)

    Larouci, M; Safa, M; Meddah, B; Aoues, A; Sonnet, P

    2015-03-01

    The optimum conditions for acid activation of diatomite for maximizing bleaching efficiency of the diatomite in sun flower oil treatment were studied. Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed to obtain the optimum conditions of three independent variables (acid concentration, activation time and solid to liquid) for acid activation of diatomite. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95 % confidence limits (α = 0.05). The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analyzing the response surface contour plots. The experimental conditions at this global point were determined to be acid concentration = 8.963 N, activation time = 11.9878 h, and solid to liquid ratio = 221.2113 g/l, the corresponding bleaching efficiency was found to be about 99 %.

  7. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  8. Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow

    International Nuclear Information System (INIS)

    Fu Jia; Yi Shi-He; Wang Xiao-Hu; He Lin; Ge Yong

    2014-01-01

    The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot supersonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia

    2017-01-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  10. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia, E-mail: ematoso@hotmail.com [Centro Tecnológico da Marinha em São Paulo (CEA/CTMSP), Iperó, SP (Brazil). Centro Experimental Aramar

    2017-07-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  11. A GCMC simulation and experimental study of krypton adsorption/desorption hysteresis on a graphite surface.

    Science.gov (United States)

    Prasetyo, Luisa; Horikawa, Toshihide; Phadungbut, Poomiwat; Johnathan Tan, Shiliang; Do, D D; Nicholson, D

    2016-09-15

    Adsorption isotherms and isosteric heats of krypton on a highly graphitized carbon black, Carbopack F, have been studied with a combination of Monte Carlo simulation and high-resolution experiments at 77K and 87K. Our investigation sheds light on the microscopic origin of the experimentally observed, horizontal hysteresis loop in the first layer, and the vertical hysteresis-loop in the second layer, and is found to be in agreement with our recent Monte Carlo simulation study (Diao et al., 2015). From detailed analysis of the adsorption isotherm, the latter is attributed to the compression of an imperfect solid-like state in the first layer, to form a hexagonally packed, solid-like state, immediately following the first order condensation of the second layer. To ensure that capillary condensation in the confined spaces between microcrystallites of Carbopack F does not interfere with these hysteresis loops, we carried out simulations of krypton adsorption in the confined space of a wedge-shaped pore that mimics the interstices between particles. These simulations show that, up to the third layer, any such interference is negligible. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Cadore, Solange

    2015-01-01

    Barium can be found in waters up to 1 mg L -1 and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L -1 and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  13. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  14. Study of the flow field past dimpled aerodynamic surfaces: numerical simulation and experimental verification

    Science.gov (United States)

    Binci, L.; Clementi, G.; D'Alessandro, V.; Montelpare, S.; Ricci, R.

    2017-11-01

    This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier-Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L-stable Singly Diagonally Implicit Runge-Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un-dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.

  15. Biophysical analysis of water filtration phenomenon in the roots of halophytes

    Science.gov (United States)

    Kim, Kiwoong; Lee, Sang Joon

    2015-11-01

    The water management systems of plants, such as water collection and water filtration have been optimized through a long history. In this point of view, new bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. In this study, the biophysical characteristics of water filtration process in the roots of halophytes are experimentally investigated in the plant hydrodynamic point of view. To understand the functional features of the halophytes 3D morphological structure of their roots are analyzed using advanced bioimaging techniques. The surface properties of the roots of halophytes are also examined Based on the quantitatively analyzed information, water filtration phenomenon in the roots is examined. Sodium treated mangroves are soaked in sodium acting fluorescent dye solution to trace sodium ions in the roots. In addition, in vitroexperiment is carried out by using the roots. As a result, the outermost layer of the roots filters out continuously most of sodium ions. This study on developing halophytes would be helpful for understanding the water filtration mechanism of the roots of halophytes and developing a new bio inspired desalination system. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  16. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    Science.gov (United States)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  17. An experimental study of furan adsorption and decomposition on vicinal palladium surfaces using scanning tunneling microscopy

    Science.gov (United States)

    Loui, A.; Chiang, S.

    2018-04-01

    The intact adsorption and decomposition of furan (C4H4O) on vicinal palladium surfaces with (111)-oriented terraces has been studied by scanning tunneling microscopy (STM) over a range of temperatures. STM images at 225 K show that furan molecules lie flat and prefer to adsorb at upper step edges. At 225 K, furan molecules adsorbed on "narrow" terraces of 20 to 45 Å in width appear to diffuse more readily than those adsorbed on "wide" terraces of 160 to 220 Å. A distinct population of smaller features appears in STM images on "narrow" terraces at 288 K and on "wide" terraces at 415 K and is identified with the C3H3 decomposition product, agreeing with prior studies which demonstrated that furan dissociates on Pd(111) to yield carbon monoxide (CO) and a C3H3 moiety in the 280 to 320 K range. Based on our direct visualization of this reaction using STM, we propose a spatial mechanism in which adsorption of furan at upper step edges allows catalysis of the dissociation, followed by diffusion of the product to lower step edges.

  18. Significance of Graphitic Surfaces in Aurodicyanide Adsorption by Activated Carbon: Experimental and Computational Approach

    Science.gov (United States)

    Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.

    Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.

  19. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    International Nuclear Information System (INIS)

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-01-01

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications

  20. An experimental study of the effect of surface morphology on squeal occurrence

    Directory of Open Access Journals (Sweden)

    Asano Mayu

    2013-11-01

    Full Text Available Squealing is a major matter of concern for environmental issues and the raised expectations for superior performances in braking systems. Squealing, as well as other types of noise nuisances, contributes to noise pollution and leads to additional expenses for phonic isolation. Brake squeal noise, which is defined as noise at frequency higher than 1000 Hz, occurs if the system has very high amplitude of mechanical vibration with sound pressure level above 80 dB. It involves instable vibrations, which are quite well understood as a result of mode couplings between the rubbing parts. These mode couplings are allowed by modal frequency shifts induced by the changes of sliding contact conditions. Nonetheless, the origin of squeal occurrence remains misunderstood as many parameters have to be taken into account, making it virtually impossible to predict when a squeal noise will appear or disappear. The strong coupling between structure and material, the continual change of the materials surfaces (chemistry and morphology, the influence of external parameters (temperature, pressure, hygrometry all play a role in squealing. As a consequence, research on squealing is empirical by nature. Following this, one of the main goals in braking sciences is to determine the set of conditions on the parameters that provoke the start or the end of a squealing noise.

  1. An experimental strategy validated to design cost-effective culture media based on response surface methodology.

    Science.gov (United States)

    Navarrete-Bolaños, J L; Téllez-Martínez, M G; Miranda-López, R; Jiménez-Islas, H

    2017-07-03

    For any fermentation process, the production cost depends on several factors, such as the genetics of the microorganism, the process condition, and the culture medium composition. In this work, a guideline for the design of cost-efficient culture media using a sequential approach based on response surface methodology is described. The procedure was applied to analyze and optimize a culture medium of registered trademark and a base culture medium obtained as a result of the screening analysis from different culture media used to grow the same strain according to the literature. During the experiments, the procedure quantitatively identified an appropriate array of micronutrients to obtain a significant yield and find a minimum number of culture medium ingredients without limiting the process efficiency. The resultant culture medium showed an efficiency that compares favorably with the registered trademark medium at a 95% lower cost as well as reduced the number of ingredients in the base culture medium by 60% without limiting the process efficiency. These results demonstrated that, aside from satisfying the qualitative requirements, an optimum quantity of each constituent is needed to obtain a cost-effective culture medium. Study process variables for optimized culture medium and scaling-up production for the optimal values are desirable.

  2. An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface

    Science.gov (United States)

    Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga

    We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.

  3. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    Science.gov (United States)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  4. Experimental study of surface dielectric barrier discharge in air and its ozone production

    International Nuclear Information System (INIS)

    Pekárek, Stanislav

    2012-01-01

    For surface dielectric barrier discharge in air we studied the effects of frequency of the driving voltage on dissipated power, asymmetry of amplitudes of the discharge voltage, discharge UV emission, ozone production, ozone production of the discharge with TiO 2 and of the discharge in magnetic field. We found that for a particular voltage the dissipated power is higher for the frequency of the driving voltage of 26.3 kHz than for the frequency of 10.9 kHz; peak values of the positive half-periods of the discharge voltage are higher than peak values of the negative half-periods; intensity of the discharge UV emissions for wavelengths of 320-420 nm is for both frequencies a linear function of power; maximum ozone concentration for the frequency of the driving voltage of 26.3 kHz is obtained with smaller power than for the frequency of 10.9 kHz; placement of TiO 2 particles into the discharge chamber increases for both frequencies of the driving voltage maximum ozone concentration produced by the discharge and for the frequency of the driving voltage of 26.3 kHz increases ozone production yield. Finally, there is no observable effect of magnetic field on concentration of ozone produced by the discharge as well as on production yield. (paper)

  5. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff.

    Directory of Open Access Journals (Sweden)

    Jiake Li

    Full Text Available Excessive phosphorus (P contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil, and eight intermittent tests with single filler (Blast furnace slag mixed with sand. Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume.

  6. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  7. The impact of L5 dorsal root ganglion degeneration and Adamkiewicz artery vasospasm on descending colon dilatation following spinal subarachnoid hemorrhage: An experimental study; first report

    Science.gov (United States)

    Ozturk, Cengiz; Kanat, Ayhan; Aydin, Mehmet Dumlu; Yolas, Coskun; Kabalar, Mehmet Esref; Gundogdu, Betul; Duman, Aslihan; Kanat, Ilyas Ferit; Gundogdu, Cemal

    2015-01-01

    Context: Somato-sensitive innervation of bowels are maintained by lower segments of spinal cord and the blood supply of the lower spinal cord is heavily dependent on Adamkiewicz artery. Although bowel problems are sometimes seen in subarachnoid hemorrhage neither Adamkiewicz artery spasm nor spinal cord ischemia has not been elucidated as a cause of bowel dilatation so far. Aims: The goal of this study was to study the effects Adamkiewicz artery (AKA) vasospasm in lumbar subarachnoid hemorrhage (SAH) on bowel dilatation severity. Settings and Design: An experimental rabbit study. Materials and Methods: The study was conducted on 25 rabbits, which were randomly divided into three groups: Spinal SAH (N = 13), serum saline (SS) (SS; N = 7) and control (N = 5) groups. Experimental spinal SAH was performed. After 21 days, volume values of descending parts of large bowels and degenerated neuron density of L5DRG were analyzed. Statistical Analysis Used: Statistical analysis was performed using the PASW Statistics 18.0 for Windows (SPSS Inc., Chicago, Illinois). Two-tailed t-test and Mann-Whitney U-tests were used. The statistical significance was set at P < 0.05. Results: The mean volume of imaginary descending colons was estimated as 93 ± 12 cm3 in the control group and 121 ± 26 cm3 in the SS group and 176 ± 49 cm3 in SAH group. Volume augmentations of the descending colons and degenerated neuron density L5DRG were significantly different between the SAH and other two groups (P < 0.05). Conclusion: An inverse relationship between the living neuronal density of the L5DRG and the volume of imaginary descending colon values was occurred. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies. PMID:25972712

  8. The impact of L5 dorsal root ganglion degeneration and Adamkiewicz artery vasospasm on descending colon dilatation following spinal subarachnoid hemorrhage: An experimental study; first report

    Directory of Open Access Journals (Sweden)

    Cengiz Ozturk

    2015-01-01

    Full Text Available Context: Somato-sensitive innervation of bowels are maintained by lower segments of spinal cord and the blood supply of the lower spinal cord is heavily dependent on Adamkiewicz artery. Although bowel problems are sometimes seen in subarachnoid hemorrhage neither Adamkiewicz artery spasm nor spinal cord ischemia has not been elucidated as a cause of bowel dilatation so far. Aims: The goal of this study was to study the effects Adamkiewicz artery (AKA vasospasm in lumbar subarachnoid hemorrhage (SAH on bowel dilatation severity. Settings and Design: An experimental rabbit study. Materials and Methods: The study was conducted on 25 rabbits, which were randomly divided into three groups: Spinal SAH (N = 13, serum saline (SS (SS; N = 7 and control (N = 5 groups. Experimental spinal SAH was performed. After 21 days, volume values of descending parts of large bowels and degenerated neuron density of L5DRG were analyzed. Statistical Analysis Used: Statistical analysis was performed using the PASW Statistics 18.0 for Windows (SPSS Inc., Chicago, Illinois. Two-tailed t-test and Mann-Whitney U-tests were used. The statistical significance was set at P < 0.05. Results: The mean volume of imaginary descending colons was estimated as 93 ± 12 cm 3 in the control group and 121 ± 26 cm 3 in the SS group and 176 ± 49 cm 3 in SAH group. Volume augmentations of the descending colons and degenerated neuron density L5DRG were significantly different between the SAH and other two groups (P < 0.05. Conclusion: An inverse relationship between the living neuronal density of the L5DRG and the volume of imaginary descending colon values was occurred. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  9. The impact of L5 dorsal root ganglion degeneration and Adamkiewicz artery vasospasm on descending colon dilatation following spinal subarachnoid hemorrhage: An experimental study; first report.

    Science.gov (United States)

    Ozturk, Cengiz; Kanat, Ayhan; Aydin, Mehmet Dumlu; Yolas, Coskun; Kabalar, Mehmet Esref; Gundogdu, Betul; Duman, Aslihan; Kanat, Ilyas Ferit; Gundogdu, Cemal

    2015-01-01

    Somato-sensitive innervation of bowels are maintained by lower segments of spinal cord and the blood supply of the lower spinal cord is heavily dependent on Adamkiewicz artery. Although bowel problems are sometimes seen in subarachnoid hemorrhage neither Adamkiewicz artery spasm nor spinal cord ischemia has not been elucidated as a cause of bowel dilatation so far. The goal of this study was to study the effects Adamkiewicz artery (AKA) vasospasm in lumbar subarachnoid hemorrhage (SAH) on bowel dilatation severity. An experimental rabbit study. The study was conducted on 25 rabbits, which were randomly divided into three groups: Spinal SAH (N = 13), serum saline (SS) (SS; N = 7) and control (N = 5) groups. Experimental spinal SAH was performed. After 21 days, volume values of descending parts of large bowels and degenerated neuron density of L5DRG were analyzed. Statistical analysis was performed using the PASW Statistics 18.0 for Windows (SPSS Inc., Chicago, Illinois). Two-tailed t-test and Mann-Whitney U-tests were used. The statistical significance was set at P < 0.05. The mean volume of imaginary descending colons was estimated as 93 ± 12 cm(3) in the control group and 121 ± 26 cm(3) in the SS group and 176 ± 49 cm(3) in SAH group. Volume augmentations of the descending colons and degenerated neuron density L5DRG were significantly different between the SAH and other two groups (P < 0.05). An inverse relationship between the living neuronal density of the L5DRG and the volume of imaginary descending colon values was occurred. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  10. An experimental approach to determining subsurface leakage from a surface impoundment using a radioisotope tracer

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Story, J.D.; Larsen, I.L.; Schultz, F.J.

    1987-01-01

    Bromine-82, a 35.3-h half-life radionuclide, was used as a tracer to determine the paths and rates of leakage from an unlined, 1,000,000-gal (3,785,000 L), surface impoundment at the Oak Ridge National Laboratory. Since the impoundment is underlain and surrounded by storm sewer and sanitary sewer lines (most of them predating the impoundment), known and suspected leak sites in storm drain catch basins and sanitary sewer manholes were sampled periodically and analyzed for 82 Br. A series of four ground water monitoring wells - three downgradient and one upgradient from the impoundment - were also sampled for 82 Br. Although the catch basin and manhole samples picked up 82 Br in leakage from the impoundment less than 5 h after application of the tracer, the monitoring well samples did not contain detectable levels of the radionuclide. It was concluded that the monitoring wells were sampling groundwater moving through the formation, whereas the storm drains and manholes were sampling water leading rapidly through secondary porosity and along preferred pathways. The decline in tracer concentration as a function of time was used to determine the residence time of water in the pond and hence the flow rate through the pond. This flow rate, when compared with the known outflow rate, indicated that the leakage flow was small. Hence, the main value of the test was to identify rapid leakage pathways. The experiment demonstrates the need for sampling subsurface drain systems as part of an integrated monitoring system for leak detection. The effectiveness of 82 Br as a tracer for rapid leaks was also shown

  11. Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection

    International Nuclear Information System (INIS)

    Sertkaya, Ahmet Ali; Bilir, Sefik; Kargici, Suna

    2011-01-01

    Natural convection heat transfer in air from a pin-finned surface is investigated experimentally by considering the effect of radiation heat transfer. The plate was oriented as the pin arrays facing either downwards or upwards from vertical axis with different angles and the experiments were performed for different values of heater power input. From the results of the experiments it is observed that the pin fins increase the heat transfer considerably when compared to the unpinned surface. The upfacing pins are more enhancing heat transfer than the downfacing pins and the enhancement is decreasing with increasing orientation angle from the vertical axis. -- Research highlights: → Effect of orientation in free convection heat transfer from a pin-finned surface. → The upfacing pins are more enhancing heat transfer than the downfacing pins. → Radiation view factor is calculated by a modular analysis. → The radiation is comparable to free convection as not to be neglected. → The radiative part is 25-40% and increases for low heat transfer rates.

  12. EXPERIMENTAL DESIGN AND RESPONSE SURFACE MODELING OF PI/PES-ZEOLITE 4A MIXED MATRIX MEMBRANE FOR CO2 SEPARATION

    Directory of Open Access Journals (Sweden)

    T. D. KUSWORO

    2015-09-01

    Full Text Available This paper investigates the effect of preparation of polyimide/polyethersulfone (PI/PES blending-zeolite mixed matrix membrane through the manipulation of membrane production variables such as polymer concentration, blending composition and zeolite loading. Combination of central composite design and response surface methodology were applied to determine the main effect and interaction effects of these variables on membrane separation performance. The quadratic models between each response and the independent parameters were developed and the response surface models were tested with analysis of variance (ANOVA. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The separation performance of mixed matrix membrane had been tested using pure gases such as CO2 and CH4. The results showed that zeolite loading was the most significant variable that influenced the CO2/CH4 selectivity among three variables and the experimental results were in good agreement with those predicted by the proposed regression models. The gas separation performance of the membrane was relatively higher as compare to polymeric membrane. Therefore, combination of central composite design and response surface methodology can be used to prepare optimal condition for mixed matrix membrane fabrication. The incorporation of 20 wt% zeolite 4A into 25 wt% of PI/PES matrix had resulted in a high separation performance of membrane material.

  13. An integrated theoretical and experimental investigation of insensitive munition compounds adsorption on cellulose, cellulose triacetate, chitin and chitosan surfaces.

    Science.gov (United States)

    Gurtowski, Luke A; Griggs, Chris S; Gude, Veera G; Shukla, Manoj K

    2018-02-01

    This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole (DNAN), triaminotrinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (FOX-7) and nitroguanidine (NQ), and traditional munition compound 2,4,6-trinitrotoluene (TNT) on the surfaces of cellulose, cellulose triacetate, chitin and chitosan biopolymers. Cellulose, cellulose triacetate, chitin and chitosan were modeled as trimeric form of the linear chain of 4 C 1 chair conformation of β-d-glucopyranos, its triacetate form, β-N-acetylglucosamine and D-glucosamine, respectively, in the 1➔4 linkage. Geometries were optimized at the M062X functional level of the density functional theory (DFT) using the 6-31G(d,p) basis set in the gas phase and in the bulk water solution using the conductor-like polarizable continuum model (CPCM) approach. The nature of potential energy surfaces of the optimized geometries were ascertained through the harmonic vibrational frequency analysis. The basis set superposition error (BSSE) corrected interaction energies were obtained using the 6-311G(d,p) basis set at the same theoretical level. The computed BSSE in the gas phase was used to correct interaction energy in the bulk water solution. Computed and experimental results regarding the ability of considered surfaces in adsorbing the insensitive munitions compounds are discussed. Copyright © 2017. Published by Elsevier B.V.

  14. Root coverage with bridge flap

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Gingival recession in anterior teeth is a common concern due to esthetic reasons or root sensitivity. Gingival recession, especially in multiple anterior teeth, is of huge concern due to esthetic reasons. Various mucogingival surgeries are available for root coverage. This case report presents a new bridge flap technique, which allows the dentist not only to cover the previously denuded root surfaces but also to increase the zone of attached gingiva at a single step. In this case, a coronally advanced flap along with vestibular deepening technique was used as root coverage procedure for the treatment of multiple recession-type defect. Here, vestibular deepening technique is used to increase the width of the attached gingiva. The predictability of this procedure results in an esthetically healthy periodontium, along with gain in keratinized tissue and good patient′s acceptance.

  15. Topography Battles Surface Texture: An Experimental Study of Pool-riffle Formation

    Science.gov (United States)

    Chartrand, S. M.; Hassan, M. A.; Jellinek, M.

    2016-12-01

    Pool-riffles are perhaps the most common streambed shape found in streams and rivers, and not surprisingly, they are essential to salmon ecology, and are a central focus of many restoration actions. Yet, when an applied earth scientist or engineer is faced with developing a pool-riffle design, there is a lack of clear and rigorously developed design guidelines. Given the volumes of money spent annually within the restoration industry, this is a real problem. Recognition of this problem is growing, however, and an increasing level of attention has been directed to questions of pool-riffle formation in the past decade. At this point and given certain landscape characteristics, it is well established that streamwise gradients in channel width are associated with pool-riffles. Specifically, pools are associated with negative gradients in width, and riffles with positive gradients. Importantly, these associations have now been documented from field-derived data, as well as via experimental and numerical investigations. There is much to build from the present knowledge base, and central to this are questions related to (a) how pool-riffles evolve during the formative process, (b) what are the basic set of ingredients necessary for pool-riffle formation within systems characterized by relatively non-erodible channel margins, and (c) do pool-riffles persist, once formed, under a broad range of forcing conditions? We have completed four physical experiments examining the process and evolution of pool-riffle formation under a large range of upstream boundary, as well as physical channel conditions. We will report on two of the completed experiments. Our work will highlight two new non-dimensional channel evolution numbers, derived to help describe and characterize bedform development, as well as response to perturbations from near-equilibrium conditions. The channel evolution numbers lay the foundation for development of a new regime diagram, which quantifies the basic

  16. Dynamic Ocular Surface and Lacrimal Gland Changes Induced in Experimental Murine Dry Eye

    Science.gov (United States)

    Xiao, Bing; Wang, Yu; Reinach, Peter S.; Ren, Yueping; Li, Jinyang; Hua, Shanshan; Lu, Huihui; Chen, Wei

    2015-01-01

    Dry eye disease can be a consequence of lacrimal gland insufficiency in Sjögren’s Syndrome or increased tear film evaporation despite normal lacrimal gland function. To determine if there is a correlation between severity effects in these models and underlying pathophysiological responses, we compared the time dependent changes in each of these parameters that occur during a 6 week period. Dry eye was induced in 6-week-old female C57BL/6 mice by exposing them to an Intelligently Controlled Environmental System (ICES). Sixty mice were housed in ICES for 1, 2, 4 and 6 weeks respectively. Twelve were raised in normal environment and received subcutaneous injections of scopolamine hydrobromide (SCOP) 3 times daily for 5 days. Another sixty mice were housed in a normal environment and received no treatment. Corneal fluorescein staining along with corneal MMP-9 and caspase-3 level measurements were performed in parallel with the TUNEL assay. Interleukin-17(IL-17), IL-23, IL-6, IL-1, TNF-α, IFN-γ and TGF-β2 levels were estimated by real-time PCR measurements of conjunctival and lacrimal gland