WorldWideScience

Sample records for experimental research facility

  1. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  2. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  3. In-pile experimental facility needs for LMFR safety research

    International Nuclear Information System (INIS)

    Kawata, Norio; Niwa, Hajime

    1994-01-01

    Although the achievement of the safety research during the past years has been significant, there still exists a strong need for future research, especially when there is prospect for future LMFR commercialization. In this paper, our current views are described on future research needs especially with a new in-pile experimental facility. The basic ideas and progress are outlined of a preliminary feasibility study. (author)

  4. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  5. MYRRHA. An experimental ADS Facility for Research and Development

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    2006-01-01

    Full text of publication follows: Since 1998, SCK-CEN in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose ADS for R and D applications MYRRHA - and is conducting an associated R and D support programme. MYRRHA is an Accelerator Driven System (ADS) under development at Mol in Belgium and aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various R and D applications. It consists of a proton accelerator delivering a 350 MeV * 5 mA proton beam to a liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core. In a first stage, the project focuses mainly on demonstration of the ADS concept, safety research on sub-critical systems and nuclear waste transmutation studies. In a later stage, the device will also be dedicated to research on structural materials, nuclear fuel, liquid metal technology and associated aspects and on sub-critical reactor physics. Subsequently, it will be used as fast spectrum irradiation facility and as radioisotope production facility. Along the above design features, the MYRRHA project team is developing the MYRRHA project as a multipurpose irradiation facility for R and D applications on the basis of an Accelerator Driven System (ADS). The project is intended to fit into the European strategy towards an ADS Demo facility for nuclear waste transmutation as described in the PDS-XADS FP5 Project. As such it should serve the following task catalogue: ADS concept demonstration, Safety studies for ADS, MA transmutation studies, LLFP transmutation studies, Medical radioisotopes, Material research, Fuel research. A first preliminary conceptual design file of MYRRHA was completed by the end of 2001 and has been reviewed by an International Technical Guidance Committee that concluded that there are no show stoppers in the project even thought some topics such as the safety studies and the fuel qualification need to be addressed

  6. Joint Actinide Shock Physics Experimental Research (JASPER) Facility Update

    International Nuclear Information System (INIS)

    Conrad, C. H.; Miller, J.; Cowan, M.; Martinez, M.; Whitcomb, B.

    2003-01-01

    The JASPER Facility utilizes a Two-Stage Light Gas Gun to conduct equation-of-state(EOS) experiments on plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and control interfaces and containment. The containment systems that were developed for this project will be presented

  7. Joint Actinide Shock Physics Experimental Research (JASPER) Facility Overview

    International Nuclear Information System (INIS)

    Konrad, C.H.; Braddy, R.W.; Martinez, Mark

    2001-01-01

    The JASPER Facility will utilize a Two-Stage Light Gas Gun to conduct equation-of-state (EOS) experiments of plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and mission. The primary and secondary containment systems that were developed for this project will be presented. Primary gun diagnostics and timing will also be discussed

  8. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively

  9. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  10. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  11. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  12. The Hobbs Oil and Water Experimental Facility of the Waste-Management Education and Research Consortium

    International Nuclear Information System (INIS)

    Martin, F.D.; Bretz, R.E.; Bowman, R.S.; Kieft, T.L.; Cadena, F.

    1992-01-01

    The Hobbs Oil and Water Experimental (HOWE) Facility came on-line as a research component of the Waste-Management Education and Research Consortium (WERC) when funding for the Consortium became official in late February 1990. As a support facility for WERC, which was established to expand the ability of this nation to manage hazardous, radioactive, and solid wastes through a multidisciplinary approach, HOWE can tap into the expertise that resides at three major New Mexico universities, on Native American community college, and two national laboratories. The intention of the HOWE is to provide education, as well as research and development programs, that reflect concerns of the petroleum industry in the United States. Personnel work to solve environmental problems and assess the impact to the industry of regulatory actions pertaining to those problems. Leadership for the program is provided from the New Mexico Institute of Mining and Technology at Socorro, NM, by Technical Leaders F.D. Martin, Director of the Petroleum Recovery Research Center, and Dr. R.E. Bretz of the petroleum engineering faculty. The HOWE site is administered by Mike DeMarco, Director of the Petroleum Technology Program at the New Mexico Junior College in Hobbs, NM. Currently, the HOWE laboratory is being provided with state-of-the-art equipment to support research projects or field demonstration activities. Programs include research pertaining to groundwater pollution transport processes, slurry-phase bioremediation of oilfield production pit sludges, and treatment of produced brines or contaminated waters. This paper introduces the HOWE and discusses the research programs relevant to the petroleum industry that are presently underway or planned. Future collaborative efforts with industry that are presently underway or planned. Future collaborative efforts with industry groups are being encouraged

  13. The experimental sodium facility NAVA

    International Nuclear Information System (INIS)

    Langenbrunner, H.; Grunwald, G.; May, R.

    1976-01-01

    Within the framework of preparations for the introduction of sodium cooled fast breeder reactors an experimental sodium facility was installed at the Central Institute of Nuclear Research at Rossendorf. Design, engineering aspects and operation of this facility are described; operating experience is briefly discussed. (author)

  14. EXPERIMENTAL AND COMPUTATIONAL ACTIVITIES AT THE OREGON STATE UNIVERSITY NEES TSUNAMI RESEARCH FACILITY

    Directory of Open Access Journals (Sweden)

    S.C. Yim

    2009-01-01

    Full Text Available A diverse series of research projects have taken place or are underway at the NEES Tsunami Research Facility at Oregon State University. Projects range from the simulation of the processes and effects of tsunamis generated by sub-aerial and submarine landslides (NEESR, Georgia Tech., model comparisons of tsunami wave effects on bottom profiles and scouring (NEESR, Princeton University, model comparisons of wave induced motions on rigid and free bodies (Shared-Use, Cornell, numerical model simulations and testing of breaking waves and inundation over topography (NEESR, TAMU, structural testing and development of standards for tsunami engineering and design (NEESR, University of Hawaii, and wave loads on coastal bridge structures (non-NEES, to upgrading the two-dimensional wave generator of the Large Wave Flume. A NEESR payload project (Colorado State University was undertaken that seeks to improve the understanding of the stresses from wave loading and run-up on residential structures. Advanced computational tools for coupling fluid-structure interaction including turbulence, contact and impact are being developed to assist with the design of experiments and complement parametric studies. These projects will contribute towards understanding the physical processes that occur during earthquake generated tsunamis including structural stress, debris flow and scour, inundation and overland flow, and landslide generated tsunamis. Analytical and numerical model development and comparisons with the experimental results give engineers additional predictive tools to assist in the development of robust structures as well as identification of hazard zones and formulation of hazard plans.

  15. CIRCUS and DESIRE: Experimental facilities for research on natural-circulation-cooled boiling water reactors

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Haden, T.H.J.J. van der; Zboray, R.; Manera, A.; Mudde, R.F.

    2002-01-01

    At the Delft University of Technology two thermohydraulic test facilities are being used to study the characteristics of Boiling Water Reactors (BWRs) with natural circulation core cooling. The focus of the research is on the stability characteristics of the system. DESIRE is a test facility with freon-12 as scaling fluid in which one fuel bundle of a natural-circulation BWR is simulated. The neutronic feedback can be simulated artificially. DESIRE is used to study the stability of the system at nominal and beyond nominal conditions. CIRCUS is a full-height facility with water, consisting of four parallel fuel channels and four parallel bypass channels with a common riser or with parallel riser sections. It is used to study the start-up characteristics of a natural-circulation BWR at low pressures and low power. In this paper a description of both facilities is given and the research items are presented. (author)

  16. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  17. Experimental facilities for research of properties and behaviour of fluoride salts

    International Nuclear Information System (INIS)

    Hosnedl, P.; Jilek, M.; Kroc, V.; Pedal, L.; Valenta, V.; Vodicka, J.

    1999-01-01

    SKODA JS s.r.o. (Czech leading nuclear technology manufacturer) prepared and manufactured experimental loops for research and verification of properties and behaviour of fluoride salts for primary and secondary circuit, construction materials and ADTT systems technological components for the operation in the Nuclear Research Institute Rez plc fluorine chemistry laboratory. This paper presents charts and experimental program for molten fluoride salts experimental loops with natural circulation. Further on, the paper describes extension of the loops for research with forced circulation and next works for steam generator model verification and connection with the loop of Energovyzkum Brno. The loops are designed and constructed to obtain a sufficient amount of experience on ADTT technology. The research and utilisation program covers questions of corrosion and intergranular corrosion of structural materials, research of material properties and welding, research of fluoride fluid properties, measuring of thermo-hydraulic properties of molten salt fluoride fluids, heat transfer and hydraulics, development and tests of some plant components (steam generators, heat exchangers, pumps, valves) and other engineering issues. Two electrolyzers have been manufactured for the research of fuel/coolant fluoride salts mixture purification. One for the production of hydrogen fluoride, and the other for the research of salts purification. (author)

  18. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  19. Overview of Japan Proton Accelerator Research Complex (J-PARC) project and Materials and Life Science Experimental Facility (MLF)

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2008-01-01

    The J-PARC project has been conducted jointly by JAERI and KEK since 2001. This paper reports an overview and current status of the project. The high intensity proton accelerator consists of a 400 MeV Linac, a 3 GeV synchrotron and 50 GeV synchrotron to deliver MW level pulsed proton beam to experimental facilities. The MW proton power will provide an advanced scientific experimental research complex aiming at making breakthroughs in materials and life science with neutron and muon, nuclear and elementary physics, etc. Regarding the project being close to its completion in 2008, this paper describes the overview of J-PARC project with emphasis of the Materials and Life Science Experimental Facility, in which the MW pulsed neutron and muon sources, are placed to provide high quality neutron and muon beams to the world wide users. (author)

  20. Status and Plans for the National Spherical Torus Experimental Research Facility

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bialek, J.M.; Bigelow, T.; Bitter, M.

    2005-01-01

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions

  1. Status and plans for the national spherical torus experimental research facility

    International Nuclear Information System (INIS)

    Ono, Masayuki; Bell, M.G.; Bell, R.E.

    2005-01-01

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high β, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high β Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high β and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions. (author)

  2. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described.

  3. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described

  4. Consequences of the conversion of research reactor cores on experimental facilities at the example of a cold neutron source

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Goebs, H.; Stroemich, A.

    1985-01-01

    The consequences for and specifically the potential reduction of the performance of research reactors have been in discussions very often within the last five years as one of the draw-backs which has to be paid for the reduction of the proliferation risk at research reactor plants. Up to now and up to our knowledge the available results are restricted to unperturbated fluxes. Thus, this contribution makes the attempt to demonstrate the consequence of core conversion on an example of a real experimental facility and - at the same time - on one that is going to be used in the next decade a lot, i.e. a cold neutron source (CNS). (author)

  5. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  6. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  7. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  8. THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S., E-mail: gupta@becker-technologies.com [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Schmidt, E.; Laufenberg, B. von; Freitag, M.; Poss, G. [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Funke, F. [AREVA GmbH, P.O. Box 1109, 91001 Erlangen (Germany); Weber, G. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Forschungszentrum, Boltzmannstraße 14, 85748 Garching (Germany)

    2015-12-01

    Highlights: • Large scale facility for investigating representative LWR severe accident scenarios. • Coupled effect tests in the field of thermal-hydraulics, hydrogen, aerosol and iodine. • Measurement techniques improved and adapted for severe accident conditions. • Testing of passive mitigation systems (e.g. PAR) under accident conditions. • THAI data application for validation and development of CFD and LP codes. - Abstract: The test facility THAI (thermal-hydraulics, hydrogen, aerosol, and iodine) aims at addressing open questions concerning gas distribution, behaviour of hydrogen, iodine and aerosols in the containment of light water reactors during severe accidents. Main component of the facility is a 60 m{sup 3} stainless steel vessel, 9.2 m high and 3.2 m in diameter, with exchangeable internals for multi-compartment investigations. The maximal design pressure of the vessel is 14 bar which allows H{sub 2} combustion experiments at a severe accident relevant H{sub 2} concentration level. The facility is approved for the use of low-level radiotracer I-123 which enables the measurement of time resolved iodine behaviour. The THAI test facility allows investigating various accident scenarios, ranging from turbulent free convection to stagnant stratified containment atmospheres and can be combined with simultaneous use of hydrogen, iodine and aerosol issues. THAI experimental research also covers investigations related to mitigation systems employed in light water reactor containments by performing experiments on, e.g. pressure suppression pool hydrodynamics, performance behaviour of passive autocatalytic recombiners, and spray interaction with hydrogen–steam–air flames in phenomenon orientated and coupled-effects experiments. The THAI experimental data have been widely used for the validation and further development of Lumped Parameter and Computational Fluid Dynamics codes with 3D capabilities, e.g. International Standard Problems ISP-47 (thermal

  9. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  10. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  11. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  12. SIGMA Experimental Facility

    International Nuclear Information System (INIS)

    Rivarola, Martin; Florido, Pablo; Gonzalez, Jose; Brasnarof, Daniel; Orellano, Pablo; Bergallo, Juan

    2000-01-01

    The SIGMA ( Separacion Isotopica Gaseosa por Metodos Avanzados) concept is outlined.The old gaseous diffusion process to enrich uranium has been updated to be economically competitive for small production volumes.Major innovations have been introduced in the membrane design and in the integrated design of compressors and diffusers.The use of injectors and gas turbines has been also adopted.The paper describes the demonstration facility installed by the Argentine Atomic Energy Commission

  13. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  14. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  15. Multi-Directional Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ATLSS Multi-directional Experimental Laboratory was constructed in 1987 under funding from the National Science Foundation to be a major facility for large-scale...

  16. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  17. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  18. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  19. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  20. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  1. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  2. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  3. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  4. Experimental facilities and simulation means

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2009-01-01

    This paper and its associated series of slides review the experimental facilities and the simulation means used for the development of nuclear reactors in France. These experimental facilities include installations used for the measurement and qualification of nuclear data (mainly cross-sections) like EOLE reactor and Minerve zero power reactor, installations like material testing reactors, installations dedicated to reactor safety experiments like Cabri reactor, and other installations like accelerators (Jannus accelerator, GANIL for instance) that are complementary to neutron irradiations in experimental reactors. The simulation means rely on a series of advanced computer codes: Tripoli-Apollo for neutron transport, Numodis for irradiation impact on materials, Neptune and Cathare for 2-phase fluid dynamics, Europlexus for mechanical structures, and Pleiades (with Alcyone) for nuclear fuels. (A.C.)

  5. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  6. Tools to prevent process safety events at university research facility - chemical risk assessment and experimental set-up risk assessment

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    The article discusses the two forms developed to examine the hazards of the chemicals to be used in the experiments in the experimental setup in the Department of Chemical and Biochemical Engineering of the Technical University of Denmark. A system for the safety assessment of new experimental se...... setups in university research and teaching laboratories is presented. The significance of the forms for the effort of researchers in improving work with significant hazards is described....

  7. Experimental equipment for an advanced ISOL facility

    International Nuclear Information System (INIS)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    1999-01-01

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting. The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams

  8. Research on the improvement of nuclear safety -A study on the establishment of severe accident experimental facility-

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kune Yull; Ryu, Keon Joong; Park, Chang Kyu; Sim, Seok Ku; Kim, Sang Baek; Nho, Ki Mann; Bang, Kwang Hyun; Park, Rae Jun; Lee, Seong Jae; Kang, Kyung Ho; Jo, Young Ro; Hong, Sung Wan; Jeong, Moon Ki; Park, Chun Kyung; Cheon, Se Young; Kim, In Sik; Moon, Sang Ki; Kim, Jong Hwan; Kim, Seong Ho; Sin, Ki Yeol; Cho, Jae Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For the first phase (1992-1995) of the current research program under nuclear reactor safety enhancement project, the primary objective was placed on the development of an improved cavity design and on the improvement of theoretical models of the separate effects for major severe accident phenomena occurring in the reactor cavity. Also, during the fourth year of this project, small-scale experiments were performed to visualize the fundamental phenomena of boiling in narrow spaces that may exist between the debris crust and the reactor vessel lower head in preparation for the large-scale in-vessel cooling experiment planned for the second phase of the project (1996-2001). Separate effect tests have been performed during the first phase spanning the high pressure melt ejection (HPME) resulting in the direct containment heating (DCH), crust formation during cooling of the high temperature melt, fuel coolant interaction (FCI) in the process of injecting coolant onto the reactor cavity, and the molten core concrete interaction (MCCI). Some research programs were subcontracted with universities. Steam condensation on the containment inner wall was investigated by the POSTECH, while the experimental technique for the simultaneous measurement of particle size and velocity was developed by the KAIST. The second phase experimental projects center about the in-vessel accident management tests SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) and ex-vessel accident management tests TOCATA-XV (Tests on Cavity Arrested Thermal Attack ex Vessel). In preparation for the second phase in-vessel experimental program, one of our research staff has participated in the PHEBUS-FP program in CEA Cadarache, France. Small-scale scoping tests were performed for the study of in-vessel cooling of debris in the lower head. (Abstract Truncated)

  9. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, Troy P.; Andrus, Jason

    2016-07-01

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excess of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the

  10. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1982-10-01

    The experimental plasma Research Branch has responsibility for developing a broad range of experimental data and new experimental techniques that are required for operating and interpreting present large-scale confinement experiments, and for designing future deuterium-tritium burining facilities. The Branch pursued these objectives by supporting research in DOE laboratories, other Federal laboratories, other Federal laboratories, universities, and private industry. Initiation and renewal of research projects are primarily through submission of unsolicited proposals by these institutions to DOE. Summaries of these projects are given

  11. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  12. Experimental measurements at the MASURCA facility

    International Nuclear Information System (INIS)

    Assal, W.; Bosq, J.C.; Mellier, F.

    2012-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented. (authors)

  13. Experimental Measurements at the MASURCA Facility

    Science.gov (United States)

    Assal, W.; Bosq, J. C.; Mellier, F.

    2012-12-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.

  14. Experimental measurements at the Masurca facility

    International Nuclear Information System (INIS)

    AssaI, W.; Bosq, J. C.; Mellier, F.

    2009-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, Masurca (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems...). For this purpose electronics modules are implemented to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electrical and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at Masurca will be presented. (authors)

  15. SIGMA Experimental Facility; Facilidad Experimental SIGMA

    Energy Technology Data Exchange (ETDEWEB)

    Rivarola, Martin; Florido, Pablo; Gonzalez, Jose; Brasnarof, Daniel; Orellano, Pablo; Bergallo, Juan [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Grupo de Disenos Avanzados y Evaluacion Economica, Complejo Tecnologico Pilcaniyeu (Argentina)

    2000-07-01

    The SIGMA ( Separacion Isotopica Gaseosa por Metodos Avanzados) concept is outlined.The old gaseous diffusion process to enrich uranium has been updated to be economically competitive for small production volumes.Major innovations have been introduced in the membrane design and in the integrated design of compressors and diffusers.The use of injectors and gas turbines has been also adopted.The paper describes the demonstration facility installed by the Argentine Atomic Energy Commission.

  16. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  17. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Tavkhelidze, A.N.

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  18. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  19. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  20. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  1. J-PARC Transmutation Experimental Facility Programme

    International Nuclear Information System (INIS)

    Sasa, T.; Takei, H.; Saito, S.; Obayashi, H.; Nishihara, K.; Sugawara, T.; Iwamoto, H.; Yamaguchi, K.; Tsujimoto, K.; Oigawa, H.

    2015-01-01

    Since the Fukushima accident, nuclear transmutation is considered as an option for waste management. Japan Atomic Energy Agency proposes the transmutation of minor actinides (MA) in accelerator-driven system (ADS) using lead-bismuth eutectic alloy (LBE) as a spallation target and a coolant of subcritical core. To obtain the data required for ADS design, we plan the building of a transmutation experimental facility (TEF) is planned within the J-PARC project. TEF consists of an ADS target test facility (TEF-T), which will be installed 400 MeV-250 kW LBE spallation target for material irradiations, and a transmutation physics experimental facility (TEF-P), which set up a fast critical/subcritical assembly driven by low power proton beam with MA fuel to study ADS neutronics. At TEF-T, various research plans to use emitted neutrons from LBE target are discussed. The paper summarises a road-map to establish the ADS transmuter and latest design activities for TEF construction. (authors)

  2. STACY and TRACY: nuclear criticality experimental facilities under construction

    International Nuclear Information System (INIS)

    Kobayashi, I.; Takeshita, I.; Yanagisawa, H.; Tsujino, T.

    1992-01-01

    Japan Atomic Energy Research Institute is constructing a Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF, where the following research themes essential for evaluating safety problems relating to back-end technology in nuclear fuel cycle facilities will be studied: nuclear criticality safety research; research on advanced reprocessing processes and partitioning; and research on transuranic waste treatment and disposal. To perform nuclear criticality safety research related to the reprocessing of light water reactor spent fuels, two criticality experimental facilities, STACY and TRACY, are under construction. STACY (Static Criticality Facility) will be used for the study of criticality conditions of solution fuels, uranium, plutonium and their mixtures. TRACY (Transient Criticality Facility) will be used to investigate criticality accident phenomena with uranium solutions. The construction progress and experimental programmes are described in this Paper. (author)

  3. Destruction of the BETA experimental facility for core meltdown experiments in the Karlsruhe Nuclear Research Center on 21 March 1992

    International Nuclear Information System (INIS)

    Feige, K.D.

    1992-01-01

    The BETA experiment V 6.2 was intended to yield information on the processes involved in a lateral containment meltdown starting in a concrete wall with external water cooling. The unexpected overpressure that caused the explosion occurred 1896 seconds after the melt had been fed into the crucible, inducing the melt-water interaction. The explosion destroyed only the inner space of the facility. (orig.) [de

  4. Experimental program at the LOTUS facility

    International Nuclear Information System (INIS)

    Azam, S.; Haldy, P.A.; Kumar, A.; Leo, W.R.; Sahraoui, C.; Schneeberger, J.P.; Tsang, F.; Green, L.

    1986-01-01

    The objectives of the LOTUS experimental program are to study, from a neutronics point of view, blanket modules having features representative of conceptual fusion reactor blanket designs. Such small-scale generic experiments should help to eliminate possible blind alleys, and thus save much time and money later when commercial-size devices will be constructed. At present, two different types of blanket designs are being studied at the LOTUS facility. The first one represents a hybrid fission-suppressed blanket developed at IGA. It is a parallelepiped-shaped assembly, with a fissile breeding zone made of aluminum-clad thorium oxide rods, and a tritium breeding zone simulated by lithium carbonate compressed powder in aluminum boxes. The second blanket that is currently being tested at IGA is the Lithium Blanket Module (LBM) developed by PPPL under the sponsorship of the Electric Power Research Institute. Essentially, the same kind of experiments will be carried out in all the blanket modules. Measurement of foil activities as well as tritium production in the blanket are the primary diagnostic means in the current LOTUS experimental program. Preanalyses of the experimental data have been carried out at IGA with the help of the two-dimensional discrete ordinates transport code DOT3.5 coupled to the GRTUNCL first collision routine. For the experiments described above, the agreement between experimental and computed results is generally fair

  5. Experimental Research in Marketing

    OpenAIRE

    Jose Mauro Hernandez; Kenny Basso; Marcelo Moll Brandão

    2014-01-01

    Considering the growing number of scientific studies published in the marketing field and the development of unique theories of the area (Hunt, 2010), using experimental designs seems increasingly appropriate to investigate marketing phenomena. This article aims to discuss the main elements in conducting experimental studies and also to stimulate researchers to adopt this research method. Several international journals (e.g., JCR, JCP, JMR, JR, JBR) have been publishing articles based on expe...

  6. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  7. Hot Experimental Facility reference flowsheet

    International Nuclear Information System (INIS)

    North, E.D.

    1982-01-01

    This paper is a useful set of background information of HEF flowsheets, although many changes have been made in the past three years. The HEF reference flowsheet is a modified high-acid PUREX flowsheet capable of operating in the coprocessing mode or with full partitioning of U and Pu. Adequate decontamination factors are provided to purify high-burnup, fast breeder-reactor fuels to levels required for recycle back to a fuel fabrication facility. Product streams are mixed U-Pu oxide and uranium oxide. No contaminated liquid wastes are intentionally discharged to the environment. All wastes are solidified and packaged for appropriate disposal. Acid and water are recovered for internal recycle. Excess water is treated and discharged from the plant stack. Several changes have been made in the reference flowsheet since that time, and these are noted briefly

  8. Experimental Research in Marketing

    Directory of Open Access Journals (Sweden)

    Jose Mauro Hernandez

    2014-05-01

    Full Text Available Considering the growing number of scientific studies published in the marketing field and the development of unique theories of the area (Hunt, 2010, using experimental designs seems increasingly appropriate to investigate marketing phenomena. This article aims to discuss the main elements in conducting experimental studies and also to stimulate researchers to adopt this research method. Several international journals (e.g., JCR, JCP, JMR, JR, JBR have been publishing articles based on experiments that not only demonstrate a relationship between two events, but also elucidate how they occur by means of mediation and moderation analyses. This article intents to be a roadmap for novice researchers on how to conduct experiments and to offer new perspectives in experimental research for experienced researchers.  

  9. Experimental Plasma Research project summaries

    International Nuclear Information System (INIS)

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report

  10. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1978-08-01

    This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report

  11. Experimental Plasma Research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  12. Research activities by INS cyclotron facility

    International Nuclear Information System (INIS)

    1992-06-01

    Research activities made by the cyclotron facility and the related apparatuses at Institute for Nuclear Study (INS), University of Tokyo, have been reviewed in terms of the associated scientific publications. This publication list, which is to be read as a continuation of INS-Rep.-608 (October, 1986), includes experimental works on low-energy nuclear physics, accelerator technology, instrumental developments, radiation physics and other applications in interdisciplinary fields. The publications are classified into the following four categories. (A) : Internal reports published in INS. (B) : Publications in international scientific journals on experimental research works done by the cyclotron facility and the related apparatuses at INS. Those made by outside users are also included. (C) : Publications in international scientific journals on experimental low-energy nuclear physics, which have been done by the staff of INS Nuclear Physics Division using facilities outside INS. (D) : Contributions to international conferences. (author)

  13. Experimental Facilities for Performance Evaluation of Fast Reactor Components

    International Nuclear Information System (INIS)

    Chandramouli, S.; Kumar, V.A. Suresh; Shanmugavel, M.; Vijayakumar, G.; Vinod, V.; Noushad, I.B.; Babu, B.; Kumar, G. Padma; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Brief details about various experimental facilities catering to the testing and performance evaluation requirements of fast reactor components have been brought out. These facilities have been found to be immensely useful to continue research and development activities in the areas of component development and testing, sodium technology, thermal hydraulics and sodium instrumentation for the SFR’s. In addition new facilities which have been planned will be of great importance for the developmental activities related to future SFR’s

  14. Experimental facilities of Valduc critical station

    International Nuclear Information System (INIS)

    Mangin, D.; Maubert, L.

    1975-01-01

    The critical facility of Valduc and its experimentation possibilities are described. The different experimental programs carried out since 1962 are briefly reviewed. The last program involving a plutonium nitrate solution (18.9wt% 240 Pu) in a large parallelepipedic tank is presented and main results given [fr

  15. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1990-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  16. CLOUD: an atmospheric research facility at CERN

    OpenAIRE

    The Cloud Collaboration

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  17. Large experimental facilities of the UKAEA

    International Nuclear Information System (INIS)

    Hills, P.R.

    1987-10-01

    This list of UKAEA capital equipment was first assembled for the Interdepartmental Committee on Large Experimental Facilities as a contribution to a directory of national installations with a replacement value of Pound 1M or more. It is now being circulated in report form within the Authority, to assist staff to demonstrate to customers the wide range of facilities the Authority has available to carry out contract work, and to help them identify where customers' work can best be placed. (author)

  18. Experimental Design Research

    DEFF Research Database (Denmark)

    This book presents a new, multidisciplinary perspective on and paradigm for integrative experimental design research. It addresses various perspectives on methods, analysis and overall research approach, and how they can be synthesized to advance understanding of design. It explores the foundations...... of experimental approaches and their utility in this domain, and brings together analytical approaches to promote an integrated understanding. The book also investigates where these approaches lead to and how they link design research more fully with other disciplines (e.g. psychology, cognition, sociology......, computer science, management). Above all, the book emphasizes the integrative nature of design research in terms of the methods, theories, and units of study—from the individual to the organizational level. Although this approach offers many advantages, it has inherently led to a situation in current...

  19. Overview of research and therapy facilities for radiobiological experimental work in particle therapy. Report from the European Particle Therapy Network radiobiology group.

    Science.gov (United States)

    Dosanjh, Manjit; Jones, Bleddyn; Pawelke, Jörg; Pruschy, Martin; Sørensen, Brita Singers

    2018-04-24

    Particle therapy (PT) as cancer treatment, using protons or heavier ions, can provide a more favorable dose distribution compared to X-rays. While the physical characteristics of particle radiation have been the aim of intense research, less focus has been placed on the actual biological responses arising from particle irradiation. One of the biggest challenges for proton radiobiology is the RBE, with an increasing concern that the clinically-applied generic RBE-value of 1.1 is an approximation, as RBE is a complex quantity, depending on both biological and physical parameters, such as dose, LET, cellular and tissue radiobiological characteristics, as well as the endpoints being studied. Most of the available RBE data derive from in vitro experiments, with very limited in vivo data available, especially in late-reacting tissues, which provide the main constraints and influence the quality of life endpoints in radiotherapy. There is a need for systematic, large-scale studies to thoroughly establish the biology of particle radiation in a number of different experimental models in order to refine biophysical mathematical models that can potentially be used to guide PT. The overall objective of the European Particle Therapy Network (EPTN) WP6 is to form a network of research and therapy facilities in order to coordinate and standardize the radiobiological experiments, to obtain more accurate predictive parameters than in the past. Coordinated research is required in order to obtain the most appropriate experimental data. The aim in this paper is to describe the available radiobiology infrastructure of the centers involved in EPTN WP6. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  1. The INEL Tritium Research Facility

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-01-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.)

  2. The INEL Tritium Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-06-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.).

  3. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  4. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993

  5. Holifield Heavy Ion Research Facility: Users handbook

    International Nuclear Information System (INIS)

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given

  6. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  7. Sodium cleaning and disposal methods in experimental facilities

    International Nuclear Information System (INIS)

    Rajan, K.K.; Gurumoorthy, K.; Rajan, M.; Kale, R.D.

    1997-01-01

    At Indira Gandhi Centre for Atomic Research, major sodium facilities are designed and operated at Engineering Development Group as a part of development programme towards experimental and Prototype Fast Reactor. After the test programme many equipment and components were removed from the sodium facilities and sodium removal and disposal was carried out. The experience gained in different cleaning methods and waste sodium disposal are discussed. (author)

  8. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  9. Some existing Experimental Facilities for Fast Neutron Systems at KIT

    International Nuclear Information System (INIS)

    Litfin, K.

    2013-01-01

    An overview is given of: • Liquid Metal Loops at the Karlsruhe Liquid Metal Laboratory (KALLA) of KIT; • THESYS: Technologies for HEavy metal SYStems; • Thermal Hydraulic experiments in THESYS; • THEADES: THErmalhydraulics and Ads DESign; • Thermal Hydraulic experiments in THEADES; • CORRIDA: CORRosion In Dynamic lead Alloys; • Experimental stagnant facilities at KALLA; • INR Liquid metal research

  10. The internationalisation of research facilities

    International Nuclear Information System (INIS)

    Sabine, T.M.

    1999-01-01

    Full text: During the past twenty five years arrangements have been made for sharing the use of major national research facilities amongst the world community of neutron users. The administrative requirements are simple. Scientists are invited to apply for measurement time. The scientific merit of the application is assessed by a committee appointed by the host organisation. If the application is considered to have sufficient merit time is allocated. The only costs to the user are transport and living expenses. These arrangements have advantages for users and for hosts. The user can apply for time on the most suitable instrument. The host in the user country is freed from the responsibility of supplying all instruments. It can specialise in those instruments in which it has particular expertise. The host retains, through its committee, complete control over the use of instruments. The amount of time allocated to international users is dependent on the national demand. The result is efficient use of national facilities. An equally important result is the interaction between members of the international scientific community. Australian scientists routinely use overseas facilities however Australia has refused to join the international group. There is international resentment to this attitude. We have, for example powder diffraction facilities which others wish to use. We have no small-angle scattering facilities and must do our experiments at international centres. I will argue that we should join the international community now. The capacity of the replacement reactor will be far greater than the internal Australian requirements. We will become the natural host for users from countries in the Asian region. To enable us to make a smooth transition to this stage we should immediately advertise an international program for HIFAR

  11. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  12. Irradiation and experimental facilities at Dhruva

    International Nuclear Information System (INIS)

    Chakrabarty, Kunal; Mondal, Samir

    2006-01-01

    Research reactors are utilized to produce radioisotopes and offer irradiation facilities for testing various nuclear materials such as fuel and structural materials. Apart from providing large volume of neutron source for carrying out a variety of experiments, the research reactor forms the basic training ground for grooming up scientists and engineers for the various aspects of nuclear programme. Dhruva one of the high flux research reactors offers a maximum neutron flux level of 1.8 x 10 14 n/cm 2 /sec. It uses natural metallic uranium fuel with aluminium cladding and heavy water as coolant, moderator and reflector

  13. Summary on experimental facilities and future developments at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With 13 experimental facilities under construction to become available during the first year of SINQ operation, a nearly complete suite of options for users will be made available to carry out research with neutrons at PSI. Three more facilities are under design and will come on line somewhat later. To complete the suite, three more specialized instruments are being evaluated. SINQ being a novel neutron source concept, significant scope for improvement is also seen on the source side. It is a major goal of PSI to exploit these opportunities and to make - among others - use of neutron instruments to carry out the necessary research. (author) 9 figs., 1 tab., 11 refs.

  14. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  15. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  16. Research and education by SF cyclotron facility

    International Nuclear Information System (INIS)

    1992-04-01

    This report represents the current activities in research and education using the cyclotron facility and related apparatus which are supported by Nuclear Physics Division and this is a continuation of INS-T-466 (1986, December). In this version an iron-free β-ray spectrometer and a cooler-synchrotron (TARN II) are briefly described also in the first chapter. The second chapter explains experimental programs performed in the last 5 years. The third chapter gives the number of publications on researches performed in 1975-1991, and also gives twelve topics obtained from the cyclotron and the β-ray spectrometer in recent 5 years. The last chapter provides the whole list of the works for Doctor and Master theses performed at the facility in the last 10 years. (J.P.N.)

  17. The AWAKE Experimental Facility at CERN

    CERN Document Server

    Gschwendtner, E; Bracco, C; Butterworth, A; Cipiccia, S; Doebert, S; Fedosseev, V; Feldbaumer, E; Hessler, C; Hofle, W; Martyanov, M; Meddahi, M; Osborne, J; Pardons, A; Petrenko, A; Vincke, H

    2014-01-01

    AWAKE, an Advanced Wakefield Experiment is launched at CERN to verify the proton driven plasma wakefield acceleration concept. Proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent along a 750 m long proton line to a plasma cell, a Rubidium vapour source, where the proton beam drives wakefields reaching accelerating gradients of several gigavolts per meter. A high power laser pulse will copropagate within the proton bunch creating the plasma by ionizing the (initially) neutral gas. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility. First proton beam to the plasma cell is expected by end 2016. The installation planning and the baseline parameters of the experiment are shown. The design of the experimental area and the integration of the new beam-lines as well as the experimental equipment are presented. The needed modifications of the infrastructure in the facility and a few challenges are h...

  18. Study text and sets of questions for the training and examination of selected personnel of nuclear research facilities. Issue 2. Experimental teaching methods

    International Nuclear Information System (INIS)

    Fleischhans, J.; Hejzlar, R.; Hermansky, B.

    2004-01-01

    The VR-1 teaching reactor is described, 14 experimental exercises are given (e.g. Starting up and running the VR-1 reactor; Neutron detection and detectors; Measuring delayed neutrons ; Reactivity measurement; Control rod calibration; ...) and practical training at the existing Czech research reactors (LVR-15; LR-0; VR-1) is briefly highlighted. (P.A.)

  19. Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex III: Neutron Devices and Computational and Sample Environments

    Directory of Open Access Journals (Sweden)

    Kaoru Sakasai

    2017-08-01

    Full Text Available Neutron devices such as neutron detectors, optical devices including supermirror devices and 3He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF of the Japan Proton Accelerator Research Complex (J-PARC, Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.

  20. A US Based Ultrafast Interdisciplinary Research Facility

    Science.gov (United States)

    Gueye, Paul; Hill, Wendell; Johnson, Anthony

    2006-10-01

    The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.

  1. Facilities available for actinide research in Prague

    International Nuclear Information System (INIS)

    Sechovský, V.

    2014-01-01

    Since June 2012 the Prague group at the Charles University operates a Czech research infrastructure Magnetism and Low Temperature Laboratories (MLTL - http://mltl.eu orhttp://lmnt.cz)which is financially supported by the Government of Czech Republic. The main mission of MLTL is to provide broad scientific community unique possibilities for comprehensive experimental studies of physical phenomena and properties of materials in multiextreme conditions.MLTL offer open access to a wide range of experimental facilities for sample preparation (SSE refinement of staring metals, synthesis of bulk polycrystals, growth of single crystals), characterization (XRD, SEM + EDX) and measurements of various physical properties in high magnetic fields up to 20 T, temperatures from 30 mK to 1000Kand external pressures up to 25 GPa). Anybody can apply for experimental time with his proposal on the user portal of http://mltl.eu. The main strategic objective is the excellence of the infrastructure on the international scale. Therefore the MLTL Panel evaluation the proposals and allocation of experimental time is based primarily on the quality of intended research. The proposals of students for experiments needed for their theses are promoted within the evaluation process. The research opportunities offered by MLTL will be demonstrated during the lecture with emphasis on methodology

  2. Experimental Methods in Media Research

    NARCIS (Netherlands)

    C.W. Handke (Christian); C. Herzog (Christian)

    2017-01-01

    textabstractCausal effects are a prime concern in media policy research, and experimental research designs are widely regarded as the most effective way to identify and gauge causality. Nevertheless, explicit applications of experimental methods are rare in media policy research. This chapter

  3. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  4. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  5. A study on the establishment of severe accident experimental facility

    International Nuclear Information System (INIS)

    Yoo, Kun Joong; Kim, Sang Baek; Kim, In Sik; Nho, Ki Man; Bark, Rae Joon; Park, Chun Kyeong; Sim, Seok Koo; Lee, Seong Jae; Chung, Moon Ki; Cho, Yeong Ro; Chun, Shee Yeong

    1994-07-01

    Significant progress has been achieved during this year of the project. Planned DCH experiments on the sensitivity of the cavity geometry factors and the cavity capture volume effects were performed using the HPME facility for Kori-1/2 and YGN-3/4 cavity scale models. The Crust Formation Test Facility has been completed. Preliminary calculations were performed to predict test results. The experiments of the crust formation on the simulant and its heat transfer characteristic were performed to investigate the effects of coolant injection methods, bottom heating boundary surface temperatures, coolant temperatures and coolant flow rates. The design of the FCI Test Facility has been completed and the procurement of the materials is in progress. Also, the steam condensation experiment on the vertical containment walls and the research on the development of measuring techniques of the particle sizes and velocities are in progress as planned. Through international research collaboration with USNRC and CEA Cadarache, information of the experimental research on the severe fuel damage has been gathered and analyzed. Preliminary planning of the second phase tests has been launched this year. This study proposes the scope of the second phase and the strategy to implement the proposed second phase experimental program. This study also proposes a strategy to establish building blocks and infrastructure for the severe accident research in Korea. (Author)

  6. Experimental Facilities Division. Progress report 1996-97

    International Nuclear Information System (INIS)

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD

  7. Experimental Facilities Division progress report 1996--97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD.

  8. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Hirata, Masaru; Miyamoto, Fujio; Kurosawa, Makoto; Abe, Jiro; Sakai, Haruyuki; Suzuki, Tsuneo.

    1996-01-01

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  9. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Eng., P.J.; Jaski, Y.R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M. [CARS, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL (United States)

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P{approx_gt}360 GPa and T{approximately}6000 K with the diamond anvil cell and P{approximately}25 GPa and T{approximately}2500{degree}C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers. {copyright} {ital 1996 American Institute of Physics.}

  10. Enclosed Small and Medium Caliber Firing Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility conducts completely instrumented terminal ballistics experimental tests with small and medium-caliber tungsten alloy penetrators against advanced armor...

  11. Research in experimental nuclear physics

    International Nuclear Information System (INIS)

    Moore, C.F.

    1989-09-01

    Our program concentrates on pion physics experimental results obtained using the Energetic Pion Channel and Spectrometer (EPICS), Pion and Particle Physics channel (P 3 ), and the Low Energy Pion physics channel (LEP). These facilities are unique in the world in their intensity and resolution. Two classes of experiments can be done best with this equipment: scattering (elastic and inelastic) and double charge exchange (DCX). Several coincidence experiments are in progress and are discussed in this paper

  12. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  13. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  14. External events analysis for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1990-01-01

    External events are those off-normal events that threaten facilities either from outside or inside the building. These events, such as floods, fires, and earthquakes, are among the leading risk contributors for fission power plants, and the nature of fusion facilities indicates that they may also lead fusion risk. This paper gives overviews of analysis methods, references good analysis guidance documents, and gives design tips for mitigating the effects of floods and fires, seismic events, and aircraft impacts. Implications for future fusion facility siting are also discussed. Sites similar to fission plant sites are recommended. 46 refs

  15. Access to major overseas research facilities

    International Nuclear Information System (INIS)

    Bolderman, J. W.

    1997-01-01

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year

  16. Structural Research Facilities | Wind | NREL

    Science.gov (United States)

    -hydraulic equipment and data acquisition systems tailored for researching composite blades and components 61400-23 standard. General types of rotor blade research performed at the NWTC includes: Property

  17. Researches at hadron experiment facility

    International Nuclear Information System (INIS)

    Sawada, Shinya

    2006-01-01

    Some of the nuclear, hadron and elementary particle experiments proposed to hadron experiment facility to use the extracted slow proton beam at J-PARC are overviewed. Characteristic feature of the facility is the secondary beam obtained from the intense proton beam. Nuclear hadron physics experiments and kaon rare decay experiments are presented here as the typical ones. Hypernuclear spectroscopy with S=-2 state is expected to be started as soon as the beam becomes available. The kaon bound systems not only with three nucleons like K-pnn but also more numerous like Li and Be are to be studied systematically. Bound states of two kaons using (K - , K + ) reaction will be challenged. Pentaquark will be searched for and its properties will be studied if it really exists. Nuclear structure studies from the view point of large Bjorken x are planned to be studied by irradiating hydrogen, deuteron or heavier targets with primary proton beam and analyzing generated muon pairs. Properties of vector mesons in nuclear matter are to be studied with the primary beam. Neutral kaon rare decay will be investigated to study CP nonconservation. Large progress of elementary particle physics is anticipated by using the intense proton beam at J-PARC. (S. Funahashi)

  18. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  19. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  20. Facility management research in the Netherlands

    NARCIS (Netherlands)

    Thijssen, Thomas; van der Voordt, Theo; Mobach, Mark P.

    This article provides a brief overview of the history and development of facility management research in the Netherlands and indicates future directions. Facility management as a profession has developed from single service to multi-services and integral services over the past 15 years.

  1. Introduction of neutron research facilities in Indonesia Nuclear Agency

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Muslih, M. Refai; Minakawa, Nobuaki

    2004-01-01

    In this report, some facilities for neutron diffraction installed in Indonesia nuclear Agency (BATAN) are introduced. Rough sketch of BATAN, and facility arrangement in the reactor hall and the guide hall are schematically shown. The four facilities (powder diffractometer, four-circle goniometer, three-axis goniometer and neutron radiography system) are installed in the reactor hall and the three (small angle neutron scattering (SANS), high resolution SANS and high resolution powder diffractometer) in the guide hall. Neutron wavelengths determined from four hk1 planes of standard Si powder by the BATAN's neutron diffraction facility are compared with those measured by the similar facility in Japan Atomic Energy Research Institute (JAERI). The neutron diffraction profile of W-fiber reinforced Cu composite is measured by the BATAN's facility. The experimental results show the strong 110 preferred orientation to the fiber direction. (author)

  2. Trends of researches for fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Enoto, Takeaki

    1975-01-01

    The role of a fusion neutron radiation test facility in the development of a scientific feasibility experimental reactor or demonstration fusion power reactor plant would be analogous to the role of the materials testing and experimental reactors in the development of fission power reactor. While the material testing fission reactor has been developed after successful operation of fission reactors, in the case of fusion reactor development it is desirable to realize the fusion engineering research facility (FERF) in-phase to the development of SFX and/or demonstration fusion power reactor plants. Here so called FERF in near future is the Controlled Thermonuclear Reactor which provides the high-intensity and high-energy neutron and plasma source whether the net power output is produced or not. From the point of direct attainment to SFX, we would like to emphasize that FEFE is the royal road leading to the goal of successful achievement of CTR program and could be useful for the experiment on impurity effects caused by neutron and plasma irradiations onto the wall material for SFX. Further, we rather suppose that hybrid FERF-fission assembly could be fairly and easily realizable in near future. (auth.)

  3. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  4. Zero Gravity Research Facility (Zero-G)

    Data.gov (United States)

    Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...

  5. Overview of the Neutron experimental facilities at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  6. Access to major overseas research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bolderman, J. W. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year. 1 fig.

  7. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  8. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  9. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1992-06-01

    This is the latest in a series of Project Summary books going back to 1976 and is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma and innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into these three categories of plasma physics, diagnostic development and atomic physics

  10. Experimental Research of Engine Foundations

    Directory of Open Access Journals (Sweden)

    Violeta-Elena Chiţan

    2004-01-01

    Full Text Available This paper tries a compact presentation of experimental research of engine-foundations. The dynamic phenomena are so complex, that the vibrations cannot be estimated in the design stage. The design engineer of an engine foundation must foresee through a dynamic analysis of the vibrations, those measures that lead to the avoidance or limiting of the bad effects caused by the vibrations.

  11. Perspectives of experimental nuclear physics research at RBI Croatia

    International Nuclear Information System (INIS)

    Soic, N.

    2009-01-01

    Experimental nuclear physics has been one of the top research activities at the Rudjer Boskovic Institute, the largest and leading Croatian research center in science and applications. The RBI nuclear physics group has strong link with the researchers at the University of Zagreb. RBI scientists perform experiments at the RBI Tandem accelerator facility and at the top European experimental facilities in collaboration with the prominent research groups in the field. Current status of the RBI experimental nuclear physics research and our recent activities aimed to strengthen our position at the RBI and to increase our international reputation and impact in collaborative projects will be presented. Part of these activities is focused on local accelerator facilities, at present mainly used for application research, and their increased usage for nuclear physics research and for development and testing of novel research equipment for large international facilities. Upgrade of the local research equipment is on the way through FP7 REGPOT project 'CLUNA: Clustering phenomena in nuclear physics: strengthening of the Zagreb-Catania-Birmingham partnership'. Recently, steps to exploit potential of the facility for nuclear astrophysics research have been initiated. Possible future actions for further strengthening of the RBI experimental nuclear physics research will be discussed.(author)

  12. The Texas Experimental Tokamak: A plasma research facility. A proposal submitted to the Department of Energy in response to Program Notice 95-10: Innovations in toroidal magnetic confinement systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-12

    The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development.

  13. The Texas Experimental Tokamak: A plasma research facility. A proposal submitted to the Department of Energy in response to Program Notice 95-10: Innovations in toroidal magnetic confinement systems

    International Nuclear Information System (INIS)

    1995-01-01

    The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development

  14. The Sanford underground research facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2014-01-01

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability

  15. Los Alamos Experimental Engineering Waste Burial Facility: design considerations and preliminary experimental plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The Experimental Engineered Waste Burial Facility is a field test site where generic experiments can be performed on several scales to get the basic information necessary to understand the processes occurring in low-level waste disposal facilities. The experiments include hydrological, chemical, mechanical, and biological factors. In order to separate these various factors in the experiments and to extrapolate the experimental results to actual facilities, experiments will be performed on several different scales

  16. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  17. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  18. Development of a fault test experimental facility model using Matlab

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida

    2015-01-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  19. Progress towards a new Canadian irradiation-research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.

    1993-01-01

    As reported at the second meeting of the International Group on Research Reactors, Atomic Energy of Canada Limited (AECL) is evaluating its options for future irradiation facilities. During the past year significant progress has been made towards achieving consensus on the irradiation requirements for AECL's major research programs and interpreting those requirements in terms of desirable characteristics for experimental facilities in a research reactor. The next stage of the study involves identifying near-term and long-term options for irradiation-research facilities to meet the requirements. The near-term options include assessing the availability of the NRU reactor and the capabilities of existing research reactors. The long-term options include developing a new irradiation-research facility by adapting the technology base for the MAPLE-X10 reactor design. Because materials testing in support of CANDU power reactors dominates AECL's irradiation requirements, the new reactor concept is called the MAPLE Materials Testing Reactor (MAPLE-MTR). Parametric physics and engineering studies are in progress on alternative MAPLE-MTR configurations to assess the capabilities for the following types of test facilities: - fast-neutron sites, that accommodate materials-irradiation assemblies, - small-diameter vertical fuel test loops that accommodate multielement assemblies, - large-diameter vertical fuel test loops, each able to hold one or more CANDU fuel bundles, - horizontal test loops, each able to hold full-size CANDU fuel bundles or small-diameter multi-element assemblies, and - horizontal beam tubes

  20. High temperature engineering research facilities and experiments in Russia

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Kuzavkov, N.G.; Sukharev, Y.P.; Chudin, A.G.

    1998-01-01

    An overview is given of the characteristics of the experimental facilities and experiments in the Russian Federation: the HTGR neutron-physical investigation facilities ASTRA and GROG; facilities for fuel, graphite and other elements irradiation; and thermal hydraulics experimental facilities. The overview is presented in the form of copies of overhead sheets

  1. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    to the establishment of the Centre for Facilities Management – Realdania Research (CFM), and updated information from keynote contributions to CFM’s Nordic FM Conference on 22-23 August 2011 by Suvi Nenonen (Finland), Jan Bröchner (Sweden), Geir K Hansen (Norway) and Per Anker Jensen (Denmark)....

  2. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability

  3. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J

    2015-01-01

    The former Homestakegold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinolessdouble-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low- background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long- baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability. (paper)

  4. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  5. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  6. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  7. Field Lysimeter Test Facility for protective barriers: Experimental plan

    International Nuclear Information System (INIS)

    Kirkham, R.R.; Gee, G.W.; Downs, J.L.

    1987-12-01

    This document was first written in October 1986 and has been used to guide the design of the Field Lysimeter Test Facility (FLTF) and to promote discussions between research and engineering staff regarding the selection of barrier treatments for inclusion in the FLTF. The construction of the lysimeter facility was completed June 28, 1987. This document describes the facility, the treatments placed in each lysimeter, types of measurements made in each lysimeter, and a brief discussion of project activities related to quality assurance, safety, and funding requirements. The treatment description and figures have been updated to reflect the lysimeter facility as constructed. 12 refs., 6 figs., 5 tabs

  8. Nuclear engineering experiments at experimental facilities of JNC in graduate course of Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hayashizaki, Noriyosu; Takahashi, Minoru; Aoyama, Takafumi; Onose, Shoji

    2005-01-01

    Nuclear engineering experiments using outside facilities of the campus have been offered for graduate students in the nuclear engineering course in Tokyo Institute of Technology (Tokyo Tech.). The experiments are managed with the collaboration of Japan Nuclear Cycle Development Institute (JNC), Japan Atomic Energy Research Institute (JAERI) and Research Reactor Institute, Kyoto University (KUR). This report presents the new curriculum of the nuclear engineering experiments at JNC since 2002. The change is due to the shutdown of Deuterium Criticality Assembly Facility (DCA) that was used as an experimental facility until 2001. Reactor physics experiment using the training simulator of the experimental fast reactor JOYO is continued from the previous curriculum with the addition of the criticality approach experiment and control rods calibration. A new experimental subject is an irradiated material experiment at the Material Monitoring Facility (MMF). As a result, both are acceptable as the student experiments on the fast reactor. (author)

  9. Lewis Research Center R and D Facilities

    Science.gov (United States)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  10. Cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING

    International Nuclear Information System (INIS)

    Tukihashi, Yoshihiro; Yoshida, Tadashi; Takekoshi, Eiko

    1979-03-01

    Measuring cable systems for experimental facilities in JAERI TANDEM ACCELERATOR BUILDING were completed recently. Measures are taken to prevent penetration of noises into the measuring systems. The cable systems are described in detail, including power supplies and grounding for the measuring systems. (author)

  11. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  12. Experimental studies on helium release and stratification within the AIHMS facility

    International Nuclear Information System (INIS)

    Prabhakar, Aneesh; Agrawal, Nilesh; Raghavan, V.; Das, Sarit K.

    2015-01-01

    Hydrogen is generated during core meltdown accidents in nuclear power plants. The study of hydrogen release and mixing within the containment is an important area of safety research. An experimental setup called the AERB-IIT Madras Hydrogen Mixing Studies (AIHMS) facility is setup at IIT Madras to study the distribution of helium (an inert surrogate to hydrogen) subsequent to release as a jet. The present paper gives details of the design, fabrication and instrumentation of the AIHMS facility. It then compares the features of the facility with respect to other facilities existing for hydrogen mitigation studies. Then it gives details of the experiments on concentration build-up studies as a result of injection of gases (air and helium) performed in this experimental facility. (author)

  13. Annual report on experimental operations and maintenance of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2004 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Ohashi, Hirofumi; Morisaki, Norihiro; Kato, Michio; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This is annual report on the experimental test operations and maintenances of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2004 fiscal year. The improvement work of catalyst dust filter in combustion system was performed in May 2004, and the performance was confirmed. The sixth experimental test operation was performed from June to July 2004. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July to September 2004. The seventh experimental test operation was performed from October to December 2004 for chemical reaction shutdown test. From the results, a behavior of the helium-gas cooling system, consists of steam generator and radiator, during chemical reaction shutdown was confirmed. This report is summarized with the outline and the results of the test, maintenance works and inspections, and operation records in mentioned above. (author)

  14. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-01-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. The authors emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities

  15. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-10-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  16. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  17. Management and Development of the RT Research Facilities and Infrastructures

    International Nuclear Information System (INIS)

    Kim, Won Ho; Nho, Young Chang; Kim, Jae Sung

    2009-01-01

    The purpose of this project are to operate the core facilities of the research for the Radiation Technology in stable and to assist the research activities efficiently in the industry, academic, and research laboratory. By developing the infrastructure of the national radio technology industry, we can activate the researching area of the RT and the related industry, and obtain the primary and original technology. The key point in the study of the RT and the assistance of the industry, academic, and research laboratory for the RT area smoothly, is managing the various of unique radiation facilities in our country. The gamma Phytotron and Gene Bank are essential in the agribiology because these facilities are used to preserve and utilize the genes and to provide an experimental field for the environment and biotechnology. The Radiation Fusion Technology research supporting facilities are the core support facilities, and are used to develop the high-tech fusion areas. In addition, the most advanced analytical instruments, whose costs are very high, should be managed in stable and be utilized in supporting works, and the experimental animal supporting laboratory and Gamma Cell have to be maintained in high level and managed in stable also. The ARTI have been developed the 30MeV cyclotron during 2005∼2006, aimed to produce radioisotopes and to research the beam applications as a result of the project, 'Establishment of the Infrastructure for the Atomic Energy Research Expansion', collaborated with the Korea Institute of Radiological and Medical Sciences. In addition, the ARTI is in the progress of establishing cyclotron integrated complex as a core research facility, using a proton beam to produce radioisotopes and to support a various research areas. The measurement and evaluation of the irradiation dose, and irradiation supporting technology of the Good Irradiation Practice(GIP) are essential in various researching areas. One thing to remember is that the publicity

  18. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  19. 14MeV facility and research in IPPE

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, S P; Androsenko, A A; Androsenko, P A; Devkin, B V; Kobozev, M G; Lychagin, A A; Sinitca, V V; Talalaev, V A [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Chuvilin, D Yu; Borisov, A A; Zagryadsky, V A [Institute of Atomic Energy, Moscow (Russian Federation)

    1993-07-01

    Review of experimental facility and research, performed at 14MeV incident neutron energy in the Institute of Physics and Power Engineering, are given. These studies cover the next topics: double differential neutron emission cross sections (DDX), neutron-gamma coincidence experiments (n, n'{gamma}) and neutron leakage spectra for spherical assemblies (benchmark). The paper contains description and main parameters of pulsed neutron generator KG-0.3, fast neutron time of flight spectrometer, measuring and data reduction procedures, review of experimental data. Results of experiments are compared with other data; evaluated data files BROND-2, ENDF/B6, JENDL-3; basic theoretical and transport model calculations. (author)

  20. 14MeV facility and research in IPPE

    International Nuclear Information System (INIS)

    Simakov, S.P.; Androsenko, A.A.; Androsenko, P.A.; Devkin, B.V.; Kobozev, M.G.; Lychagin, A.A.; Sinitca, V.V.; Talalaev, V.A.; Chuvilin, D.Yu.; Borisov, A.A.; Zagryadsky, V.A.

    1993-07-01

    Review of experimental facility and research, performed at 14MeV incident neutron energy in the Institute of Physics and Power Engineering, are given. These studies cover the next topics: double differential neutron emission cross sections (DDX), neutron-gamma coincidence experiments (n, n'γ) and neutron leakage spectra for spherical assemblies (benchmark). The paper contains description and main parameters of pulsed neutron generator KG-0.3, fast neutron time of flight spectrometer, measuring and data reduction procedures, review of experimental data. Results of experiments are compared with other data; evaluated data files BROND-2, ENDF/B6, JENDL-3; basic theoretical and transport model calculations. (author)

  1. Underground characterisation and research facility ONKALO

    International Nuclear Information System (INIS)

    Ikonen, Antti; Ylae-Mella, Mia; Aeikaes, Timo

    2006-01-01

    Posiva's repository for geological disposal of the spent fuel from Finnish nuclear reactors will be constructed at Olkiluoto. The selection of Olkiluoto was made based on site selection research programme conducted between 1987-2001. The next step is to carry out complementary investigations of the site and apply for the construction license for the disposal facility. The license application will be submitted in 2012. To collect detailed information of the geological environment at planned disposal depth an underground characterisation and research facility will be built at the site. This facility, named as ONKALO, will comprise a spiral access tunnel and two vertical shafts. The excavation of ONKALO is in progress and planned depth (400 m) will be reached in 2009. During the course of the excavation Posiva will conduct site characterisation activities to assess the structure and other properties of the site geology. The aim is that construction will not compromise the favourable conditions of the planned disposal depth or introduce harmful effects in the surrounding bedrock which could jeopardize the long-term safety of the geological disposal. (author)

  2. Experimental research control software system

    International Nuclear Information System (INIS)

    Cohn, I A; Kovalenko, A G; Vystavkin, A N

    2014-01-01

    A software system, intended for automation of a small scale research, has been developed. The software allows one to control equipment, acquire and process data by means of simple scripts. The main purpose of that development is to increase experiment automation easiness, thus significantly reducing experimental setup automation efforts. In particular, minimal programming skills are required and supervisors have no reviewing troubles. Interactions between scripts and equipment are managed automatically, thus allowing to run multiple scripts simultaneously. Unlike well-known data acquisition commercial software systems, the control is performed by an imperative scripting language. This approach eases complex control and data acquisition algorithms implementation. A modular interface library performs interaction with external interfaces. While most widely used interfaces are already implemented, a simple framework is developed for fast implementations of new software and hardware interfaces. While the software is in continuous development with new features being implemented, it is already used in our laboratory for automation of a helium-3 cryostat control and data acquisition. The software is open source and distributed under Gnu Public License.

  3. Experimental research control software system

    Science.gov (United States)

    Cohn, I. A.; Kovalenko, A. G.; Vystavkin, A. N.

    2014-05-01

    A software system, intended for automation of a small scale research, has been developed. The software allows one to control equipment, acquire and process data by means of simple scripts. The main purpose of that development is to increase experiment automation easiness, thus significantly reducing experimental setup automation efforts. In particular, minimal programming skills are required and supervisors have no reviewing troubles. Interactions between scripts and equipment are managed automatically, thus allowing to run multiple scripts simultaneously. Unlike well-known data acquisition commercial software systems, the control is performed by an imperative scripting language. This approach eases complex control and data acquisition algorithms implementation. A modular interface library performs interaction with external interfaces. While most widely used interfaces are already implemented, a simple framework is developed for fast implementations of new software and hardware interfaces. While the software is in continuous development with new features being implemented, it is already used in our laboratory for automation of a helium-3 cryostat control and data acquisition. The software is open source and distributed under Gnu Public License.

  4. The International Facility for Antiproton and Ion Research FAIR

    International Nuclear Information System (INIS)

    Gutbrod, H. H.

    2008-01-01

    The proposed project FAIR (Facility for Antiproton and Ion Research) is an international accelerator facility of the next generation and will be built as a new company FAIR GmbH next to the site of GSI. About 15 countries have expressed their intention to become shareholders. FAIR builds on the experience and technological developments already made at the existing GSI facility, and at the FAIR partner institutes world wide and incorporates new technological concepts. At its heart is a double ring facility with a circumference of 1100 meters. A system of cooler-storage rings for effective beam cooling at high energies and various experimental halls will be connected to the facility. The existing GSI accelerators - together with the planned proton-linac - serve as injector for the new facility. The double-ring synchrotron will provide ion beams of unprecedented intensities as well as of considerably increased energy. Thereby intense beams of secondary beams - unstable nuclei or antiprotons - can be produced. The system of storage-cooler rings allows the quality of these secondary beams - their energy spread and emittance - to be drastically improved. Moreover, in connection with the double ring synchrotron, an efficient parallel operation of up to four scientific programs can be realized at a time. The project is based on many technological innovations, the most important of which are five beam properties: Highest Beam Intensities, Brilliant Beam Quality, Higher Beam Energies, Highest Beam Power, Parallel Operation

  5. Holifield Heavy Ion Research Facility. Phase II

    International Nuclear Information System (INIS)

    Ball, J.B.; Hudson, E.D.; Lord, R.S.; Johnson, J.W.; Martin, J.A.; McNeilly, G.S.; Milner, W.T.; Mosko, S.W.; Sayer, R.O.; Robinson, R.L.

    1979-01-01

    The Holifield Heavy Ion Research Facility, with the completion of Phase I in late 1979, will include the Oak Ridge Isochronous Cyclotron (ORIC) and associated research areas, the new 25 MV tandem accelerator with new research areas for tandem beams, and modifications to utilize the ORIC as a booster accelerator. The combination of the tandem and ORIC will provide beam energies of 25 MeV/A for light heavy ions and 6 MeV/A up to A = 160. This paper discusses plans for a Phase II expansion of the facility to include an isochronous cyclotron with superconducting magnet and reconfiguration of the existing research areas and the ORIC vault to handle the higher energy beams from the new cyclotron. The new booster cyclotron is a low-flutter high-spiral design patterned after the MSU K = 800 design, with a central magnetic field of about 5 tesla and an extraction radius of 1 meter. The new beam transport system will incorporate an rf beam-splitter system that will be able to deliver successive beam pulses to two or three experiment areas

  6. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  7. Interim Storage Facility for LLW of Decommissioning Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amato, S.; Ugolini, D.; Basile, F. [European Commission, Joint Research Centre, Nuclear Decommissioning and Facility Management Unit, TP 800, Via E. Fermi 2749, 21027 Ispra - VA (Italy)

    2009-06-15

    JRC-Ispra has initiated a Decommissioning and Waste Management (D and WM) Programme of all its nuclear facilities. In the frame of this programme, it has been decided to build an interim storage facility to host conditioned low level waste (LLW) that had been produced during the operation of JRC-Ispra nuclear research reactors and laboratories and that will be produced from their decommissioning. This paper presents the main characteristics of the facility. The storage ISFISF has a rectangular shape with uniform height and it is about 128 m long, 41 m wide and 9 m high. The entire surface affected by the facility, including screening area and access roads, is about 27.000 m{sup 2}. It is divided in three sectors, a central one, about 16 m long, for loading/unloading operations and operational services and two lateral sectors, each about 55 m long, for the conditioned LLW storage. Each storage sector is divided by a concrete wall in two transversal compartments. The ISFISF, whose operational lifetime is 50 years, is designed to host the conditioned LLW boxed in UNI CP-5.2 packages, 2,5 m long, 1.65 m wide, and 1,25 m high. The expected nominal inventory of waste is about 2100 packages, while the maximum storage is 2540 packages, thus a considerably large reserve capacity is available. The packages will be piled in stacks of maximum number of five. The LLW is going to be conditioned with a cement matrix. The maximum weight allowed for each package has been fixed at 16.000 kg. The total radioactivity inventory of waste to be hosted in the facility is about 30 TBq (mainly {beta}/{gamma} emitters). In order to satisfy the structural, seismic, and, most of all, radiological requirements, the external walls of the ISFISF are made of pre-fabricated panels, 32 cm thick, consisting of, from inside to outside, 20 cm of reinforced concrete, 7 cm of insulating material, and again 5 cm of reinforced concrete. For the same reason the roof is made with pre-fabricated panels in

  8. Monitoring system for an experimental facility using GMDH methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br, E-mail: ebueno@ifsp.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), São Paulo, SP (Brazil)

    2017-07-01

    This work presents a Monitoring System developed based on the GMDH - Group Method of Data Handling methodology to be used in an Experimental Test Facility. GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a pre-selected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. The Fault Test Experimental Facility was designed to simulate a PWR nuclear power plant and is composed by elements that correspond to the pressure vessel, steam generator, pumps of the primary and secondary reactor loops. The nuclear reactor core is represented by an electrical heater with different values of power. The experimental plant will be fully instrumented with sensors and actuators, and the data acquisition system will be constructed in order to enable the details of the temporal analysis of process variables. The Fault Test Experimental Facility can be operated to generate normal and fault data. These failures can be added initially with small magnitude, and their magnitude being increasing gradually in a controlled way. The database will interface with the plant supervisory system SCADA (Supervisory Control and Data Acquisition) that provides the data through standard interface. (author)

  9. Monitoring system for an experimental facility using GMDH methodology

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida; Bueno, Elaine Inacio

    2017-01-01

    This work presents a Monitoring System developed based on the GMDH - Group Method of Data Handling methodology to be used in an Experimental Test Facility. GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a pre-selected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. The Fault Test Experimental Facility was designed to simulate a PWR nuclear power plant and is composed by elements that correspond to the pressure vessel, steam generator, pumps of the primary and secondary reactor loops. The nuclear reactor core is represented by an electrical heater with different values of power. The experimental plant will be fully instrumented with sensors and actuators, and the data acquisition system will be constructed in order to enable the details of the temporal analysis of process variables. The Fault Test Experimental Facility can be operated to generate normal and fault data. These failures can be added initially with small magnitude, and their magnitude being increasing gradually in a controlled way. The database will interface with the plant supervisory system SCADA (Supervisory Control and Data Acquisition) that provides the data through standard interface. (author)

  10. Radiation applications research and facilities in AECL Research Company

    International Nuclear Information System (INIS)

    Iverson, S.L.

    1988-01-01

    In the 60's and 70's Atomic Energy of Canada had a very active R and D program to discover and develop applications of ionizing radiation. Widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of the test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal absorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described. (author)

  11. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  12. Synchrotron radiation research facility conceptual design report

    International Nuclear Information System (INIS)

    1976-06-01

    A report is presented to define, in general outline, the extent and proportions, the type of construction, the schedule for accomplishment, and the estimated cost for a new Synchrotron Radiation Facility, as proposed to the Energy Research and Development Administration by the Brookhaven National Laboratory. The report is concerned only indirectly with the scientific and technological justification for undertaking this project; the latter is addressed explicitly in separate documents. The report does consider user requirements, however, in order to establish a basis for design development. Preliminary drawings, outline specifications, estimated cost data, and other descriptive material are included as supporting documentation on the current status of the project in this preconstruction phase

  13. Annual report on experimental operation of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2001 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Inagaki, Yoshiyuki; Kato, Michio; Fujisaki, Katsuo; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Ohashi, Hirofumi; Katanishi, Shoji; Takada, Shoji; Shimizu, Akira; Morisaki, Norihiro; Sakaki, Akihiro; Maeda, Yukimasa; Sato, Hiroyuki

    2005-06-01

    This is an annual report on the experimental operation of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2001 fiscal year. The first experimental operation was performed during two weeks from March 1, 2002 to March 13, 2002 to test on the thermal hydraulic performance of the steam reformer and also to train the operators. The thermal hydraulic performance test of the steam reformer was performed to evaluate the heat transfer characteristics between helium gas and process gas in the steam reformer. This report is summarized with an overview of the test, the results and its operation records. (author)

  14. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  15. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  16. Performance analysis of small-scale experimental facility of TWDEC

    International Nuclear Information System (INIS)

    Kawana, Ryoh; Ishikawa, Motoo; Takeno, Hiromasa; Yamamoto, Takayoshi; Yasaka, Yasuyoshi

    2008-01-01

    The objective of the present paper is to analyze small-scale experimental facilities of TWDEC (Travelling Wave type Direct Energy Converter) and to propose a modification in regard to a measuring device of the facilities by means of numerical simulation with the axisymmetrical two-dimensional approximation (a PIC method). The numerical simulation has given the following results: (1) tendency of the numerical results agree with the experimental results on the measured deceleration efficiency, (2) the deceleration efficiency measured in the experiment will increase if the radius of Faraday cup installed in the experiment increases and (3) the wave of condensation and rarefaction of measured electric charge density, which is averaged in the r-direction below the radius of Faraday cup, is not formed enough with a small radius of Faraday cup because of the r component of electric field which is induced by the electrode geometry

  17. Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2002 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Ohashi, Hirofumi; Inaba, Yoshitomo; Kato, Michio; Aita, Hideki; Morisaki, Norihiro; Takeda, Tetsuaki; Nishihara, Tetsuo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This report describes 2002 fiscal-year experimental test operations of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system. The improvement works were performed in May 2002. The second experimental test operation was performed from June 2002 and the performances of the improved parts were confirmed. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2002. The third experimental test operation was performed, from October 2002, for (a) start-up and shutdown test, (b) process change test, (c) chemical reaction shutdown test and (d) characteristics test on steam reformer. It was confirmed that the changes of helium gas temperature, caused at steam reformer, could be mitigated into the target range by the steam generator. Maintenance works of high-pressure gas production facilities were also performed in February 2003. This report is summarized with the outline and the results of the test, maintenance works and inspections, and operation records in mentioned above. (author)

  18. Elise: a new facility for unprecedented experimental nuclear fission studies

    International Nuclear Information System (INIS)

    Taieb, J.; Belier, G.; Chatillon, A.; Granier, T.; Kelic, A.; Ricciardi, V.; Schmidt, K.H.; Voss, B.; Coste-Delclaux, M.; Diop, C.; Jouanne, C.; Schmitt, C.; Aiche, M.; Czajkowski, S.; Jurado, B.; Audouin, L.; Peyre, J.; Rosier, P.; Tassan-Got, L.; Bertoumieux, E.; Dore, D.; Dupont, E.; Letourneau, A.; Panebianco, S.

    2009-01-01

    A novel experimental program aiming to study the properties of fragments and neutrons emitted in the fission process has been initiated. The experiment will be held at the ELISe electron-ion collider to be constructed at GSI, Darmstadt in the framework of the FAIR extension of the facility. The experiment will take advantage of the inverse kinematics allowing, in particular, a total mass and charge resolution for all fission fragments. (authors)

  19. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  20. Hazards assessment for the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Calley, M.B.; Jones, J.L. Jr.

    1994-01-01

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high

  1. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Chechenin, N.G.; Ishkhanov, B.S.; Kulikauskas, V.S.; Novikov, L.S.; Pokhil, G.P.; Romanovskii, E.A.; Shvedunov, V.I.; Spasskii, A.V.

    2004-01-01

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  2. Small-scale hot facility for reprocessing and alpha research

    International Nuclear Information System (INIS)

    Abdel-Rassoul, A.A.

    1976-01-01

    The experimental hot facility at Inchas is planned for research activities related to the decontamination of radioactive wastes, analytical chemistry of alpha emitters and chemical treatment of spent UO 2 -Mg fuel samples. The design concept permits safe handling of source materials with radioactivity levels up to 10000Ci. The laboratory includes a reception area, process hall, a number of research laboratories and other facilities for chemical and physical analysis, nuclear measurements and health physics control. The radioactive waste management plant allows for control and decontamination of intermediate- and low-level laboratory effluents. Fixation of radioactive residues will be carried out in the sludge immobilization plant. High-level fission-product waste liquors are subject to preconcentration and transformation to a glassy matrix before ultimate storage. (author)

  3. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  4. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  5. How Large-Scale Research Facilities Connect to Global Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn

    2013-01-01

    Policies for large-scale research facilities (LSRFs) often highlight their spillovers to industrial innovation and their contribution to the external connectivity of the regional innovation system hosting them. Arguably, the particular institutional features of LSRFs are conducive for collaborative...... research. However, based on data on publications produced in 2006–2009 at the Neutron Science Directorate of Oak Ridge National Laboratory in Tennessee (United States), we find that internationalization of its collaborative research is restrained by coordination costs similar to those characterizing other...

  6. Radiation applications research and facilities in AECL research company

    Science.gov (United States)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  7. The SARAF Project - Soreq Applied Research Accelerator Facility

    International Nuclear Information System (INIS)

    Nagler, A.; Mardor, I.; Berkovits, D.; Piel, C.

    2004-01-01

    The relevance of particle accelerators to society, in the use of their primary and secondary beams for the analysis of physical, chemical and biological samples and for modification of properties of materials, is well recognized and documented. Nevertheless, apart of the construction of small accelerators for nuclear research in the 1960's and 70's, Israel has so far neglected this important and growing field. Furthermore, there is an urgent need in Israel for a state of the art research facility to attract and introduce students to current advanced physics techniques and technologies and to train the next generation of experimental scientists in various branches and disciplines. Therefore, Soreq NRC recently initiated the establishment of a new accelerator facility, named SARAF Soreq Applied Research Accelerator Facility. SARAF will be a continuous wave (CW), proton and deuteron RF superconducting linear accelerator with variable energy (5 - 40 MeV) and current (0.04 -2 mA). SARAF is designed to enable hands-on maintenance, which means that its beam loss will be below 10 -5 for the entire accelerator. These specifications will place SARAF in line with the next generation of accelerators world wide. Soreq expects that this fact will attract the Israeli and international research communities to use this facility extensively. Soreq NRC intends to use SARAF for basic, medical and biological research, and non-destructive testing (NDT). Another major activity will be the research and development of radio-isotopes production techniques. Given the availability of high current (up to 2 mA) protons and deuterons, a major activity will be research and development of high power density (up to 80 kW on a few cm 2 ) irradiation targets

  8. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  9. In Vivo Radiobioassay and Research Facility

    International Nuclear Information System (INIS)

    Lynch, Timothy P.

    2011-01-01

    Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energy's (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of these materials in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The IVRRF was originally built in 1960 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily 137Cs and 90Sr), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, men's and women's change rooms and an instrument maintenance and repair shop. Four systems include high purity germanium detectors and one system utilizes large sodium iodide detectors. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5000 whole body measurements analyzed for fission and activation products and 2000 lung measurements analyzed for americium, uranium, and plutonium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay.

  10. Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2003 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Morisaki, Norihiro; Ohashi, Hirofumi; Kato, Michio; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This is a report on the experimental operations and maintenances of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2003 fiscal year. The fourth and fifth experimental test operations were performed, from May to July and from October to December in 2003, for the following tests; (a) start-up and shutdown operation test, (b) process change test, (c) continuous hydrogen-production test and (d) chemical reaction shutdown test. From the results, a long time-range stability of the hydrogen production system was confirmed, a behavior of the helium-gas cooling system, consists of steam generator and radiator; during chemical reaction shutdown, was understood, and so on. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2003. This report is summarized on outlines and results of the tests, outlines and results of the periodic inspections, and operation records of the mock-up test facility. (author)

  11. A Framework for Managing Core Facilities within the Research Enterprise

    OpenAIRE

    Haley, Rand

    2009-01-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which th...

  12. First (Kick-Off) Research Coordination Meeting (RCM) of the IAEA Coordinated Research Project (CRP) on Sodium Properties and Safe Operation of Experimental Facilities in Support of the Development and Deployment of Sodium-Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    General information on recent IAEA activities in the field of fast reactors, including on-going and planned FR-related CRPs, as well as a review of the NAPRO CRP content, objectives, participants, planning and expected outcomes/deliverables, was provided. It was reminded that the NAPRO CRP is being organized in 3 main Work Packages (WP): • WP 1: collection, expert assessment and dissemination of consistent Na property data such as: surface tension, saturation vapor pressure and emissivity, thermo-dynamic behavior of ternary oxides in Na, and solubility - diffusivity of metallic impurities, etc. • WP 2: development of guidelines and best practices for Na facility design and operation, including fill and drain, purification, out-gassing prior to filling, Na storage, component handling, drying of Na piping after repair, etc. • WP 3: development of guidelines and best practices for Na facility safety, including prevention and mitigation of Na leaks, prevention and detection of Na fires, assessment of Na impact in the environment after accidental release, hydrogen hazards in cleaning facilities, etc

  13. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  14. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios

  15. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  16. Experimental facility and void fraction calibration methods for impedance probes

    International Nuclear Information System (INIS)

    Oliveira, Fernando L. de; Rocha, Marcelo S.

    2013-01-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  17. Experimental research on air propellers

    Science.gov (United States)

    Durand, William F

    1918-01-01

    The purposes of the experimental investigation on the performance of air propellers described in this report are as follows: (1) the development of a series of design factors and coefficients drawn from model forms distributed with some regularity over the field of air-propeller design and intended to furnish a basis of check with similar work done in other aerodynamic laboratories, and as a point of departure for the further study of special or individual types and forms; (2) the establishment of a series of experimental values derived from models and intended for later use as a basis for comparison with similar results drawn from certain selected full-sized forms and tested in free flight.

  18. MYRRHA. An innovative and unique research facility

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Rafaeol; Neerdael, Bernard; Schyns, Marc; Dyck, Steven Van; Michiels, Sidney; Ait Abderrahim, Hamid, E-mail: myrrha@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Mol (Belgium)

    2012-03-15

    The MYRRHA project started in 1998 by SCK{center_dot}CEN in collaboration with Ion Beam Applications (IBA, Louvain-la-Neuve), as an upgrade of the ADONIS project. MYRRHA is designed as a multi-purpose irradiation facility in order to support research programmes on fission and fusion reactor structural materials and nuclear fuel development. Applications of these are found in Accelerator Driven Systems (ADS) systems and in present generation as well as in next generation critical reactors. The first objective of MYRRHA however, will be to demonstrate on one hand the ADS concept at a reasonable power level and on the other hand the technological feasibility of transmutation of Minor Actinides (MA) and Long-Lived Fission Products (LLFP) arising from the reprocessing of radioactive waste. MYRRHA will also help the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) Gen.IV concept. Transmutation of MA can be completed in an efficient way in fast neutron spectrum facilities. Both critical reactors and sub-critical ADS are potential candidates as dedicated transmutation systems. However, critical reactors, heavily loaded with fuel containing large amounts of MA, pose safety problems caused by unfavourable reactivity coefficients due to the little delayed neutron fraction. A sub-critical ADS operates in a flexible and safe manner even with a core loading containing a high amount of MA leading to achieve a high efficient transmutation. Thus, the sub-criticality is not a virtue but rather a necessity for an efficient and economical burning of the MA. Besides the reduction of the HLW burden, the MYRRHA project will serve the purpose of developing the lead alloys technology as a reactor coolant that can be used in one of the Generation IV reactor concepts namely the Lead Fast Reactor (LFR). Although carrying out the MYRRHA project will lead to the demonstration of the efficient and safe transmutation of MA in ADS systems as the ultimate goal the

  19. NRX and NRU reactor research facilities and irradiation and examination charges

    International Nuclear Information System (INIS)

    1960-08-01

    This report details the irradiation and examination charges on the NRX and NRU reactors at the Chalk River Nuclear Labs. It describes the NRX and NRU research facilities available to external users. It describes the various experimental holes and loops available for research. It also outlines the method used to calculate the facilities charges and the procedure for applying to use the facilities as well as the billing procedures.

  20. Analysis of Elektrogorsk 108 test facility experimental data

    International Nuclear Information System (INIS)

    Urbonas, R.

    2001-01-01

    In the paper an evaluation of experimental data obtained at Russian Elektrogorsk 108 (E-108) test facility is presented. E-108 facility is a scaled model of Russian RBMK design reactor. An attempt to validate state-of-the-art thermal hydraulic codes on the basis of E-108 test facility was made. Originally these codes were developed and validated for BWRs and PWRs. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors further codes' implementation and validation is required. The facility was modelled by employing RELAP5 (INEEL, USA) thermal hydraulic system analysis best estimate code. The results show dependence from number of nodes used in the heated channels, frictional and form losses employed. The obtained oscillatory behaviour is resulted by density wave and critical heat flux. It is shown that codes are able to predict thermal hydraulic instability and sudden heat structure temperature excursion, when critical heat flux is approached, well. In addition, an uncertainty analysis of one of the experiments was performed by employing GRS developed System for Uncertainty and Sensitivity Analysis (SUSA). It was one of the first attempts to use this statistic-based methodology in Lithuania.(author)

  1. Status of CHESS facility and research programs: 2010

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ernest, E-mail: ef11@cornell.edu [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853 (United States); Bilderback, Donald H.; Gruner, Sol M. [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853 (United States)

    2011-09-01

    CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

  2. Status of CHESS facility and research programs: 2010

    International Nuclear Information System (INIS)

    Fontes, Ernest; Bilderback, Donald H.; Gruner, Sol M.

    2011-01-01

    CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

  3. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov (United States)

    Integration Facility The Vehicle Testing and Integration Facility features a pad to conduct vehicle thermal station next to the pad provides a continuous data stream on temperature, humidity, wind speed, and solar

  4. Research Facility for Mechanical Press Closed Gap Adjuster

    Directory of Open Access Journals (Sweden)

    A. A. Ancifirov

    2016-01-01

    Full Text Available The article describes an example of the research facility for closed gap adjustment mechanism based on the KD2128 closed-die forging press. Its rated force with a servo drive used is 630kN. The servo drive consists of a motor with nominal power of 1.57kW and a frequency converter with power of 7.5kW, which has functions of the programmable logic controller.The article notes that such a facility is expedient and useful for practical classes on forging-andstamping machines at the BMSTU Department of «Technology processing by pressure» to demonstrate the capabilities of existing technological facility, learn a design of forging-andstamping machine units, solve the problems of automatic control, monitoring, and diagnostics in blank manufacturing.The article presents a detailed facility diagram of the closed gap adjustment mechanism and its photograph, describes the mechanism and its basic parameters, gives characteristics of the synchronous motor to drive the mechanism, reviews practical works, which the research facility may provide.Based on the four experiments the article estimates an efficiency of the research facilityuse under consideration, especially when modeling a servo motor shaft under the maximum load. The relevant diagrams confirm experimental results, namely: control current, angle of motor shaft and its speed versus time. Thus, upon the diagram analysis it can be noted that the research facility design allows providing kinematics and dynamics of the press closed gap adjuster.This article describes how to determine the closed gap adjusting accuracy of the press. Eight experiments have been conducted to evaluate a working out control signal to the linear movement of the press punch when using the research facility. It is noted that the linear positioning accuracy of the press punch reaches the hundredth parts of a millimeter of the adjustment value that is sufficient to achieve the required precision when performing operations such as

  5. An experimental facility for studying delayed neutron emission

    International Nuclear Information System (INIS)

    Dermendzhiev, E.; Nazarov, V.M.; Pavlov, S.S.; Ruskov, Iv.; Zamyatin, Yu.S.

    1993-01-01

    A new experimental facility for studying delayed neutron emission has been designed and tested. A method based on utilization of the Dubna IBR-2 pulsed reactor, has been proposed and realized for periodical irradiation of targets composed of fissionable isotopes. Such a powerful pulsed neutron source in combination with a slow neutron chopper synchronized with the reactor bursts makes possible variation of the exposure duration and effective suppression of the fast neutron background due to delay neutrons emitted from the reactor core. Detection of delayed neutrons from the target is carried out by a high-efficiency multicounter neutron detector with a near-4π geometry. Some test measurements and results are briefly described. Possible use of the facility for other tasks is also discussed. 14 refs.; 14 figs

  6. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  7. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  8. Research and Experimentation in Prisons.

    Science.gov (United States)

    Swan, L. Alex

    1979-01-01

    The author argues that the prison system is inherently coercive, and that social and behavioral scientists have been used by state agents to facilitate control of prisoners. He urges that the major objective of research in prisons be to promote the principle of human liberation. (Author/RLV)

  9. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  10. Experimental support at proton--proton colliding beam facilities

    International Nuclear Information System (INIS)

    Potter, K.

    1977-01-01

    Proton--proton colliding beam facilities have a number of special features which increase the importance of support for experiments when compared to fixed target accelerators: (1) the laboratory system is very close to the center-of-mass system; this affects the geometry and general size of the experiments; (2) the primary p--p interaction is inaccessible, that is, it takes place in an ultrahigh vacuum chamber; and (3) the experiment detection system is necessarily inside the machine structure and becomes very closely linked to it in many respects. An overall picture is given of experimental support based on experience at the CERN ISR under the following headings: Experimental Areas, Scheduling, Intersection Vacuum Chambers, Machine Background, and Magnets for Experiments. The first two of these topics concern the requirements in space and time of an experiment, while the last three are all related to the close interaction between experiment and machine

  11. Anti- and Hypermatter Research at the Facility for Antiproton and Ion Research FAIR

    International Nuclear Information System (INIS)

    Steinheimer, J; Xu, Z; Gudima, K; Botvina, A; Mishustin, I; Bleicher, M; Stöcker, H

    2012-01-01

    Within the next six years, the Facility for Antiproton and Ion Research (FAIR) is built adjacent to the existing accelerator complex of the GSI Helmholtz Center for Heavy Ion Research at Darmstadt, Germany. Thus, the current research goals and the technical possibilities are substantially expanded. With its worldwide unique accelerator and experimental facilities, FAIR will provide a wide range of unprecedented fore-front research in the fields of hadron, nuclear, atomic, plasma physics and applied sciences which are summarized in this article. As an example this article presents research efforts on strangeness at FAIR using heavy ion collisions, exotic nuclei from fragmentation and antiprotons to tackle various topics in this area. In particular, the creation of hypernuclei and antimatter is investigated.

  12. The FENIX [Fusion ENgineering International EXperimental] test facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Chaplin, M.R.; Miller, J.R.; Shen, S.S.; Summers, L.T.; Kerns, J.A.

    1989-01-01

    The Fusion ENgineering International EXperimental Magnet Facility (FENIX), under construction at Lawrence Livermore National Laboratory (LLNL), is a significant step forward in meeting the testing requirements necessary for the development of superconductor for large-scale, superconducting magnets. A 14-T, transverse field over a test volume of 150 x 60 x 150 mm in length will be capable of testing conductors the size of the International Thermonuclear Experimental Reactor (ITER). Proposed conductors for ITER measure ∼35 mm on one side and will operate at currents of up to 40 kA at fields of ∼14 T. The testing of conductors and associated components, such as joints, will require large-bore, high-field magnet facilities. FENIX is being constructed using the existing A 2o and A 2i magnets from the idle MFTF. The east and west A 2 pairs will be mounted together to form a split-pair solenoid. The pairs of magnets will be installed in a 4.0-m cryostat vessel located in the HFTF building at LLNL. Each magnet is enclosed in its own cryostat, the existing 4.0-m vessel serving only as a vacuum chamber. 4 refs., 8 figs

  13. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year

  14. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  15. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  16. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  17. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  18. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  19. 76 FR 81991 - National Spectrum Sharing Research Experimentation, Validation, Verification, Demonstration and...

    Science.gov (United States)

    2011-12-29

    ... NATIONAL SCIENCE FOUNDATION National Spectrum Sharing Research Experimentation, Validation... requirements of national level spectrum research, development, demonstration, and field trial facilities... to determine the optimal way to manage and use the radio spectrum. During Workshop I held at Boulder...

  20. Tritium research and technology facilities at the JRC-Ispra

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Perujo, A.; Pierini, G.; Reiter, F.; Vassallo, G.; Viola, A.; Camposilvan, J.; Douglas, K.; Grassi, G.; Lolli Ceroni, P.; Simonetta, A.; Spelta, B.

    1990-01-01

    A set of experiments which are of prominent interest for the development of nuclear fusion technology in Europe are planned by the JRC-Ispra for the near future, in the frame of experimental activities to be performed in ETHEL, the European Tritium Handling Experimental Laboratory under construction at the Ispra site. These experiments already included for the most part as JRC-Task Action Sheets in the 1989-1991 European Technology Programme Actions will initiate in ETHEL on a fully active laboratory scale starting mid-1991. They will concern the following research areas: Recycling of tritium from first wall materials; Tritium recovery from water cooled Pb-17Li blankets; Detritiation of ventilation atmospheres; Plasma exhaust processing; Tritiazed waste management. In view of fully active tritium experiments in ETHEL and to obtain information of the basic processes involved, since 1985 preparatory experimental studies are being performed at the JRC-Ispra laboratories using hydrogen and deuterium. Furthermore, always with regard to ETHEL experiments, particular attention is given to possible technical and managerial problems which potentially may arise in this context. To identify at an early stage such problems a questionnaire has been developed and distributed to researchers in conjunction with an ETHEL information packet. The questionnaire demands information regarding the scope, design and operation of the intended experiment as well as planning and required support to be supplied by ETHEL. A brief description of experimental preparatory studies and future tritium handling experiments in ETHEL as well of the ETHEL facility is here presented. (orig.)

  1. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  2. Quasi experimental designs in pharmacist intervention research.

    Science.gov (United States)

    Krass, Ines

    2016-06-01

    Background In the field of pharmacist intervention research it is often difficult to conform to the rigorous requirements of the "true experimental" models, especially the requirement of randomization. When randomization is not feasible, a practice based researcher can choose from a range of "quasi-experimental designs" i.e., non-randomised and at time non controlled. Objective The aim of this article was to provide an overview of quasi-experimental designs, discuss their strengths and weaknesses and to investigate their application in pharmacist intervention research over the previous decade. Results In the literature quasi experimental studies may be classified into five broad categories: quasi-experimental design without control groups; quasi-experimental design that use control groups with no pre-test; quasi-experimental design that use control groups and pre-tests; interrupted time series and stepped wedge designs. Quasi-experimental study design has consistently featured in the evolution of pharmacist intervention research. The most commonly applied of all quasi experimental designs in the practice based research literature are the one group pre-post-test design and the non-equivalent control group design i.e., (untreated control group with dependent pre-tests and post-tests) and have been used to test the impact of pharmacist interventions in general medications management as well as in specific disease states. Conclusion Quasi experimental studies have a role to play as proof of concept, in the pilot phases of interventions when testing different intervention components, especially in complex interventions. They serve to develop an understanding of possible intervention effects: while in isolation they yield weak evidence of clinical efficacy, taken collectively, they help build a body of evidence in support of the value of pharmacist interventions across different practice settings and countries. However, when a traditional RCT is not feasible for

  3. Combustion Research Facility | A Department of Energy Office of Science

    Science.gov (United States)

    Collaborative Research Facility Back to Sandia National Laboratory Homepage Combustion Research Search the CRF Combustion Chemistry Flame Chemistry Research.Combustion_Chemistry.Flame_Chemistry Theory and Modeling Theory and Modeling Combustion Kinetics High Pressure Chemistry Chemistry of Autoignition

  4. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  5. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    OpenAIRE

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were d...

  6. Shock Thermodynamic Applied Research Facility (STAR)

    Data.gov (United States)

    Federal Laboratory Consortium — The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only...

  7. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  8. Research highlights from the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Plasil, F.

    1982-01-01

    The purpose of this paper is to present the scope of research carried out at the new Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge. This will be accomplished with reference to several research projects currently underway. The areas of research represented are microscopic and macroscopic aspects of nuclear reactions and nuclear structure. In view of the scope of this conference, emphasis will be placed on nuclear reactions. A brief description of HHIRF is given, together with its current status. Microscopic aspects of reactions between nuclei are discussed with reference to the prospects for the study of giant resonances by means of heavy ions, and to studies of elastic and inelastic scattering of 60 Ni nuclei. Macroscopic aspects of nuclear reactions are illustrated by means of the study of collisions between 58 Ni nuclei at 15.1 MeV/u and by means of Spin Spectrometer (crystal ball) studies of the 19 F + 159 Tb reaction. Results are presented for lifetime measurements of high-spin states in ytterbium nuclei

  9. Upgrade of the experimental facilities of the ORPHEE reactor

    International Nuclear Information System (INIS)

    Farnoux, B.; Breant, P.

    1993-01-01

    At the time of the design, the ORPHEE reactor has been equipped with a set of up-to-date experimental facilities such as nine tangential and horizontal beam holes, one hot source, two hydrogen cold sources and six neutron guides. After more than ten years of operations, all the neutron beams are now used by about twenty five spectrometers. A modernisation program is under progress with a two fold aim: upgrade of the existing facilities and creation of new beams. Some details of the six following points will be described: 1) replacement of the flat cold source cell by an hollow cylinder in order first to increase the cold neutron flux and secondly to facilitate the extraction of new cold neutron beams. 2) replacement of the old neutron guide elements coated with natural nickel by new elements with isotopic nickel or super mirror coating. 3) modification of the curvature of some existing neutron guides in order to increase the wavelength band transmission. 4) creation of new cold neutron beams by installation of benders on the existing neutron guides. 5) design of new cold neutron guides and a new guide hall. 6) design of a thermal neutron guide. The two last points will made extensive use of super mirrors allowed by new technical developments done at the Laboratoire LEON BRILLOUIN in connection with industry. (author)

  10. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov (United States)

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen Systems Integration Facility or ESIF. Research projects including H2FIRST, component testing, hydrogen

  11. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  12. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  13. Experimental atomic and molecular physics research

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Atomic Physics research in the Physics Division consists of five ongoing experimental programs: dissociation and other interactions of energetic molecular ions in solid and gaseous targets; beam-foil research and collision dynamics of heavy ions; photoionization-photoelectron research; spectroscopy of free atoms and molecules, high precision laser-rf double-resonance spectroscopy with atomic and molecular beams; and Moessbauer effect research

  14. Experimental facilities for plate-out investigations and future work

    International Nuclear Information System (INIS)

    Muenchow, K.; Dederichs, H.; Iniotakis, N.; Sackmann, B.

    1981-01-01

    The safety of HTR under normal operation and accident conditions, the possibility of inspection, maintenance and repair or decontamination of single primary components as well as the safety of maintenance personnel are essentially determined by the transport- and deposition behaviour of the non gaseous fission - and activation products in the primary loop of the reactor. A comprehensive program has been started in 1969 in KFA in collaboration with various industrial firms and foreign institutions to investigate these problems. The program includes in-pile and out-pile experiments, simulating reactor conditions and also different laboratory experiments and extensive theoretical investigations. The aim of these efforts is to test experimentally the models and computercodes, which are used for prediction of transport and deposition behaviour of fission products for HTR's as well under normal as under accident conditions. Further more a verified dataset is to be established. In this paper a survey is given of the experimental facilities carried out by KFA or in cooperation with KFA

  15. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  16. DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report describes the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Operations Centers, and other government-owned, contractor-operated facilities which are located in all regions of the United States. It gives brief descriptions of resources, activities, and capabilities of each field facility (sections III through V). These represent a cumulative capital investment of $12 billion and involve a work force of approximately 12,000 government (field) employees and approximately 100,000 contractor employees.

  17. Radiation protection planning for decommissioning of research reactor facilities

    International Nuclear Information System (INIS)

    Jackson, Roger; Harman, Neil; Craig, David; Fecitt, Lorna; Lobach, Yuri; Gorlinskij, Juri; Kolyadin, Vyacheslav; Pavlenko, Vytali

    2008-01-01

    The MR reactor at the Russian Research Centre Kurchatov Institute (RRCKI), Moscow was a 50 MW multipurpose material testing and research reactor equipped with nine experimental loop facilities to test prototype fuel for various nuclear power reactors being developed. The reactor was shut down in 1993 and de-fuelled. The experimental loops are located in basement rooms around the reactor. The nature of the research into the characteristics of fuel design and coolant chemistry resulted in fission products and activation products in the test loop equipment. Decommissioning of the loops therefore presents a number of challenges. In addition the city of Moscow has expanded such that the RRC KI is now surrounded by housing which had to be taken into account in the radiological protection planning. This paper describes the techniques proposed to undertake the dismantling operations in order to minimise the radiation exposure to workers and members of the public. Estimates have been made of the worker doses which could be incurred during the dismantling process and the environmental impacts which could occur. These are demonstrated to be as low as reasonably achievable. The work was funded by the UK Department of Business Enterprise and Regulatory Reform (DBERR) (formerly the Department of Trade and Industry) under the Nuclear Safety Programme (NSP) set up to address nuclear safety issues in the Former Soviet Union. (author)

  18. Applied research and service activities at the University of Missouri Research Reactor Facility (MURR)

    International Nuclear Information System (INIS)

    Alger, D.M.

    1987-01-01

    The University Of Missouri operates MURR to provide an intense source of neutron and gamma radiation for research and applications by experimenters from its four campuses and by experimenters from other universities, government and industry. The 10 MW reactor, which has been operating an average of 155 hours per week for the past eight years, produces thermal neutron fluxes up to 6-7x10 14 n/cm 2 -s in the central flux trap and beamport source fluxes of up to 1.2x10 14 n/cm 2 -s. The mission of the reactor facility, to promote research, education and service, is the same as the overall mission of the university and therefore, applied research and service supported by industrial firms have been welcomed. The university recognized after a few years of reactor operation that in order to build utilization, it would be necessary to develop in-house research programs including people, equipment and activity so that potential users could more easily and quickly obtain the results needed. Nine research areas have been developed to create a broadly based program to support the level of activity needed to justify the cost of operating the facility. Applied research and service generate financial support for about one-half of the annual budget. The applied and service programs provide strong motivation for university/industry association in addition to the income generated. (author)

  19. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  20. NRI experimental facility for the testing of irradiation assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Ruscak, M.; Chvatal, P.; Zamboch, M.

    1998-01-01

    IASCC influencing reactor internals of both BWR and PWR reactors is a complex phenomenon covering influences of material structure, neutron fluence, neutron flux, chemistry of environment, gamma radiation and mechanical stress. To evaluate such degradation, tests should be performed under conditions similar to those in real structure. Nuclear Research Institute has built several experimental facilities in order to be able to test IASCC degradation of materials. Basically, reactor water loops, both PWR and BWR, could be used to model environmental conditions including gamma and neutron irradiation. Pre-irradiation can be done in irradiation channels under well controlled temperature conditions. During the experiment, in-pile conditions can be compared with those out of pile. It enables to clarify pure influence of irradiation. For testing of irradiated specimens, hot cell facility has been developed for slow strain rate tests. The paper will show all above mentioned facilities as well as some of the results observed with them. (author)

  1. Experimental research concerning waste co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, I.

    2007-07-01

    The paper focuses on a lab facility designed for the co-combustion of low calorific Lignite with waste. Also a technology for the potential removal of principal pollutants such as NO{sub x}, Hg and SO{sub 2}, including particles in the fuel gases is described. The novelty of the paper consists in the lay out of the experimental rigs, as well as the application of renewable energy resource in order to generate energy, with lower CO{sub 2} emission. (orig.)

  2. Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Existing and proposed experimental facilities for fast neutron systems” was threefold: 1) presenting and exchanging information about existing and planned experimental facilities in support of the development of innovative fast neutron systems; 2) allow creating a catalogue of existing and planned experimental facilities currently operated/developed within national or international fast reactors programmes; 3) once a clear picture of the existing experimental infrastructures is defined, new experimental facilities are discussed and proposed, on the basis of the identified R&D needs

  3. Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Existing and proposed experimental facilities for fast neutron systems” is threefold: first, it is intended for presenting and exchanging information about existing and planned experimental facilities in support of the development of innovative fast neutron systems; second, it will allow to create a catalogue of existing and planned experimental facilities currently operated/developed within national or international fast reactors programmes; third, once a clear picture of the existing experimental infrastructures is defined, new experimental facilities will be discussed and proposed, on the basis of the identified R&D needs

  4. Naval Research Laboratory Major Facilities 2008

    Science.gov (United States)

    2008-10-01

    consists of two equipment shelters, a chiller for cooling the transmitter, and a 175 kVA diesel generator for use at remote sites. A 40-ft-long... bioremediation , and biodeterioration. INSTRUMENTATION: • ESEM equipped with an energy-dispersive X-ray detector and an image acquisition and...a 125 kW uninterruptible power system with diesel backup. Magnetic sensitivity testing of precision Precision Clock Evaluation Facility CONTACT

  5. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  6. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  7. Experimental design research approaches, perspectives, applications

    CERN Document Server

    Stanković, Tino; Štorga, Mario

    2016-01-01

    This book presents a new, multidisciplinary perspective on and paradigm for integrative experimental design research. It addresses various perspectives on methods, analysis and overall research approach, and how they can be synthesized to advance understanding of design. It explores the foundations of experimental approaches and their utility in this domain, and brings together analytical approaches to promote an integrated understanding. The book also investigates where these approaches lead to and how they link design research more fully with other disciplines (e.g. psychology, cognition, sociology, computer science, management). Above all, the book emphasizes the integrative nature of design research in terms of the methods, theories, and units of study—from the individual to the organizational level. Although this approach offers many advantages, it has inherently led to a situation in current research practice where methods are diverging and integration between individual, team and organizational under...

  8. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  9. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  10. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    International Nuclear Information System (INIS)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. (author)

  11. National facility for neutron beam research

    Indian Academy of Sciences (India)

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview ...

  12. A low-temperature research facility for space

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    The Jet Propulsion Laboratory is proposing to NASA a new initiative to construct a Low Temperature Research Facility for use in space. The facility is described, together with some details of timing and support. An advisory group has been formed which seeks to advise JPL and NASA of the capabilities required in this facility and to invite investigators to propose experiments which require the combination of low temperature and reduced gravity to be successful. (orig.)

  13. Experimental platforms in support of the ASTRID program: existing and planned facilities - 15126

    International Nuclear Information System (INIS)

    Gastaldi, O.; Rodriguez, G.; Ayrault, L.; Collard, B.; Dumesnil, J.; Dujet, F.; Journeau, C.; Latge, C.; Sanseigne, E.; Serre, F.; Tkatschenko, I.; Willermoz, G.

    2015-01-01

    The sodium cooled fast reactors (SFR) French program currently focused on the design of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor in different fields: energy conversion system, instrumentation for continuous monitoring, In Service Inspection and Repair, core design, fuel handling, thermo hydraulic, severe accidents, large flow electromagnetic pumps... Even if the French experimental prototype implies the development of innovative techniques, concepts and feedback of operations of SFRs are important, the new challenges coming from the objectives to meet GEN-IV requirements need some research and development. To achieve this goal, the generation four French SFR program includes the development of technological platforms with experimental facilities to develop and evaluate innovative options and also qualify some ASTRID specific components. The needs in terms of development, validation and qualification of techniques, components or systems to be used on ASTRID have been reviewed exhaustively in 2014. It allowed to consolidate or to precise the experimental purposes of the four CEA platforms regrouping technological facilities with different strategy of erection. PAPIRUS platform (largely already constructed) is dedicated to in-sodium experimental testing; GISEH platform (also largely already constructed) is devoted to water and air tests in support to hydraulic, thermal-hydraulic and fluid-structure interaction studies; CHEOPS platform (detailed studies and realization contract launched in 2014 aiming at commissioning and start up in 2018) deals with in sodium research and development and some qualifications requiring large scale; and last, PLINIUS-2 platform (commissioning and start up in 2019) concerns prototypic corium behavior studies in severe accident conditions and mitigation device qualification. This paper presents the four platforms and for each of them the experimental needs which are covered by their facilities

  14. Energy Storage Facilities | Transportation Research | NREL

    Science.gov (United States)

    , electric, and fuel cell battery and ultracapacitor pack testing. Their voltages range from 0-100 volts component developers and automobile manufacturers improve battery and energy storage system designs by enhancing performance and extending battery life. Sophisticated experimentation, modeling, and analysis

  15. An Introduction to Experimental Design Research

    DEFF Research Database (Denmark)

    Cash, Philip; Stanković, Tino; Štorga, Mario

    2016-01-01

    Design research brings together influences from the whole gamut of social, psychological, and more technical sciences to create a tradition of empirical study stretching back over 50 years (Horvath 2004; Cross 2007). A growing part of this empirical tradition is experimental, which has gained in ...

  16. Accelerator based research facility as an inter university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1995-01-01

    15 UD pelletron has been operating as a user facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic Nuclear Physics, Materials Science, Atomic Physics, Radiobiology and Radiation Chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonator is being developed in Argonne National Laboratory as a joint collaborative effort. All other things such as cryostats, rf instrumentation, cryogenic distribution system, computer control etc are being done indigenously. Research facilities, augmentation plans and the research being conducted by the universities in various disciplines are described. (author)

  17. Profiles of facilities used for HTR research and testing

    International Nuclear Information System (INIS)

    1980-05-01

    This report contains a current description of facilities supporting HTR research and development submitted by countries participating in the IWGFR. It has the purpose of providing an overview of the facilities available for use and of the types of experiments that can be conducted therein

  18. The NASA Lewis Research Center Internal Fluid Mechanics Facility

    Science.gov (United States)

    Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

    1991-01-01

    An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

  19. Trends in animal use at US research facilities.

    Science.gov (United States)

    Goodman, Justin; Chandna, Alka; Roe, Katherine

    2015-07-01

    Minimising the use of animals in experiments is universally recognised by scientists, governments and advocates as an ethical cornerstone of research. Yet, despite growing public opposition to animal experimentation, mounting evidence that animal studies often do not translate to humans, and the development of new research technologies, a number of countries have reported increased animal use in recent years. In the USA--one of the world's largest users of animals in experiments--a lack of published data on the species most commonly used in laboratories (eg, mice, rats and fish) has prevented such assessments. The current study aimed to fill this gap by analysing the use of all vertebrate animals by the top institutional recipients of National Institutes of Health research funds over a 15-year period. These data show a statistically significant 72.7% increase in the use of animals at these US facilities during this time period-driven primarily by increases in the use of mice. Our results highlight a need for greater efforts to reduce animal use. We discuss technical, institutional, sociological and psychological explanations for this trend. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Xoubi, N.

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U 3 Si 2 ) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×10 14 cm -2 s -1 , and is controlled by a Hafnium control absorber rod and B 4 C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  1. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  2. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  3. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges - 15066

    International Nuclear Information System (INIS)

    Sabharwall, P.; O'Brien, J.E.; Yoon, S.J.; Sun, X.

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic, materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The 3 loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuits heat exchangers (PCHEs) at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integrated System Test (ARTIST) facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 C. degrees), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF 4 ) flow loop operating at low pressure (0.2 MPa), at a temperature of ∼ 450 C. degrees. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift) in measuring operational data for extended periods of times, as data collected will be

  4. Data Analysis in Experimental Biomedical Research

    DEFF Research Database (Denmark)

    Markovich, Dmitriy

    This thesis covers two non-related topics in experimental biomedical research: data analysis in thrombin generation experiments (collaboration with Novo Nordisk A/S), and analysis of images and physiological signals in the context of neurovascular signalling and blood flow regulation in the brain...... to critically assess and compare obtained results. We reverse engineered the data analysis performed by CAT, a de facto standard assay in the field. This revealed a number of possibilities to improve its methods of data analysis. We found that experimental calibration data is described well with textbook...

  5. European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program

    International Nuclear Information System (INIS)

    Fortov, Vladimir E; Sharkov, Boris Yu; Stöker, H

    2012-01-01

    The Facility for Antiproton and Ion Research (FAIR) accelerator center at Darmstadt, Germany, will provide the international scientific community with unique experimental opportunities of a scope and scale out of reach for any other large-scale facility in the world. With its staff of over 2500, it is expected to fundamentally expand our knowledge of hadron, nuclear, and atomic physics and their application to cosmology, astrophysics, and technology. In this review, the design details of the accelerator complex are discussed and the experimental research program for FAIR is presented. Particular attention is paid to experiments on the extreme state of matter arising from the isochoric heating of a material by heavy-ion beams. One of the largest facilities of its kind in Europe, FAIR is a part of the strategic development roadmap for the European Strategic Forum on Research Infrastructures (ESFRI). (physics of our days)

  6. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  7. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  8. A facility for using cluster research to study environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  9. A facility for using cluster research to study environmental problems

    International Nuclear Information System (INIS)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report

  10. Paul Scherrer Institute Scientific and Technical Report 2000. Volume VI: Large Research Facilities

    International Nuclear Information System (INIS)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Zumkeller, Lotty

    2001-01-01

    The PSI Department Large Research Facilities (GFA) joins the efforts to provide an excellent research environment to Swiss and foreign research groups on the experimental facilities driven by our high intensity proton accelerator complex. Its divisions care for the running, maintenance and enhancement of the accelerator complex, the primary proton beamlines, the targets and the secondary beams as well as the neutron spallation source SINQ. The division for technical support and coordination provides for technical support to the research facility complementary to the basic logistic available from the department for logistics and marketing. Besides running the facilities, the staff of the department is also involved in theoretical and experimental research projects. Some of them address basic scientific questions mainly concerning the properties of micro- or nanostructured materials: experiments as well as large scale computer simulations of molecular dynamics were performed to investigate nonclassical materials properties. Others are related to improvements or extensions of the capabilities of our facilities. We also report on intriguing results from applications of the neutron capture radiography, the prompt gamma activation method and the isotope production facility at SINQ

  11. Paul Scherrer Institute Scientific and Technical Report 2000. Volume VI: Large Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Zumkeller, Lotty [eds.

    2001-07-01

    The PSI Department Large Research Facilities (GFA) joins the efforts to provide an excellent research environment to Swiss and foreign research groups on the experimental facilities driven by our high intensity proton accelerator complex. Its divisions care for the running, maintenance and enhancement of the accelerator complex, the primary proton beamlines, the targets and the secondary beams as well as the neutron spallation source SINQ. The division for technical support and coordination provides for technical support to the research facility complementary to the basic logistic available from the department for logistics and marketing. Besides running the facilities, the staff of the department is also involved in theoretical and experimental research projects. Some of them address basic scientific questions mainly concerning the properties of micro- or nanostructured materials: experiments as well as large scale computer simulations of molecular dynamics were performed to investigate nonclassical materials properties. Others are related to improvements or extensions of the capabilities of our facilities. We also report on intriguing results from applications of the neutron capture radiography, the prompt gamma activation method and the isotope production facility at SINQ.

  12. Confinement Physics Research Facility/ZTH: A progress report

    International Nuclear Information System (INIS)

    Hammer, C.F.; Thullen, P.

    1989-01-01

    In October 1985 the Los Alamos National Laboratory's Controlled Thermonuclear Research (CTR) Division began the design and construction of the Confinement Physics Research Facility (CPRF) and the ZTH toroidal, reversed-field-pinch (RFP), plasma physics experiment. The CPRF is a facility which will provide the buildings, utilities, pulsed power system, control system and diagnostics needed to operate a magnetically confined fusion experiment, and ZTH will be the first experiment operated in the facility. The construction of CPRF/ZTH is scheduled for completion in the first quarter of 1993. 5 figs

  13. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM......) is analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable...

  14. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Choi, W. K.; Jung, C. H.; Oh, W. Z.

    2007-06-01

    The originative CO 2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  15. ARM Climate Research Facility Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  16. Leak testing requirements at a research facility

    International Nuclear Information System (INIS)

    Conner, J.B.

    1979-01-01

    Since September, 1952, Lawrence Livermore Laboratory has conducted pioneering research in applied science. A vital part of this activity has been the development of a variety of high vacuum and ultrahigh vacuum systems. Leaks occur in everything, including vacuum systems. The mass spectrometer leak detection equipment is described

  17. The experimental facility of Tournemire; La station experimentale de Tournemire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This document presents the underground facility of Tournemire (Aveyron, France). The Tournemire abandoned railway tunnel gives access to a 250 m thick Jurassic clay bed covered with 250 m of limestones. The main goal of the Tournemire project is the study of the mechanical properties and fracturing of a clay formation and of its ability to be used as a deep underground storage facility for radioactive wastes. The document comprises a general presentation brochure and a description of the geologic, tectonic, geomechanical and hydro-geochemical surveys carried out in the facility. (J.S.)

  18. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  19. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  20. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  1. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  2. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    CERN Document Server

    Abler, Daniel; Carli, Christian; Dosanjh, Manjit; Peach, Ken; Orecchia, Roberto

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN’s competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR an...

  3. An experimental facility for microwave induced plasma processing of materials

    International Nuclear Information System (INIS)

    Patil, D.S.; Ramachandran, K.; Bhide, A.L.; Venkatramani, N.

    1997-01-01

    Microwave induced plasma processing offers many advantages over conventional processes. However this technology is in the development stage. This report gives a detailed information about a microwave plasma processing facility (2.45 GHz, 700 W) set up in the Laser and Plasma Technology Division. The equipment details and the results obtained on deposition of diamond like carbon (DLC) thin films and surface modification of polymer PET (polyethylene terephthalate) using this facility are given in this report. (author)

  4. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  5. Irradiation facilities for materials research: IFMIF and small scale installations

    International Nuclear Information System (INIS)

    Perlado, J. M.; Victoria, M.

    2007-01-01

    The research of advance materials in nuclear fields such as new fission reactors (Generation-IV), Accelerator Driven Systems for Transmutation of Radioactive Wastes and Nuclear Fusion, is becoming very much common in the types of low activation and radiation resistant Materials. Ferritic-Martensitic Steels (based in 9-12 Cr) with or without Oxide Dispersion Techniques (Ytria Nanoparticles), Composites materials are becoming the new generation to answer requirements of high temperature, high radiation resistance of structural materials. Special dedication is appearing in general research programmes to this area of Materials. The understanding of their final performance needs a wider knowledge of the mechanisms of radiation damage in these materials from the atomistic scale to the macroscopic responses. New extensive campaigns are being funded to irradiate from simple elements to model alloys and finally the complex materials themselves. That sequence and its state of art will be presented One clear technique for that understanding is the Multi scale Modelling which includes simulation techniques from quantum mechanics, molecular dynamics, defects diffusion, mesoscopic modelling and finally the macroscopic constitutive relations for macroscopic analysis. However, in each one of these steps is necessary a systematic and well established program of experiments that combines the irradiation and the very detailed analysis with techniques such as Transmission Electron Microscope, Positron Annihilation, SIMS, Atom Probe, Nanoindebntation. A key aspect that wants to be presented in this work is the state of art and discussion of Irradiation Facilities for Materials studies. Those facilities goes from ion implantation sources, small accelerator, Experimental Reactors such High Flux Reactor, sophisticated Triple Beams Sources as JANNUS in France to generate at the same time displacements-hydrogen-helium, and projected very large neutron installation such as IFMIF. The role to

  6. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  7. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  8. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  9. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  10. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  11. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  12. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  13. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  14. Community Extreme Tonnage User Service (CETUS): A 5000 Ton Open Research Facility in the United States

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Vander Kaaden, K. E.; Rowland, R. L., II; Draper, D. S.; McCubbin, F. M.

    2017-12-01

    Large sample volume 5000 ton multi-anvil presses have contributed to the exploration of deep Earth and planetary interiors, synthesis of ultra-hard and other novel materials, and serve as a sample complement to pressure and temperature regimes already attainable by diamond anvil cell experiments. However, no such facility exists in the Western Hemisphere. We are establishing an open user facility for the entire research community, with the unique capability of a 5000 ton multi-anvil and deformation press, HERA (High pressure Experimental Research Apparatus), supported by a host of extant co-located experimental and analytical laboratories and research staff. We offer wide range of complementary and/or preparatory experimental options. Any required synthesis of materials or follow up experiments can be carried out controlled atmosphere furnaces, piston cylinders, multi-anvil, or experimental impact apparatus. Additionally, our division houses two machine shops that would facilitate any modification or custom work necessary for development of CETUS, one for general fabrication and one located specifically within our experimental facilities. We also have a general sample preparation laboratory, specifically for experimental samples, that allows users to quickly and easily prepare samples for ebeam analyses and more. Our focus as contract staff is on serving the scientific needs of our users and collaborators. We are seeking community expert input on multiple aspects of this facility, such as experimental assembly design, module modifications, immediate projects, and future innovation initiatives. We've built a cooperative network of 12 (and growing) collaborating institutions, including COMPRES. CETUS is a coordinated effort leveraging HERA with our extant experimental, analytical, and planetary process modelling instrumentation and expertise in order to create a comprehensive model of the origin and evolution of our solar system and beyond. We are looking to engage

  15. Charger 1: A New Facility for Z-Pinch Research

    Science.gov (United States)

    Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony

    2017-01-01

    Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.

  16. Korean plasma-material interaction researches/facilities

    International Nuclear Information System (INIS)

    Chung, K.-S.; Woo, H.-J.; Cho, S.-G.

    2013-01-01

    Various PMI facilities have been developed recently in Korea, such as DiPS, MP2, ECR plasma, a segmented plasma torch system, e-beam accelerator, and the TReD (Transport and Removal experiment of Dust) device. In this paper, these devices are briefly to be explained in terms of objective and specifications along with initial experimental results. (J.P.N.)

  17. Conference on the research facilities for future nuclear power engineering

    International Nuclear Information System (INIS)

    Arkhangel'skij, N.V.

    1996-01-01

    The activity of the European nuclear society Conference (Belgium, June, 1996) is described. The main topics of 60 presented reports are the following ones: necessity of developing new experimental facilities and their parameters; financing prospects and international cooperation in this field

  18. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems

  19. Characterization of experimental dental research using animals

    Directory of Open Access Journals (Sweden)

    Ana Flávia Granville-Garcia

    2009-01-01

    Full Text Available Objective: To determine the profile of experimental dental research using animals. Methods: The research comprised all the 4141 abstracts existent in the books of annals from the 22nd and 23rd Annual meetings of the Brazilian Society of Dentistry Research and the sample was composed of 377 studies (9.1%. The variables analyzed were: area of knowledge, type of institution, State of the country, type of animal and body part used, occurrence of animal sacrifice, mention of the Research Ethics Committee, receipt of funding and type of financing agency. Results: The largest number of studies concentrated on the areas of Buccomaxillofacial Surgery (27.3% and Basic Sciences (21.2%. The Public Universities were responsible for 74% of the researches, and the State Institutions were outstanding (82.4%. The State of São Paulo was responsible for 74.1% of the studies. Rats (67.1% and rabbits (11.1% were the most frequently used animals, and 68.2% of the animals were sacrificed. The oral cavity was used in 50.1% of the researches and the mandible in 59%. Only 1.9% of the studies mentioned the Research Ethics Committee and 26.3% reported that they received funding. Conclusion: In Dentistry, studies involving animals are predominant in the areas of buccomaxillofacial surgery and basic sciences, with rats andrabbits being most frequently used. A significant number of guinea pigs are sacrificed during or at the end of the experiments.

  20. Lung MRI for experimental drug research

    International Nuclear Information System (INIS)

    Beckmann, Nicolau; Cannet, Catherine; Karmouty-Quintana, Harry; Tigani, Bruno; Zurbruegg, Stefan; Ble, Francois-Xavier; Cremillieux, Yannick; Trifilieff, Alexandre

    2007-01-01

    Current techniques to evaluate the efficacy of potential treatments for airways diseases in preclinical models are generally invasive and terminal. In the past few years, the flexibility of magnetic resonance imaging (MRI) to obtain anatomical and functional information of the lung has been explored with the scope of developing a non-invasive approach for the routine testing of drugs in models of airways diseases in small rodents. With MRI, the disease progression can be followed in the same animal. Thus, a significant reduction in the number of animals used for experimentation is achieved, as well as minimal interference with their well-being and physiological status. In addition, under certain circumstances the duration of the observation period after disease onset can be shortened since the technique is able to detect changes before these are reflected in parameters of inflammation determined using invasive procedures. The objective of this article is to briefly address MRI techniques that are being used in experimental lung research, with special emphasis on applications. Following an introduction on proton techniques and MRI of hyperpolarized gases, the attention is shifted to the MRI analysis of several aspects of lung disease models, including inflammation, ventilation, emphysema, fibrosis and sensory nerve activation. The next subject concerns the use of MRI in pharmacological studies within the context of experimental lung research. A final discussion points towards advantages and limitations of MRI in this area

  1. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  2. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  3. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  4. Irradiation Facilities of the Takasaki Advanced Radiation Research Institute

    Directory of Open Access Journals (Sweden)

    Satoshi Kurashima

    2017-03-01

    Full Text Available The ion beam facility at the Takasaki Advanced Radiation Research Institute, the National Institutes for Quantum and Radiological Science and Technology, consists of a cyclotron and three electrostatic accelerators, and they are dedicated to studies of materials science and bio-technology. The paper reviews this unique accelerator complex in detail from the viewpoint of its configuration, accelerator specification, typical accelerator, or irradiation technologies and ion beam applications. The institute has also irradiation facilities for electron beams and 60Co gamma-rays and has been leading research and development of radiation chemistry for industrial applications in Japan with the facilities since its establishment. The configuration and utilization of those facilities are outlined as well.

  5. Radwaste requirements at a biomedical research facility

    International Nuclear Information System (INIS)

    Brannegan, D.P.; Wolter, W.; Merenda, J.M.; Figdor, S.K.

    1993-01-01

    The low-level radioactive waste (LLRW) federal legislation that was passed during the 1980s was intended to provide an orderly system of LLRW disposal as the country's three waste sites proceeded toward excluding out-of-state generators. The system was based on a regional interstate compact system. As originally envisioned, several contiguous states were to form an association (compact) with one state receiving radwaste from the compact. Everyone is aware of the difficulties that followed as attempts were made to implement these laws and to meet the prescribed milestones to avoid financial penalties. Although the states (compacts) have labored for over 12 yr along this rocky road, no compact has developed and licensed a new disposal site prior to the January 1, 1993 deadline. A recent report by the Center for the Study of American Business at Washington University in St. Louis states that open-quotes The current regional interstate compact system for disposal of low-level radioactive waste is fatally flawed on both technical and practical political grounds.close quotes Thus, the system has broken down and the three original LLRW sites closed their gates (with the possible exception of Barnwell) as planned on January 1, 1993. It would appear that the fate of LLRW will be the same as that of high-level waste (HLW); it will be stored at the site of the generator until a solution to the problem is found. For the nonutility generator, storage is an entirely new problem. It must be appreciated that almost all nonutility generators are in the business of research or medical treatment and not in the business of storing LLRW. Thus, storage represents a new turn of events and a new aspect of doing business. It also means the diversion of limited resources to a problem that should not exist. Lastly, on-site LLRW storage for the nonutility generator will also require additional regulatory approval for the handling, storage, and ongoing monitoring of this waste

  6. Remote operations in a Fusion Engineering Research Facility (FERF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1975-01-01

    The proposed Fusion Engineering Research Facility (FERF) has been designed for the test and evaluation of materials that will be exposed to the hostile radiation environment created by fusion reactors. Because the FERF itself must create a very hostile radiation environment, extensive remote handling procedures will be required as part of its routine operations as well as for both scheduled and unscheduled maintenance. This report analyzes the remote-handling implications of a vertical- rather than horizontal-orientation of the FERF magnet, describes the specific remote-handling facilities of the proposed FERF installation and compares the FERF remote-handling system with several other existing and proposed facilities. (U.S.)

  7. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  8. A safety decision analysis for Saudi Arabian nuclear research facility

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Fattah, A.F.

    1985-01-01

    Establishment of a nuclear research facility should be the first step in planning for introducing the nuclear energy to Saudi Arabia. The fuzzy set decision theory is selected among different decision theories to be applied for this analysis. Four research reactors from USA are selected for the present study. The IFDA computer code, based on the fuzzy set theory is applied. Results reveal that the FNR reactor is the best alternative for the case of Saudi Arabian nuclear research facility, and MITR is the second best. 17 refs

  9. Seven layers of security to help protect biomedical research facilities.

    Science.gov (United States)

    Mortell, Norman

    2010-04-01

    In addition to risks such as theft and fire that can confront any type of business, the biomedical research community often faces additional concerns over animal rights extremists, infiltrations, data security and intellectual property rights. Given these concerns, it is not surprising that the industry gives a high priority to security. This article identifies security threats faced by biomedical research companies and shows how these threats are ranked in importance by industry stakeholders. The author then goes on to discuss seven key 'layers' of security, from the external environment to the research facility itself, and how these layers all contribute to the creation of a successfully secured facility.

  10. Experimental Research in Boost Driver with EDLCs

    Science.gov (United States)

    Matsumoto, Hirokazu

    The supply used in servo systems tends to have a high voltage in order to reduce loss and improve the response of motor drives. We propose a new boost motor driver that comprises EDLCs. The proposed driver has a simple structure, wherein the EDLCs are connected in series to the supply, and comprises a charge circuit to charge the EDLCs. The proposed driver has three advantages over conventional boost drivers. The first advantage is that the driver can easily attain the stable boost voltage. The second advantage is that the driver can reduce input power peaks. In a servo system, the input power peaks become greater than the rated power in order to accelerate the motor rapidly. This implies that the equipments that supply power to servo systems must have sufficient power capacity to satisfy the power peaks. The proposed driver can suppress the increase of the power capacity of supply facilities. The third advantage is that the driver can store almost all of the regenerative energy. Conventional drivers have a braking resistor to suppress the increase in the DC link voltage. This causes a considerable reduction in the efficiency. The proposed driver is more efficient than conventional drivers. In this study, the experimental results confirmed the effectiveness of the proposed driver and showed that the drive performance of the proposed driver is the same as that of a conventional driver. Furthermore, it was confirmed that the results of the simulation of a model of the EDLC module, whose capacitance is dependent on the frequency, correspond well with the experimental results.

  11. NATO Advanced Research Workshop on Brilliant Light Facilities and Research in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili; Brilliant Light in Life and Material Sciences

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  12. Facilities for Research and Development of Medical Radioisotopes

    International Nuclear Information System (INIS)

    Shin, Byung Chul; Choung, Won Myung; Park, Jin Ho

    2003-03-01

    This study is carried out by KAERI(Korea Atomic Energy Research Institute) to construct the basic facilities for development and production of medical radioisotope. For the characteristics of radiopharmaceuticals, the facilities should be complied with the radiation shield and GMP(Good Manufacturing Practice) guideline. The KAERI, which has carried out the research and development of the radiopharmaceuticals, made a design of these facilities and built them in the HANARO Center and opened the technique and facilities to the public to give a foundation for research and development of the radiopharmaceuticals. In the facilities, radiation shielding utilities and GMP instruments were set up and their operating manuals were documented. Every utilities and instruments were performed the test to confirm their efficiency and the approval for use of the facilities will be achieved from MOST(Ministry of Science and Technology). It is expected to be applied in development of therapeutic radioisotope such as Re-188 generator and Ho-166, as well as Tc-99m generator and Sr-89 chloride for medical use. And it also looks forward to the contribution to the related industry through the development of product in high demand and value

  13. Experimental facility for determining plasma characteristics in ion sources

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Kagan, Yu.M.; Kolokolov, N.B.; Lavrov, B.P.

    A facility for optical and electrical measurements of the plasma parameters in the arc plasma ion sources is described. The potentialities of the system are demonstrated on the basis of the electron concentration, the electron energy distribution function, and the radial population distribution of the excited states of hydrogen atoms in the arc plasma of the duoplasmatron. (U.S.)

  14. Experimental research on pressurized water reactor(PWR) safety

    International Nuclear Information System (INIS)

    Kim, Dong Su; Chae, Sung Ki; Chang, Won Pyo

    1991-12-01

    The objective of this research is to analyze the experimental results already performed in BETHSY facility of CEA France and to establish essential technologies for the future implementation of both such an experiment and computer code assessment, which are not undergoing in Korea so far. The contents of the present study are divided into 2 categories; namely, analysis of the BETHSY experimental data received from CEA, and CATHARE computer code simulation for the selected experiments, i.e. 'Natural Circulation(Test 4.3a)' and '2 Cold Leg Break'. The later studies are performed under the aims of CATHARE assessment as well as qualification of KOSAC code developing at KAERI, which is the subject in the next year and will concern an adequacy of KOSAC for the prediction of low flow natural circulation and a small break transients. (Author)

  15. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  16. Experimental research of flow servo-valve

    Directory of Open Access Journals (Sweden)

    Takosoglu Jakub

    2017-01-01

    Full Text Available Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  17. Experimental research of flow servo-valve

    Science.gov (United States)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  18. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    International Nuclear Information System (INIS)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling

  19. Presentations for the 1st muon science experimental facility advisory committee meeting (MuSAC)

    International Nuclear Information System (INIS)

    2003-03-01

    The J-PARC Muon Science Advisory Committee, so called 'MuSAC', is organized under the J-PARC Project Director during construction period, in order to discuss the following items related to the Muon Science Facility at J-PARC and to report to the Project Director and Muon Science Facility construction team. The committee will review and advise the following subjects: 1) Project definition of the experimental facility to be constructed in Materials and Life Science Facility of J-PARC, 2) Content of the 1st phase experimental program. This issue is the collection of the documents presented at the title meeting. (J.P.N.)

  20. Experimental research on safety assurance of advanced WWER fuel cycles

    International Nuclear Information System (INIS)

    Krainov, Ju.; Kukushkin, Ju.

    2002-01-01

    The paper presents the results of experimental investigations on substantiation of implementation of a modernized butt joint for the WWER-440 reactor, carried out in the critical test facility 'P' in the RRC 'Kurchatov Institute'. The comparison results of the calculation and experimental data obtained in the physical startup of Volgodonsk NPP-1 with the WWER-1000 are also given. In the implementation of four-year fuel cycle in the WWER-440 with the average enrichment of fuel makeup 3.82% it was solved to conduct experimental research of power distribution in the vicinity of control rod butt junction. Moreover, it was assumed that adequate actions should be applied to eliminate inadmissible power jumps, if necessary. It is not available to measure their values in NPP conditions. Therefore, the power distribution near the butt joint was studied in a 19-rod bank installed in the critical test facility 'P' first for the normal design of the joint when surrounding fuel assemblies enrichment goes up. Then a set of calculation and tests was fulfilled to optimize a butt junction design. On the base of this research the composition of a butt junction was advanced by placing Hf plates into the junction. The effectiveness of modernized butt joint design was experimentally confirmed. In Volgodonsk NPP-1 with WWER-1000 the four-year fuel cycle is being implemented. During the physical startup of the reactor the measurements of the reactivity effects and coefficients were measured at the minimum controlled flux level, and the parameters of a number of critical states were recorded. The data obtained were compared with the calculation. The validity of the certified code package for forecasting the neutronic characteristics of WWER-1000 cores in the implementation of a four year fuel cycle has been supported (Authors)

  1. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  2. FAIR - Facility, Research Program and Status of the Project

    International Nuclear Information System (INIS)

    Majka, Z.

    2011-01-01

    The international Facility for Antiproton and Ion Research (FAIR) in Europe will provide a worldwide science community with a unique and technically innovative accelerator system to perform forefront research in the sciences concerned with the basic structure of matter, and in intersections with other fields. The facility will deliver an extensive range of primary and secondary particle beams from protons and their antimatter partners, antiprotons, to ion beams of all chemical elements up to the heaviest, uranium, with in many respects unique properties and intensities. The paper will include overview of the new facility design and research programs to be carried out there. The current status of the FAIR project will be also presented. (author)

  3. Earthquake research for the safer siting of critical facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cluff, J.L. (ed.)

    1980-01-01

    The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

  4. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing US fusion PRA effects. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 2 tabs

  5. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing U.S. fusion PRA efforts. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 1 tab

  6. [Animal experimentation, animal welfare and scientific research].

    Science.gov (United States)

    Tal, H

    2013-10-01

    Hundreds of thousands of laboratory animals are being used every year for scientific experiments held in Israel, mostly mice, rats, rabbits, guinea pigs, and a few sheep, cattle, pigs, cats, dogs, and even a few dozen monkeys. In addition to the animals sacrificed to promote scientific research, millions of animals slain every year for other purposes such as meat and fine leather fashion industries. While opening a front against all is an impossible and perhaps an unjustified task, the state of Israel enacted the Animal Welfare (Animal Experimentation) Law (1994). The law aims to regulate scientific animal experiments and to find the appropriate balance between the need to continue to perform animal experiments for the advancement of research and medicine, and at the same time to avoid unnecessary trials and minimize animal suffering. Among other issues the law deals with the phylogenetic scale according to which experimental animals should be selected, experiments for teaching and practicing, and experiments for the cosmetic industry. This article discusses bioethics considerations in animal experiments as well as the criticism on the scientific validity of such experiments. It further deals with the vitality of animal studies and the moral and legal obligation to prevent suffering from laboratory animals.

  7. NWFSC OA facility water chemistry - Ocean acidification species exposure experimental facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We have developed a unique facility for conducting high-quality experiments on marine organisms in seawater with controlled carbon chemistry conditions. The...

  8. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  9. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    International Nuclear Information System (INIS)

    Salazar, M.D.

    1998-01-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel

  10. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  11. New research facilities at the University of Missouri research reactor

    International Nuclear Information System (INIS)

    McKibben, J.C.; Rhyne, J.J.

    1992-01-01

    The University of Missouri-Columbia is investing its resources for a significant expansion of the research capabilities and utilization of MURR to provide it the opportunity to deliver on its obligation to become the nation's premier educational institution in nuclear-related fields and so that it can provide scientific personnel and a state-of-the-art research test bed to support the national need for highly trained graduates in nuclear science and engineering

  12. Experimental monitoring of ozone production in a PET cyclotron facility

    International Nuclear Information System (INIS)

    Zanibellato, L.; Cicoria, G.; Pancaldi, D.; Boschi, S.; Mostacci, D.; Marengo, M.

    2010-01-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital 'S.Orsola-Malpighi' PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  13. Decommissioning of small medical, industrial and research facilities

    International Nuclear Information System (INIS)

    2003-01-01

    Most of the technical literature on decommissioning addresses the regulatory, organizational, technical and other aspects for large facilities such as nuclear power plants, reprocessing plants and relatively large prototype, research and test reactors. There are, however, a much larger number of licensed users of radioactive material in the fields of medicine, research and industry. Most of these nuclear facilities are smaller in size and complexity and may present a lower radiological risk during their decommissioning. Such facilities are located at research establishments, biological and medical laboratories, universities, medical centres, and industrial and manufacturing premises. They are often operated by users who have not been trained or are unfamiliar with the decommissioning, waste management and associated safety aspects of these types of facility at the end of their operating lives. Also, for many small users of radioactive material such as radiation sources, nuclear applications are a small part of the overall business or process and, although the operating safety requirements may be adhered to, concern or responsibility may not go much beyond this. There is concern that even the minimum requirements of decommissioning may be disregarded, resulting in avoidable delays, risks and safety implications (e.g. a loss of radioactive material and a loss of all records). Incidents have occurred in which persons have been injured or put at risk. It is recognized that the strategies and specific requirements for small facilities may be much less onerous than for large ones such as nuclear power plants or fuel processing facilities, but many of the same principles apply. There has been considerable attention given to nuclear facilities and many IAEA publications are complementary to this report. This report, however, attempts to give specific guidance for small facilities. 'Small' in this report does not necessarily mean small in size but generally modest in terms

  14. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  15. The experimental facility for investigation of MHD heat transfer in perspective coolants in nuclear energetics.

    Science.gov (United States)

    Batenin, B. M.; Belyaev, I. A.; Birukov, D. A.; Frick, P. G.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu; Razuvanov, N. G.; Sviridov, E. V.; Sviridov, V. G.

    2017-11-01

    Paper presents the current results of work conducted by a joint research group of MPEI-JIHT RAS for experimental study of liquid metals heat transfer. The team of specialists of MPEI-JIHT RAS put into operation a new mercury MHD facility RK-3. The main components of this stand are: a unique electromagnet, created by specialists of the Budker Institute of Nuclear Physics (BINP), and a sealed liquid-metal circuit. The facility will be explored lifting and standpipe flow of liquid metal in a transverse magnetic field in channels of different forms. For the experiments on the study of heat transfer and hydrodynamics of flows for measuring characteristics such as temperature, speed, pulse characteristics, probe method is used. Presents the first experimental results obtained for a pipe in a transverse magnetic field. During the experiments with various flow parameters data was obtained and processed with constructing temperature fields, dimensionless wall temperature distributions and heat transfer coefficients along the perimeter of the work area. Modes with low frequency pulsations of temperature were discovered. The boundaries where low frequency temperature fluctuations occur were defined in a circular tube.

  16. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  17. Planned experimental studies on natural-circulation and stability performance of boiling water reactors in four experimental facilities and first results (NACUSP)

    Energy Technology Data Exchange (ETDEWEB)

    Kruijf, W.J.M. de E-mail: kruijf@iri.tudelft.nl; Ketelaar, K.C.J.; Avakian, G.; Gubernatis, P.; Caruge, D.; Manera, A.; Hagen, T.H.J.J. van der; Yadigaroglu, G.; Dominicus, G.; Rohde, U.; Prasser, H.-M.; Castrillo, F.; Huggenberger, M.; Hennig, D.; Munoz-Cobo, J.L.; Aguirre, C

    2003-04-01

    Within the 5th Euratom framework programme the NACUSP project focuses on natural-circulation and stability characteristics of Boiling Water Reactors (BWRs). This paper gives an overview of the research to be performed. Moreover, it shows the first results obtained by one of the four experimental facilities involved. Stability boundaries are given for the low-power low-pressure operating range, measured in the CIRCUS facility. The experiments are meant to serve as a future validation database for thermohydraulic system codes to be applied for the design and operation of BWRs.

  18. Planned experimental studies on natural-circulation and stability performance of boiling water reactors in four experimental facilities and first results (NACUSP)

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Ketelaar, K.C.J.; Avakian, G.; Gubernatis, P.; Caruge, D.; Manera, A.; Hagen, T.H.J.J. van der; Yadigaroglu, G.; Dominicus, G.; Rohde, U.; Prasser, H.-M.; Castrillo, F.; Huggenberger, M.; Hennig, D.; Munoz-Cobo, J.L.; Aguirre, C.

    2003-01-01

    Within the 5th Euratom framework programme the NACUSP project focuses on natural-circulation and stability characteristics of Boiling Water Reactors (BWRs). This paper gives an overview of the research to be performed. Moreover, it shows the first results obtained by one of the four experimental facilities involved. Stability boundaries are given for the low-power low-pressure operating range, measured in the CIRCUS facility. The experiments are meant to serve as a future validation database for thermohydraulic system codes to be applied for the design and operation of BWRs

  19. Experimental research on air propellers V

    Science.gov (United States)

    Durand, W F; Lesley, E P

    1923-01-01

    In previous reports on experimental research on air propellers, by W. F. Durand and E. P. Lesley, as contained in the National Advisory Committee for Aeronautics reports nos. 14, 30, and 64, the investigations were made progressively and each without reference to results given in preceding reports and covering only information relating to forms perhaps adjacent in geometrical form and proportion. This report is a review of the entire series of results of the preceding reports with a view of examining through graphical and other appropriate means the nature of the history of the characteristics of operation as related to the systematic variations in characteristics of forms, etc., through the series of such characteristics.

  20. Computer network for experimental research using ISDN

    International Nuclear Information System (INIS)

    Ida, Katsumi; Nakanishi, Hideya

    1997-01-01

    This report describes the development of a computer network that uses the Integrated Service Digital Network (ISDN) for real-time analysis of experimental plasma physics and nuclear fusion research. Communication speed, 64/128kbps (INS64) or 1.5Mbps (INS1500) per connection, is independent of how busy the network is. When INS-1500 is used, the communication speed, which is proportional to the public telephone connection fee, can be dynamically varied from 64kbps to 1472kbps (depending on how much data are being transferred using the Bandwidth-on-Demand (BOD) function in the ISDN Router. On-demand dial-up and time-out disconnection reduce the public telephone connection fee by 10%-97%. (author)

  1. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  2. Electronic battlespace facility for research, develoment and engineering

    NARCIS (Netherlands)

    Jense, Hans; Kuijpers, N.H.L.; Elias, R.J.D.

    1997-01-01

    In order to support its research, development and engineering activities in the area of distributed simulation for training and command & control, TNO Physics and Electronics Laboratory has developed (and continues to enhance) an Electronic Battlespace Facility (EBF). This paper presents an overview

  3. Detailed description of an SSAC at the facility level for research laboratory facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-08-01

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in a research laboratory facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  4. Research on decommissioning of nuclear facilities (Joint research)

    International Nuclear Information System (INIS)

    Shibahara, Yuji; Morishita, Yoshitsugu; Ishigami, Tsutomu; Yanagihara, Satoshi; Arita, Yuji

    2011-07-01

    To implement a decommissioning project reasonably, it is necessary and important to beforehand evaluate project management data as well as to select an optimum dismantling scenario among various scenarios postulated. Little study on the subject of selecting an optimum scenario has been carried out, and it is one of the most important subjects in terms of decision making. In FY 2009, Japan Atomic Energy Agency and University of Fukui launched the joint research of a decision making method which is important to determine a decommissioning plan. The purpose of the research is to construct a methodology for selecting an optimum dismantling scenario among various scenarios postulated based on calculated results of project management data for FUGEN. Project management data for several dismantling scenarios postulated at FUGEN were evaluated based on actual dismantling work for feed water heater at FUGEN, and an optimum scenario was discussed using the SMART, one of Multi-Criteria Decision Analysis Method. This report describes the results of the joint research in FY 2009. (author)

  5. ARM Climate Research Facility Monthly Instrument Report August 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Instrumentation Status and Information October 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Instrumentation Status and Information April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ARM Climate Research Facility Instrumentation Status and Information January 2010

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ARM Climate Research Facility Monthly Instrument Report September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ARM Climate Research Facility Instrumentation Status and Information March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  11. ARM Climate Research Facility Monthly Instrument Report May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  12. ARM Climate Research Facility Instrumentation Status and Information February 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  13. ARM Climate Research Facility Monthly Instrument Report June 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ARM Climate Research Facility Instrumentation Status and Information December 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  15. ARM Climate Research Facility Monthly Instrument Report July 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  16. MCNPCX calculations of dose rates and spectra in experimental channels of the CTEx irradiating facility

    International Nuclear Information System (INIS)

    Gomes, Renato G.; Rebello, Wilson F.; Vellozo, Sergio O.; Junior, Luis M.; Vital, Helio C.; Rusin, Tiago; Silva, Ademir X.

    2013-01-01

    MCNPX simulations have been performed in order to calculate dose rates as well as spectra along the four experimental channels of the gamma irradiating facility at the Technology Center of the Brazilian Army (CTEx). Safety, operational and research requirements have led to the need to determine both the magnitude and spectra of the leaking gamma fluxes. The CTEx experimental facility is cavity type with a moveable set of 28 horizontally positioned rods, filled with Cesium-137 chloride and doubly encased in stainless steel that yields an approximately plane 42 kCi-source that provides a maximum dose rate of about 1.5 kG/h into two irradiating chambers. The channels are intended for irradiation tests outside facility. They would allow larger samples to be exposed to lower gamma dose rates under controlled conditions. Dose rates have been calculated for several positions inside the channels as well as at their exits. In addition, for purposes related to the safety of operators and personnel, the angles submitted by the exiting beams have also been evaluated as they spread when leaving the channels. All calculations have been performed by using a computational model of the CTEx facility that allows its characteristics and operation to be accurately simulated by using the Monte Carlo Method. Virtual dosimeters filled with Fricke (ferrous sulfate) were modeled and positioned throughout 2 vertical channels (top and bottom) and 2 horizontal ones (front and back) in order to map dose rates and gamma spectrum distributions. The calculations revealed exiting collimated beams in the order of tenths of Grays per minute as compared to the maximum 25 Gy / min dose rate in the irradiator chamber. In addition, the beams leaving the two vertical channels were found to exhibit a widespread cone-shaped distribution with aperture angle ranging around 85 deg. The data calculated in this work are intended for use in the design of optimized experiments (better positioning of samples and

  17. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  18. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 3. 4. Chemistry. 5. Biology. 6. Development of methods and instruments

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  19. Procedures for economic distribution of radionuclides in research facilities

    International Nuclear Information System (INIS)

    Perry, N.A.

    1979-01-01

    A radionuclide accountability system for use in a research facility is described. It can be operated manually or adapted for computer use. All radionuclides are ordered, received, distributed and paid for by the Radiological Control Office who keep complete records of date of order, receipt, calibration use, transfer and/or disposal. Wipe leak tests, specific activity and lot number are also recorded. The procedure provides centralized total accountability records, including financial records, of all radionuclide orders, and the economic advantages of combined purchasing. The use of this system in two medical facilities has resulted in considerable financial savings in the first year of operation. (author)

  20. Introducing COSS: A new and unique oil spill research facility

    International Nuclear Information System (INIS)

    Kitchen, R. B.; Bonner, J. S.; Autenrieth, R. L.; Donnelly, K. C.; Ernest, A. N. S.

    1997-01-01

    A new oil spill research facility in Corpus Christi, Texas began operation in April 1997 to address the appropriate use, application and effectiveness of chemical, physical and biological oil spill response agents. The Coastal Oil Spill Simulation (COSS) facility consists of nine meso scale wave tanks and will offer to science and industry a unique opportunity to spill oil in a controlled environment and to study fate, transport and remediation of oil releases in simulated coastal, intertidal, lagunal, channel and porous media. 1 ref

  1. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  2. Investigation of analytical and experimental behavior of nuclear facility ventilation systems

    International Nuclear Information System (INIS)

    Smith, P.R.; Ricketts, C.I.; Andrae, R.W.; Bolstad, J.W.; Horak, H.L.; Martin, R.A.; Tang, P.K.; Gregory, W.S.

    1979-01-01

    The behavior of nuclear facility ventilation systems subjected to both natural and man-caused accidents is being investigated. The purpose of the paper is to present a program overview and highlight recent results of the investigations. The program includes both analytical and experimental investigations. Computer codes for predicting accident-induced gas dynamics and test facilities to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. A unique test facility and recently obtained structural limits for high efficiency particulate air filters are reported

  3. Experimental research of digital holographic microscopic measuring

    Science.gov (United States)

    Zhu, Xueliang; Chen, Feifei; Li, Jicheng

    2013-06-01

    Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.

  4. BALU: Largest autoclave research facility in the world

    Directory of Open Access Journals (Sweden)

    Hakan Ucan

    2016-03-01

    Full Text Available Among the large-scale facilities operated at the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade BALU is the world's largest research autoclave. With a loading length of 20m and a loading diameter of 5.8 m the main objective of the facility is the optimization of the curing process operated by components made of carbon fiber on an industrial scale. For this reason, a novel dynamic autoclaving control has been developed that is characterized by peripheral devices to expend the performance of the facility for differential applications, by sensing systems to detect the component state throughout the curing process and by a feedback system, which is capable to intervene into the running autoclave process.

  5. NEW IRRADIATION RESEARCH FACILITIES AT THE ARMY NATICK LABORATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R. D.; Brynjolfsson, A.

    1963-03-15

    New facilities built by the U. S. Army for research on the preservation of food by ionizing radiation consist of a food processing and packaging facility and a radiation sources laboratory with two powerful low-energy radiation sources. One is a 1.3 million-curie Co/sup 60/ source consisting of 98 tubes each containing four doubly encapsulated Co/sup 60/ slugs. The second source is an electron linear accelerator with energy variable between 2 and 32 Mev. Research with the Co/sup 60/ source is concentrated on investigation of macroscopic and microscopic dose distribution in different materials irradiated with Co/sup 60/ gamma rays. Research with the linear accelerator is concentrated on dosimetry and photonuclear reactions. (A.G.W.)

  6. Performance of the Argonne Wakefield Accelerator Facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator facility has begun its experimental program. It is designed to address advanced acceleration research requiring very short, intense electron bunches. It incorporates two photocathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. This paper discusses commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator

  7. 2 MV injector as the Elise front-end and as an experimental facility

    International Nuclear Information System (INIS)

    Yu, S.S.; Eylon, S.; Henestroza, E.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-01-01

    We report on progress in the preparation of the 2 MV injector at LBNL as the front end of Elise and as a multipurpose experimental facility for heavy ion fusion beam dynamics studies. Recent advances in the performance and understanding of the injector are described, and some of the ongoing experimental activities are summarized. (orig.)

  8. Building Design Guidelines for Interior Architecture Concerned with Animal Researches Facilities

    International Nuclear Information System (INIS)

    ElDib, A.A. E.

    2014-01-01

    This paper discusses the most important design guidelines elements and characteristics for animal facilities, in order to achieve and maintain highest efficiency can be, with respect to the pivot role of Interior Architecture as one of the accurate specializations for completing the Architectural Sciences, for designer/s concerned with those types of facilities, (specially those using radioactive materials). These building types known as vivariums, are specially designed, accommodating and having sophisticated controlled environments for the care and maintenance of experimental animals, and are related to, but distinct from other research laboratories premises

  9. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  10. Experimental program for the Fast Breeder Blanket Facility, FBBF

    International Nuclear Information System (INIS)

    Ott, K.O.; Clikeman, F.M.; Johnson, R.H.; Borg, R.C.

    1976-01-01

    The work performed in the reporting period was primarily concerned with the development of the experimental program (Task A) and with the pre-analysis of future loadings and the impact upon the permanent loading of the two converter regions, which contain 4.8 percent enriched UO 2 rods. It appears necessary that a neutron poison (B 4 C) be placed in the converter (transformer) regions in order to hold, also for future loadings, the k/sub eff/ of a hypothetically flooded FBBF well below 1. Since it is planned to use the same welded converter regions for all experiments, the required B 4 C loading needs to be determined prior to the first blanket loading. Further the equipment needs have been identified (Task D), the 252 Cf-source has been requested on a loan basis (Task E). First discussions with ANL on blanket experiments have been initiated

  11. Power supply control system for experimental physical facilities

    International Nuclear Information System (INIS)

    Zelepukin, S.A.; Osipov, Eh.V.; Petrov, V.S.; Sergeev, V.A.; Uglekov, V.Ya.

    1979-01-01

    A multichannel (to 1024 channels) system for control of power supply voltage is descrited. The system consists of an analog commulator, a digital voltmeter and a special controller. The controller serves at the same time as an interface for connecting the system as a ''unit'' of the VECTOR and SUMMA unified electronic systems. The system has been realized for control of the photomultiplier power supply voltage of the MARK multipurpose experimental device (256 channels, the measurement accuracy is 0.2%, the measuring time is 500 ms per point). Software devised for the HP-2100 computer permits automatical comparison of photomultiplier power supply voltages with sample ones in the mode of continuous control of a single voltage or in the mode of programmed selection of voltages to provide the control in arbitrary order or automatic scanning

  12. Biomedical neutron research at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1998-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy. (author)

  13. A description of the Canadian irradiation-research facility proposed to replace the NRU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A G; Lidstone, R F; Bishop, W E; Talbot, E F; McIlwain, H [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    To replace the aging NRU reactor, AECL has developed the concept for a dual-purpose national Irradiation Research Facility (IRF) that tests fuel and materials for CANDU (CANada Deuterium Uranium) reactors and performs materials research using extracted neutron beams. The IRF includes a MAPLE reactor in a containment building, experimental facilities, and support facilities. At a nominal reactor power of 40 MW{sub t}, the IRF will generate powers up to 1 MW in natural-uranium CANDU bundles, fast-neutron fluxes up to 1.4 x 10{sup 18} n{center_dot}m{sup -2}{center_dot}s{sup -1} in Zr-alloy specimens, and thermal-neutron fluxes matching those available to the NRU beam tubes. (author). 9 refs., 5 tabs., 2 figs.

  14. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    International Nuclear Information System (INIS)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility

  15. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  16. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  17. Proposal for a seismic facility for reactor safety research

    International Nuclear Information System (INIS)

    Anderson, C.A.; Dove, R.C.; Rhorer, R.L.

    1976-07-01

    Certain problem areas in the seismic analysis and design of nuclear reactors are enumerated and the way in which an experimental program might contribute to each area is examined. The use of seismic simulation testing receives particular attention, especially with regard to the verification of structural response analysis. The importance of scale modeling used in conjunction with seismic simulation is also stressed. The capabilities of existing seismic simulators are summarized, and a proposed facility is described which would considerably extend the ability to conduct, with confidence, confirmatory experiments on the behavior of reactor components when subjected to seismic excitation. Particular applications to gas-cooled and other reactor types are described

  18. Recent activities at the ORNL multicharged ion research facility (MIRF)

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.; Krause, H.F.; Vane, C.R.; Deng, S.; Draganic, I.N.; Harris, P.R.

    2012-01-01

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: 'M' can now refer to either 'Multicharged' or 'Molecular'. The paper is followed by the slides of the presentation. (authors)

  19. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  20. Experimental study of radiative shocks at PALS facility

    Czech Academy of Sciences Publication Activity Database

    Stehlé, C.; Gonzalez, M.; Kozlová, Michaela; Rus, Bedřich; Mocek, Tomáš; Acef, O.; Colombier, J.P.; Lanz, T.; Champion, N.; Jakubczak, Krzysztof; Polan, Jiří; Barroso, P.; Baudin, D.; Audit, E.; Dostál, Jan; Stupka, Michal

    2010-01-01

    Roč. 28, č. 2 (2010), s. 253-261 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * hydrodynamics * laser plasmas * shocks * stellar formation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.656, year: 2010 http://journals.cambridge.org/action/displayFulltext?type=6&fid=7807203&jid=LPB&volumeId=28&issueId=02&aid=7807202&fulltextType=RA&fileId=S02630346100

  1. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  2. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K.

    2005-09-01

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  3. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  4. ARM Climate Research Facility Quarterly Ingest Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, A. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2016-10-01

    The purpose of this report is to provide a concise status update for ingests maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new ingests for which development has begun, (2) progress on existing ingests, (3) future ingests that have been recently approved, (4) other work that leads to an ingest, and (5) top requested ingests from the ARM Data Archive. New information is highlighted in blue text.

  5. ARM Climate Research Facility Quarterly Ingest Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, A. [ARM Climate Reesearch Facility, Washington, DC (United States); Sivaraman, C. [ARM Climate Reesearch Facility, Washington, DC (United States)

    2016-07-01

    The purpose of this report is to provide a concise status update for ingests maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new ingests for which development has begun, (2) progress on existing ingests, (3) future ingests that have been recently approved, (4) other work that leads to an ingest, and (5) top requested ingests from the ARM Data Archive. New information is highlighted in blue text.

  6. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    Science.gov (United States)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  7. Development of an Extreme Environment Materials Research Facility at Princeton

    International Nuclear Information System (INIS)

    Cohen, A.B.; Gentile, C.A.; Tully, C.G.; Austin, R.; Calaprice, F.; McDonald, K.; Ascione, G.; Baker, G.; Davidson, R.; Dudek, L.; Grisham, L.; Kugel, H.; Pagdon, K.; Stevenson, T.; Woolley, R.; Zwicker, A.

    2010-01-01

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m 3 ) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m 2 ) to 14 MeV neutrons at a fluence in excess of 10 13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m 2 for durations of 1-15 seconds are planned. The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new

  8. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    Science.gov (United States)

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  9. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  10. Earth Systems Questions in Experimental Climate Change Science: Pressing Questions and Necessary Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Osmond, B.

    2002-05-20

    Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).

  11. Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The discussion which followed the different presentations highlighted the following points: • All the Member States representatives participating in the technical meeting welcomed this IAEA initiative and expressed their potential interest in contributing to the catalogue; • Not all the countries with a fast reactor programme were represented at the meeting. In particular, it was noted that there was no participation from China, the Russian Federation and the USA. Even contribution from Sweden and Spain would be beneficial. It will be a task of the IAEA Secretariat to try involving also these countries in the preparation of the catalogue; • The catalogue will focus only on experimental facilities supporting development of liquid metal cooled fast reactors (Sodium, Lead and Lead-Bismuth). For the time being, facilities in support of GFR and MSR research will not be included; • As for countries involved in HLM technology research, only European countries were participating at the meeting, i.e. Belgium, France, Italy and Germany. In order to avoid duplication of the work performed within the European project ADRIANA, representatives from these countries underlined that a condition for their contribution to the IAEA catalogue is the involvement of non-European countries with HLM research programmes; • The advice from the Member States is fundamental to clearly define scope, objectives and content of the catalogue. The plan for its drafting has also to be further discussed with Member States representatives; • The catalogue is also intended to identify gaps and future needs that require further R&D initiatives; • The catalogue will be a useful tool to set up international collaboration

  12. Progress in developing the concept for the irradiation research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Gillespie, G.E.; Zeng, Y.

    1996-04-01

    At the 16th annual Canadian Nuclear Society conference, AECL presented the case for replacing the NRU reactor with an Irradiation Research Facility (IRF) to test CANDU fuels and materials and to perform advanced materials research using neutrons. AECL developed a cost estimate of $500 million for the reference IRF concept, and estimated that it would require 87 months to complete. AECL has initiated a pre-project program to develop the IRF concept and to minimize uncertainties related to feasibility and licensability, and to examine options for reducing the overall project cost before project implementation begins. (author) 10 refs., 2 figs

  13. The neutron radiography facility at Tehran Research Reactor (TRR)

    International Nuclear Information System (INIS)

    Ali Pazirandeh

    2009-01-01

    Full text: Non-destructive testing in many fields of industry including detection of explosives, at the airports, testing for micro-cracks on airplane wings and turbine blades cracks is badly needed. Thermal neutron beam is one of preferable method to detect the micro-cracks, reveals the internal structure of components and explosives. The purpose of this paper is to present the neutron radiography facility at Tehran Research Reactor (TRR), Science and Technology Research Institute, and in particular to emphasize the industrial applications in wood industry, automobile engine inspection, minerals composition identification, turbine blade cracks detection. (author)

  14. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  15. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  16. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  17. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  18. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  19. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  20. Status of the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Martin, J.A.

    1978-01-01

    The Holifield Heavy Ion Research Facility presently operates the Oak Ridge Isochronous Cyclotron (ORIC). This accelerator provides heavy ions up to argon with energies useful for nuclear physics. The Phase I expansion of this facility, now a year away from completion, includes a 25-MV vertical folded tandem accelerator, beam transport and injection systems to use the ORIC as an energy booster, and additional experiment areas for the beams directly from the tandem. The tandem--cyclotron combination will provide heavy ions with energies up to 25 MeV/A for A 11 particles/sec. Building construction for the project is essentially complete. The accelerator manufacturer, National Electrostatics Corporation, has completed installation and testing of the 10-m-diam by 30-m-high accelerator pressure vessel and has begun installation of the accelerator systems. The accelerator has previously been assembled at the NEC plant and the digital control system operated without voltage on the column. Voltage tests are expected to begin in Oak Ridge in January 1979 with beam tests to begin in March. Completion of the project, including acceptance tests of the tandem and the beam injection system for ORIC is presently scheduled for November 15, 1979. Construction of Phase II for the facility wich will include a much larger booster cyclotron and additional research areas is expected to begin in 1982

  1. Design Issues and Inference in Experimental L2 Research

    Science.gov (United States)

    Hudson, Thom; Llosa, Lorena

    2015-01-01

    Explicit attention to research design issues is essential in experimental second language (L2) research. Too often, however, such careful attention is not paid. This article examines some of the issues surrounding experimental L2 research and its relationships to causal inferences. It discusses the place of research questions and hypotheses,…

  2. Construction of a Solid State Research Facility, Building 3150

    International Nuclear Information System (INIS)

    1993-07-01

    The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration of the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems

  3. Cost calculations for decommissioning and dismantling of nuclear research facilities

    International Nuclear Information System (INIS)

    Andersson, I.; Backe, S.; Cato, A.; Lindskog, S.; Efraimsson, H.; Iversen, Klaus; Salmenhaara, S.; Sjoeblom, R.

    2008-07-01

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  4. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  5. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  6. A research on threat (hazard) categorization method for nuclear facilities

    International Nuclear Information System (INIS)

    Tang Rongyao; Xu Xiaoxiao; Zhang Jiangang; Zhao Bin; Wang Xuexin

    2011-01-01

    The threat categorization method suggested by International Atomic Energy Agency (IAEA) and hazard categorization standard by the Department of Energy of United States (USDOE) for nuclear facilities are compared and discussed in this paper. The research shows the two types of categorization method for nuclear facilities are similar, though each has its own specialty. The categorization method suggested by IAEA for the purpose of emergency planning is quite completed and updated. The categorization method of DOE is advanced in its operability, and fits for safety surveillance. But the dispersible radioactive material thresholds used for categorization need to be updated. The threshold of category 3 is somewhat disputable for many reasons. The recommended categorization method for China is also given in this paper. (author)

  7. Thermal fuel research and development facilities in BNFL

    International Nuclear Information System (INIS)

    Roberts, V.A.; Vickers, J.

    1996-01-01

    BNFL is committed to providing high quality, cost effective nuclear fuel cycle services to customers on a National and International level. BNFL's services, products and expertise span the complete fuel cycle; from fuel manufacture through to fuel reprocessing, transport, waste management and decommissioning and the Company maintains its technical and commercial lead by investment in continued research and development (R and D). This paper discusses BNFL's involvement in R and D and gives an account of the current facilities available together with a description of the advanced R and D facilities constructed or planned at Springfields and Sellafield. It outlines the work being carried out to support the company fuel technology business, to (1) develop more cost effective routes to existing fuel products; (2) maximize the use of recycled uranium, plutonium and tails uranium and (3) support a successful MOX business

  8. Training and research reactor facility longevity extension program

    International Nuclear Information System (INIS)

    Carriveau, G.W.

    1991-01-01

    Since 1943, over 550 training and research reactors have been in operation. According to statistics from the International Atomic Energy Agency, ∼325 training and research reactors are currently in service. This total includes a wide variety of designs covering a range of power and research capabilities located virtually around the world. A program has been established at General Atomics (GA) that is dedicated to the support of extended longevity of training and research reactor facilities. Aspects of this program include the following: (1) new instrumentation and control systems; (2) improved and upgraded nuclear monitoring and control channels; (3) facility testing, repair and upgrade services that include (a) pool or tank integrity, (b) cooling system, and (c) water purification system; (4) fuel element testing procedures and replacement; (5) control rod drive rebuilding and upgrades; (6) control and monitoring system calibration and repair service; (7) training services, including reactor operations, maintenance, instrumentation calibration, and repair; and (8) expanded or new uses such as neutron radiography and autoradiography, isotope production, nuclear medicine, activation analysis, and material properties modification

  9. Nanotechnology on a dime: building affordable research facilities

    Science.gov (United States)

    DiBattista, Jeff; Clare, Donna; Lynch, David

    2005-08-01

    Designing buildings to house nanotechnology research presents a multitude of well-recognized challenges to architectural and engineering design teams, from environmental control to spatial arrangements to operational functionality. These technical challenges can be solved with relative ease on projects with large budgets: designers have the option of selecting leading-edge systems without undue regard for their expense. This is reflected in the construction cost of many nanotechnology research facilities that run well into the hundreds of millions of dollars. Smaller universities and other institutions need not be shut out of the nanotechnology research field simply because their construction budgets are tens of millions of dollars or less. The key to success for these less expensive projects lies with making good strategic decisions: identifying priorities for the facility in terms of what it will is--and will not--provide to the researchers. Making these strategic decisions puts bounds on the tactical, technical problems that the design team at large must address, allowing them to focus their efforts on the key areas for success. The process and challenges of this strategic decision-making process are examined, with emphasis placed on the types of decisions that must be made and the factors that must be considered when making them. Case study examples of projects undertaken at the University of Alberta are used to illustrate how strategic-level decision-making sets the stage for cutting-edge success on a modest budget.

  10. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  11. ARM Climate Research Facility: Outreach Tools and Strategies

    Science.gov (United States)

    Roeder, L.; Jundt, R.

    2009-12-01

    Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center (www.arm.gov/news). These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on www.arm.gov to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

  12. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    Science.gov (United States)

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  13. Recent progress in ignition fusion research on the National Ignition Facility

    International Nuclear Information System (INIS)

    Leeper, Ramon J.

    2011-01-01

    This paper will review the ignition fusion research program that is currently being carried out on the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory. This work is being conducted under the auspices of the National Ignition Campaign (NIC) that is a broad collaboration of national laboratories and universities that together have developed a detailed research plan whose goal is ignition in the laboratory. The paper will begin with a description of the NIF facility and associated experimental facilities. The paper will then focus on the ignition target and hohlraum designs that will be tested in the first ignition attempts on NIF. The next topic to be introduced will be a description of the diagnostic suite that has been developed for the initial ignition experiments on NIF. The paper will then describe the experimental results that were obtained in experiments conducted during the fall of 2009 on NIF. Finally, the paper will end with a description of the detailed experimental plans that have been developed for the first ignition campaign that will begin later this year. (author)

  14. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y.

    1998-01-01

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons

  15. Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)

    2015-09-17

    The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks

  16. Power Electronics and Electric Machines Facilities | Transportation

    Science.gov (United States)

    Research | NREL Facilities Power Electronics and Electric Machines Facilities NREL's power electronics and electric machines thermal management experimentation facilities feature a wide range of four researchers in discussion around a piece of laboratory equipment. Power electronics researchers

  17. Minimizing Experimental Error in Thinning Research

    Science.gov (United States)

    C. B. Briscoe

    1964-01-01

    Many diverse approaches have been made prescribing and evaluating thinnings on an objective basis. None of the techniques proposed hasbeen widely accepted. Indeed. none has been proven superior to the others nor even widely applicable. There are at least two possible reasons for this: none of the techniques suggested is of any general utility and/or experimental error...

  18. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  19. Congressional hearing reviews NSF major research and facilities projects

    Science.gov (United States)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  20. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    International Nuclear Information System (INIS)

    Kalousis, L N; Guarnaccia, E; Link, J M; Mariani, C; Pelkey, R

    2014-01-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ∼ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC

  1. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  2. Research reactor facilities, recent developments at Imperial College, London

    International Nuclear Information System (INIS)

    Franklin, S.J.; Goddard, A.J.H.; O Connell, J.

    1998-01-01

    The 100 kW CONSORT pool-type reactor is now the only Research Reactor in the UK. Because of its strategic importance, Imperial College is continuing and accelerating a programme of refurbishment of the control system, and planning for a further fuel charge. These plans are described and the progress to date discussed. To this end, a description of the enhanced Safety Case being written is provided here and refueling plans discussed. The current range of facilities available is described, and future plans highlighted. (author)

  3. Research for the safety of existing nuclear facilities

    International Nuclear Information System (INIS)

    Teschendorff, Victor; Bruna, Giovanni B.; Gelder, Pieter de

    2007-01-01

    The essential role of research for maintaining the high safety standard for the existing nuclear installations is outlined in the context of internationally agreed needs. The three co-authoring Technical Safety Organisations are committed to continued safety research, recognising operational experience and new technologies as the main driving forces. The safety margin concept is introduced and new trends in traditional and new areas of safety research are identified. The importance of a sufficient experimental infrastructure and international co-operation in sustainable networks is highlighted. (orig.)

  4. The Sondrestrom Research Facility All-sky Imagers

    Science.gov (United States)

    Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.

    2010-12-01

    The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom

  5. Simulation of natural circulation on an integral type experimental facility, MASLWR

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Youngjong; Lim, Sungwon; Ha, Jaejoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The OSU MASLWR test facility was reconfigured to eliminate a recurring grounding problem and improve facility reliability in anticipation of conducting an IAEA International Collaborative Standard Problem (ICSP). The purpose of ICSP is to provide experimental data on flow instability phenomena under natural circulation conditions and coupled containment/reactor vessel behavior in integral-type reactors, and to evaluate system code capabilities to predict natural circulation phenomena for integral type PWR, by simulating an integrated experiment. A natural circulation in the primary side during various core powers is analyzed using TASS/SMR code for the integral type experimental facility. The calculation results show higher steady state primary flow than experiment. If it matches the initial flow with experiment, it shows lower primary flow than experiment according to the increase of power. The code predictions may be improved by applying a Reynolds number dependent form loss coefficient to accurately account for unrecoverable pressure losses.

  6. Disposition of TA-33-21, a plutonium contaminated experimental facility

    International Nuclear Information System (INIS)

    Cox, E.J.; Garde, R.; Valentine, A.M.

    1975-01-01

    The report discusses the decontamination, demolition and disposal of a plutonium contaminated experimental physics facility which housed physics experiments with plutonium from 1951 until 1960. The results of preliminary decontamination efforts in 1960 are reported along with health physics, waste management, and environmental aspects of final disposition work accomplished during 1974 and 1975. (auth)

  7. Experimental data from a full-scale facility investigating radiant and convective terminals

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    The objective of this technical report is to provide information on the accuracy of the experiments performed in “the Cube” (part I, II and III). Moreover, this report lists the experimental data, which have been monitored in the test facility (part IV). These data are available online and can be...

  8. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  9. Ecological Realism of U.S. EPA Experimental Stream Facility Studies

    Science.gov (United States)

    The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run sectio...

  10. Selected publications related to the experimental facilities of the Advanced Photon Source, 1987--1991

    International Nuclear Information System (INIS)

    1992-01-01

    This report contain papers on work related to the experimental facilities of the Advanced Photon Source. The general topics of these papers are: insertion devices; front ends; high heat load x-ray optics; novel optics and techniques; and radiation safety, interlocks, and personnel safety

  11. Toward a Holistic Federated Future Internet Experimentation Environment: The Experience of NOVI Research and Experimentation

    NARCIS (Netherlands)

    Maglaris, V.; Papagianni, C.; Androulidakis, G.; Grammatikou, M.; Grosso, P.; van der Ham, J.; de Laat, C.; Pietrzak, B.; Belter, B.; Steger, J.; Laki, S.; Campanella, M.; Sallent, S.

    This article presents the design and pilot implementation of a suite of intelligent methods, algorithms, and tools for federating heterogeneous experimental platforms (domains) toward a holistic Future Internet experimentation ecosystem. The proposed framework developed within the NOVI research and

  12. Decommissioning of Medical, Industrial and Research Facilities. Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  13. Decommissioning of medical, industrial and research facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  14. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to

  15. Research studies performed using the Cairo Fourier Diffractometer Facility

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; Ridikas, D.

    2009-12-01

    This report represents the results of the research studies performed using the Cairo Fourier Diffractometer Facility (CFDF), within 10 years after it was installed and put into operation at the beginning of 1996. The main components of the CFDF were supplied by the IAEA according to the technical assistance project EGY/1/022 'Upgrading of Research Reactor Utilization'. The present report is the second published INDC report, while the first one, published at the beginning of 1997, was about the performance of the CFDF and its main characteristic parameters. Plenty of measurements were performed since then, yielding several publications both in local and international scientific periodicals and resulting in 8 M.Sc. and Ph.D. degrees from Egyptian Universities. In addition, a new approach for the analysis of the neutron spectra was implemented using the CFDF. Specially designed interface card with proper software program was applied instead of the reverse time of flight (RTOF) and Finnish made analyzer originally attached to the facility. It has been verified that the new approach can successfully replace the RTOF analyzer, significantly decreasing the time of measurement and saving the reactor's operation time. Besides, a special fault diagnostic system program was developed and tested for caring and handling the possible failures of the CFDF. Moreover, measurements were carried out for the diffraction spectra emitted at different points of one of the samples. The latter was scanned across the neutron beam of the CFDF, for studying the stress after welding; used in industrial applications. (author)

  16. Importance of Pharmaceutical Training and Clinical Research at Medical Facilities.

    Science.gov (United States)

    Myotoku, Michiaki

    2017-01-01

    To respond to advancements in medical techniques, and to address the separation of medical and dispensary practices, clinical professors are required to educate human resource staff to become highly-skilled pharmacists. For this purpose, it is extremely important for these professors to learn about cutting-edge practical skills and knowledge, as well as to advance their expertise. In addition, they need to conduct clinical research in cooperation with relevant facilities. As our university does not have its own hospital or pharmacy, it is important to provide training for clinical professors in clinical facilities. Such training mainly involves medical teams' in-hospital rounds and participation in conferences (nutrition support team; NST), operation of the pharmacy department, and intervention targeting improvement in the department's duties. We have conducted collaborative studies, provided research instructions, implemented studies aimed at improving the department's work (pharmacists appointed on wards at all times to ensure medical safety) as well as studies regarding team medical care (nutritional evaluation during outpatient chemotherapy), and resolved issues regarding this work (drug solution mixability in a hand-held constant infusion pump, and a safe pump-filling methods). Thus, it has become possible to keep track of the current state of a pharmacists' work within team medical care, to access information about novel drugs, to view clinical and prescription-claim data, to cooperate with other professionals (e.g., doctors and nurses), to promote pharmacists' self-awareness of their roles in cooperative medical practice, and to effectively maintain the hospital's clinical settings.

  17. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    Science.gov (United States)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  18. Quality Assurance of ARM Program Climate Research Facility Data

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, RA; Kehoe, KE; Sonntag, KL; Bahrmann, CP; Richardson, SJ; Christensen, SW; McCord, RA; Doty, DJ; Wagener, Richard [BNL; Eagan, RC; Lijegren, JC; Orr, BW; Sisterson, DL; Halter, TD; Keck, NN; Long, CN; Macduff, MC; Mather, JH; Perez, RC; Voyles, JW; Ivey, MD; Moore, ST; Nitschke, DL; Perkins, BD; Turner, DD

    2008-03-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

  19. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  20. Quality Assurance of ARM Program Climate Research Facility Data

    International Nuclear Information System (INIS)

    Peppler, R.A.; Kehoe, K.E.; Sonntag, K.L.; Bahramann, C.P.; Richardson, S.J.; Christensen, S.W.; McCord, R.A.; Doty, D.J.; Wagener, R.; Eagan, R.C.; Lijegren, J.C.; Orr, B.W.; Sisterson, D.L.; Halter, T.D.; Keck, N.N.; Long, C.N.; Macduff, M.C.; Mather, J.H.; Perez, R.C.; Voyles, J.W.; Ivey, M.D.; Moore, S.T.; Nitschke, D.L.; Perkins, B.D.; Turner, D.D.

    2008-01-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and characterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented

  1. Ethnographic and Experimental Hypotheses in Educational Research

    Science.gov (United States)

    Overholt, George E.; Stallings, William M.

    1976-01-01

    Attempts to demonstrate that the ethnographic hypothesis is both culturally relevant and empirically grounded. It is noted that any hypothesis which lacks these attributes is inappropriate for cross cultural research. (Author/AM)

  2. Paul Scherrer Institute Scientific and Technical Report 1999. Volume VI: Large Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Meyer, Rosa [eds.

    2000-07-01

    The department GFA (Grossforschungsanlagen, Large Research Facilities) has been established in October 1998. Its main duty is operation, maintenance and development of the PSI accelerators, the spallation neutron source and the beam transport systems for pions and muons. A large effort of this group concerns the planning and co-ordination of new projects like e.g. the assembly of the synchrotron light source (SLS), design studies of a new proton therapy facility, the ultracold neutron source and a new intensive secondary beam line for low energy muons. A large fraction of this report is devoted to research especially in the field of materials Science. The studies include large scale molecular dynamics computer simulations on the elastic and plastic behavior of nanostructured metals, complemented by experimental mechanical testing using micro-indentation and miniaturized tensile testing, as well as microstructural characterisation and strain field mapping of metallic coatings and thin ceramic layers, the latter done with synchrotron radiation.

  3. Paul Scherrer Institute Scientific and Technical Report 1999. Volume VI: Large Research Facilities

    International Nuclear Information System (INIS)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Meyer, Rosa

    2000-01-01

    The department GFA (Grossforschungsanlagen, Large Research Facilities) has been established in October 1998. Its main duty is operation, maintenance and development of the PSI accelerators, the spallation neutron source and the beam transport systems for pions and muons. A large effort of this group concerns the planning and co-ordination of new projects like e.g. the assembly of the synchrotron light source (SLS), design studies of a new proton therapy facility, the ultracold neutron source and a new intensive secondary beam line for low energy muons. A large fraction of this report is devoted to research especially in the field of materials Science. The studies include large scale molecular dynamics computer simulations on the elastic and plastic behavior of nanostructured metals, complemented by experimental mechanical testing using micro-indentation and miniaturized tensile testing, as well as microstructural characterisation and strain field mapping of metallic coatings and thin ceramic layers, the latter done with synchrotron radiation

  4. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.; Enge, H.A.; Erskine, J.R.; Hendrie, D.L.; LeVine, M.J.

    1977-01-01

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  5. H-1NF: Australian national fusion plasma research facility

    International Nuclear Information System (INIS)

    Blackwell, B.D.; Borg, G.G.; Dewar, R.L.; Howard, J.; Gardner, H.J.; Rudakov, D.L.; Sharp, L.E.; Shats, M.G.; Warr, G.B.

    1997-01-01

    The H-1 heliac is a helical axis stellarator of moderate size and novel, flexible configuration. Since commissioning, H-1 has operated in quasi-continuous mode at low magnetic field. For higher fields ≤1T an ECRH heating system (28GHz, 200kW) has been installed under a collaborative agreement between ANU and NIFS. H-1 has recently been promoted to national facility status (H-1NF), which will include upgrades of the rf and ech heating systems to megawatt powers, and power supply and diagnostic and data system enhancements. This facilitates collaborative research locally (through the Australian Fusion Research Group consortium) and internationally. Results of a number of basic experiments in quasi-continuous mode are presented. (author)

  6. Experimental research of reactor core flooding

    International Nuclear Information System (INIS)

    Blaha, V.; Kotrnoch, J.; Krett, V.

    1978-01-01

    The results are presented of experiments performed with the aim of finding the influence of the method of fixing the thermocouples for measuring the distribution of temperature to the wall of fuel pin simulator. This influence was found for the purpose of emergency core flooding. First experimental results on the effect of nitrogen dissolved in the water on the velocity of the cooling wave are given. These experiments were carried out under the following conditions: initial temperature in pin centre 300 to 600 degC, velocity of water at the inlet into the measuring section 3.5 to 20 cm/s, and atmospheric pressure in the model. (author)

  7. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    Science.gov (United States)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  8. Filling the gaps in SCWR materials research: advanced nuclear corrosion research facilities in Hamilton

    International Nuclear Information System (INIS)

    Krausher, J.L.; Zheng, W.; Li, J.; Guzonas, D.; Botton, G.

    2011-01-01

    Research efforts on materials selection and development in support of the design of supercritical water-cooled reactors (SCWRs) have produced a considerable amount of data on corrosion, creep and other related properties. Summaries of the data on corrosion [1] and stress corrosion cracking [2] have recently been produced. As research on the SCWR advances, gaps and limitations in the published data are being identified. In terms of corrosion properties, these gaps can be seen in several areas, including: 1) the test environment, 2) the physical and chemical severity of the tests conducted as compared with likely reactor service/operating conditions, and 3) the test methods used. While some of these gaps can be filled readily using existing facilities, others require the availability of advanced test facilities for specific tests and assessments. In this paper, highlights of the new materials research facilities jointly established in Hamilton by CANMET Materials Technology Laboratory and McMaster University are presented. (author)

  9. Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

    International Nuclear Information System (INIS)

    Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

    2009-01-01

    Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li + ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the

  10. Dismantling and rehabilitation programme of nuclear and radioactive facilities at the Spanish Research Centre (CIEMAT)

    International Nuclear Information System (INIS)

    Diaz Diaz, J.L.; Lopez Jimenez, J.

    2002-01-01

    Ciemat was gradually proceeding to the decommissioning of its more than 60 historical facilities. At present, a general decommissioning programme has been established that includes, to a different extent, all radioactive and nuclear facilities and their areas of influence, particularly those related to the front-end and back-end of the nuclear fuel cycle, hot cells and three experimental reactors. The purpose of the programme is to manage a model of a research centre integrating, on one side, a set of radioactive and conventional facilities and laboratories, and, on the other, a small area temporarily classified as a nuclear facility dedicated to the radioactive wastes management and providing an interim storage for materials under safeguards. The largest part of the radioactive wastes produced will be sent to El Cabril, a near surface disposal facility for low and intermediate level wastes, and the rest will be temporarily stored at Ciemat. This paper presents the main features of the programme and the lessons learned in its execution so far. (author)

  11. Report of researches by common utilization of facilities in Kyoto University Research Reactor Institute, first half of fiscal year 1981

    International Nuclear Information System (INIS)

    1983-01-01

    The technical report of the Kyoto University Research Reactor Institute is published any time to immediately report on the results of the functional tests of various experimental facilities, the test results for the products made for trial, radiation control, the situation of waste treatment, the data required for research and experiment such as the reports of study meetings, the conspicuous results obtained amid researches, new processes, and the discussion on other papers and reports. In this report, the title, the names of reporters and the summary of 57 researches carried out by the common utilization of the facilities in the Kyoto University Research Reactor Institute are collected. The themes of the researches are such as neutron radiography using a research reactor, measurement of Zr/Hf ratio in zirconium, interstitial germanium atoms in thermal neutron irradiation study, measurement of induced radioactivity due to neutrons in Nagasaki and Hiroshima atomic bombings, properties of semiconductor electrons in radiation study, induction of mutation in crops by neutron irradiation and utilization for breeding, thermal fluorescence mechanism of alkali halide and MgO single crystals, atomic configuration in PZT rhombohedron phase, modulated structure of Cu-Co alloys, excitation of nuclei by positron annihilation and others. (Kako, I.)

  12. BAGHEERA: A new experimental facility at CEA / Valduc for actinides studies under high dynamic loading

    Science.gov (United States)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-08-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.

  13. Experimental programs and facilities for ASTRID development related to the Severe Accident Issue

    International Nuclear Information System (INIS)

    Journeau, C.; Suteau, C.; Trotignon, L.; Willermoz, G.; Ducros, G.; Courouau, J.L.; Ruggieri, J.M.; Serre, F.

    2013-01-01

    A comprehensive experimental program has been launched in order to gain new data in support of the severe accident studies related to the ASTRID demonstrator. The main new issues with respect to the historic experimental database are mainly related to new design options: heterogeneous core with thick pins; new materials; new severe accident mitigation systems such as - corium discharge channels; - core-catcher with sacrificial materials; - some issues remaining open as Fuel Coolant Interaction. Experiments are needed both in-pile and out of pile: - Depending on the objectives, the out of pile experiments can be conducted - with simulant; - with prototypic corium; - or with irradiated fuel. A new large scale corium facility, FOURNAISE, must be built to fulfill this program. Already, experimental R&D started in existing facilities, such as VITI or CORRONA

  14. Syrinx - a research program for the pulsed power radiation facility

    International Nuclear Information System (INIS)

    Etlicher, B.; Chuvatin, A.S.; Choi, P.

    1996-01-01

    Syrinx is a targeted research program with the objective to study, through practical examples, the fundamentals necessary to define the details of all parts which will be required for a new powerful plasma radiation source. The current level of activities of Syrinx is in the design and construction of a multi-megajoule class IES based pulsed power driver which will use long conduction Plasma Opening Switch technology. The present paper reviews mainly the basic experimental research of the POS a nd Z-pinch accomplished in the framework of Syrinx project. This work has a unique international level of participation, from conceptual designs to particular investigations. (author). 9 figs., 17 refs

  15. Leakages and pressure relation: an experimental research

    Directory of Open Access Journals (Sweden)

    F. De Paola

    2012-11-01

    Full Text Available Leaks in water systems are presently a frequent and increasing event that involves cost increase and poor service, not compliant to quality standards and modern management criteria. The most recent data available in Italy, resumed into the report issued by Control Committee for Water Resources Use (CONVIRI, shows leakages with an average value of 37%. It is therefore important, for maintenance perspective, to investigate occurrence and evolution of water leaks and the analytical link between leaks Qp and network pressure P, for a reliable calibration of water networks quali-quantitative simulation models. The present work reports the first results of an experimental campaign started at Laboratory of Hydraulics of Department of Hydraulics, Geotechnical and Environmental Engineering of University of Naples Federico II in order to analyze the features of Qp(P relation, which are compared with other results issued in literature.

  16. Construction of new biological research facility for internal emitter and prospect

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1979-01-01

    The construction of the new biological research facility for internal emitters is to start in 1979 in the National Institute of Radiological Sciences. The bodily harm of plutonium had been studied in 1965 for the first time in Japan, and mice and rats were tested as the experimental animals. The conceptual design of the biological research facility for internal emitters has been conducted from 1976 to 1978. The causes making the construction of this facility difficult are as follows: 1) the regulation concerning the handling of plutonium has no lower limit, and the animals administered with dosage of plutonium are not permitted to be kept outdoors, 2) the waste disposal of dead bodies and excrements of the animals is controlled very severely, 3) many animal breeders with the knowledge of radiation protection are needed for the special experiment, and 4) the budget is not sufficient for this experiment of handling plutonium. To resolve these problems, much efforts have been exerted on the test of breeding dogs and monkeys, the disposal of radioactive animal wastes, the treatment of urine of radioactive animals, the reduction of labor for breeding contaminated animals, and keeping of safety. The present situation of the researches on internal emitters in the USA, Germany, Britain, France and the Soviet Union is reviewed for reference. The outline of the new biological research facility for internal emitters is presented. The building has seven floors with the total area of about 13,000 m 2 , and comprises three controlled areas and no contamination laboratories. The future experiments, which are expected to be conducted after the completion of this facility, are the animal tests to evaluate the influence of fissile materials, especially plutonium, and the fundamental experiments to take out the radioactive nuclides accidentally taken into bodies. (Nakai, Y.)

  17. 32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.

    Science.gov (United States)

    2010-07-01

    ... higher education for the performance of research and development or for the construction of research or... for research and development, or of a grant for the construction of research or other facilities... research and development or for the construction of research or other facilities are to be awarded to...

  18. Experimental research of a microjet cavitation

    Directory of Open Access Journals (Sweden)

    Olšiak Róbert

    2012-04-01

    Full Text Available The paper presents some results of a cavitation research behind a micro-orifice. Investigated were the conditions of the origin of cavitation represented by parameters such as upstream pressure, downstream pressure, liquid temperature and cavitation number. Presented are also images of a cavitating microjet made by the high speed high definition camera RedLake Y3. Dimensions of a microjet are: diameter 0,3 mm; length 0,5 mm.

  19. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  20. An assessment of research opportunities and the need for synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  1. An assessment of research opportunities and the need for synchrotron radiation facilities

    International Nuclear Information System (INIS)

    1995-01-01

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held

  2. SDG and E - ERDA Geothermal Loop Experimental Facility. Bi-monthly report, May 1975-August 1976

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, H.K.; Bricarello, J.R.; Campbell, J.A.; Lombard, G.L.; Mulliner, D.K.; Swanson, C.R.

    1976-09-01

    A description of the Geothermal Loop Experimental Facility (GLEF) its construction problems, and a discussion of start-up testing are included. A history and description of the operation and maintenance with the brine injection pump for the facility are presented. The GLEF was divided into five separate sections: steam and condensate system, brine system, purge water system, vent gas system, and cooling water system. An insight into the chemistry of each system is provided by analysis of samples taken. Scaling and corrosion effects of brine, steam, gas, and water in these systems are described in detail. (MHR)

  3. Facilities for post-irradiation examination of experimental fuel elements at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Mizzan, E.; Chenier, R.J.

    1979-10-01

    Expansion of post-irradiation facilities at the Chalk River Nuclear Laboratories and steady improvement in hot-cell techniques and equipment are providing more support to Canada's reactor fuel development program. The hot-cell facility primarily used for examination of experimental fuels averages a quarterly throughput of 40 elements and 110 metallographic specimens. New developments in ultrasonic testing, metallographic sample preparation, active storage, active waste filtration, and fissile accountability are coming into use to increase the efficiency and safety of hot-cell operations. (author)

  4. Liquid blanket MHD effects experimental results from LMEL facility at SWIP

    International Nuclear Information System (INIS)

    Xu Zengyu; Pan Chuanjie; Liu Yong; Pan Chuanhong; Reed, C.B.

    2007-01-01

    The self-cooled /helium-cooled liquid metal blanket concept is an attractive ITER and DEMO blanket candidate as it has low operating pressure, simplicity, and a convenient tritium breeding cycle. But MHD pressure drop remains a key issue, especially in ducts with flow channel inserts (FCI), where the reduction in MHD pressure drop is difficult to predict with existing tools, and there are no available experimental data to check current predictions. To understand well various kinds of MHD effects, it is important for us to analyze and understand FCI effects. In this paper, we present measurements of the MHD effects due to off normal power shutdown, two-dimensional effects due to channel velocity profiles, three-dimensional effects caused by manifolds, and surface/bulk instability effects as a result of insulator coating imperfections. These results were collected from the Liquid Metal Experimental Loop (LMEL) facility at Southwestern Institute of Physics, China and in collaboration with Argonne National Laboratory, US under an umbrella of the People's Republic of China/United States program of cooperation in magnetic fusion. Some results were observed for the first time, such as two dimensional effects and instabilities due to insulator coating imperfections. The experiments were conducted under the following conditions: a uniform magnetic field volume of 80 x 170 x 740 mm and a maximum value of magnetic field, B 0 , of 2 Tesla. The mean flow velocity v 0 was measured with an electromagnetic (EM) flow meter (error of 1.2%); a Liquid-metal Electro-magnetic Velocity Instrument (LEVI) was provided by Argonne National Laboratory. The flow was driven by two Electro-magnetic (EM) pumps (6.5+11.6 m3/h); the operating temperature was 85 centigrade degree due to self-heating by the EM pump and friction of the fluid against the loop piping. Experimental parameters were: Hartmann number, M, up to 3500, velocity v 0 up to 1.2 m/s under magnetic field, and B 0 =1.95 Tesla

  5. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  6. Report of researches by common utilization of facilities in Kyoto University Research Reactor Institute, latter half of fiscal year 1981

    International Nuclear Information System (INIS)

    1983-01-01

    The technical report of the Kyoto University Research Reactor Institute is published any time to immediately report on the results of the functional tests of various experimental facilities, the test results for the products made for trial, radiation control, the situation of waste treatment, the data required for research and experiment such as the reports of study meetings, the conspicuous results obtained amid researches, new processes, and the discussion on other papers and reports. In this report, the title, the names of reporters and the summary of 61 researches carried out by the common utilization of the facilities in the Kyoto University Research Reactor Institute are collected. The themes of the researches are such as radioactivation analysis of trace elements in rocks and minerals, anodic oxidation films of GaAs and structure, measurement of yield of uranium isotopes produced by reactor neutron irradiation of thorium, geochemical study of trace elements in hydrosphere by radio-activation analysis, various diseases and variation of elements in rat furs, Moessbauer spectroscopic study of gold compounds with singular coupling by Au-197, measurement of grass-eating quantity and rate of digestion of cows using Au and Eu, sickness biochemical study of trace elements in hair samples of patients and others. (Kako, I.)

  7. Report of researches by common utilization of facilities in Kyoto University Research Reactor Institute, latter half of fiscal year 1982

    International Nuclear Information System (INIS)

    1983-01-01

    The technical report of the Kyoto University Research Reactor Institute is published any time to immediately report on the results of the functional tests of various experimental facilities, the test results for the products made for trial, radiation control, the situation of waste treatment, the data required for research and experiment such as the reports of study meetings, the conspicuous results obtained amid researches, new processes, and the discussion on other papers and reports. In this report, the title, the names of reporters and the summary of 65 researches carried out by the common utilization of the facilities in the Kyoto University Research Reactor Institute are collected. The themes of the researches are such as Moessbauer spectroscopic study of ferrocene and its derivative iodides by I-129, decomposition of cadmium telluride during heat treatment, element distribution in resource living things and environmental substances produced in northern ocean, radioactivation analysis of trace elements in blood of tumor-bearing animals, radioactivation analysis of noble metal elements in geochemical samples, relaxation phenomena by gamma-gamma perturbation angle correlation, separation of components in Allende meteorite and their radioactivation analysis, measurement of cross section of Pa-231 (n, gamma) reaction and others. (Kako, I.)

  8. Report of researches by common utilization of facilities in Kyoto University Research Reactor Institute, first half of fiscal year 1982

    International Nuclear Information System (INIS)

    1983-01-01

    The technical report of the Kyoto University Research Reactor Institute is published any time to immediately report on the results of the functional tests of various experimental facilities, the test results for the products made for trial, radiation control, the situation of waste treatment, the data required for research and experiment such as the reports of study meetings, the conspicuous results obtained amid researches, new processes, and the discussion on other papers and reports. In this report, the title, the names of reporters and the summary of 47 researches carried out by the common utilization of the facilities in the Kyoto University Research Reactor Institute are collected. The themes of the researches are such as diffusion of impurities ion-implanted in silicon into natural oxide films, origin of igneous rocks by trace element distribution study, element distribution in black ore and its accompanying rocks and origin of black ore, reprocessing of molten salt fuel of thorium group, forerunning martensite transformation of Fe-Pt invar alloy, change of nucleic acid component to recoil tritium at cryogenic temperature, gamma irradiation effect of KC1 containing Pb 2+ , radiation effect on cadmium halide crystals and impurity metallic ions and others. (Kako, I.)

  9. Molten Core - Concrete interactions in nuclear accidents. Theory and design of an experimental facility

    International Nuclear Information System (INIS)

    Sevon, T.

    2005-11-01

    In a hypothetical severe accident in a nuclear power plant, the molten core of the reactor may flow onto the concrete floor of containment building. This would cause a molten core . concrete interaction (MCCI), in which the heat transfer from the hot melt to the concrete would cause melting of the concrete. In assessing the safety of nuclear reactors, it is important to know the consequences of such an interaction. As background to the subject, this publication includes a description of the core melt stabilization concept of the European Pressurized water Reactor (EPR), which is being built in Olkiluoto in Finland. The publication includes a description of the basic theory of the interaction and the process of spalling or cracking of concrete when it is heated rapidly. A literature survey and some calculations of the physical properties of concrete and corium. concrete mixtures at high temperatures have been conducted. In addition, an equation is derived for conservative calculation of the maximum possible concrete ablation depth. The publication also includes a literature survey of experimental research on the subject of the MCCI and discussion of the results and deficiencies of the experiments. The main result of this work is the general design of an experimental facility to examine the interaction of molten metals and concrete. The main objective of the experiments is to assess the probability of spalling, or cracking, of concrete under pouring of molten material. A program of five experiments has been designed, and pre-test calculations of the experiments have been conducted with MELCOR 1.8.5 accident analysis program and conservative analytic calculations. (orig.)

  10. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    Science.gov (United States)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  11. Experimental Research on Fluid Coupling Flexible Actuator

    Directory of Open Access Journals (Sweden)

    Xiangli Zeng

    2018-02-01

    Full Text Available In the field of micromechanics, piezoelectric actuator has attracted great attention for its high-frequency response, high displacement resolution, and high output force. However, its prospect of practical application has been largely limited by the displacement of micrometer. A fluid coupling flexible actuator was proposed, which utilizes resonance to enlarge the output displacement. The actuator uses a piezoelectric oscillator as an excitation source, fluid as the transmission medium and a flexible diaphragm for the displacement output. On the condition that the fluid is inviscid and incompressible, mathematical formulation of the membrane vibration theory has been analyzed. Then, the prototype is made. The displacement is amplified 21 times to 1.106 mm when driving frequency is 127 Hz. The flexible diaphragm appears the largest displacement output when driving frequency is close to one of the system’s natural frequency. Then, the points with zero amplitude form a circle on the surface of flexible diaphragm and the movement direction of the flexible diaphragm is opposite on different sides of the circle. In fact, rather than vibrates at the first resonance frequency, the membrane in the essay is vibrating at a certain higher-order resonance frequency. The experimental results are mainly consistent with the theoretical analysis.

  12. Research Directions for Cyber Experimentation: Workshop Discussion Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    DeWaard, Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deccio, Casey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fritz, David Jakob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tarman, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sandia National Laboratories hosted a workshop on August 11, 2017 entitled "Research Directions for Cyber Experimentation," which focused on identifying and addressing research gaps within the field of cyber experimentation , particularly emulation testbeds . This report mainly documents the discussion toward the end of the workshop, which included research gaps such as developing a sustainable research infrastructure, exp anding cyber experimentation, and making the field more accessible to subject matter experts who may not have a background in computer science . Other gaps include methodologies for rigorous experimentation, validation, and uncertainty quantification, which , if addressed, also have the potential to bridge the gap between cyber experimentation and cyber engineering. Workshop attendees presented various ways to overcome these research gaps, however the main conclusion for overcoming these gaps is better commun ication through increased workshops, conferences, email lists, and slack chann els, among other opportunities.

  13. Personal neutron dosimetry at a research reactor facility

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Carinou, E.; Stamatelatos, I.E.

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. (author)

  14. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  15. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2016-10-01

    The purpose of this report is to provide a concise status update for Value-Added Products (VAPs) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun; (2) progress on existing VAPs; (3) future VAPs that have been recently approved; (4) other work that leads to a VAP; (5) top requested VAPs from the ARM Data Archive; and (6) a summary of VAP and data releases to production and evaluation. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text. The upcoming milestones and dates are highlighted in green.

  16. Alternatives to animal experimentation in basic research.

    Science.gov (United States)

    Gruber, Franz P; Hartung, Thomas

    2004-01-01

    In contrast to animal testing required by law to guarantee minimum safety standards for the licensing of drugs and chemicals, there are no regulations in basic research forcing scientists to perform animal tests. By (usually) free choice, questions are posed and hypotheses are examined which, in many cases, can only be answered by means of animal tests. Just as easily, different questions could be asked or different hypotheses could be examined which do not require animal tests. The only criterion for the choice of a topic is its relevance which cannot necessarily be judged in the short-term. Thus, it is up to the individual scientist to judge what is worth studying and therefore worth animal consumption. The educated mind will consider ethical aspects of this choice. However, on the other hand, this decision is largely influenced by questions of efficacy or (in a negative sense) by the obstacles posed to an animal consuming approach. Here, peer review and general attitude will strongly influence the methodology chosen. Availability and awareness of adequate in vitro techniques represent the prerequisites for the use of alternative methods. The least one can do in basic research is to avoid tests which cause severe suffering to animals, as is required in Switzerland and other European countries by binding ethical principles and guidelines. The increasing standard of approval and control procedures has improved the situation over the years. There are many examples of successful alternative methods in basic research. But, the application of such methods is in most cases limited to the laboratories in which they were developed, calling for technology transfer. Exceptions are procedures that are used worldwide, like the production of monoclonal antibodies, which instead of using the ascites mouse can also be performed in vitro with some good will. In these cases, commercialisation of the techniques has aided their spread within the scientific community. Sadly, many

  17. Neutronics analysis of the TRIGA Mark II reactor core and its experimental facilities

    International Nuclear Information System (INIS)

    Khan, R.

    2010-01-01

    The neutronics analysis of the current core of the TRIGA Mark II research reactor is performed at the Atominstitute (ATI) of Vienna University of Technology. The current core is a completely mixed core having three different types of fuels i.e. aluminium clad 20 % enriched, stainless steel clad 20 % enriched and SS clad 70 % enriched (FLIP) Fuel Elements (FE(s)). The completely mixed nature and complicated irradiation history of the core makes the reactor physics calculations challenging. This PhD neutronics research is performed by employing the combination of two best and well practiced reactor simulation tools i.e. MCNP (general Monte Carlo N-particle transport code) for static analysis and ORIGEN2 (Oak Ridge Isotop Generation and depletion code) for dynamic analysis of the reactor core. The PhD work is started to develop a MCNP model of the first core configuration (March 1962) employing fresh fuel composition. The neutrons reaction data libraries ENDF/B-VI is applied taking the missing isotope of Samarium from JEFF3.1. The MCNP model of the very first core has been confirmed by three different local experiments performed on the first core configuration. These experiments include the first criticality, reactivity distribution and the neutron flux density distribution experiment. The first criticality experiment verifies the MCNP model that core achieves its criticality on addition of the 57th FE with a reactivity difference of about 9.3 cents. The measured reactivity worths of four FE(s) and a graphite element are taken from the log book and compared with MCNP simulated results. The percent difference between calculations and measurements ranges from 4 to 22 %. The neutron flux density mapping experiment confirms the model completely exhibiting good agreement between simulated and the experimental results. Since its first criticality, some additional 104-type and 110-type (FLIP) FE(s) have been added to keep the reactor into operation. This turns the current

  18. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  19. Experimental research on pedestrian lower leg impact

    Science.gov (United States)

    Constantin, B. A.; Iozsa, D. M.; Stan, C.

    2017-10-01

    The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.

  20. Research at the Section of Experimental Nuclear Physics of ATOMKI

    International Nuclear Information System (INIS)

    Krasznahorkay, A.; Fenyes, T.; Dombradi, Zs.; Nyako, B.M.; Timar, J.; Algora, A.; Csatlos, M.; Csige, L.; Gacsi, Z.; Gulyas, J.

    2011-01-01

    Introduction. Nuclear physics research was started in Debrecen by Alexander Szalay (1909-1987) back in the 30's. He had been a postdoc of the Nobel-laureate biologist Albert Szent-Gyorgyi in Szeged and of Lord Rutherford in Cambridge. ATOMKI was founded in Debrecen later, in 1954. The Institute was meant to pursue scientific research in certain areas of experimental nuclear physics and to develop research instruments In the early years the country was pretty isolated, but the institute's state of isolation was gradually easing up from the mid-sixties. During the period 1962-1975 the research work was performed in collaboration with Joint Institute for Nuclear Research (Dubna), where up-to-date high-energy accelerators were available for the production of desired isotopes. After finishing the construction of a home-made 5 MV Van de Graaff accelerator (1972) and later on the installation of a K=20 light ion cyclotron (1985) the Institute has become the main centre of accelerator-based nuclear physics in Hungary. In the period 1975-1995 our group performed extensive nuclear structure studies in Debrecen by using γ and conversion electron spectroscopy. At the same time fruitful collaborations were initiated with Jyvaskyla (Finland), with University of Kentucky and University of Zagreb. In 1993 the former Nuclear Reaction Group (NRG) merged with our group. Parallel with this structural change, the main topics of our γ-spectroscopic work has also changed, which resulted that the location of our experiments were shifted from the home institute to foreign large-scale facilities. New topics were brought partly by the emerging NRG, partly by group members returning from postdoctoral fellowships. They also brought important non γ-spectroscopic topics, which enriched our research palette. These new topics have by now become joint endeavours involving more and more group members. The Nuclear Physics European Coordination Committee (NuPECC) has recently stated that the aim of

  1. Presentations for the 2nd Muon science experimental facility advisory committee meeting

    International Nuclear Information System (INIS)

    2004-06-01

    This booklet is reporting a committee-report and materials presented at the Second J-PARC Muon-Science-Experimental-Facility Advisory Committee (MuSAC) held at KEK on February 19 and 20, 2004. Distinguished examples of deep considerations and discussions are the following three directions: 1) as for the facility construction, new high-radiation effect on graphite-production target was pointed out; 2) towards the first-beam experiment, more detailed instrumentations were proposed; 3) regarding financial and muon-power arrangements for the future facility operation, the concept of 'core-user' was introduced. The content included executive summary, introduction, response to recommendations from the 1st MuSAC meeting, review of J-PARC MSL construction plan, core funding issues, access to muon beams for Japanese physicists, conclusions and recommendations and appendices. (S.Y.)

  2. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-01-01

    A proposal has been made to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multi-level, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data, through typical transformations and correlations, in under 30 sec. The throughput for such a facility, assuming five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600

  3. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-05-01

    A proposal has been made at LBL to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multilevel, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data through typical transformations and correlations in under 30 s. The throughput for such a facility, for five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600. 3 figures

  4. A new digital pulse power supply in heavy ion research facility in Lanzhou

    Science.gov (United States)

    Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

  5. Tests of the space gamma spectrometer prototype at the JINR experimental facility with different types of neutron generators

    Science.gov (United States)

    Litvak, M. L.; Vostrukhin, A. A.; Golovin, D. V.; Dubasov, P. V.; Zontikov, A. O.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Mitrofanov, I. G.; Mokrousov, M. I.; Repkin, A. N.; Timoshenko, G. N.; Udovichenko, K. V.; Shvetsov, V. N.

    2017-07-01

    The results of the tests of the HPGe gamma spectrometer performed with a planetary soil model and different types of pulse neutron generators are presented. All measurements have been performed at the experimental nuclear planetary science facility (Joint Institute for Nuclear Research) for the physical calibration of active gamma and neutron spectrometers. The aim of the study is to model a space experiment on determining the elemental composition of Martian planetary matter by neutron-induced gamma spectroscopy. The advantages and disadvantages of a gas-filled neutron generator in comparison with a vacuum-tube neutron generator are examined.

  6. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    Cline, D.B.

    1993-01-01

    Progress on seven tasks is reported. (I)UCLA hadronization model, antiproton decay, PEP4/9 e + e - analysis: In addition to these topics, work on CP and CPT phenomenology at a φ factory and letters of support on the hadronization project are included. (II)ICARUS detector and rare B decays with hadron beams and colliders: Developments are summarized and some typcial events as shown; in addition, the RD5 collaboration at CERN and the asymmetric φ factory project are sketched. (III)Theoretical physics: Feynman diagram calculations in gauge theory; supersymmetric standard model; effects of quantum gravity in breaking of global symmetries; models of quark and lepton substructure; renormalized field theory; large-scale structure in the universe and particle-astrophysics/early universe cosmology. (IV)H dibaryon search at BNL, kaon experiments (E799/KTeV) at Fermilab: Project design and some scatterplots are given. (V)UCLA participation in the experiment CDF at Fermilab. (VI)Detectors for hadron physics at ultrahigh energy colliders: Scintillating fiber and visible light photon counter research. (VII)Administrative support and conference organization

  7. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    Science.gov (United States)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  8. Comparison the results of numerical simulation and experimental results for Amirkabir plasma focus facility

    International Nuclear Information System (INIS)

    Goudarzi, Shervin; Amrollahi, R; Sharak, M Niknam

    2014-01-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  9. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  10. Accidents and failures in reactor facilities for test and research and reactor facilities in the stage of research and development in fiscal year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The number of accidents and failures reported in fiscal year 1987 in conformity with the law on the regulation of nuclear reactors and others was three. One case occurred during operation, and two cases occurred in shutdown state. One case was caused by improper construction management, and two cases were due to improper maintenance management. The effect of radioactivity to the surrounding environment of reactor facilities due to these accidents and failures did not arise. These occurred in the NSRR of Japan Atomic Energy Research Institute (Tokai), the experimental FBR Joyo and the ATR Fugen Power Station of Power Reactor and Nuclear Fuel Development Corp. In addition to these, the light troubles reported on the basis of the notice from the director of Science and Technology Agency dated September 1, 1981, were three cases. (K.I.)

  11. Fuel elements and fuel element materials. Experimental facilities for fission products lift-off tests

    International Nuclear Information System (INIS)

    Blanchard, R.J.; Veyrat, J.F.

    1978-01-01

    One of the hypothetical accidents on the HTGR primary cooling circuits is the failure of a circuit resulting in a depressurization in the primary loops of the reactor. There is a risk of release of fission products in relation to the size of the failure. Experimental facilities for HTGR tests were developed: an in pile helium loop Comedie and an out of pile helium loop

  12. High Pressure Combustion Experimental Facility(HPCEF) for Studies on Combustion in Reactive Flows

    Science.gov (United States)

    2017-12-13

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Report: High Pressure Combustion Experimental Facility (HPCEF) for Studies on Combustion in Reactive Flows The views, opinions and/or findings... contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so

  13. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  14. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  15. Construction of an underground facility for ''in-situ'' experimentation in the boom clay

    International Nuclear Information System (INIS)

    Bonne, A.; Manfroy, P.; Van Haelewijn, R.; Heremans, R.

    1985-01-01

    The Belgian R and D Programme concerning the disposal of high-level and alpha-bearing radioactive waste in continental geological formations was launched by SCK/CEN, Mol in 1974. The programme is characterised by its site and formation specific approach, i.e. Mol and Boom clay. In the framework of site confirmation, an important issue is the ''in situ'' experimentation which should allow to determine with a higher degree of confidence the numerical value of the data needed for the evaluations, assessments and designs. The present report deals with the construction of an underground experimental facility, which was scheduled to be fully completed in mid 1984. Initially, the completion was scheduled for the end of 1983, but supplementary experiments related to geomechanics and mining capabilities and to be performed during the construction phase of the experimental facility delayed the completion of the underground facility. During the construction, a continuous observation was made of the behaviour of the clay mass and the structures. In this final contract-report, only the as-built structure, the time schedule and the ''in situ'' experiments launched or performed during the construction phase are dealt with

  16. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  17. Bagheera: A new experimental facility at Cea / Valduc for actinides studies under high dynamic loading

    International Nuclear Information System (INIS)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-01-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for 'Hopkinson And High Speed Experiments Glove Box'. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single 10 m long, 3 m high and 1.5 m large glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). A unique highly automated system drives all devices. The overall architecture of the facility takes into account the useful ability to carry out symmetrical and reverse experiments with the gas gun, that is actinide to actinide impact and actinide to inert material impact. Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications

  18. A theoretical and experimental dose rate study at a multipurpose gamma irradiation facility in Ghana

    International Nuclear Information System (INIS)

    Sackey, Tracey A.

    2015-01-01

    Radiation dose rate monitoring out at the Radiation Technology Centre (RTC) of the Ghana Atomic Energy Commission (GAEC) to establish the safety or otherwise of staff at the occupied areas is presented. The facility operates a rectangular source of Co-60 gamma with an having activity of 27.4kCi as at March 2015 and has 14 workers. The aim of the research was determine by means of practical and theoretical evaluations shielding effectiveness of the irradiation chamber. This was to ensure that occupationally exposed workers are not over exposed or their exposures do not exceed the regulatory limits of 7.5μSv/h or 50mSv per annum. The study included dose rate measurements at controlled areas, evaluation of personnel dose history, comparison of experimental and theoretical values and determination of whether the shielding can support a. 18.5PBq (500kCi) Co-60 source. Practical dose rate measurements when the source was in the irradiation position was carried out using a Thermo Scientific Rad-Eye Gamma Survey Meter in the controlled areas of the facility which included the control room, electric room, deionizer room, on top of the roof of irradiation chamber (specifically above the roof plugs) and the two entrances to the irradiation chamber; the personnel door and the goods door. Background reading was found to be 0.08±0.01μSv/h whilst the average dose rates at the two entrances to the irradiation chamber (i e.,- the personnel door and the goods door) were measured to be 0.090μSv/h and 0.109μSv/h respectively. Practical measurements at the roof plugs produced average values of 0.135μSv/h. A particular point on the roof marked as plug-3 produced a relatively higher dose rate of 8.151μSv/h due probably to leakage along the cable to the drive motor. Measurements in the control room, electrical room and deionizer room had average readings of 0.116μSv/h, 0.089μSv/h and 0.614μSv/h respectively. All these average values were below the regulatory limits of 7.5

  19. Anomalous radon concentration in a nuclear research facility

    International Nuclear Information System (INIS)

    Balcazar, M.; Pena, P.

    2014-08-01

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m -3 . The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m -3 , manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  20. Anomalous radon concentration in a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m{sup -3}. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m{sup -3}, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)