WorldWideScience

Sample records for experimental root surface

  1. Healing of periodontal defects treated with enamel matrix proteins and root surface conditioning--an experimental study in dogs.

    Science.gov (United States)

    Sakallioğlu, Umur; Açikgöz, Gökhan; Ayas, Bülent; Kirtiloğlu, Tuğrul; Sakallioğlu, Eser

    2004-05-01

    Application of enamel matrix proteins has been introduced as an alternative method for periodontal regenerative therapy. It is claimed that this approach provides periodontal regeneration by a biological approach, i.e. creating a matrix on the root surfaces that promotes cementum, periodontal ligament (PDL) and alveolar bone regeneration, thus mimicking the events occurring during tooth development. Although there have been numerous in vitro and in vivo studies demonstrating periodontal regeneration, acellular cementum formation and clinical outcomes via enamel matrix proteins usage, their effects on the healing pattern of soft and hard periodontal tissues are not well-established and compared with root conditioning alone. In the present study, the effects of Emdogain (Biora, Malmö, Sweden), an enamel matrix derivative mainly composed of enamel matrix proteins (test), on periodontal wound healing were evaluated and compared with root surface conditioning (performed with 36% orthophosphoric acid) alone (control) histopathologically and histomorphometrically by means of the soft and hard tissue profile of periodontium. An experimental periodontitis model performed at premolar teeth of four dogs were used in the study and the healing pattern of periodontal tissues was evaluated at days 7, 14, 21, 28 (one dog at each day), respectively. At day 7, soft tissue attachment evaluated by means of connective tissue and/or epithelial attachment to the root surfaces revealed higher connective tissue attachment rate in the test group and the amount of new connective tissue proliferation in the test group was significantly greater than the control group (p0.05). A firm attachment of acellular cementum to the root dentin with functional organization of its collagen fibers was noted, and, the accumulation and organization of cellular cementum in the control group was more irregular than the cellular cementum formed in the test group. The amount of new bone was 2.41+/-0.75 mm in

  2. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    2014-05-15

    May 15, 2014 ... Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks in single‑rooted premolars, resected 3.0 mm from the root apex, using the Er: YAG laser, tungsten carbide bur, and diamond‑coated tip, by scanning electron microscopy (SEM). Experimental ...

  3. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks in single‑rooted premolars, resected 3.0 mm from the root apex, using the Er: YAG laser, tungsten carbide bur, and diamond‑coated tip, by scanning electron microscopy (SEM). Experimental design: Thirty ...

  4. Root caries, root surface restorations and lifestyle factors in adult Danes

    DEFF Research Database (Denmark)

    Christensen, Lisa Bøge; Jensen, Allan Bardow; Ekstrand, Kim

    2015-01-01

    AIM: To investigate selected lifestyle factors in relation to active caries and restored root surface lesions in adults. MATERIALS AND METHODS: Based on clinical examinations and questionnaires, data on root caries, socioeconomic status, body mass index, dietary habits, alcohol consumption, tobacco...... and restored root surface lesions, respectively. RESULTS: The prevalence of active root caries was 4%, while 26% displayed restored root surfaces. The sugar intake was not related to root caries. A multivariate logistic regression analysis revealed that, in subjects aged 45 or over, smoking and wearing...... dentures were significantly associated with presence of active root caries (p alcohol intake (OR = 1.7; p alcohol...

  5. Surface-based GPR underestimates below-stump root biomass

    Science.gov (United States)

    John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke

    2016-01-01

    Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...

  6. Effect of Intracanal Cryotherapy on Reducing Root Surface Temperature.

    Science.gov (United States)

    Vera, Jorge; Ochoa-Rivera, Jorge; Vazquez-Carcaño, Marino; Romero, Monica; Arias, Ana; Sleiman, Philippe

    2015-11-01

    The positive effect of cryotherapy has been widely described in medicine. The aim of the present study was to validate a new methodology to reduce and maintain external root surface temperature for at least 4 minutes. Twenty extracted single-rooted teeth were instrumented to size 35/.06 and subjected to 2 different irrigation interventions with a repeated-measures design using 5% sodium hypochlorite first (control) and 2.5°C cold saline solution later (experimental). In both, 20 mL of the irrigant solution was delivered for a total time of 5 minutes with a microcannula attached to the EndoVac system (Kerr Endo, Orange County, CA) inserted to the working length. The initial and lowest temperatures were recorded in the apical 4 mm with a digital thermometer for both irrigants. Data were analyzed with the repeated measure analysis of variance (Greenhouse-Geisser correction) and Bonferroni post hoc tests. Differences in maintaining a -10°C temperature reduction over 4 minutes were assessed with the Fisher exact test. Although significant differences were found between the initial and lowest temperatures in both the control and experimental irrigation procedures (P surface temperature more than 10°C and maintained it for 4 minutes, which may be enough to produce a local anti-inflammatory effect in the periradicular tissues. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Macroscopic and radiographic examination of proximal root surface caries

    Energy Technology Data Exchange (ETDEWEB)

    Nordenram, G.; Bergvist, A.; Johnson, G.; Henriksen, C.O.; Anneroth, G.

    1988-01-01

    The purpose of the study was to compare macroscopic and radiographic examination of proximal root surface caries of extracted teeth from patients aged 65-95 years. Although the study conditions for macroscopic and radiographic diagnosis favored more sensitive evaluations than routine clinical conditions, there was a 24% disagreement in diagnosis. This finding indicates that under routine clinical conditions it is difficult to register with certainty all superficial root carious lesions. Even in the absence of clinically detectable root surface caries, preventive measures should be considered for elderly people with exposed root surfaces.

  8. Experimental Investigation of the Wind Turbine Blade Root Flow

    NARCIS (Netherlands)

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by

  9. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat.

    Science.gov (United States)

    Robin, Arif Hasan Khan; Matthew, Cory; Uddin, Md Jasim; Bayazid, Khandaker Nafiz

    2016-06-01

    The aim of this study was to investigate the effect of salinity stress on root growth at the phytomer level in wheat to provide novel site-specific understanding of salinity damage in roots. Seedlings of 13 wheat varieties were grown hydroponically. Plants were exposed to three concentrations of NaCl, 0 (control), 50 and 100mM, from 47 days after sowing. In a destructive harvest 12 days later we determined the number of live leaves, adventitious roots, seminal roots and newly formed roots at the youngest phytomer; length and diameter of main axes; and length and diameter of root hairs and their number per millimetre of root axis. Elongation rate of main axes and root hair density were then derived. Root surface area at each root-bearing phytomer (Pr) was mechanistically modelled. New root formation was increased by salt exposure, while number of live leaves per plant decreased. The greatest salinity effect on root axis elongation was observed at the youngest roots at Pr1 and Pr2. Both the 50mM and the 100mM levels of salinity reduced root hair length by approximately 25% and root hair density by 40% compared with the control whereas root hairs alone contributed around 93% of the estimated total root surface area of an individual tiller. Decrease in main axis length of new roots, root hair density and root hair length combined to reduce estimated root surface area by 36-66% at the higher NaCl concentration. The varietal response towards the three salinity levels was found to be trait-specific. The data highlight reduction in root surface area as a major but previously largely unrecognized component of salinity damage. Salinity resistance is trait-specific. Selection for retention of root surface area at a specific phytomer position following salt exposure might be useful in development of salinity-tolerant crop varieties. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  10. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    2014-07-15

    50. How to cite this article: Hema BS, Chandu GS, Shiraguppi VL. Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. Niger J.

  11. SMAP Level 4 Surface and Root Zone Soil Moisture

    Science.gov (United States)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.

    2017-01-01

    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  12. Root surface removal and resultant surface texture with diamond-coated ultrasonic inserts: an in vitro and SEM study.

    Science.gov (United States)

    Vastardis, Sotirios; Yukna, Raymond A; Rice, David A; Mercante, Don

    2005-05-01

    A new diamond-coated ultrasonic insert has been developed for scaling and root planing, and it was evaluated in vitro for the amount of root surface removed and the roughness of the residual root surface as a result of instrumentation. 48 extracted single-rooted human teeth were ground flat on one root surface and mounted (flat side up) in PVC rings of standard height and diameter with improved dental stone. Each tooth surface was treated with either a plain ultrasonic insert (PI), an ultrasonic insert with a fine grit diamond coating (DI) or sharp Gracey curettes (HI). The mounted teeth were attached to a stepper motor which drove the teeth in a horizontal, reciprocal motion at a constant rate. The thickness from the flattened bottom of the ring to the flattened tooth surface was measured before and after 10, 20, and 30 instrumentation strokes for each root surface with each of the experimental instruments. A number of treated teeth were randomly selected for examination with SEM and a profilometer. Statistical analysis (analysis of co-variance) was performed to compare the amounts of tooth structure removed among the 3 instruments and t-test was used to compare the roughness of the treated root surfaces. The mean depth of root structure removed was PI 10.7 microm, HI 15.0 microm, and DI 46.2 microm after 10 strokes; and PI 21.6 microm, HI 33.2 and DI 142.0 microm after 30 strokes, respectively. On average, 0.9 microm, 1.3 microm, and 4.7 microm of root surface was removed with each stroke of PI, HI and DI, respectively. PI and HI were not different from each other for all the stroke cycles, while DI was significantly different from PI and HI for all the stroke cycles (pplane roots, and that caution should be used during periodontal root planing procedures. Additionally, the diamond-coated instruments will produce a rougher surface than the plain inserts or the hand curettes.

  13. The periosteum eversion technique for coverage of denuded root surface

    Directory of Open Access Journals (Sweden)

    Awadhesh Kumar Singh

    2015-01-01

    Full Text Available The periosteum is highly cellular connective tissue with rich vascularity and regenerative potential, which make it suitable autogenous graft. The periosteum eversion technique utilized periosteum for coverage of denuded root surface. The purpose of this case report was to evaluate the periosteum eversion technique that involves a single surgical site, in terms of root coverage, gingival height, and probing depth. A patient with Miller class I gingival recession of 3.0 mm, gingival height of 2.0 mm and probing depth of 2.0 mm was treated by the periosteum eversion technique. Root conditioning was done with 24% ethylenediaminetetra-acetic acid. In this technique, marginal periosteum was used as a pedicle graft. At the end of 6 months, 100% root surface was covered successfully with 5.0 mm of gingival height and 1.0 mm of probing depth. The periosteum eversion technique can be used for the treatment of gingival recession defect successfully.

  14. Protein and bacteria binding to exposed root surfaces and the adjacent enamel surfaces in vivo.

    Science.gov (United States)

    Rüdiger, Stefan G; Dahlén, Gunnar; Carlén, Anette

    2015-01-01

    Exposure of root surfaces due to inflammatory tissue breakdown is a clinical characteristic of periodontitis. The gingival margin may further recede during treatment. Pellicles and early dental plaque on enamel surfaces of periodontitis patients have previously been described. The binding properties of exposed root surfaces, which may affect the incorporation of proteins from especially the GCF into the enamel pellicle and thereby early dental plaque formation are largely unknown. The aim of this study was to examine if exposed root surfaces could affect pellicle and initial dental plaque formation on the enamel surface by the analysis of proteins and early adhering bacteria binding to the exposed root surfaces and to the adjacent, gingival enamel surface. Supragingival pellicle and plaque samples were taken from exposed root surfaces and the adjacent enamel surfaces in eleven surgically treated periodontitis patients. For comparison, samples were taken from enamel surfaces of teeth not in need of treatment. Additionally, subgingival bacterial samples were taken. Pellicle proteins were analysed by SDS-PAGE, immunoblotting and image analysis, and bacterial samples by culturing. Significantly more plasma proteins and bacteria were found on the exposed root surfaces than on the enamel. The depth of the gingival recessions was negatively correlated to the amount of plasma proteins in the enamel pellicle. Actinomyces spp. were most frequently found on the exposed root surfaces. The total viable counts and streptococci (%TVC) were positively correlated between subgingival samples and samples from the root surface and enamel of surgically treated teeth. A positive correlation was also found for the findings of Gram-negative anaerobes in subgingival samples and samples from the enamel surface. Our findings suggest that an exposed root surface has binding properties different from an enamel surface and could affect early biofilm formation on the adjacent enamel surface.

  15. Temperature variation on root surface with three root-end cavity preparation techniques

    Directory of Open Access Journals (Sweden)

    Bodrumlu Emre

    2013-01-01

    Full Text Available Introduction. Thermal changes can occur on the external root surface when root-end cavity preparation is performed, which may damage periodontal ligament cells and alveolar bone. Objective. The purpose of this study was to evaluate the temperature changes during preparation of the root-end cavities at 1 and 3 mm to the sectioned apical root surfaces when either tungsten carbide round bur, diamond round bur or ultrasonic diamond tip was used. Methods. Root-end resection was performed at 90° to the long axis of the root, 3 mm from the apex. Specimens were randomly divided into three groups of 12 teeth each for three different root-end cavity preparation techniques to be used, i.e. tungsten carbide bur, diamond bur and ultrasonic diamond retro tip. Thermocouples were used to measure temperature changes at 1 mm (T1 and 3 mm (T2 to the cutting plane during the preparations. Results. For T1, the lowest and the highest mean temperature increases of 3.53°C and 4.34°C were recorded for the carbide and diamond burs, respectively. For T2, the lowest and the highest mean temperature increases of 2.62°C and 4.39°C where recorded for the carbide and diamond burs, respectively. The mean temperatures with the ultrasonic tip were 3.68 and 3.04 ºC at T1 and T2 region, respectively. For root-end preparation, the ultrasonic preparation technique took the shortest preparation time (10.25 sec and the diamond bur took the longest time (28.17 sec. Conclusion. Ultrasonic retro tips and burs caused temperature to rise from 2.62° to 4.39°C, and these rises were within safety levels.

  16. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    2014-05-15

    May 15, 2014 ... Abstract. Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks ... The mean number of cracks per ..... walls.[25] In our study, no statistically significant difference was found between the groups. A total of 105 cracks were identified in 30 roots when.

  17. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    2014-07-15

    Jul 15, 2014 ... Root canal preparation for all the teeth was carried out with. 3 different types of rotary instruments. ... which enabled removal of overlapping dentin walls. After completing the preparation of the coronal third of ... on dentine or other surfaces after instrumentation with either rotary instrument or endodontic files, ...

  18. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. ... presence or absence of debris and smear layer and the photographs were taken at coronal, middle and apical 1/3 with a magnification of ~200 and ~1000 respectively.

  19. Experimental and genetic analysis of root development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Scheres, B.J.G.; McKhann, H.; Berg, C. van den; Willemsen, V.; Wolkenfelt, H.; Vrieze, G. de; Weisbeek, P.

    1996-01-01

    The cellular organisation of the Arabidopsis thaliana root is remarkably regular. A fate map of the primary root and root meristem that predicts the developmental destinies of cells within the embryonic root primordium has been constructed. Nevertheless, laser ablation experiments demonstrate that

  20. Profilometric analysis of root surfaces after using various polishing agents

    Directory of Open Access Journals (Sweden)

    Anjan Jana

    2016-01-01

    Full Text Available Background: Polishing is an important step in oral prophylaxis procedure which retards further accumulation of plaque on the root surfaces. Though polishing was done with various abrasive particles with different sizes over a long period of time, it was never been highlighted to evaluate the ideal polishing material and the particle size that would produce the ideal surface smoothness (Ra 5 μm are not able to produce the surface smoothness <0.2 μm. Only, submicron sized particles are able to produce the desired smoothness.

  1. Antistress activity of Argyreia speciosa roots in experimental animals

    Directory of Open Access Journals (Sweden)

    Nikunj B Patel

    2011-01-01

    Full Text Available The antistress effect of a seven-day treatment (100 and 200 mg / kg, p.o. of the hydroalcoholic extract of Argyreia speciosa root (ASE was evaluated by using the swimming endurance test, acetic acid-induced writhing test, pentylenetetrazole-induced convulsion test, anoxic tolerance test, cold-restraint, stress-induced gastric ulcers, aspirin-induced ulcers, and biochemical, and histopathological changes in the cold-restraint stress test. The immunomodulatory activity was also evaluated for the same doses, and treatment of ASE was done using the hemagglutination test. Both the doses of ASE showed antistress activity in all the tested models. The ASE-treated animals showed a decrease in immobility time and an increase in anoxic tolerance time in swimming endurance and the anoxic tolerance tests, respectively. The effect of glacial acetic acid and pentylenetetrazole were also reduced by decreasing the number of writhing responses and increasing the onset of convulsions, respectively. In the cold restrained stress and aspirin-induced gastric ulcer models, ASE showed a significant reduction in the ulcer index. Pretreatment with ASE significantly ameliorated the cold stress-induced variations in biochemical levels such as increased plasma cholesterol, triglyceride, glucose, total protein, and cortisol. ASE was also effective in preventing the pathological changes in the adrenal gland, due to cold restrained stress, in rats. In mice immunized with sheep red blood cells, the treatment groups subjected to restraint stress prevented the humoral immune response to the antigen. The immunostimulating activity of the ASE was indicated by an increase in the antibody titer in mice pre-immunized with sheep red blood cells and subjected to restraint stress. The findings of the present investigations indicate that the ASE has significant antistress activity, which may be due to the immunostimulating property and increased resistance, nonspecifically, against all

  2. Temperature rise at root surface during post-space preparation.

    Science.gov (United States)

    Tjan, A H; Abbate, M F

    1993-01-01

    This study compared the changes in temperature at the root surface of extracted human central incisors during post-space preparation using the following reamers (1) Peeso, (2) Kurer, (3) Gates-Glidden, (4) Para-Post, and (5) diamond burs. A mean temperature rise ranging from 2.3 degrees C to 15.6 degrees C from the baseline of approximately 28 degrees C was recorded. Peeso reamers recorded the highest temperatures followed by Kurer system and diamond burs, whereas Gates-Glidden and Para-Post systems were the lowest.

  3. Predicting root zone soil moisture using surface data

    Science.gov (United States)

    Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J.; Fiorentino, M.

    2012-04-01

    In recent years, much effort has been given to monitoring of soil moisture from satellite remote sensing. These tools represent an extraordinary source of information for hydrological applications, but they only provide information on near-surface soil moisture. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. The method derives from a simplified form of the soil water balance equation and for this reason all parameters adopted are physically consistent. The formulation provides a closed form of the relationship between the root zone soil moisture and the surface soil moisture with a limited number of parameters, such as: the ratio between the depth of the surface layer and the deeper layer, the water loss coefficient, and the field capacity. The method has been tested using modeled soil moisture obtained from the North American Land Data Assimilation System (NLDAS). The NLDAS is a multi-institution partnership aimed at developing a retrospective data set, using available atmospheric and land surface meteorological observations to compute the land surface hydrological budget. The NLDAS database was extremely useful for the scope of the present research since it provides simulated data over an extended area with different climatic and physical condition and moreover it provides soil moisture data averaged over different depths. In particular, we used values in the top 10 cm and 100 cm layers. One year of simulation was used to test the ability of the developed method to describe soil moisture fluctuation in the 100cm layer over the entire NLDAS domain. The method was adopted by calibrating one of its three parameters and defining the remaining two based on physical characteristics of the site (using the potential evapotranspiration and ratio between the first and the second soil layer depth). In general, the method performed better than

  4. [Temperature variation at the external root surface during Nd: YAG laser irradiation in the root canal in vitro].

    Science.gov (United States)

    Yuan-Gao, Li; Xiao, Wang; Kexian, Xie; Dan, Liu

    2014-10-01

    To assess the temperature variation of the root surface using Nd: YAG laser irradiation in the root canal with different power and to evaluate the safety of laser application on the periodontal region. Thirty extracted human teeth with single-roots were collected. The teeth were cross-sectioned in the cervical portion, standardizing the roots at a 12-mm length. The roots were used as specimen. The roots were radiographed in the buccal-lingual direction to measure the thickness of the proximal walls, by means of a digital radiographic system. The specimens were divided into three groups according to the laser potency (1.5, 3.0, and 4.5 W). Each group was subdivided into two subgroups according to laser frequency (15 and 30 Hz). With the Nd: YAG laser irradiation for 20 s, the temperature variation of the root surface was monitored by thermocouples located at different parts of the root external wall and recorded by digital thermometers. The groups irradiated with 4.5 W presented the greatest temperature variation (above 10°C), followed by 3.0 and 1.5 W. The temperatures were statistically different (P 0.05). The apical half of the root presented statistically higher temperature rises than the cervical half of the root (P temperature variation of the root surface was associated with laser power, irradiation time, and the thickness of dentin. Application of Nd: YAG laser in the root at 1.5 W for 20 s can safely be used in endodontic treatment.

  5. Ultrastructural investigation of root canal dentine surface after application of active ultrasonic method

    Directory of Open Access Journals (Sweden)

    Mitić Aleksandar

    2008-01-01

    Full Text Available INTRODUCTION The basic work principle of all ultrasonic techniques is the piezoelectric effect of producing high frequency ultrasounds of small length, which are transmitted over the endodontic extensions or canal instruments into the root canal. When in contact with the tissue, ultrasonic vibrations are converted into mechanical oscillations. Ultrasonic waves and the obtained oscillations along with the synergic effect of irrigation bring about the elimination of smear layer from the root canal walls. OBJECTIVE The aim of the study was to ultrastucturally examine the effect of smear layer removal from the walls of canals by the application of the active ultrasonic method without irrigation, that is by the application of ultrasound and irrigation using distilled water and 2.5% NaOCl. METHOD The investigation comprised 35 single-canal, extracted human teeth. After removal of the root canal content, experimental samples were divided into three groups. According to the procedure required, the first group was treated by ultrasound without irrigation; the second one by ultrasound with irrigation using distilled water; and the third group was treated by ultrasound and irrigation using 2.5% NaOCl solution. The control samples were treated by machine rotating instruments (Pro-File and were rinsed by distilled water. RESULTS The obtained results showed that the ultrasonic treatment of the root canal without irrigation did not remove the smear layer. The dentine canals are masked, and big dentine particles are scattered on the intertubular dentine. The ultrasonic treatment by using irrigation with distilled water provides cleaner dentine walls and open dentine tubules but with smaller particles on the intertubular dentine. The ultrasound treatment by using irrigation with 2.5% NaOCl solution provides a clean intertubular dentine surface without a smear layer and clearly open dentine tubules. CONCLUSION Instrumentation of the root canal by application of

  6. Experimental Proteus mirabilis Burn Surface Infection

    Science.gov (United States)

    1982-02-01

    mirabilis Burn Surface Infection Albert T. McManus, PhD; Charles G. McLeod, Jr, DVM; Arthur D. Mason, Jr, MD * We established a human burn Isolate of...William J1. Northam. Peter A. lDorsaneo, and Paulette langlinais MS. model may be useful in evaluation of experimental antibi - prov ided technical support

  7. The effect of post surface treatments on the bond strength of fiber posts to root surfaces.

    Science.gov (United States)

    Tuncdemir, Ali Riza; Yildirim, Cihan; Güller, Fatma; Ozcan, Erhan; Usumez, Aslihan

    2013-01-01

    The aim of the present study was to evaluate the influence of post surface treatment methods on the push-out bond strength of adhesively luted quartz fiber posts. Thirty freshly extracted and endodontically treated human incisor teeth were prepared for quartz fiber posts. The posts were submitted to three different surface treatments (n = 10), including no treatment, 50-µm aluminum-oxide (Al(2)O(3)) airborne-particle abrasion and Er:YAG laser (10 Hz, 150 mJ) irradiation. The posts were luted with resin cement. Each root was sectioned perpendicularly to its long axis to create specimens of 1-mm thickness. After the specimens were stored in distilled water at 37°C for 24 h, their push-out bond strength was tested using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed by two-way ANOVA (α = .05). The two-way ANOVA indicated that push-out test values did not vary significantly according to surface treatments applied (control, airborne particle abrasion, Er:YAG laser irradiation) (p > 0.05), however, values varied according to the root segments (cervical, middle, and apical) (p fiber posts (p > 0.05). Air-borne particle abrasion or Er:YAG laser irradiation applied on the quartz fiber posts did not affect the push-out bond strengths relative to the root surfaces. The highest bond strength was observed in the cervical third of the roots in all groups.

  8. Experimental observations of root growth in a controlled photoelastic granular material

    Science.gov (United States)

    Mora, Serge; Bares, Jonathan; Delenne, Jean-Yves; Fourcaud, Thierry

    The mechanism of root growth in soil is a key issue to understand both how to improve plant development and how to stabilize grounds. However, no experimental studies have been carried out to directly observe root development and surrounding stress while imposing specific grain configurations or mechanical loading. We present a novel set-up which permits to observe the development of chickpea root networks in a 2D granular material made of bidisperse photoelastic discs while imposing the position of the grains, the intergranular spacing and the nature of the system confinement: (i) open cell, (ii) confined cell (iii) sheared cell. In the experimental apparatus several root development cells are treated in parallel to increase the statistical meaning of the observations. Evolution of the root network is followed as well as position and pressure inside each disc by mean of a camera and classical photoelastic techniques. Preliminary results will be presented.

  9. Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??

    Science.gov (United States)

    Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga

    2015-01-01

    The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease.

  10. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    OpenAIRE

    May Lei Mei; Quan-Li Li; Chun Hung Chu

    2016-01-01

    Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG) and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divid...

  11. Root Surface Caries Occurence in Relation to Social and Dental ...

    African Journals Online (AJOL)

    Objective: To investigate the association between root caries and social and dental behaviour amongst adults in a selected suburband adult population. Methods: The setting, study design and root caries diagnosis were as described in the first part of this three part series. Subjects\\' social and dental health behaviour were ...

  12. An appraisal of the electrical resistance method for assessing root surface area

    Science.gov (United States)

    Cao, Yang; Repo, Tapani; Silvennoinen, Raimo; Lehto, Tarja; Pelkonen, Paavo

    2010-01-01

    Electrical resistances of roots and stems of hydroponically raised willows (Salix schwerinii) were studied and related to root morphology. Willow cuttings with and without roots were set in a constant electric field (effective voltage of 0.1 V, sine-AC, 128 Hz) in a hydroponic solution. The electrical resistance of different components in the measurement system was measured and analysed in relation to root surface area in contact with the cultivation solution. Axial resistivities of single root segments and of stems were measured. The results showed that the resistance decreased in relation to an increase in the contact surface area of the roots with the solution. The resistance depended strongly on the contact area of the stem with the solution, however, thus causing bias in the evaluation of root surface area. This work is a new contribution for the understanding of current pathways in the root system as exposed to an external electric field and for developing a non-destructive method to study plant roots accordingly. It may be concluded that the electrical resistance method is a useful non-destructive method to study roots and their physiological properties. Electrical analogues for roots and stem comprising resistors are discussed in relation to in situ measurements. PMID:20363862

  13. Hormonal crosstalk for root development: a combined experimental and modelling perspective.

    Directory of Open Access Journals (Sweden)

    Keith eLindsey

    2014-03-01

    Full Text Available Plants are sessile organisms and therefore they must adapt their growth and architecture to a changing environment. Understanding how hormones and genes interact to coordinate plant growth in a changing environment is a major challenge in developmental biology. Although a localized auxin concentration maximum in the root tip is important for root development, auxin concentration cannot change independently of multiple interacting hormones and genes. In this review, we discuss the experimental evidence showing that the POLARIS peptide of Arabidopsis plays an important role in hormonal crosstalk and root growth, and review the crosstalk between auxin and other hormones for root growth with and without osmotic stress. Moreover, we discuss that experimental evidence showing that, in root development, hormones and the associated regulatory and target genes form a network, in which relevant genes regulate hormone activities and hormones regulate gene expression. We further discuss how it is increasingly evident that mathematical modelling is a valuable tool for studying hormonal crosstalk. Therefore, a combined experimental and modelling study on hormonal crosstalk is important for elucidating the complexity of root development.

  14. Enzyme and root activities in surface-flow constructed wetlands.

    Science.gov (United States)

    Kong, Ling; Wang, Yu-Bin; Zhao, Li-Na; Chen, Zhang-He

    2009-07-01

    Sixteen small-scale wetlands planted with four plant species were constructed for domestic wastewater purification. The objective of this study was to determine the correlations between contaminant removal and soil enzyme activity, root activity, and growth in the constructed wetlands. The results indicated that correlations between contaminant removal efficiency and enzyme activity varied depending on the contaminants. The removal efficiency of NH4+ was significantly correlated with both urease and protease activity in all wetlands, and the removal of total phosphorus and soluble reactive phosphorus was significantly correlated with phosphatase activity in most wetlands, while the removal of total nitrogen, NO3(-) , and chemical oxygen demand (COD) was significantly correlated with enzyme activity only in a few instances. Correlations between soil enzyme activity and root activity varied among species. Activities of all enzymes were significantly correlated with root activity in Vetiveria zizanioides and Phragmites australis wetlands, but not in Hymenocallis littoralis wetlands. Significant correlations between enzyme activity and root biomass and between enzyme activity and root growth were found mainly in Cyperus flabelliformis wetlands. Root activity was significantly correlated with removal efficiencies of all contaminants except NO3(-) and COD in V. zizanioides wetlands. Enzyme activities and root activity showed single-peak seasonal patterns. Activities of phosphatase, urease, and cellulase were significantly higher in the top layer of the substrate than in the deeper layers, and there were generally no significant differences between the deeper layers (deeper than 15 cm).

  15. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces

    Directory of Open Access Journals (Sweden)

    Thomas E. Rams

    2017-10-01

    Conclusions: Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  16. Niche and host-associated functional signatures of the root surface microbiome.

    Science.gov (United States)

    Ofek-Lalzar, Maya; Sela, Noa; Goldman-Voronov, Milana; Green, Stefan J; Hadar, Yitzhak; Minz, Dror

    2014-09-18

    Plant microbiomes are critical to host adaptation and impact plant productivity and health. Root-associated microbiomes vary by soil and host genotype, but the contribution of these factors to community structure and metabolic potential has not been fully addressed. Here we characterize root microbial communities of two disparate agricultural crops grown in the same natural soil in a controlled and replicated experimental system. Metagenomic (genetic potential) analysis identifies a core set of functional genes associated with root colonization in both plant hosts, and metatranscriptomic (functional expression) analysis revealed that most genes enriched in the root zones are expressed. Root colonization requires multiple functional capabilities, and these capabilities are enriched at the community level. Differences between the root-associated microbial communities from different plants are observed at the genus or species level, and are related to root-zone environmental factors.

  17. Ultra-morphology of root surface subsequent to periodontal instrumentation: A scanning electron microscope study

    Directory of Open Access Journals (Sweden)

    Parveen Dahiya

    2012-01-01

    Full Text Available Background: The aim of this study was to compare root surface characteristic following root planing with various hand and power driven instruments. Materials and Methods: A total of 20 single rooted teeth were used in this study, of which two specimens were used as control (no instrumentation done and remaining 18 specimens were equally divided into three groups. Specimens from each group were then subjected to root planing by one of the following instruments: (1 a Gracey curette (2 Ultrasonic tip and (3 a Rotary bur. In each case, the time required for scaling and root planing was measured. After treatment, the specimens were observed under scanning electron microscope and surface roughness was measured by using Roughness and loss of tooth substance index (RLTSI. Results: The mean RLTSI scores for Gracey curette, ultrasonic and rotary instrument group were 2.5, 2.0 and 0.667 respectively. The mean scores of time spent for scaling and root planing by Gracey curette, ultrasonic and rotary instrument group in seconds were 42.50, 35.83 and 54.50. Conclusion: All the three instruments namely Gracey curette, Ultrasonic tip and Rotary bur were effective in mechanical debridement of root surface. The results favoured the use of rotary instruments for root planing to achieve smooth clean root surface; however, the use of rotary instrument was more time consuming which might limit its use in clinical practice.

  18. Effect of citric acid, tetracycline, and doxycycline on instrumented periodontally involved root surfaces: A SEM study

    Directory of Open Access Journals (Sweden)

    Gurparkash Singh Chahal

    2014-01-01

    Full Text Available Background: A surface smear layer consisting of organic and inorganic material is formed on the root surface following mechanical instrumentation and may inhibit the formation of new connective tissue attachment to the root surface. Modification of the tooth surface by root conditioning has resulted in improved connective tissue attachment and has advanced the goal of reconstructive periodontal treatment. Aim: The aim of this study was to compare the effects of citric acid, tetracycline, and doxycycline on the instrumented periodontally involved root surfaces in vitro using a scanning electron microscope. Settings and Design: A total of 45 dentin samples obtained from 15 extracted, scaled, and root planed teeth were divided into three groups. Materials and Methods: The root conditioning agents were applied with cotton pellets using the "Passive burnishing technique" for 5 minutes. The samples were then examined by the scanning electron microscope. Statistical Analysis Used: The statistical analysis was carried out using Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, version 15.0 for Windows. For all quantitative variables means and standard deviations were calculated and compared. For more than two groups ANOVA was applied. For multiple comparisons post hoc tests with Bonferroni correction was used. Results: Upon statistical analysis the root conditioning agents used in this study were found to be effective in removing the smear layer, uncovering and widening the dentin tubules and unmasking the dentin collagen matrix. Conclusion: Tetracycline HCl was found to be the best root conditioner among the three agents used.

  19. The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing.

    Science.gov (United States)

    Montevecchi, Marco; Parrilli, Annapaola; Fini, Milena; Gatto, Maria Rosaria; Muttini, Aurelio; Checchi, Luigi

    2016-10-01

    The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit.

  20. Root Surface Roughness After Scaling and Root Planing with Er:YAG Laser Compared to Hand and Ultrasonic Instruments by Profilometry

    Directory of Open Access Journals (Sweden)

    Jaber Yaghini

    2016-08-01

    Full Text Available Objectives: Scaling and root planing (SRP is one of the most commonly used procedures during periodontal treatment. The aim of this study was to evaluate the root surface roughness after SRP with erbium: yttrium aluminum garnet (Er:YAG laser compared to ultrasonic and hand instruments.  Materials and Methods: In this experimental study, 56 extracted sound single-rooted teeth with moderate level of calculus were selected and randomly divided into four groups: SRP was performed with Er:YAG laser (100 mJ pulse, 1W, 10Hz, VSP and contact mode, with 50% water and air in group one, hand instrument in group two and ultrasonic tool in group three. Group four was considered as the control group. After SRP, all samples were cut by Servocut cutting machine into pieces with 3×3×2mm dimensions. The samples were mounted in acrylic resin. The surface roughness of the samples was evaluated with profilometry, and the data were analyzed using one-way ANOVA and Tukey’s test in SPSS software.Results: Surface roughness was higher in laser and lower in ultrasonic group compared to other groups. There was a significant difference in surface roughness between laser and ultrasonic groups (P=0.043, but there was no significant difference in surface roughness among other groups (P>0.05. Conclusion: The results of this study showed that surface roughness after SRP with Er:YAG laser was not higher than that after manual SRP, but the former value was higher than that after SRP with ultrasonic instrument.

  1. Structure versus electron effects in the growth mode of pentacene on metal-induced Si(111)-square root(3) x square root(3) surfaces.

    Science.gov (United States)

    Teng, Jing; Guo, Jiandong; Wu, Kehui; Wang, Enge

    2008-07-21

    The growth of pentacene films on different metal (Ga, Pb, Bi, Ag) induced Si(111)-(square root(3) x square root(3))R30 degrees surfaces is investigated by scanning tunneling microscopy. On surfaces with high atomic surface roughness, such as GaSi-square root(3), beta-PbSi-square root(3), and alpha-BiSi-square root(3), pentacene forms an initial disordered wetting layer followed by the growth of crystalline thin films. The growth behavior is independent of the metallicity of the substrate surface in this regime. On the other hand, on surfaces with low adatom surface roughness, pentacene molecules form self-organized structures without forming a wetting layer. Moreover, the molecular orientation is critically dependent on the surface metallicity. This work reveals that the growth mode of pentacene on solid surfaces is determined by the combined effects of structural and electronic properties of the substrate.

  2. AN IN-VITRO EVALUATION OF FLUORESCEIN PENETRATION INTO NATURAL ROOT SURFACE CARIOUS LESIONS

    NARCIS (Netherlands)

    VANDERVEEN, MH; TENBOSCH, JJ

    1993-01-01

    In order to develop a method for detection and quantification of initial root surface carious lesions, the use of fluorescein sodium as a fluorescent dye is evaluated. The penetration depth of fluorescein sodium into human roots containing natural carious lesions was measured on approximately

  3. Temperature increases on the external root surface during ...

    African Journals Online (AJOL)

    ... the highest temperature increases. However, there were no significant differences between the Reciproc and WaveOne files. Conclusions: The single file rotary systems used in this study may be recommended for clinical use. Key words: Infrared thermometer, one file systems, reciprocating motion, root canal preparation, ...

  4. Thermal and microstructural effects of nanosecond pulsed Nd:YAG laser irradiation on tooth root surface

    Science.gov (United States)

    Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.; Grill, G.; Liaw, Lih-Huei L.; Berns, Michael W.

    1995-05-01

    Plaque, calculus and altered cementum removal by scaling and root planing is a fundamental procedure in periodontal treatment. However, the residual smear layer contains cytotoxic and inflammatory mediators which adversely affect healing. Chemical smear layer removal is also problematic. In previous investigations effective smear layer removal was achieved using long pulsed irradiation at 1.06 (mu) . However, laser irradiation was not adequate as an alternative to scaling and root planing procedures and concurrent temperature rises exceeded thermal thresholds for pulpal and periodontal safety. It was the aim of this study to determine whether nanosecond pulsed irradiation at 1.06 (mu) could be used as an alternative or an adjunct to scaling and root planing. Sixty freshly extracted teeth were divided as follows: 5 control, 5 root planed only, 25 irradiated only, 25 root planed and irradiated. Irradiation was performed at fluences of 0.5 - 2.7 J/cm2, total energy densities of 12 - 300 J/cm2, frequencies of 2 - 10 Hz using the Medlite (Continuum) laser. Irradiation-induced thermal events were recorded using a thermocouple within the root canal and a thermal camera to monitor surface temperatures. SEM demonstrated effective smear layer removal with minimal microstructural effects. Surface temperatures increased minimally (< 3 C) at all parameters, intrapulpal temperature rises remained below 4 C at 2 and 5 Hz, F < 0.5 J/cm2. Without prior scaling and root planing, laser effects did not provide an adequately clean root surface.

  5. Sorption of fibronectin to human root surfaces in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Mendieta, C.; Caravana, C.; Fine, D.H. (Columbia Univ., New York, NY (USA))

    1990-05-01

    The purpose of this study was to determine the conditions that favor the sorption and retention of human plasma fibronectin to cementum. Rectangular root segments prepared from teeth extracted for orthodontic reasons were mounted on a capillary pipette and immersed in solutions of {sup 125}I fibronectin for assay of cementum sorption under various conditions. Kinetic studies showed sorption to be rapid, with 77% of the maximum fibronectin sorption occurring within 1 minute. Fibronectin sorption was reduced when added in conjunction with serum and was inhibited by monovalent ions (such as sodium), but enhanced in the presence of divalent cations (such as calcium). Exposure of cementum to serum partially blocked subsequent sorption of fibronectin, while cementum bound fibronectin was eluted by subsequent exposure to serum. Treatment of cementum with citric acid pH 1.1 (4 minutes) followed by 5% sodium hypochlorite (5 minutes) caused a significant increase in fibronectin sorption with maximum retention upon subsequent exposure to serum (P less than 0.05). Fibronectin sorption to cementum was: rapid, electrostatic in nature, competitive, reversible, Ca+(+)-facilitated, and maximized by prior treatment of the root with citric acid and sodium hypochlorite. It is concluded that sorption of fibronectin to cementum can be achieved for clinical gain; however, conditions of application can significantly influence both accumulation and subsequent release of root sorbed material.

  6. Effect of the association between citric acid and EDTA on root surface etching.

    Science.gov (United States)

    Manzolli Leite, Fabio Renato; Nascimento, Gustavo Giacomelli; Manzolli Leite, Elza Regina; Leite, Amauri Antiquera; Cezar Sampaio, Josá Eduardo

    2013-09-01

    This study aims to compare the clot stabilization on root surfaces conditioned with citric acid and ethylenediamine-tetraacetic acid (EDTA). Scaled root samples (n = 100) were set in fve groups: group I-control group (saline solution); group II (24% EDTA); group III (25% citric acid); group IV (EDTA + citric acid); group V (citric acid + EDTA). Fifty samples were assessed using the root surface modifcation index (RSMI). The other 50 received a blood drop after conditioning. Clot formation was assessed using blood elements adhesion index (BEAI). A blind examiner evaluated photomicrographs. Statistical analysis considered p citric acid (group-IV) reduced clot formation in comparison to citric acid use alone (group-III). Root conditioning with citric acid alone and before EDTA had the best results for smear layer removal and clot stabilization. EDTA inhibited clot stabilization on root surface and must have a residual activity once it has diminished clot adhesion to root even after citric acid conditioning. Thus, EDTA can be used to neutralize citric acid effects on periodontal cells without affecting clot stabilization. Clinical signifcance: To demonstrate that citric acid use on root surfaces previously affected by periodontal disease may favor clot stabilization and may have a benefcial effect on surgical outcomes. Also, EDTA can be used to neutralize citric acid effects on periodontal cells.

  7. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    Science.gov (United States)

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as relatively improve the control of thermal damagee.

  8. Root surface modifiers and subepithelial connective tissue graft for treatment of gingival recessions: a systematic review.

    Science.gov (United States)

    Karam, P S B H; Sant'Ana, A C P; de Rezende, M L R; Greghi, S L A; Damante, C A; Zangrando, M S R

    2016-04-01

    Many techniques and flap designs have been used to treat gingival recession by root coverage, but subepithelial connective tissue graft (SCTG) seems to be the gold standard procedure. In an attempt to improve the healing process and increase the success rate of root coverage, some authors have used root modifiers, including different root conditioners, lasers, EMD, recombinant human growth factors and platelet-rich plasma (PRP). The aim of this systematic review was to evaluate the effects of root biomodification in clinical outcomes of gingival recessions treated with SCTG. Studies reporting SCTG associated with any form of root surface biomodification for root coverage of gingival recessions (Miller Class I and Class II) were considered as eligible for inclusion. Studies needed to have data of clinical outcomes in a follow up of at least 6 months. Screening of the articles, data extraction and quality assessment were conducted independently and in duplicate. None of the products evaluated (citric acid, EDTA, PRP, lasers and EMD) showed evident benefits in clinical outcomes. Test and control groups presented similar outcomes related to root coverage and periodontal parameters, with no statistical differences between them. The exception was root biomodification with the neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, which impaired root coverage and had a detrimental effect on clinical outcomes. Based on the present clinical data, the use of root surface modifiers to improve clinical outcomes in gingival recessions treated with SCTG is not justified. More in vivo studies, and randomized clinical trials with larger sample sizes and extended follow up, are necessary. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. An In-Situ Root-Imaging System in the Context of Surface Detection of CO2

    Science.gov (United States)

    Apple, M. E.; Prince, J. B.; Bradley, A. R.; Zhou, X.; Lakkaraju, V. R.; Male, E. J.; Pickles, W.; Thordsen, J. J.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2009-12-01

    Carbon sequestration is a valuable method of spatially confining CO2 belowground. The Zero Emissions Research Technology, (ZERT), site is an experimental facility in a former agricultural field on the Montana State University campus in Bozeman, Montana, where CO2 was experimentally released at a rate of 200kg/day in 2009 into a 100 meter underground injection well running parallel to the ground surface. This injection well, or pipe, has deliberate leaks at intervals, and CO2 travels from these leaks upward to the surface of the ground. The ZERT site is a model system designed with the purpose of testing methods of surface detection of CO2. One important aspect of surface detection is the determination of the effects of CO2 on the above and belowground portions of plants growing above sequestration fields. At ZERT, these plants consist of a pre-existing mixture of herbaceous species present at the agricultural field. Species growing at the ZERT site include several grasses, Dactylis glomerata (Orchard Grass), Poa pratensis (Kentucky Bluegrass), and Bromus japonicus (Japanese Brome); the nitrogen-fixing legumes Medicago sativa, (Alfalfa), and Lotus corniculatus, (Birdsfoot trefoil); and an abundance of Taraxacum officinale, (Dandelion). Although the aboveground parts of the plants at high CO2 are stressed, as indicated by changes in hyperspectral plant signatures, leaf fluorescence and leaf chlorophyll content, we are interested in determining whether the roots are also stressed. To do so, we are combining measurements of soil conductivity and soil moisture with root imaging. We are using an in-situ root-imaging system manufactured by CID, Inc. (Camas, WA), along with image analysis software (Image-J) to analyze morphometric parameters in the images and to determine what effects, if any, the presence of leaking and subsequently upwelling CO2 has on the phenology of root growth, growth and turnover of individual fine and coarse roots, branching patterns, and root

  10. Calcium-(organo)aluminum-proton competition for adsorption to tomato root cell walls: Experimental data and exchange model calculations

    NARCIS (Netherlands)

    Riemsdijk, van W.H.; Keltjens, W.G.; Postma, J.W.M.

    2005-01-01

    Aluminum interacts with negatively charged surfaces in plant roots, causing inhibition of growth and nutrient uptake in plants growing on acid soils. Pectins in the root cell wall form the major cation adsorption surface, with Ca2+ as the main adsorbing cation. Adsorption of Al3+ and Ca2+ to

  11. Osseointegration at implants placed into delayed reimplanted roots: an experimental study in dogs.

    Science.gov (United States)

    de Carvalho Cardoso, Leandro; Poi, Wilson Roberto; Botticelli, Daniele; Junior, Idelmo Rangel Garcia; Pantani, Fabio; Pereira, Cassiano Costa Silva

    2014-05-01

    To evaluate peri-implant bone repair of implants placed into the roots of delayed reimplanted teeth, in a process of ankylosis and external replacement resorption. The third and fourth mandibular premolars of four (4) beagle dogs were used as experimental sites. The study was divided into three stages: stage 1 - endodontic and extraction/reimplantation session, stage 2 - decrowning session and stage 3 - implant placement. Two groups were identified: (I) immediate implants, including implants installed in fresh extraction sockets of the distal roots, and (II) experimental implants, including implants installed into the retained ankylotic mesial roots. In each group, 16 implants were planned to be inserted, but only 9 immediate implants and 12 experimental implants were used for analyses. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed and ground sections were obtained for histomorphometric evaluation. Eleven of the twelve implants in the experimental group were found successful regarding clinical and radiographic aspects. For immediate implants, a lower BIC% was found at the coronal portion (BIC% 1 = 42.2%) compared with the three most coronal threads portion (BIC% 2 = 55.1). Also, experimental implants presented a lower BIC% at the coronal portion (BIC% 1 = 36.9%) compared with the three most coronal threads portion (BIC% 2 = 45.3). Comparison between groups showed a higher degree of BIC% and mineralization in immediate group compared with experimental group. The differences, however, did not yield statistical significance. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Thermal measurement of root surface temperatures during application of intracanal laser energy in vitro

    Science.gov (United States)

    Goodis, Harold E.; White, Joel M.; Neev, Joseph

    1993-07-01

    The use of laser energy to clean, shape, and sterilize a root canal system space involves the generation of heat due to the thermal effect of the laser on the organic tissue contents and dentin walls of that space. If heat generation is above physiologic levels, irreparable damage may occur to the periodontal ligament and surrounding bone. This study measured temperature rise on the outer root surfaces of extracted teeth during intracanal laser exposure. Thirty single rooted, recently extracted teeth free of caries and restorations were accessed pulps extirpated and divided into three groups. Each root canal system was treated with a 1.06 micrometers pulsed Nd:YAG laser with quartz contact probes. Temperatures were recorded for all surfaces (mesial distal, buccal, lingual, apical) with infrared thermography utilizing a detector response time of 1 (mu) sec, sensitivity range (infrared) of 8 to 12 micrometers and a scan rate of 30 frames/sec.

  13. Peroxide penetration from the pulp chamber to the external root surface after internal bleaching.

    Science.gov (United States)

    Palo, Renato Miotto; Valera, Marcia Carneiro; Camargo, Samira Esteves Afonso; Camargo, Carlos Henrique Ribeiro; Cardoso, Paula Elaine; Mancini, Maria Nadir Gasparoto; Pameijer, Cornelis H

    2010-06-01

    To quantify the amount of peroxide penetration from the pulp chamber to the external surface of teeth during the walking bleaching technique. Seventy-two bovine lateral incisors were randomly divided over five experimental groups and one control (n = 12 per group): (1) 35% hydrogen peroxide (HP); (2) 35% carbamide peroxide (CP); (3) sodium perborate (SP); (4) (HP+SP); (5) (CP+SP) and (6) Control (CG), deionized water. All groups were treated according to the walking bleach technique. After 7 days at 37 degrees C in an acetate buffer solution, 100 microl violet leukocrystal coloring and 50 microl peroxidase was added, producing a blue stain that could be measured in a spectrophotometer and then converted into peroxide microg/ml. G5 exhibited the greatest penetration, while G2 and G3 produced the lowest values. All bleaching agents penetrated from the pulp chamber to the external root surface. There was a direct correlation between the presence of oxidative agents and penetration potential. Sodium perborate in distilled water was less oxidative and appeared to be the least aggressive bleaching agent.

  14. Successful periodontal ligament regeneration by periodontal progenitor preseeding on natural tooth root surfaces.

    Science.gov (United States)

    Dangaria, Smit Jayant; Ito, Yoshihiro; Luan, Xianghong; Diekwisch, Thomas G H

    2011-10-01

    The regeneration of lost periodontal ligament (PDL) and alveolar bone is the purpose of periodontal tissue engineering. The goal of the present study was to assess the suitability of 3 odontogenic progenitor populations from dental pulp, PDL, and dental follicle for periodontal regeneration when exposed to natural and synthetic apatite surface topographies. We demonstrated that PDL progenitors featured higher levels of periostin and scleraxis expression, increased adipogenic and osteogenic differentiation potential, and pronounced elongated cell shapes on barren root chips when compared with dental pulp and dental follicle cells. When evaluating the effect of surface characteristics on PDL progenitors, natural root surfaces resulted in elongated PDL cell shapes, whereas PDL progenitors on synthetic apatite surfaces were rounded or polygonal. In addition, surface coatings affected PDL progenitor gene expression profiles: collagen I coatings enhanced alkaline phosphatase and osteocalcin expression levels and laminin-1 coatings increased epidermal growth factor (EGF), nestin, cadherin 1, and keratin 8 expression. PDL progenitors seeded on natural tooth root surfaces in organ culture formed new periodontal fibers after 3 weeks of culture. Finally, replantation of PDL progenitor-seeded tooth roots into rat alveolar bone sockets resulted in the complete formation of a new PDL and stable reattachment of teeth over a 6-month period. Together, these findings indicate that periodontal progenitor cell type as well as mineral surface topography and molecular environment play crucial roles in the regeneration of true periodontal anchorage.

  15. Evaluation of blood cell attachment on Er: YAG laser applied root surface using scanning electron microscopy.

    Science.gov (United States)

    Cekici, Ali; Maden, Ilay; Yildiz, Sercan; San, Tangul; Isik, Gulden

    2013-01-01

    Periodontal regeneration is dependent on the uninterrupted adhesion, maturation and absorption of fibrin clots to a periodontally compromised root surface. The modification of the root surface with different agents has been used for better fibrin clot formation and blood cell attachment. It is known that Er:YAG laser application on dentin removes the smear layer succesfully. The aim of this study is to observe blood cell attachment and fibrin network formation following ER:YAG laser irradiation on periodontally compromised root surfaces in comparison to chemical root conditioning techniques in vitro. 40 dentin blocks prepared from freshly extracted periodontally compromised hopeless teeth. Specimens were divided in 5 groups; those applied with PBS, EDTA, Citric acid and Er:YAG. They were further divided into two groups: those which had received these applications, and the control group. The specimens were evaluated with scanning electron microscope and micrographs were taken. Smear layer and blood cell attachment scoring was performed. In the Er:YAG laser applied group, smear layer were totally removed. In the blood applied specimens, better fibrin clot formation and blood cell attachment were observed in the Er:YAG group. In the group that had been applied with citric acid, the smear layer was also removed. The smear layer could not be fully removed in the EDTA group. Er:YAG laser application on the root dentin seems to form a suitable surface for fibrin clot formation and blood cell attachment. Further clinical studies to support these results are necessitated.

  16. Evaluation of the effects of Er:YAG and Nd:YAG lasers and ultrasonic instrumentation on root surfaces.

    Science.gov (United States)

    Gómez, Clara; Bisheimer, Marcela; Costela, Angel; García-Moreno, Immaculada; García, Ana; García, Juan Antonio

    2009-02-01

    Evaluate the effects of Er:YAG and Nd:YAG lasers on the morphology and chemical composition of root surfaces and compare them with those produced by using ultrasonic instrumentation (US). The benefits of the use of Er:YAG and Nd:YAG lasers as an adjunct to conventional periodontal therapy have not yet been determined. The radicular surfaces of 18 extracted human multi-radicular teeth were treated for 1 min on the right side of the root either with laser (Er:YAG, 2940 nm, 10 Hz, output 80 mJ/pulse, 100 mJ/pulse, and 120 mJ/pulse, 250 mus pulse length, spot size 0.8 mm, or Nd:YAG; 1064 nm; 10 Hz; output 0.5, 1.0, and 1.5 W; 150 micros pulse length; spot size 0.6 mm) or on the left side of the root with US (28,500 Hz, medium power, and standard tip). Subsequently, the teeth were subjected to scanning electron microscopic (SEM) examination and energy dispersive x-ray (EDX) spectrometric analysis. SEM examination of the areas treated with US showed a smooth appearance. In all specimens from the experimental groups treated with Er:YAG laser, entire cementum layers were removed and dentinal tubules were exposed. EDX analysis of root surfaces treated by Er:YAG laser at 120 mJ/pulse showed an increase in the peak intensities of calcium and phosphorus more than that seen with US treatment. When Nd:YAG laser irradiation was utilized, SEM examination showed effects such as melting, and fissuring of the root surface. EDX analysis of root surfaces treated by the Nd:YAG laser at 1.5 W revealed some changes in the elemental composition, with the peak intensities of calcium and phosphorus decreased in relation to the levels obtained by US treatment. US treatment better preserves the original morphology of cementum compared with Er:YAG and Nd:YAG laser treatment.

  17. Experimental Salix shoot and root growth statistics on the alluvial sediment of a restored river corridor

    Science.gov (United States)

    Pasquale, N.; Perona, P.; Verones, F.; Francis, R.; Burlando, P.

    2009-12-01

    River restoration projects encompass not only the amelioration of flood protection but also the rehabilitation of the riverine ecosystem. However, the interactions and feedbacks between river hydrology, riparian vegetation and aquifer dynamics are still poorly understood. Vegetation interacts with river hydrology on multiple time scales. Hence, there is considerable interest in understanding the morphodynamics of restored river reaches in relation to the characteristics of vegetation that may colonize the bare sediment, and locally stabilize it by root anchoring. In this paper we document results from a number of ongoing experiments within the project RECORD (Restored CORridor Dynamics, sponsored by CCES - www.cces.ch - and Cantons Zurich and Thurgau, CH). In particular, we discuss both the above and below ground biomass growth dynamics of 1188 Salix cuttings (individual and group survival rate, growth of the longest shoots and number of branches and morphological root analysis) in relation to local river hydrodynamics. Cuttings were organized in square plots of different size and planted in spring 2009 on a gravel island of the restored river section of River Thur in Switzerland. By periodical monitoring the plots we obtained a detailed and quite unique set of data, including root statistics of uprooted samples derived from image analysis from a high-resolution scanner. Beyond describing the survival rate dynamics in relation to river hydrology, we show the nature and strength of correlations between island topography and cutting growth statistics. In particular, by root analysis and by comparing empirical histograms of the vertical root distribution vs satured water surface in the sediment, we show that main tropic responses on such environment are oxytropism, hydrotropism and thigmotropism. The main factor influencing the survival rate is naturally found in erosion by floods, of which we also give an interesting example that helps demonstrate the role of river

  18. [Evaluation of labial surface root filling combined with porcelain dental restoration].

    Science.gov (United States)

    Liu, Yuan-qiao; Huang, Zhi-hua; Hu, Huan-yu

    2015-04-01

    To analyze the effect of porcelain dental restoration combined with labial surface root filling for the anterior teeth. One hundred cases with anterior teeth protrusion treated in our department from January 2010 to January 2014 underwent porcelain dental restoration combined with labial surface root filling. The measurements in cephalometric X-ray films before and after treatment were compared, and porcelain dental appearance and function were evaluated. The data was statistically analyzed with SPSS18.0 software package. After treatment, U1-SN, U1-X, U1-Y were significantly lower than before treatment (Pporcelain teeth after treatment, correction of protruding anterior teeth, fitting with adjacent teeth and alleviation of deep overbite and deep cover was 96.00%, 95.00%, 98.00% and 91.00%, respectively. Porcelain dental restoration after root canal treatment can effectively improve anterior teeth protrusion and increase the aesthetic appearance, which is worthy of clinical application.

  19. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  20. Root surface caries occurrence, oral hygiene status and habits in a ...

    African Journals Online (AJOL)

    Objectives: The study evaluated root surface caries (RS C) occurrence in relation to oral hygiene status and habits in a suburban Nigerian Population. Methods: Seven hundred and twenty consecutive subjects, aged 20 years and above of both genders, attending the General Outpatient Department (GOPD) of Obafemi ...

  1. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating.

    Science.gov (United States)

    Mei, May Lei; Li, Quan-Li; Chu, Chun Hung

    2016-05-25

    Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG) and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  2. Wound healing of dehiscence defects following different root conditioning modalities: an experimental study in dogs.

    Science.gov (United States)

    Zandim, Daniela Leal; Leite, Fábio Renato Manzolli; da Silva, Vanessa Camila; Lopes, Beatriz Maria Valério; Spolidorio, Luiz Carlos; Sampaio, José Eduardo Cezar

    2013-07-01

    The purpose of this study was to investigate the periodontal healing pattern of dehiscence-type defects following different chemical root conditioning modalities. Buccal osseous dehiscence defects were created on six teeth of seven dogs. After dental plaque accumulation, defects were treated with sterile saline solution (control group) or one chemical conditioning modality: citric acid (CA group), ethylenediaminetetraacetic acid (EDTA group), tetracycline (TTC group), citric acid + tetracycline (CA + TTC group), or tetracycline + citric acid (TTC + CA group). After 3 months of healing, clinical parameters were evaluated, and the animals were killed. Histological sections were processed, and a computer-assisted histometric analysis was used to evaluate the formation of new cementum, new bone, and epithelial apical migration. All treatments yielded significant improvements in terms of probing depth decrease and clinical attachment level gain compared to baseline values; however, without significant differences among the groups (p > 0.05; one-way ANOVA). The highest amount of new cementum was noted in the EDTA group (3.72 ± 0.83 mm, 77.6 %), while the lowest amount of new bone was observed in the TTC group (0.7 ± 0.94 mm, 14.3 %). However, no statistically significant differences could be observed among the groups regarding epithelial apical migration, new cementum, and alveolar bone formation (p > 0.05). Chemical root surface conditioning did not promote any significant improvement in periodontal healing pattern of dehiscence-type defects in dogs. Chemical root surface conditioning after surgical debridement did not promote positive or negative effects on periodontal healing pattern of dehiscence-type defects.

  3. Evaluation of Chlorine Dioxide Irrigation Solution on the Microhardness and Surface Roughness of Root Canal Dentin.

    Science.gov (United States)

    Ballal, Nidambur Vasudev; Khandewal, Deepika; Karthikeyan, Saravana; Somayaji, Krishnaraj; Foschi, Federico

    2015-12-01

    The aim of this study was to evaluate the effect of chlorine dioxide and various other more common irrigation solutions on the microhardness and surface roughness of root canal dentin. Fifty human maxillary central incisors were sectioned longitudinally and treated for 1 minute with 5 ml of the following aqueous solutions (v/v%): Group 1: 13.8% chlorine dioxide, Group 2: 17% ethylene diamine tetraacetic acid (EDTA). Group 3: 7% maleic acid, Group 4: 2.5% sodium hypochlorite (5 ml/min), Group 5: Saline (control). Specimens were subjected to microhardness and surface roughness testing. Chlorine dioxide and sodium hypochlorite reduced the microhardness more than other test agents. The highest surface roughness was produced with maleic acid. Chlorine dioxide should be used cautiously during chemomechanical preparation of the root canal system in order to prevent untoward damage to the teeth.

  4. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  5. Human periodontal ligament fibroblast response to PDGF-BB and IGF-1 application on tetracycline HCI conditioned root surfaces.

    Science.gov (United States)

    Gamal, A Y; Mailhot, J M; Garnick, J J; Newhouse, R; Sharawy, M M

    1998-05-01

    1) as well as the TTC control (group 5). The combination of PDGF-BB/IGF-1 (group 4) did not significantly improve the adhesion of cells compared to PDGF-BB alone (group 2), but did significantly improve adhesion when compared to IGF-1 alone (group 3). There were no significant differences in cell morphology between the growth factor groups (groups 2, 3, 4) and control (group 1). In general, the cells demonstrated a flat, stellate-shaped morphology. The results of the TTC conditioned root surfaces, showed a statistically significant increase of cellular adherence in the PDGF-BB group (group 6) when compared to the TTC control (group 5), similar to the non-TTC group (group 2). However, the morphology of the cells in groups 5, 6, 7, and 8 demonstrated generally a rounded or oval shape with only an occasional cell exhibiting a flat form. In the experimental system of this study, the inclusion of PDGF-BB on the surface of dentine chips increased the number of adhering PDL cells, and the addition of TTC conditioning had little effect except to change the morphology of adhering cells.

  6. Response Surface Modelling of Noradrenaline Production in Hairy Root Culture of Purslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    Mehdi Ghorbani

    2015-03-01

    Full Text Available Common purslane (Portulaca oleracea L. is an annual plant as one of the natural sources for noradrenaline hormone. In this research, hairy root culture of purslane was established by using Agrobacterium rhizogenes strain ATCC 15834. In the following, Box-Behnken model of response surface methodology (RSM was employed to optimize B5 medium for the growth of P. oleracea L. hairy root line. According to the results, modelling and optimization conditions, including sucrose, CaCl2.H2O, H2PO4 and NO3-/NH4+ concentrations on maximum dry weight (0.155 g and noradrenaline content (0.36 mg.g-1 DW was predicted. These optimal conditions predicted by RSM were confirmed the enhancement of noradrenaline production as an application potential for production by hairy root cultures.

  7. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  8. Effects of Er,Cr:YSGG laser irradiation on root surfaces for adhesion of blood components and morphology.

    Science.gov (United States)

    de Oliveira, Guilherme José Pimentel Lopes; Sampaio, José Eduardo Cézar; Marcantonio, Rosemary Adriana Chiérici

    2010-12-01

    This in vitro study evaluated the effects of Er,Cr:YSGG laser irradiation on root surfaces for adhesion of blood components and morphology. No previous research has evaluated the biocompatibility of root surfaces irradiated by Er,Cr:YSGG laser. Fifteen teeth were studied from nonsmoking patients with severe periodontal disease. Sixty root surface specimens were obtained by selecting four from each tooth. Specimens were divided into three groups of 20 each, according to treatments. Group 1 (G1) was treated by scaling and root planing (SRP), group 2 (G2) was irradiated by Er,Cr:YSGG laser, and group 3 (G3) was treated by SRP and Er,Cr:YSGG laser irradiation. Blood was placed on each of 10 specimens from each of the three groups, to evaluate adhesion of blood components to the root surfaces. A morphological analysis was made of the root surfaces of the other 10 specimens from each group. All were photomicrographed in a scanning electron microscope (SEM) and classified according to the index of blood component adhesion and modified index for analysis of morphology. Statistical processing was done with the Kruskal-Wallis and Mann-Whitney tests (p blood components to root surfaces were found between the groups (p = 0.359). However, morphological analysis disclosed that all root surfaces irradiated by Er,Cr:YSGG laser (100%) were rougher than surfaces that were not irradiated (G1-G2: p = 0.0003 and G1-G3: p = 0.0003). Er,Cr:YSGG laser irradiation produced rougher root surfaces than treatment by SRP. However, it did not interfere with the adhesion of blood components to the root surfaces.

  9. The antifungal compound totarol of Thujopsis dolabrata var. hondai seeds selects for fungi on seedling root surfaces.

    Science.gov (United States)

    Yamaji, Keiko; Mori, Shigeta; Akiyama, Masaru; Kato, Atsushi; Nakashima, Tadakazu

    2007-12-01

    Hinoki-asunaro (Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino) is a tree endemic in Japan whose seeds produce several terpenoids. We hypothesized that antifungal compounds in seeds might select for fungi on the root surfaces of T. dolabrata var. hondai seedlings. We examined seed and soil fungi, their sensitivity to methanol extracts of the seeds, the fungi on root surfaces of seedlings grown in Kanuma pumice (a model mineral soil) and nursery soil, and the frequency at which each fungus was detected on the seedling root surface. We calculated correlation coefficients between fungal detection frequency on root surfaces and fungal sensitivity to seed extracts. We also isolated from the seeds the antifungal compound totarol that selected for fungi on root surfaces. Species of Alternaria, Cladosporium, Pestalotiopsis, and Phomopsis were the most frequently isolated fungi from seeds. Mortierella and Mucor were the dominant fungi isolated from Kanuma pumice, whereas Umbelopsis and Trichoderma were the main fungi isolated from nursery soil. Alternaria, Cladosporium, Mortierella, Pestalotiopsis, and Phomopsis were the dominant fungi isolated from root surfaces of seedlings grown in Kanuma pumice, and Alternaria, Cladosporium, Pestalotiopsis, Phomopsis, and Trichoderma were the main root-surface fungi isolated from seedlings grown in nursery soil. The fungal detection frequencies on root surfaces in both soils were significantly and negatively correlated with fungal sensitivity to the seed extract. A similar correlation was found between the fungal detection frequency on root surfaces and fungal sensitivity to totarol. We conclude that totarol is one factor that selects for fungi on root surfaces of T. dolabrata var. hondai in the early growth stage.

  10. Effect of nickel titanium file design on the root surface strain and apical microcracks.

    Science.gov (United States)

    Jamleh, Ahmed; Adorno, Carlos G; Ebihara, Arata; Suda, Hideaki

    2016-04-01

    The aim of this study was to determine the effect of nickel titanium file design on the root surface strain generated and apical microcracks caused during canal shaping. Thirty-three mandibular incisors were distributed into LightSpeed X, FlexMaster and a control group. A strain gauge was fixed apically on the proximal root surface to determine the maximum strain during canal shaping. Except for the control group, all root canals were enlarged to size 50. Images were taken after removing the apical 1 and 2 mm of the root end. Mean maximum strain values and presence of microcracks were statistically compared using the t-test and chi-square test, respectively. During canal shaping, the strain increased cumulatively with mean maximum strains of 808.2 ± 228.8 and 525.1 ± 168.9 microstrain in LightSpeed X and FlexMaster, respectively (P = 0.004). Both systems caused comparable microcracks. Although LightSpeed X produced higher maximum strain, no difference in microcrack development was found between both systems. © 2015 Australian Society of Endodontology.

  11. Morphologic analysis, by means of scanning electron microscopy, of the effect of Er: YAG laser on root surfaces submitted to scaling and root planing

    Directory of Open Access Journals (Sweden)

    Theodoro Letícia Helena

    2002-01-01

    Full Text Available The purpose of this study was to morphologically evaluate, by means of scanning electron microscopy, the effects of Er:YAG laser on the treatment of root surfaces submitted to scaling and root planing with conventional periodontal instruments. Eighteen root surfaces (n = 18, which had been previously scaled and planed, were assigned to 3 groups (n = 6. The control Group (G1 received no further treatment; Group 2 (G2 was irradiated with Er:YAG laser (2.94 mum, with 47 mJ/10 Hz, in a focused mode with air/water spray during 15 s and with 0.57 J/cm² of fluency per pulse; Group 3 (G 3 was irradiated with Er:YAG laser (2.94 mum, with 83 mJ/10 Hz, in a focused mode with air/water spray during 15 s and with 1.03 J/cm² of fluency per pulse. We concluded that the parameters adopted for Group 3 removed the smear layer from the root surface, exposing the dentinal tubules. Although no fissures, cracks or carbonized areas were observed, an irregular surface was produced by Er:YAG laser irradiation. Thus, the biocompatibility of the irradiated root surface, within the periodontal healing process, must be assessed.

  12. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  13. Strain Distribution in Root Surface Dentin of Maxillary Central Incisors during Lateral Compaction.

    Directory of Open Access Journals (Sweden)

    Raphael Pilo

    Full Text Available To precisely quantify the circumferential strains created along the radicular dentin of maxillary incisors during a simulated clinical procedure of lateral compaction.Six miniature strain gauges were bonded on the roots of fourteen recently extracted maxillary central incisors that were subjected to root canal instrumentation. The strain gauges were bonded at three levels (apical, middle, and coronal and four aspects (buccal, lingual, mesial, and distal of the roots. Each tooth was embedded in a PVC cylinder containing polyvinyl-siloxane impression material. Root filling was then performed by simulating the clinical procedure of lateral compaction using nickel-titanium finger spreaders. The force applied to the spreader and the strains developing in the surface root dentin were continuously recorded at a frequency of 10 Hz.The highest strains that developed during lateral compaction were in the mesial and distal aspects at the apical level of the root. The magnitudes of the maximal mesial/distal strains at the apical as well as the mid-root levels were approximately 2.5-3 times higher than those at the buccal/lingual aspects (p = 0.041. The strains decreased significantly (p<0.04 from the apical through the mid-root levels to the coronal level, yielding gradients of 2.5- and 6-fold, respectively. The mesial and distal strains were consistently tensile and did not differ significantly; however, the buccal strains were generally 35-65% higher than the lingual strains (p = 0.078. Lateral compaction resulted in the gradual build-up of residual strains, resulting in generation of a 'stair-step' curve. These strains declined gradually and almost completely disappeared after 1000 sec.With proper mounting of several miniature strain gauges at various levels and aspects of the root, significant circumferential strains can be monitored under clinically relevant compaction forces. The residual strains at the end of lateral compaction are not stored in the

  14. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment.

    Science.gov (United States)

    Gutknecht, Norbert; Franzen, Rene; Meister, Jörg; Vanweersch, Leon; Mir, Maziar

    2005-09-01

    The thermal rise threshold of an 810-nm semi-conductor diode laser on the root surface when used in root canals in vitro for laser assisted root canal treatment is investigated in this study. A total of 50 human single-rooted extracted teeth were included. For this study, the canals were enlarged up to an apical size of ISO#50 file. Laser irradiation was performed with six different settings. Specimens were irradiated at 0.6-1 W output power at the distal end of the fiber and about 1-1.5 W output power in the continuous mode (CW) as two groups. In the third group, 0.6-1 W output power, 10 ms pulse length (PL) and 10 ms interval duration (ID) were selected. In three other groups 1-1.5 W output power were used with different PL and ID as following: PL 10 and ID 10 ms, PL 10 and ID 20 ms and PL 20 and ID 20 ms. The total irradiation time was from 5 to 20 s per canal with a 200 mum in diameter and 25 mm long tip. After laser treatment, the temperature changes at the outer root surface were registered by means of NiCr-Ni measuring sensors and a T 202 thermometer. The safe temperature threshold for applying this diode laser in root canal is considered as 7 degrees C increase. To avoid increasing the temperature changes at the outer root surface related to this threshold, following total irradiation times were found: 0.6-1 W output power (10 ms PL/10 ms ID): 20 s (s), 1-1.5 W output power (10 ms/10 ms and 20 ms/20 ms): 15 s, 0.6-1 W output power CW and 1-1.5 W output power (20 ms PL/10 ms ID): 10 s and 1-1.5 W output power CW: 5 s. In the first three groups, 5 s irradiation and 5 s rest period avoided a temperature increase above the threshold of 7 degrees C).

  15. Experimental water droplet impingement data on modern aircraft surfaces

    Science.gov (United States)

    Papadakis, Michael; Breer, Marlin D.; Craig, Neil C.; Bidwell, Colin S.

    1991-01-01

    An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Preliminary experimental and analytical impingement efficiency data are presented for a NLF(1)-0414F airfoil, s swept MS(1)-0317 airfoil, a swept NACA 0012 wingtip and for a Boeing 737-300 engine inlet model.

  16. Multimodular assessment of a calcified extraradicular deposit on the root surfaces of a mandibular molar.

    Science.gov (United States)

    Petitjean, E; Mavridou, A; Li, X; Hauben, E; Cotti, E; Lambrechts, P

    2017-09-02

    To achieve a better understanding of a calcified extraradicular deposit on the apical root surfaces of a mandibular first molar associated with a radicular cyst and a sinus tract. A multimodular approach was applied using a combination of multiple investigation methods. This case report presents a mandibular first molar with a calcified extraradicular deposit on the apical root surfaces of both roots. An apical periodontitis lesion was present and a sinus tract served as the only communication with the oral cavity. Diagnosis and treatment planning were based on clinical, radiographic (two- and three-dimensional) and ultrasound examination. The tooth was further analysed after extraction using microscopic imaging, nano-computed tomography (nano-CT), hard- and soft tissue histology and electron probe microanalysis. This multimodular approach revealed the calculus-like appearance and mineral composition of the extraradicular deposit. Multiple hypotheses about its aetiology are discussed. Calcified extraradicular deposits can develop on the apical root surfaces of teeth with apical periodontitis in association with a radicular cyst and sinus tract. A sinus tract can serve as the only communication between the apical lesion and the oral cavity whilst no periodontal defects are present. The interplay of intra-oral radiography, high resolution CBCT, nano-CT, hard tissue histology and EPMA can reveal the calculus-like appearance and composition of the extraradicular deposit. Calcified extraradicular deposits appear hyperechoic on ultrasound imaging and can lead to the occurrence of twinkling artefacts due to their rough mineralized surface. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Effect of four dental varnishes on the colonization of cariogenic bacteria on exposed sound root surfaces.

    Science.gov (United States)

    Ekenbäck, S B; Linder, L E; Lönnies, H

    2000-01-01

    The aim of this study was to evaluate the effect of four different dental varnishes on the colonization of mutans streptococci, total streptococci and lactobacilli on exposed sound root surfaces. Sixty-five individuals were randomly allotted to one of four groups for treatment with Cervitec((R) ) varnish containing 1% chlorhexidine and 1% thymol, a thymol varnish or one of two different fluoride varnishes, Fluor Protector and Duraphat. The varnish was applied to three buccal root surfaces in each patient at baseline and after 1 week. Dental plaque from the root surfaces was collected and analysed on four different occasions: at baseline, after 1 week, 1 month and 6 months. The Cervitec varnish caused a statistically significant reduction in the number of mutans streptococci over time. The reduction was significant at 1 week and 1 month relative to baseline. The numbers of total streptococci and lactobacilli were not significantly affected by treatment with Cervitec. No statistically significant difference over time was found for mutans streptococci, lactobacilli or total streptococci after treatment with the fluoride varnishes or the thymol varnish.

  18. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation

    CERN Document Server

    Moon, Songky; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2015-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of $0.41\\dot{6}\\eta^2$ for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of $\\eta$ much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained...

  19. Autonomous Experimentation of Carbon Nanotube Using Response Surface Methods

    Science.gov (United States)

    2015-03-26

    minimizes variance (Myers et al., 2009:286). Orthogonality is a very useful property, because it eliminates multicollinearity in the regressor variables...Montgomery et al., 2012:118). Multicollinearity is a common problem in data that is not collected from an experimental design. Multicollinearity can...until the surface appears non-linear. When the lack of fit test detects a significant curvature in the response surface, additional axial runs are

  20. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    Science.gov (United States)

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent

  1. Temperature increases on the external root surface during endodontic treatment using single file systems.

    Science.gov (United States)

    Özkocak, I; Taşkan, M M; Gökt Rk, H; Aytac, F; Karaarslan, E Şirin

    2015-01-01

    The aim of this study is to evaluate increases in temperature on the external root surface during endodontic treatment with different rotary systems. Fifty human mandibular incisors with a single root canal were selected. All root canals were instrumented using a size 20 Hedstrom file, and the canals were irrigated with 5% sodium hypochlorite solution. The samples were randomly divided into the following three groups of 15 teeth: Group 1: The OneShape Endodontic File no.: 25; Group 2: The Reciproc Endodontic File no.: 25; Group 3: The WaveOne Endodontic File no.: 25. During the preparation, the temperature changes were measured in the middle third of the roots using a noncontact infrared thermometer. The temperature data were transferred from the thermometer to the computer and were observed graphically. Statistical analysis was performed using the Kruskal-Wallis analysis of variance at a significance level of 0.05. The increases in temperature caused by the OneShape file system were lower than those of the other files (P temperature increases. However, there were no significant differences between the Reciproc and WaveOne files. The single file rotary systems used in this study may be recommended for clinical use.

  2. Effect of Er,Cr:YSGG and Er:YAG laser irradiation on the adhesion of blood components on the root surface and on root morphology

    Directory of Open Access Journals (Sweden)

    Guilherme José Pimentel Lopes de Oliveira

    2012-06-01

    Full Text Available The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM, of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 µm or Er:YAG (2.94 µm laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, α= 5%. The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 × G2: p = 0.002; G3 × G2: p = 0.017. The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.

  3. Effect of Er,Cr:YSGG and Er:YAG laser irradiation on the adhesion of blood components on the root surface and on root morphology.

    Science.gov (United States)

    Oliveira, Guilherme José Pimentel Lopes de; Theodoro, Letícia Helena; Marcantonio Junior, Elcio; Sampaio, José Eduardo Cezar; Marcantonio, Rosemary Adriana Chiérici

    2012-01-01

    The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM), of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 µm) or Er:YAG (2.94 µm) laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group) - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, α= 5%). The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 × G2: p = 0.002; G3 × G2: p = 0.017). The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.

  4. Impact of chemical agents for surface treatments on microhardness and flexural strength of root dentin

    Directory of Open Access Journals (Sweden)

    Ana Paula Marcheto MARCELINO

    2014-01-01

    Full Text Available This study assessed the cross-sectional Knoop microhardness and flexural strength of root dentin exposed to different surface treatments with chemical agents after biomechanical preparation. Root canals from human canines were biomechanically treated and divided into eight groups (n=10 to receive one of the following dentin treatments: I. Deionized water (control; II. 5.25% Sodium hypochlorite (NaOCl; III. NaOCl + 10% Sodium ascorbate (SA; IV. SA; V. 2% Chlorhexidine gel (CHX; VI. 37% Phosphoric acid gel (PA + CHX; VII. PA; and VIII. PA + NaOCl. The roots were sectioned to obtain specimens that were evaluated for cross-sectional Knoop microhardness and flexural strength using a three-point bending test. ANOVA and Tukey’s test were performed. The microhardness in the control group was significantly higher (p 0.05 to each other. Regarding flexural strength, PA+NaOCl provided statistical higher values than PA+CHX and CHX. However, there was no significant difference between the control group and those groups subjected to surface treatment (p > 0.05. Dentin microhardness was reduced after exposure to NaOCl, CHX, PA, SA and their associations and the flexural strength of radicular dentin was not affected by the chemical agents.

  5. Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil

    Science.gov (United States)

    Yevdokimov, I. V.; Larionova, A. A.; Schmitt, M.; Lopes de Gerenyu, V. O.; Bahn, M.

    2010-12-01

    The contributions of root and microbial respiration to the total emission of CO2 from the surface of gray forest and soddy-podzolic soils were compared under laboratory and field conditions for the purpose of optimizing the field version of the substrate-induced respiration method. The magnification coefficients of respiration upon the addition of saccharose ( k mic) were first determined under conditions maximally similar to the natural conditions. For this purpose, soil cleared from roots was put into nylon nets with a mesh size of 40 μm to prevent the penetration of roots into the nets. The nets with soil were left in the field for 7-10 days for the compaction of soil and the stabilization of microbial activity under natural conditions. Then, the values of k mic were determined in the root-free soil under field conditions or in the laboratory at the same temperature and water content. The contribution of root respiration as determined by the laboratory version of the substrate-induced respiration method (7-36%) was lower compared to two field versions of the method (27-60%). Root respiration varied in the range of 24-60% of the total CO2 emission from the soil surface in meadow ecosystems and in the range of 7-56% in forest ecosystems depending on the method and soil type.

  6. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  7. Evaluation of safety and protective effects of Potentilla fulgens root extract in experimentally induced diarrhoea in mice

    Directory of Open Access Journals (Sweden)

    V. Tangpu

    2014-06-01

    Methods: The protective effects of P. fulgens root extract was investigated against experimentally induced diarrhoea in mice, using four experimental models, i.e. measurement of faecal output, castor oil model, prostaglandin E2 (PGE2 enteropooling assay and gastrointestinal transit test. The safety assessment of root extract was done in mice on the basis of general signs and symptoms of toxicity, food water intake and mortality of animals following their treatment with various doses of extract (100 and ndash;3200 mg/kg. In addition, the serum glutamate oxaloacetate transaminase (SGOT, serum glutamate pyruvate transaminase (SGPT, cholesterol and total protein of experimental mice were also monitored to assess the toxicity of root extract. Results: In the safety assessment studies, P. fulgens root extract did not showed any visible signs of toxicity, but mortality was observed in a single animal at 3200 mg/kg dose of extract. The extract also did not showed any adverse effects on the studied serum parameters of experimental animals. In the antidiarrhoeal tests, administration of 800 mg/kg dose of extract to mice showed 50% protection from diarrhoea evoked by castor oil. In addition, the extract also showed 29.27% reduction in PGE2-induced intestinal secretion as compared to 30.31% recorded for loperamide, a standard anti-diarrhoeal drug. Conclusions: The results of this study indicate that P. fulgens root extract possesses significant anti-diarrhoeal properties. Therefore, the roots of this plant can be an effective traditional medicine for the protection from diarrhoea. [J Intercult Ethnopharmacol 2014; 3(3.000: 103-108

  8. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high-speed imaging

    NARCIS (Netherlands)

    Boutsioukis, C.; Boutsioukis, C.; Verhaagen, B.; Versluis, Michel; Kastrinakis, E.; van der Sluis, L.W.M.

    2010-01-01

    Aim  To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the

  9. Irrigant flow in the root canal: experimental validation of an unsteady computational fluid dynamics model using high-speed imaging

    NARCIS (Netherlands)

    Boutsioukis, C.; Verhaagen, B.; Versluis, M.; Kastrinakis, E.; van der Sluis, L.W.M.

    2010-01-01

    Aim  To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the

  10. Influence of inter-dental tissues and root surface condition on complete root coverage following treatment of gingival recessions: a 1-year retrospective study.

    Science.gov (United States)

    Pini-Prato, Giovanpaolo; Magnani, Cristina; Zaheer, Faizan; Rotundo, Roberto; Buti, Jacopo

    2015-06-01

    To explore the influence of inter-dental tissues and root surface condition on complete root coverage following surgical treatment of gingival recessions. Three hundred and eighty-six single recessions treated over 28 years were assessed. Patient-level and periodontal variables, presence/loss of inter-dental tissues, and presence/absence of non-carious cervical lesions (NCCLs) were recorded. Root coverage was assessed 1-year post-surgery. Multilevel analysis was performed to identify predictors of CRC. Based on type of root coverage procedure four patient groups were created: free gingival graft (FGG) (n = 116), coronally advanced flap (CAF) (n = 107), CAF+connective tissue graft (CTG) (n = 131), and guided tissue regeneration (GTR) (n = 32). Percentages of complete root coverage (CRC) were 18.1% for FGG, 35.5% for CAF, 35.1% for CAF+CTG, and 18.8% for GTR. There was an OR = 0.26 (p FGG achieved less CRC then CAF+CTG (p = 0.0012; OR = 0.32). NCCLs, just like inter-dental tissue loss, are significant negative prognostic factors in achieving CRC following root coverage procedures. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    OpenAIRE

    Keinan, David; Mass, Eliyahu; Zilberman, Uri

    2010-01-01

    Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-...

  12. Experimental data for groundwave propagation over cylindrical surfaces

    DEFF Research Database (Denmark)

    King, Ray J.; Cho, Se.; Jaggard, D.

    1974-01-01

    Experimental data for the fields of EM groundwaves propagating over cylindrical homogeneous paths and two-section mixed paths were obtained by microwave (4.765 GHz) modeling. The cylindrical surfaces, which have a radius of20 lambda_{0}, closely approximate spherical surfaces insofar as groundwave...... propagation is concerned. The model is a curved tank which was constructed as a stratified combination of Plexiglas over distilled water, giving a predictable highly inductive surface impedance. Aluminum foil laid on the Plexiglas produced a nearly perfectly conducting surface wherever needed for the mixed...... the boundary where the residue series converges poorly. It is concluded that if the constitutive electrical parameters of the earth are precisely known and constant, the theory can be reliably applied to LF and VLF groundwave propagation over the earth where the constraints are even less severe....

  13. EXPERIMENTAL VALIDATION OF CUMULATIVE SURFACE LOCATION ERROR FOR TURNING PROCESSES

    Directory of Open Access Journals (Sweden)

    Adam K. Kiss

    2016-02-01

    Full Text Available The aim of this study is to create a mechanical model which is suitable to investigate the surface quality in turning processes, based on the Cumulative Surface Location Error (CSLE, which describes the series of the consecutive Surface Location Errors (SLE in roughing operations. In the established model, the investigated CSLE depends on the currently and the previously resulted SLE by means of the variation of the width of cut. The phenomenon of the system can be described as an implicit discrete map. The stationary Surface Location Error and its bifurcations were analysed and flip-type bifurcation was observed for CSLE. Experimental verification of the theoretical results was carried out.

  14. Experimental observations of root growth in a controlled photoelastic granular material

    Directory of Open Access Journals (Sweden)

    Barés Jonathan

    2017-01-01

    Full Text Available We present a novel root observation apparatus capable of measuring the mechanical evolution of both the root network and the surrounding granular medium. The apparatus consists of 11 parallel growth frames, two of them being shearable, where the roots grow inside a photo-elastic or glass granular medium sandwiched between two pieces of glass. An automated system waters the plant and image each frame periodically in white light and between crossed polarisers. This makes it possible to follow (i the root tips and (ii the grain displacements as well as (iii their inner pressure. We show how a root networks evolve in a granular medium and how it can mechanically stabilize it. This constitutes a model experiment to move forward in the understanding of the complex interaction between root growth and surrounding soil mechanical evolution.

  15. Wettability of natural root mucilage studied by atomic force microscopy and contact angle: Links between nanoscale and macroscale surface properties

    Science.gov (United States)

    Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E.

    2017-04-01

    Organic coatings are considered as main cause of soil water repellency (SWR). This phenomenon plays a crucial role in the rhizosphere, at the interface of plant water uptake and soil hydraulics. Still, there is little knowledge about the nanoscale properties of natural soil compounds such as root-mucilage and its mechanistic effect on wettability. In this study, dried films of natural root-mucilage from Sorghum (Sorghum sp., MOENCH) on glass substrates were studied in order to explore experimental and evaluation methods that allow to link between macroscopic wettability and nano-/microscopic surface properties in this model soil system. SWR was assessed by optical contact angle (CA) measurements. The nanostructure of topography and adhesion forces of the mucilage surfaces was revealed by atomic force microscopy (AFM) measurements in ambient air, using PeakForce Quantitative Nanomechanical Mapping (PFQNM). Undiluted mucilage formed hydrophobic films on the substrate with CA > 90° and rather homogeneous nanostructure. Contact angles showed reduced water repellency of surfaces, when concentration of mucilage was decreased by dilution. AFM height and adhesion images displayed incomplete mucilage surface coverage for diluted samples. Hole-like structures in the film frequently exhibited increased adhesion forces. Spatial analysis of the AFM data via variograms enabled a numerical description of such 'adhesion holes'. The use of geostatistical approaches in AFM studies of the complex surface structure of soil compounds was considered meaningful in view of the need of comprehensive analysis of large AFM image data sets that exceed the capability of comparative visual inspection. Furthermore, force curves measured with the AFM showed increased break-free distances and pull-off forces inside the observed 'adhesion holes', indicating enhanced capillary forces due to adsorbed water films at hydrophilic domains for ambient RH (40 ± 2 %). This offers the possibility of

  16. Effect of lipid/polysaccharide ratio on surface activity of model root mucilage in its solid and liquid states

    Science.gov (United States)

    Chen, Fengxian; Arye, Gilboa

    2016-04-01

    The rhizosphere can be defined as the volume of soil around living roots, which is influenced by root activity. The biological, chemical and physical conditions that prevail in the rhizosphere are significantly different from those of the bulk soil. Plant roots can release diverse organic materials in the rhizosphere which may have different effects on its bio-chemo-physical activity. Among these exudates is the root mucilage which can play a role on the maintenance of root-soil contact, lubrication of the root tip, protection of roots from desiccation and disease, stabilization of soil micro-aggregates and the selective absorption and storage of ions. The surface activity of the root mucilage at the liquid-air interface deduced from its surface tension depression relative to water, implying on its amphiphilic nature. Consequently as the rhizosphere dry out, hydrophobic functional groups may exhibit orientation at the solid-air interface and thus, the wettability of the rhizosphere may temporarily decrease. The major fraction of the root mucilage comprise of polysaccharides and to a much lesser extent, amino acids, organic acids, and phospholipids. The most frequent polysaccharide and phospholipids detected in root mucilage are polygalacturonic acid (PGA) and Phosphatidylcholine (PC), respectively. The latter, is thought to be main cause for the surface active nature of root mucilage. Nevertheless, the role and function of root mucilage in the rhizosphere is commonly studied based on model root mucilage that comprise of only one component, where the most frequent ones are PGA or PC (or lecithin). The main objective of this study was to quantify the effect of concentration and PGA/PC ratios on the wettability of a model rhizosphere soil and the surface tension of the model root mucilage at the liquid-air interface. The PGA/PC mixtures were measured for their equilibrium and dynamic surface tension using the Wilhelmy-Plate method. Quartz sand or glass slides were

  17. Experimentally induced anachoresis in the periapical region after root canal filling

    OpenAIRE

    Dezan Júnior, Eloi [UNESP; Holland,Roberto; Consolaro, Alberto; Ciesielski, Francisco Isaak Nicolas [UNESP; Gaetti-Jardim Júnior,Elerson

    2012-01-01

    Anachoresis is the phenomenon through which blood-borne bacteria, dyes, pigments and other materials are attracted and fixed to circumscribed areas of inflammation. This study evaluated the occurrence of anachoresis in the periapical region of dogs submitted to root canal fillings. One hundred and four roots from four dogs were endodontically treated and root canals were filled with zinc-oxide-eugenol cement. Fifty percent were filled up to the dentinocemental junction and the others were ove...

  18. [A mathematical model for the treatment of root surfaces with rigid and flexible instruments].

    Science.gov (United States)

    Stassinakis, A; Hugo, B; Lussi, A

    1995-01-01

    The objective of this study was to assess the accessibility of root surfaces using stiff instruments in order to evaluate the advantages of a new flexible instrument-set for the treatment of periodontally diseased roots. 100 extracted human teeth were sectioned and histologically prepared. They were divided into two groups each containing 50 sections. Group I showing the interproximal, group II the buccal/lingual morphology. Slides were taken of each section under a constant magnification (3.2x) and a selected number of distances and angles were measured on each section. Using trigonometric functions the following parameters were calculated and set in relation with hypothetical probing depths ranging from 0-15 mm: 1.) instrument length; 2.) change of the instrument angulation; 3.) theoretical deflection of the gums. Statistical analysis was performed using Student's t-test. For a given probing depth the instrument length was independent of the sites and the deflection of the gums. When a deflection of the gums was assumed, the instrument angulation was constant; an exponential decrease of the angulation with increasing probing depth was found with gum deflection. The deflection was increasing with increasing probing depth, showing statistically significant differences between interproximal and buccal/lingual sites (p reasons stiff instruments seem to be inferior to flexible instruments when a non-surgical root treatment is performed.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Full Length Amelogenin Binds to Cell Surface LAMP-1 on Tooth Root/Periodontium Associated Cells

    Science.gov (United States)

    Zhang, Hai; Tompkins, Kevin; Garrigues, Jacques; Snead, Malcolm L.; Gibson, Carolyn W.; Somerman, Martha J.

    2010-01-01

    Objectives Lysosome-associated membrane protein-1 (LAMP-1) has been suggested to be a cell surface receptor for a specific amelogenin isoform, leucine-rich amelogenin peptide or LRAP. However, it is unclear if LAMP-1 is an amelogenin receptor for dental mesenchymal cells. The goal of this study was to determine if LAMP-1 serves as a cell surface binding site for full length amelogenin on tooth root/periodontium associated mesenchymal cells. Design Murine dental follicle cells and cementoblasts (OCCM-30) were cultured for 2 days followed by addition of full length recombinant mouse amelogenin, rp(H)M180. Dose-response (0 to 100 μg/ml) and time course (0 to 120 minutes) assays were performed to determine the optimal conditions for live cell surface binding using immuno-fluorescent microscopy. A competitive binding assay was performed to determine binding specificity by adding Emdogain (1 mg/ml) to the media. An antibody against LAMP-1 was used to detect the location of LAMP-1 on the cell surface and the pattern was compared to cell surface bound amelogenin. Both amelogenin and cell surface LAMP-1 were immuno-co-localized to compare the amount and distribution pattern. Results Maximum surface binding was achieved with 50 μg/ml of rp(H)M180 for 120 minutes. This binding was specific as demonstrated by competitive inhibition (79% lower) with the addition of Emdogain. The binding pattern for rp(H)M180 was similar to the distribution of surface LAMP-1 on dental follicle cells and cementoblasts. The high co-localization coefficient (0.92) for rp(H)M180 and LAMP-1 supports rp(H)M180 binding to cell surface LAMP-1. Conclusions The data from this study suggest that LAMP-1 can serve as a cell surface binding site for amelogenin on dental follicle cells and cementoblasts. PMID:20382373

  20. The root flow of horizontal axis wind turbine blades : Experimental analysis and numerical validation

    NARCIS (Netherlands)

    Akay, B.

    2016-01-01

    Despite a long research history in the field of wind turbine aerodynamics, horizontal axis wind turbine (HAWT) blade's root flow aerodynamics is among the least understood topics. In this thesis work, a detailed investigation of the root flow is performed to gain a better insight into the features

  1. Experimental Research of Pyrolysis Gases Cracking on Surface of Charcoal

    Science.gov (United States)

    Kosov, Valentin; Kosov, Vladimir; Zaichenko, Victor

    For several years, in the Joint Institute for High Temperatures of Russian Academy of Sciences, two-stage technology of biomass processing has been developing [1]. The technology is based on pyrolysis of biomass as the first stage. The second stage is high-temperature conversion of liquid fraction of the pyrolysis on the surface of porous charcoal matrix. Synthesis gas consisted of carbon monoxide and hydrogen is the main products of the technology. This gas is proposed to be used as fuel for gas-engine power plant. For practical implementation of the technology it is important to know the size of hot char filter for full cracking of the pyrolysis gases on the surface of charcoal. Theoretical determination of the cracking parameters of the pyrolysis gases on the surface of coal is extremely difficult because the pyrolysis gases include tars, whose composition and structure is complicated and depends on the type of initial biomass. It is also necessary to know the surface area of the char used in the filter, which is also a difficult task. Experimental determination of the hot char filter parameters is presented. It is shown that proposed experimental method can be used for different types of biomass.

  2. The Origin of Mercury's Surface Composition, an Experimental Investigation

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Introduction: Results from MESSENGER spacecraft have confirmed the reduced nature of Mercury, based on its high core/mantle ratio and its FeO-poor and S-rich surface. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting major melting stages of the Mercurian mantle. In addition, MESSENGER has provided the most precise data to date on major elemental compositions of Mercury's surface. These results revealed considerable chemical heterogeneities that suggested several stages of differentiation and re-melting processes. This interpretation was challenged by our experimental previous study, which showed a similar compositional variation in the melting products of enstatite chondrites, which are a possible Mercury analogue. However, these experimental melts were obtained over a limited range of pressure (1 bar to 1 gigapascal) and were not compared to the most recent elemental maps. Therefore, here we extend the experimental dataset to higher pressures and perform a more quantitative comparison with Mercury's surface compositions measured by MESSENGER. In particular, we test whether these chemical heterogeneities result from mixing between polybaric melts. Our experiments and models show that the majority of chemical diversity of Mercury's surface can result from melting of a primitive mantle compositionally similar to enstatite chondrites in composition at various depths and degrees of melting. The high-Mg region's composition is reproduced by melting at high pressure (3 gigapascals) (Tab. 1), which is consistent with previous interpretation as being a large degraded impact basin based on its low elevation and thin average crust. While low-Mg NVP (North Volcanic Plains) are the result of melting at low pressure (1 bar), intermediate-Mg NVP, Caloris Basin and Rachmaninoff result from mixing of a high-pressure (3 gigapascals) and low-pressure components (1 bar for Rachmaninoff and 1 gigapascal for the other regions

  3. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat [Dept. of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand); Sriwilas, Patiyut [Dept. of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Midtboe, Marit [Dept. of Clinical Dentistry - Orthodontics, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway)

    2017-06-15

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm{sup 2}) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

  4. Application of vertical-beam in-air PIXE to surface analysis of plant root exposed to aluminum stress

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Satoshi; Mae, Tadahiko [Tohoku Univ., Sendai (Japan). Faculty of Agriculture; Inoue, Jun-ichi; Murozono, Keisuke; Matsuyama, Sigeo; Yamazaki, Hiromichi; Iwasaki, Sin; Ishii, Keizo

    1997-12-31

    Elemental composition of living cells and tissues reflects their physiological function and status. However, it has been difficult to know in-situ elemental distribution by conventional analytical methods. In-air PIXE seems suitable for surface analysis of living cells and tissues because any treatment (e.g. freeze drying, digestion) is not required before and during measurement. We applied Via (vertical-beam in-air) PIXE to surface analysis of plant roots exposed to aluminum (Al). Aluminum stress is a major factor that limits elongation of plant roots in acid soils. We previously reported decrease in atomic ratio of potassium to phosphorus (K/P ratio) of dried root-tip of alfalfa (Medicago sativa L.) under Al stress using in-vacuum PIXE. In Via PIXE, 5 to 7-minute irradiation by 3 MeV proton beams of 200 pA was sufficient to obtain X-ray spectra without drying root samples. Decrease in K/P ratio in surface cells of root-tips was observed by short-term (6-8 h) exposure of root to Al. Via PIXE is recognized as a powerful tool for in-situ surface analysis of plant material. (author)

  5. The effect of root surface conditioning on smear layer removal in periodontal regeneration (a scanning electron microscopic study)

    Science.gov (United States)

    Fidyawati, D.; Soeroso, Y.; Masulili, S. L. C.

    2017-08-01

    The role of root surface conditioning treatment on smear layer removal of human teeth is affected by periodontitis in periodontal regeneration. The objective of this study is to analyze the smear layer on root surface conditioned with 2.1% minocycline HCl ointment (Periocline), and 24% EDTA gel (Prefgel). A total of 10 human teeth indicated for extraction due to chronic periodontitis were collected and root planed. The teeth were sectioned in thirds of the cervical area, providing 30 samples that were divided into three groups - minocycline ointment treatment, 24% EDTA gel treatment, and saline as a control. The samples were examined by scanning electron microscope. No significant differences in levels of smear layer were observed between the minocycline group and the EDTA group (p=0.759). However, there were significant differences in the level of smear layer after root surface treatment in the minocycline and EDTA groups, compared with the control group (p=0.00). There was a relationship between root surface conditioning treatment and smear layer levels following root planing.

  6. Immunolocalization of RANK and RANKL along the root surface and in the periodontal membrane of human primary and permanent teeth

    DEFF Research Database (Denmark)

    Bille, Marie-Louise Bastholm; Thomsen, Bjarke; Andersen, Thomas Levin

    2012-01-01

    in odontoblasts and in cells along denticles in one primary tooth. RANK was located in mononuclear cells in the pulp and in multinucleated odontoclasts along resorbed root surfaces and along resorbed dentin surfaces in the pulp in primary teeth and one permanent tooth. Conclusions. This study demonstrated RANK...

  7. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  8. Experimental minimum threshold for Phytophthora cinnamomi root disease expression on Quercus suber

    Directory of Open Access Journals (Sweden)

    María Socorro SERRANO

    2015-12-01

    Full Text Available Quercus suber seedlings were potted in soils infested with increasing concentrations of Phytophthora cinnamomi chlamydospores and submitted to weekly flooding for 3 months to favour root infections. Increasing quantities of chlamydospores led to an exponential increase in their ability to germinate. Root symptoms (necrosis and/or absence of feeder roots were significantly more severe than those recorded in uninfested soil only for plants potted in soils infested with 61 cfu g-1 or more. Although generated using potting mix, this minimum threshold represents a tool for checking the potential infectivity of infested soils or to assess the effectiveness of some control methods to reduce soil inoculum. However, a low level of root infection was recorded even at 3 cfu g-1. Therefore, long-term disease risk may be present whenever the pathogen is detectable in oak forest soils.

  9. Temperature variation at the external root surface during 980-nm diode laser irradiation in the root canal.

    Science.gov (United States)

    Alfredo, E; Marchesan, M A; Sousa-Neto, M D; Brugnera-Júnior, A; Silva-Sousa, Y T C

    2008-07-01

    To assess the temperature variation in the cervical, middle and apical thirds of root external wall, caused by 980-nm diode laser irradiation with different parameters. The roots of 90 canines, had their canals instrumented and were randomly distributed into 3 groups (n=30) according to the laser potency (1.5 W, 3.0 W and 5.0 W). Each group was subdivided into 3 (n=10) according to the frequency (CM, 100 Hz and 1000 Hz), and each subgroup divided into 2 (n=5): dried canal or filled with distilled water. The maximum temperature values were collected by 3 thermocouples located at each third of the root external wall and recorded by digital thermometers. The groups irradiated in the continuous mode (CM) presented the highest values (11.82+/-5.78), regardless of the canals were dry or not, which were statistically different (p0.01). The groups irradiated with 5.0 W presented the greatest temperature variation (12.15+/-5.14), followed by 3.0 W (7.88+/-3.92) and 1.5 W (4.02+/-2.16), differing between them (ptemperature rises (9.68+/-5.80), followed by the middle (7.66+/-4.87) and apical (6.70+/-4.23), with statistical difference among them (ptemperature variation lower than 10 degrees C. Application of 980-nm diode laser in the root, at 1.5 W in all operating modes, and 3.0 W, in the pulsed mode, for 20s, can safely be used in endodontic treatment, irrespective of the presence of humidity.

  10. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism

    Science.gov (United States)

    Ishikawa, H.; Hasenstein, K. H.; Evans, M. L.

    1991-01-01

    We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by

  11. Iron oxidation on the surface of adventitious roots and its relation to aerenchyma formation in rice genotypes

    Directory of Open Access Journals (Sweden)

    Marquel Jonas Holzschuh

    2014-02-01

    Full Text Available Establishment of the water layer in an irrigated rice crop leads to consumption of free oxygen in the soil which enters in a chemical reduction process mediated by anaerobic microorganisms, changing the crop environment. To maintain optimal growth in an environment without O2, rice plants develop pore spaces (aerenchyma that allow O2 transport from air to the roots. Carrying capacity is determined by the rice genome and it may vary among cultivars. Plants that have higher capacity for formation of aerenchyma should theoretically carry more O2 to the roots. However, part of the O2 that reaches the roots is lost due to permeability of the roots and the O2 gradient created between the soil and roots. The O2 that is lost to the outside medium can react with chemically reduced elements present in the soil; one of them is iron, which reacts with oxygen and forms an iron plaque on the outer root surface. Therefore, evaluation of the iron plaque and of the formation of pore spaces on the root can serve as a parameter to differentiate rice cultivars in regard to the volume of O2 transported via aerenchyma. An experiment was thus carried out in a greenhouse with the aim of comparing aerenchyma and iron plaque formation in 13 rice cultivars grown in flooded soils to their formation under growing conditions similar to a normal field, without free oxygen. The results indicated significant differences in the volume of pore spaces in the roots among cultivars and along the root segment in each cultivar, indicating that under flooded conditions the genetic potential of the plant is crucial in induction of cell death and formation of aerenchyma in response to lack of O2. In addition, the amount of Fe accumulated on the root surface was different among genotypes and along the roots. Thus, we concluded that the rice genotypes exhibit different responses for aerenchyma formation, oxygen release by the roots and iron plaque formation, and that there is a direct

  12. Experimental demonstration of a surface-electrode multipole ion trap

    CERN Document Server

    Maurice, Mark; Green, Dylan; Farr, Andrew; Burke, Timothy; Hilleke, Russell; Clark, Robert

    2015-01-01

    We report on the design and experimental characterization of a surface-electrode multipole ion trap. Individual microscopic sugar particles are confined in the trap. The trajectories of driven particle motion are compared with a theoretical model, both to verify qualitative predictions of the model, and to measure the charge-to-mass ratio of the confined particle. The generation of harmonics of the driving frequency is observed as a key signature of the nonlinear nature of the trap. We remark on possible applications of our traps, including to mass spectrometry.

  13. Experimental study of liquid drop impact onto a powder surface

    KAUST Repository

    Marston, Jeremy

    2010-11-01

    The initial dynamics of liquid drop impact onto powder surfaces is studied experimentally using high-speed photography. For a range of bed packing fractions, φ, liquid physical properties and impact velocities, ui, we observe a variety of phenomena that can be representative of a hydrophobic surface, a rough surface or a porous medium. The solids packing fraction in the bed, 0.38≤φ≤0.65, and the impact Weber number, 3.5≤We=ρDui 2/φ≤750, (where ρ, D and φ are the drop density, diameter and surface tension respectively) are shown to be the critical parameters governing the outcome of an impact. For high packing fractions, φ≳0.5, we show that the observed spreading, rebound and splashing can be broadly characterised in terms of the Weber number while for looser packing fractions, φ≲0.5, we observe powder ejectas and provide a qualitative description of the granule nucleation at the centre of the impact sites. © 2010 Elsevier B.V.

  14. Experimental Investigation of Ventilation of a Surface Piercing Hydrofoil

    Science.gov (United States)

    Harwood, Casey; Miguel Montero, Francisco; Young, Yin Lu; Ceccio, Steven

    2013-11-01

    Bodies that pierce a liquid free-surface are prone to entrainment of atmospheric and/or vaporous gases. This process, called ventilation, can occur suddenly and violently, drastically altering hydrodynamic response. Experiments have been conducted at the free-surface towing-tank in the University of Michigan Marine Hydrodynamics Laboratory to investigate fully attached, partially ventilated, and fully ventilated flows around a canonical surface-piercing hydrofoil. The objectives of the work are: (i) to gain a broad and improved understanding of the physics of ventilation, (ii) to classify the physical mechanisms by which ventilation inception and washout may occur and quantify the conditions required for each mechanism and (iii) to quantify the effects of ventilation on global hydrodynamic responses, including the six force and moment components. Experimental data and high-speed video will be used to illustrate the impact of ventilation on hydrodynamic loads, pressures, and flow structures. The completion of this study is expected to contribute significantly toward a comprehensive understanding of ventilation physics, and toward an improved ability to design safe and controllable ventilated lifting surfaces for use in propulsion, energy harvesting, and turbomachinery. Supported by: The Office of Naval Research (ONR) (Grant No. N00014-09-1-1204); the National Research Foundation of Korea (NRF) (GCRC-SOP Grant No. 2012-0004783); the National Science Foundation Graduate Student Research Fellowship (Grant No. DGE 1256260).

  15. Comparison of connective tissue graft and guided tissue regeneration in covering root surfaces

    Directory of Open Access Journals (Sweden)

    LotfazarM.

    2002-08-01

    Full Text Available There are many researches evaluation different methods for covering the root surface. In the most of these studies, type I and II of Miller treatment had been searched. The purpose of this study was a comparison between connective tissue graft (CTG and guided tissue regeneration (GTR with a collagen membrane in the treatment of gingival recession defects (Miller class III. Six patients, each contributing a pair of Miller class III buccal gingival recessions, were treated. The clinical measurements were obtained at baseline and 1,2,4,6,12,18 months after surgery. Statistical analysis were performed using paired t-test between periods (baseline versus 6 months and baseline versus 18 months within each treatment group and also between treatment groups before treatment and 6, 12 and 18 months after the treatment. The treatments were compared by a triple analysis of variance along the time (treatment, patient, time. Both CTG and GTR with a bioabsorbable membrane demonstrated significant clinical and esthetic improvement for gingival recession coverage. The CTG and GTR procedures had mean root coverage of 55% and 47.5% respectively, in the end of study. The CTG group was statistically better than GTR for recession depth, recession width and keratinized tissue width. Also, passing the time (18 months as a distinct factor of treatment procedures was effective in increasing of clinical attachment level and keratinized tissue width.

  16. The heat generated on the external root surface during post space preparation.

    Science.gov (United States)

    Saunders, E M; Saunders, W P

    1989-07-01

    The heat generated on the external root surface of human premolar teeth during post space preparation was measured in vitro. The rise in temperature was recorded at a point 6 mm from the apex of the tooth using a thermocouple attached to a chart recorder. The temperature rise was greatest when the removal of gutta-percha was combined with post channel preparation. Temperature rises of up to 31 degrees C were recorded. Instruments that only removed gutta-percha did not generate the same amount of heat. The results from this study suggest that the use of engine-driven drills to prepare post channels in teeth may generate temperature rises that may cause periradicular tissue damage, and caution should be exercised during their use.

  17. Simulating land surface energy fluxes using a microscopic root water uptake approach in a northern temperate forest

    Science.gov (United States)

    He, L.; Ivanov, V. Y.; Schneider, C.

    2012-12-01

    The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences

  18. A Low-Cost Imaging Method for the Temporal and Spatial Colorimetric Detection of Free Amines on Maize Root Surfaces

    Directory of Open Access Journals (Sweden)

    Truc H. Doan

    2017-08-01

    Full Text Available Plant root exudates are important mediators in the interactions that occur between plants and microorganisms in the soil, yet much remains to be learned about spatial and temporal variation in their production. This work outlines a method utilizing a novel colorimetric paper to detect spatial and temporal changes in the production of nitrogen-containing compounds on the root surface. While existing methods have made it possible to conduct detailed analysis of root exudate composition, relatively less is known about where in the root system exudates are produced and how this localization changes as the root grows. Furthermore, there is much to learn about how exudate localization and composition varies in response to stress. Root exudates are chemically diverse secretions composed of organic acids, amino acids, proteins, sugars, and other metabolites. The sensor utilized for the method, ninhydrin, is a colorless substance in solution that reacts with free amino groups to form a purple dye. A detection paper was developed by formulating ninhydrin into a print solution that was uniformly deposited onto paper with a commercial ink jet printer. This “ninhydrin paper” was used to analyze the chemical makeup of root surfaces from maize seedlings grown vertically on germination paper. Through contact between the ninhydrin paper and seedling root surfaces, combined with images of both the seedlings and dried ninhydrin papers captured using a standard flatbed scanner, nitrogen-containing substances on the root surface can be localized and concentration of signal estimated for over 2 weeks of development. The method was found to be non-inhibiting to plant growth over the analysis period although damage to root hairs was observed. The method is sensitive in the detection of free amines at concentrations as little as 140 μM. Furthermore, ninhydrin paper is stable, showing consistent color changes up to 2 weeks after printing. This relatively simple, low

  19. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    Energy Technology Data Exchange (ETDEWEB)

    Patters, M.R.; Landsberg, R.L.; Johansson, L.A.; Trummel, C.L.; Robertson, P.R. (Department of Periodontology, University of Connecticut, School of Dental Medicine, Farmington, Connecticut, U.S.A.)

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated /sup 45/Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis.

  20. Evaluation of treatments for elimination of foodborne pathogens on the surface of leaves and roots of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Zhang, Guodong; Ma, Li; Beuchat, Larry R; Erickson, Marilyn C; Phelan, Vanessa H; Doyle, Michael P

    2009-02-01

    Several outbreaks of Salmonella and Escherichia coli O157:H7 infections have been associated with consumption of leafy greens. Questions remain concerning the ability of these pathogens to become internalized within lettuce and spinach tissues. An effective validated surface disinfection method for lettuce is needed before factors affecting internalization of pathogens can be studied. The objective of this study was to develop a surface disinfection method for lettuce leaves and roots. Iceberg lettuce (Lactuca sativa L.) leaves cut into pieces (3 by 3 cm) and lettuce roots were inoculated by immersing in suspensions of five-strain mixtures of green fluorescent protein-labeled E. coli O157:H7, Salmonella, or Listeria monocytogenes at populations of 7 to 8 log CFU/ml for 10 min at 20 +/- 1 degrees C. Inoculated samples were placed in a laminar flow biosafety cabinet for 30 min before treating with disinfectants. Thirteen surface disinfection methods were compared for their efficacy in killing E. coli O157:H7 on lettuce leaf and root surfaces. E. coli O157:H7 initially at 5.8 or 6.8 log CFU/leaf piece or root was not detected by enumeration (lettuce leaves and roots and was also validated for inactivating Salmonella and L. monocytogenes.

  1. Laser Experimental Study of the Surface Vibrations of EMUS Sensor

    Science.gov (United States)

    Wilkie-Chancellier, N.; Wang, Y.; Martinez, L.; Roucaries, B.; Serfaty, S.

    In order to ensure a comprehensive monitoring of the material structuration in liquid phase, the traditional ultrasonic techniques require excitation in contact which is often inadequate for online tracking. To monitor the material evolution remotely, a new electromagnetic ultrasonic sensor (EMUS) was successfully developed in our laboratory. The EMUS transducer is based on a resonant thickness shear mode sensor (TSM) magnetically coupled to a high frequency antenna. The TSM resonator consists in a piezoelectric AT-cut quartz plate with metal electrodes on opposite sides. The application of a radio frequency electrical signal gives rise to the excitation of a shear mechanical resonance. The work presented here allows characterizing the acoustic behavior of the EMUS. A laser vibrometer is used to scan the surface of the TSM resonator and visualize the propagation of the generated surface waves. This study shows a good agreement between experimental and theoretical results which encourages the study of acoustic interaction between the TSM resonator and a material in contact with the quartz surface. They therefore suggest that this non-destructive technique can be used to extract the viscoelastic properties of materials.

  2. Efficacy of different instrumentation techniques on reducing Enterococcus faecalis infection in experimentally infected root canals

    Directory of Open Access Journals (Sweden)

    Ebru Özsezer Demiryürek

    2014-03-01

    Conclusion: This study indicates that instruments with a greater taper play an important role in maximizing the effectiveness of mechanical preparation. However, since using mechanical instrumentation alone is insufficient to completely eliminate root canal infection, the use of complementary antibacterial compounds is necessary.

  3. Experimental Paper. Intrapopulation variability of flavonoid content in roots of Baikal skullcap (Scutellaria baicalensis Georgi

    Directory of Open Access Journals (Sweden)

    Kosakowska Olga

    2017-03-01

    Full Text Available Introduction: Baikal skullcap (Scutellaria baicalensis Georgi is an important medicinal plant, indigenous to Asia. Due to a wide range of pharmacological activities, its roots has been used for ages in Traditional Chinese Medicine. Recently, the species has become an object of interest of Western medicine, as well. Objective: The aim of the study was to determine the variability of Baikal skullcap population originated from Mongolia and cultivated in Poland, in terms of content and composition of flavonoids in the roots. Methods: The objects of the study were 15 individual plants, selected within examined population and cloned in order to obtain a sufficient amount of raw material. The total content of flavonoids in roots was determined according to Polish Pharmacopeia 6th. The qualitative analysis of flavonoids was carried out using HPLC, Shimadzu chromatograph. Results: The dry mass of roots ranged from 25.88 to 56.14 g × plant-1. The total content of flavonoids (expressed as a quercetin equivalent varied between 0.17 and 0.52% dry matter (DM. Nine compounds were detected within the group, with oroxylin A 7-Oglucuronide (346.90-1063.00 mg × 100 g-1 DM as a dominant, which differentiated investigated clones at the highest degree (CV=0.27. Baicalin (391.40-942.00 mg × 100 g-1 DM, wogonoside (324.00-641.10 mg × 100 g-1 DM and hesperetine 7-O-glucoside (163.00-346.32 mg × 100 g-1 DM were also present in a considerable amounts. Clone 7 was distinguished by the highest content of all investigated compounds, except wogonin and oroxylin A 7-O-glucuronide. Conclusions: Results obtained in present study show a high variability within Baical skullcap investigated population in respect of flavonoid compounds detected in roots. Thus, the results may be used in future investigations concerning the selection and breeding of this species.

  4. Use of a dissolved oxygen microsensor for assessing the viability and thickness of microbial biofilm on root surfaces.

    Science.gov (United States)

    Tomazinho, F S F; Sousa-Neto, M D; Pécora, J D; Lamon, A W; Gonzalez, B C; Silva-Sousa, Y T C

    2015-05-01

    To evaluate the use of a dissolved oxygen microsensor (DOMS) for assessing the viability and thickness of microbial biofilms on the apical external surface of contaminated human tooth roots. Apical biofilm formation was evaluated in 15 roots contaminated in vitro with a polymicrobial mixture of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans for 7, 21 and 60 days and in three freshly extracted roots with associated radiographically visible periapical lesions. In each root, the thickness and viability (measured by the amount of dissolved oxygen) of biofilm formed on the apical 2 mm were examined with the DOMS. Scanning electron microscopy (SEM) was used as an auxiliary analysis to confirm the existence of the biofilms detected by the DOMS. The DOMS detected dissolved oxygen on the biofilms formed on the three residual roots up to thickness of 375 μm, 480 μm and 1650 μm. In the 15 roots contaminated in vitro, the DOMS detected dissolved oxygen in six specimens up to thicknesses from 75 to 250 μm, and the intensity of the metabolic activity (biofilm thickness) was directly proportional to the contamination time. SEM confirmed the presence of biofilm in all roots. The dissolved oxygen microsensor allowed the measurement of the amount of dissolved oxygen in the biofilm, which is indicative of the intensity of the microbial metabolic activity (viability), correlating the results with biofilm thickness. The DOMS was effective in freshly extracted roots, but had limitations in roots contaminated in vitro after short periods (7 and 21 days) of contamination. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. CORROSION AND SURFACE PROTECTION IN MACHINE MATERIALS FRICTION HAVE DIFFERENT SURFACE PAIRS EXPERIMENTAL INVESTIGATION OF FACTORS

    Directory of Open Access Journals (Sweden)

    Senai YALCINKAYA

    2017-05-01

    Full Text Available Friction force, normal force, linear change. The normal force varies with the loads on the friction object. In order to determine the friction force and the friction coefficient, the friction object and the friction speed are used. The experimental work was carried out in three stages. In the first stage, the effect of normal force on the friction force was studied. In the second step, the friction force of the friction surface area is influenced. The effect of the change of the shear rate in step 3 on the friction force was investigated. At the last stage, the experimental study of the effect of the material selection on the friction force was made and it was seen that the aluminum / brass surface pair had the smallest friction coefficient as a result of the opening. The greatest coefficient of friction is found in the pair of glass / felt objects.

  6. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    Science.gov (United States)

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. Surface plasmon resonance of Ag organosols: Experimental and theoretical investigations

    Directory of Open Access Journals (Sweden)

    Vodnik Vesna

    2012-01-01

    Full Text Available The aim of this paper is to investigate and compare the changes in surface plasmon resonance (SPR of silver (Ag hydrosol and organosols obtained by experimental and theoretical approaches. Silver nanoparticles (Ag NPs of 5 ± 1.5 nm in diameter were prepared in water by reduction of silver nitrate with sodium borohydride. Nanoparticles were subsequently transferred into different organic solvents (chloroform, hexane, toluene, 1,2-dichlorobenzene using oleylamine as a transfer agent. These solvents were chosen because of the differences in their refractive indices. Using UV-Vis absorption spectrophotometry and transmission electron microscopy (TEM, we confirmed that there were no shape and size changes of the nanoparticles upon the transfer to the organic phase. The absorption spectra of the obtained Ag organosols showed only changes in the position of SPR band depending on dielectric property of the used solvent. To analyze these changes, absorption spectra were modelled using Mie theory for small spherical particles. The experimental and theoretical resonance values were compared with those predicted by Drude model and its limitations in the analysis of absorption behavior of Ag NPs in organic solvents were briefly discussed.

  8. Experimental Design on Laminated Veneer Lumber Fiber Composite: Surface Enhancement

    Science.gov (United States)

    Meekum, U.; Mingmongkol, Y.

    2010-06-01

    Thick laminate veneer lumber(LVL) fibre reinforced composites were constructed from the alternated perpendicularly arrayed of peeled rubber woods. Glass woven was laid in between the layers. Native golden teak veneers were used as faces. In house formulae epoxy was employed as wood adhesive. The hand lay-up laminate was cured at 150° C for 45 mins. The cut specimen was post cured at 80° C for at least 5 hours. The 2k factorial design of experimental(DOE) was used to verify the parameters. Three parameters by mean of silane content in epoxy formulation(A), smoke treatment of rubber wood surface(B) and anti-termite application(C) on the wood surface were analysed. Both low and high levels were further subcategorised into 2 sub-levels. Flexural properties were the main respond obtained. ANOVA analysis of the Pareto chart was engaged. The main effect plot was also testified. The results showed that the interaction between silane quantity and termite treatment is negative effect at high level(AC+). Vice versa, the interaction between silane and smoke treatment was positive significant effect at high level(AB+). According to this research work, the optimal setting to improve the surface adhesion and hence flexural properties enhancement were high level of silane quantity, 15% by weight, high level of smoked wood layers, 8 out of 14 layers, and low anti termite applied wood. The further testes also revealed that the LVL composite had superior properties that the solid woods but slightly inferior in flexibility. The screw withdrawn strength of LVL showed the higher figure than solid wood. It is also better resistance to moisture and termite attack than the rubber wood.

  9. Bioactivity, cytocompatibility and thermal properties of experimental Bioglass-reinforced composites as potential root-canal filling materials.

    Science.gov (United States)

    Alhashimi, Raghad Abdulrazzaq; Mannocci, Francesco; Sauro, Salvatore

    2017-05-01

    To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were determined using differential scanning calorimetry (DSC). The cytocompatibility of the experimental composites used in this study was assessed using human osteoblasts and statistically analysed using the Pairwise t-test (pBioglass and SrO fillers were well distributed within the resin matrix and increased both the thermal properties and the radiopacity of the polyethylene matrix. The FTIR showed a clear formation of calcium-phosphates, while, MTT and AlamrBlue tests demonstrated no deleterious effects on the metabolic activity of the osteoblast-like cells. BAG-reinforced polyethylene composites may be suitable as obturation materials for endodontic treatment. Since their low melting temperature, such innovative composites may be easily removed in case of root canal retreatment. Moreover, their biocompatibility and bioactivity may benefit proliferation of human osteoblast cells at the periapical area of the root. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    Science.gov (United States)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  11. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Lo Giudice

    2015-01-01

    Full Text Available Dentin is a vital, hydrated composite tissue with structural components and properties that vary in the different topographic portions of the teeth. These variations have a significant implication for biomechanical teeth properties and for the adhesive systems utilized in conservative dentistry. The aim of this study is to analyse the root canal dentin going from coronal to apical zone to find the ratio between the intertubular dentin area and the surface occupied by dentin tubules varies. Observations were conducted on 30 healthy premolar teeth extracted for orthodontic reasons in patients aged between 10 and 14. A SEM analysis of the data obtained in different canal portions showed that, in the coronal zone, dentinal tubules had a greater diameter (4.32 μm than the middle zone (3.74 μm and the apical zone (1.73 μm. The average number of dentinal tubules (in an area of 1 mm2 was similar in coronal zone (46,798±10,644 and apical zone (45,192±10,888, while in the middle zone they were lower in number (30,940±7,651. However, intertubular dentin area was bigger going from apical to coronal portion. The differences between the analysed areas must be considered for the choice of the adhesive system.

  12. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study.

    Science.gov (United States)

    Lo Giudice, Giuseppe; Cutroneo, Giuseppina; Centofanti, Antonio; Artemisia, Alessandro; Bramanti, Ennio; Militi, Angela; Rizzo, Giuseppina; Favaloro, Angelo; Irrera, Alessia; Lo Giudice, Roberto; Cicciù, Marco

    2015-01-01

    Dentin is a vital, hydrated composite tissue with structural components and properties that vary in the different topographic portions of the teeth. These variations have a significant implication for biomechanical teeth properties and for the adhesive systems utilized in conservative dentistry. The aim of this study is to analyse the root canal dentin going from coronal to apical zone to find the ratio between the intertubular dentin area and the surface occupied by dentin tubules varies. Observations were conducted on 30 healthy premolar teeth extracted for orthodontic reasons in patients aged between 10 and 14. A SEM analysis of the data obtained in different canal portions showed that, in the coronal zone, dentinal tubules had a greater diameter (4.32 μm) than the middle zone (3.74 μm) and the apical zone (1.73 μm). The average number of dentinal tubules (in an area of 1 mm(2)) was similar in coronal zone (46,798 ± 10,644) and apical zone (45,192 ± 10,888), while in the middle zone they were lower in number (30,940 ± 7,651). However, intertubular dentin area was bigger going from apical to coronal portion. The differences between the analysed areas must be considered for the choice of the adhesive system.

  13. The gastroprotective effect of Memora nodosa roots against experimental gastric ulcer in mice

    Directory of Open Access Journals (Sweden)

    DAYANE M. SILVA

    2016-01-01

    Full Text Available ABSTRACT Memora nodosa is popularly known as "caroba" and widely found in the Cerrado regions of Brazil. In traditional medicine, the leaves and stems are used for the healing of external ulcer and the roots for abdominal pain. This study investigated the effect of ethanolic roots extract of Memora nodosa (EMN on the gastric mucosa of mice. In the indomethacin induced gastric ulcer model, the treatments of the animals with EMN at doses of 100, 300 and 1000 mg/kg, p.o., markedly reduced the index of lesions. In the gastric ulcer models induced by ethanol and cold restraint-stress the previous treatment with EMN at dose of 300 mg/kg showed 69% and 43% of protection, respectively. Seven days after food-restriction, the animals treated with EMN (300 mg/kg p.o. showed reduction in the index of lesion by 65% as compared to control group. The intraduodenal administration of EMN (300 mg/kg did not alter the gastric acid secretion parameters. The treatment with EMN (300 mg/kg p.o. did not alter glutathione levels (GSH, but showed an increase of adhered gastric mucus as compared to the control group with lesion. These results showed that EMN has gastroprotective activity probably due with an increase of adhered gastric mucus.

  14. Effect of enamel matrix proteins (Emdogain') on healing after re-implantation of "periodontally compromised" roots. An experimental study in the dog.

    Science.gov (United States)

    Araújo, M; Hayacibara, R; Sonohara, M; Cardaropoli, G; Lindhe, J

    2003-10-01

    The present experiment was performed to assess whether Emdogain applied on the root surface of extracted teeth or teeth previously exposed to root planning can protect the tooth from ankylosis following re-implantation. The experiment included two groups of dogs, including five animals each. The root canals of all mandibular third premolars (3 P 3) were reamed and filled with gutta-percha. A crestal incision was placed from the area of the second to the fourth premolar. Buccal and lingual full thickness flaps were elevated. With the use of a fissure bur, the crown and furcation area of 3 P 3 were severed in an apico-coronal cut. The distal and mesial tooth segments were luxated with an elevator and extracted with forceps. Group A: The mesial and distal segments of 3 P 3 were air dried on a glass surface for 60 min. The roots from the right side were conditioned and exposed to Emdogain application. The roots from the left side received the same treatment with the exception of Emdogain application. The mesial and distal tooth segments were re-implanted and the crown portions were severed with a horizontal cut and removed. The buccal and lingual flaps were mobilized and sutured to obtain complete coverage of the submerged roots. Group B: A notch was prepared in each root, 4-5 mm apical of the cemento-enamel junction. The area of the root that was located coronal to the notch was scaled and planned. The roots in the right side of the mandible were treated with Emdogain, while the roots in the left side served as controls. After 6 months of healing, the dogs were killed and blocks containing one root with surrounding tissues were harvested, and prepared for histological examination, which also included morphometric assessments. Thus, the proportions of the roots that exhibited signs of (i) replacement (ii) inflammatory and (iii) surface resorption were calculated. It was demonstrated that healing of a re-implanted root that had been extracted and deprived of vital

  15. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K(+) and Cd(2+) on rice roots.

    Science.gov (United States)

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K(+)) and cadmium (Cd(2+)) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K(+) and Cd(2+) adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K(+) and Cd(2+) from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A quantitative analysis of mineral loss and shrinkage of in vitro demineralized human root surfaces.

    Science.gov (United States)

    Ten Cate, J M; Nyvad, B; Van de Plassche-Simons, Y M; Fejerskov, O

    1991-10-01

    Demineralization of dentin specimens proceeds at a faster rate than that of enamel. Although this is generally accepted, a quantification of the rate of formation of root lesions is hampered by the shrinkage of the lesions when these are dried prior to microradiographic analysis. This leads to a significant underestimation of the lesion depth and total mineral loss. The aim of this paper was to quantitate the rate of mineral loss during root lesion formation in vitro and to determine the shrinkage of root specimens as a result of drying. Unerupted roots of human teeth were subjected to a demineralizing system of 0.1 mol/L lactate buffer (pH = 4.8) with 0.2 mmol/L methanehydroxydiphosphonate during four, 11, 22, and 44 days. The root lesions were assessed by quantitative microradiography. The demineralizing solutions were analyzed to determine the amounts of root tissue dissolved. A comparison of these two sets of data showed that, with the demineralizing system used, root lesions may shrink up to 62%. Fixation of the specimens in fixative did not affect this shrinkage. Chemical analysis showed that mineral loss proceeded linearly with time. From the data-sets of this study, a model was developed to compensate for the shrinkage in the dentin specimens. In this way, it was possible to calculate the lesion depth at four demineralization times as being 130, 220, 320, and 530 microns, respectively. These values were in agreement with a microscopic determination of the lesion depth.

  17. Comparing fibroblast attachment in root surface scaling with Er, Cr:YSGG laser versus ultrasonic scaler: A SEM study.

    Science.gov (United States)

    Fekrazad, Reza; Lotfi, Ghogha; Harandi, Mohammad; Ayremlou, Sara; A M Kalhori, Katayoun; Gholami, Gholam Ali; Nokhbatolfoghahaei, Hanieh

    2017-08-01

    The regeneration of periodontal support is the main concern in periodontal therapy. The aim of this in vitro study was to investigate the fibroblasts attachment on root surfaces after scaling with Er, Cr:YSGG laser and ultrasonic instruments using scanning electron microscopy (SEM). 72 root plates of ∼6 × 4 × 1 mm(3) in dimension were prepared from 27 single-rooted human mature teeth and were then divided into four groups. One group irradiated with a G6 tip of Er, Cr:YSGG laser (2.78 µm, 0.75 W, pulse duration of 140 µs, repetition rate of 20 Hz) for 5 to 7 s, and the other groups were scaled with ultrasonic alone or laser-ultrasonic. The control group was subjected to neither laser nor ultrasonic scaling. Subsequently, Viability and proliferation rates were done using MTT assay on days 3 and 5. Finally the cell attachment was observed using SEM. The data derived from MTT and cell-attachment analysis indicated that laser-ultrasonic scaling tended to increase cell-viability by the lapse of time (within 3-5 days), with significantly better cell-attachment compared with other groups on days 3 and 5 (p Cr:YSGG laser and ultrasonic scaling may promote fibroblast attachment on dentinal root surfaces more than laser or ultrasonic scaling alone. © 2017 Wiley Periodicals, Inc.

  18. Intrapulpal temperature changes during root surface irradiation with dual-wavelength laser (2780 and 940 nm): in vitro study

    Science.gov (United States)

    Franzen, Rene; Rashidisangsary, Borna; Ozturan, Seda; Vanweersch, Leon; Gutknecht, Norbert

    2015-01-01

    The present study evaluated the intrapulpal thermal changes that occurred during the treatment of the root surfaces with a laser system emitting Er,Cr:YSGG 2780- and 940-nm diode laser irradiation in an alternating sequence. Thirty single-rooted human teeth were collected. The teeth were divided into three groups (n=10 each) and irradiated with Er,Cr:YSGG alone or combined with a 940-nm diode laser. To investigate the intrapulpal temperature changes, specimens were embedded in a resin block with a set of thermocouples introduced at different positions within the root canals. The first group was irradiated with only Er,Cr:YSGG (25 mJ, 50 Hz, 50 μs pulse duration, water and air spray); the second group was irradiated with Er,Cr:YSGG (same setting) and a 940-nm diode (2 W, chopped mode with 20% duty cycle); the third group was irradiated with Er,Cr:YSGG (same setting) and a diode (2 W, chopped mode with 50% duty cycle). During all irradiations, thermal changes were recorded in real time with thermocouples. While group 3 showed thermal rises on average of 1.68±0.98°C in the pulp chamber, groups 1 and 2 showed average temperature rises of root surface debridement without inducing intrapulpal thermal damage when using an appropriate water/air spray. All measured temperatures were considerably below the critical value of 5.6°C.

  19. Experimental analysis of surface finish in normal conducting cavities

    Science.gov (United States)

    Zarrebini-Esfahani, A.; Aslaninejad, M.; Ristic, M.; Long, K.

    2017-10-01

    A normal conducting 805 MHz test cavity with an in built button shaped sample is used to conduct a series of surface treatment experiments. The button enhances the local fields and influences the likelihood of an RF breakdown event. Because of their smaller sizes, compared to the whole cavity surface, they allow practical investigations of the effects of cavity surface preparation in relation to RF breakdown. Manufacturing techniques and steps for preparing the buttons to improve the surface quality are described in detail. It was observed that even after the final stage of the surface treatment, defects on the surface of the cavities still could be found.

  20. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants].

    Science.gov (United States)

    Wang, Zhen-yu; Liu, Li-hua; Wen, Sheng-fang; Peng, Chang-sheng; Xing, Bao-shan; Li, Feng-min

    2010-03-01

    In situ micro-suction cups were used to collect samples of soil solution with Arundo donax Linn and Typha latifolia from defined segments at rhizosphere in field. The experiment was conducted to elucidate the contribution of iron plaque while wetland plants were used to remove phosphorus. The reddish iron plaque was observed and measured on the surfaces of roots of Arundo donax Linn and Typha latifolia in the field, 20,170.8 mg/kg (fresh weight) for Arundo donax Linn and 7640.3 mg/kg (fresh weight) for Typha latifolia were collected. Olsen-P contents of Arundo donax Linn with iron plaque were 28.85 mg/kg, 46.2% more than that of without, 34.99 mg/kg for Typha latifolia 21.9% more than that of without. The phosphate concentrations in the in situ rhizosphere soil solution of Arundo donax Linn with iron plaque were 0.65 mg/kg, 9.2% more than that of without, 0.56 mg/kg for Typha latifolia, 33.9% more than that of without. The phosphorus contents adsorbed by iron plaque were 81.7% for Arundo donax Linn and 85.7% for Typha latifolia of the wetland plants with iron plaque. Phosphate use efficiency of Arundo donax Linn with iron plaque was 16.5% more than that of without, 31.4% for Typha latifolia. The contents of phosphorus of single plant of the two wetland plants with iron plaque are higher than that of without. Due to adsorb phosphate with iron plaque, the transfer speeds of phosphate from non-rhizosphere to rhizosphere and from soil to soil solution are increasing. The phosphorus contents with iron plaque accumulated at rhizosphere and depleted at rhizosphere without iron plaque of Arundo donax Linn and Typha latifolia.

  1. Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??

    OpenAIRE

    Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga

    2015-01-01

    The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus r...

  2. Evaluation of Antiaggressive Activity of Capparis zeylanica Root Extract in Experimental Animal Model

    Directory of Open Access Journals (Sweden)

    Sunil Kumar MISHRA

    2013-05-01

    Full Text Available Aggression can ensue due to exposure to an intimidating situation. Aggression is prominently seen when a disturbance occurs in the fine balance of neurotransmitters such as 5-hydroxytryptamine, gamma-aminobutyric acid, dopamine and their receptor subtypes. The present study investigated the ability of 100, 200 and 400 mg/kg of ethanolic extract of Capparis zeylanica root (EECZ circumvent aggression. Foot shock induced aggression, isolation-induced aggression, resident-intruder aggression and water competition test were utilized as models for screening of antiaggressive activity. Extract was given orally at three different dose levels (100, 200 and 400 mg/kg once daily for three consecutive days, while Diazepam (2.5 mg/kg, was administered as positive control. EECZ significantly (p<0.05 minimized aggression dose dependently in the entire dose (100, 200, 400 mg/kg. Results suggested that EECZ showed significant antiagressive activity in aforementioned validated models of aggression. EECZ at all dose levels (100, 200 and 400 mg/kg have shown promising anti-aggressive activity qualitatively comparable to that of diazepam (2.5 mg/kg.

  3. Combination of Root Surface Modification with BMP-2 and Collagen Hydrogel Scaffold Implantation for Periodontal Healing in Beagle Dogs.

    Science.gov (United States)

    Kato, Akihito; Miyaji, Hirofumi; Ishizuka, Ryosuke; Tokunaga, Keisuke; Inoue, Kana; Kosen, Yuta; Yokoyama, Hiroyuki; Sugaya, Tsutomu; Tanaka, Saori; Sakagami, Ryuji; Kawanami, Masamitsu

    2015-01-01

    Objective : Biomodification of the root surface plays a major role in periodontal wound healing. Root surface modification with bone morphogenetic protein (BMP) stimulates bone and cementum-like tissue formation; however, severe ankylosis is simultaneously observed. Bio-safe collagen hydrogel scaffolds may therefore be useful for supplying periodontal ligament cells and preventing ankylosis. We examined the effects of BMP modification in conjunction with collagen hydrogel scaffold implantation on periodontal wound healing in dogs. The collagen hydrogel scaffold was composed of type I collagen sponge and collagen hydrogel. One-wall infrabony defects (5 mm in depth, 3 mm in width) were surgically created in six beagle dogs. In the BMP/Col group, BMP-2 was applied to the root surface (loading dose; 1 µg/µl), and the defects were filled with collagen hydrogel scaffold. In the BMP or Col group, BMP-2 coating or scaffold implantation was performed. Histometric parameters were evaluated at 4 weeks after surgery. Single use of BMP stimulated formation of alveolar bone and ankylosis. In contrast, the BMP/Col group frequently enhanced reconstruction of periodontal attachment including cementum-like tissue, periodontal ligament and alveolar bone. The amount of new periodontal ligament in the BMP/Col group was significantly greater when compared to all other groups. In addition, ankylosis was rarely observed in the BMP/Col group. The combination method using root surface modification with BMP and collagen hydrogel scaffold implantation facilitated the reestablishment of periodontal attachment. BMP-related ankylosis was suppressed by implantation of collagen hydrogel.

  4. Effects of basic fibroblast growth factor on density and morphology of fibroblasts grown on root surfaces with or without conditioning with tetracycline or EDTA.

    Science.gov (United States)

    Silvério, Karina G; Martinez, Aurora E T; Rossa, Carlos

    2007-09-01

    A study was conducted to evaluate in vitro the effect of root surface conditioning with basic fibroblast growth factor (b-FGF) on morphology and proliferation of fibroblasts. Three experimental groups were used: non-treated, and treated with 50 microg or 125 microg b-FGF/ml. The dentin samples in each group were divided into subgroups according to the chemical treatment received before application of b-FGF: none, or conditioned with tetracycline-HCl or EDTA. After contact with b-FGF for 5 min, the samples were incubated for 24 h with 1 ml of culture medium containing 1 x 10(5) cells/ml plus 1 ml of culture medium alone. The samples were then subjected to routine preparation for SEM, and random fields were photographed. Three calibrated and blind examiners performed the assessment of morphology and density according to two index systems. Classification and regression trees indicated that the root surfaces treated with 125 microg b-FGF and previously conditioned with tetracycline-HCl or EDTA presented a morphology more suggestive of cellular adhesion and viability (P = 0.004). The density of fibroblasts on samples previously conditioned with EDTA, regardless of treatment with b-FGF, was significantly higher than in the other groups (P < 0.001). The present findings suggest that topical application of b-FGF has a positive influence on both the density and morphology of fibroblasts.

  5. Effect of finishing instrumentation using NiTi hand files on volume, surface area and uninstrumented surfaces in C-shaped root canal systems.

    Science.gov (United States)

    Amoroso-Silva, P; Alcalde, M P; Hungaro Duarte, M A; De-Deus, G; Ordinola-Zapata, R; Freire, L G; Cavenago, B C; De Moraes, I G

    2017-06-01

    To assess the effect of 90°-oscillatory instrumentation with hand files on several morphological parameters (volume, surface area and uninstrumented surface) in C-shaped root canals after instrumentation using a single-file reciprocation system (Reciproc; VDW, Munich, Germany) and a Self-Adjusting File System (SAF; ReDent Nova, Ra'anana, Israel). Twenty mandibular second molars with C-shaped canals and C1 canal configurations were divided into two groups (n = 10) and instrumented with Reciproc and SAF instruments. A size 30 NiTi hand K-file attached to a 90°-oscillatory motion handpiece was used as final instrumentation in both groups. The specimens were scanned using micro-computed tomography after all procedures. Volume, surface area increase and uninstrumented root canal surface were analysed using CTAn software (Bruker-microCT, Kontich, Belgium). Also, the uninstrumented root canal surface was calculated for each canal third. All values were compared between groups using the Mann-Whitney test and within groups using the Wilcoxon's signed-rank test. Instrumentation with Reciproc significantly increased canal volume compared with instrumentation with SAF. Additionally, the canal volumes were significantly increased after 90°-oscillatory instrumentation (between and within group comparison; (P instrumentation protocols, statistical analysis only revealed significant differences in the within groups comparison (P instrumentation yielded an uninstrumented root canal surface of 28% and 34%, respectively, which was not significantly different (P > 0.05). Final oscillatory instrumentation significantly reduced the uninstrumented root canal surface from 28% to 9% (Reciproc) and from 34% to 15% (SAF; P instrumentation that was significantly reduced after oscillatory instrumentation (P instrumentation of mandibular second molars with C-shaped canals except for a higher canal volume increase in the Reciproc group compared to the SAF. Furthermore, the final use

  6. Computational fluid dynamics modeling of mass transfer behavior in a bioreactor for hairy root culture. I. Model development and experimental validation.

    Science.gov (United States)

    Liu, Rui; Sun, Wei; Liu, Chun-Zhao

    2011-01-01

    A two-dimensional axisymmetric computational fluid dynamics (CFD) model based on a porous media model and a discrete population balance model was established to investigate the hydrodynamics and mass transfer behavior in an airlift bioreactor for hairy root culture.During the hairy root culture of Echinacea purpurea, liquid and gas velocity, gas holdup, mass transfer rate, as well as oxygen concentration distribution in the airlift bioreactor were simulated by this CFD model. Simulative results indicated that liquid flow and turbulence played a dominant role in oxygen mass transfer in the growth domain of the hairy root culture. The dissolved oxygen concentration in the hairy root clump increased from the bottom to the top of the bioreactor cultured with the hairy roots, which was verified by the experimental detection of dissolved oxygen concentration in the hairy root clump. This methodology provided insight understanding on the complex system of hairy root culture and will help to eventually guide the bioreactor design and process intensification of large-scale hairy root culture. © 2011 American Institute of Chemical Engineers

  7. Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Said Abdel-Khalik

    2005-07-02

    Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores.

  8. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  9. Modified lateral positioned flap with platelet-rich fibrin graft for treatment of denuded root surfaces: A clinical study

    Directory of Open Access Journals (Sweden)

    Abhishek Ashok Kurdukar

    2017-01-01

    Full Text Available Background: Root coverage (RC procedures such as lateral positioned flap (LPF have been used since long time but with limited success and specific indications. Aim: This prospective clinical study was designed to evaluate clinically the effect of modified LPF (mLPF with platelet-rich fibrin (PRF graft for the treatment of denuded root surfaces. Materials and Methods: Fifteen isolated Miller's Class I and II gingival recession of single-rooted teeth were selected for the study. Scaling and root planing was done, and oral hygiene instructions were given to the patients. Plaque index, gingival index, and recession parameters (probing depth, gingival recession height, clinical attachment level [CAL], and width of keratinized tissue [WKT] were assessed at baseline. Following this, mLPF with PRF was done at the recession sites, and parameters were assessed at 3 and 6 months. Statistical Analysis: To analyze the posttreatment effect, paired t-test was performed at relevant degrees of freedom and 95% confidence level. Results: The mean percentage of RC attained was 72.2% at 3 months and 73.5% at 6 months. The WKT shows a mean gain of 2.93 mm at 3 months and 3 mm at 6 months. Conclusion: mLPF with PRF produced statistically significant reduction in recession depth and gain in both CAL and WKT by the end of 6 months.

  10. Experimental Assessment of Mechanical Night Ventilation on Inner Wall Surfaces

    DEFF Research Database (Denmark)

    Wenhui, Ji; Heiselberg, Per Kvols; Wang, Houhua

    2016-01-01

    The cooling potential of night ventilation largely depends on the heat exchange at the internal room surfaces. During night time, increased heat transfer on a vertical wall is expected due to cool supply air that flows along the internal wall surface from the top of the wall. This paper presents ...

  11. Experimental studies of surface plasmon polariton band gap effect

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Leosson, K.

    2003-01-01

    Surface plasmon polaritons (SPPs) propagation at a gold film surface covered by periodic arrays of ~40-nm-high scatterers arranged in a triangular lattice of different periods containing straight line defects is studied using collection scanning near-field optical microscopy. The results reveal...

  12. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  13. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars.

    Science.gov (United States)

    Liu, Zhao-Dong; Zhou, Qin; Hong, Zhi-Neng; Xu, Ren-Kou

    2017-01-01

    This work was designed to understand the mechanisms of adsorption of copper (Cu) and cadmium (Cd) on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups) as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  14. The influence of surface and incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. II. Root growth and agronomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lucerne (Medicago sativa. L) root elongation in acid soils amended by gypsiferous coal combustion by-products was investigated in a glasshouse study. Lime, fluidised bed boiler ash (FBA), and flue gas desulfurisation gypsum (FGDG) were mixed into the surface 50 mm of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil column, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. Lucerne was grown on each column after it was leached with 400 mm of water. Whereas the lime treatment had no effect on root elongation in the acidic subsurface of the Patua soil, the FBA and FGDG treatments significantly improved lucerne root penetration into the subsurface soil. This was due to the `self liming effect` induced by sulfate adsorption. In contrast, topsoil incorporated amendments did not influence root penetration into the acidic subsurface of the Kaawa soil, which is dominated by permanently charged clay minerals. The `self-liming erect` caused by gypsum application is not a sustainable practice. Lime should be applied to neutralise the topsoil acidity, when gypsum is used as subsurface soil acidity ameliorant. FBA, which contains both lime and gypsum, can meet these requirements.

  15. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Science.gov (United States)

    Keinan, David; Mass, Eliyahu; Zilberman, Uri

    2010-01-01

    Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ), was analyzed. An energy dispersive X-ray spectrometer (EDS) was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times) were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (P crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible. PMID:21274429

  16. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  17. Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns.

    Science.gov (United States)

    Keinan, David; Mass, Eliyahu; Zilberman, Uri

    2010-01-01

    Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ), was analyzed. An energy dispersive X-ray spectrometer (EDS) was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times) were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (P Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  18. Subepithelial connective tissue grafts for the coverage of denuded root surfaces: A clinical report

    Directory of Open Access Journals (Sweden)

    Ahathya R

    2008-01-01

    Full Text Available Aims and Objectives: The aim of this study is to determine the effectiveness of subepithelial connective tissue grafts (SCTG in the coverage of denuded roots. Materials and Methods: A total of 16 sites with ≥2 mm of recession height were included in the study for treatment with SCTG. The clinical parameters, such as recession height, recession width, width of keratinized gingiva, probing pocket depth, and clinical attachment level were measured at the baseline, third month, and at the end of the study [sixth month]. The defects were treated with a coronally positioned pedicle graft combined with connective tissue graft. Results: Out of 16 sites treated with SCTG, 11 sites showed complete (100% root coverage; the mean root coverage obtained was 87.5%. There was a statistically significant reduction in recession height, recession width, and probing pocket depth. There was also a statistically significant increase in the width of keratinized gingiva and also a gain in clinical attachment level. The postoperative results were both clinically and statistically significant ( P 0.05. Conclusion: From this study, it may be concluded that SCTG is a safe and effective method for the coverage of denuded roots.

  19. Molecular and morphological surface analysis: effect of filling pastes and cleaning agents on root dentin

    Directory of Open Access Journals (Sweden)

    Vanessa Benetello DAINEZI

    Full Text Available Abstract The quality of the dentin root is the most important factor for restoration resin sealing and drives the outcome of endodontic treatment. Objective This study evaluated the effect of different filling pastes and cleaning agents on the root dentin of primary teeth using Fourier-transformed Raman spectroscopy (FT-Raman, micro energy-dispersive X-ray fluorescence (µ-EDXRF and scanning electron microscopic (SEM analysis. Material and Methods Eighty roots of primary teeth were endodontically prepared and distributed into 4 groups and filled according to the following filling pastes: Control-no filling (CP, Calen®+zinc oxide (CZ, Calcipex II® (CII, Vitapex® (V. After seven days, filling paste groups were distributed to 4 subgroups according to cleaning agents (n=5: Control-no cleaning (C, Ethanol (E, Tergenform® (T, 35% Phosphoric acid (PA. Then, the roots were sectioned and the dentin root sections were internally evaluated by FT-Raman, µ-EDXRF and SEM. Data was submitted to two-way ANOVA and Tukey tests (α=0.05. Results Regarding filling pastes, there was no significant difference in organic content. CP provided the lowest calcium values and, calcium/phosphoric ratio (Ca/P, and the highest phosphoric values. For cleaning agents there was no difference in organic content when compared to the C; however, T showed significantly higher calcium and Ca/P than PA. All groups showed similar results for phosphorus. The dentin smear layer was present after use of the cleaning agents, except PA. Conclusion The filling pastes changed the inorganic content, however they did not change the organic content. Cleaning agents did not alter the inorganic and organic content. PA cleaned and opened dentin tubules.

  20. Bactericidal Efficacy of Photodynamic Therapy and Chitosan in Root Canals Experimentally Infected with Enterococcus faecalis: An In Vitro Study.

    Science.gov (United States)

    Camacho-Alonso, Fabio; Julián-Belmonte, Encarnación; Chiva-García, Fernando; Martínez-Beneyto, Yolanda

    2017-04-01

    To evaluate the antibacterial efficacy of photodynamic therapy (PDT) and chitosan against Enterococcus faecalis and assess the possible enhancive effect of chitosan on the photosensitizer methylene blue in experimentally infected root canals of extracted human teeth in vitro. E. faecalis is frequently found in persistent endodontic infections. In this context, the antimicrobial PDT or newer antibacterial alternatives such as chitosan could become modern alternatives to existing antibacterial treatment approaches. One hundred two single-rooted extracted teeth were used. The teeth were contaminated with 0.1 mL E. faecalis (3 × 10(8) cell/mL). These were randomized into six treatment groups (n = 17 teeth): Group 1 (2.5% NaOCl); Group 2 (PDT); Group 3 (chitosan 3 mg/mL); Group 4 (PDT+chitosan 3 mg/mL); Group 5 (positive control, no treatment); and Group 6 (negative control, no inoculation, no treatment). The canal content was sampled with sterile paper points. The samples were cultured on blood agar plates to determine the number of colony-forming units (CFU)/mL. Five teeth in each group were analyzed by scanning electron microscope (SEM) to determine the percentage of area with contamination and debris. The positive control group showed the highest number of CFU/mL, with statistically significant differences in comparison with the other treatment groups (p ≤ 0.05). Group 4 (PDT+chitosan) showed the lowest CFU/mL count, followed by Group 2 (PDT alone), which obtained similar results to Group 1 (NaOCl), but there was no significance between the treated groups. SEM images showed that Group 4 (PDT+Chitosan) showed the lowest area of contamination. Combination of PDT and chitosan showed antibacterial potential against endodontic infection by E. faecalis.

  1. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  2. Experimental studies of surface modified oscillating heat pipes

    Science.gov (United States)

    Leu, Tzong-Shyng; Wu, Cheng-Han

    2017-04-01

    Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle (θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified (θ c = 26.74°), superhydrophobic (θ c = 156.2°), superhydrophilic (θ c evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance (R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.

  3. Experimental characterization of micromilled surfaces by large range AFM

    DEFF Research Database (Denmark)

    Bariani, Paolo; Bissacco, Giuliano; Hansen, Hans Nørgaard

    2004-01-01

    of workpiece material, particularly when sub-micrometer chip thicknesses are considered and when machining hard materials. Quantification of surface topography is of fundamental importance for the evaluation of the generated surface; high resolution and wide measuring range being highly desirable...... was achieved by the use of an atomic force microscope mounted on a CMM, which takes advantage of the small radius of curvature of its tip. Its limitation on the scanning range is overcome by taking multiple scans and stitching procedures. Other measuring techniques such as, stylus profilometry, optical...

  4. Caries resistance of lased human root surface with 10.6 μm CO2 laser-thermal, morphological, and microhardness analysis

    Science.gov (United States)

    de Souza-Zaroni, W. C.; Freitas, A. C. P.; Hanashiro, F. S.; Steiner-Oliveira, C.; Nobre-Dos-Santos, M.; Youssef, M. N.

    2010-02-01

    Although the cariostatic effects of CO2 laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 μm CO2 laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2—2.5 J/cm2; G3—4.0 J/cm2; G4—5.0 J/cm2; and G5—6.0 J/cm2. Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5°C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm2 were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm2, laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm2 could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.

  5. Human Histologic Repair and Regeneration After Biologic Preparation of Diseased Root Surfaces,

    Science.gov (United States)

    1983-12-01

    29: 98, 1958. 6. Ramfjord, S. P.: "Long Term Longitudinal Studies of Various Periodontal Therapies." Midwest Society of Periodontology 24th Annual...study. J Periodontol 51: 652, 1980. 12. Gottsegen, R.: "Update -- Where Are We Now?" Midwest Society of Periodontology 24th Annual Meeting. February 14...and 15, 1981. 13. Morris, M.: "Chemical Therapies of the Diseased Root." Midwest Society of Periodontology 24th Annual Meeting. February 14 and 15

  6. Crack initiation on the apical root surface caused by three different nickel-titanium rotary files at different working lengths.

    Science.gov (United States)

    Adorno, Carlos G; Yoshioka, Takatomo; Suda, Hideaki

    2011-04-01

    The aim of this study was to compare the effects of three brands of nickel-titanium (NiTi) rotary files with different designs on the initiation of apical root cracks when working short, at, and beyond the apical foramen. One-hundred eight teeth with straight single canals were selected and mounted on resin blocks with simulated periodontal ligaments, and the apex was exposed. The teeth were divided into 9 groups of 12 teeth according to the NiTi rotary file type used (Profile [Dentsply Maillefer, Ballaigues, Switzerland], K3 [SybronEndo, West Collins, CA], and EndoWave [FKG Dentaire, La-Chaux-de-Fonds, Switzerland]) and working length (at CL, 1 mm short of [CL - 1 mm], and 1 mm beyond [CL + 1 mm] the apical foramen). Digital images of the apical surface of every tooth were taken during the apical enlargement sequence at each file change. These images were compared with the baseline image, and the presence of a crack was noted. Significantly less cracks were observed in the CL - 1 mm group than in the CL and CL + 1 mm groups. No significant difference was found between the file types used. Working 1 mm short of the apical foramen caused less cracks on the apical surface. In addition, more cracks were observed when using larger file sizes. Instrumentation with NiTi rotary files could potentially cause cracks on the apical root surface. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Surface Roughness Models and Their Experimental Validation in Micro Milling of 6061-T6 Al Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Jie Yi

    2015-01-01

    Full Text Available Due to the widespread use of high-accuracy miniature and micro features or components, it is required to predict the machined surface performance of the micro milling processes. In this paper, a new predictive model of the surface roughness is established by response surface method (RSM according to the micro milling experiment of 6061-T6 aluminum alloy which is carried out based on the central composite circumscribed (CCC design. Then the model is used to analyze the effects of parameters on the surface roughness, and it can be concluded that the surface roughness increases with the increasing of the feed rate and the decreasing of the spindle speed. At last, based on the model the contour map of the surface roughness and material removal rate is established for optimizing the process parameters to improve the cutting efficiency with good surface roughness. The prediction results from the model have good agreement with the experimental results.

  8. In Vitro Adhesion of Streptococcus sanguinis to Dentine Root Surface After Treatment with Er:Yag Laser, Ultrasonic System, or Manual Curette

    Science.gov (United States)

    Martins, Fernanda L.; Giorgetti, Ana Paula O.; de Freitas, Patrícia M.; Duarte, Poliana M.

    2009-01-01

    Abstract Objective: The purpose of this in vitro study was to evaluate the dentine root surface roughness and the adherence of Streptococcus sanguinis (ATCC 10556) after treatment with an ultrasonic system, Er:YAG laser, or manual curette. Background Data: Bacterial adhesion and formation of dental biofilm after scaling and root planing may be a challenge to the long-term stability of periodontal therapy. Materials and Methods: Forty flattened bovine roots were randomly assigned to one of the following groups: ultrasonic system (n = 10); Er:YAG laser (n = 10); manual curette (n = 10); or control untreated roots (n = 10). The mean surface roughness (Ra, μm) of the specimens before and after exposure to each treatment was determined using a surface profilometer. In addition, S. sanguinis was grown on the treated and untreated specimens and the amounts of retained bacteria on the surfaces were measured by culture method. Results: All treatments increased the Ra; however, the roughest surface was produced by the curettes. In addition, the specimens treated with curettes showed the highest S. sanguinis adhesion. There was a significant positive correlation between roughness values and bacterial cells counts. Conclusion: S. sanguinis adhesion was the highest on the curette-treated dentine root surfaces, which also presented the greatest surface roughness. PMID:19712018

  9. Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, Niraj; Stephens, Sean A.; Adams, Lexor; Beck, Anthon NR; McKinney, Adriana L.; Varga, Tamas

    2016-01-01

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and forest management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving the plant. X ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. Our group at the Environmental Molecular Sciences Laboratory (EMSL) has developed an XCT-based tool to image and quantitatively analyze plant root structures in their native soil environment. XCT data collected on a Prairie dropseed (Sporobolus heterolepis) specimen was used to visualize its root structure. A combination of open-source software RooTrak and DDV were employed to segment the root from the soil, and calculate its isosurface, respectively. Our own computer script named 3DRoot-SV was developed and used to calculate root volume and surface area from a triangular mesh. The process utilizing a unique combination of tools, from imaging to quantitative root analysis, including the 3DRoot-SV computer script, is described.

  10. Evaluation of the Antidiabetic Activity and Chemical Composition of Geranium collinum Root Extracts—Computational and Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Sodik Numonov

    2017-06-01

    Full Text Available The root of Geranium collinum Steph is known in Tajik traditional medicine for its hepatoprotective, antioxidant, and anti-inflammatory therapeutic effects. The present study was conducted to evaluate of potential antidiabetic, antioxidant activities, total polyphenolic and flavonoid content from the different extracts (aqueous, aqueous-ethanolic and individual compounds isolated of the root parts of G. collinum. The 50% aqueous-ethanolic extract possesses potent antidiabetic activity, with IC50 values of 0.10 μg/mL and 0.09 μg/mL for the enzymes protein-tyrosine phosphatase (1B PTP-1B and α-glucosidase, respectively. Phytochemical investigations of the 50% aqueous-ethanolic extract of G. collinum, led to the isolation of ten pure compounds identified as 3,3′,4,4′-tetra-O-methylellagic acid (1, 3,3′-di-O-methylellagic acid (2, quercetin (3, caffeic acid (4, (+-catechin (5, (–-epicatechin (6, (–-epigallocatechin (7, gallic acid (8, β-sitosterol-3-O-β-d-glucopyranoside (9, and corilagin (10. Their structures were determined based on 1D and 2D NMR and mass spectrometric analyses. Three isolated compounds exhibited strong inhibitory activity against PTP-1B, with IC50 values below 0.9 μg/mL, more effective than the positive control (1.46 μg/mL. Molecular docking analysis suggests polyphenolic compounds such as corilagin, catechin and caffeic acid inhibit PTP-1B and β-sitosterol-3-O-β-d-gluco-pyranoside inhibits α-glucosidase. The experimental results suggest that the biological activity of G. collinum is related to its polyphenol contents. The results are also in agreement with computational investigations. Furthermore, the potent antidiabetic activity of the 50% aqueous-ethanolic extract from G. collinum shows promise for its future application in medicine. To the best of our knowledge, we hereby report, for the first time, the antidiabetic activity of G. collinum.

  11. Cardiac Body Surface Potentials in Rats with Experimental Pulmonary Hypertension during Ventricular Depolarization.

    Science.gov (United States)

    Suslonova, O V; Smirnova, S L; Roshchevskaya, I M

    2016-11-01

    The spatial and the amplitude-temporal parameters of cardiac body surface potentials were examined in female Wistar rats with experimental pulmonary hypertension during ventricular depolarization. The cardiac body surface potentials have been led from 64 subcutaneous electrodes evenly distributed across the chest surface prior to and 4 weeks after subcutaneous injection of a single dose of monocrotaline (60 mg/kg). Right ventricular hypertrophy and electrophysiological remodeling of the heart developed in rats with experimental pulmonary hypertension in 4 weeks after monocrotaline injection; these changes led to a significant increase in amplitude and temporal characteristics of the cardioelectric field on the body surface in comparison with the initial state.

  12. Ultramorphology of the root surface subsequent to hand-ultrasonic simultaneous instrumentation during non-surgical periodontal treatments: an in vitro study

    Directory of Open Access Journals (Sweden)

    Simone D. Aspriello

    2011-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the ultramorphology of the root surfaces induced by mechanical instrumentation performed using conventional curettes or piezoelectric scalers when used single-handedly or with a combined technique. MATERIAL AND METHODS: Thirty single-rooted teeth were selected and divided into 3 groups: Group A, instrumentation with curettes; Group B instrumentation with titanium nitride coated periodontal tip mounted in a piezoelectric handpiece; Group C, combined technique with curette/ultrasonic piezoelectric instrumentation. The specimens were processed and analyzed using confocal and scanning electron microscopy. Differences between the different groups of instrumentation were determined using Pearson's χ2 with significance predetermined at α=0.001. RESULTS: Periodontal scaling and root planing performed with curettes, ultrasonic or combined instrumentation induced several morphological changes on the root surface. The curettes produced a compact and thick multilayered smear layer, while the morphology of the root surfaces after ultrasonic scaler treatment appeared irregular with few grooves and a thin smear layer. The combination of curette/ultrasonic instrumentation showed exposed root dentin tubules with a surface morphology characterized by the presence of very few grooves and slender remnants of smear layer which only partially covered the root dentin. In some cases, it was also possible to observe areas with exposed collagen fibrils. CONCLUSIONS: The curette-ultrasonic simultaneous instrumentation may combine the beneficial effects of each instrument in a single technique creating a root surface relatively free from the physical barrier of smear layer and dentin tubules orifices partial occlusion.

  13. Stress Distribution in Roots Restored with Fiber Posts and An Experimental Dentin Post: 3D-FEA.

    Science.gov (United States)

    Diana, Hugo Henrique; Oliveira, Juliana Santos; Ferro, Mariana Carolina de Lara; Silva-Sousa, Yara T Corrêa; Gomes, Érica Alves

    2016-01-01

    The aim of this study was to compare the stress distribution in radicular dentin of a maxillary canine restored with either a glass fiber post, carbon fiber post or an experimental dentin post using finite element analysis (3D-FEA). Three 3D virtual models of a maxillary canine restored with a metal-ceramic crown and glass fiber post (GFP), carbon fiber post (CFP), and experimental dentin post (DP) were obtained based on micro-CT images. A total of 180 N was applied on the lingual surface of the incisal third of each tooth at 45 degrees. The models were supported by the periodontal ligament fixed in three axes (x=y=z=0). The von Mises stress (VMS) of radicular dentin and the intracanal posts was calculated. The structures of all groups showed similar values (MPa) and distribution of maximum von Mises stress. Higher stress was found in the apical third of dentin while the posts presented homogeneous stress distribution along the axis. The fiber and dentin posts exhibited similar stress values and distribution. Thus, the experimental dentin post is a promising restorative material.

  14. Experimental investigation of vortex rings impinging on inclined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Lauren D. [Southern Methodist University, Department of Mechanical Engineering, Dallas, TX (United States); Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA (United States); Krueger, Paul S. [Southern Methodist University, Department of Mechanical Engineering, Dallas, TX (United States)

    2011-10-15

    Vortex-ring interactions with oblique boundaries were studied experimentally to determine the effects of plate angle on the generation of secondary vorticity, the evolution of the primary vorticity and secondary vorticity as they interact near the boundary, and the associated energy dissipation. Vortex rings were generated using a mechanical piston-cylinder vortex ring generator at jet Reynolds numbers 2,000-4,000 and stroke length to piston diameter ratios (L/D) in the range 0.75-2.0. The plate angle relative to the initial axis of the vortex ring ranged from 3 to 60 . Flow analysis was performed using planar laser-induced fluorescence (PLIF), digital particle image velocimetry (DPIV), and defocusing digital particle tracking velocimetry (DDPTV). Results showed the generation of secondary vorticity at the plate and its subsequent ejection into the fluid. The trajectories of the centers of circulation showed a maximum ejection angle of the secondary vorticity occurring for an angle of incidence of 10 . At lower incidence angles (<20 ), the lower portion of the ring, which interacted with the plate first, played an important role in generation of the secondary vorticity and is a key reason for the maximum ejection angle for the secondary vorticity occurring at an incidence angle of 10 . Higher Reynolds number vortex rings resulted in more rapid destabilization of the flow. The three-dimensional DDPTV results showed an arc of secondary vorticity and secondary flow along the sides of the primary vortex ring as it collided with the boundary. Computation of the moments and products of kinetic energy and vorticity magnitude about the centroid of each vortex ring showed increasing asymmetry in the flow as the vortex interaction with the boundary evolved and more rapid dissipation of kinetic energy for higher incidence angles. (orig.)

  15. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  16. An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

    Science.gov (United States)

    Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

    2011-08-01

    An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

  17. Effect of two contemporary root canal sealers on root canal dentin microhardness.

    Science.gov (United States)

    Khallaf, Maram E

    2017-01-01

    Successful root canal treatment depends on proper cleaning, disinfecting and shaping of the root canal space. Pulpless teeth have lower dentin microhardness value compared to that of vital teeth. A material which can cause change in dentin composition may affect the microhardness. Thus the aim of this study was to evaluate and compare the effect of two root canal sealers on dentin microhardness. Forty two single rooted teeth were selected and divided into 3 equal groups; Apexit, iRootSP and control groups (n=14) Each group was then divided into 2 subgroups according to the post evaluation period; 1 week and 2 months (n=7). Root canal procedure was done in the experimental groups and obturation was made using either; Apexit, iRootSP or left unprepared and unobturated in the control group. Roots were sectioned transversely into cervical, middle and apical segments. The three sections of each root were mounted in a plastic chuck with acrylic resin. The coronal dentin surfaces of the root segments werepolished. Microhardness of each section was measured at 500 µm and 1000 µm from the canal lumen. Four way-ANOVA revealed that different tested sealer materials, canal third, measuring distance from the pulp and time as independent variables had statistically non significant effect on mean microhardness values (VHN) at p≤0.001. Among iRootSP groups there was a statistically significant difference between iRoot SP at coronal root portion (87.79±17.83) and iRoot SP at apical root portion (76.26±9.33) groups where (p=0.01). IRoot SP at coronal canal third had higher statistically significant mean microhardness value (87.79±17.83) compared to Apexit at coronal third (73.61±13.47) where (p=0.01). Root canal sealers do not affect dentin microhardness. Key words:Root canal, dentin, sealers, microhardness, bioceramic.

  18. Correlation between surface roughness and microhardness of experimental composites with varying filler concentration.

    Science.gov (United States)

    Munchow, Eliseu Aldrighi; Correa, Marcos Brito; Ogliari, Fabricio Aulo; Piva, Evandro; Zanchi, Cesar Henrique

    2012-05-01

    The purpose of this study was to investigate the influence of the surface roughness on the surface microhardness of experimental composites with varying filler concentration. Experimental resin composites were formulated by mixing Bis-GMA and TEGDMA in a 50/50% weight ratio and CQ/EDAB were added to make the material photosensitive. Silanized glass particles were incorporated in the resin blend in two concentrations: C50 with 50% and C75 with 75% in weight ratio. The surface roughness and the surface microhardness measurements were determined after every three finishing procedures with #280-, #600- and #1200-grit wet sandpapers, respectively. The data were analyzed statistically by Two Way ANOVA and Tukey's test, and comparisons were conducted using the Spearman's correlation test (p > 0.05). The surface roughness and surface microhardness were negatively associated (r = - 0.68) and the finishing procedures of both composites resulted in harder and smoother surfaces than the initial ones. Additionally, in a smooth circumstance, the higher content of fillers has not resulted in a composite with better microhardness and smoothness. Finishing procedures decreased the surface roughness and consequently improved the surface microhardness of the composites evaluated. Finishing and polishing procedures are effectives in reducing the surface roughness amplitude of composite materials and in improving their surface microhardness. Thus a microhardness test and any hardness evaluation must be conducted only after a properly finished and polished surface is achieved.

  19. Effect of several thermoplastic canal filling techniques on surface temperature rise on roots with simulated internal resorption cavities: an infrared thermographic analysis.

    Science.gov (United States)

    Ulusoy, Ö I; Yılmazoğlu, M Z; Görgül, G

    2015-02-01

    To evaluate the surface temperature rise using an infrared thermal imaging camera on roots with and without simulated internal resorption cavities, during canal filling with injectable (Obtura II), carrier-based (Soft-Core) gutta-percha and continuous wave of condensation (System B) techniques. Root canals of 60 mandibular premolar teeth were instrumented to an apical size of 40. Circular artificial internal resorption cavities with a diameter of 2.40 mm were prepared on the root canal walls of 30 teeth. All teeth were divided into six groups of 10 specimen and root filled as follows: group 1 (teeth with internal resorption): thermoplasticized injectable gutta-percha (Obtura II), group 2 (teeth without internal resorption): thermoplasticized injectable gutta-percha (Obtura II), group 3 (teeth with internal resorption): carrier-based gutta-percha (Soft-Core), group 4 (teeth without internal resorption): carrier-based gutta-percha (Soft-Core), group 5 (teeth with internal resorption): continuous wave of condensation (System B) and group 6 (teeth without internal resorption): continuous wave of condensation (System B). The surface temperature changes during filling of canals were measured with an infrared thermal imaging camera. The thermograms were recorded at 2-s intervals over a period of 40 s to determine the maximum temperature rise at the apical, middle and cervical thirds of the root surface. The data were statistically analysed with one-way anova and Tukey HSD post hoc or Kruskal-Wallis and Bonferroni-adjusted Mann-Whitney U-tests if appropriate. The temperature rise on the surface of roots with artificial resorptive defects was significantly higher compared with the ones without defects in the Obtura II and System B groups (P surface temperature rise over the critical threshold. However, Soft-Core root filling did not increase the temperature over 10 °C. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. The SMAP level 4 surface and root zone soil moisture data assimilation product

    Science.gov (United States)

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, ho...

  1. Phosphate availability in the soil-root system : integration of oxide surface chemistry, transport and uptake

    NARCIS (Netherlands)

    Geelhoed, J.S.

    1998-01-01

    A study is presented on the adsorption of phosphate on goethite, the interaction of phosphate with other adsorbing ions at the goethite surface, and the resulting availability of phosphate to plants. The plant-availability of sorbed phosphate was determined from phosphorus uptake of plants

  2. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  3. Experimental studies of an In/Pb surface alloy on the Ge(111) surface

    Science.gov (United States)

    Sohail, Hafiz M.; Uhrberg, R. I. G.

    2013-03-01

    There is an increasing interest in two-dimensional (2D) surface alloys as model systems for studies of various physical phenomena. We have formed a binary In/Pb surface alloy on Ge(111) by evaporating 0.8 monolayer (ML) of In on the Pb/Ge(111) surface with 1.33 ML of Pb. A highly ordered 3x3 periodicity is formed after annealing at a temperature slightly below 200 oC, as verified by both low energy electron diffraction and scanning tunneling microscopy (STM). Overview STM images, obtained at 40 K, show protrusions arranged according to a honeycomb structure. Detailed STM images reveal that the protrusions consist of atomic sized features with a local hexagonal arrangement. Each 3x3 unit cell contains nine such features. Based on angle resolved photoelectron spectroscopy data, we have identified three surface bands within the bulk band gap, which all cross the Fermi level leading to a metallic character of the surface. The dispersions of these bands have been mapped in detail along the high symmetry directions of the 3x3 surface Brillouin zone. Fermi contours mapped in 2D k-space show interesting features. In particular, the occurrence of two differently rotated hexagon like contours will be discussed in relation to the atomic arrangement suggested by the STM images. The work was financially supported by the Swedish Research Council.

  4. Evaluation of the bactericidal effect of Nd:YAG, Er:YAG, Er,Cr:YSGG laser radiation, and antimicrobial photodynamic therapy (aPDT) in experimentally infected root canals.

    Science.gov (United States)

    Cheng, Xiaogang; Guan, Sumin; Lu, Hong; Zhao, Chunmiao; Chen, Xingxing; Li, Na; Bai, Qian; Tian, Yu; Yu, Qing

    2012-12-01

    In recent years, various laser systems have been introduced into the field of laser-assisted endodontic therapy. The aim of this study was to evaluate the bactericidal effect of Nd:YAG, Er:YAG, Er,Cr:YSGG laser radiation, and antimicrobial photodynamic therapy (aPDT) in experimentally infected root canals compared with standard endodontic treatment of 5.25% sodium hypochlorite (NaClO) irrigation. Two hundred and twenty infected root canals from extracted human teeth (contaminated with Enterococcus faecalis ATCC 4083 for 4 weeks) were randomly divided into five experimental groups (Nd:YAG, Er:YAG + 5.25% NaClO + 0.9% normal saline + distilled water (Er:YAG/NaClO/NS/DW), Er:YAG + 0.9% normal saline + distilled water (Er:YAG/NS/DW), Er,Cr:YSGG, and aPDT) and two control groups (5.25% NaClO as positive control and 0.9% normal saline (NS) as negative control). The numbers of bacteria on the surface of root canal walls and at different depths inside dentinal tubules before and after treatment were analyzed by means of one-way analysis of variance (one-way ANOVA). The morphology of bacterial cells before and after treatment was examined by scanning electron microscopy (SEM). After treatment, the bacterial reductions in the experimental groups and the positive control group were significantly greater than that of the negative control group (P therapy. Copyright © 2012 Wiley Periodicals, Inc.

  5. Three consecutive days of application of LED therapy is necessary to inhibit experimentally induced root resorption in rats: a microtomographic study.

    Science.gov (United States)

    Higashi, Dayla Thyeme; Andrello, Avacir Casanova; Tondelli, Pedro Marcelo; de Oliveira Toginho Filho, Dari; de Paula Ramos, Solange

    2017-01-01

    Previous studies have suggested that phototherapy may modulate orthodontic tooth movement and the incidence of root resorption. We aimed to identify a minimal dose-response relationship to LED therapy with regard to orthodontic tooth movement (OTM) and root resorption in rats. Forty-eight male Wistar rats were divided into six groups with equal and random distribution: control (C) no intervention; three daily LED irradiation (CLED); submitted only to OTM (RR); OTM and LED irradiation on the first day (LED1); OTM and two LED irradiation on the first and second days (LED2); and OTM and three LED irradiation on the first, second, and third days (LED3). Orthodontic appliance was installed in groups RR, LED1, LED2, and LED3 to promote OTM. Animals from groups CLED, LED1, LED2, and LED3 received LED therapy (940 nm, 4 J, 4 J/cm2) according to each group of treatment. After 7 days, all the animals were sacrificed. The jaws were fixed and scanned with microtomography (micro-CT). The micro-CT images were reconstructed on 2D and 3D models. These models were used to identify and measure root resorption number and dimensions (diameter, depth, and volume). The distance between the first and second molars was used to verify tooth displacement. The results showed that LED3 group had significantly lower number of root resorption. The root resorption dimensions (diameter and depth) had no significant differences among the experimental groups. LED3 group had significant tooth displacement in relation to C and CLED groups. In conclusion, three daily LED therapy doses are required to inhibit root resorption after appliance of orthodontic forces.

  6. Drying-submergence alternation enhanced crystalline ratio and varied surface properties of iron plaque on rice (Oryza sativa) roots.

    Science.gov (United States)

    Yang, Xu-Jian; Xu, Zhihong; Shen, Hong

    2017-11-21

    Iron plaque (IP) is valuable in nutrient management and contaminant tolerance for rice (Oryza sativa) because it can adsorb various nutrients and toxic ions. Crystalline ratio (CR) can be defined as the proportion of crystalline iron (CI) to total IP to describe IP crystallinity. Although the knowledge on IP has abounded, the information on the relationship among its formation condition, surface properties, and CR remains insufficient. In this study, quartz sand-soil cultivation with rice was conducted to explore the effect of drying-submergence alternation (DSA) on CI, amorphous iron (AI), CR, root oxidizing capacity (ROC), and surface properties of IP with different treatment durations and at different stages. Fourteen-day DSA treatment increased CI to 2.20 times of that after continuous submergence (CS) but decreased AI to 72.3% of that after CS. Correspondingly, CR was raised to 6.89% from 4.08%. Remarkably, CR of IP after DSA ending in submergence and ending in drying was 6.89% and 4.23%, respectively. In addition, ROC after 14-day DSA was enhanced to twice of that after CS. Results from scanning electronic microscope suggested that 14-day DSA induced thinner sheets with finer particles in IP compared to that after CS. Results from X-ray diffraction revealed that IP contained higher proportions of goethite, lepidocrocite, magnetite, and hematite after DSA than those after CS. Variable charge and surface area of IP after DSA were only 26.5% and 32.0% of those after CS, respectively. Together, our results indicated that proper strength DSA promoted ROC and transformation from AI to CI, and consequently increased CR of IP, while it changed its surface properties.

  7. Experimental Comparison of the Tribological Properties of Selected Surfaces Created by Thermal Spraying Technology

    Directory of Open Access Journals (Sweden)

    František Tóth

    2016-01-01

    Full Text Available The scientific article titled “Experimental comparison of the tribological properties of selected surfaces created by thermal spraying technology” deals with the surface condition of selected pairs working within the mixed friction before and after experimental tests. Based on the chosen methodology, the experimental tests were performed on the Tribotestor M’06 testing machine. The ecological oil MOGUL HEES 46 (manufactured by Paramo was used as a lubricant. The tests were performed on selected material pairs. The first friction element was a shaft of steel 14 220. The second friction element was a steel plate of steel 11 373 with a friction surface created by two materials, i.e. CuSn10 and NP 40. The results are statistically elaborated and illustrated in figures and tables.

  8. Competition among surface roots in a selectively-logged, semi-deciduous forest in southeastern Mexico - effects on seedlings of two species of contrasting shade tolerance

    Science.gov (United States)

    Matthew Dickinson; D.F. Wigham

    2013-01-01

    Experimental manipulations of root competition on naturally established seedlings were conducted across canopy openness and soil depth gradients in a selectively-logged, semideciduous forest on limestone-derived soils in southeastern Mexico. We studied the relatively shade intolerant mahogany (Swietenia macrophylla, Meliaceae) and shade tolerant...

  9. Experimental Investigation into the Radar Anomalies on the Surface of Venus

    Science.gov (United States)

    Kohler, E.; Gavin, P.; Chevrier, V.; Johnson, Natasha M.

    2012-01-01

    Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions.

  10. Comparison between syringe irrigation and RinsEndo in reduction of Enterococcus faecalis in experimentally infected root canal

    Directory of Open Access Journals (Sweden)

    Sharareh Mousavi Zahed

    2015-05-01

    Full Text Available Background and Aims: To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. Several irrigation devices have been recently introduced with the main objective of improving root canal disinfection.The purpose of this study was to evaluate the rinsing effect of RinsEndo system in reduction of enterococcus faecalis in comparison with conventional hand syringe in infected root canals.   Materials and Methods: 60 extracted single canal anterior teeth were infected with enterococcus faecalis and divided into 3 groups: RinsEndo system, conventional hand syringe and control group. The enterococcus faecalis colonies were counted in each group before and after rinsing. Data were analyzed using Variance and Kruskal Wallis test.   Results: The mean of enterococcus faecalis growth after rinsing was 3.50×103 in group with conventional syring rinsing, 2.04×103 in group with RinsEndo washing and 6.11×103 in control group. Reduction of enterococcus faecalis after rinsing was statistically significant in each group (P<0.001. The amount of reduction in number of colonies with RinsEndo and conventional syringe rinsing was higher in comparison with control group and this difference was significant (P<0.001. RinsEndo rinsing effect was statistically significantly higher in comparison to conventional syringe as well (P<0.001.   Conclusion: Rinsing with RinsEndo system was significantly more efficient in reduction of enterococcus faecalis from root canal in comparison with hand syringe washing.

  11. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species

    NARCIS (Netherlands)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M.; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-01-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such

  12. Definition and experimental determination of a soil-water retention surface

    OpenAIRE

    Salager, Simon; El Youssoufi, Moulay Saïd; Saix, Christian

    2010-01-01

    International audience; This paper deals with the definition and determination methods of the soil-water retention surface (SWRS), which is the tool used to present the hydromechanical behaviour of soils to highlight both the effect of suction on the change in water and total volumes and the effect of deformation with respect to the water retention capability. An experimental method is introduced to determine the SWRS and applied to a clayey silty sand. The determination of this surface is ba...

  13. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species.

    Science.gov (United States)

    Keuper, Frida; Dorrepaal, Ellen; van Bodegom, Peter M; van Logtestijn, Richard; Venhuizen, Gemma; van Hal, Jurgen; Aerts, Rien

    2017-10-01

    Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake ((15) N-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep- (thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow- (Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their

  14. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  15. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: computational and experimental studies

    Science.gov (United States)

    Dien To, Thien; Nguyen, Anh Tuan; Nhat Thanh Phan, Khoa; Thu Thi Truong, An; Doan, Tin Chanh Duc; Mau Dang, Chien

    2015-12-01

    Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES.

  16. Experimental and computational surface hydrophobicity analysis of a non-enveloped virus and proteins.

    Science.gov (United States)

    Heldt, Caryn L; Zahid, Amna; Vijayaragavan, K Saagar; Mi, Xue

    2017-05-01

    The physical characteristics of viruses needs to be understood in order to manipulate the interaction of viruses with host cells, as well as to create specific molecular recognition techniques to detect, purify, and remove viruses. Viruses are generally believed to be positively charged at physiological pH, but there are few other defining characteristics. Here, we have experimentally and computationally demonstrated that a non-enveloped virus is more hydrophobic than a panel of model proteins. Reverse-phase and hydrophobic interaction chromatography and ANS fluorescence determined the experimental hydrophobic strength of each entity. Computational surface hydrophobicity was calculated by the solvent exposed surface area of the protein weighted by the hydrophobicity of each amino acid. The results obtained indicate a strong correlation between the computational surface hydrophobicity and experimentally determined hydrophobicity using reverse-phase chromatography and ANS fluorescence. The surface hydrophobicity did not compare strongly to the weighted average of the amino acid sequence hydrophobicity. This demonstrates that our simple method of calculating the surface hydrophobicity gives general hydrophobicity information about proteins and viruses with crystal structures. In the process, this method demonstrated that porcine parvovirus (PPV) is more hydrophobic than the model proteins used in this study. This adds an additional dimension to currently known virus characteristics and can improve our manipulation of viruses for gene therapy targeting, surface adsorption and general understanding of virus interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  18. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Koch, Birgit; Nielsen, Tommy Harder

    2003-01-01

    bacterial culture to move readily over the surface of laboratory media. Amphisin is a new member of a group of dual-functioning compounds such as tensin, viscosin and viscosinamid that display both biosurfactant and antifungal properties. The ability of DSS73 to efficiently contain root...

  19. Surface motility in Pseudomonas sp DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Koch, Birgit; Nielsen, T.H.

    2003-01-01

    bacterial culture to move readily over the surface of laboratory media. Amphisin is a new member of a group of dual-functioning compounds such as tensin, viscosin and viscosinamid that display both biosurfactant and antifungal properties. The ability of DSS73 to efficiently contain root...

  20. Investigation of the effect of sealer use on the heat generated at the external root surface during root canal obturation using warm vertical compaction technique with System B heat source.

    Science.gov (United States)

    Viapiana, Raqueli; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario; Camilleri, Josette

    2014-04-01

    During warm vertical compaction of gutta-percha, root canal sealers with different chemical compositions absorb the heat generated inside the root canal. The aim of this research was to assess physicochemical modifications of sealers subjected to the System B heat source (Analytic Technology, Redmond, WA) and to evaluate the effect that the use of different sealers has on the heat transfer to the external root surface. Three proprietary brand sealers (AH Plus [Dentsply International, Addlestone, UK], Pulp Canal Sealer [Kerr Corporation, Orange, CA], MTA Fillapex [Angelus Dental Solutions, Londrina, PR, Brazil]) and a prototype sealer based on Portland cement were assessed. The heat generated on the surfaces of System pluggers and the heat dissipation at different levels (apical, midroot, and cervical) over root surface while using different sealers was assessed using thermocouples. Data were collected in 3 different environmental conditions with the tooth suspended in air, immersed in Hank's balanced salt solution, or gelatinized Hank's balanced salt solution. Chemical changes in the sealers induced by the heat were monitored by Fourier transform infrared spectroscopy. The effect of heat changes on the setting time and compressive strength of the sealers was also assessed. The continuous wave plugger sustained a rise in temperature at a maximum of 80°C at the instrument shank. The highest change in temperature on the external root surface was recorded after 1.5 minutes from the start of heating, and it was restored to body temperature by 6 minutes. Environmental conditions affected heat dissipation for all the sealers in the midroot and cervical regions and the highest increase in temperature (∼60°C) recorded in air. In the midroot and cervical regions, the type of sealer used did not affect the rise in temperature. In the apical region, AH Plus obturations resulted in a greater rise in temperature, and the chemical composition of this sealer was affected by

  1. Optimization of the Culture Medium Composition to Improve the Production of Hyoscyamine in Elicited Datura stramonium L. Hairy Roots Using the Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Eric Gontier

    2010-11-01

    Full Text Available Traditionally, optimization in biological analyses has been carried out by monitoring the influence of one factor at a time; this technique is called one‑variable‑at‑a‑time. The disadvantage of this technique is that it does not include any interactive effects among the variables studied and requires a large number of experiments. Therefore, in recent years, the Response Surface Methodology (RSM has become the most popular optimization method. It is an effective mathematical and statistical technique which has been widely used in optimization studies with minimal experimental trials where interactive factors may be involved. This present study follows on from our previous work, where RSM was used to optimize the B5 medium composition in [NO3−], [Ca2+] and sucrose to attain the best production of hyoscyamine (HS from the hairy roots (HRs of Datura stramonium elicited by Jasmonic Acid (JA. The present paper focuses on the use of the RSM in biological studies, such as plant material, to establish a predictive model with the planning of experiments, analysis of the model, diagnostics and adjustment for the accuracy of the model. With the RSM, only 20 experiments were necessary to determine optimal concentrations. The model could be employed to carry out interpolations and predict the response to elicitation. Applying this model, the optimization of the HS level was 212.7% for the elicited HRs of Datura stramonium, cultured in B5-OP medium (optimized, in comparison with elicited HRs cultured in B5 medium (control. The optimal concentrations, under experimental conditions, were determined to be: 79.1 mM [NO3−], 11.4 mM [Ca2+] and 42.9 mg/L of sucrose.

  2. Optimization of the culture medium composition to improve the production of hyoscyamine in elicited Datura stramonium L. hairy roots using the Response Surface Methodology (RSM).

    Science.gov (United States)

    Ryad, Amdoun; Lakhdar, Khelifi; Majda, Khelifi-Slaoui; Samia, Amroune; Mark, Asch; Corinne, Assaf-Ducrocq; Eric, Gontier

    2010-11-18

    Traditionally, optimization in biological analyses has been carried out by monitoring the influence of one factor at a time; this technique is called one-variable-at-a-time. The disadvantage of this technique is that it does not include any interactive effects among the variables studied and requires a large number of experiments. Therefore, in recent years, the Response Surface Methodology (RSM) has become the most popular optimization method. It is an effective mathematical and statistical technique which has been widely used in optimization studies with minimal experimental trials where interactive factors may be involved. This present study follows on from our previous work, where RSM was used to optimize the B5 medium composition in [NO(3-)], [Ca(2+)] and sucrose to attain the best production of hyoscyamine (HS) from the hairy roots (HRs) of Datura stramonium elicited by Jasmonic Acid (JA). The present paper focuses on the use of the RSM in biological studies, such as plant material, to establish a predictive model with the planning of experiments, analysis of the model, diagnostics and adjustment for the accuracy of the model. With the RSM, only 20 experiments were necessary to determine optimal concentrations. The model could be employed to carry out interpolations and predict the response to elicitation. Applying this model, the optimization of the HS level was 212.7% for the elicited HRs of Datura stramonium, cultured in B5-OP medium (optimized), in comparison with elicited HRs cultured in B5 medium (control). The optimal concentrations, under experimental conditions, were determined to be: 79.1 mM [NO(3-)], 11.4 mM [Ca(2+)] and 42.9 mg/L of sucrose.

  3. Experimental Investigation into the Effect of Ball End Milling Parameters on Surface Integrity of Inconel 718

    Science.gov (United States)

    Bhopale, Nandkumar N.; Joshi, Suhas S.; Pawade, Raju S.

    2015-02-01

    In machining of Inconel 718, various difficulties such as increased tool wear and poor machined surface quality are frequently encountered due to its high temperature strength and poor thermal properties. This work considers the effect of number of passes and the machining environment on the machined surface quality in ball end milling of Inconel 718, which hitherto has not been adequately understood. To this effect, extensive experimentation has been carried out to analyze machined surface quality and integrity in terms of surface roughness, surface damage, and microhardness variation in the machined surfaces. The machined surfaces show formation of distinct bands as a function of instantaneous machining parameters along the periphery of cutting tool edge. A distinct variation is also observed in the measured values of surface roughness and microhardness in these regions. The minimum surface roughness is obtained in the stable cutting zone and it increases toward the periphery of the cutter on band #2 and band #3. Microhardness of depth beneath the machined surface shows that the machining affected zone varies from 60 to 100 µm in ball end milling under various machining conditions.

  4. Experimental study of surface quality and damage when drilling unidirectional CFRP composites

    Directory of Open Access Journals (Sweden)

    Eshetu D. Eneyew

    2014-10-01

    Full Text Available In this study, an experimental investigation on the drilling of unidirectional carbon fiber reinforced plastic (UD-CFRP composite was conducted using polycrystalline diamond (PCD tipped eight facet drill. The quality of the drilled hole surface was examined through surface roughness measurements and surface damage by scanning electron microscopy (SEM. It was found that fiber pullout occurred in two specific sectors relative to the angle between the cutting direction and the fiber orientation. The thrust force was highly influenced by the feed rate than the cutting speed and it shows a significant variation throughout the rotation of the drill.

  5. An experimental investigation of the effect of upper surface blowing on dynamic stall

    Science.gov (United States)

    Tso, Jin

    1993-01-01

    An experimental investigation of the effect of upper surface blowing on dynamic stall was conducted. Progress made during the period from Jun. to Dec. 1993 is summarized. Topics covered include VR-7 wing model, pulse valve, and wing/load cell junction.

  6. An experimental method to determine the electrostatic field enhancement factor of a practical conductor surface

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1989-01-01

    A method of determining the field enhancement factor of a practical conductor is presented. The method is developed from a modified theory of discharge onset in a gaseous medium. This modification incorporates the influence of conductor surface roughness. Onset data from an experimental study...

  7. Experimental vortex breakdown topology in a cylinder with a free surface

    DEFF Research Database (Denmark)

    Lo Jacono, D.; Nazarinia, M.; Brøns, Morten

    2009-01-01

    The free SLII-face, flow in it circular cylinder driven by a rotating bottom disk IS Studied experimentally using particle image velocimetry. Results are compared With computational,11 results assuming I stress-free surface A dye visualization Study by Spohn et al ["Observations of vortex breakdown...

  8. Laterally positioned double flap with the connective tissue graft for coverage of denuded root surface: A case report

    OpenAIRE

    Awadhesh Kumar Singh; Preeti Kiran

    2014-01-01

    Background: The laterally positioned flap has been shown to effectively treat gingival recession. The average percentage of root coverage obtained with laterally positioned flap was 68%. When full-thickness laterally positioned flap was combined with connective tissue graft, the average percentage of root coverage was 88%. The purpose of this case report was to evaluate percentage of root coverage by laterally positioned double flap with the connective tissue graft. Patients and Methods: A pa...

  9. Density-matrix simulation of small surface codes under current and projected experimental noise

    Science.gov (United States)

    O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.

    2017-09-01

    We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.

  10. An experimental study of free surface deformation in oscillatory thermocapillary flow

    Science.gov (United States)

    Lin, Jianlian; Kamotani, Yasuhiro; Ostrach, Simon

    1995-01-01

    Free surface deformation of a test fluid induced by steady and oscillatory thermocapillary flow in a small cylindrical container (diameter = 4.8 mm) is studied experimentally. The fluid (2 Cs oil) is heated by a cylindrical wire (diameter = 0.48 mm) placed along the centerline of the cylinder. The relative displacement and oscillation frequency of free surface are measured in a radial cross-section for various applied temperature differences. It is found that the amplitude of the free surface height oscillations is large near the heater and the cold wall and relatively small in the middle part. The frequency of the free surface oscillations is same as the frequency of the temperature oscillations. Based on these data, the free surface motion during oscillations is delineated.

  11. EVALUATION OF ANTI-INFLAMMATORY ACTIVITY OF ROOT BARK OF CLERODENDRUM PHLOMIDIS IN EXPERIMENTAL MODELS OF INFLAMMATION

    OpenAIRE

    Parekar, Reshma R.; Kumar K. Dash; Marathe, Padmaja A.; Aditi A. Apte; Rege, Nirmala N.

    2012-01-01

    The study was carried out to evaluate anti-inflammatory activity of aqueous extract of root bark of Clerodendrum phlomidis (CP) in models of acute and chronic inflammation in rats. Anti-inflammatory activity of CP was evaluated in models of acute inflammation viz. carrageenan induced rat paw oedema and acetic acid induced peritonitis in mice. The anti-inflammatory activity against chronic inflammation was assessed in model of cotton pellet granuloma in rats. The activity of CP was compared wi...

  12. Efficiency of a newly designed ultrasonic unit and tips in reducing temperature rise on root surface during the removal of fractured files.

    Science.gov (United States)

    Madarati, Ahmad A; Qualtrough, Alison J E; Watts, David C

    2009-06-01

    A potentially damaging temperature rise within the root canal and thus on the external root surface may be induced because of frictional contact of ultrasonic tips during the removal of separated instruments. The efficiency of a new ultrasonic unit, with air-spray function and ET40D (Satelec/Acteon, Merignac, France) and CPR5 (Obtura-Spartan, Fenton, MO) ultrasonic tips, in reducing temperature rise on the external root surface during the removal of fractured files was investigated. Four millimeters of F2 ProTaper files (Dentsply, Surrey, UK) were fractured 2.5 mm from the canal access of 60 lower incisor roots. Roots were randomly divided into six groups: groups CPR5/no air and ET40D/no air in which tips were used without air flow, groups CPR5/15 psi and ET40D/15 psi (tips used with 15-psi air pressure), and groups CPR5/10 psi and ET40D/10 psi (10-psi air pressure). The temperature rise was measured on the external proximal root surface, adjacent to the most coronal aspect of the fractured fragment, at 15 seconds and then at 30-second intervals up to 120 seconds. After 120 seconds, the mean temperature rise (4.2 degrees C) with the air flow active was significantly lower than that with nonactive air flow (11 degrees C). At 10- and 15-psi pressures, the temperature rise after 120 seconds induced by ET40D tips was 4 degrees and 2.4 degrees C, respectively. These were significantly lower than with CPR5 tips (6.3 degrees and 4.2 degrees C, respectively). A new ultrasonic unit incorporating an air-flow function proved to be effective in reducing the temperature rise during removal of fractured files. ET40D ultrasonic tips were more effective than the CPR5 tip. However, both tips could be safely activated with air spray up to 120 seconds.

  13. [Experimental research on substance P content of hypothalamus and dorsal root ganglia in rats with lumbar vertebrae Gucuofeng model].

    Science.gov (United States)

    Chen, Bo; Lin, Xun; Pang, Jian; Kong, Ling-jun; Zhan, Hong-sheng; Cheng, Ying-wu; Shi, Yin-yu

    2015-01-01

    To detect the effects of lumbar vertebrae Gucuofeng on the substance P content of hypothalamus and dorsal root ganglia in rat models. A hundred and twenty SPF level SD male rats with the weight of 350 to 450 g were randomly divided into rotary fixation group (RF group), simple fixation group (SF group) and sham-operation group (Sham group). The external link fixation system was implanted into the L4-L6 of rats in RF group and SF group; and in RF group, that the L5 spinous process was rotated to the right resulted in L4, L5, L6 spinous process not collinear; in SF group, the external link fixation system was simply implanted and not rotated. The rats of Sham group were not implanted the external link fixation system and only open and suture. The substance P content of hypothalamus and dorsal root ganglia were detected at 1, 4, 8, 12 weeks after operation. Substance P content of hypothalamus in RF group and SF group was lower than Sham group at 1, 4, 8 weeks after operation (Phypothalamus among three groups at 12 weeks after operation (P>0.05). Lumbar vertebrae Gucuofeng can inhibit the analgesic activity of substance P in hypothalamus and promote the synthesis and transmission of substance P in dorsal root ganglia, so as to cause or aggravate the pain.

  14. Evaluation of the morphological alteration of the root surface radiated with a diode laser; Avaliacao da alteracao morfologica da superficie cimentaria irradiada com laser de diodo

    Energy Technology Data Exchange (ETDEWEB)

    Gulin, Mauricio

    2003-07-01

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of

  15. Temperature changes on the root surfaces of mandibular incisors after an 810-nm high-intensity intracanal diode laser irradiation

    Science.gov (United States)

    da Fonseca Alvarez, Andrea; Moura-Netto, Cacio; Daliberto Frugoli, Alexandre; Fernando, Casemiro; Correa Aranha, Ana Cecilia; Davidowicz, Harry

    2012-01-01

    Temperature changes caused by laser irradiation can promote damage to the surrounding dental tissues. In this study, we evaluated the temperature changes of recently extracted human mandibular incisors during intracanal irradiation with an 810-nm diode laser at different settings. Fifty mandibular incisors were enlarged up to an apical size of ISO No. 40 file. After the final rinse with 17% ethylenediaminetetraacetic acid, 0.2% lauryl sodium sulfate biologic detergent, and sterile water, samples were irradiated with circular movements from apex to crown through five different settings of output power (1.5, 2.0, 2.5, 3.0, and 3.5 W) in continuous mode. The temperature changes were measured on both sides of the apical and middle root thirds using two thermopar devices. A temperature increase of 7 °C was considered acceptable as a safe threshold when applying the diode laser. Results: The results showed that only 3.5-W output power increased the outer surface temperature above the critical value. Conclusion: The recommended output power can be stipulated as equal to or less than 3 W to avoid overheating during diode laser irradiation on thin dentin walls.

  16. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  17. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces.

    Science.gov (United States)

    Robledo, M; Rivera, L; Jiménez-Zurdo, Jose I; Rivas, R; Dazzo, F; Velázquez, E; Martínez-Molina, E; Hirsch, Ann M; Mateos, Pedro F

    2012-09-12

    The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. ANU843 celC mutants lacking (ANU843ΔC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843ΔC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this "building material" seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates.

  18. Application of resin adhesive on the surface of a silanized glass fiber-reinforced post and its effect on the retention to root dentin.

    Science.gov (United States)

    Machado, Fernanda Weingartner; Bossardi, Mayara; Ramos, Tatiana dos Santos; Valente, Lisia Lorea; Münchow, Eliseu Aldrighi; Piva, Evandro

    2015-01-01

    In this study, the effect of different post surface treatments on the retention of glass fiber-reinforced post to root dentin was evaluated. The hypotheses tested were (1) post silanization would not improve its retention and (2) the application of silane plus resin adhesive on the post would enhance its retention. After root canal preparation, 4 different protocols (n = 5) of post surface treatment were evaluated, combined with or without silane (Silane coupling agent) and adhesive (Scotchbond Multipurpose): silane + adhesive (S/A), only silane, only adhesive, or no treatment (control). RelyX ARC was used for post cementation. Next, specimens were subjected to push-out bond strength testing, and data were analyzed by two-way analysis of variance and Tukey test (P post retention compared with control (P > .05). The root dentin region influenced bond strength results only in the S/A group. Whereas silanization as the only post surface treatment did not improve retention, the combination of silane plus resin adhesive enhanced post retention to dentin in the middle and coronal root regions. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Experimental Study on Tribological Properties of Laser Textured 45 Steel Surface

    Directory of Open Access Journals (Sweden)

    Li Zhi Peng

    2016-01-01

    Full Text Available In order to study the influence of pits’ size parameters on the tribological properties of textured friction pairs, using the Nd:YAG laser micro machining system and the “single pulse at the same point, interval more times” processing technics to process the pits on the surface of 45 steel. The dimension parameters of pits texture were obtained by orthogonal experimental design. The tribological experiment of GCr15 pin/45 steel disc was carried out by UMT-2 test machine. The surface morphology of the specimens was analyzed by using scanning electron microscopy. The experimental results show that the pits texture on the surface of 45 steel can effectively reduce the friction coefficient and the wear on the condition of oil-rich lubrication. The textured specimen with diameter 60μm, depth 6μm and surface density 10% has the lowest friction coefficient, and the friction coefficient is reduced by 21% compared with the smooth specimen. By analyzing the wear morphology on the surface of 45 steel, it is found that the surface of pits texture can obviously reduce the wear.

  20. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Science.gov (United States)

    Mishra, Mitul Kumar; Prakash, Shobha

    2013-01-01

    Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG) laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface, but removed more

  1. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  2. Experimental study of surface defects on automotive doors during flanging and their numerical prediction

    Directory of Open Access Journals (Sweden)

    Garabed J.

    2010-06-01

    Full Text Available Surface defects can develop on automotive exterior panels after drawing and flanging steps, during springback and may alter significantly the vehicle quality. These defects are characterized by a depth below 0.5 mm and are then difficult to detect or predict numerically. This study focuses on a L-shaped part designed on purpose to reproduce at a small scale surface defects that occur after flanging. Dimensions of these defects are measured from profiles obtained with a tridimensional measuring machine. The investigation of the influence of the flanging height and flanging speed shows than neither of these parameters have impact on the surface defect . The numerical simulation of the flanging process predict the surface defect but with a lower depth than the experimental defect.

  3. Actinides sorption onto hematite. Experimental data, surface complexation modeling and linear free energy relationship

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, Anna Y.; Kalmykov, Stephan N. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry

    2014-07-01

    The sorption of actinides in different valence states - Am(III), Th(IV), Np(V) and U(VI) onto hematite have been revisited with the special emphasis on the equilibrium constants of formation of surface species. The experimental sorption data have been treated using surface complexation modeling from which the set of new values of equilibrium constants were obtained. Formation of inner sphere monodentate surface species adequately describes the pH-sorption edges for actinide ions indicative the ionic electrostatic nature of bonding with small or no covalency contribution. The linear free energy relationship representing the correlation between the hydrolysis constants and surface complexation constants has been developed for various cations including K(I), Li(I), Na(I), Ag(I), Tl(I), Sr(II), Cu(II), Co(II), La(III), Eu(III), Ga(III), Am(III), Th(IV), Np(V), U(VI). (orig.)

  4. Experimental Study on Boiling Heat Transfer of Liquid Film Flow on a Structural Surface

    Science.gov (United States)

    Hirose, Koichi; Mizuno, Itsuo; Nakata, Daisuke; Ouchi, Masaki

    An experimental study on the boiling heat transfer characteristics of liquid films flowing downward along vertically positioned plane and constant curvature surface (CCS) with isolated fine cavities was conducted. The effects of structural surfaces were examined, comparing with the case of smooth plane. The main results of these experiments are summarized as follows; (1) In the case of structual plane surface, there are remarkable enhancements of heat transfer rate in the nucleate boiling region. (2) In the case of CCS, it takes large values of heatflux in the region which strongly governed by the surface evaporation. (3)CCS avoids effectively the occurrence of splitting of the liquid film into rivulets. This study aims to put practical use of the heat transfer enhancement for the evaporator of a two-phase closed thermosiphon.

  5. Comparing root architectural models

    Science.gov (United States)

    Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan

    2017-04-01

    Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.

  6. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    Science.gov (United States)

    Vets, Robert

    An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant

  7. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  8. Experimental observation of blood erythrocyte structure in the field of standing surface acoustic waves

    Science.gov (United States)

    Makalkin, D. I.; Korshak, B. A.; Brysev, A. P.

    2017-09-01

    The paper presents experimental results of observing the structurization effect for one of the formed elements of blood—erythrocytes—in the field of standing surface acoustic waves. Characteristic images of the striated structures formed by erythrocytes on the surface of lithium niobate as result of ultrasound action have been obtained. The results on the ultrasound structurization of erythrocytes in a blood sample and of calcium carbonate particles in an aqueous colloid solution have been comparatively analyzed. It has been noted that the achieved effect agrees qualitatively with the theoretical model of the behavior of colloid particle ensembles in an acoustic field developed by O.V. Rudenko et al.

  9. The atomic structure of the Si(111) (2 root 3x2 root 3)R30 degrees-Sn reconstruction

    DEFF Research Database (Denmark)

    Levermann, A.H.; Howes, P.B.; Edwards, K.A.

    1996-01-01

    are in contradiction with existing models in the literature and we conclude the need for a new surface atomic structure model. We have been able to determine a number of properties of an appropriate surface model to allow a better fit to the experimental structure factors.......We have studied the atomic structure of the (2 root 3x2 root)R30 degrees reconstruction induced by adsorption of about 1.1 monolayers of Sn on Si(lll) using surface X-ray diffraction (SXRD) and scanning tunnelling microscopy (STM). The experimentally obtained structure factors in SXRD...

  10. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France

    Directory of Open Access Journals (Sweden)

    T. Paris Anguela

    2008-12-01

    Full Text Available Spatial and temporal variations of soil moisture strongly affect flooding, erosion, solute transport and vegetation productivity. Its characterization, offers an avenue to improve our understanding of complex land surface-atmosphere interactions. In this paper, soil moisture dynamics at soil surface (first centimeters and root-zone (up to 1.5 m depth are investigated at three spatial scales: local scale (field measurements, 8×8 km2 (hydrological model and 25×25 km2 scale (ERS scatterometer in a French watershed. This study points out the quality of surface and root-zone soil moisture data for SIM model and ERS scatterometer for a three year period. Surface soil moisture is highly variable because is more influenced by atmospheric conditions (rain, wind and solar radiation, and presents RMSE up to 0.08 m3 m−3. On the other hand, root-zone moisture presents lower variability with small RMSE (between 0.02 and 0.06 m3 m−3. These results will contribute to satellite and model verification of moisture, but also to better application of radar data for data assimilation in future.

  11. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    Science.gov (United States)

    Rodrigues, S. R.; Moraes, M.; Hanashiro, F. S.; Youssef, M. N.; Brugnera Junior, A.; Nobre-dos-Santos, M.; de Souza-Zaroni, W. C.

    2016-02-01

    Although the cariostatic effects of CO2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO2 laser with an energy density of 6.0 J cm-2  +  non-fluoride dentifrice; and L  +  FD, CO2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey-Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC-C group. It was concluded that CO2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used.

  12. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2013-01-01

    Full Text Available Aim: The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF and ProTaper (PT rotary Ni-Ti file systems, using scanning electron microscope (SEM. Materials and Methods: Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at ×100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Results: Fresh TF instruments showed no surface wear when compared to PT instruments (P 0.05, while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05. PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. Conclusion: PT instruments showed more resistance to fracture than TF instruments.

  13. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer

    Science.gov (United States)

    Kou, Meng; Tang, Zhonghou; Zhang, Aijun; Li, Hongmin; Wei, Meng

    2017-01-01

    Humic acid (HA), not only promote the growth of crop roots, they can be combined with nitrogen (N) to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N) on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD), peroxidase (POD), and Catalase (CAT) as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA) content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index. PMID:29253886

  14. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer.

    Directory of Open Access Journals (Sweden)

    Xiaoguang Chen

    Full Text Available Humic acid (HA, not only promote the growth of crop roots, they can be combined with nitrogen (N to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD, peroxidase (POD, and Catalase (CAT as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index.

  15. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.

    Science.gov (United States)

    Giansante, Carlo; Infante, Ivan

    2017-10-19

    Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.

  16. Experimental investigation of localized disturbances in the straight wing boundary layer, generated by finite surface vibrations

    Science.gov (United States)

    Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.

    2017-10-01

    Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.

  17. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  18. Experimental investigation of Surface Roughness and Cutting force in CNC Turning - A Review

    Directory of Open Access Journals (Sweden)

    Dhiraj Patel

    2014-08-01

    Full Text Available The main purpose of this review paper is to check whether quality lies within desired tolerance level which can be accepted by the customers. So, experimental investigation surface roughness and cutting force using various CNC machining parameters including spindle speed (N, feed rate (f, and depth of cut (d,flow rate (Q and insert nose radius (r. As such, a solemn attempt is made in this paper to investigate the response parameters, viz., Cutting force and Surface Roughness (Ra a by experimentation on EN 19 turning process. The Design of experiments is carried-out considering Taguchi Technique with four input parameters, namely, spindle speed, feed rate, and depth of cut, flow rate and insert nose radius .The experiments are conducted considering the above materials for L16 and then the impact of each parameter is estimated by ANOAVA. Then the regression analysis is carried-out to find the trend of the response of each material. This experimental study aims at taguchi method has been applied for finding the effect on surface roughness and cutting force by various process parameters. And after that we can easily find out that which parameter will be more affect.

  19. Experimental investigation into battery electrode surfaces: The distribution of liquid at the surface and the emptying of pores during drying.

    Science.gov (United States)

    Jaiser, Stefan; Funk, Lena; Baunach, Michael; Scharfer, Philip; Schabel, Wilhelm

    2017-05-15

    Drying constitutes a key step in the production of thin, particulate films as the complex microstructure develops and functional additives redistribute throughout the film, thus shaping the film properties. The onset of pore emptying constitutes a paramount marker in the film formation process as capillary liquid transport emerges. Film shrinkage, development of surface liquid content and liquid depletion in surface pores of thin films are studied by means of a novel experimental approach, using the example of lithium-ion battery anodes. An optical brightener is incorporated into the films, which are produced in a convective slot-nozzle dryer. After various drying times, images of the film, which emit light fluorescently during exposure to UV-A radiation, are captured and analyzed by image processing. Film shrinkage is observed by means of a laser displacement sensor. As soon as the first pores empty, pore fluid is transported convectively. By exerting an external force, i.e. a pressure surge, on the film, the transition from a fully saturated to a partially emptied film is revealed. The significance of drying rate and particle shape are studied. We show that liquid depletion in surface pores can occur both prior and concurrent with the end of film shrinkage. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Avaliação da superfície relativa do sistema radicular de cafeeiros Root surface area of coffee plants by the titration method

    Directory of Open Access Journals (Sweden)

    Luis Carlos da Silva Ramos

    1980-01-01

    Full Text Available Avaliou-se a superfície relativa do sistema radicular de cafeeiros dos cultivares Catuaí e Arábica de Coffea arabica, do 'Guarini' de C. canephora e do 'Icatu', descendente de hibridações entre essas espécies, pelo método titulométrico ligeiramente modificado. Outras medidas foram tomadas para a caracterização dos cultivares: peso seco e comprimento das raízes e da parte aérea e diâmetro do caule. O cultivar Guarini, além de apresentar maior superfície relativa, tem, também, maior peso seco de raízes, da parte aérea, maior diâmetro do caule e maior comprimento da parte aérea. Observaram-se altas correlações entre os dados da superfície relativa, peso seco das raízes e peso da parte aérea. Sugere-se que o método da titulação seja aplicável em investigações sobre o estudo do sistema radicular em geral.The root surface areas of 10 months old coffee plants (Coffea arabica L. cvs. Arabica and Catuaí, C. canephora Pierre cv. Guarini, and C. arabica x C. canephora cv. Icatu were evaluated by an adaptation of the WILD & VOIGHT (8 titration method. The root and shoot dry weight, stem diameter, shoot and root lengths were also measured. The plants were assigned in a randomized complete-block design with 5 blocks and 4 replications per plot. They were grown in polyethylene bags in a coffee nursery under 50% sun light. A greater root surface area, dry weight, stem diameter and shoot length was found in the cultivars Guarini. A high correlation between root surface area and root and shoot dry weights was observed for all studied coffee cultivars. The use of the titration method is suggested for measuring effects of physical, chemical and biological agents on root systems of coffee plants as well as other species.

  1. Effect of filler particles on surface roughness of experimental composite series

    Directory of Open Access Journals (Sweden)

    Hanadi Yousif Marghalani

    2010-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate the effect of different filler sizes and shapes on the surface roughness of experimental resin-composite series. MATERIAL AND METHODS: Thirty-three disc-shaped specimens of the series (Spherical-RZD 102, 105, 106, 107, 114 and Irregular-RZD 103, 108, 109, 110, 111, 112 were prepared in a split Teflon mold and irradiated with an halogen light-curing unit (450 mW/cm² for 40 s at both top and bottom surfaces. The specimens were stored for 3 months in distilled water. The surface roughness values in form of surface finish-vertical parameter (Ra, maximum roughness depth (Rmax and horizontal roughness parameter (Sm were recorded using a contact profilometer. The data were analyzed by one-way ANOVA and the means were compared by Scheffé post-hoc test (a=0.05. RESULTS: The lowest surface roughness (Ra was observed in S-100 (0.079±0.013, while the roughest surface was noted in I-450/700/1000 (0.125±0.011 and I-450/1000 (0.124±0.004. The spherical-shape series showed the smoothest surface finish compared to the irregular-shape ones with higher significant difference (p>0.05. The vertical surface roughness parameter (Ra values increased as the filler size increased yielding a linear relation (r²=0.82. On the contrary, the horizontal parameter (Sm was not significantly affected by the filler size (r²=0.24 as well as the filler shape. CONCLUSIONS: Filler particle's size and shape have a great effect on the surface roughness parameters of these composite series.

  2. Epitaxial NiWO4 films on Ni(110): Experimental and theoretical study of surface stability

    Science.gov (United States)

    Doudin, N.; Pomp, S.; Blatnik, M.; Resel, R.; Vorokhta, M.; Goniakowski, J.; Noguera, C.; Netzer, F. P.; Surnev, S.

    2017-05-01

    Despite the application potential of nickel tungstate (NiWO4) in heterogeneous catalysis, humidity and gas sensing, etc, its surfaces have essentially remained unexplored. In this work, NiWO4 nanoparticles and films with the wolframite structure have been grown via a solid-state reaction of (WO3)3 clusters and a NiO(100) film on a Ni(110) crystal surface and characterized by a variety of experimental techniques, including x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM) and x-ray diffraction (XRD), combined with ab-initio density functional theory (DFT) calculations. NiWO4 grows initially as three-dimensional (3D) crystalline nanoparticles displaying mainly two crystalline facets vicinal to the (100) surface, which merge with increasing the (WO3)3 coverage into a quasi-continuous epitaxial film. The DFT results provide an account of the energetics of NiWO4 low index surfaces and highlight the role of faceting in the stabilization of extended polar (100) terraces. These combined experimental and theoretical results show that interaction with a metal substrate and vertical confinement may stabilize oxide nano-objects with high energy facets, able to enhance their reactivity.

  3. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  4. Experimental studies of the stress state of the surface layer of detailat treatment with submerged jets

    Directory of Open Access Journals (Sweden)

    Олександр Олександрович Анділахай

    2015-03-01

    Full Text Available In the instrument and electrical industry was the use of the method of abrasive machining submerged jet, which is the most promising method for abrasive blasting of small parts of low stiffness. This method eliminates the main drawback сhip plants - abrasion channel nozzles or injection nozzles, but the state of the surface layer of machined parts are poorly understood and to make maximum use of the potential to provide the required quality parameters. The study of the state of the surfaces of parts resulting from abrasive blasting traditional methods, dedicated work, which define quality indicators: microhardness depth residual stress, as well as their nature (compressive, tensile. However, known from the literature values correspond to the conditions of surface treatment of parts in a fixed state with an abrasive material through the feed nozzle, and therefore the dynamics of the interaction of a single abrasive grain and significantly different parts. The process in question, and different modes of processing characteristics of the abrasive grains. In the paper, a series of experimental studies designed to assess the state of machined surfaces of parts as a result of abrasion submerged jets. It is established that during the treatment the non-oriented disorderly traces overlay the abrasive grains on the treated surface, thereby forming a tight skin layer thickness of 4 - 5 micrometers. Processed surface gets cold working, as evidenced by the study of microhardness before and after abrasive machining in a free state submerged jets

  5. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Science.gov (United States)

    Kibar, Ali

    2017-02-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface.

  6. Surface roughness prediction model and experimental results based on multi-wavelength fiber optic sensors.

    Science.gov (United States)

    Zhu, Nan-Nan; Zhang, Jun

    2016-10-31

    The surface roughness prediction model based on a support vector machine was proposed and the multi-wavelength fiber optic sensor was established. The specimens with different surface roughness selected as the test samples were analyzed by using the prediction model when the incident wavelengths were 650 nm and 1310 nm, respectively. The working distance of 2.5 mm ~3.5 mm was chosen as the optimum measurement distance. The experimental results indicate that the error range of surface roughness is 0.74% ~7.56% at 650 nm, and the error range of surface roughness is 1.03% ~5.92% at 1310 nm. The average relative error is about 2.669% at 650 nm, while it is about 2.431% at 1310 nm. The error of roughness measurement is less than 3% by using the model, which is acceptable. The error of surface roughness based on the prediction model is smaller than that by using the characteristic curves between surface roughness and the scattering intensity ratio.

  7. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., University Park, PA (United States); Im, Kyungjae [Pennsylvania State Univ., University Park, PA (United States); Guglielmi, Yves [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mattioli, Glen [Univ. of Texas, Arlington, TX (United States). UNAVCO

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristics (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).

  8. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...... on their side in a herringbone arrangement and the commensurate 7/8 × 7/8 structure in which the molecules stand on-end with the C–C bond perpendicular to the surface. Semiempirical atom–atom potentials have been used to model the intermolecular and molecule–substrate interactions in calculations...... of the observed vibrational modes. Moreover, they suggest that an important feature of the herringbone phase dynamics is a coupling of the lowest-frequency librational mode to the vibratory mode perpendicular to the surface. Calculations of the phonon dispersion relations, the phonon density of states...

  9. Theoretical and Experimental Analysis of Adsorption in Surface-based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus

    The present Ph.D. dissertation concerns the application of surface plasmon resonance (SPR) spectroscopy, which is a surface-based biosensor technology, for studies of adsorption dynamics. The thesis contains both experimental and theoretical work. In the theoretical part we develop the theory...... for convection, diffusion, and adsorption in surface-based biosensors in general. In particular, we study the transport dynamics in a model geometry of a Biacore SPR sensor. An approximate quasi-steady theory, which has been widely adopted in the SPR literature to capture convective and diffusive mass transport......, is reviewed, and an analytical solution is provided. The important nondimensional Damk¨ohler number, inherent in the quasi-steady theory, is derived in terms of the nondimensional adsorption coefficient (Biot number), the nondimensional flow rate (P´eclet number), and the model geometry. Also, a two...

  10. Comparison of positive-pressure, passive ultrasonic, and laser-activated irrigations on smear-layer removal from the root canal surface.

    Science.gov (United States)

    Sahar-Helft, Sharonit; Sarp, Ayşe Sena Kabaş; Stabholtz, Adam; Gutkin, Vitaly; Redenski, Idan; Steinberg, Doron

    2015-03-01

    The purpose of this study was to compare the efficacy of three irrigation techniques for smear-layer removal with 17% EDTA. Cleaning and shaping the root canal system during endodontic treatment produces a smear layer and hard tissue debris. Three irrigation techniques were tested for solution infiltration of this layer: positive-pressure irrigation, passive ultrasonic irrigation, and laser-activated irrigation. Sixty extracted teeth were divided into six equal groups; 17% EDTA was used for 60 sec irrigation of five of the groups. The groups were as follows: Group 1, treated only with ProTaper™ F3 Ni-Ti files; Group 2, positive-pressure irrigation, with a syringe; Group 3, passive ultrasonic irrigation, inserted 1 mm short of the working length; Group 4, passive ultrasonic irrigation, inserted in the upper coronal third of the root; Group 5, Er:YAG laser-activated irrigation, inserted 1 mm short of the working length; and Group 6, Er:YAG laser-activated irrigation, inserted in the upper coronal third of the root. Scanning electron microscopy showed that the smear layer is removed most efficiently using laser-activated irrigation at low energy with 17% EDTA, inserted either at the working length or only in the coronal upper third of the root. Amounts of Ca, P, and O were not significantly different on all treated dentin surfaces. Smear-layer removal was most effective when the root canals were irrigated using Er:YAG laser at low energy with 17% EDTA solution. Interestingly, removal of the smear layer along the entire canal was similar when the laser was inserted in the upper coronal third and at 1 mm short of the working length of the root canal. This effect was not observed with the ultrasonic and positive-pressure techniques.

  11. Morphology of root canal surface: A reflection on the process of cementation of the composite relined glass fiber post

    Directory of Open Access Journals (Sweden)

    Yasmine Mendes Pupo

    2017-01-01

    Full Text Available Background: The present study was conducted to evaluate the bond strength in the different root thirds (premolars and maxillary central incisors of composite relined glass fiber posts compared to untreated glass fiber posts cemented with dual- or chemical-cure cements. Materials and Methods: Sixty human single-rooted premolars (flat canal (n = 15 and 12 maxillary central incisors were used (round canal (n = 3. The teeth were sectioned, and the roots received endodontic treatment. The standardized preparation of the canals was carried out, and the roots were randomly divided into four groups according to the cementation systems: G1: cemented posts (dual: Ambar/Allcem; G2: relined posts (dual: Ambar/Allcem; G3: cemented posts (chemical: Fusion Duralink/Cement Post; and G4: relined posts (chemical: Fusion Duralink/Cement Post. The roots were cut to give two slices of each third of the root canal per specimen. Push-out test was conducted at a speed of 0.5 mm/min. Data were analyzed by analysis of variance and Tukey's post hoc test (α = 0.05. Results: There was no statistically significant difference between groups for the premolars (flat canal (P = 0.959. There was a significant difference in the central incisors between the middle and apical thirds in the cemented group when using the dual system (P = 0.04 and between the middle and apical thirds (P = 0.003 and cervical and apical thirds (P = 0.033 when using the chemical system. Conclusion: Due to the anatomy of the root canal, flat canal of the premolars does not require relining, but round canal of the maxillary central incisors demands it for more secure in the bond strength.

  12. Morphology of root canal surface: A reflection on the process of cementation of the composite relined glass fiber post.

    Science.gov (United States)

    Pupo, Yasmine Mendes; Casacqui, Elaine; de Lima, Paola Andressa Barbosa; Michél, Milton Domingos; Bueno, Albano Luis Novaes; Michelotto, André Luiz da Costa

    2017-01-01

    The present study was conducted to evaluate the bond strength in the different root thirds (premolars and maxillary central incisors) of composite relined glass fiber posts compared to untreated glass fiber posts cemented with dual- or chemical-cure cements. Sixty human single-rooted premolars (flat canal) (n = 15) and 12 maxillary central incisors were used (round canal) (n = 3). The teeth were sectioned, and the roots received endodontic treatment. The standardized preparation of the canals was carried out, and the roots were randomly divided into four groups according to the cementation systems: G1: cemented posts (dual: Ambar/Allcem); G2: relined posts (dual: Ambar/Allcem); G3: cemented posts (chemical: Fusion Duralink/Cement Post); and G4: relined posts (chemical: Fusion Duralink/Cement Post). The roots were cut to give two slices of each third of the root canal per specimen. Push-out test was conducted at a speed of 0.5 mm/min. Data were analyzed by analysis of variance and Tukey's post hoc test (α = 0.05). There was no statistically significant difference between groups for the premolars (flat canal) (P = 0.959). There was a significant difference in the central incisors between the middle and apical thirds in the cemented group when using the dual system (P = 0.04) and between the middle and apical thirds (P = 0.003) and cervical and apical thirds (P = 0.033) when using the chemical system. Due to the anatomy of the root canal, flat canal of the premolars does not require relining, but round canal of the maxillary central incisors demands it for more secure in the bond strength.

  13. Effect of injury on S1 dorsal root ganglia in an experimental model of neuropathic faecal incontinence.

    LENUS (Irish Health Repository)

    Peirce, C

    2011-08-01

    An experimental model of neuropathic faecal incontinence has recently been established. This study aimed to quantify and compare the effect of crush and compression injury on first-order sensory neurones of the inferior rectal nerve (IRN) using a nuclear marker of axonal injury, activating transcription factor (ATF) 3.

  14. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  15. Deposition Velocity of Iodine Vapor (I{sub 2}) for Radish Plants and Its Root-Translocation Factor: Results of Experimental Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ho; Lim, Kwang Muk; Park, Doo Won; Keum, Dong Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-06-15

    In order to measure the deposition velocity of I{sub 2} vapor for radish plants and its translocation factor for their roots, radish plants were exposed to I{sub 2} vapor for 80 min. at different growth stages between 29 and 53 d after sowing. The exposure was performed in a transparent chamber during the morning time. Deposition velocities () were on the whole in the range of 1.0 X 10{sup 4} - 2.0 X 10{sup 4} showing an increasing tendency with an increase in the biomass density. The results showed some agreement with existing reports that a higher relative humidity would lead to a higher deposition velocity. The acquired deposition velocities were lower than by factors of several tens than some field measurements probably due to a very low wind speed (about 0.2 ms{sup -1} ) in the chamber. Translocation factors (ratio of the total iodine in the roots at harvest to the total plant deposition), estimated in a more or less conservative way, were 1.3 X 10{sup -3} for an exposure at 29 d after sowing and 5.0 X 10{sup -3} for an exposure at 53 d after sowing. In using the present experimental data, meteorological conditions and chemical and physical forms of iodine need to be carefully considered.

  16. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Directory of Open Access Journals (Sweden)

    Blaha J.

    2013-04-01

    Full Text Available A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951, i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and –11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994; however it disagrees with data by Hacker.

  17. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Science.gov (United States)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  18. Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell

    Science.gov (United States)

    Liechty, Derek S.; Hollis, Brian R.; Edquist, Karl T.

    2002-01-01

    Several configurations, having a Viking aeroshell heritage and providing lift-to-drag required for precision landing, have been considered for a proposed Mars Smart Lander. An experimental aeroheating investigation of two configurations, one having a blended tab and the other a blended shelf control surface, has been conducted at the NASA Langley Research Center in the 20-Inch Mach 6 Air Tunnel to assess heating levels on these control surfaces and their effects on afterbody heating. The proposed Mars Smart Lander concept is to be attached through its aeroshell to the main spacecraft bus, thereby producing cavities in the forebody heat shield upon separation prior to entry into the Martian atmosphere. The effects these cavities will have on the heating levels experienced by the control surface and the afterbody were also examined. The effects of Reynolds number, angle-of-attack, and cavity location on aeroheating levels and distributions were determined and are presented. At the highest angle-of-attack, blended tab heating was increased due to transitional reattachment of the separated shear layer. The placement of cavities downstream of the control surface greatly influenced aeroheating levels and distributions. Forebody heat shield cavities had no effect on afterbody heating and the presence of control surfaces decreased leeward afterbody heating slightly.

  19. Experimental and theoretical study on transition boiling concerning downward-facing horizontal surface in confined space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, D.W. [State Key Laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University 710049 (China); Su, G.H. [State Key Laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University 710049 (China)], E-mail: ghsu@mail.xjtu.edu.cn; Tian, W.X. [State Key Laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University 710049 (China); Sugiyama, K. [Faculty of Engineering, Hokkaido University Kita 13 Jo, Nishi 8 Chome, Kita-Ku, Sapporo 060-8628 (Japan); Qiu, S.Z. [State Key Laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University 710049 (China)

    2008-09-15

    Experimental study has been conducted to examine the pool boiling occurs on a relative large downward-facing round surface with a diameter of 300 mm in confined water pool at atmospheric pressure. An artificial neural network (ANN) has been trained successfully based on the experimental data for predicting Nusselt number of transition boiling in the present study. The input parameters of the ANN are wall superheat, {delta}T{sub w}, the ratio of the gap size to the diameter of the heated surface, {delta}/D, Prandtl number and Rayleigh number. The output is Nusselt number, Nu. The results show that: Nu decreases with increasing {delta}T{sub w}, and increases generally with an increase of {delta}/D. Nu increases with increasing Pr when gap size is smaller than 4.0 mm. And Nu decreases initially and then increases with increasing Pr as gap size bigger than 5.0 mm. The results also indicate that the influence of Grashof number, Gr, could be negligible. Finally, a new correlation was proposed to predict the transition boiling heat transfer under the present condition. The comparisons between the prediction of the new correlation and experimental data show a reasonable agreement.

  20. Optical coupling between two lasers on a dielectric surface: experimental and theoretical analysis

    Science.gov (United States)

    Raju, Md Mozammal K.

    In order to understand the concept of qubit (or quantum bit) and use it for quantum computation purposes we analyze the phenomenon of "electromagnetically induced transparency" (EIT) from both quantum theoretical and experimental standpoint. The purpose of this work is to couple two lasers through a simultaneous interaction on the surface of a dielectric material. This research led to the use of a capacitor-type configuration for modifying the wavelength of a probe laser field using a voltage across the dielectric, and next, to lock the probe field on the dielectric surface by using a stronger coupling laser. The inclusion of a second stronger coupling laser creates an interference effect, similar as in the case of EIT, with the probe laser of adjusted wavelength due to the capacitor voltage. The Brewster angle method which uses polarized light reflected by surfaces allows us to experimentally observe the EIT feature as a wavy structure embedded in the parabolic shape of the Brewster region. This study can be extended towards many applications such as optical switches, quantum memory, quantum encryption, quantum repeater, fingerprint investigation, to name a few.

  1. Experimental demonstration of hyperbolic wave vector surfaces in silver nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Joerg [ZIK, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Kanungo, Jyotirmayee [Queen' s University Belfast, Belfast (United Kingdom)

    2010-07-01

    Arrays of metal nanowires represent uniaxial metamaterials, whose principal effective permittivities perpendicular and parallel to the wire axis have opposite sign in the infrared and visible spectral range. This property leads to a hyperbolic equi-frequency surface for the extraordinary rays in wave vector space allowing the propagation of waves with unusually large wave vectors. Here we present an experimental mapping of the hyperbolic equi-frequency surfaces of TM (p-)polarised light propagating within a silver nanowire array. To this purpose we performed angular resolved transmission measurements on a 1.7 micron high alumina film containing the silver nanowire array. From the order of the observed Fabry-Perot resonances the wave vector component k{sub z} is determined, while the lateral wave vector component k{sub x}, is obtained from the angle of incidence. The resulting markings in k{sub x}-k{sub z} wave vector diagram then result in a hyperbolic equi-frequency surface for the TM polarisation. Fitting the relationship between spectral position of the Fabry-Perot peaks and angle of incidence by a simple linear equation, we furthermore determined the values of the principal permittivities for TE and TM polarisation in a wide spectral range. All experimental results agree well with simulations based on the Maxwell-Garnett effective medium theory.

  2. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    Science.gov (United States)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  3. Evaluation of the Effects of Er,Cr:YSGG Laser, Ultrasonic Scaler and Curette on Root Surface Profile Using Surface Analyser and Scanning Electron Microscope: An In Vitro Study

    Science.gov (United States)

    Arora, Shipra; Lamba, Arundeep Kaur; Faraz, Farrukh; Tandon, Shruti; Ahad, Abdul

    2016-01-01

    Introduction: The periodontal therapy is primarily targeted at removal of dental plaque and plaque retentive factors. Although the thorough removal of adherent plaque, calculus and infected root cementum is desirable, it is not always achieved by conventional modalities. To accomplish more efficient results several alternative devices have been used. Lasers are one of the most promising modalities for nonsurgical periodontal treatment as they can achieve excellent tissue ablation with strong bactericidal and detoxification effects. Methods: Thirty freshly extracted premolars were selected and decoronated. The mesial surface of each root was divided vertically into four approximately equal parts. These were distributed into four group based on the root surface treatment. Part A (n = 30) was taken as control and no instrumentation was performed. Part B (n = 30) was irradiated by Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser. Part C (n = 30) was treated by piezoelectric ultrasonic scaler. Part D (n = 30) was treated by Gracey curette. The surface roughness was quantitatively analyzed by profilometer using roughness average (Ra) value, while presence of smear layer, cracks, craters and melting of surface were analyzed using scanning electron microscope (SEM). The means across the groups were statistically compared with control using Dunnett test. Results: Among the test groups, Er,Cr:YSGG laser group showed maximum surface roughness (mean Ra value of 4.14 μm) as compared to ultrasonic scaler (1.727 μm) and curette group (1.22 μm). However, surface with smear layer were found to be maximum (50%) in curette treated samples and minimum (20%) in laser treated ones. Maximum cracks (83.34%) were produced by ultrasonic scaler, and minimum (43.33%) by curettes. Crater formation was maximum (50%) in laser treated samples and minimum (3.33%) in curette treated ones. 63.33% samples treated by laser demonstrated melting of root surface, followed by

  4. Results of experimental tests and calibrations of the surface neutron moisture measurement probe

    Energy Technology Data Exchange (ETDEWEB)

    Watson, W.T.; Bussell, J.H., Westinghouse Hanford

    1996-08-13

    The surface neutron moisture probe has been tested both to demonstrate that is is able to operate in the expected in-tank temperature and gamma-ray fields and to provide detector responses to known moisture concentration materials. The probe will properly function in a simultaneous high temperature (80 degrees C) and high gamma radiation field (210 rad/hr)environment. Comparisons between computer model predicted and experimentally measured detector responses to changes in moisture provide a basis for the probe calibration to in-tank moisture concentrations.

  5. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    Science.gov (United States)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-06-01

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  6. Experimental investigation of turbulent transport of momentum and heat in the atmospheric surface layer

    Science.gov (United States)

    Han, Guowen; Zheng, X. J.; Bo, Tianli

    2017-11-01

    In our study, turbulent transport of momentum and heat is investigated in the neutral and unstable atmospheric surface layer (ASL) over the edge of a desert. Our results reveal that with the increase of wind speed the transport efficiencies for momentum and heat increased, furthermore, transport efficiency of momentum increases faster than that of heat. In addition, the method of quadrant analysis and turbulent events were used to analyze the moment flux and heat flux. Experimental results show that the influence of wind speed on moment flux and heat flux can be quite different, which maybe has a great impact on the turbulent transport of momentum and heat in ASL.

  7. Numerial simulation and experimental study of non-newtonian mixing flow with a free surface

    Directory of Open Access Journals (Sweden)

    M. Dular

    2006-12-01

    Full Text Available The object of this work was to evaluate the capability of numerical simulation to predict different features of non-Newtonian fluid mixing process. A relatively simple impeller (six bladed vane rotor was used for the mixing of carboxymethyl cellulose. A LDA method was used to measure the tangential velocity at two points inside the mixing vessel. Using visualization, a significant vortex above the impeller was observed. The shape of the free surface was determined by a geometrical reconstruction of the images of the illuminated section. Torque on the impeller shaft was measured to determine the characteristics of the fluid. Fluent program package was used for the simulation. The problem is challenging since the effects of non-Newtonian fluid, mixing process and free surface have to be included in the simulation. The comparison between the experimental and numerical results confirms the accuracy of the simulations.

  8. Experimental Evaluation of the Surface Alteration of Gasket Samples under Operative Conditions

    Directory of Open Access Journals (Sweden)

    M.C. Bignozzi

    2015-12-01

    Full Text Available This paper investigates the surface alteration of gasket samples commercialized by two alternative producers. These gaskets, in polymeric materials, are installed in process plants used for cleaning tires molds by a pioneering ultrasonic process. They are exposed to a combination of ultrasonic waves, temperature, humidity and acid attack causing several erosion phenomena. Their surface degradation under ordinary operative conditions was investigated using mechanical and tribological tests. The experimental characterization was performed by optical microscopy, scanning electron microscopy, thermograms, differential scanning calorimetry curves and infrared spectra aiming at defining the specific mechanics of wearing. As a conclusion, it was possible to state that even if samples exhibit similar chemical structures, their thermal and mechanical properties as well as their geometric dimensions are different. Such differences in the materials might cause various unexpected wear behaviors when gaskets are employed in the same working conditions.


  9. Experimental validation of a sub-surface model of solar power for distributed marine sensor systems

    Science.gov (United States)

    Hahn, Gregory G.; Cantin, Heather P.; Shafer, Michael W.

    2016-04-01

    The capabilities of distributed sensor systems such as marine wildlife telemetry tags could be significantly enhanced through the integration of photovoltaic modules. Photovoltaic cells could be used to supplement the primary batteries for wildlife telemetry tags to allow for extended tag deployments, wherein larger amounts of data could be collected and transmitted in near real time. In this article, we present experimental results used to validate and improve key aspects of our original model for sub-surface solar power. We discuss the test methods and results, comparing analytic predictions to experimental results. In a previous work, we introduced a model for sub-surface solar power that used analytic models and empirical data to predict the solar irradiance available for harvest at any depth under the ocean's surface over the course of a year. This model presented underwater photovoltaic transduction as a viable means of supplementing energy for marine wildlife telemetry tags. The additional data provided by improvements in daily energy budgets would enhance the temporal and spatial comprehension of the host's activities and/or environments. Photovoltaic transduction is one method that has not been widely deployed in the sub-surface marine environments despite widespread use on terrestrial and avian species wildlife tag systems. Until now, the use of photovoltaic cells for underwater energy harvesting has generally been disregarded as a viable energy source in this arena. In addition to marine telemetry systems, photovoltaic energy harvesting systems could also serve as a means of energy supply for autonomous underwater vehicles (AUVs), as well as submersible buoys for oceanographic data collection.

  10. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  11. The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection.

    Science.gov (United States)

    Felle, Hubert H; Waller, Frank; Molitor, Alexandra; Kogel, Karl-Heinz

    2009-09-01

    We analyze here, by noninvasive electrophysiology, local and systemic plant responses in the interaction of barley (Hordeum vulgare L.) with the root-colonizing basidiomycete Piriformospora indica. In the short term (seconds, minutes), a constant flow of P. indica chlamydospores along primary roots altered surface pH characteristics; whereas the root-hair zone transiently alkalized-a typical elicitor response-the elongation zone acidified, indicative of enhanced H(+) extrusion and plasma membrane H(+) ATPase stimulation. Eight to 10 min after treating roots with chlamydospores, the apoplastic pH of leaves began to acidify, which contrasts with observations of an alkalinization response to various stressors and microbe-associated molecular patterns (MAMPs). In the long term (days), plants with P. indica-colonized roots responded to inoculation with the leaf-pathogenic powdery mildew fungus Blumeria graminis f. sp. hordei with a leaf apoplastic pH increase of about 2, while the leaf apoplast of noncolonized barley responded to B. graminis f. sp. hordei merely with a pH increase of 0.8. The strong apoplastic pH response is reminiscent of B. graminis f. sp. hordei-triggered pH shifts in resistance gene-mediated resistant barley leaves or upon treatment with a chemical resistance inducer. In contrast, the MAMP N-acetylchito-octaose did not induce resistance to B. graminis f. sp. hordei and did not trigger the primed apoplastic pH shift. We speculate that the primed pH increase is indicative of and supports the potentiated systemic response to B. graminis f. sp. hordei-induced by P. indica in barley.

  12. An in vitro evaluation of various irrigation techniques for the removal of double antibiotic paste from root canal surfaces

    Directory of Open Access Journals (Sweden)

    Hakan GOKTURK

    Full Text Available ABSTRACT Objective The aim of this study was to investigate the effectiveness of conventional syringe irrigations, passive ultrasonic irrigation (PUI, Vibringe, CanalBrush, XP-endo Finisher, and laser-activated irrigation (LAI systems in removing double antibiotic paste (DAP from root canals. Material and Methods One hundred five extracted single-rooted teeth were instrumented. The roots were split longitudinally. Three standard grooves were created and covered with DAP. The roots were distributed into seven groups: Group 1, beveled needle irrigation; Group 2, double side-vented needle irrigation; Group 3, CanalBrush; Group 4, XP-endo Finisher; Group 5, Vibringe; Group 6, PUI; Group 7, LAI. The amount of remaining DAP was scored under a stereomicroscope. Results Group 4, Group 6, and Group 7 removed significantly more DAP than the other protocols in the coronal region. Group 7 was more efficient in the middle region; however, no significant difference was found between Group 7 and Group 6. No differences were found between groups in the apical region either, except for the comparisons between groups 7 and 2, and groups 2 and 3. Conclusions None of the investigated protocols were able to completely remove the DAP from the grooves. The Vibringe and XP-endo Finisher systems showed results similar to those of conventional needle irrigation.

  13. Quantification of the Volume and Surface Area of Symbiosomes and Vacuoles of Infected Cells in Root Nodules of Medicago truncatula

    NARCIS (Netherlands)

    Gavrin, A.Y.; Fedorova, E.

    2015-01-01

    Legumes are able to form endosymbiotic interactions with nitrogen-fixing rhizobia. Endosymbiosis takes shape in formation of a symbiotic organ, the root nodule. Medicago truncatula (M. truncatula) nodules contain several zones representing subsequent stages of development. The apical part of the

  14. Effect of two resin cements and two fiber post surface treatments on push-out bond strength between fiber post and root dentin.

    Science.gov (United States)

    Druck, Carolina Ceolin; Bergoli, Cesar Dalmolin; Pereira, Gabriel Kalil Rocha; Valandro, Luiz Felipe

    2015-01-01

    To evaluate the effect of fiber post surface treatments on push-out bond strength between fiber post and root dentin. Sixty bovine mandibular teeth (N=60) were sectioned (16 mm), prepared (12 mm), embedded with acrylic resin and then allocated into six groups (n=10): Gr1- Silane coupling agent (Sil)+Conventional resin cement AllC em (Al C); Gr2- Sil+Conventional resin cement RelyX ARC (ARC); Gr3- tribochemical silica coating (TBS)+AlC; Gr4- TBS+ARC; Gr5- No treatment (NT)+AlC; Gr6- NT+ ARC. Specimens were sectioned in four slices (2 mm) and submitted to push-out test. Fracture analyses were executed at x200. The values of the push-out bond strength were submitted to two-way ANOVA and Tukey test (α=0.05). Resincement did not affect the bond strength values (p=0.9674), fiber post surface treatment affected the push-out bond strength (p=0.0353), interaction between factors did not affected the values (p=0.338). Tukey test did not show differences between the groups. Adhesive failure between cement and dentin was predominantly. The fiber post surface treatment appears have no Influence on bond strength between fiber post and root dentin. The tested fiber posts surface treatment appears do not Influence the fiber post bond behavior.

  15. The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces

    Science.gov (United States)

    Supulver, Kimberley D.; Bridges, Frank G.; Lin, D. N. C.

    1995-01-01

    Both Saturn's rings and planetesimal disks are made up of particles in Keplerian orbits. Inelastic collisions between these particles regulate their dynamical evolution and possible aggregation. We present an experiment to simulate glancing collisions in Saturn's rings and in planetesimal disks and thus measure contributions to the energy loss for both normal and tangential velocity components. In this experiment, a spherical iceball mounted on a long-period, two dimensional pendulum is made to impact a flat ice surface in a low-temperature environment. This paper describes the experimental apparatus in detail and presents results for smooth unfrosted surfaces. The energy loss for tangential motion is suprisingly low, indicating that very little friction is present at low impact speeds for relatively smooth ice surfaces and temperatures near 100 K. We have also investigated room-temperature collisions of a rubber ball on a rough surface to understand the energy loss in situations where the tangential friction force is not small. In this analogous case, the energy loss is maximum for impact angles in the range 45 deg-60 deg.

  16. Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography

    Science.gov (United States)

    Martinez‐Valdes, E.; Negro, F.; Laine, C. M.; Falla, D.; Mayer, F.

    2017-01-01

    Key points Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders.We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography.The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity.These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions.The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. Abstract A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be

  17. Experimental study on the effects of fixed boundaries in channelized free surface dry granular flows

    Science.gov (United States)

    Sarno, Luca; Carleo, Luigi; Nicolina Papa, Maria

    2017-04-01

    The dynamics of granular mixtures, involved in geophysical flows like avalanches and debris flows, is far from being completely understood. Several features of their motion, such as rheological stratification, non-local and boundary effects, still represent open problems. Experimental investigations at laboratory scale are an important tool that can provide insights about the dynamics of gravity driven granular flows. The measuring techniques should be non-invasive in order to measure undisturbed flows. In this work we present an experimental campaign devoted to the measurement of the velocity profiles of free surface steady granular flows in an open channel. To achieve this goal the flows were recorded by two cameras and velocity profiles were obtained by image analysis. The employed granular medium consists of acetal-polymeric beads with a mean diameter of 3mm and an estimated internal friction angle of 27°. All the experiments have been performed in a 2m-long plexiglas flume with a rectangular cross-section and a slope angle of 30°. The upper part of the channel was used as a reservoir where the material was loaded before each run and then let flow down through an adjustable gate. Several mass flow rates were investigated. Three different basal surfaces were employed so as to observe slip and non-slip boundary conditions: a smooth Bakelite surface, a roughened surface, obtained by gluing a layer of grains on the bed surface and a sandpaper surface with characteristic length of the roughness equal to 425 µm. The flume is equipped with two high-speed cameras, one placed aside the channel and the other one perpendicular to the channel bed, as to get both side-wall and free surface velocity profiles. The particle image velocimetry open-source code, PIVlab, is employed for estimating the flow velocities. All the free surface velocity profiles show an approximately parabolic shape with a maximum at the cross-section midpoint and a minimum at the side-walls, due to

  18. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Science.gov (United States)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  19. Experimental study of surface roughness in Electric Discharge Machining (EDM based on Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Mat Deris Ashanira

    2016-01-01

    Full Text Available Electric Discharge Machining (EDM is one of the modern machining which is capable in handling hard and difficult-to-machine material. The successful of EDM basically depends on its performances such as surface roughness (Ra, material removal rate (MRR, electrode wear rate (EWR and dimensional accuracy (DA. Ra is considered as the most important performance due to it role as a technological quality measurement for a product and also a factor that significantly affects the manufacturing process. This paper presents the experimental study of surface roughness in die sinking EDM using stainless steel SS316L with copper impregnated graphite electrode. The machining experimental is conducted based on the two levels full factorial design of design of experiment (DOE with five machining parameters which are peak current, servo voltage, servo speed, pulse on time and pulse off time. The results were analyzed using grey relational analysis (GRA and it was found that pulse on time and servo voltage give the most influence to the Ra value.

  20. Experimental investigations of sensor-based surface following tasks by a mobile manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.; Baker, J.E.; Pin, F.G.

    1993-10-01

    This paper discusses experimental investigations of the feasibility and requirements of simultaneous external-sensor-based-control of the wheeled platform and the manipulator of a mobile robot. The experiments involve 3-D arbitrary surface following by the manipulator while the platform moves along a predefined trajectory. A variety of concave and convex surfaces were used in the experiments, during which target and measured values of the platform and arm positions and orientations, together with the surface absolute location and normal estimates, were logged at 10 Hz. For all experiments, the data logs showed significant noise, at high frequency, in the calculated surface normal values despite smooth tracking of their target values by the arm and the platform, with typical closed loop delays between target and achieved values of the order of 100 msec. This high-frequency noise in the calculated values is conjectured to result mainly from the arm`s transmission cables compliance and backlash in the spherical wrist gears. On the other hand, the end-effector distance to the surface showed some low frequency errors of the order of {plus_minus}20%The two major sources of these low frequency errors appeared to reside respectively in the low values of the velocity bound and gain parameters utilized to filter the high frequency noise in the calculated normal values prior to using them as input to the arm control, and in the rolling contact of the platform`s rubber-coated wheels on the ground where significant errors in the platform`s positions and orientations can accumulate.

  1. Spray Irrigation Effects on Surface-Layer Stability in an Experimental Citrus Orchard during Winter Freezes.

    Science.gov (United States)

    Cooper, Harry J.; Smith, Eric A.; Martsolf, J. David

    1997-02-01

    Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Gainesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface-layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. It was found that surface-layer lapse rates were lower during irrigation periods than under similar conditions when irrigation was not occurring, indicating a greater degree of vertical mixing of surface-layer air with air from above treetops, as a result of local convective overturning induced by the condensation heating of water vapor released at the nozzles of the sprinklers. This provides an additional explanation to the well-accepted heat of fusion release effect, of how undertree irrigation of a citrus orchard during a freeze period helps protect crops

  2. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  3. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Science.gov (United States)

    Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Nieto-Perez, M.; Skinner, C. H.; Kugel, H. W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-06-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  4. Influence of blood contamination before or after surface treatment on adhesion of 4-META/MMA-TBB resin to root dentin.

    Science.gov (United States)

    Takefu, Hiroe; Shimoji, Shinji; Sugaya, Tsutomu; Kawanami, Masamitsu

    2012-02-03

    The purpose of this study was to evaluate the influence of blood contamination before or after surface treatment on adhesion of 4-META/MMA-TBB resin. After bovine root dentin surfaces were contaminated with blood before or after dentin surface treatment with 10-3 solution, the contaminated surface was rinsed with water, air-dried, or re-treated with 10-3 solution. Dye leakage and microtensile bond strength (MTBS) of 4-META/MMA-TBB resin to dentin were measured after storage in water for 24 h. When blood contamination occurred before surface treatment, there was no significant difference in the leakage value and MTBS as compared with that of the uncontaminated group. When blood contamination occurred after surface treatment, the leakage value increased and MTBS significantly decreased (p<0.05) even if the blood was washed away. However, when the surface was re-treated with 10-3 solution after rinsing with water, the leakage value and MTBS were restored to those of the uncontaminated group.

  5. Surface-Water Quantity and Quality of the Upper Milwaukee River, Cedar Creek, and Root River Basins, Wisconsin, 2004

    Science.gov (United States)

    Hall, David W.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Southeastern Wisconsin Regional Planning Commission (SEWRPC), collected discharge and water-quality data at nine sites in previously monitored areas of the upper Milwaukee River, Cedar Creek, and Root River Basins, in Wisconsin from May 1 through November 15, 2004. The data were collected for calibration of hydrological models that will be used to simulate how various management strategies will affect the water quality of streams. The data also will support SEWRPC and Milwaukee Metropolitan Sewerage District (MMSD) managers in development of the SEWRPC Regional Water Quality Management Plan and the MMSD 2020 Facilities Plan. These management plans will provide a scientific basis for future management decisions regarding development and maintenance of public and private waste-disposal systems. In May 2004, parts of the study area received over 13 inches of precipitation (3.06 inches is normal). In June 2004, most of the study area received between 7 and 11 inches of rainfall (3.56 inches is normal). This excessive rainfall caused flooding throughout the study area and resultant high discharges were measured at all nine monitoring sites. For example, the mean daily discharge recorded at the Cedar Creek site on May 27, 2004, was 2,120 cubic feet per second. This discharge ranked ninth of the largest 10 mean daily discharges in the 75-year record, and was the highest discharge recorded since March 30, 1960. Discharge records from continuous monitoring on the Root River Canal near Franklin since October 1, 1963, indicated that the discharge recorded on May 23, 2004, ranked second highest on record, and was the highest discharge recorded since March 4, 1974. Water-quality samples were taken during two base-flow events and six storm events at each of the nine sites. Analysis of water-quality data indicated that most concentrations of dissolved oxygen, biological oxygen demand, fecal coliform bacteria, chloride, suspended

  6. Experimental verification of the identity of variant-specific surface proteins in Giardia lamblia trophozoites.

    Science.gov (United States)

    Li, Wei; Saraiya, Ashesh A; Wang, Ching C

    2013-05-21

    The cell membrane of a Giardia lamblia trophozoite is covered with a single species of variant-specific surface protein (VSP) that is replaced by another VSP every 6 to 13 generations of cell growth, possibly for an evasion of host immunity. Experimentally, only six VSP species have been verified to localize to the cell membrane thus far. By assuming that VSP contains multiple CXXC motifs, 219 vsp genes were annotated in GiardiaDB of the WB isolate. By further assuming that VSP possesses both CXXC motifs and a CRGKA tail at the C terminus, Adam et al. (BMC Genomics 11:424, 2010) identified a total of 303 potential vsp genes in Giardia WB. The discrepancies between these two assumed VSP identities have caused some confusion. Here, we used experimental approaches to further verify what is required of the structures of a VSP to localize to the surface of cell membrane. The data led to the following conclusions. (i) The C-terminal CRGKA sequence is not essential for localizing VSPs to the cell membrane. (ii) A "motif 1" of 45 residues, consisting of two CXXCs separated by 12 to 15 amino acid residues, located close to the C terminus and a hydrophobic "motif 2" of 38 residues at the C terminus are both essential and sufficient for localizing the protein to the cell membrane. (ii) An N-terminal sequence upstream from motif 1 is not required for targeting VSPs to the cell membrane. By these criteria, we are able to identify 73 open reading frames as the putative vsp genes in Giardia. IMPORTANCE The intestinal pathogen Giardia lamblia expresses only one variant-specific surface protein (VSP) on the cell membrane surface at a given time, but it changes spontaneously every 6 to 13 generations of growth, presumably for evading the host immunity. Only 6 VSPs have been empirically shown to localize to the cell membrane surface thus far. Here, we used mutations of VSPs and methods of identifying their locations in Giardia cells and found that a "motif 1" of 45 residues

  7. Experimental investigation of surface modified EOF steel slag as coarse aggregate in concrete

    Directory of Open Access Journals (Sweden)

    Y.K. Sabapathy

    2017-10-01

    Full Text Available An experimental work was carried out to study the effect of Energy Optimizing Furnace (EOF steel slag as coarse aggregate replacement in concrete. Surface modification of slag was carried out to seal the surface voids of raw slag aggregates. Quarry dust obtained as an extractive waste from the granite stone quarries has been used as a blending material in this work. After several trials, it was found that a mix proportion of 1:6:14 (cement:quarry dust:slag aggregate was the most suitable mix ratio for the surface modification of the slag aggregates. Various mixes of concrete were prepared with different proportions of modified slag (ranging from 0% to 100% as replacements for aggregates. Three grades of concrete (20 MPa, 30 MPa and 40 MPa were used in the investigation and the concrete mixes were evaluated for compressive strength and splitting tensile strength. It was found that the compressive strength improved for 25 percent replacement of natural coarse aggregates. The splitting tensile strength was found to peak at 25 percent replacement of natural aggregates.

  8. Experimental Research upon the Quality of the Sanded Surfaces of Some Decorative Composite Panels

    Directory of Open Access Journals (Sweden)

    Luminita-Maria BRENCI

    2011-06-01

    Full Text Available The paper presents an experimental study uponthe quantitative assessment of the surface qualityafter sanding, in case of some lignocellulosecomposite panels with decorative structure, made oflamellas obtained from different wood species,randomly jointed and having as special characteristicthe surfaces with transversal structure. The analyzedpanels were built-up in two variants: poplar withspruce wood and cherry with walnut wood. Theconstituted lamellas were finger-jointed in length andedge-jointed in width. The sanding operation wasperformed using grit sizes of 50, 80, 120 and 150. Inorder to measure the roughness parameters Ra, Rz,Rk, Rpk and Rvk, a MicroProfFRT equipment (withlight beam was used. The results revealed that thevalues of the roughness parameters had a generaldecreasing tendency with grit size increasing. Theresulted values lead to the conclusion that the finalsanding grinding system applied on longitudinalsection of wood is not valid for the transversalsection of wood which is present on the surfaces ofthe studied panels. In this special case, whensurfaces have a transversal structure, an additionalsanding with a higher grit size is needed, in order toobtain a similar roughness value as for the surfaceswith longitudinal structure.

  9. Experimental investigation of turbulent flow-roughness interaction over surfaces of rigid and flexible roughness

    Science.gov (United States)

    Toloui, Mostafa; Hong, Jiarong

    2017-11-01

    The influence of flexible surface roughness on wall-bounded turbulent flows is examined experimentally via simultaneous 3D fluid velocity and roughness deformation measurements using Digital inline holographic PTV (i.e. DIH-PTV, Toloui et al. Meas. Sci. & Tech 2017). The experiments are conducted in a refractive-index-matched turbulent channel over two rough surface panels of similar geometry but with an order of magnitude difference in elastic modulus (1.8 Mpa vs. 0.2 Mpa). The roughness elements (i.e. tapered cylinders of 0.35 mm in base diameter, 3 mm in height, 4 mm spacing) are designed such that the rough surface with higher modulus shows no deformation (namely rigid roughness) while the one with lower elasticity deforms appreciably under the same flow conditions (Reh 32500 , based on centerline velocity and channel width). The concurrent fluid velocity and roughness deformation measurements are acquired with 160 μs temporal, 1.1 mm/vector velocity, and linked to roughness deformation. The fingerprint of this energy exchange on shortening the instantaneous flow structures, reduction of Reynolds stresses as well as flow features in energy spectra are examined and will be presented in detail.

  10. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  11. Root hairs

    NARCIS (Netherlands)

    Grierson, C.; Nielsen, E.; Ketelaar, T.; Schiefelbein, J.

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair

  12. Radiographic and clinical outcomes of rooted, platform-switched, microthreaded implants with a sandblasted, large-grid, and acid-etched surface: A 5-year prospective study.

    Science.gov (United States)

    Mei, Dong Mei; Zhao, Baodong; Xu, Hao; Wang, Yanhui

    2017-10-20

    There is no data available on the long-term outcomes of a rooted, platform-switched, microthreaded implant with a sandblasted, large-grid, and acid-etched surface. This prospective, longitudinal study evaluated the clinical and radiographic outcomes of rooted, platform-switched, microthreaded and sandblasted, large-grid, and acid-etched (SLA) surface implants for 5 years. Sixty implants were placed in sixty patients with partially edentulous maxillae or mandibles. The permanent prostheses were inserted 2-4 months after implant placement. Clinical and radiographic examinations were performed at follow-up visits scheduled postoperation, prosthesis installation, 1 year, and 5 years after surgery, to assess implant survival and success rates, biological and mechanical complications, and marginal bone loss. After 5 years' follow-up, four patients withdrawn from the study, and 56 implants achieved a 100% survival rate and 98.2% success rate. Three prosthetic complications occurred, resulting in a success rate for prostheses of 94.6%. The incidence of peri-implant mucositis was 9.1% and no peri-implantitis was diagnosed. The average marginal bone loss at the mesial aspect was 0.46 ± 0.27 mm after 1 year and 0.48 ± 0.27 mm after 5 years. The average marginal bone loss at the distal aspect was 0.46 ± 0.32 mm after 1 year and 0.50 ± 0.35 mm after 5 years. After 5 years of loading, the rooted, platform-switched, microthreaded, and SLA surface implants showed high survival and success rates, steady crestal bone levels, and excellent long-term clinical outcomes in the soft tissue. Overloading may be related to the marginal bone loss around implants, but the surgical protocol, different sites, and jaw position did not correlate with crestal bone loss. © 2017 Wiley Periodicals, Inc.

  13. Effect of Er:YAG and Diode lasers on the adhesion of blood components and on the morphology of irradiated root surfaces.

    Science.gov (United States)

    Theodoro, Letícia Helena; Sampaio, José Eduardo C; Haypek, Patrícia; Bachmann, Luciano; Zezell, Denise Maria; Garcia, Valdir Gouveia

    2006-10-01

    The aim of this study was to evaluate in vitro, by scanning electron microscopy (SEM), the adhesion of blood components on root surfaces irradiated with Er:YAG (2.94 microm) and GaAlAs Diode (808 nm) lasers and the effects on the morphology of irradiated root surfaces. One hundred samples of human teeth were obtained. They were previously planed and scaled with manual instruments and divided into five groups of 20 samples each: G1 (control group) - absence of treatment; G2--Er:YAG laser (7.6 J/cm2); G3--Er:YAG laser (12.9 J/cm2); G4--Diode laser (90 J/cm2) and G5--Diode laser (108 J/cm2). After these treatments, 10 samples of each group received a blood tissue but the remaining 10 did not. After laboratory treatments, the samples were obtained by SEM, the photomicrographs were analysed by the score of adhesion of blood components and the results were statistically analysed (Kruskall-Wallis and Mann-Whitney test). In relation to the adhesion of blood components, the study showed no significant differences between the control group and the groups treated with Er:YAG laser (p = 0.9633 and 0.6229). Diode laser radiation was less effective than control group and Er:YAG laser radiation (p laser did not interfere in the adhesion of blood components, it caused more changes on the root surface, whereas the Diode laser inhibited the adhesion.

  14. Pressure changes under the ischial tuberosities during gluteal neuromuscular stimulation in spinal cord injury: a comparison of sacral nerve root stimulation with surface functional electrical stimulation.

    Science.gov (United States)

    Liu, Liang Qin; Ferguson-Pell, Martin

    2015-04-01

    To compare the magnitude of interface pressure changes during gluteal maximus contraction by stimulating sacral nerve roots with surface electrical stimulations in patients with spinal cord injuries (SCIs). Pilot interventional study. Spinal injury research laboratory. Adults (N=18) with suprasacral complete SCI. Sacral nerve root stimulation (SNRS) via a functional magnetic stimulator (FMS) or a sacral anterior root stimulator (SARS) implant; and surface functional electrical stimulation (FES). Interface pressure under the ischial tuberosity (IT) defined as peak pressure, gradient at peak pressure, and average pressure. With optimal FMS, a 29% average reduction of IT peak pressure was achieved during FMS (mean ± SD: 160.1±24.3mmHg at rest vs 114.7±18.0mmHg during FMS, t5=6.3, P=.002). A 30% average reduction of peak pressure during stimulation via an SARS implant (143.2±31.7mmHg at rest vs 98.5±21.5mmHg during SARS, t5=4.4, P=.007) and a 22% average decrease of IT peak pressure during FES stimulation (153.7±34.8mmHg at rest vs 120.5±26.1mmHg during FES, t5=5.3, P=.003) were obtained. In 4 participants who completed both the FMS and FES studies, the percentage of peak pressure reduction with FMS was slightly greater than with FES (mean difference, 7.8%; 95% confidence interval, 1.6%-14.0; P=.04). SNRS or surface FES can induce sufficient gluteus maximus contraction and significantly reduce ischial pressure. SNRS via an SARS implant may be more convenient and efficient for frequently activating the gluteus maximus. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes.

    Science.gov (United States)

    Jouvin, D; Weiss, D J; Mason, T F M; Bravin, M N; Louvat, P; Zhao, F; Ferec, F; Hinsinger, P; Benedetti, M F

    2012-03-06

    Recent reports suggest that significant fractionation of stable metal isotopes occurs during biogeochemical cycling and that the uptake into higher plants is an important process. To test isotopic fractionation of copper (Cu) and zinc (Zn) during plant uptake and constrain its controls, we grew lettuce, tomato, rice and durum wheat under controlled conditions in nutrient solutions with variable metal speciation and iron (Fe) supply. The results show that the fractionation patterns of these two micronutrients are decoupled during the transport from nutrient solution to root. In roots, we found an enrichment of the heavier isotopes for Zn, in agreement with previous studies, but an enrichment of isotopically light Cu, suggesting a reduction of Cu(II) possibly at the surfaces of the root cell plasma membranes. This observation holds for both graminaceous and nongraminaceaous species and confirms that reduction is a predominant and ubiquitous mechanism for the acquisition of Cu into plants similar to the mechanism for the acquisition of iron (Fe) by the strategy I plant species. We propose two preliminary models of isotope fractionation processes of Cu and Zn in plants with different uptake strategies.

  16. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  17. Experimental Study of Thermo-hydraulic Characteristics of Surfaces with In-line Dimple Arrangement

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2015-01-01

    Full Text Available The paper presents a conducted experimental study of the heat exchange intensification on the surfaces covered with a regular vortex-generating relief that is an in-line array of the shallow hemispherical dimples. Using 12 configuration options with the Reynolds numbers in the range of (0.2-7.0 106 as an example, it analyses how a longitudinal and cross step of the in-line dimple array (density dimples effects on the processes of heat exchange intensification and resistance.The monocomponent strain-gauge balance allows us to define a value of the resistance coefficient by direct weighing of models (located in parallel in a flow of "relief" and smooth "reference" ones being under study. Distribution fields of heat – transfer factor are determined by recording a cooling process of the surface of studied models having high spatial and temporary resolution. All researches were conducted with one-shot data record of these thermal and hydraulic measurements for the smooth (reference surfaces and the studied surfaces covered with a regular vortex-generating relief (dimples. The error of determined parameters was no more than ±5%.The oil-sooty method allows us to visualize flow around a regular relief and obtain a flow pattern for 12 options of dimples configuration. The analysis has been carried out and a compliance of the flow patterns with the field of heat-transfer factors has been obtained.It has been found that for the in-line configuration a Reynolds analogy factor for most models is nonlinearly dependent on the Reynolds number. The friction intensification, at first, falls (to some Reynolds number and, further, starts increasing, tending to the friction intensification value with self-similarity flow around. Thus with increasing Reynolds number, the heattransfer factor intensification falls (more slowly than resistance intensification.

  18. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    Science.gov (United States)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  19. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2014-01-01

    The severe slugging flow is always challenging in oil & gas production, especially for the current offshore based production. The slugging flow can cause a lot of potential problems, such as those relevant to production safety, fatigue as well as capability. As one typical phenomenon in multi-phase...... flow dynamics, the slug can be avoided or eliminated by proper facility design and control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key...... operational parameters with severe slugging flows. These correlations are reflected through an obtained stable surface in the parameter space, which is a natural extension of the bifurcation plot. The maximal production opportunity without compromising the stability is also studied. Relevant studies have...

  20. Mixed culture optimization for marigold flower ensilage via experimental design and response surface methodology.

    Science.gov (United States)

    Navarrete-Bolaños, José Luis; Jiménez-Islas, Hugo; Botello-Alvarez, Enrique; Rico-Martínez, Ramiro

    2003-04-09

    Endogenous microorganisms isolated from the marigold flower (Tagetes erecta) were studied to understand the events taking place during its ensilage. Studies of the cellulase enzymatic activity and the ensilage process were undertaken. In both studies, the use of approximate second-order models and multiple lineal regression, within the context of an experimental mixture design using the response surface methodology as optimization strategy, determined that the microorganisms Flavobacterium IIb, Acinetobacter anitratus, and Rhizopus nigricans are the most significant in marigold flower ensilage and exhibit high cellulase activity. A mixed culture comprised of 9.8% Flavobacterium IIb, 41% A. anitratus, and 49.2% R. nigricans used during ensilage resulted in an increased yield of total xanthophylls extracted of 24.94 g/kg of dry weight compared with 12.92 for the uninoculated control ensilage.

  1. Experimental demonstration of critical coupling of whispering gallery mode cavities on a Bloch surface wave platform.

    Science.gov (United States)

    Vosoughi Lahijani, B; Badri Ghavifekr, H; Dubey, R; Kim, M-S; Vartiainen, I; Roussey, M; Herzig, H P

    2017-12-15

    We experimentally demonstrate critical coupling of whispering gallery mode (WGM) disk resonators implemented on a Bloch surface wave platform using scanning near-field optical microscopy. The studied structure is a 60 nm thick TiO2 WGM disk cavity (radius of 100 μm) operating within the C-band telecommunication wavelength. An extinction ratio of 26 dB and a quality factor of 2200 are measured. Such a high extinction ratio verifies the critical coupling of the WGM resonator. This result paves the way to planar optical signal processing devices based on the proposed geometry, for which a critical coupling condition is a guarantee of optimum performance.

  2. Experimental Verification of the Identity of Variant-Specific Surface Proteins in Giardia lamblia Trophozoites

    Science.gov (United States)

    Li, Wei; Saraiya, Ashesh A.; Wang, Ching C.

    2013-01-01

    ABSTRACT The cell membrane of a Giardia lamblia trophozoite is covered with a single species of variant-specific surface protein (VSP) that is replaced by another VSP every 6 to 13 generations of cell growth, possibly for an evasion of host immunity. Experimentally, only six VSP species have been verified to localize to the cell membrane thus far. By assuming that VSP contains multiple CXXC motifs, 219 vsp genes were annotated in GiardiaDB of the WB isolate. By further assuming that VSP possesses both CXXC motifs and a CRGKA tail at the C terminus, Adam et al. (BMC Genomics 11:424, 2010) identified a total of 303 potential vsp genes in Giardia WB. The discrepancies between these two assumed VSP identities have caused some confusion. Here, we used experimental approaches to further verify what is required of the structures of a VSP to localize to the surface of cell membrane. The data led to the following conclusions. (i) The C-terminal CRGKA sequence is not essential for localizing VSPs to the cell membrane. (ii) A “motif 1” of 45 residues, consisting of two CXXCs separated by 12 to 15 amino acid residues, located close to the C terminus and a hydrophobic “motif 2” of 38 residues at the C terminus are both essential and sufficient for localizing the protein to the cell membrane. (ii) An N-terminal sequence upstream from motif 1 is not required for targeting VSPs to the cell membrane. By these criteria, we are able to identify 73 open reading frames as the putative vsp genes in Giardia. PMID:23695837

  3. Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Kazuo Azuma

    2015-07-01

    Full Text Available This study evaluated the effects of oral administration of surface-deacetylated chitin nanofibers (SDACNFs on hypercholesterolemia using an experimental model. All rats were fed a high cholesterol diet with 1% w/w cholesterol and 0.5% w/w cholic acid for 28 days. Rats were divided equally into four groups: the control group was administered 0.05% acetic acid dissolved in tap water, and the SDACNF, chitosan (CS, and cellulose nanofiber (CLNF groups were administered 0.1% CNF, CS, or CLNF dissolved in the tap water, respectively, during the experimental period. Changes in body weight, intake of food and water, and organ weight were measured. Serum blood chemistry and histopathological examination of the liver were performed. Administration of SDACNF did not affect body weight change, food and water intake, or organ weights. Administration of SDACNF and CS decreased the diet-induced increase in serum total cholesterol, chylomicron, very-low-density lipoprotein, and phospholipid levels on day 14. Moreover, oral administration of SDACNFs suppressed the increase of alanine transaminase levels on day 29 and suppressed vacuolar degeneration and accumulation of lipid droplets in liver tissue. These data indicate that SDACNF has potential as a functional food for patients with hypercholesterolemia.

  4. The Effects of the ND:YAG Laser on In vitro Fibroblast Attachment to Endotoxin Treated Root Surfaces

    Science.gov (United States)

    1991-05-01

    Keller and Hibst (1990) and Hibst and Keller (1989) used an Er:YAG laser on dentin and enamel surfaces of human teeth . They hypothesized that vaporization...layer. Hess (1990) examined the morphologic changes of enamel after Nd:YAG laser exposure. SEM observation revealed a pockmarked surface with...Scanning electron microscnpic study of laser- induced morphologic changes of a coated enamel surface. Lasers Surg Med 10:458-462, 1990. Hibst, R. and U

  5. Temperature changes inside the molar pulp chamber and on the enamel and root surfaces induced by the CO2 laser beam, in vitro

    Science.gov (United States)

    Anic, Ivica; Dzubur, A.; Skala, Karolj; Sutalo, Jozo

    1993-12-01

    The application of the CO2 laser continuous wave to hard dental tissue causes temperature changes on the impact area, on the adjacent area and inside the pulp chamber. The purpose of this study was to investigate the thermal effects induced by the CO2 laser continuous wave, and the temperature flow through adjacent areas. Forty healthy molars, 15 molars with class II amalgam restoration and 10 canines with cervical caries extracted for periodontal reasons were irradiated with laser beam. On the occlusal surface the class I preparation was made just beyond the dentine-enamel junction. Temperature changes were measured at the enamel, root surface and at the cross section of the previously prepared holes 3 mm in diameter which were made 2 mm above the bifurcation level.

  6. Experimental determination of acetylene and ethylene solubility in liquid methane and ethane: Implications to Titan's surface

    Science.gov (United States)

    Singh, S.; Combe, J.-Ph.; Cordier, D.; Wagner, A.; Chevrier, V. F.; McMahon, Z.

    2017-07-01

    In this study, the solubility of acetylene (or ethyne, C2H2) and ethylene (or ethene, C2H4) in liquid methane (CH4) and ethane (C2H6) has been experimentally determined at Titan surface temperature (90 K) and pressure (1.5 bars). As predicted by theoretical models, the solubilities of acetylene and ethylene are very large at Titan temperature and these species are most likely to be abundantly present in the lakes and as evaporites on the shores or dry lake beds. Our results indicate the solubility of 4.9 × 10-2 mole fraction for acetylene in methane and 48 × 10-2 mole fraction in ethane; for ethylene, 5.6 × 10-1 mole fraction in methane and 4.8 × 10-1 mole fraction in ethane. Assuming the mole fractions from atmospheric models in the lower stratosphere and equilibrium with the surface, we determined that the lakes on Titan that cover ∼400,000 km2 are not saturated. The liquid lakes on Titan act as an important reservoir for both acetylene and ethylene. Assuming difference of methane and ethane content in the lakes at different latitudes, the difference in solubility in liquid methane and ethane, solutes in lakes may change with the temporal evolution (such as; evaporation and condensation) over seasons and geological time scales.

  7. Colloid filtration in surface dense vegetation: experimental results and theoretical predictions.

    Science.gov (United States)

    Wu, Lei; Muñoz-Carpena, Rafael; Gao, Bin; Yang, Wen; Pachepsky, Yakov A

    2014-04-01

    Understanding colloid and colloid-facilitated contaminant transport in overland flow through dense vegetation is important to protect water quality in the environment, especially for water bodies receiving agricultural and urban runoff. In previous studies, a single-stem efficiency theory for rigid and clean stem systems was developed to predict colloid filtration by plant stems of vegetation in laminar overland flow. Hence, in order to improve the accuracy of the single-stem efficiency theory to real dense vegetation system, we incorporated the effect of natural organic matter (NOM) on the filtration of colloids by stems. Laboratory dense vegetation flow chamber experiments and model simulations were used to determine the kinetic deposition (filtration) rate of colloids under various conditions. The results show that, in addition to flow hydrodynamics and solution chemistry, steric repulsion afforded by NOM layer on the plants stem surface also plays a significant role in controlling colloid deposition on vegetation in overland flow. For the first time, a refined single-stem efficiency theory with considerations of the NOM effect is developed that describes the experimental data with good accuracy. This theory can be used to not only help construct and refine mathematical models of colloid transport in real vegetation systems in overland flow, but also inform the development of theories of colloid deposition on NOM-coated surfaces in natural, engineered, and biomedical systems.

  8. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  9. Morphological change study on root surfaces treated with curettes, sonic instruments or Er:YAG laser; Estudo in vitro da alteracao morfologica em superficie radicular tratada com curetas, aparelho ultrasonico ou com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes Filho, Arlindo Lopes

    2004-07-01

    Periodontal disease is caused by dental plaque and dental calculus on roots surfaces, specially on cervical areas. As dental plaque is the main cause and dental calculus a secondary one, it is practically impossible to separate one factor to the other one. In order to get periodontal tissue health it is necessary to eliminate dental plaque and calculus from root surfaces. In this sense, Er:YAG laser comes in as an excellent way to control periodontal disease, not only, by removing calculus and dental plaque but also for its bacteria reduction. The aim of this study is to compare, by S.E.M., root surfaces changing when they are treated with curettes and ultrasonic scaling or Er:YAG laser irradiation with two different energy levels of 60 mJ/pulse and 100 mJ/pulse and repetition tax of 10 Hz (in the display). It is also objective of this study to check a possible thermic damage to pulp tissue when the roots surfaces are irradiated with Er:YAG laser. We used for this study, five human dental roots, each one of them were cut into four samples, giving us a total of twenty samples, which were divided in five groups of four samples each one. The control group, we did not indicated any kind of treatment. The first group, the roots samples were scaled and planned with Gracey curettes 5/6 and 7/8. The second group, the roots samples were treated with ultrasonic instruments. The third group was irradiated with Er:YAG laser using 60 mJ/pulse , 10 Hz and energy density of 4 J/cm{sup 2} (approximated). The fourth group was irradiated with Er:YAG laser using 100 mJ/pulse, 10 Hz and energy density of 7 J/cm{sup 2} (approximated). The results analysis showed that roots scaling either with Gracey curettes or with ultrasonic instruments created smear layer covering roots surfaces; roots surfaces irradiated with Er:YAG laser showed few roughness in the third group; roots surfaces irradiated with Er:YAG laser showed no smear layer and the Er:YAG laser irradiation did not bring any

  10. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    Science.gov (United States)

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  11. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  12. [Factors influencing induction and in vitro culture of hairy roots in Phytolacca americana L.

    Science.gov (United States)

    Shi, Heping; Zhu, Yuanfeng; Tsang, Po Keung Eric; Chow, Cheuk Fai Stephen; Yu, Zhen'ao; Huang, Shengqin

    2017-02-25

    To use hairy roots for producing medicinal ingredients of Phytolacca americana L. we studied the factors influencing the induction and in vitro culture. Hairy roots could be incited from the veins of cut surface (morphological lower) of P. americana L. leaf explants around 18 days after infection with the strain of Agrobacterium rhizogenes ATCC15834. The highest rooting rate, 70%, was obtained when leaf explants were pre-cultured for 1 day, infected for 20 min, and co-cultured for 4 days. The transformation was confirmed by PCR amplification of rolC of Ri plasmid and silica gel thin-layer chromatography of opines from P. americana L. hairy roots. All the hairy root lines could grow rapidly on solid exogenous phytohormone-free MS medium. Among the 9 hairy root lines, the hairy root line 2 had most rapid growth, most branched lateral roots and most intensive root hair; the root surface of some hairy root lines seemed purple or red, while that of the other hairy root line appeared white. Among liquid media MS, 1/2MS, B5 and 6,7-V tested, the best growth for hairy root lines was attained in liquid exogenous phytohormone-free MS medium. Compared with exogenous phytohormone-free MS medium, 6,7-V medium was better for synthesis and accumulation of esculento side A in hairy roots. The established optimal conditions for induction and in vitro culture of P. americana hairy roots had laid an experimental and technological foundation for production of medicinal constituents esculento side A from large scale culture of hairy roots.

  13. Disruption of TGF-β signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca.

    Directory of Open Access Journals (Sweden)

    Cintia S De Paiva

    Full Text Available TGF-β is a pleiotropic cytokine that can have pro- or anti-inflammatory effects depending on the context. Elevated levels of bioactive TGF-β1 in tears and elevated TGF-β1mRNA transcripts in conjunctiva and minor salivary glands of human Sjögren's Syndrome patients has also been reported. The purpose of this study was to evaluate the response to desiccating stress (DS, an experimental model of dry eye, in dominant-negative TGF-β type II receptor (CD4-DNTGFβRII mice. These mice have a truncated TGF-β receptor in CD4(+ T cells, rendering them unresponsive to TGF-β.DS was induced by subcutaneous injection of scopolamine and exposure to a drafty low humidity environment in CD4-DNTGFβRII and wild-type (WT mice, aged 14 weeks, for 5 days. Nonstressed (NS mice served as controls. Parameters of ocular surface disease included corneal smoothness, corneal barrier function and conjunctival goblet cell density. NS CD4-DNTGFβRII at 14 weeks of age mice exhibited a spontaneous dry eye phenotype; however, DS improved their corneal barrier function and corneal surface irregularity, increased their number of PAS+ GC, and lowered CD4(+ T cell infiltration in conjunctiva. In contrast to WT, CD4-DNTGFβRII mice did not generate a Th-17 and Th-1 response, and they failed to upregulate MMP-9, IL-23, IL-17A, RORγT, IFN-γ and T-bet mRNA transcripts in conjunctiva. RAG1KO recipients of adoptively transferred CD4+T cells isolated from DS5 CD4-DNTGFβRII showed milder dry eye phenotype and less conjunctival inflammation than recipients of WT control.Our results showed that disruption of TGF-β signaling in CD4(+ T cells causes paradoxical improvement of dry eye disease in mice subjected to desiccating stress.

  14. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    Science.gov (United States)

    Premkumar, R.; Premkumar, S.; Rekha, T. N.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ˜55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  15. Surface plasmon resonance in a bent single-mode fiber with a metallized cladding experimental research

    Science.gov (United States)

    Dyshlyuk, A. V.; Mitsai, E. V.; Cherepakhin, A. B.; Vitrik, O. B.; Kulchin, Yu. N.

    2017-08-01

    The processes of surface plasmon resonance excitation in a bent single-mode optical fiber with a metallized cladding have been studied experimentally. It is shown that, for a certain combination of the bending radius of an optical fiber and the thickness of a metal film, a strong coupling between the fundamental and plasmon-polariton mode is achieved through a whispering gallery mode supported by the fiber cladding, which leads to the formation of a resonance dip with a depth of 30 dB or more in the transmission spectrum of an optical fiber loop. The position of the dip depends strongly on the ambient refractive index, which provides the possibility of refractometric measurements with a spectral sensitivity of 5 μm/RIU and a resolution of 4 × 10-6. Limits of measurement of the refractive index are determined by the operating spectral range and the bending radius of the optical fiber and are 1.42-1.44 for the setup used.

  16. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu, India. (India); Rekha, T. N. [PG and Research Department of Physics, Lady Doak College, Madurai-625 002, Tamilnadu, India. (India)

    2016-05-06

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  17. Cooling of High Heat Flux Flat Surface with Nanofluid Assisted Convective Loop: Experimental Assessment

    Directory of Open Access Journals (Sweden)

    Arya Amir

    2017-12-01

    Full Text Available Experimental investigation was conducted on the thermal performance and pressure drop of a convective cooling loop working with ZnO aqueous nanofluids. The loop was used to cool a flat heater connected to an AC autotransformer. Influence of different operating parameters, such as fluid flow rate and mass concentration of nanofluid on surface temperature of heater, pressure drop, friction factor and overall heat transfer coefficient was investigated and briefly discussed. Results of this study showed that, despite a penalty for pressure drop, ZnO/water nanofluid was a promising coolant for cooling the micro-electronic devices and chipsets. It was also found that there is an optimum for concentration of nanofluid so that the heat transfer coefficient is maximum, which was wt. % = 0.3 for ZnO/water used in this research. In addition, presence of nanoparticles enhanced the friction factor and pressure drop as well; however, it is not very significant in comparison with those of registered for the base fluid.

  18. Experimental and Numerical Investigation of an Overheated Aluminum Droplet Wetting a Zinc-Coated Steel Surface

    Directory of Open Access Journals (Sweden)

    Marius Gatzen

    2017-12-01

    Full Text Available Wetting steel surfaces with liquid aluminum without the use of flux can be enabled by the presence of a zinc-coating. The mechanisms behind this effect are not yet fully understood. Research results on single aluminum droplets falling on commercial galvanized steel substrates revealed the good wetting capability of zinc coatings independently from the coating type. The final wetting angle and length are apparently linked to the time where zinc is liquefied during its contact with the overheated aluminum melt. This led to the assumption that the interaction is basically a fluid dynamic effect of liquid aluminum getting locally alloyed by zinc. A numerical model was developed to describe the transient behavior of droplet movement and mixing with the liquefied zinc layer to understand the spreading dynamics. The simulations reveal a displacement of the molten zinc after the impact of the droplet, which ultimately leads to an accumulation of zinc in the outer weld toe after solidification. The simulation approach neglects the effect of evaporating zinc, resulting in a slight overestimation of the final droplet width. However, in terms of spreading initiation during the first milliseconds, the simulation is in good correlation with experimental observations and demonstrates the reason for the good wetting in the presence of zinc coatings.

  19. Comparison of Alterations in the Surface Topographies of HyFlex CM and HyFlex EDM Nickel-titanium Files after Root Canal Preparation: A Three-dimensional Optical Profilometry Study.

    Science.gov (United States)

    Uslu, Gülşah; Özyürek, Taha; Yılmaz, Koray

    2018-01-01

    The aims of the present study were to examine the surface topographies of intact HyFlex CM and HyFlex EDM nickel-titanium files and to compare alterations in the surface topographies of these files after root canal preparation of severely curved canals of molar teeth. Eight HyFlex CM (25/.08) and 8 HyFlex EDM (25/.08) files were included in the present study. In total, 64 severely curved canals of molar teeth, with curvature angles ranging between 50° and 70°, were prepared with HyFlex CM and EDM (n = 32 in each group). Quantitative and qualitative analyses of the files' surface deformation were performed by using three-dimensional optical profilometry before and after root canal preparation. The data were analyzed with the Student t test at the 5% significant level by using SPSS 21.0 software. In the HyFlex EDM group, the qualitative evaluation revealed the presence of cracks and microcavities after use of the file for root canal preparation, whereas only minor surface deformation was observed in the HyFlex CM group. The average roughness, root mean square roughness, and peak to valley height values of the HyFlex EDM group were significantly higher than those of the HyFlex CM group before and after root canal preparation (P HyFlex CM group after root canal preparation (P HyFlex EDM group was not statistically significant (P > .5). Within the limitations of the present study, the HyFlex CM files showed significantly higher surface alterations compared with the HyFlex EDM files after the preparation of severely curved root canals. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Histologic comparison of the CO2 laser and Nd:YAG with and without water/air surface cooling on tooth root structure

    Science.gov (United States)

    Cobb, Charles M.; Spencer, Paulette; McCollum, Mark H.

    1995-05-01

    Specimens consisted of 18 extracted single rooted teeth unaffected by periodontal disease. After debriding roots, specimens were randomly divided into 4 treatment groups and subjected to a single pass, at varying energy densities, of a CO2, Nd:YAG, and Nd:YAG with air/water surface cooling (Nd:YAG-C). The rate of exposure was controlled at 4 mm/sec. Approximate energy densities were: CO2, 138, 206, 275, and 344 J/cm2; Nd:YAG, 114, 171, 229, and 286 J/cm2; Nd:YAG-C, 286, 343, 514, and 571 J/cm2. The CO2 laser was used both in continuous and pulsed beam modes (20 Hz, 0.01 sec pulse length and 0.8 mm dia spot size) whereas the Nd:YAG and Nd:YAG-C were preset at 50 Hz, 0.08 sec pulse length and 0.6 mm dia spot size. Specimen examination by SEM revealed, for all lasers, a direct correlation between increasing energy densities and depth of tissue ablation and width of tissue damage. However, to achieve the same relative dept of tissue ablation, the Nd:YAG-C required higher energy densities than either the CO2 or Nd:YAG lasers. The Nd:YAG-C generated a cavitation with sharply defined margins. Furthermore, regardless of energy density, and in contrast with other laser types, areas treated with the Nd:YAG-C did not exhibit collateral zones of heat damaged surface tissue.

  1. Comparing efficiency and root surface morphology after scaling with Er:YAG and Er,Cr:YSGG lasers.

    Science.gov (United States)

    Etemadi, Ardavan; Sadeghi, Mostafa; Abbas, Fatemeh Mashhadi; Razavi, Fahime; Aoki, Akira; Azad, Reza Fekr; Chiniforush, Nasim

    2013-01-01

    The purpose of this study was to investigate the root morphology of teeth and efficiency of scaling after using Er:YAG and Er,Cr:YSGG lasers. Thirty-two periodontally hopeless teeth were extracted. The border of an appropriate calculus was marked using a diamond bur on each tooth, and the calculus was divided into two almost equal parts. An Er,Cr:YSGG laser with pulse energy of 50 mJ, power of 1 W, and energy density of 17.7 J/cm2 and an Er:YAG laser with pulse energy of 200 mJ, power of 2.4 W, and energy density of 21 J/cm2 were used to remove the calculus. The time for scaling was recorded for each group, and using stereomicroscopic analysis, the calculus remnant, carbonization, and number of craters were investigated. The mean time required for calculus removal in the Er,Cr:YSGG and Er:YAG laser groups was 15.22 ± 6.18 seconds and 7.12 ± 4.11 seconds, respectively. The efficiency of calculus removal in the Er:YAG laser group was significantly higher than in the Er,Cr:YSGG laser group. Under stereomicroscope examination, no carbonization or remaining calculus was found in samples from either group, but all samples had craters. The number of craters in the Er,Cr:YSGG laser group was significantly higher than in the Er:YAG laser group. According to the parameters used and limitations of this study, there was no significant difference in efficiency per power for calculus removal between the two groups.

  2. Experimental investigation of impingement cooling with turbulators or surface enlarging elements

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Johan

    2000-02-01

    For the materials in modern gas turbines to sustain, a considerable amount of cooling is required. In cases where large amounts of heat need to be removed, impingement cooling with its high heat transfer coefficients may be the only alternative. In this work the possibilities of enhancing impingement cooling by introducing surface enlarging - turbulence enhancing elements are examined experimentally. A configuration consisting of a staggered array of 45 impingement jets distributed over 10 rows is used for the purpose. A thermo camera is used to measure the temperature distribution on the target plate, giving an opportunity to separately evaluate the Nusselt number enhancement for different areas. Experiments are conducted for five different area enlarging geometries: triangle, wing, cylinder, dashed rib, and angel, all made from aluminium. Comparison between each area enlarged surface and a flat plate is made, with results presented as Nusselt number enhancement factors. The effect of pumping power required is also investigated in order to maximize the cooling efficiency. Parameters varied are Reynolds number and jet to plate distance. Overall Nusselt number enhancement factors show values of 1 to 1.3, the trend being decreasing with increased jet to plane distance and Reynolds number. When taking into account pumping power the enhancement factors drop to 0.4 to 1.2. The best results are achieved with the rib geometry and when not using a too large value of enlarger height over jet to plate distance (h/z). Row wise evaluation of Nusselt number enhancement shows an increased enhancement with row number and thereby crossflow ratio (Gc/Gj). Typical increases in enhancement of 1 to 1.5 with Gc/Gj from 0 to 0.8 are found. The thermo camera pictures reveal that the enhancement is found in three different areas, on the enlarger base area, the area just downstream the enlarger and in diagonal streaks with increased turbulence caused by the enlargers. Tests using an

  3. Experimental investigations of sensor-based surface following performed by a mobile manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.; Baker, J.E.; Pin, F.G.

    1994-10-01

    We discuss a series of surface following experiments using a range finder mounted on the end of an arm that is mounted on a vehicle. The goal is to keep the range finder at a fixed distance from an unknown surface and to keep the orientation of the range finder perpendicular to the surface. During the experiments, the vehicle moves along a predefined trajectory while planning software determines the position and orientation of the arm. To keep the range finder perpendicular to the surface, the planning software calculates the surface normal for the unknown surface. We assume that the unknown surface is a cylinder (the surface depends on x and y but does not depend on z). To calculate the surface normal, the planning software must calculate the locations (x,y) of points on the surface in world coordinates. The calculation requires data on the position and orientation of the vehicle, the position and orientation of the arm, and the distance from the range finder to the surface. We discuss four series of experiments. During the first series of experiments, the calculated surface normal values had large high frequency random variations. A filter was used to produce an average value for the surface normal and we limited the rate of change in the yaw angle target for the arm. We performed the experiment for a variety of concave and convex surfaces. While the experiments were qualitative successes, the measured distance to the surface was significantly different than the target. The distance errors were systematic, low frequency, and had magnitudes up to 25 mm. During the second series of experiments, we reduced the variations in the calculated surface normal values. While reviewing the data collected while following the surface of a barrel, we found that the radius of the calculated surface was significantly different than the measured radius of the barrel.

  4. Gadolinium cation (Gd+) reaction with O2: Potential energy surface mapped experimentally and with theory

    Science.gov (United States)

    Demireva, Maria; Armentrout, P. B.

    2017-05-01

    Guided ion beam tandem mass spectrometry is used to measure the kinetic energy dependent cross sections for reactions of the lanthanide metal gadolinium cation (Gd+) and GdO+ with O2 and for collision-induced dissociation (CID) of GdO2+ with Xe. Gd+ reacts with O2 in an exothermic and barrierless reaction to form GdO+ and O. GdO2+ is also formed in this reaction, but this product ion is formed in a sequential reaction, as verified by pressure dependent measurements and comparison with the results for the reaction of GdO+ with O2. The CID experiments of GdO2+ indicate the presence of two GdO2+ precursor ion populations, assigned to a weakly bound oxygen molecule adduct (Gd+-O2) and an inserted cyclic Gd+ dioxide species (O-Gd+-O). Analysis of the resulting product ion cross sections yields bond dissociation energies (BDEs, D0) for Gd+-O2 and OGd+-O, where the latter BDE is also independently measured in an exchange reaction between GdO+ and O2. The CID experiments also provide the energy of the barrier for the rearrangement of the Gd+-O2 adduct to the inserted O-Gd+-O structure (as identified by loss of a single oxygen atom). The thermochemistry measured here yields D0(OGd+-O) = 2.86 ± 0.08 eV, D0(Gd+-O2) = 0.75 ± 0.11 eV, and a barrier height relative to Gd+-O2 of 0.31 ± 0.07 eV. These data are sufficient to characterize in some detail the potential energy surface of the Gd+ reaction with O2 entirely from experiment. Theoretical calculations are performed for comparison with the experimental energetics and for further insight into the reaction mechanisms.

  5. Experimental and theoretical investigations of the adhesion time of Penicillium spores to cedar wood surface

    Energy Technology Data Exchange (ETDEWEB)

    Soumya, Elabed [Laboratoire de Biotechnologie Microbienne, Faculté des Sciences et Techniques de Fès-Saïs (Morocco); Université Sidi Mohamed Ben Abdellah, Centre Universitaire Régional d' Interface-Fès (Morocco); Saad, Ibnsouda Koraichi, E-mail: ibnsouda@hotmail.com [Laboratoire de Biotechnologie Microbienne, Faculté des Sciences et Techniques de Fès-Saïs (Morocco); Université Sidi Mohamed Ben Abdellah, Centre Universitaire Régional d' Interface-Fès (Morocco); Abdellah, Houari [Laboratoire de Biotechnologie Microbienne, Faculté des Sciences et Techniques de Fès-Saïs (Morocco); Hassan, Latrache [Laboratoire de Valorisation et de Sécurité des Produits Agroalimentaires, Faculté des Sciences et Techniques de Beni Mellal (Morocco)

    2013-04-01

    In this study, the adhesion of 4 Penicillium strains (Penicillium granulatum, Penicillium crustosum, Penicillium commune and Penicillium chrysogenum) on cedar wood was examined qualitatively and quantitatively by using the extended DLVO (XDLVO) approach and the environmental scanning electronic microscopy (ESEM) technique. A comparison between the XDLVO theories and the ESEM technique was also investigated. The adhesion tests revealed that P. chrysogenum was not able to adhere on the cedar wood substrata, as predicted by the XDLVO approach. We have also found by ESEM that the three Penicillium strains (P. granulatum, P. crustosum, P. commune) adhered on wood, as not predicted theoretically. Moreover, the time of adhesion (3 h and 24 h) was used not only to compare the capacity of adhesion according to contact time but also to explain the discrepancies between the XDLVO approach prediction and the adhesion experiments. A positive relationship between the XDLVO approach and adhesion experiments has been observed after 3 h of adhesion. In contrast, a contradiction between the XDLVO predictions and the adhesion test results has been noted after 24 h of adhesion of Penicillium strains to the wood surface. Highlights: ► Calculation of free energy of adhesion to cedar wood of Penicillium by XDLVO approach ► Adhesion is not favorable for all Penicillium spores–cedar wood combinations. ► Adhesion tests demonstrated the ability of Penicillium spores to adhere to cedar wood. ► XDLVO approach correlated well with the results obtained after 3 h of adhesion. ► Discrepancy between XDLVO predictions and experimental observations at 24 h of adhesion.

  6. Gadolinium cation (Gd(+)) reaction with O2: Potential energy surface mapped experimentally and with theory.

    Science.gov (United States)

    Demireva, Maria; Armentrout, P B

    2017-05-07

    Guided ion beam tandem mass spectrometry is used to measure the kinetic energy dependent cross sections for reactions of the lanthanide metal gadolinium cation (Gd(+)) and GdO(+) with O2 and for collision-induced dissociation (CID) of GdO2(+) with Xe. Gd(+) reacts with O2 in an exothermic and barrierless reaction to form GdO(+) and O. GdO2(+) is also formed in this reaction, but this product ion is formed in a sequential reaction, as verified by pressure dependent measurements and comparison with the results for the reaction of GdO(+) with O2. The CID experiments of GdO2(+) indicate the presence of two GdO2(+) precursor ion populations, assigned to a weakly bound oxygen molecule adduct (Gd(+)-O2) and an inserted cyclic Gd(+) dioxide species (O-Gd(+)-O). Analysis of the resulting product ion cross sections yields bond dissociation energies (BDEs, D0) for Gd(+)-O2 and OGd(+)-O, where the latter BDE is also independently measured in an exchange reaction between GdO(+) and O2. The CID experiments also provide the energy of the barrier for the rearrangement of the Gd(+)-O2 adduct to the inserted O-Gd(+)-O structure (as identified by loss of a single oxygen atom). The thermochemistry measured here yields D0(OGd(+)-O) = 2.86 ± 0.08 eV, D0(Gd(+)-O2) = 0.75 ± 0.11 eV, and a barrier height relative to Gd(+)-O2 of 0.31 ± 0.07 eV. These data are sufficient to characterize in some detail the potential energy surface of the Gd(+) reaction with O2 entirely from experiment. Theoretical calculations are performed for comparison with the experimental energetics and for further insight into the reaction mechanisms.

  7. Experimental Investigations on the Surface-Driven Capillary Flow of Aqueous Microparticle Suspensions in the Microfluidic Laboratory-On Systems

    Science.gov (United States)

    Mukhopadhyay, Subhadeep

    In this work, total 1592 individual leakage-free polymethylmethacrylate (PMMA) microfluidic devices as laboratory-on-a-chip systems are fabricated by maskless lithography, hot embossing lithography, and direct bonding technique. Total 1094 individual Audio Video Interleave Files as experimental outputs related to the surface-driven capillary flow have been recorded and analyzed. The influence of effective viscosity, effect of surface wettability, effect of channel aspect ratio, and effect of centrifugal force on the surface-driven microfluidic flow of aqueous microparticle suspensions have been successfully and individually investigated in these laboratory-on-a-chip systems. Also, 5 micron polystyrene particles have been separated from the aqueous microparticle suspensions in the microfluidic lab-on-a-chip systems of modified design with 98% separation efficiency, and 10 micron polystyrene particles have been separated with 100% separation efficiency. About the novelty of this work, the experimental investigations have been performed on the surface-driven microfluidic flow of aqueous microparticle suspensions with the investigations on the separation time in particle-size based separation mechanism to control these suspensions in the microfluidic lab-on-a-chip systems. This research work contains a total of 10,112 individual experimental outputs obtained using total 30 individual instruments by author’s own hands-on completely during more than three years continuously. Author has performed the experimental investigations on both the fluid statics and fluid dynamics to develop an automated fluid machine.

  8. Analysis of the willow root system by electrical impedance spectroscopy.

    Science.gov (United States)

    Cao, Yang; Repo, Tapani; Silvennoinen, Raimo; Lehto, Tarja; Pelkonen, Paavo

    2011-01-01

    Information on plant roots is increasingly needed for understanding and managing plants under various environmental conditions, including climate change. Several methods have been developed to study fine roots but they are either destructive or cumbersome, or may not be suitable for studies of fine root functionality. Electrical impedance, resistance, and capacitance have been proposed as possible non-destructive measures for studying roots. Their use is limited by a lack of knowledge concerning the electrical circuit of the system. Electrical impedance spectroscopy (EIS) was used for hydroponically raised willows (Salix schwerinii) to estimate the root system size. The impedance spectra were investigated in three experimental set-ups and the corresponding appropriate lumped models were formulated. The fit of the proposed lumped models with the measured impedance spectra data was good. The model parameters were correlated with the contact area of the roots and/or stems raised in the hydroponic solution. The EIS method proved a useful non-destructive method for assessing root surface area. This work may be considered to be a new methodological contribution to understanding root systems and their functions in a non-destructive manner.

  9. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    Science.gov (United States)

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. Copyright © 2012 Wiley Periodicals, Inc.

  10. Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research.

    Science.gov (United States)

    Benfey, Philip N; Bennett, Malcolm; Schiefelbein, John

    2010-03-01

    Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology.

  11. Numerical and Experimental Investigation of Microchannel Flows with Rough Surfaces (Preprint)

    National Research Council Canada - National Science Library

    Lilly, T. C; Duncan, J. A; Nothnagel, S. L; Gimelshein, S. F; Gimelshein, N. E; Ketsdever, A. D; Wysong, I. J

    2007-01-01

    .... This model requires only one surface parameter, average surface roughness angle. This model has also been linked to the Cercignani-Lampis scattering kernel as a required reference for use in deterministic kinetic solvers...

  12. Experimental assessment of the surface temperature of copper electrodes submitted to an electric arc in air at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Landfried, R; Leblanc, T; Andlauer, R; Teste, Ph, E-mail: teste@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris : SUPELEC - CNRS - Universites Paris VI et Paris XI - Plateau de Moulon - 91192 Gif sur Yvette Cedex (France)

    2011-01-01

    This paper concerns the assessment of the surface temperature of copper electrodes submitted to an electric arc in a non stationary regime in air. An infrared camera is used to measure the decrease of the temperature surface just after a controlled and very fast arc extinction. In the first part, the experimental method is described. In the second part, results are presented for 60-70 A with an electric arc duration in the range 3-4 ms. The temperature decrease after the arc extinction allows to reach an assessment of the surface temperature just at the arc switching off. In the present experimental conditions the mean temperatures reached for copper cathodes and anodes are in the range 750-850 deg. C.

  13. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...

  14. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects.

    Science.gov (United States)

    Rupp, Frank; Gittens, Rolando A; Scheideler, Lutz; Marmur, Abraham; Boyan, Barbara D; Schwartz, Zvi; Geis-Gerstorfer, Jürgen

    2014-07-01

    The surface wettability of biomaterials determines the biological cascade of events at the biomaterial/host interface. Wettability is modulated by surface characteristics, such as surface chemistry and surface topography. However, the design of current implant surfaces focuses mainly on specific micro- and nanotopographical features, and is still far from predicting the concomitant wetting behavior. There is an increasing interest in understanding the wetting mechanisms of implant surfaces and the role of wettability in the biological response at the implant/bone or implant/soft tissue interface. Fundamental knowledge related to the influence of surface roughness (i.e. a quantification of surface topography) on titanium and titanium alloy surface wettability, and the different associated wetting regimes, can improve our understanding of the role of wettability of rough implant surfaces on the biological outcome. Such an approach has been applied to biomaterial surfaces only in a limited way. Focusing on titanium dental and orthopaedic implants, the present study reviews the current knowledge on the wettability of biomaterial surfaces, encompassing basic and applied aspects that include measurement techniques, thermodynamic aspects of wetting and models predicting topographical and roughness effects on the wetting behavior. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, 41285, Arslanbey Campus, Kocaeli (Turkey)

    2016-02-15

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°−40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy. (paper)

  16. Comparative evaluation of root surface after manual instrumentation with and without Er:YAG laser as an auxiliary therapy: in-vitro study

    Science.gov (United States)

    Lizarelli, Rosane F. Z.; Ferreira, Zulene A.; Torquato, Tatiana M.; Sampaio, Jose E. C.; Bagnato, Vanderlei S.

    2000-03-01

    One of the most important difficulty in the periodontal disease treatment resides in the impossibility of decontamination of roots just affected by the periodontal disease through mechanical tools. Manual dental scaling results in the amorphous material without continuity solution due to the dental cut, denominated smear layer. The main purpose of the present study was to evaluate the structure of the radicular surface using two methods for periodontal treatments: manual and mechanical associated to the irrigation with water and with EDTA (ethylene diamine tetracycline acid), followed by the application of the Er:YAG laser or the same without laser. Thirty teeth were selected with periodontal involvement. The radicular surface was scraped with ultrasound and planed vigorously, with manual instrumentation. The teeth were divided ramdomically in several groups: GI -- control, just manual instrumentation and water irrigation; GII -- manual instrumentation, EDTA irrigation; GIII -- manual instrumentation, EDTA irrigation, Er:YAG laser irradiation; GIV -- manual instrumentation, laser irradiation; and, GV -- manual instrumentation, laser irradiation and EDTA. Kruskall Wallis statistical test was applied and shows that there was not significance difference at the level of 5% among the five groups, however, when the groups were compared in pairs, GII X GIV and GII X GV shows difference in 5%, and GI X GII, difference at 1% level. The results show equivalence around the used methodology.

  17. Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    The surface tension of polymer melts is important for the bond strength of two component polymer parts through their roles in the process of wetting, adsorption and adhesion. This investigation deals with the influence of the melt surface tension and substrate surface energy on the polymer......-polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEl, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies....... The results and discussion presented in this paper reflect the temperature dependent behaviours of the surface tension and surface energy of polymers and their effects on the polymer-polymer bond strength....

  18. Surface tension of polymer melts - experimental investigations of its effects on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Jankova Atanasova, Katja; Hansen, Hans Nørgaard

    The surface tension of polymer melts is important for the bond strength of two component polymer parts through their roles in the process of wetting, adsorption and adhesion. This investigation deals with the influence of the melt surface tension and substrate surface energy on the polymer......-polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEI, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies....... The results and discussion presented in this paper reflect the temperature dependent behaviours of the surface tension and surface energy of polymers and their effects on the polymer-polymer bond strength....

  19. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment

    Science.gov (United States)

    Sivandran, Gajan; Bras, Rafael L.

    2012-12-01

    In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be

  20. Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruíz, Rafael Arcesio; Gomez Moreno, Gerardo; Aguilar-Salvatierra, Antonio; Markovic, Aleksa; Mate-Sánchez, Jose Eduardo; Calvo-Guirado, José Luis

    2016-11-01

    To measure the lateral surface area of microgrooved zirconia implants, to evaluate the cell geometry and cell density of human fetal osteoblasts seeded on zirconia microgrooved implants, to describe the surface roughness and chemistry, and to evaluate the activity of human fetal osteoblasts seeded on zirconia microgrooved disks. This experimental in vitro study used 62 zirconia implants and 130 zirconia disks. Two experimental groups were created for the implants: 31 non-microgrooved implants (Control) and 31 microgrooved implants (Test); two experimental groups were created for the disks: 65 non-microgrooved disks (Control) and 65 microgrooved disks (Test). The following evaluations of the implants were made: lateral surface area (LSA), cell morphology, and density of human fetal osteoblasts seeded on implant surfaces. On the disks, surface parameters (roughness and chemistry) and cell activity (alkaline phosphatase - ALP and alizarin red - ALZ) were evaluated at 7 and 15 days. LSA was lower for control implants (62.8 mm) compared with test implants (128.74 mm) (P implants presented cells rich in lamellipodia prolongations, attached to the inner walls or to the borders of the microgrooves and in the flat areas between the microgrooves. Cell density was higher in the test group compared with controls (P implants with microgrooves. (ii) The LSA of microgrooved zirconia implants is greater and provides more available surface compared with implants of the same dimensions without microgrooves. (iii) Microgrooves on zirconia implants modify the morphology and guide the size and alignment of human fetal osteoblasts. (iv) Zirconia surfaces with microgrooves of 30 μm width and 70 μm separation between grooves enhance ALP and ALZ expression by human fetal osteoblasts. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Experimental study on surface properties of the PMMA used in high power spark gaps

    Directory of Open Access Journals (Sweden)

    Ruoyu Han

    2017-10-01

    Full Text Available This paper studies the surface properties of the Polymethylmethacrylate (PMMA insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  2. Effect of Resin Cement Porosity on Retention of Glass-Fiber Posts to Root Dentin: An Experimental and Finite Element Analysis.

    Science.gov (United States)

    Da Silva, Natércia Rezende; Aguiar, Grazielle Crystine Rodrigues; Rodrigues, Monise de Paula; Bicalho, Aline Aredes; Soares, Priscilla Barbosa Ferreira; Veríssimo, Crisnicaw; Soares, Carlos José

    2015-01-01

    The aim of this study was to evaluate the effect of porosity of self-adhesive resin on the stress distribution, post retention and failure mode of fiber post cemented to human root dentin. Ten human central upper incisors with circular root canal were selected. They were sectioned with 15 mm and were endodontically filled. The roots were scanned using micro-CT after post space preparation for root filling remaining evaluation. Fiber posts were cemented using self-adhesive resin cement (Rely X U200, 3M-ESPE). Two 1-mm-thick slices from the cervical, medium and apical thirds were scanned for resin cement bubbles volume measurements and submitted to a push-out test (PBS). Three operators using stereomicroscopy and confocal laser microscopy classified the failure mode. Stress distributions during the push-out test were analyzed using 3D finite element analysis. PBS values (MPa) were submitted to one-way ANOVA and Tukey's post hoc tests and the failure modes using the Kappa coefficient to assess inter-operator agreement. Chi-square test was used to determine significant differences between the methods ( = 0.05). Push-out bond strength was significantly affected by the bubbles presence in all root depth (p<0.05). The stress concentration was higher when the bubbles were present. Adhesive dentin/resin cement interface failure was the most frequent type of failure. Confocal microscopy was better than stereomicroscopy for failure analysis. Bubbles generated during resin cement insertion into the root canal negatively affect the stress distribution and the bond strength. The use of confocal microscopy is recommended for failure analysis.

  3. Experimental study of the transitional flow of a sphere located at the free surface

    OpenAIRE

    James, Marion; Forrester, Alex; Hudson, Dominic; Taunton, Dominic; Turnock, Stephen

    2015-01-01

    The investigation of transitional flow past a sphere at the free surface is a challenging problem due to a complex interaction between the free surface and evolution of the boundary layer and resultant separation on the sphere’s surface. An increased knowledge about the fluid phenomena around bluff bodies would be of benefit to the design of offshore structures and ships’ bulbous bows. In this paper, experiments conducted in a towing tank environment are presented for a 225mm-diameter sphere ...

  4. Experimental Validation of a Sensor Monitoring Ice Formation over a Road Surface

    OpenAIRE

    Troiano, Amedeo; Pasero, Eros Gian Alessandro; Mesin, Luca

    2012-01-01

    The reliable detection of ice over road surfaces is an important issue for reducing maintenance costs and improving traffic safety. An innovative capacitive sensor was developed to detect the presence of ice on its surface, and its repeatability, stability and reliability were assessed in simulations and experiments described in previous papers. The indications of the sensor are compared in this paper with the objective identification of ice formation or melting over a road surface in laborat...

  5. Evaluation of the topical effect of alendronate on the root surface of extracted and replanted teeth. Microscopic analysis on rats' teeth.

    Science.gov (United States)

    Lustosa-Pereira, Adriana; Garcia, Roberto Brandão; de Moraes, Ivaldo Gomes; Bernardineli, Norberti; Bramante, Clovis Monteiro; Bortoluzzi, Eduardo Antunes

    2006-02-01

    The treatment of choice for tooth avulsion is replantation. The ideal replantation should be realized as quickly as possible, or at least, the avulsed tooth should be kept in an adequate solution to preserve the periodontal ligament attached to the root. If that is not possible, treatment of the radicular surface should be done in order to prevent radicular resorption. The purpose of this study was to test sodium alendronate as a substance for topical treatment of the radicular surface of avulsed teeth in an attempt to prevent the occurrence of dental resorptions. Fifty-four rat maxillary right central incisors were extracted and replanted. Group I--extra-alveolar dry period of 15 min, intracanal dressing with calcium hydroxide (CALEN, S.S. White, Artigos Dentários LTDA, Rio de Janeiro, Brazil) and replantation; Groups II and III - extra-alveolar dry periods of 30 and 60 min, respectively, immersion in 1% sodium hypochlorite for 30 min for removal of the periodontal ligament, washing in saline solution for 5 min, and treatment of the radicular surface with 3.2 mg/l sodium alendronate solution for 10 min. Intracanal dressing with calcium hydroxide and replantation followed. At 15, 60, and 90 days post-reimplantation, the animals were killed and the samples obtained and processed for microscopic analysis. The results indicated that sodium alendronate was able to reduce the incidence of radicular resorption, but not of dental ankylosis. No significant differences were observed regarding variations in the extra-alveolar periods among the groups.

  6. Experimental study of surface integrity and fatigue life in the face milling of inconel 718

    Science.gov (United States)

    Wang, Xiangyu; Huang, Chuanzhen; Zou, Bin; Liu, Guoliang; Zhu, Hongtao; Wang, Jun

    2017-12-01

    The Inconel 718 alloy is widely used in the aerospace and power industries. The machining-induced surface integrity and fatigue life of this material are important factors for consideration due to high reliability and safety requirements. In this work, the milling of Inconel 718 was conducted at different cutting speeds and feed rates. Surface integrity and fatigue life were measured directly. The effects of cutting speed and feed rate on surface integrity and their further influences on fatigue life were analyzed. Within the chosen parameter range, the cutting speed barely affected the surface roughness, whereas the feed rate increased the surface roughness through the ideal residual height. The surface hardness increased as the cutting speed and feed rate increased. Tensile residual stress was observed on the machined surface, which showed improvement with the increasing feed rate. The cutting speed was not an influencing factor on fatigue life, but the feed rate affected fatigue life through the surface roughness. The high surface roughness resulting from the high feed rate could result in a high stress concentration factor and lead to a low fatigue life.

  7. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bone healing at implants with different surface configurations: an experimental study in dogs.

    Science.gov (United States)

    Beolchini, Marco; Lang, Niklaus P; Gómez Moreno, Gerardo; Iezzi, Giovanna; Botticelli, Daniele; Calvo Guirado, José Luis

    2016-02-01

    To study osseointegration of implants with surface modifications by the use of fluoroboric acid and/or H2 O2 installed in conventional sites or sites with circumferential marginal defects. Four implants with different surfaces were used. One basic surface (ZirTi(®)) was sandblasted with zirconium microspheres and acid etched additionally with hydrofluoric acid. A second surface was treated with fluoroboric acid instead of hydrofluoric acid. The remainder of the other two surfaces was additionally treated with H2O2. The edentulous mandibles of 6 foxhound dogs were used to randomly install 8.5-mm-long implants with the different surfaces and to study the histological healing after 1 and 3 months. To study osteoconductivity, additional four recipient sites were prepared with the coronal region being widened so that a 4 mm deep and 0.85 mm wide marginal defect resulted after the placement of the four implants with different surfaces. No filler material or membranes were used, and a fully submerged healing was allowed for 3 months. At the conventional sites, new bone formation ranged between 68.5% and 74.9% after 1 month. After 3 months, bone-to-implant contact ranged from 72.6% at the ZirTi(®) surface to 84.1% at the fluoroboric acid-treated implants, the difference being statistically significant. At the sites with marginal defects, bone formation ranged from 0.77 mm at the surface treated with fluoroboric acid and H2O2 , to 1.93 mm at the surface treated with fluoroboric acid alone. Fluoroboric acid treatment alone of titanium implant surfaces resulted in improved osseointegration and osteoconductivity after 3 months. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Gong, Yadong; Zhou, Yun Guang; Wen, Xue Long [School of Mechanical Engineering and Automation, Northeastern University, Shenyang (China)

    2017-01-15

    Micro-milling is widely used as a method for machining of micro-parts with high precision and efficiency. Taking the nickel-based single-crystal superalloy DD98 as the research object, the crystal characteristics of single-crystal materials were analysed, and the removal mechanism of single-crystal micro-milled parts was described. Based on molecular dynamics, a simulation model for nickel-based single-crystal superalloy DD98 micro-milling was established. Based on the response surface method of central composite design, the influences of spindle speed, feed rate, and milling depth on the surface roughness were examined, and a second-order regression model of the DD98 surface roughness was established. Using analysis of variance and the residuals of the model, a significant influence on surface roughness was found in the following order from large to small: Feed rate, spindle speed, and milling depth. Comparisons were conducted between the micro-milling experimental values and the predicted model values for different process parameters. The results show that the model fit is relatively high, and the adaptability is good. Scanning electron microscopy analysis of the micro-milling surfaces was performed to verify the slip and the removal mechanism of single-crystal materials. These results offer a theoretical reference and experimental basis for micro-milling of single-crystal materials.

  10. Microbial biofilm growth vs. tissue integration : "The race for the surface" experimentally studied

    NARCIS (Netherlands)

    Subbiahdoss, Guruprakash; Kuijer, Roel; Grijpma, Dirk W.; van der Mei, Henny C.; Busscher, Henk J.

    Biomaterial-associated infections constitute a major clinical problem. Unfortunately, microorganisms are frequently introduced onto an implant surface during surgery and start the race for the surface before tissue integration can occur. So far, no method has been forwarded to study biofilm

  11. Microbial biofilm growth vs. tissue integration: "the race for the surface" experimentally studied

    NARCIS (Netherlands)

    Subbiahdoss, Guruprakash; Kuijer, Roel; Grijpma, Dirk W.; van der Mei, Henny C.; Busscher, Henk J.

    2009-01-01

    Biomaterial-associated infections constitute a major clinical problem. Unfortunately, microorganisms are frequently introduced onto an implant surface during surgery and start the race for the surface before tissue integration can occur. So far, no method has been forwarded to study biofilm

  12. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units

    Directory of Open Access Journals (Sweden)

    Zheng Ma

    2015-01-01

    Full Text Available Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens.

  13. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux i...

  14. Theoretical and experimental investigation of surface acoustic wave propagation on a hollow spherical shell using laser ultrasound

    Science.gov (United States)

    Ma, Xiaojun; Tang, Xing; Wang, Zongwei; Gao, Dangzhong; Tang, Yongjian

    2016-12-01

    An analytical model of surface acoustic waves on the surface of a hollow spherical shell generated by a pulsed laser source is proposed using the Legendre polynomials expansion and contour integration method. The model predicts two interesting phenomena. The dispersive characteristic of thick spherical shells is mainly determined by the spherical Rayleigh waves, but the corresponding characteristic of thin spherical shells is dominated by zero-order anti-symmetric plate waves; The hollow spherical spheres with the same ratio of thickness to radius have the same dispersive characteristic. Using laser ultrasound technique, the proposed model is confirmed experimentally on a hollow polymer sphere of mm-sized diameter.

  15. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Directory of Open Access Journals (Sweden)

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  16. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits.

    Science.gov (United States)

    Salou, Laëtitia; Hoornaert, Alain; Louarn, Guy; Layrolle, Pierre

    2015-01-01

    Titanium and its alloys are commonly used for dental implants because of their good mechanical properties and biocompatibility. The surface properties of titanium implants are key factors for rapid and stable bone tissue integration. Micro-rough surfaces are commonly prepared by grit-blasting and acid-etching. However, proteins and cells interact with implant surfaces in the nanometer range. The aim of this study was to compare the osseointegration of machined (MA), standard alumina grit-blasted and acid-etched (MICRO) and nanostructured (NANO) implants in rabbit femurs. The MICRO surface exhibited typical random cavities with an average roughness of 1.5 μm, while the NANO surface consisted of a regular array of titanium oxide nanotubes 37±11 nm in diameter and 160 nm thick. The MA and NANO surfaces had a similar average roughness of 0.5 μm. The three groups of implants were inserted into the femoral condyles of New Zealand White rabbits. After 4 weeks, the pull-out test gave higher values for the NANO than for the other groups. Histology corroborated a direct apposition of bone tissue on to the NANO surface. Both the bone-to-implant contact and bone growth values were higher for the NANO than for the other implant surfaces. Overall, this study shows that the nanostructured surface improved the osseointegration of titanium implants and may be an alternative to conventional grit-blasted and acid-etched surface treatments. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Experimental Simulation of Solar Wind Interactions with Magnetic Dipole Fields above Insulating Surfaces

    Science.gov (United States)

    Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic

    2017-10-01

    Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.

  18. EXPERIMENTAL INVESTIGATIONS ON MRR AND SURFACE ROUGHNESS OF EN 19 & SS 420 STEELS IN WIREEDM USING TAGUCHI METHOD

    OpenAIRE

    C. BHASKAR REDDY; V. DIWAKAR REDDY; C. Eswara Reddy

    2012-01-01

    Quality and sophistication of the parts / products are the main requirements of the customer in the present global market. Therefore, the manufacturing / Production industries are searching for un-conventional machining processes to achieve production requirements. One among such production processes is the Wire-EDM. As such, a solemn attempt is made in this paper to investigate the response parameters, viz., Material Removal Rate (MRR) and Surface Roughness (Ra) a by experimentation on EN 19...

  19. EDTA-S: A novel root conditioning agent

    Directory of Open Access Journals (Sweden)

    S Srirangarajan

    2012-01-01

    Full Text Available Background: To evaluate the efficacy of 15% ethylenediaminetetraacetic acid (EDTA-S (EDTA with soft soap preparation for the removal of smear layer at human root surfaces. Materials and Methods: Twenty teeth indicated for extraction due to periodontal disease were sectioned using high speed cylindrical bur under copious irrigation. The root surfaces were instrumented with Gracey 7-8 curette (Hu-Friedy, 12 times to induce an "experimental smear layer". Following root planning, the root surface was cut using diamond disc and separated from the crown. Samples were randomly distributed into five groups. One group was control, saline and test groups were EDTA 15% alone, by active and passive applications (groups 2 and 3, and EDTA 15%+soft soap, by active and passive applications (groups 4 and 5. Specimens were then subjected to scanning electron microscope study. Smear layer removal was evaluated according to Sampaio et al., index. Results: EDTA-S removed the smear layer better than plain EDTA and the control group, while active application of the root conditioning agent had significant difference than the passive application of the agent. Conclusion: EDTA-S has favorable benefits over EDTA alone, and active application is better in comparison with passive application of root conditioning agent. Clinical Relevance: Removal of smear layer has been considered as an important step in periodontal regenerative therapy. Scaling and root planning alone with saline irrigation does not remove the smear layer. EDTA is a commonly used root conditioning agent in periodontal therapy. The addition of a detergent to EDTA proved to remove smear layer more efficiently than EDTA alone.

  20. Root system in declining forests

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.H.

    1987-07-11

    Trees with obligate ectomycorrhiza are more sensitive to environmental stress than those without ectomycorrhiza or with facultative ectomycorrhiza. With spruce seedlings growing in humus material from a declining spruce forest an experimental proof was given, that reduction of the mineral nitrogen content by adding sawdust to the rooting substrate increases the share of root tips converted to ectomycorrhizas. A close correlation has been found between the mycorrhiza frequency and the number of root tips. This means, that the ramification of a root system is the more intense the better the conditions for mycorrhizal development are.

  1. Effect of airway surface liquid on the forces on the pharyngeal wall: Experimental fluid-structure interaction study.

    Science.gov (United States)

    Pirnar, Jernej; Širok, Brane; Bombač, Andrej

    2017-10-03

    Obstructive sleep apnoea syndrome (OSAS) is a breathing disorder with a multifactorial etiology. The respiratory epithelium is lined with a thin layer of airway surface liquid preventing interactions between the airflow and epithelium. The effect of the liquid lining in OSAS pathogenesis remains poorly understood despite clinical research. Previous studies have shown that the physical properties of the airway surface liquid or altered stimulation of the airway mechanoreceptors could alleviate or intensify OSAS; however, these studies do not provide a clear physical interpretation. To study the forces transmitted from the airflow to the liquid-lined compliant wall and to discuss the effects of the airway surface liquid properties on the stimulation of the mechanoreceptors, a novel and simplified experimental system mimicking the upper airway fundamental characteristics (i.e., liquid-lined compliant wall and complex unsteady airflow features) was constructed. The fluctuating force on the compliant wall was reduced through a damping mechanism when the liquid film thickness and/or the viscosity were increased. Conversely, the liquid film damping was reduced when the surface tension decreased. Based on the experimental data, empirical correlations were developed to predict the damping potential of the liquid film. In the future, this will enable us to extend the existing computational fluid-structure interaction simulations of airflow in the human upper airway by incorporating the airway surface liquid effect without adopting two-phase flow interface tracking methods. Furthermore, the experimental system developed in this study could be used to investigate the fundamental principles of the complex once/twice-coupled physical phenomena. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modelling and experimental investigation of process parameters in WEDM of WC-5.3 % Co using response surface methodology

    Directory of Open Access Journals (Sweden)

    K. Jangra

    2012-11-01

    Full Text Available Tungsten carbide-cobalt (WC-Co composite is a difficult-to-machine material owing to its excellent strength and hardness at elevated temperature. Wire electrical discharge machining (WEDM is a best alternative for machining of WC-Co composite into intricate and complex shapes. Efficient machining of WC-Co composite on WEDM is a challenging task since it involves large numbers of parameters. Therefore, in present work, experimental investigation has been carried out to determine the influence of important WEDM parameters on machining performance of WC-Co composite. Response surface methodology, which is a collection of mathematical and experimental techniques, was utilised to obtain the experimental data. Using face-centered central composite design, experiments were conducted to investigate and correlate the four input parameters: pulse-on time, pulse-off time, servo voltage and wire feed for three output performance characteristics – cutting speed (CS, surface roughness (SR and radial overcut (RoC. Using analysis of variance on experimental data, quadratic vs. two-factor interaction (2FI models have been suggested for CS and RoC while two-factor interaction (2FI has been proposed for SR. Using these mathematical models, optimal parameters can be determined easily for desired performance characteristics, and hence a trade-off can be made among different performance characteristics.

  3. Report on experimental research and best practice for surface treatment solutions

    DEFF Research Database (Denmark)

    Gavillet, Jerome; Tosello, Guido; Gasparin, S.

    2011-01-01

    The present deliverable contains the report of the work and results achieved within the framework of WP 2.3 / Task 2.3.2 on “Surface treatments and thin layers/films deposition to improve process output”....

  4. Dust Plate, Retina, Photograph: Imaging on Experimental Surfaces in Early Nineteenth-Century Physics.

    Science.gov (United States)

    Ramalingam, Chitra

    2015-09-01

    This article explores the entangled histories of three imaging techniques in early nineteenth-century British physical science, techniques in which a dynamic event (such as a sound vibration or an electric spark) was made to leave behind a fixed trace on a sensitive surface. Three categories of "sensitive surface" are examined in turn: first, a metal plate covered in fine dust; second, the retina of the human eye; and finally, a surface covered with a light-sensitive chemical emulsion (a photographic plate). For physicists Michael Faraday and Charles Wheatstone, and photographic pioneer William Henry Fox Talbot, transient phenomena could be studied through careful observation and manipulation of the patterns wrought on these different surfaces, and through an understanding of how the imaging process unfolded through time. This exposes the often-ignored materiality and temporality of epistemic practices around nineteenth-century scientific images said to be "drawn by nature."

  5. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  6. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    L. C. Daniel

    2015-01-01

    Full Text Available This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC or composite resin (CR restorations. 40 dental blocks were divided into 4 groups: G1 (negative control: cavity preparation + adhesive restoration with CR; G2: (positive control cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm2; G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF. The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations.

  7. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study.

    Science.gov (United States)

    Daniel, L C; Araújo, F C; Zancopé, B R; Hanashiro, F S; Nobre-dos-Santos, M; Youssef, M N; Souza-Zaroni, W C

    2015-01-01

    This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC) or composite resin (CR) restorations. 40 dental blocks were divided into 4 groups: G1 (negative control): cavity preparation + adhesive restoration with CR; G2: (positive control) cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm(2); G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF). The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations.

  8. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  9. Effects of surface irregularities on intensity data from laser scanning: an experimental approach.

    Directory of Open Access Journals (Sweden)

    G. Teza

    2008-06-01

    Full Text Available The results of an experiment carried out with the aim to investigate the role of surface irregularities on the intensity data provided by a terrestrial laser scanner (TLS survey are reported here. Depending on surface roughness, the interaction between an electromagnetic wave and microscopic irregularities leads to a Lambertian-like diffusive light reflection, allowing the TLS to receive the backscattered component of the signal. The described experiment consists in a series of TLS-based acquisitions of a rotating artificial target specifically conceived in order to highlight the effects on the intensity data due to surface irregularity. This target is articulated in a flat plate and in an irregular surface, whose macro-roughness has a characteristic length with the same order of the spot size. Results point out the different behavior of the plates. The intensity of the signal backscattered by the planar element decreases if the incidence angle increases, whereas the intensity of the signal backscattered by the irregular surface is almost constant if the incidence angle varies. Since the typical surfaces acquired in a geological/geophysical survey are generally irregular, these results imply that the intensity data can be easily used in order to evaluate the reflectance of the material at the considered wavelength, e.g. for pattern recognition purposes.

  10. Exogenous glycosaminoglycans coat damaged bladder surfaces in experimentally damaged mouse bladder

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2005-03-01

    Full Text Available Abstract Background Interstital cystitis is often treated with exogenous glycosaminoglycans such as heparin, chondroitin sulphate (Uracyst, hyaluronate (Cystistat or the semi-synthetic pentosan polysulphate (Elmiron. The mechanism of action is presumed to be due to a coating of the bladder surface to replace the normally present chondroitin sulphate and heparan sulphate lost as a result of the disease. This study used fluorescent labelled chondroitin sulphate to track the distribution of glycosaminoglycans administered intravesically to mouse bladder that had been damaged on the surface. Methods The surfaces of mouse bladders were damaged by 3 mechanisms – trypsin, 10 mM HCl, and protamine sulphate. Texas Red-labeled chondroitin sulphate was instilled into the bladders of animals with damaged bladders and controls instilled only with saline. Bladders were harvested, frozen, and sectioned for examination by fluorescence. Results The normal mouse bladder bound a very thin layer of the labelled chondroitin sulphate on the luminal surface. Trypsin- and HCl-damaged bladders bound the labelled chondroitin sulphate extensively on the surface with little penetration into the bladder muscle. Protamine produced less overt damage, and much less labelling was seen, presumably due to loss of the label as it complexed with the protamine intercalated into the bladder surface. Conclusion Glycosaminoglycan administered intravesically does bind to damaged bladder. Given that the changes seen following bladder damage resemble those seen naturally in interstitial cystitis, the mechanisms proposed for the action of these agents is consistent with a coating of damaged bladder.

  11. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  12. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite

    Science.gov (United States)

    De, Jyotiraman; Baxi, R. N., Dr.

    2017-08-01

    Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.

  13. Evaluation of Modeling Schemes to Estimate Evapotranspiration and Root Zone Soil Water Content over Vineyard using a Scintillometer and Remotely Sensed Surface Energy Balance

    Science.gov (United States)

    Geli, H. M. E.; Gonzalez-Piqueras, J.; Isidro, C., Sr.

    2016-12-01

    Actual crop evapotranspiration (ETa) and root zone soil water content (SMC) are key operational variable to monitor water consumption and water stress condition for improve vineyard grapes productivity and quality. This analysis, evaluates the estimation of ETa and SMC based on two modeling approaches. The first approach is a hybrid model that couples a thermal-based two source energy balance (TSEB) model (Norman et al. 1995) and water balance model to estimate the two variable (Geli 2012). The second approach is based on Large Aperture Scintillometer (LAS)-based estimates of sensible heat flux. The LAS-based estimates of sensible heat fluxes were used to calculate latent heat flux as the residual of surface energy balance equation on hourly basis which was converted to daily ETa. The calculated ETa from the scintillometer was then couple with the water balance approach to provide updated ETa_LAS and SMC_LAS. Both estimates of ETa and SMC based on LAS (i.e. ETa_LAS and SMC_LAS) and TSEB (ETa_TSEB and SMC_TSEB) were compared with ground-based observation from eddy covariance and soil water content measurements at multiple depths. The study site is an irrigated vineyard located in Central Spain Primary with heterogeneous surface conditions in term of irrigation practices and the ground based observation over the vineyard were collected during the summer of 2007. Preliminary results of the inter-comparison of the two approaches suggests relatively good between both modeling approaches and ground-based observations with RMSE lower than 1.2 mm/day for ETa and lower than 20% for SMC. References Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77, 263293. Geli, Hatim M. E. (2012). Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing, Ph. D. dissertation

  14. Applicability of the Gibbs Adsorption Isotherm to the analysis of experimental surface-tension data for ionic and nonionic surfactants.

    Science.gov (United States)

    Martínez-Balbuena, L; Arteaga-Jiménez, Araceli; Hernández-Zapata, Ernesto; Márquez-Beltrán, César

    2017-09-01

    The Gibbs Adsorption Isotherm equation is a two-dimensional analogous of the Gibbs-Duhem equation, and it is one of the cornerstones of interface science. It is also widely used to estimate the surface excess concentration (SEC) for surfactants and other compounds in aqueous solution, from surface tension measurements. However, in recent publications some authors have cast doubt on this method. In the present work, we review some of the best available surface tension experimental data, and compare estimations of the SEC, using the Gibbs isotherm method (GIM), to direct measurements reported in the literature. This is done for both nonionic and ionic surfactants, with and without added salt. Our review leads to the conclusion that the GIM has a very solid agreement with experiments, and that it does estimate accurately the SEC for surfactant concentrations smaller than the critical micellar concentration (CMC). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of dentin surface treatments including Er,Cr:YSGG laser irradiation with different intensities on the push-out bond strength of the glass fiber posts to root dentin.

    Science.gov (United States)

    Kirmali, Omer; Kustarci, Alper; Kapdan, Alper; Er, Kursat

    2015-07-01

    Intra-canal post systems are commonly used to restore root-filled teeth. Bond strengths of the posts can be affected by various surface treatments of the post or the dentin. The aim of this study was to evaluate the effects of dentin surface treatments including erbium-chromium; yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation with different intensities on the push-out bond strength of the glass fiber posts to root dentin. Forty single-rooted human maxillary incisors were filled and post spaces were prepared. After these procedures, the specimens were divided randomly into four groups according to the dentin surface treatments, as follows: (i) untreated surface (control), (ii) 1W Er,Cr:YSGG laser application, (iii) 2W Er,Cr:YSGG laser application and (iv) 3W Er,Cr:YSGG laser application. Then the posts were cemented into the root canals using dual-cured resin cement. Bonded specimens were cut into 1-mm-thick slices and push-out tests were performed using a universal testing device. All specimens were loaded until fracture and the failure modes were evaluated with a stereomicroscope at 32× magnification. Representative specimens were analyzed by scanning electron microscopy. Data were analyzed using a one-way ANOVA, Tukey and Wilcoxon tests. The bond strength values ranged from 3.22-4.68 MPa. There were no statistically significant differences among the groups, regardless of the different levels. The coronal and middle levels of the post space had significantly higher bond strength values compared with the apical level (p fiber posts to the root canal dentin walls.

  16. Laser Treatment of Wood Surfaces for Ski Cores: An Experimental Parameter Study

    Directory of Open Access Journals (Sweden)

    Alexander Petutschnigg

    2013-01-01

    Full Text Available Recently, the production of skis with wooden cores has increased due to changes in customer awareness concerning ecological issues and rising raw material costs for mineral oil resources. The preparation of ski surfaces is one of the main expense factors in the production of skis. Thus, one perspective of the AMER SPORTS CORPORATION is to treat wood surfaces with laser beams to develop new aesthetic possibilities in ski design. This study deals with different laser treatments for samples from various wood species: beech, ash, lime, and spruce. The parameters investigated are laser beam intensity and number of laser points on the surface. To evaluate the aesthetic changes, the CIELab color measurements were applied. Changes in the main wood components were observed by the Fourier transform infrared spectroscopy (FTIR using an ATR (attenuated total reflectance unit. The results show that the laser treatments on wood surfaces have an influence on wood color and the chemical composition. Especially the intensity of laser beams affects the color changes in different patterns for the parameters observed. These findings will be useful to develop innovative design possibilities of wood surfaces for ski cores as well as for further product design applications (e.g., mass customization.

  17. Experimental Validation of a Sensor Monitoring Ice Formation over a Road Surface

    Directory of Open Access Journals (Sweden)

    Amedeo TROIANO

    2012-03-01

    Full Text Available The reliable detection of ice over road surfaces is an important issue for reducing maintenance costs and improving traffic safety. An innovative capacitive sensor was developed to detect the presence of ice on its surface, and its repeatability, stability and reliability were assessed in simulations and experiments described in previous papers. The indications of the sensor are compared in this paper with the objective identification of ice formation or melting over a road surface in laboratory, under dynamic or stationary conditions, using tap water or a solution with 5 % of salt concentration. The sensor provides indications which are in line with the condition of the road surface, with a mean error in the identification of the time instants of ice-wet and wet-ice transitions lower than about 10 and 40 minutes in the case of tap water and salt water, respectively, both under different temperature gradients or in stationary conditions. Moreover, the indication provided by the sensor always anticipates the formation of ice over the road surface.

  18. Pectin nanocoating of titanium implant surfaces - an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Dirscherl, Kai; Jørgensen, Bodil

    2017-01-01

    that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell......) into the left and right tibia of rabbits. Machined titanium implants without RG-I nanocoating were used as controls (n = 32). Total number of 128 implants was placed in tibias of 16 rabbits. Fluorochrome bone labels, calcein green and alizarin red S were given intravenously after 9 and 12 days, respectively....... The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more...

  19. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    Science.gov (United States)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  20. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    DEFF Research Database (Denmark)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya

    2017-01-01

    On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL......, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surfacespecific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice...

  1. Experimental model of developing and analysis of lip prints in atypical surface: A metallic straw (bombilla).

    Science.gov (United States)

    Fonseca, Gabriel M; Bonfigli, Esteban; Cantín, Mario

    2014-05-01

    The interaction between the offender and the victim produces visible or latent prints on objects and utensils. The study of lip prints has reportedly stayed away from the basic cinematic concept of the lip-to-surface relationship. Three regular powders were used to reveal the latent lip prints on a typical metallic straw called bombilla, and the revealed prints were photographed, preserved, and analyzed. Better definition was observed in the lower lip print, and nine anatomical patterns were identified, but a higher definition of wrinkles was observed with indestructible white powder. Knowledge of labial dynamics, the real value of the processed surfaces, and the need for testing in field conditions are discussed.

  2. Experimental investigation of picoliter liquid drops evaporation on a heated solid surface

    Science.gov (United States)

    Kirichenko, D. P.; Zaitsev, D. V.; Kabov, O. A.

    2017-11-01

    This paper presents a study of the evaporation of sessile picoliter liquid drops on a heated solid surface. It has been shown that during evaporation diameter of the drop is almost constant (the contact line is pinned) and starts to decrease only at the final moment of drop life. It has been shown that the specific evaporation rate of a droplet (droplet weight loss per unit time per unit droplet surface area) is not constant over time: it gradually grows with time up to a maximum, but at the final stage, when the height of the drop becomes on the order of 1 μm, it decreases rapidly.

  3. Single droplet experimentation on spray drying:evaporation of sessile droplets deposited on a flat surface

    NARCIS (Netherlands)

    Perdana, J.A.; Fox, M.B.; Schutyser, M.A.I.; Boom, R.M.

    2010-01-01

    Abstract: Individually dispensed droplets were dried on a flat surface to mimic the drying of single droplets during spray drying. A robust dispensing process is presented that generates small droplets (dp>150 µm). A predictive model based on Bernoulli’s law accurately describes droplet size with

  4. Surface morphology of superficial cells in irradiated oral mucosa: an experimental study in beagle dog.

    Science.gov (United States)

    Asikainen, Pekka; Mikkonen, Jopi J W; Kullaa, Arja M

    2014-08-01

    The aim of the present study is to investigate if radiation induces changes in the superficial cells of the oral mucosa and secondly to describe morphological characteristics of the cell surface structure by scanning electron microscopy (SEM). Ten beagle dogs aged 1-2 years were used in this study. One side of each mandible was irradiated in two sessions, each lasting 1 week. The total dosage was 40 Gy (Group A; 5 dogs) and 50 Gy (Group B; 5 dogs), in five fractions of 4 Gy. The other side of mandible (non-irradiated) served as a control. The specimen was harvested with a scalpel from the alveolar mucosa of the irradiated area 1 year after irradiation and studied with SEM. In the control side, the surface structure of the cell contains straight parallel or branched microplicae (MPL), which were equally spaced over the cell surfaces. Discontinuous and short MPL were typical cell structure of irradiated mucosa. In 50 Gy group, the surface structure of epithelial cell was pitted and the cell boundaries were thick. The novelty of the present study is that radiation disrupts superficial cells of the oral mucosa. The role of the MPL structure of the superficial cells in mucositis development is discussed.

  5. Experimental study of surface modification in a fully turbulent Taylor-Couette flow

    NARCIS (Netherlands)

    Greidanus, A.; Delfos, R.; Tokgoz, S.; Westerweel, J.

    2015-01-01

    Friction measurements were performed in a Taylor-Couette setup. Drag reduction was obtained with a riblet surface and indicated a drag reduction for a wide range of shear Reynolds numbers, with a maximum of 5.3% at Re_s=47000 (s+=14). Tomographic PIV verified that the friction coefficients are

  6. GPS Signal Scattering from Sea Surface: Wind Speed Retrieval Using Experimental Data and Theoretical Model

    Science.gov (United States)

    Komjathy, Attila; Zavorotny, Valery U.; Axelrad, Penina; Born, George H.; Garrison, James L.

    2000-01-01

    Global Positioning System (GPS) signals reflected from the ocean surface have potential use for various remote sensing purposes. Some possibilities arc measurements of surface roughness characteristics from which ware height, wind speed, and direction could be determined. For this paper, GPS-reflected signal measurements collected at aircraft altitudes of 2 km to 5 km with a delay-Doppler mapping GPS receiver arc used to explore the possibility of determining wind speed. To interpret the GPS data, a theoretical model has been developed that describes the power of the reflected GPS signals for different time delays and Doppler frequencies as a function of geometrical and environmental parameters. The results indicate a good agreement between the measured and the modeled normalized signal power waveforms during changing surface wind conditions. The estimated wind speed using surface- reflected GPS data, obtained by comparing actual and modeled waveforms, shows good agreement (within 2 m/s) with data obtained from a nearby buoy and independent wind speed measurements derived from the TOPEX/Poseidon altimetric satellite.

  7. Experimental Investigation of Membrane Materials used in Multilayer Surfacing Systems for Orthotropic Steel Deck Bridges

    NARCIS (Netherlands)

    Tzimiris, G.

    2017-01-01

    In the Netherlands asphaltic surfacings on orthotropic steel deck bridges (OSDB) mostly consist of two structural layers. The upper layer consists of what is known as very open porous asphalt (ZOAB) for noise reduction. For the lower layer Guss Asphalt (GA) is used. Earlier investigations have shown

  8. Spectroscopic diagnostics and experimental planning for plasma-surface interaction studies in NSTX-U

    Science.gov (United States)

    Scotti, F.; Soukhanovskii, V. A.; Allain, J. P.; Bedoya, F.; Kaita, R.; Roquemore, A. L.; Skinner, C. H.

    2015-11-01

    In the mixed-material environment of the NSTX-U first wall, visible imaging diagnostics will be used to study the evolution of the plasma facing component (PFC) surface conditions and the distribution of impurity influxes. Characterizing the dynamic material environment originating from wall conditioning techniques (boronization, lithium evaporation) on graphite PFCs requires simultaneous monitoring of emission from different atomic species. Full poloidal/toroidal coverage of impurity emission is achieved via a combination of bandpass-filtered fast cameras viewing upper and lower PFCs and line-scan cameras. Two image-intensified radiation-hardened cameras expand these capabilities with the ability to image weaker visible lines and a custom-built two-color system for the simultaneous imaging of different wavelengths. Intensified camera views include the lower divertor and a close-up of the surface analysis sample system Material Analysis and Particle Probe (MAPP). Redundant views via multiple cameras and two-color setups will enable a more accurate determination of impurity influxes (via line ratio techniques) and the simultaneous characterization of carbon (chemical/physical), lithium and oxygen influx evolution following lithium and boron wall conditioning. The imaging of MAPP samples will allow comparing the evolution of surface composition determined via surface analysis techniques to visible spectroscopy. Supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-AC52-07NA27344, DE-SC0010717.

  9. Exercise in Experimental Plastics Technology: Hot Embossing of Polymers with surface microstructure

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Rasmussen, Henrik Koblitz

    2004-01-01

    such as relatively low cost for embossing tools, simple operation and high replication accuracy for small features. Two different plastic materials will be used to replicate surface microstructures by hot embossing. The hot embossing will be done in a hydraulic press where it is easy to control temperature...

  10. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Gensanne, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, JE 2400-CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France); Josse, G [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Lagarde, J M [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Vincensini, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, JE 2400-CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France)

    2006-06-07

    Measuring spin-spin relaxation times (T{sub 2}) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T{sub 2} relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T{sub 2} relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T{sub 2} measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T{sub 2} relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T{sub 2} quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm{sup 3} for a conventional volume birdcage coil and only of 1.7 mm{sup 3} for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T{sub 2} images can be obtained by image filtering. By using the non

  11. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  12. Experimental Investigation of Effects of Blockage and Free Surface Proximity on Flow-field and Performance of a Hydrokinetic Turbine

    Science.gov (United States)

    Kolekar, Nitin; Banerjee, Arindam

    2013-11-01

    Results from an experimental study to investigate the effect of blockage and free surface proximity on the performance of a constant chord, zero twist, fixed pitch hydro kinetic turbine in an open surface water channel will be presented. The presence of free surface and the size of turbine relative to the flow channel (blockage effect) affects the fluid dynamics around and in the near wake of turbine and hence the thrust-torque loading on turbine blades. Detailed parametric studies will be carried out to understand the effect of free surface proximity, Froude number (which depends on water velocity and depth of the channel), turbine proximity to channel walls and blockage on the turbine performance. Characterization of wake meandering and flow around the turbine is performed using a stereo-Particle Image Velocimetry technique for flows with various Froude number. The thrust and torque on turbine will be measured using a submerged thrust-torque sensor in-line with the turbine. The results of experiments will be compared with analytical models based on blade element momentum theory by modeling free surface and blockage effects. The authors gratefully acknowledge the financial support from the Office of Naval Research through contract ONR N000141010923.

  13. Inhibition of auxin transport and auxin signaling and treatment with far red light induces root coiling in the phospholipase-A mutant ppla-I-1. Significance for surface penetration?

    Science.gov (United States)

    Perrineau, F; Wimalasekera, R; Effendi, Y; Scherer, G F E

    2016-06-01

    When grown on a non-penetretable at a surface angle of 45°, Arabidopsis roots form wave-like structures and, in wild type rarely, but in certain mutants the tip root even may form circles. These circles are called coils. The formation of coils depends on the complex interaction of circumnutation, gravitropism and negative thigmotropism where - at least - gravitropism is intimately linked to auxin transport and signaling. The knockout mutant of patatin-related phospholipase-AI-1 (pplaI-1) is an auxin-signaling mutant which forms moderately increased numbers of coils on tilted agar plates. We tested the effects of the auxin efflux transport inhibitor NPA (1-naphthylphtalamic acid) and of the influx transport inhibitor 1-NOA (1-naphthoxyacetic acid) which both further increased root coil formation. The pPLAI-1 inhibitors HELSS (haloenol lactone suicide substrate=E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one) and ETYA (eicosatetraynoic acid) which are auxin signaling inhibitors also increased coil formation. In addition, far red light treatment increased coil formation. The results point out that a disturbance of auxin transport and signaling is one potential cause for root coils. As we show that the mutant pplaI-1 penetrates horizontal agar plates better than wild type plants root movements may help penetrating the soil. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite, INRS, Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire, IRSN, Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette Cedex (France); Thomas, Dominique [Laboratoire des Sciences du Genie Chimique, LSGC/CNRS, Nancy Universite, BP 2041, 54001 Nancy Cedex (France)], E-mail: sebastien.bau@inrs.fr

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak{sup x2122} 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  15. Experimental Study of the Shear Strength of Bonded Concrete-Rock Interfaces: Surface Morphology and Scale Effect

    Science.gov (United States)

    Mouzannar, Hussein; Bost, Marion; Leroux, Madly; Virely, Didier

    2017-10-01

    The shear strength of the concrete-rock interface is a key factor to justify the stability of a hydraulic structure foundation. The Mohr-Coulomb failure criterion is usually used as shear strength and evaluated by extrapolating shear tests results carried out in a laboratory on small-sized samples. This paper presents an experimental study on the concrete-rock interface shear behavior. The effect of rock surface morphology on shear behavior was studied by performing laboratory direct shear tests on prepared square samples with a previously characterized rock surface. The scale effect and the test conditions were also studied by comparing the results to those obtained by performing usual laboratory shear tests on cored samples at lower scale. The tested interfaces were composed of the same concrete and granite and have a natural rock surface. The results displayed that the peak shear strength is strongly dependent on the concrete-rock bonding, the rock surface morphology and the applied normal load. A new surface morphology description tool was developed in order to characterize the main waviness. Moreover, the concrete-rock shear behavior at medium scale was reproduced by a 2D finite elements model to study the stress distribution along the sheared interface. Under low normal load, the concrete-rock adhesion is thus progressively mobilized according to the waviness on the rock surface and the local shear failure mechanisms depend on the type of this main waviness. Consequently the shear strength of a concrete-rock interface must be analyzed with respect to the various morphology aspects on its rock surface.

  16. Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog.

    Science.gov (United States)

    Persson, L G; Berglundh, T; Lindhe, J; Sennerby, L

    2001-12-01

    Peri-implantitis is a condition that includes soft tissue inflammation and rapid loss of bone. Treatment of peri-implantitis includes both antimicrobial and bone augmenting methods. The question of whether true re-osseointegration may occur following treatment of peri-implantitis is controversial. The aim of this study was to investigate whether the character of the implant surface was of importance for the occurrence of re-osseointegration following treatment of peri-implantitis. Four beagle dogs were used. The mandibular premolars were extracted. After 12 months, 3 ITI(R) solid screw dental implants were placed in each side of the mandible. In the left side, implants with a turned surface (Turned sites) were used, while in the right side implants with a SLA surface (SLA sites) were placed. After 3 months of healing, peri-implantitis was induced by ligature placement and plaque accumulation. When about 50% of the initial bone support was lost, the ligatures were removed. Five weeks later, treatment was initiated. Each animal received tablets of Amoxicillin and Metronidazole for a period of 17 days. Three days after the start of the antibiotic regimen, one implant site (experimental site) in each quadrant was exposed to local therapy. Following flap elevation, the exposed titanium surface was cleaned with the use of cotton pellets soaked in saline. The implants were submerged. Six months later, biopsies were obtained. Treatment resulted in a 72% bone fill of the bone defects at Turned sites and 76% at SLA sites. The amount of re-osseointegration was 22% at Turned sites and 84% at SLA sites. A treatment regimen that included (i) systemic administration of antibiotics combined with (ii) granulation tissue removal and implant surface cleaning resulted in resolution of peri-implantitis and bone fill in adjacent bone defects. Further, while substantial "re-osseointegration" occurred to an implant with a rough surface (SLA), bone growth on a previously exposed smooth

  17. Temperature Development on the External Root Surface During Laser-Assisted Endodontic Treatment Applying a Microchopped Mode of a 980 nm Diode Laser.

    Science.gov (United States)

    Beer, Franziska; Farmakis, Eleftherios Terry R; Kopic, Josip; Kurzmann, Christoph; Moritz, Andreas

    2017-04-01

    The aim of this article was to investigate the temperature increase of the external root surface during laser-assisted endodontic treatment using a diode laser (980 nm) in a microchopped mode. Ten freshly extracted, human maxillary incisors with mature apices were collected, prepared to size F4 at working length (ProTaper; Dentsply Maillefer, Ballaigues, Switzerland), mounted to a holder, and irradiated (using spiral movements in coronal direction) with a diode laser (GENTLEray 980 Classic Plus; KaVo, Biberach, Germany) with a 200 μm fiber in four different treatment groups: Group 1 (control group) was irradiated in six cycles of 5-sec irradiation/20-sec pause with 2.5 W in the pulse mode. Groups 2 to 4 were irradiated at six cycles of 5-sec irradiation/20-sec pause in the microchopped mode (Group 2-1.6 W; Group 3-2.0 W; Group 4-2.5 W). The applied mode was 25 ms on/25 ms off. Within the on period, the laser delivered an intermittent sequence of energy complexes and the maximum output was equal to the nominated output of the device (12 W). Canals were kept moist by sterile saline irrigation in between irradiations, and temperature changes were continuously measured using a thermal imaging camera. Recordings were analyzed by a mixed model (analysis of variance [ANOVA] for repeated measurements). The highest mean of temperature rise, 1.94°C ± 1.07°C, was measured in Group 4, followed by Group 3 (1.74°C ± 1.22°C) and Group 2 (1.58°C ± 1.18°C). The lowest increase occurred in Group 1 (1.06°C ± 1.20°C). There was a significant difference (p = 0.041) between the groups. Significant differences were found between Groups 1 and 4 (p = 0.007) and 1 and 2 (p = 0.035). In addition, a marginally significant difference between Groups 1 and 2 (p = 0.052) was noted. There was no significant difference between Groups 2, 3, and 4. Despite the low mean values reported, the highest temperature increase (+5.7°C) was

  18. Experimental measurements of heat transfer from an iced surface during artificial and natural cloud icing conditions

    Science.gov (United States)

    Kirby, M. S.; Hansman, R. J., Jr.

    1986-01-01

    The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions have been studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse-echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point of a cylinder were compared with those predicted using a quasi steady-state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural, flight, icing conditions.

  19. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2000-01-01

    ) TiO2-blasted with particles of grain size 10 to 53 microns; (3) TiO2-blasted, grain size 63 to 90 microns; (4) TiO2-blasted, grain size 90 to 125 microns; (5) titanium plasma-sprayed (TPS). The surface topography was determined by the use of an optical instrument. Twelve rabbits, divided into two...... groups, had a total of 120 implants inserted in the tibiae. One implant from each of the five surface categories was placed within the left tibia of each rabbit. By a second operation, implants were installed in the right tibia, after 2 weeks in group A and after 3 weeks in group B. Fluorochrome labeling...

  20. Experimental Analysis of Displacements and Shears at the Surface on Contact between Two Loaded Bodies,

    Science.gov (United States)

    1980-07-01

    structures. The method is applied in an Investigation of one forn of behavior of buoy-cable systems loaded by the action of surface waves. 27. A. J...strain pages, dial vapes and micrometers are used to determine the stress distri- bution In a belt-pulley gymtem. Contact and tangential stress for...materials used in the tests deformed appreciably, but the mechanical behavior was linear within the range of the deformations imposed. Poisson’s ratio

  1. A Preliminary Experimental Study of Filmwise and Dropwise Condensation on SUS316 Surface

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Young; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of); Noriyuki, Watanabe [Tokyo Institute of Technology, Tokyo (Japan)

    2015-10-15

    This paper studied about the cooling characteristic of SUS316 surface as a PCCS heat exchanger. Specifically, filmwise and dropwise condensations on SUS316 surface were compared. The passive safety features against station blackout (SBO) and containment safety became important issue after Fukushima accident. As a result, passive containment cooling system (PCCS) is selected as candidate option for the advanced light water reactors to guarantee integrity of containment. To design efficient heat exchanger of PCCS inside of concrete containment, a number of attempts were studied to compensate the low heat transfer coefficient of condensation in non-condensable gas circumstance. The study in this paper focused on the dropwise condensation to enhance the cooling performance of PCCS heat exchanger. Bare SUS316 surface represented stable dropwise condensation phase over 12 hours of experiment for all experiment condition shown in Table I. Figure 3 shows the previous studies conducted by other researcher with our result. Subcooled temperature versus heat transfer coefficient (HTC) of DWC on various cooling surface with coatings were compared. Figure 4 and 5 shows the condensation HTC of DWC and FWC with different non-condensable gas fractions. The result of DWC with pure steam was well proportional to the power of subcooled temperature. Otherwise, the result with non-condensable gas shows HTC in low subcooled temperature under 5 .deg. C seems to be decreased, but the result was shaded by the high uncertainty. The result of FWC also proportional to power of subcooled temperature regardless of air concentration and well separated by air concentration condition.

  2. Numerical and Experimental Investigation of Microchannel Flows with Rough Surfaces (Postprint)

    Science.gov (United States)

    2007-10-01

    parameter, average surface roughness angle. This model has also been linked to the Cercignani -Lampis scattering kernel as a required reference for use in...also been linked to the Cercignani -Lampis scattering kernel as a required reference for use in deterministic kinetic solvers. Experiments were conducted...number of models, different in their numerical complexity and physical accu- racy. Among the simplified models are the Cercignani - Lampis CL

  3. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  4. An Experimental Study of Incremental Surface Loading of an Elastic Plate: Application to Volcano Tectonics

    Science.gov (United States)

    Williams, K. K.; Zuber, M. T.

    1995-01-01

    Models of surface fractures due to volcanic loading an elastic plate are commonly used to constrain thickness of planetary lithospheres, but discrepancies exist in predictions of the style of initial failure and in the nature of subsequent fracture evolution. In this study, we perform an experiment to determine the mode of initial failure due to the incremental addition of a conical load to the surface of an elastic plate and compare the location of initial failure with that predicted by elastic theory. In all experiments, the mode of initial failure was tension cracking at the surface of the plate, with cracks oriented circumferential to the load. The cracks nucleated at a distance from load center that corresponds the maximum radial stress predicted by analytical solutions, so a tensile failure criterion is appropriate for predictions of initial failure. With continued loading of the plate, migration of tensional cracks was observed. In the same azimuthal direction as the initial crack, subsequent cracks formed at a smaller radial distance than the initial crack. When forming in a different azimuthal direction, the subsequent cracks formed at a distance greater than the radial distance of the initial crack. The observed fracture pattern may explain the distribution of extensional structures in annular bands around many large scale, circular volcanic features.

  5. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  6. Experimental correlation of gas-liquid-solid mass transfer coefficient in a stirred tank using response surface methodology

    Science.gov (United States)

    Zhang, Xin; Duan, Xili; Gao, Zhengming

    2017-10-01

    In this paper, the three-phase (gas-liquid-solid) system in a stirred tank is experimentally studied. The response surface methodology (RSM) is used to analyze the three phase mass transfer coefficient under different conditions, i.e., rotation speeds (8, 10, and 12 s-1), volumetric solid content fractions (0, 6 and 12%), gas flow rates (6, 8, and 10 m3 h-1) and temperatures (40, 54, and 68 °C). With the RSM, it was found that all of these four operational parameters are significant in affecting the mass transfer coefficient, with the rotation speed being the most significant one. A new correlation is developed with a quadratic term for solid content fraction, indicating that there is a minimum value of mass transfer coefficient at a certain solid content fraction. Compared with traditional experimental design and correlation methods, the RSM in this study reduces experiment time and provides a better correlation to predict the mass transfer coefficient.

  7. Root caries: a periodontal perspective.

    Science.gov (United States)

    Bignozzi, I; Crea, A; Capri, D; Littarru, C; Lajolo, C; Tatakis, D N

    2014-04-01

    A prevailing dental problem in the periodontal patient is root caries. Specifically, periodontal involvement often results in root surfaces becoming exposed and at risk for this condition. Periodontal therapy often leads to increased gingival recession as well, and the associated increased root caries risk may compromise the long-term success and survival of periodontally treated teeth.This narrative review will address the topic of root caries in the periodontal patient, focusing on unmet research needs. The Medline database was searched to identify items dealing with root caries, in terms of clinical features, diagnosis, pathogenic mechanisms and histopathology, as well as epidemiology, focusing then on the relationship between root caries and periodontal disorders. Although there is extensive literature on root caries, consensus is lacking regarding certain aspects, such as diagnostic criteria, prevalence within populations and indisputable risk factors. Advancing age could be an aggravating factor in susceptibility to root caries for the periodontal patient; however, definitive evidence in this regard is still missing. Similarly, full awareness of the increased risk of root caries in patients with periodontal disease or long-term periodontal treatment appears to be still lacking. Research regarding root caries in age-specific (elderly) periodontal patients is needed. Improved oral hygiene practices, locally applied preventive measures, good dietary habits and regular dental check-ups are crucial approaches to prevent both periodontal disease progression and root caries. Periodontal patients with root exposure should follow a strict root caries prevention protocol, as an integral component of their periodontal maintenance therapy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. On the applicability of Arrhenius plot methods to determine surface energetic heterogeneity of adsorbents and catalysts surfaces from experimental TPD spectra.

    Science.gov (United States)

    Rudzinski, W; Borowiecki, T; Panczyk, T; Dominko, A

    2000-01-01

    Recovering adsorption energy distribution from experimental data belongs to most difficult problems of adsorption science. In the case when thermodesorption data are used as a source of information, that difficult problem is overcome by the common use of the Arrhenius plot methods. So, we decided to carry out an extensive model investigation to show, how reliable information concerning the surface energetic heterogeneity is obtained by using the Arrhenius plot methods. Like in our previous publications we have used the Statistical Rate Theory of Interfacial Transport to describe the adsorption/desorption kinetics. Our model investigations showed, that the Arrhenius plot methods, cannot provide reliable information about the surface energetic heterogeneity. Moreover, for strongly heterogeneous surfaces a linear relationship exists between the logarithm of the pre-exponential constant and the adsorption energy, for certain adsorption coverages. That kind of compensation effect has, so far, been ascribed to interactions between the adsorbed molecules. The failure of the popular Arrhenius plot method puts, as an urgent agenda, the development of reliable methods for recovering adsorption energy distribution from the thermodesorption data.

  9. Toward tailorable surfaces: A combined theoretical and experimental study of lanthanum niobate layered perovskites

    Science.gov (United States)

    Di Tommaso, Stefania; Giannici, Francesco; Mossuto Marculescu, Adriana; Martorana, Antonino; Adamo, Carlo; Labat, Frédèric

    2014-07-01

    A comprehensive theoretical investigation of the MLaNb2O7 (M = H, Li, Na, K, Rb, and Cs) series of ion-exchangeable layered perovskite is presented. These perovskites are in particular interesting in view of their potential applications as inorganic supports for the design of new hybrid inorganic-organic proton conductors. In particular, their structural and electronic properties have been investigated by periodic calculations in the framework of Density Functional Theory, using different exchange-correlation functionals. A general very good agreement with the available experimental (XRD, NPD, and EXAFS) data has been found. The structure of the protonated HLaNb2O7 form has also been further clarified and a new tetragonal space group is proposed for this compound, better reproducing the experimental cell parameters and yielding to a more realistic picture of the system. The electronic investigation highlighted that all the compounds considered are very similar to each other and that the interaction between interlayer cations and perovskite slabs is purely ionic, except for the proton that is, instead, covalently bound.

  10. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  11. Oxolinic Acid Binding at Goethite and Akaganéite Surfaces: Experimental Study and Modeling.

    Science.gov (United States)

    Marsac, Rémi; Martin, Sébastien; Boily, Jean-François; Hanna, Khalil

    2016-01-19

    Oxolinic acid (OA) is a widely used quinolone antibiotic in aquaculture. In this study, its interactions with synthetic goethite (α-FeOOH) and akaganéite (β-FeOOH) particle surfaces were monitored to understand the potential fate of OA in marine sediments where these phases occur. Batch sorption experiments, liquid chromatography (LC) analyses of supernatants, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and multisite complexation (MUSIC) modeling were used to monitor OA binding at these particle surfaces. Both LC and ATR-FTIR showed that adsorption did not degrade OA, and that OA adsorption was largely unaffected by NaCl concentrations (10-1000 mM). This was explained further by ATR-FTIR suggesting the formation of metal-bonded complexes at circumneutral to low pHc = -log [H(+)] and with a strongly hydrogen-bonded complex at high pHc. The stronger OA binding to akaganéite can be explained both by the higher isoelectric point/point-of-zero charge (9.6-10) of this mineral than of goethite (9.1-9.4), and an additional OA surface complexation mechanism at the (010) plane. Geminal sites (≡Fe(OH2)2(+)) at this plane could be especially reactive for metal-bonded complexes, as they facilitate a mononuclear six-membered chelate complex via the displacement of two hydroxo/aquo groups at the equatorial plane of a single Fe octahedron. Collectively, these findings revealed that Fe-oxyhydroxides may strongly contribute to the fate and transport of OA-type antibacterial agents in marine sediments and waters.

  12. Mucilage exudation facilitates root water uptake in dry soils

    Science.gov (United States)

    Ahmed, Mutez; Kroener, Eva; Holz, Maire; Zarebanadkouki, Mohsen; Carminati, Andrea

    2014-05-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during root water uptake. On the other hand, after irrigation the rhizosphere remained markedly dry and it rewetted only after one-two days. We hypothesize that: 1) drying/wetting rates of the rhizosphere are controlled by mucilage exuded by roots; 2) mucilage alters the soil hydraulic conductivity: in particular, wet mucilage increases the soil hydraulic conductivity and dry mucilage makes the soil water repellent; 3) mucilage exudation favors root water uptake in dry soil; and 4) dry mucilage limits water loss from roots to dry soils. We used a root pressure probe to measure the hydraulic conductance of artificial roots sitting in soils. As an artificial root we employed a suction cup with a diameter of 2 mm and a length of 45 mm. The root pressure probe gave the hydraulic conductance of the soil-root continuum during pulse experiments in which water was injected into or sucked from the soil. First, we performed experiments with roots in a relatively dry soil with a volumetric water content of 0.03. Then, we repeated the experiment with artificial roots covered with mucilage and then placed into the soil. As a model for mucilage, we collected mucilage from Chia seeds. The water contents (including that of mucilage) in the experiments with and without mucilage were equal. The pressure curves were fitted with a model of root water that includes rhizosphere dynamics. We found that the artificial roots covered with wet mucilage took up water more easily. In a second experimental set-up we measured the outflow of water from the artificial roots into dry soils. We compared two soils: 1) a sandy soil and 2) the same soil wetted with mucilage from Chia seeds and then let dry. The latter soil became water repellent. Due to the water repellency, the outflow of water from

  13. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Stampe, Kasper

    2016-01-01

    Severe slugging flow is always challenging in oil & gas production, especially for the current offshore based production. The slugging flow can cause a lot of problems, such as those relevant to production safety, fatigue as well as capability. As one typical phenomenon in multi-phase flow dynamics...... with severe slugging flows. These correlations are reflected through an obtained stable surface in the parameter space, which is a natural extension of the bifurcation plot. The maximal production opportunity without compromising the stability is also studied. Relevant studies have already showed...

  14. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    formerly been demonstrated how demyelinization of the myelin sheaths in the peripheral nerves close to the root provoke resorption. Accordingly, conditions affecting these tissue layers can be associated not only with different morphologies but also with general symptoms and diseases (e.g., ectodermal...

  15. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  16. Numerical simulation and experimental study on farmland nitrogen loss to surface runoff in a raindrop driven process

    Science.gov (United States)

    Li, Jiayun; Tong, Juxiu; Xia, Chuanan; Hu, Bill X.; Zhu, Hao; Yang, Rui; Wei, Wenshuo

    2017-06-01

    It has been widely recognized that surface runoff from agricultural field is an important non-point pollution source, which however, the chemical transfer amount in the process is very difficult to be quantified in field since some variables and natural factors are hard to control, such as rainfall intensity, temperature, wind speeds and soil spatial heterogeneity, which may significantly affect the field experimental results. Therefore, a physically based nitrogen transport model was developed and tested with the so called semi-field experiments (i.e., artificial rainfall was used instead of natural rainfall, but other conditions were natural) in this paper. Our model integrated the raindrop driven process and diffusion effect with the simplified nitrogen chain reactions. In this model, chemicals in the soil surface layer, or the 'exchange layer', were transformed into the surface runoff layer due to raindrop impact. The raindrops also have a significant role on the diffusion process between the exchange layer and the underlying soil. The established mathematical model was solved numerically through the modified Hydrus-1d source code, and the model simulations agreed well with the experimental data. The modeling results indicate that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters for the simulation results. Variation of the water transfer rate, er, can strongly influence the peak values of the NO-3-N and NH+4-N concentration breakthrough curves. The concentration of NO-3-N is more sensitive to the exchange layer depth, de, than NH+4-N. In general, the developed model well describes the nitrogen loss into surface runoff in a raindrop driven process. Since the raindrop splash erosion process may aggravate the loss of chemical fertilizer, choosing an appropriate fertilization time and application method is very important to prevent the pollution.

  17. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  18. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  19. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    Science.gov (United States)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  20. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon; Kong, Byeong Tak [Incheon National University, Incheon (Korea, Republic of); Kim, Ji Min [POSTECH, Pohang (Korea, Republic of); and others

    2016-05-15

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  1. Experimental Study on States of Liquid Film on Heat Transfer Surface Inside a Horizontal Spirally Grooved Tube during Evaporation

    Science.gov (United States)

    Higashiiue, Shinya; Momoki, Satoru; Shigechi, Toru; Mori, Hideo; Yamaguchi, Tomohiko

    This paper presents a prediction method of flow regimes during evaporation of pure refrigerants in a horizontal spirally grooved steel tube with 12mm in average inner diameter. Circumferential temperature distributions on the external surface of the tube and boiling heat transfer coefficients were obtained through the experiments on the flow boiling heat transfer using two kinds of fluorocarbon refrigerants, HCFC123 and HCFC22. Based on the temperature distributions and the characteristics of heat transfer coefficient against vapor quality, we discussed the conditions of liquid film formed on the heat transfer surface. The experimental data were classified into four kinds of flow regimes according to the viewpoint on the liquid film conditions and heat transfer characteristics: annular flow, annular flow with liquid meniscus, separated flow with liquid meniscus and separated flow with dry surface. In order to predict the transition quality from separated flow to annular flow, we developed the correlation for border angle of well-wetted perimeter for the present grooved tube based on the Mori et al. correlation proposed for smooth tubes. The correlation for the transitional quality between separated flow with dry surface and separated flow with liquid meniscus was developed empirically as well as the correlation for the transient transitional quality between annular flow and annular flow with liquid meniscus.

  2. Experimental Study of the Influence of Surface Conditions on Explosive Electron Emission From a Pin Cathode

    Science.gov (United States)

    Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Parkevich, E. V.; Tilikin, I. N.; Mingaleev, A. R.; Agafonov, A. V.

    2016-10-01

    Most theories of Explosive Electron Emission are based on the idea of cathode flares developing after explosion of metal whiskers on the cathode surface. The spatial structure of the flare, its origin and the process of flare development are still a matter of conjecture. In this work we used picosecond duration high resolution laser probing and X-pinch point-projection X-ray radiography to directly observe whisker explosion in a high-current diode. Pin cathodes made from thin 5-25 μm W, Cu or Mo wires were used as the load in return current circuits of hybrid X-pinches on the XP and BIN pulsers. Pin length, pin-anode gap and wire surface conditions were varied over a wide range. The diode current and voltage were measured. In experiments with small wire-anode gap (0.1 - 1 mm) development of the expanded dense core of the wire was observed except with lengths of 100-200 microns. Strong mitigation of the electron emission was observed in experiments with heated pins. Work at Cornell was supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836. The work in Lebedev Institute was sponsored by the Russian Foundation for Basic Research Project No. 140201206.

  3. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    Science.gov (United States)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  4. EXPERIMENTAL INVESTIGATION OF THE ADHESIVE CONTACT WITH ELASTOMERS: EFFECT OF SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Lars Voll

    2015-04-01

    Full Text Available Adhesion between an elastomer and a steel indenter was studied experimentally and described with an analytical model. Cylindrical indenters having different roughness were brought into contact with an elastomer with various normal forces. After a “holding time”, the indenter was pulled with a constant velocity, which was the same in all experiments. We have studied the regime of relatively small initial normal loadings, large holding times and relatively large pulling velocities, so that the adhesive force did not depend on the holding time but did depend on the initially applied normal force and was approximately proportional to the pulling velocity. Under these conditions, we found that the adhesive force is inversely proportional to the roughness and proportional to the normal force. For the theoretical analysis, we used a previously published MDR-based model.

  5. [Distortion and vertical fracture of the root: effect produced by condenser design].

    Science.gov (United States)

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.

  6. The discrete dipole approximation with surface interaction for evanescent wave-based characterization of nanostructures on a surface with validation against experimental results

    Science.gov (United States)

    Short, Mitchell R.

    Nanotechnology has become so widely used it can be found in every aspect of life, from cell-phones and computers, to cars, and even athletic socks. As it permeates so many markets, the need for supplemental technologies has also increased. One such needed technology is in the area of nanoscale characterization. Current imaging methods are advanced; however, they do not have the capabilities to characterize the size, shape, composition, and arrangement of nanostructures and nanoparticles in a real-time, unobtrusive manner. The Polarized-Surface-Wave-Scattering system (PSWSS) is a method being researched at the University of Utah that can provide such characterization, although in order for the PSWSS to function accurately through inversion techniques, a predictive forward model must be developed and validated. This work explores the discrete dipole approximation with surface interaction (DDA-SI), an open source MATLAB toolbox, as a predictive model to calculate electromagnetic scattering by objects on a surface illuminated by an evanescent wave generated by total internal reflection (TIR). Far-field scattering predictions via DDA-SI are validated against scaled microwave experimental results for two objects on a surface: a sphere with a diameter of lambda/1.92 and a cube with a side length of lambda/1.785, where lambda refers to the wavelength. A good agreement between experiments and simulations is observed, especially when modified Fresnel reflection coefficients are employed by DDA-SI. Programs to calculate the amplitude scattering matrix and Mueller matrix elements have been also been created. Additionally, the sensitivity of four Mueller matrix elements (M11, M12, M21, and M22) to the particle size, material (gold and silver), shape (sphere and cube), and interparticle spacing, is analyzed. It is found that these four elements are sensitive to changes in shape and interparticle spacing, whereas prove insufficient to difference in material and sizes smaller than

  7. Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method

    Directory of Open Access Journals (Sweden)

    B. S. Pabla

    2016-08-01

    Full Text Available In manufacturing industries, the demand of WC-Co composite is flourishing because of the distinctive characteristics it offers such as: toughness (with hardness, good dimensional stability, higher mechanical strength etc. However, the difficulties in its machining restrict the application and competitiveness of this material. The current article has been targeted at evaluation of the effect of process conditions (varying power rating, cobalt content, tool material, part thickness, tool geometry, and size of abrasive particle on surface roughness in ultrasonic drilling of WC-Co composite. Results showed that abrasive grit size is most influential factor. From the microstructure analysis, the mode of material deformation has been observed and the parameters, i.e. work material properties, grit size, and power rating was revealed as the most crucial for the deformation mode.

  8. Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration.

    Science.gov (United States)

    Song, Young Min; Park, Gyeong Cheol; Jang, Sung Jun; Ha, Jong Hoon; Yu, Jae Su; Lee, Yong Tak

    2011-03-14

    We present bioinspired artificial compound eye surface structures that consist of antireflective subwavelength structures (SWSs) on hexagonally patterned microstructures (MSs), for the purpose of efficient light escaping inside light-emitting materials/devices. Theoretical understanding and geometrical optimization of SWSs on MSs are described together with rigorous coupled-wave analysis. As a proof of this concept, AlGaInP red light-emitting diodes (LEDs) with SWS/MSs were fabricated, and a light output power enhancement of 72.47% was achieved as compared to that of conventional LEDs. The artificial compound eye structures are not limited to LEDs, and the fabrication process is compatible with most semiconductor device manufacturing processes; hence, this concept opens up new possibilities for improving the optical performance of various optoelectronic device applications.

  9. Effects of Exposure to Ozone on the Ocular Surface in an Experimental Model of Allergic Conjunctivitis.

    Science.gov (United States)

    Lee, Hun; Kim, Eung Kweon; Kim, Hee Young; Kim, Tae-Im

    2017-01-01

    Based on previous findings that ozone can induce an inflammatory response in the ocular surface of an animal model and in cultured human conjunctival epithelial cells, we investigated whether exposure to ozone exacerbates symptoms of allergic conjunctivitis. We evaluated the effects of exposure to ozone on conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, production of inflammatory cytokines in tears, and aqueous tear production in a mouse model of allergic conjunctivitis. To validate our in vivo results, we used interleukin (IL)-1α-pretreated conjunctival epithelial cells as an in vitro substitute for the mouse model. We evaluated whether exposure to ozone increased the inflammatory response and altered oxidative status and mitochondrial function in IL-1α-pretreated conjunctival epithelial cells. In the in vivo study, ozone induced increases in conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, and production of inflammatory cytokines, accompanied by a decrease in tear volume. In the in vitro study, exposure to ozone led to additional increases in IL-6 and tumor necrosis factor-α mRNA levels, which were already induced by treatment with IL-1α. Ozone did not induce any changes in cell viability. Pretreatment with IL-1α increased the expression of manganese superoxide dismutase, and exposure to ozone led to additional increments in the expression of this antioxidant enzyme. Ozone did not induce any changes in mitochondrial activity or expression of mitochondrial enzymes and proteins related to mitochondrial function, with the exception of phosphor-mammalian target of rapamycin. Treatment with butylated hydroxyanisole, a free radical scavenger, attenuated the ozone-induced increases in IL-6 expression in IL-1α-pretreated conjunctival epithelial cells. Therefore, we conclude that exposure to ozone exacerbates the detrimental effects on the integrity of the ocular

  10. Experimental study of dual polarized radar return from the sea surface

    Science.gov (United States)

    Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2017-10-01

    Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.

  11. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (p<0.05). Of the bacteria that colocalized with metal(loid)s, Actinobacteria, known for their metal tolerance, had a higher correlation with both As and Fe than Alphaproteobacteria or Gammaproteobacteria. This method demonstrates how coupling these micro-techniques can expand our understanding of micro-scale interactions between roots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Experimental Comparison of Calcium Sulfate (CaSO(4)) Scale Deposition on Coated Carbon Steel and Titanium Surfaces

    Science.gov (United States)

    Al-Otaibi, Dhawi AbdulRahman

    Calcium Sulfate (CaSO4) deposit reduces heat exchange in heat transfer equipment which adversely affects the equipment performance and plant production. This experimental study was conducted by using the Rotating Cylinder Electrode (RCE) equipment available in the university's Center for Engineering Research (CER/RI) to study and compare the effect of solution hydrodynamics on Calcium Sulfate (CaSO4) scale deposition on coated carbon steel and titanium surfaces. In addition, the Scanning Electron Microscopic was used to examine the morphology and distribution of Calcium Sulfate (CaSO 4) crystals deposited on titanium metal surfaces. In this study, the rotational speed was varied from 100 to 2000 RPM to study the behavior of Calcium Sulfate (CaSO4) accumulation on both materials. Based on the experimental results, Calcium Sulfate (CaSO4) scale obtained in the present study was almost constant on coated carbon steel in which the rate of scale deposition is equal to the rate of scale removal. However, the deposition of Calcium Sulfate (CaSO4) observed on titanium material was increased as the speed increased.

  13. Study of the flow field past dimpled aerodynamic surfaces: numerical simulation and experimental verification

    Science.gov (United States)

    Binci, L.; Clementi, G.; D’Alessandro, V.; Montelpare, S.; Ricci, R.

    2017-11-01

    This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier–Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L–stable Singly Diagonally Implicit Runge–Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un–dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.

  14. Determining heat loss from the surface of polymer films via modeling of experimental fluorescence thermometry

    Science.gov (United States)

    Firestone, Gabriel; Bochinski, Jason; Meth, Jeffrey; Clarke, Laura

    Understanding of the heat transfer characteristics of a polymer during processing is critical to predicting and controlling the resulting properties and has been studied extensively in injection molding. As new methodologies for polymer processing are developed, such as photothermal heating, it is important to build an understanding of how heat transfer properties change under these novel conditions. By combining theoretical and experimental approaches, the thermal properties of photothermally heated polymer films were measured. The key idea is that by measuring the steady state temperature profile of a spot heated polymer film via a fluorescence probe (the temperature versus distance from the heated region) and fitting to a theoretical model, heat transfer coefficients can be extracted. We apply this approach to three different polymer systems, crosslinked epoxy, poly(methyl methacrylate) and poly(ethylene oxide) thin films with a range of thicknesses, under different heating laser intensities and with different resultant temperatures. We will discuss the resultant trends and extension of the model beyond a simple spot heating configuration. Support from National Science Foundation CMMI-1069108 and CMMI-1462966.

  15. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia, E-mail: ematoso@hotmail.com [Centro Tecnológico da Marinha em São Paulo (CEA/CTMSP), Iperó, SP (Brazil). Centro Experimental Aramar

    2017-07-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  16. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  17. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.

    Science.gov (United States)

    Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan

    2016-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.

  18. Antibody responses to Borrelia burgdorferi outer surface proteins C and F in experimentally infected Beagle dogs.

    Science.gov (United States)

    Callister, Steven M; LaFleur, Rhonda L; Jobe, Dean A; Lovrich, Steven D; Wasmoen, Terri L

    2015-07-01

    Antibody levels to outer surface proteins C and F (OspC and OspF, respectively) in sera collected from laboratory Beagle dogs at 1, 2, and 4 months after challenge with infected black-legged ticks (Ixodes scapularis) were determined. Each dog was confirmed by culture to harbor Borrelia burgdorferi in the skin (n = 10) or the skin and joints (n = 14). Significant levels of immunoglobulin M (Ig)M or IgG anti-OspC antibodies were detected in single serum samples from only 3 (13%) dogs. Similarly, IgM anti-OspF antibodies were detected in only 1 (4%) serum sample collected from a dog with B. burgdorferi in the skin and joints. In contrast, 4 (29%) dogs with skin and joint infections produced IgG anti-OspF antibodies after 2 months, and the response expanded to include 2 (20%) dogs with skin infection and 4 additional dogs with skin and joint infections (overall sensitivity = 62%) after 4 months. The findings failed to support the utility of OspC-based antibody tests for diagnosing canine Lyme disease, but demonstrated that dogs with B. burgdorferi colonizing joint tissue most often produced significant levels of IgG anti-OspF antibodies. Therefore, additional studies to more thoroughly evaluate the clinical utility of OspF-based antibody tests are warranted. © 2015 The Author(s).

  19. An experimental strategy validated to design cost-effective culture media based on response surface methodology.

    Science.gov (United States)

    Navarrete-Bolaños, J L; Téllez-Martínez, M G; Miranda-López, R; Jiménez-Islas, H

    2017-07-03

    For any fermentation process, the production cost depends on several factors, such as the genetics of the microorganism, the process condition, and the culture medium composition. In this work, a guideline for the design of cost-efficient culture media using a sequential approach based on response surface methodology is described. The procedure was applied to analyze and optimize a culture medium of registered trademark and a base culture medium obtained as a result of the screening analysis from different culture media used to grow the same strain according to the literature. During the experiments, the procedure quantitatively identified an appropriate array of micronutrients to obtain a significant yield and find a minimum number of culture medium ingredients without limiting the process efficiency. The resultant culture medium showed an efficiency that compares favorably with the registered trademark medium at a 95% lower cost as well as reduced the number of ingredients in the base culture medium by 60% without limiting the process efficiency. These results demonstrated that, aside from satisfying the qualitative requirements, an optimum quantity of each constituent is needed to obtain a cost-effective culture medium. Study process variables for optimized culture medium and scaling-up production for the optimal values are desirable.

  20. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2015-09-28

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications.

  1. Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave.

    Science.gov (United States)

    Hema, B S; Chandu, G S; Shiraguppi, V L

    2015-01-01

    The purpose of this in vitro study was to evaluate and compare the cleaning efficiency, preparation time, instrument deformation and fracture with LightSpeed (LS), ProTaper (PT) and EndoWave (Ew) rotary instruments. A total of 45 freshly extracted human mandibular premolars were subjected for the study. They were divided into three groups, each group consisting of 15 teeth. Group 1: The canals were prepared with LS system; Group 2: PT rotary system, Group 3: Ew rotary system. All the groups were prepared according to manufacturer's recommendation, using 5.25% sodium hypochlorite and 17% ethylenediaminetetraacetic acid (dent wash, prime dent) alternately as an irrigants. Crowns of each tooth were removed with diamond disks at the level of cemento enamel junction. Canal length was determined by placing a size 10 K-file. The working length was 0.5 mm short of canal length. Two longitudinal grooves were prepared on the lingual and buccal surfaces of each root to facilitate vertical splitting with a chisel after canal instrumentation. The sections were then observed under scanning electron microscope for presence or absence of debris and smear layer and the photographs were taken at coronal, middle and apical 1/3 with a magnification of × 200 and × 1000 respectively. The time taken to enlarge each canal was recorded in minutes and seconds. The instruments were examined after every use for deformation. The scores recorded were statistically analyzed using one-way analysis of variance and Mann-Whitney test. There was statistically significant difference with regard to removal of debris and smear layer at coronal, middle and apical third for LS versus PT and LS versus Ew (P < 0.01). There was no significant difference between PT and Ew. The mean preparation time for LS, PT and Ew was 1.76, 2.50 and 2.75 respectively. The study demonstrated that, LS instrumentation removed debris and smear layer effectively with shorter preparation time and Ew instrument showed

  2. Numerical-experimental analysis of the effect of surface oxidation on the laser transformation hardening of Cr–Mo steels

    Energy Technology Data Exchange (ETDEWEB)

    Cordovilla, Francisco [Centro Láser UPM, Universidad Politécnica de Madrid, Campus Sur U.P.M. Carretera de Valencia, km. 7,300, 28031 Madrid (Spain); García-Beltrán, Ángel, E-mail: agarcia@etsii.upm.es [Centro Láser UPM, Universidad Politécnica de Madrid, Campus Sur U.P.M. Carretera de Valencia, km. 7,300, 28031 Madrid (Spain); Dominguez, Jesús; Sancho, Paula [IKERGUNE A.I.E., San Antolin, 3, 20870 Elgoibar, Guipúzcoa (Spain); Ocaña, José L. [Centro Láser UPM, Universidad Politécnica de Madrid, Campus Sur U.P.M. Carretera de Valencia, km. 7,300, 28031 Madrid (Spain)

    2015-12-01

    Graphical abstract: - Highlights: • A laser surface hardening model, with oxidation and fast austenization, is proposed. • The oxide layer has to be calculated considering a non-equilibrium chemical reaction. • An innovative formula is demonstrated to relate the oxide thickness with absorption. • Austenite fraction has been obtained using Avrami law from realistic thermal cycles. • Temperatures and metallurgical phases show excellent agreement with experiments. - Abstract: Laser surface hardening is a technology that enables important advantages to be obtained in comparison with conventional techniques in terms of accuracy of the heat affected zone and productivity. Nevertheless, the development of realistic and flexible models has to be fulfilled in order to control the effects of every set of process conditions. Despite many different models having been developed, very few of them deal with the increment of absorption related with the instantaneous value of the layer of oxide growth during the process in a non-protective atmosphere. This work analyzes the problem of oxide formation at the external surface using kinetic relations, whose parameters have been related with the process variables, considering non-equilibrium conditions. Then, the oxide thickness was associated with a value of absorption through an innovative formula that considers the path of the laser radiation in the interface oxide-base material. The thermal calculations obtained by this method have allowed phase changes to be predicted using Avrami law. Both thermal and metallurgical results for different process conditions have been compared with experimental data showing an excellent agreement.

  3. Experimental Determination of the Liquidus Surface of the Cu-O-ZnO-CaO System in Equilibrium with Air

    Science.gov (United States)

    Xia, Longgong; Liu, Zhihong; Taskinen, Pekka

    2016-12-01

    Phase relationships of the Cu-O-ZnO-CaO system in equilibrium with air ( p tot = 1 atm, p_{{{{O}}2 }} = 0.21 {{atm}} ) have been studied using the equilibration and quenching technique within the temperature range from 1273 K to 1773 K (1000 °C to 1500 °C). The chemical compositions of the molten oxide and solid phases in equilibrium were analyzed by EPMA. The eutectic point in the Cu-O-ZnO-CaO system was found to be 1293 K ± 2 K (1020 °C ± 2 °C) and 0.6785 mole fraction tenorite (`CuO'), 0.1793 mole fraction halite (CaO), and 0.1422 mole fraction wurtzite (ZnO). The results from the present study have been used in constructing the liquidus surface of the Cu-O-ZnO-CaO system. The liquidus surface expands dramatically along with increasing temperature, and it moves simultaneously toward the primary phase fields of wurtzite (ZnO) and halite (CaO). The constructed liquidus surfaces have been compared with the isothermal sections (`Cu2O'-ZnO-CaO) calculated by MTDATA 5.10 software and its Mtox 8.1 database. Deviations between the thermodynamically assessed diagrams and the experimental results are significant. Thus, the system requires a reassessment.

  4. Experimental and theoretical study of the adsorption of fumaramide [2]rotaxane on Au(111) and Ag(111) surfaces

    Science.gov (United States)

    Mendoza, Sandra M.; Whelan, Caroline M.; Jalkanen, Jukka-Pekka; Zerbetto, Francesco; Gatti, Francesco G.; Kay, Euan R.; Leigh, David A.; Lubomska, Monika; Rudolf, Petra

    2005-12-01

    Thin films of fumaramide [2]rotaxane, a mechanically interlocked molecule composed of a macrocycle and a thread in a "bead and thread" configuration, were prepared by vapor deposition on both Ag(111) and Au(111) substrates. X-ray photoelectron spectroscopy (XPS) and high-resolution electron-energy-loss spectroscopy were used to characterize monolayer and bulklike multilayer films. XPS determination of the relative amounts of carbon, nitrogen, and oxygen indicates that the molecule adsorbs intact. On both metal surfaces, molecules in the first adsorbed layer show an additional component in the C 1s XPS line attributed to chemisorption via amide groups. Molecular-dynamics simulation indicates that the molecule orients two of its eight phenyl rings, one from the macrocycle and one from the thread, in a parallel bonding geometry with respect to the metal surfaces, leaving three amide groups very close to the substrate. In the case of fumaramide [2]rotaxane adsorption on Au(111), the presence of certain out-of-plane phenyl ring and Au -O vibrational modes points to such bonding and a preferential molecular orientation. The theoretical and experimental results imply that the three-dimensional intermolecular configuration permits chemisorption at low coverage to be driven by interactions between the three amide functions of fumaramide [2]rotaxane and the Ag(111) or Au(111) surface.

  5. Evaluation of a new experimental test procedure to more accurately determine the surface infiltration rate of permeable pavement systems

    Directory of Open Access Journals (Sweden)

    Terry Lucke

    2014-01-01

    Full Text Available Permeable pavements are specifically designed to promote the infiltration of stormwater through the paving surface in order to reduce run-off volumes and to improve water quality by removing sediment and other pollutants. However, research has shown that permeable pavements can become clogged over time and this reduces their infiltration capacity. In order to assess the infiltration of permeable pavements, a variety of infiltration test procedures have been utilised in the past. However, the results have generally been inconsistent, and have shown a large variation in the range of infiltration rates measured. This paper evaluates the performance of two new experimental test methods developed in the Netherlands to more accurately determine the surface infiltration rate of existing permeable pavement installations. The two methods were the falling head full-scale method and the constant head full-scale method. Both of the new methods involved inundating a large area of the pavement in order to determine the infiltration rate through the pavement surface. Double ring infiltrometer tests were also performed to enable a comparison of the results. The study found that the new falling head full-scale testing method produced the most accurate results.

  6. EXPERIMENTAL DESIGN AND RESPONSE SURFACE MODELING OF PI/PES-ZEOLITE 4A MIXED MATRIX MEMBRANE FOR CO2 SEPARATION

    Directory of Open Access Journals (Sweden)

    T. D. KUSWORO

    2015-09-01

    Full Text Available This paper investigates the effect of preparation of polyimide/polyethersulfone (PI/PES blending-zeolite mixed matrix membrane through the manipulation of membrane production variables such as polymer concentration, blending composition and zeolite loading. Combination of central composite design and response surface methodology were applied to determine the main effect and interaction effects of these variables on membrane separation performance. The quadratic models between each response and the independent parameters were developed and the response surface models were tested with analysis of variance (ANOVA. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The separation performance of mixed matrix membrane had been tested using pure gases such as CO2 and CH4. The results showed that zeolite loading was the most significant variable that influenced the CO2/CH4 selectivity among three variables and the experimental results were in good agreement with those predicted by the proposed regression models. The gas separation performance of the membrane was relatively higher as compare to polymeric membrane. Therefore, combination of central composite design and response surface methodology can be used to prepare optimal condition for mixed matrix membrane fabrication. The incorporation of 20 wt% zeolite 4A into 25 wt% of PI/PES matrix had resulted in a high separation performance of membrane material.

  7. Film evaporation from a micro-grooved surface - An approximate heat transfer model and its comparison with experimental data

    Science.gov (United States)

    Xu, X.; Carey, V. P.

    1990-10-01

    An analytical model is presented that can be used to predict the heat-transfer characteristics of film evaporation on a microgroove surface. The model assumes that the liquid flow along a 'V' shaped groove channel is driven primarily by the capillary pressure difference due to the receding of the meniscus toward the apex of the groove, and the flow up the groove side wall is driven by the disjoining pressure difference. It also assumes that conduction across the thin liquid film is the dominant mechanism of heat transfer. A correlation between the Nusselt number and a nondimensional parameter Psi is developed from this model which relates the heat transfer for the microgroove surface to the fluid properties, groove geometry, and the constants for the disjoining pressure relation. The results of a limited experimental study of the heat transfer during vaporization of a liquid coolant on a microgroove surface are also reported. Film-evaporation transfer coefficients inferred from these experiments are found to correlate fairly well in terms of Nusselt number and Psi parameter format developed in the model. The results of this study suggest that disjoining pressure differences may play a central role in evaporation processes in microgroove channels.

  8. Calculation and experimental researches into the heat exchange surface formed by oppositely directed truncated cones with saddle-shaped connection straps

    Science.gov (United States)

    Baranov, A. Ye; Ilmov, D. N.; Mavrov, V. A.; Mamontov, Yu N.; Skorokhodov, A. S.

    2017-09-01

    The article has presented experimental data on the investigation of thermal and hydraulic characteristics of heat exchangers made of thin-walled panels with the surface formed by oppositely directed truncated cones with saddle-shaped connection straps. An approach to the mathematical description of surfaces of given class have also been proposed, and numerical modeling of stream and heat transfer have been performed. Results of numerical modeling have been compared with the experimental ones.

  9. Experimental approach to determining subsurface leakage from a surface impoundment using a radioisotope tracer

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, T.L.; Story, J.D.; Larsen, I.L.; Schultz, F.J.

    1986-01-01

    Bromine-82, a 35.3-h half-life radionuclide, was used as a tracer to determine the paths and rates of leakage from an unlined, 1,000,000-gal (3,785,000 L), surface impoundment at the Oak Ridge National Laboratory. Since the impoundment is underlain and surrounded by storm sewer and sanitary sewer lines (most of them predating the impoundment), known and suspected leak sites in storm drain catch basins and sanitary sewer manholes were sampled periodically and analyzed for /sup 82/Br. A series of four ground water monitoring wells - three downgradient and one upgradient from the impoundment - were also sampled for /sup 82/Br. Although the catch basin and manhole samples picked up /sup 82/Br in leakage from the impoundment less than 5 h after application of the tracer, the monitoring well samples did not contain detectable levels of the radionuclide. It was concluded that the monitoring wells were sampling groundwater moving through the formation, whereas the storm drains and manholes were sampling water leaking rapidly through secondary porosity and along preferred pathways. The decline in tracer concentration as a function of time was used to determine the residence time of water in the pond and hence the flow rate through the pond. This flow rate, when compared with the known outflow rate, indicated that the leakage flow was small. Hence, the main value of the test was to identify rapid leakage pathways. The experiment demonstrates the need for sampling subsurface drain systems as part of an integrated monitoring system for leak detection. The effectiveness of /sup 82/Br as a tracer for rapid leaks was also shown.

  10. OpenSimRoot: widening the scope and application of root architectural models.

    Science.gov (United States)

    Postma, Johannes A; Kuppe, Christian; Owen, Markus R; Mellor, Nathan; Griffiths, Marcus; Bennett, Malcolm J; Lynch, Jonathan P; Watt, Michelle

    2017-08-01

    OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species. The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate the following: resource costs of developmental and anatomical traits; trait synergisms; and (interspecies) root competition. OpenSimRoot can model three-dimensional images from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) of roots in soil. New modules include: soil water-dependent water uptake and xylem flow; tiller formation; evapotranspiration; simultaneous simulation of mobile solutes; mesh refinement; and root growth plasticity. OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and to gain a mechanistic understanding at system scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Experimental Results and Model Calculations of a Hybrid Adsorption-Compression Heat Pump Based on a Roots Compressor and Silica Gel-Water Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.

    2013-10-15

    Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.

  12. Experimental Reconstructions of Surface Temperature using the PAGES 2k Network

    Science.gov (United States)

    Wang, Jianghao; Emile-Geay, Julien; Vaccaro, Adam; Guillot, Dominique; Rajaratnam, Bala

    2014-05-01

    Climate field reconstructions (CFRs) of the Common Era provide uniquely detailed characterizations of natural, low-frequency climate variability beyond the instrumental era. However, the accuracy and robustness of global-scale CFRs remains an open question. For instance, Wang et al. (2013) showed that CFRs are greatly method-dependent, highlighting the danger of forming dynamical interpretations based on a single reconstruction (e.g. Mann et al., 2009). This study will present a set of new reconstructions of global surface temperature and compare them with existing reconstructions from the IPCC AR5. The reconstructions are derived using the PAGES 2k network, which is composed of 501 high-resolution temperature-sensitive proxies from eight continental-scale regions (PAGES2K Consortium, 2013). Four CFR techniques are used to produce reconstructions, including RegEM-TTLS, the Mann et al. (2009) implementation of RegEM-TTLS (hereinafter M09-TTLS), CCA (Smerdon et al., 2010) and GraphEM (Guillot et al., submitted). First, we show that CFRs derived from the PAGES 2k network exhibit greater inter-method similarities than the same methods applied to the proxy network of Mann et al. (2009) (hereinafter M09 network). For instance, reconstructed NH mean temperature series using the PAGES 2k network are in better agreement over the last millennium than the M09-based reconstructions. Remarkably, for the reconstructed temperature difference between the Medieval Climate Anomaly and the Little Ice Age, the spatial patterns of the M09-based reconstructions are greatly divergent amongst methods. On the other hand, not a single PAGES 2k-based CFR displays the La Niña-like pattern found in Mann et al. (2009); rather, no systematic pattern emerges between the two epochs. Next, we quantify uncertainties associated with the PAGES 2k-based CFRs via ensemble methods, and show that GraphEM and CCA are less sensitive to random noise than RegEM-TTLS and M09-TTLS, consistent with pseudoproxy

  13. Prediction of the Strain Response of Poly-AlN/(100Si Surface Acoustic Wave Resonator and Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Shuo Chen

    2016-04-01

    Full Text Available The strain sensitivity of the Aluminum Nitride (AlN/Silicon (Si surface acoustic wave resonator (SAWR is predicted based on a modeling method introduced in this work, and further compared with experimental results. The strain influence on both the period of the inter-digital transducer (IDT and the sound velocity is taken into consideration when modeling the strain response. From the modeling results, AlN and Si have opposite responses to strain; hence, for the AlN/Si-based SAWR, both a positive and a negative strain coefficient factor can be achieved by changing the thickness of the AlN layer, which is confirmed by strain response testing based on a silicon cantilever structure with two AlN configurations (1 μm and 3 μm in thickness, respectively.

  14. Prediction of the Strain Response of Poly-AlN/(100)Si Surface Acoustic Wave Resonator and Experimental Analysis.

    Science.gov (United States)

    Chen, Shuo; You, Zheng

    2016-04-27

    The strain sensitivity of the Aluminum Nitride (AlN)/Silicon (Si) surface acoustic wave resonator (SAWR) is predicted based on a modeling method introduced in this work, and further compared with experimental results. The strain influence on both the period of the inter-digital transducer (IDT) and the sound velocity is taken into consideration when modeling the strain response. From the modeling results, AlN and Si have opposite responses to strain; hence, for the AlN/Si-based SAWR, both a positive and a negative strain coefficient factor can be achieved by changing the thickness of the AlN layer, which is confirmed by strain response testing based on a silicon cantilever structure with two AlN configurations (1 μm and 3 μm in thickness, respectively).

  15. Optimal root arrangement of cereal crops

    Science.gov (United States)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  16. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  17. Attenuation of nociceptive pain and inflammatory disorders by total steroid and terpenoid fraction of Euphorbia tirucalli Linn root in experimental in vitro and in vivo model.

    Science.gov (United States)

    Palit, Partha; Mukherjee, Dhrubojyoti; Mahanta, Poulami; Shadab, Md; Ali, Nahid; Roychoudhury, Shubhadeep; Asad, Md; Mandal, Subhash C

    2017-10-23

    The plant Euphorbia tirucalli Linn has been successfully used as a tribal folk medicine in India and Africa for the management of acute inflammatory, arthritic, nociceptive pain and asthmatic symptoms. The present study was conducted to assess the anti-inflammatory, analgesic, anti-asthmatic and anti-arthritic role of the total steroid and terpenoid rich fractions of the hydro-alcoholic extract of E. tirucalli root (STF-HAETR). STF-HAETR fraction demonstrated 71.25 ± 2.5 and 74.25 ± 5.1% protection against acetic acid-induced pain and central neuropathic pain at 75 and 100 mg/kg doses, respectively. It showed 96.97% protection against acute inflammation at 100 mg/kg with 1.6-fold better activity than the standard drug. The fraction exhibited such efficacy via inhibition of proinflammatory cytokines TNF-α, IFN-γ, by 61.12 and 65.18%, respectively, at 100 μg/mL. Inhibition of cyclooxygenase and Nitric oxide synthase in a dose-dependent manner affirms its analgesic and anti-inflammatory activity. The spectrophotometric analysis reveals that STF-HAETR induces ameliorative effect against heat-induced denaturation of Bovine serum albumin (BSA) and exhibits significant anti-proteinase activity. The plant fraction also demonstrated anti-asthmatic activity by displaying 62.45% protection against histamine induced bronchoconstriction or dyspnoea. Our findings suggest that STF-HAETR could be an effective safe therapeutic agent to treat nociceptive pain, acute inflammation, asthma, and arthritis which may authenticate its traditional use.

  18. Examination of Experimental Designs and Response Surface Methods for Uncertainty Analysis of Production Forecast: A Niger Delta Case Study

    Directory of Open Access Journals (Sweden)

    Akeem O. Arinkoola

    2015-01-01

    Full Text Available The purpose of this paper is to examine various DoE methods for uncertainty quantification of production forecast during reservoir management. Considering all uncertainties for analysis can be time consuming and expensive. Uncertainty screening using experimental design methods helps reducing number of parameters to manageable sizes. However, adoption of various methods is more often based on experimenter discretions or company practices. This is mostly done with no or little attention been paid to the risks associated with decisions that emanated from that exercise. The consequence is the underperformance of the project when compared with the actual value of the project. This study presents the analysis of the three families of designs used for screening and four DoE methods used for response surface modeling during uncertainty analysis. The screening methods (sensitivity by one factor at-a-time, fractional experiment, and Plackett-Burman design were critically examined and analyzed using numerical flow simulation. The modeling methods (Box-Behnken, central composite, D-optima, and full factorial were programmed and analyzed for capabilities to reproduce actual forecast figures. The best method was selected for the case study and recommendations were made as to the best practice in selecting various DoE methods for similar applications.

  19. Experimental Study of Back Wall Dross and Surface Roughness in Fiber Laser Microcutting of 316L Miniature Tubes

    Directory of Open Access Journals (Sweden)

    Erika García-López

    2017-12-01

    Full Text Available Laser cutting is a key technology for the medical devices industry, providing the flexibility, and precision for the processing of sheets, and tubes with high quality features. In this study, extensive experimentation was used to evaluate the effect of fiber laser micro-cutting parameters over average surface roughness ( R a and back wall dross ( D bw in AISI 316L stainless steel miniature tubes. A factorial design analysis was carried out to investigate the laser process parameters: pulse frequency, pulse width, peak power, cutting speed, and gas pressure. A real laser beam radius of 32.1 μm was fixed in all experiments. Through the appropriate combination of process parameters (i.e., high level of pulse overlapping factor, and pulse energy below 32 mJ it was possible to achieve less than 1 μm in surface roughness at the edge of the laser-cut tube, and less than 3.5% dross deposits at the back wall of the miniature tube.

  20. Microwave selective thermal development of latent fingerprints on porous surfaces: potentialities of the method and preliminary experimental results.

    Science.gov (United States)

    Rosa, Roberto; Veronesi, Paolo; Leonelli, Cristina

    2013-09-01

    The thermal development of latent fingerprints on paper surfaces is a simple, safe, and chemicals-free method, based on the faster heating of the substrate underlying the print residue. Microwave heating is proposed for the first time for the development of latent fingerprints on cellulose-based substrate, in order to add to the thermal development mechanism the further characteristic of being able to heat the fingerprint residues to a different extent with respect to the substrate, due to the intrinsic difference in their dielectric properties. Numerical simulation was performed to confirm and highlight the selectivity of microwaves, and preliminary experimental results point out the great potentialities of this technique, which allowed developing both latent sebaceous-rich and latent eccrine-rich fingerprints on different porous surfaces, in less than 30 sec time with an applied output power of 500 W. Microwaves demonstrated more effectiveness in the development of eccrine-rich residues, aged up to 12 weeks. © 2013 American Academy of Forensic Sciences.

  1. Effect of hypotonic 0.18% sodium hyaluronate eyedrops on inflammation of the ocular surface in experimental dry eye.

    Science.gov (United States)

    Oh, Han Jin; Li, Zhengri; Park, Soo-Hyun; Yoon, Kyung Chul

    2014-09-01

    To investigate the efficacy of hypotonic 0.18% sodium hyaluronate (SH) eyedrops in a mouse model of experimental dry eye (EDE). EDE was induced in C57BL/6 mice by a subcutaneous scopolamine injection and an air draft. The mice were divided into 4 groups according to topical treatment regimens: EDE control, isotonic 0.5% carboxymethycellulose (CMC), isotonic 0.1% SH, and hypotonic 0.18% SH. Tear volume, corneal smoothness, and corneal staining scores were measured at 5 and 10 days of EDE. Multiplex immunobead assay, immunohistochemistry, and flow cytometry for proinflammatory cytokines, chemokines, and inflammatory molecules were performed at 10 days of EDE. The 0.18% SH group had a significantly lower corneal smoothness and staining scores than the 0.5% CMC and 0.1% SH groups at 10 days of EDE (PHypotonic 0.18% SH eyedrops are more effective in improving ocular surface irregularity and staining and decreasing inflammatory cytokines, chemokines, and cells on the ocular surface compared with isotonic 0.5% CMC or 0.1% SH eyedrops in the treatment of EDE.

  2. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    Science.gov (United States)

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  3. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    Science.gov (United States)

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  4. Melamine structures on the Au(111) surface

    NARCIS (Netherlands)

    Silly, Fabien; Shaw, Adam Q.; Castell, Martin R.; Briggs, G. A. D.; Mura, Manuela; Martsinovich, Natalia; Kantorovich, Lev

    2008-01-01

    We report on a joint experimental and theoretical study of the ordered structures of melamine molecules formed on the Au(111)-(22 x root 3) surface. Scanning tunneling microscopy (STM) images taken under UHV conditions reveal two distinct monolayers one of which has never been reported before on

  5. Interplay between experimental dental pellicles and stannous-containing toothpaste on dental erosion-abrasion.

    Science.gov (United States)

    Hara, A T; Lippert, F; Zero, D T

    2013-01-01

    The interaction between stannous-containing dentifrice slurry and experimentally formed pellicles was investigated on enamel and root dentin using an erosion-remineralization-abrasion cycling model. The remineralizing solutions contained no proteins (negative control), mucin, casein, mucin + casein or albumin, for experimental pellicle formation. Toothbrushing was performed with fluoride toothpaste, with (TP + Sn) and without (TP) 3,500 ppm Sn. TP + Sn reduced surface loss for both enamel and root dentin (p dental erosion-abrasion protection. A similar trend was observed for root dentin, although less pronounced. Copyright © 2013 S. Karger AG, Basel.

  6. ROOT MORPHOLOGY AND NUTRIENT UPTAKE KINETICS BY AUSTRALIAN CEDAR CLONES

    Directory of Open Access Journals (Sweden)

    RAQUEL OLIVEIRA BATISTA

    2016-01-01

    Full Text Available Evaluation of root morphology and kinetic parameters assist in the characterization of genotypes in nutrient uptake efficiency. This study characterized Australian cedar clones concerning their nutrient uptake capacity at the seedling stage through root morphology and the kinetics of P, K, Ca, and Mg uptake. The experiment was conducted using a nutrient solution in a greenhouse and growth chamber. Four Australian cedar clones (HE, XF, XD, and XE, provided by Bela Forest View ( Empresa Florestal Bela Vista , were tested using a completely randomized design with five repetitions, totaling 20 experimental plots. The length, volume, surface area, average diameter, and root length per diameter class, as well as the uptake parameters V max , K m , C min , and the estimated inflow of P, K, Ca, and Mg, were determined. The root morphological characteristics varied between Australian cedar clones; clone XD exhibited the largest root system development. The uptake efficiency of P, K, Ca, and Mg varied between cedar Australian clones. When availability differed, clones XE and XF exhibited greater plasticity in the uptake of P and K respectively, and similar results were found for clone HE in the uptake of Ca and Mg.

  7. Swarming behavior in plant roots.

    Directory of Open Access Journals (Sweden)

    Marzena Ciszak

    Full Text Available Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming.

  8. Role of Fe(III)-carboxylates in AMZ photodegradation: A response surface study based on a Doehlert experimental design.

    Science.gov (United States)

    Graça, Cátia A L; Correia de Velosa, Adriana; Teixeira, Antonio Carlos S C

    2017-10-01

    Photochemical redox reactions of Fe(III) complexes in surface waters are important sources of radical species, therefore contributing to the sunlight-driven elimination of waterborne recalcitrant contaminants. In this study, the effects of three Fe(III)-carboxylates (i.e., oxalate, citrate, and tartrate) on the UVA photoinduced oxidation of the herbicide amicarbazone (AMZ) were investigated. A Doehlert experimental design was applied to find the Fe(III):ligand ratios and pH that achieved the fastest AMZ degradation rate. The results indicated optimal ratios of 1:10 (Fe(III):oxalate), 1:4 (Fe(III):citrate), and 1:1 (Fe(III):tartrate), with the [Fe(III)]0 set at 0.1 mmol L-1 and the best pH found to be 3.5 for all the complexes. In addition, a statistical model that predicts the observed degradation rate constant (kobs) as a function of pH and Fe(III):carboxylate ratio was obtained for each complex, enabling AMZ-photodegradation predictions based on these two variables. To the best of our knowledge, this is the first time that such models are proposed. Not only the pH-dependent speciation of Fe(III) in solution but also the time profiles of photogenerated OH, Fe(II), and H2O2 gave appropriate support to the experimental results. Additional experiments using a sampled sewage treatment plant effluent suggest that the addition of aqua and/or Fe(III)-oxalate complexes to the matrix may also be effective for AMZ removal from natural waters in case their natural occurrence is not high enough to promote pollutant degradation. Therefore, the inclusion of Fe(III)-complexes in investigations dealing with the environmental fate of emerging pollutants in natural waterbodies is strongly recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effectiveness of DIAGNOdent in Detecting Root Caries Without Dental Scaling Among Community-dwelling Elderly.

    Science.gov (United States)

    Zhang, Wen; McGrath, Colman; Lo, Edward C M

    The purpose of this clinical research was to analyze the effectiveness of DIAGNOdent in detecting root caries without dental scaling. The status of 750 exposed, unfilled root surfaces was assessed by visual-tactile examination and DIAGNOdent before and after root scaling. The sensitivity and specificity of different cut-off DIAGNOdent values in diagnosing root caries with reference to visual-tactile criteria were evaluated on those root surfaces without visible plaque/calculus. The DIAGNOdent values from sound and carious root surfaces were compared using the nonparametric Mann-Whitney U-test. The level of statistical significance was set at 0.05. On root surfaces without plaque/calculus, significantly different (p 0.05). Furthermore, on root surfaces with visible calculus, all DIAGNOdent readings obtained from sound root surfaces were > 50, which might be misinterpreted as carious. After scaling, the DIAGNOdent readings obtained from sound root surfaces (8.1 ± 11.3), active carious root surfaces (37.9 ± 31.9) and inactive carious root surfaces (24.9 ± 11.5) presented significant differences (p sensitivity and specificity in detecting root caries on root surfaces without visible plaque/calculus before scaling, but the combined sensitivity and specificity are both around 70%. These findings suggest that on exposed, unfilled root surfaces without visible plaque/calculus, DIAGNOdent can be used as an adjunct to the visual-tactile criteria in detecting root-surface status without pre-treatment by dental scaling.

  10. Science to the people! (and experimental politics): searching for the roots of participatory discourse in science and technology in the 1970s in France.

    Science.gov (United States)

    Quet, Mathieu

    2014-08-01

    The current conception of political participation in governmental institutions is deeply marked by the notions of deliberation and precaution. This normative conception of participatory politics neglects, backgrounds or disqualifies other participatory practices, in so far as they are not connected to deliberation and precaution. However, participation has not always been defined in such a restricted way: the current conception of participation is a product of the 1980s and 1990s. In this paper, the meaning ascribed to the notion of participation in the 1970s in France is explored through the study of discourses produced in three fields: the Science Policy Division of the OECD, the French radical science movement, and the emerging STS academic field. As is shown, some of the bases of the current notion of participation originate in the 1970s. Nevertheless, it is argued that in these years, the notion of participation has more to do with experimentation than with deliberation and precaution. Therefore, the conception of participation in the 1970s differs greatly from the current one. Methodologically, this paper combines tools offered by the social history of science and the French school of discourse analysis.

  11. Skin Permeation Enhancers and their Effects on Narcotic Transdermal Drug Delivery Systems through Response Surface Experimental Design

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2014-02-01

    Full Text Available Drug delivery through skin is often obstructed by low permeability of skin towards most drugs; however, such problem would be solved by application of skin penetration enhancers in the formulations. In the present study, a drug in adhesive patch with buprenorphine as active ingredient was prepared. Drug-in-adhesive transdermal drug delivery systems with different chemical penetration enhancers were designed. For this purpose a response-surface experimental design was used. Response surface methodology based on a three-level, three-variable Box–Behnken design was used to evaluate the interactive effects of dependent variables such as: the rate of skin permeation and adhesion properties including peel strength and tack value. The parameters such as drug release and adhesion were used as independent variables. Lev