WorldWideScience

Sample records for experimental reactor iter

  1. ITER: the first experimental fusion reactor

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1995-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a multiphased project, at present proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement between the European Atomic Energy Community, the Government of Japan, the Government of the USA and the Government of Russia (''the parties''). The project is based on the tokamak, a Russian invention which has been brought to a high level of development and progress in all major fusion programs throughout the world.The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for commercial energy production and to test technologies for a demonstration fusion power plant. During the extended performance phase of ITER, it will demonstrate the characteristics of a fusion power plant, producing more than 1500MW of fusion power.The objective of the engineering design activity (EDA) phase is to produce a detailed, complete and fully integrated engineering design of ITER and all technical data necessary for the future decision on the construction of ITER.The ITER device will be a major step from present fusion experiments and will encompass all the major elements required for a fusion reactor. It will also require the development and the implementation of major new components and technologies.The inside surface of the plasma containment chamber will be designed to withstand temperature of up to 500 C, although normal operating temperatures will be substantially lower. Materials will have to be carefully chosen to withstand these temperatures, and a high neutron flux. In addition, other components of the device will be composed of state-of-the-art metal alloys, ceramics and composites, many of which are now in the early stage of development of testing. (orig.)

  2. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  3. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    Science.gov (United States)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  4. Ratcheting problems for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Majumdar, S.

    1991-01-01

    Because of the presence of high cyclic thermal stress, pressure-induced primary stress, and disruption-induced high cyclic primary stress, ratcheting of the first wall poses a serious challenge to the designers of ITER (International Thermonuclear Experimental Reactor). Existing design tools such as the Bree diagram in the ASME Boiler and Pressure Vessels Code, are not directly applicable to ITER, because of important differences in geometry and loading modes. Available alternative models for ratcheting are discussed and new Bree diagrams, that are more relevant for fusion reactor applications, are proposed. 9 refs., 17 figs

  5. Industrial opportunities on the International Thermonuclear Experimental Reactor (ITER) project

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1996-01-01

    Industry has been a long-term contributor to the magnetic fusion program, playing a variety of important roles over the years. Manufacturing firms, engineering-construction companies, and the electric utility industry should all be regarded as legitimate stakeholders in the fusion energy program. In a program focused primarily on energy production, industry's future roles should follow in a natural way, leading to the commercialization of the technology. In a program focused primarily on science and technology, industry's roles, in the near term, should be, in addition to operating existing research facilities, largely devoted to providing industrial support to the International Thermonuclear Experimental Reactor (ITER) Project. Industrial opportunities on the ITER Project will be guided by the amount of funding available to magnetic fusion generally, since ITER is funded as a component of that program. The ITER Project can conveniently be discussed in terms of its phases, namely, the present Engineering Design Activities (EDA) phase, and the future (as yet not approved) construction phase. 2 refs., 3 tabs

  6. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  7. Cryogenic structures of superconducting coils for fusion experimental reactor 'ITER'

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Iguchi, Masahide; Hamada, Kazuya; Okuno, Kiyoshi; Takahashi, Yoshikazu; Shimamoto, Susumu

    2013-01-01

    This paper describes both structural materials and structural design of the Toroidal Field (TF) coil and Central Solenoid (CS) for the International Thermonuclear Experimental Reactor (ITER). All the structural materials used in the superconducting coil system of the ITER are austenitic stainless steels. Although 316LN is used in the most parts of the superconducting coil system, the cryogenic stainless steels, JJ1 and JK2LB, which were newly developed by the Japan Atomic Energy Agency (JAEA) and Japanese steel companies, are used in the highest stress area of the TF coil case and the whole CS conductor jackets, respectively. These two materials became commercially available based on demonstration of productivity and weldability of materials, and evaluations of 4 K mechanical properties of trial products including welded parts. Structural materials are classified into five grades depending on stress distribution in the TF coil case. JAEA made an industrial specification for mass production based on the ITER requirements. In order to simplify quality control in mass production, JAEA has used materials specified in the material section of 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure (2008)' issued by the Japan Society of Mechanical Engineers (JSME) in October 2008, which was established using an extrapolation method of 4 K material strengths from room temperature strength and chemical compositions developed by JAEA. It enables steel suppliers to easily control the quality of products at room temperature. JAEA has already started actual production with several manufacturing companies. The first JJ1 product to be used in the TF coil case and the first JK2LB jackets for CS were completed in October and September 2013, respectively. (author)

  8. India's participation in the ITER (International Thermonuclear Experimental Reactor) collaboration

    International Nuclear Information System (INIS)

    Deshpande, Shishir

    2012-01-01

    Keeping its vision of developing fusion energy as a viable source, India joined the ITER collaboration in December 2005. ITER is a seven party collaboration with China, EU, India, Japan, S. Korea, Russia and the USA. ITER has a challenging mission of achieving Q=10 figure of merit at 500 MW fusion power output. The construction of ITER is structured as a set of 'in-kind' procurement packages to be executed by the partners. This involves all activities like design, prototyping, testing, shipping and assembly with commissioning at the ITER site at Cadarache, France. Currently, ITER presents the only opportunity to carry out novel experiments with burning plasmas and the new realms of fusion physics. It is important to participate in such experiments with a view for their exploitation in future. This talk summarizes the ITER device, its key challenges, role played by India and how these enmesh with the future of domestic program in fusion research. (author)

  9. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    International Nuclear Information System (INIS)

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W.

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost

  10. Conceptual design Fusion Experimental Reactor (FER/ITER)

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Nagashima, Takashi; Ikeda, Yoshitaka

    1991-11-01

    This report describes a conceptual design of Lower Hybrid Wave (LH) system for FER and ITER. In JAERI, the conceptual design of LH system for FER has been performed in these 3 years in parallel to that of ITER. There must be a common design part with ITER and FER. The physical requirement of LH system is the saving of volt · sec in the current start-up phase, and the current drive at the boundary region. The frequency of 5GHz is mainly chosen for avoidance of the α particle absorption and for the availability of electron tube development. Seventy-two klystrons (FER) and one hundred klystrons (ITER) are necessary to inject the 30 MW (FER) and 45-50 MW (ITER) rf power into plasma using 0.7 - 0.8 MW klystron per one tube. The launching system is the multi-junction type and the rf spectrum must be as sharp as possible with high directivity to improve the current drive efficiency. One port (FER) and two ports (ITER) are used and the injection direction is in horizontal, in which the analysis of the ray-tracing code and the better coupling of LH wave is considered. The transmission line is over-sized waveguide with low rf loss. (author)

  11. Kazakhstan participation in International Experimental Reactor ITER Construction project. Work status and prospects

    International Nuclear Information System (INIS)

    Tazhibayeva, I.L.; Tukhvatullin, Sh.T.; Shestakov, V.P.; Kuznetsov, B.A.

    2002-01-01

    Kazakhstan takes part in ITER project in partnership with Russian Federation since the year of 1994. At present the technical stage of the project is completed and ITER Council should take a decision on the site for international reactor. Four countries such as Canada, Japan, Spain and France have offered their territories for being used as site for launching ITER construction. ITER partners started preparing new international agreement that will cover activities on construction, operation and decommissioning of ITER. It will also include the list of research and experimental work that is conducted in support of ITER project. Kazakhstan has already made an important contribution into technical stage realization of ITER project due to scientific and technical researches conducted by National Nuclear Center, by Institute of Experimental and Theoretical Physics and by JSC 'Ulba Metallurgical plant' ('UMP'). Research activity carried out for the support of ITER project is performed in accordance with the following main trends: Tritium safety (permeability and retentin of hydrogen isotopes during in-pile irradiation in various structural materials, co-deposed layers and protective coatings); Verification of computer codes (LOCA type) loss of coolant accidents modeling in ITER reactor; Investigation of liquid metal blanket of thermonuclear reactor (tritium production in lithium containing eutectics Li17Pb83 and ceramics Li 2 TiO 3 , study of tritium permeability). At present the working group of ITER project participants started introducing proposals for cost distribution and for placing the orders on reactor construction. Further Kazakhstan participation in ITER project may be in manufacturing high-tech parts and assemblies from commercial grades of beryllium. They will be used for armouring the reactor first wall, for its thermal protection and for protection of superconductor's components for magnetic systems that are at JSC U MP'. Scientific and technical support of

  12. Conceptual design of fusion experimental reactor (FER/ITER)

    International Nuclear Information System (INIS)

    Kimura, Haruyuki; Saigusa, Mikio; Saitoh, Yasushi

    1991-06-01

    Conceptual design of the Ion Cyclotron Wave (ICW) system for FER and Japanese contribution to the conceptual design of the ITER ICW system are presented. A frequency range of the FER ICW system is 50-85 MHz, which covers 2ω cT heating, current drive by transit time magnetic pumping (TTMP) and 2ω cD heating. Physics analyses show that the FER and the ITER ICW systems are suitable for the central ion heating and the burn control. The launching systems of the FER ICW system and the ITER high frequency ICW system are characterized by in-port plug and ridged-waveguide-fed 5x4 phased loop array. Merits of those systems are (1) a ceramic support is not necessary inside the cryostat and (2) remote maintenance of the front end part of the launcher is relatively easy. Overall structure of the launching system is consistent with radiation shielding, cooling, pumping, tritium safety and remote maintenance. The launcher has injection capability of 20 MW in the frequency range of 50-85 MHz with the separatrix-antenna distance of 15 cm and steep scrape-off density profile of H-mode. The shape of the ridged waveguide is optimized to provide desired frequency range and power handling capability with a finite element method. Matching between the current strap and the ridged waveguide is satisfactorily good. Thermal analysis of the Faraday shield shows that high electric conductivity low Z material such as beryllium should be chosen for a protection tile of the Faraday shield. Thick Faraday shield is necessary to tolerate electromagnetic force during disruptions. R and D needs for the ITER/FER ICW systems are identified and gain from JT-60/60U ICRF experiments and operations are indicated in connection with them. (author)

  13. The impact of confinement scaling on ITER [International Thermonuclear Experimental Reactor] parameters

    International Nuclear Information System (INIS)

    Reid, R.L.; Galambos, J.D.; Peng, Y.K.M.

    1988-09-01

    Energy confinement scaling is a major concern in the design of the International Thermonuclear Experimental Reactor (ITER). The existing database for tokamaks can be fitted with a number of different confinement scaling expressions that have similar degrees of approximation. These scaling laws predict confinement times for ITER that vary by over an order of magnitude. The uncertainties in the form and magnitude of these scaling laws must be substantially reduced before the plasma performance of ITER can be predicted with adequate reliability. The TETRA systems code is used to calculate the dependence of major ITER parameters on the scaling laws currently in use. Design constraints of interest in the present phase of ITER consideration are used, and the minimum-cost devices arising from these constraints are reviewed. 9 refs., 13 figs., 4 tabs

  14. Organization of the ITER [International Thermonuclear Experimental Reactor] Project - Sharing of information and procurements

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1990-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is expected to fully confirm the scientific feasibility and to address the technological feasibility of fusion power. Consequently, the machine must be designed for controlled ignition and extended burn of deuterium-tritium plasma. It must also demonstrate and perform integrated testing of components required to utilize fusion power for practical purposes. Cooperation among four countries/organizations (United States, Soviet Union, Japan, and EURATOM) to build a single experimental reactor will reduce the cost for each country and provide an international pool of scientific and engineering resources. This paper describes ITER organization for conceptual design activity, schedule for conceptual design activities, ITER operating parameters, conceptual project schedule and cost, future plans, basic principles and problems related to task sharing, and basic principles in handling of intellectual property

  15. International Thermonuclear Experimental Reactor (ITER) plant layout and site services

    International Nuclear Information System (INIS)

    Chuyanov, V.

    2001-01-01

    The ITER site has not been determined at this time. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures, and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electric power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, de-mineralized water, steam, and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radioactive exposure of either the workers or the public. To avoid interference between services of different types and for efficient arrangement of buildings, structures, and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographic center of the site. Location of the twenty-seven buildings on the generic site was selected to meet all design requirements at minimum total project cost. A similar approach has been used to determine the location of services above, at, and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography resulting primarily in changes to the length of services that link the buildings and equipment. (author)

  16. International Thermonuclear Experimental Reactor (ITER) plant layout and site services

    International Nuclear Information System (INIS)

    Chuyanov, V.

    1999-01-01

    The ITER site has not been determined at this time. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures, and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electric power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, de-mineralized water, steam, and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radioactive exposure of either the workers or the public. To avoid interference between services of different types and for efficient arrangement of buildings, structures, and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographic center of the site. Location of the twenty-seven buildings on the generic site was selected to meet all design requirements at minimum total project cost. A similar approach has been used to determine the location of services above, at, and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography resulting primarily in changes to the length of services that link the buildings and equipment. (author)

  17. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  18. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  19. Development step toward fusion power plant and role of experimental reactor ITER

    International Nuclear Information System (INIS)

    Hiwatari, Ryouji; Asaoka, Yoshiyuki; Okano, Kunihiko

    2005-01-01

    The development of fusion energy is going into the experimental reactor stage, and the thermal energy from the fusion reaction will be generated in a plant scale through the ITER (International Thermonuclear Experimental Reactor) project. The remaining critical issue toward the realization of fusion energy is to map out the development strategy. Recently early realization approach as for the fusion energy development is being discussed in Japan, Europe, and the United States. This approach implies that the devices for a Demo reactor and a proto-type reactor as seen in the fast breeder reactor are combined into a single device in order to advance the fusion energy development. On the other hand, a clear development road map for fusion energy hasn't been suggested yet, and whether that early realization approach is feasible or not is still ambiguous. In order to realize the fusion energy as an user-friendly energy system, the suggestion of the development missions and the road map from the user-side point of view is instructive not only to Japanese but also to other country's development policy after the ITER project. In this report, first of all, the development missions from the user's point of view have been structured. Second, the development target required to demonstrate net electric generation and to introduce the fusion energy into the market is investigated, respectively. This investigation reveals that the completion of the ITER reference operation gives the outlook toward the demonstration of net electric generation and that the completion of the ITER advanced operation gives the possibility to introduce the fusion energy into the market. At last, the electric demonstration power plant Demo-CREST and the commercial power plant CREST are proposed to construct the development road map for fusion energy. (author)

  20. Requirements for US regulatory approval of the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Petti, D.A.; Haire, J.C.

    1993-12-01

    The International Thermonuclear Experimental Reactor (ITER) is the first fusion machine that will have sufficient decay heat and activation product inventory to pose potential nuclear safety concerns. As a result, nuclear safety and environmental issues will be much more important in the approval process for the design, siting, construction, and operation of ITER in the United States than previous fusion devices, such as the Tokamak Fusion Test Reactor. The purpose of this report is (a) to provide an overview of the regulatory approval process for a Department of Energy (DOE) nuclear facility; (b) to present the dose limits used by DOE to protect workers, the public, and the environment from the risks of exposure to radiation and hazardous materials; (c) to discuss some key nuclear safety-related issues that must be addressed early in the Engineering Design Activities (EDA) to obtain regulatory approval; and (d) to provide general guidelines to the ITER Joint Central Team (JCT) concerning the development of a regulatory framework for the ITER project

  1. Recommendations for a cryogenic system for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Soviet Union, and the United States. ITER will be a large machine requiring up to 100 kW of refrigeration at 4.5 K to cool its superconducting magnets. Unlike earlier fusion experiments, the ITER cryogenic system must handle pulse loads constituting a large percentage of the total load. These come from neutron heating during a fusion burn and from ac losses during ramping of current in the PF (poloidal field) coils. This paper presents a conceptual design for a cryogenic system that meets ITER requirements. It describes a system with the following features: Only time-proven components are used. The system obtains a high efficiency without use of cold pumps or other developmental components. High reliability is achieved by paralleling compressors and expanders and by using adequate isolation valving. The problem of load fluctuations is solved by a simple load-leveling device. The cryogenic system can be housed in a separate building located at a considerable distance from the ITER core, if desired. The paper also summarizes physical plant size, cost estimates, and means of handling vented helium during magnet quench. 4 refs., 4 figs., 3 tabs

  2. Review of the International Thermonuclear Experimental Reactor (ITER) detailed design report

    International Nuclear Information System (INIS)

    1997-01-01

    Dr. Martha Krebs, Director, Office of Energy Research at the US Department of Energy (DOE), wrote to the Fusion Energy Sciences Advisory Committee (FESAC), in letters dated September 23 and November 6, 1996, requesting that FESAC review the International Thermonuclear Experimental Reactor (ITER) Detailed Design Report (DDR) and provide its view of the adequacy of the DDR as part of the basis for the United States decision to enter negotiations with the other interested Parties regarding the terms and conditions for an agreement for the construction, operations, exploitation and decommissioning of ITER. The letter from Dr. Krebs, referred to as the Charge Letter, provided context for the review and a set of questions of specific interest

  3. Review of the International Thermonuclear Experimental Reactor (ITER) detailed design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-18

    Dr. Martha Krebs, Director, Office of Energy Research at the US Department of Energy (DOE), wrote to the Fusion Energy Sciences Advisory Committee (FESAC), in letters dated September 23 and November 6, 1996, requesting that FESAC review the International Thermonuclear Experimental Reactor (ITER) Detailed Design Report (DDR) and provide its view of the adequacy of the DDR as part of the basis for the United States decision to enter negotiations with the other interested Parties regarding the terms and conditions for an agreement for the construction, operations, exploitation and decommissioning of ITER. The letter from Dr. Krebs, referred to as the Charge Letter, provided context for the review and a set of questions of specific interest.

  4. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems: Revision 1

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  5. A high-recycle divertor for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1988-01-01

    A coupled one-dimensional (axial/radial) edge-plasma model (SOLAR) has been used to investigate tradeoffs between collector-plate and edge-plasma conditions in a doublenull, open, high-recycle divertor (HRD) for a preliminary International Thermonuclear Experimental Reactor (ITER) design. A steady-state HRD produces in attractive high-density edge plasma (5 /times/ 10 19 m/sup /minus/3/) with sufficiently low plasma temperature (10-20eV) at a tungsten plat that the sheath-accelerated ions are below sputtering threshold energies. Manageable plate heat fluxes (3-6 MW/m 2 ) are achieved by positioning the plate poloidal cross section at a minimum angle of 15-30/degree/ with respect to flux surfaces. 6 refs., 9 figs

  6. Design considerations for ITER [International Thermonuclear Experimental Reactor] toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (USSR), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb/sub 3/Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the US TIBER concept. The nuclear heating generated during operation is removed from the windings by helium flowing through the conductor. The heat in the coil case is removed through a separate cooling circuit operating at approximately 20 K. Manifold concepts are presented for the complete coil cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils. 6 refs., 5 figs., 1 tab

  7. Radiological dose rate calculations for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Khater, H.Y.; Santoro, R.T.

    1996-01-01

    Two-dimensional biological dose rates were calculated at different locations outside the International Thermonuclear Experimental Reactor (ITER) design. An 18 degree sector of the reactor was modeled in r-θ geometry. The calculations were performed for three different pulsing scenarios. This included a single pulse of 1000 s duration, 10 pulses of 1000 s duration with a 50% duty factor, and 9470 pulses of 1000 s duration with a 50% duty factor for a total fluence of 0.3 MW.a/m 2 . The dose rates were calculated as a function of toroidal angle at locations in the space between the toroidal field (TF) coils and cryostat, and in the space between the cryostat and the biological shield. The two-dimensional results clearly showed the toroidal effect, which is dominated by contribution from the activation of the cryostat and the biological shield. After one pulse, full access to the machine is possible within a few hours following shutdown. After 10 pulses, full access is also possible within the first day following shutdown. At the end of the Basic Performance Phase (BPP), full access is possible at any of the locations considered after one week following shutdown. 5 refs., 5 figs., 2 tabs

  8. Design of the ITER (International Thermonuclear Experimental Reactor) neutral beam system beamline, United States concept

    International Nuclear Information System (INIS)

    Purgalis, P.; Anderson, O.A.; Cooper, W.S.; DeVries, G.E.; Lietzke, A.F.; Kunkel, W.B.; Kwan, J.W.; Matuk, C.A.; Nakai, T.; Stearns, J.W.; Soroka, L.; Wells, R.P.; Lindquist, W.B.; Neef, W.S.; Reginato, L.L.; Sedgley, D.W.; Brook, J.W.; Luzzi, T.E.; Myers, T.J.

    1989-01-01

    Design of a neutral beamline for ITER (International Thermonuclear Experimental Reactor) is described. The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to watercooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules that can be removed for remote maintenance. The neutral beam system delivers 75 MW of D degree into three ports with a total of nine modules arranged in stacks of three modules per port. To increase reliability each module is designed to deliver up to 10 MW at 1.3 MeV; this allows eight modules operating at partial capacity to deliver the required power in the event one module is removed from service. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 35 m from the port into the torus. Neutron shielding in the drift duct provides the added feature of limiting conductance and thus reducing gas flow to and from the torus. Alternative component choices are also discussed for the evolving design. 8 refs., 4 figs., 1 tab

  9. MHD equilibrium methods for ITER [International Thermonuclear Experimental Reactor] PF [poloidal field] coil design and systems analysis

    International Nuclear Information System (INIS)

    Strickler, D.J.; Galambos, J.D.; Peng, Y.K.M.

    1989-03-01

    Two versions of the Fusion Engineering Design Center (FEDC) free-boundary equilibrium code designed to computer the poloidal field (PF) coil current distribution of elongated, magnetically limited tokamak plasmas are demonstrated and applied to the systems analysis of the impact of plasma elongation on the design point of the International Thermonuclear Experimental Reactor (ITER). These notes were presented at the ITER Specialists' Meeting on the PF Coil System and Operational Scenario, held at the Max Planck Institute for Plasma Physics in Garching, Federal Republic of Germany, May 24--27, 1988. 8 refs., 6 figs., 4 tabs

  10. International Thermonuclear Experimental Reactor (ITER). Engineering Design Activities (EDA). Agreement and protocol 1

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains protocol 1 to the agreement among the European Atomic Energy Community, the government of Japan, the Government of the Russian Federation, and the Government of the United States of America on cooperation in the engineering design activities for the International Thermonuclear Experimental Reactor, which activities shall be conducted under the auspices of the International Atomic Energy Agency

  11. The international thermonuclear reactor (ITER)

    International Nuclear Information System (INIS)

    Fowler, T.K.; Henning, C.D.

    1987-01-01

    Four governmental groups, representing Europe, Japan, USSR and U.S. met in March 1987 to consider a new international design of a magnetic fusion device for the 1990's. An interim group was appointed. The author gives a brief synopsis of what might be thought of as a draft charter. The starting point is the objective of the ITER device, which is summarized as demonstrating both scientific and technical feasibility of fusion. The paper presents an update on the current thinking and technical aspects for the International Thermonuclear Experimental Reactor (ITER). This covers not only what is happening in the U.S. but also some reports of preliminary thinking of the last technical work that occurred in Vienna

  12. Analysis of quench-vent pressures for present design of ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coils

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three-dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 3 figs., 1 tab

  13. Structural characteristics of proposed ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coil conductor

    International Nuclear Information System (INIS)

    Gibson, C.R.; Miller, J.R.

    1988-01-01

    This paper analyzes the effect of transverse loading on a cable-in-conduit conductor which has been proposed for the toroidal field coils of the International Thermonuclear Experimental Reactor. The primary components of this conductor are a loose cable of superconducting wires, a thin-wall tube for helium containment, and a U-shaped structural channel. A method is given where the geometry of this conductor can be optimized for a given set of operating conditions. It is shown, using finite-element modeling, that the structural channel is effective in supporting loads due to transverse forces and internal pressure. In addition, it is shown that the superconducting cable is effectively shielded from external transverse loads that might otherwise degrade its current carrying capacity. 10 refs., 10 figs., 3 tabs

  14. A cryogenic system design for the international thermonuclear experimental reactor (ITER)

    International Nuclear Information System (INIS)

    Slack, D.S.

    1991-01-01

    A conceptual design for ITER was completed last year. The author developed a suitable cryogenic system for ITER as part of this conceptual design effort. An overview of the design is reported. Emphasis is on the fact that cryogenics is a mature science, and a system supporting ITER needs can be made from time-proven components without loss of efficiency or reliability. Because of the large size of the ITER cryogenic system, large numbers of compressors and expanders must be used. Very high reliability is assured by arranging these components in parallel banks where servicing of individual components can be done without interruption of operations. This and other ideas based on the author's experience with Mirror Fusion Test Facility (MFTF) operations are described. 5 refs., 3 figs

  15. ITER EDA newsletter. V. 3, no. 1. (International Thermonuclear Experimental Reactor Engineering Design Activities)

    International Nuclear Information System (INIS)

    1994-01-01

    This issues of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fourth ITER Management Advisory Committee Meeting (MAC) held at San Diego, USA, 13-14 January, 1994, a Technical Committee Meeting on Plasma Equilibrium and Control held at Naka, Japan, 9-12 November 1993, and a Technical Committee Meeting on Radio-Frequency Heating and Current Drive held in Garching, Germany, 21-26 October 1993

  16. ITER vacuum vessel fabrication plan and cost study (D 68) for the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    1995-01-01

    ITER Task No. 8, Vacuum Vessel Fabrication Plan and Cost Study (D68), was initiated to assess ITER vacuum vessel fabrication, assembly, and cost. The industrial team of Raytheon Engineers ampersand Constructors and Chicago Bridge ampersand Iron (Raytheon/CB ampersand I) reviewed the current vessel basis and prepared a manufacturing plan, assembly plan, and cost estimate commensurate with the present design. The guidance for the Raytheon/CB ampersand I assessment activities was prepared by the ITER Garching Work Site. This guidance provided in the form of work descriptions, sketches, drawings, and costing guidelines for each of the presently identified vacuum vessel Work Breakdown Structure (WBS) elements was compiled in ITER Garching Joint Work Site Memo (Draft No. 9 - G 15 MD 01 94-17-05 W 1). A copy of this document is provided as Appendix 1 to this report. Additional information and clarifications required for the Raytheon/CB ampersand I assessments were coordinated through the US Home Team (USHT) and its technical representative. Design details considered essential to the Task 8 assessments but not available from the ITER Joint Central Team (JCT) were generated by Raytheon/CB ampersand I and documented accordingly

  17. Plasma-materials interaction issues for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Cohen, S.A.; Werley, K.A.

    1992-02-01

    Analysis of proposed operating scenarios for the International Thermonuclear Experimental Reactor has yielded predictions for the power and particle fluxes onto the material surfaces facing the plasma. The particles, mostly deuterium, tritium, and helium ions, would have energies in the range of 50--2000 eV and fluxes up to 5 x 10 23 /m 2 s. Lower fluxes of multi-MeV electrons and alpha particles may also strike the plasma-facing surfaces, primarily during transient events. The peak power fluxes onto the plasma-facing surfaces during normal operation are expected to be 5--100 MW/m 2 , but much higher during transient events. At the extreme conditions expected for steady-state operation, commonly used heat-removal structures are unable to withstand either the high sputter erosion rates or power loads. To reduce the time-averaged power flux, active control of the plasma position is specified to sweep the plasma heat load across larger areas of plasma-facing components. However, the cyclic heat load creates fatigue lifetime problems. Solutions to these lifetime and reliability problems by (1) changes in machine design and operation, (2) redeposition mechanisms, and (3) changes in materials, will be discussed. A proposed accelerated-life test facility for prototype divertor plate development is described

  18. Performance of cable-in-conduit conductors in ITER [International Thermonuclear Experimental Reactor] toroidal field coils with varying heat loads

    International Nuclear Information System (INIS)

    Kerns, J.A.; Wong, R.L.

    1989-01-01

    The toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) will operate with varying heat loads generated by ac losses and nuclear heating. The total heat load is estimated to be 2 kW per TF coil under normal operation and can be higher for different operating scenarios. Ac losses are caused by ramping the poloidal field (PF) for plasma initiation, burn, and shutdown; nuclear heating results from neutrons that penetrate into the coil past the shield. Present methods to reduce or eliminate these losses lead to larger and more expensive machines, which are unacceptable with today's budget constraints. A suitable solution is to design superconductors that operate with high heat loads. The cable-in-conduit conductor (CICC) can operate with high heat loads. One CICC design is analyzed for its thermal performance using two computer codes developed at LLNL. One code calculates the steady state flow conditions along the flow path, while the other calculates the transient conditions in the flow. We have used these codes to analyze the superconductor performance during the burn phase of the ITER plasma. The results of these analyses give insight to the choice of flow rate on superconductor performance. 4 refs., 5 figs

  19. Design and development of in-vessel viewing periscope for ITER (International Thermonuclear Experimental Reactor)

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Ito, Akira; Shibanuma, Kiyoshi; Tada, Eisuke

    1999-02-01

    An in-vessel viewing system is essential not only to detect and locate damage of components exposed to plasma, but also to monitor and assist in-vessel maintenance operation. In ITER, the in-vessel viewing system must be capable of operating at high temperature (200degC), under intense gamma radiation (30 kGy/h) and high vacuum or 1 bar inert gas. A periscope-type in-vessel viewing system has been chosen as a reference of the ITER in-vessel viewing system due to its wide viewing capability and durability for sever environments. According to the ITER research and development program, a full-scale radiation hard periscope with a length of 15 m has been successfully developed by the Japan Home Team. The performance tests have been shown sufficient capability at high temperature up to 250degC and radiation resistance over 100 MGy. This report describes the design and R and D results of the ITER in-vessel viewing periscope based on the development of 15-m-length radiation hard periscope. (author)

  20. The International Thermonuclear Experimental Reactor (ITER) international organisation: which laws apply to this international nuclear operator?

    International Nuclear Information System (INIS)

    Grammatico-Vidal, L.

    2009-01-01

    ITER is being carried out by way of international collaboration between seven partners (the European atomic energy community -EURATOM-, China, India, Japan, Russia, south korea and the United states) which together represent more than half the world population. From a project organisation point of view, it is supported by both financial and in-kind contributions provided by each of the partner; each member makes its contribution through a special legal entity called a 'domestic agency' to an international organisation which was set up by the Agreement on the Establishment of an International Fusion Energy Organization for the joint Implementation of the ITER project signed in Paris on 21. november 2006 and which entered into force on 24. october 2007 after ratification by each of the partners. The international agreement is to remain in effect for a period of 35 years and may be renewed for a period of 10 years without any change to its content. It is supplemented by an agreement of the same date on the privileges and immunities of the organisation and of its staff. The function of the ITER organisation is to construct, commission, operate and permanently shutdown the ITER facility, to encourage their exploitation by laboratories, other institutions and personnel participating in the fusion energy research and development programmes of its members and to promote public understanding and acceptance of fusion energy. The unique institutional structure for this project will be described briefly in the introduction before analysing the law applicable to this international organisation, a French nuclear operator, unique in France today. (N.C.)

  1. International Thermonuclear Experimental Reactor (ITER) divertor plate performance and lifetime considerations

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1990-03-01

    The ITER divertor plate performance during the technology phase of operation has been analyzed. High-Z materials, such as tungsten and tantalum, have been considered as plasma side materials, and refractory metal alloys, Ta-10W, TZM, Nb-1Zr, and V-15Cr-5Ti, plus copper alloys have been considered as the structural materials. The fatigue lifetime have been predicted for structural plates and for duplex plates with the plasma side material bonded to the structure. The results indicate that refractory alloys have a comparable or improved performance to copper alloys. Peak allowable heat fluxes for these analyses are in the range of 15--20 MW/m 2 for 2 mm thick structural plates and 7--11 MW/m 2 for 4 mm thick duplex plates. 4 refs., 55 figs., 6 tabs

  2. FENIX [Fusion ENgineering International eXperimental]: A test facility for ITER [International Thermonuclear Experimental Reactor] and other new superconducting magnets

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-01-01

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities

  3. Investigation of high purity beryllium for the International Thermonuclear Experimental Reactor (ITER), Task 002. Final report

    International Nuclear Information System (INIS)

    Vagin, S.P.

    1995-05-01

    The report includes a description of experimental abilities of Solid Structure Research Laboratory of IAE NNC RK, a results of microstructural characterization of A-4 grade polycrystal Beryllium produced at the Ulba metal plant and a technical project-for irradiation experiments. Technical project contains a detailed description of five proposed experiments, clearing behavior of Beryllium materials under the influence of irradiation, temperature, helium and hydrogen accumulation. Complex irradiation jobs, microstructural investigations and mechanical tests are planned in the framework of these experiments

  4. Reactor structure and superconducting magnet system of ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Yoshida, Kiyoshi; Shibanuma, Kiyoshi; Okuno, Kiyoshi; Tsuji, Hiroshi; Shimamoto, Susumu

    1993-01-01

    Fusion Experimental Reactors are one of the major steps toward realization of the fusion energy and the key objective are to demonstrate the scientific and technological feasibility prior to the Demo Fusion Reactor. ITER (International Thermonuclear Experimental Reactor) is one of experimental reactors and the conceptual design has been completed by the united efforts of USA, USSR, EC and Japan. In parallel with the conceptual design, key technology development in various areas has being conducted. This paper describes the overall design concepts and the latest technological achievements of the ITER reactor structure and superconducting magnet system. (author)

  5. Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

    CERN Document Server

    2002-01-01

    Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

  6. 3D Simulation of a Loss of Vacuum Accident (LOVA in ITER (International Thermonuclear Experimental Reactor: Evaluation of Static Pressure, Mach Number, and Friction Velocity

    Directory of Open Access Journals (Sweden)

    Jean-François Ciparisse

    2018-04-01

    Full Text Available ITER (International Thermonuclear Experimental Reactor is a magnetically confined plasma nuclear reactor. Inside it, due to plasma disruptions, the formation of neutron-activated powders, which are essentially made out of tungsten and beryllium, occurs. As many windows for diagnostics are present on the reactor, which operates at very low pressure, a LOVA (Loss of Vacuum Accident could be possible and may lead to dust mobilisation and a toxic and radioactive fallout inside the plant. This study is aimed at reproducing numerically the first seconds of a LOVA in ITER, in order to get information about the dust resuspension risk. This work has been carried out by means of a CFD (Computational Fluid Dynamics simulation of the beginning of the pressurisation transient inside the whole Tokamak. It has been found that the pressurization transient is extremely slow, and that the friction speed on the walls is very high, and therefore a high mobilization risk of the dust is expected on the entire internal surface of the reactor. It has been observed that a LOVA in a real-scale reactor is more severe than the one reproduced in reduced-scale facilities, as STARDUST-U, because the speeds are higher, and the dust resuspension capacity of the flow is greater.

  7. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  8. Household energy consumption: the future is in our hands. ITER, an experimental fusion reactor. Do CO2-free energies exist? Liquefied natural gas, king of the gas market

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - Household energy consumption - the future is in our hands: With energy resources growing scarcer and more expensive, everyone has a duty to conserve energy. Because combating global warming also means adopting simple habits and using the right equipment - with help from our governments to lead us to change. A practical look at what we can do. 2 - ITER, an experimental fusion reactor: The entire international community is trying to reproduce here on Earth the fusion of hydrogen atoms occurring naturally in the Sun, lured by the promise of a virtually inexhaustible source of energy. More on ITER from the project's Director General. 3 - Do CO 2 -free energies exist?: As nations struggle to reduce greenhouse gas emissions, the question is moot. Environmental engineer Jean-Marc Jancovici gives us his point of view. 4 - Liquefied natural gas, king of the gas market: LNG's many advantages are enticing industry to develop supply routes and infrastructure to meet strong demand. But the race for LNG is not without its limits

  9. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  10. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  11. Structural design of shield-integrated thin-wall vacuum vessel and manufacturing qualification tests for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Shimizu, Katsusuke; Shibui, Masanao; Koizumi, Koichi; Kanamori, Naokazu; Nishio, Satoshi; Sasaki, Takashi; Tada, Eisuke

    1992-09-01

    Conceptual design of shield-integrated thin-wall vacuum vessel has been done for ITER (International Thermonuclear Experimental Reactor). The vacuum vessel concept is based on a thin-double-wall structure, which consists of inner and outer plates and rib stiffeners. Internal shielding structures, which provide neutron irradiation shielding to protect TF coils, are set up between the inner plate and the outer plate of the vessel to avoid complexity of machine systems such as supporting systems of blanket modules. The vacuum vessel is assembled/disassembled by remote handling, so that welding joints are chosen as on-site joint method from reliability of mechanical strength. From a view point of assembling TF coils, the vacuum vessel is separated at the side of port, and is divided into 32 segments similar to the ITER-CDA reference design. Separatrix sweeping coils are located in the vacuum vessel to reduce heat fluxes onto divertor plates. Here, the coil structure and attachment to the vacuum vessel have been investigated. A sectorized saddle-loop coil is available for assembling and disassembling the coil. To support electromagnetic loads on the coils, they are attached to the groove in the vacuum vessel by welding. Flexible multi-plate supporting structure (compression-type gravity support), which was designed during CDA, is optimized by investigating buckling and frequency response properties, and concept on manufacturing and fabrication of the gravity support are proposed. Partial model of the vacuum vessel is manufactured for trial, so that fundamental data on welding and fabrication are obtained. From mechanical property tests of weldment and partial models, mechanical intensity and behaviors of the weldment are obtained. Informations on FEM-modeling are obtained by comparing analysis results with experimental results. (author)

  12. [International Thermonuclear Experimental Reactor support

    International Nuclear Information System (INIS)

    Dean, S.O.

    1990-01-01

    This report summarizes the activities under LLNL Purchase Order B089367, the purpose of which is to ''support the University/Lawrence Livermore National Laboratory Magnetic Fusion Program by evaluating the status of research relative to other national and international programs and assist in long-range plans and development strategies for magnetic fusion in general and for ITER in particular.'' Two specific subtasks are included: ''to review the LLNL Magnet Technology Development Program in the context of the International Thermonuclear Experimental Reactor Design Study'' and to ''assist LLNL to organize and prepare materials for an International Thermonuclear Experimental Reactor Design Study information meeting.''

  13. Engineering for the ITER Reactor

    International Nuclear Information System (INIS)

    Albisu, F.; Dominguez, M. T.

    2001-01-01

    Midway between a horoscope and a prophecy forecasts on the future of energy give us a tentative idea of what prospects it has in the world, in Europe, etc. For example, it is estimated that world electricity consumption will double over the next 20 years. This is all about the immediate future, but what about afterwards? We must remember that, except for coal, the world's traditional energy resources will be exhausted in just a few decades; that with the exception of nuclear energy and some renewable energy resources, energy processes produce huge quantities of harmful gases, the effects of which can already be felt; and that oil and natural gas are irreplaceable in more needy, more noble uses than the hearth. It is expected that the nuclear fusion process which occurs continually in the stars-and which we on Earth have known about for more than fifty years-can cover the world energy needs in the last of this century. Of the different fusion processes which are theoretically possible, current developments are based on the reaction. D + T→ n +α + 17.6 MeV where the resultant particles carry kinetic energy which, at least in principle, can be transformed into useful energy. At this point it would probably be as well to remember certain aspects: Deuterium is a non-radioactive isotope of hydrogen. It is found in inexhaustible quantities in water (some 35 g of deuterium per m''3) Tritium, a radioactive isotope of hydrogen, is made artificially. The first tritium load has to be added to fusion reactors, but the amount consumed during operation is replaced by the reaction of neutrons with lithium inside the reactor. Lithium occurs in relative abundance in the ground, and with a concentration of 0.1-0.2 g/m''3 in sea water. One million kWh on the grid would require some 7 g of deuterium and about 100-300 g of lithium; or in other energy processes, some 17-25 kg of natural uranium, about 320 t of coal or about 2.5.105 m''3 of natural gas. (Author)

  14. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Science.gov (United States)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  15. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    International Nuclear Information System (INIS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-01-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed

  16. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N. [Institution Project center ITER, Moscow (Russian Federation)

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  17. ITER, the 'Broader Approach', a DEMO fusion reactor

    International Nuclear Information System (INIS)

    Janeschitz, G.; Bahm, W.

    2007-01-01

    Fusion is a very promising future energy option, which is characterized by almost unlimited fuel reserves, favourable safety features and environmental sustainability. The aim of the worldwide fusion research is a fusion power station which imitates the process taking place in the sun and thus gains energy from the fusion of light atomic nuclei. The experimental reactor ITER which will be built in Cadarache, France, marks a breakthrough in the worldwide fusion research: For the first time an energy multiplication factor of at least 10 will be achieved, the factor by which the fusion power exceeds the external plasma heating. Partners in this project are the European Union, Japan, the Russian Federation, USA, China, South Korea and India as well as Brazil as associated partner. The facility is supposed to demonstrate a long burning, reactor-typical plasma and to test techniques such as plasma heating, plasma confinement by superconducting magnets, fuel cycle as well as energy transition, tritium breeding and remote handling technologies. The next step beyond ITER will be the demonstration power station DEMO which requires further developments in order to create the basis for its design and construction. The roadmap to fusion energy is described. It consists of several elements which are needed to develop the knowledge required for a commercial fusion reactor. The DEMO time schedule depends on the efforts in terms of personnel and budget resources the society is willing to invest in fusion taking into account the long term energy supply and its environmental impact. (orig.)

  18. ITER at the international conference on fusion reactor materials

    International Nuclear Information System (INIS)

    Kalinin, G.; Barabash, V.; Matera, R.

    1998-01-01

    The reports summarizes the topics of the eighth International Conference on Fusion Reactor Materials (ICFRM-8) which was held in Sendai, Japan, on 26-31 October 1997. The ICFRM is focused on the whole spectrum of materials and technologies to be applied in fusion reactors and related facilities. The total number of conference participants was over 500, representing 24 countries and about 600 oral and poster papers were presented at the conference. Three sessions were devoted to ITER materials: (i) Design-Materials Interface and ITER (oral session); (ii) ITER, Irradiation Facility and Technology, (poster session); (iii) ITER and Beyond (discussion session)

  19. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  20. Orphee reactor experimental equipment

    International Nuclear Information System (INIS)

    1987-01-01

    Experimental equipment around the ORPHEE reactor is presented. The neutron source; and the spectrometers and sample environment (inelastic and quasi-elastic scattering, elastic scattering, spread scattering, small angle scattering) are described. An experiment proposal and reports guide is supplied [fr

  1. Plan of ITER remote experimentation center

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, T., E-mail: ozeki.takahisa@jaea.go.jp [Japan Atomic Energy Agency, 2-166 Obuchi Rokkasho, Kitakami-gun, Aomori 039-3212 (Japan); Clement, S.L. [Fusion for Energy, Torres Diagonal Litoral, B3, 13/03, 08019 Barcelona (Spain); Nakajima, N. [National Institute for Fusion Science and Project Leader of IFERC, 2-166 Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)

    2014-05-15

    Plan of ITER remote experimentation center (REC) based on the broader approach (BA) activity of the joint program of Japan and Europe (EU) is described. Objectives of REC activity are (1) to identify the functions and solve the technical issues for the construction of the REC for ITER at Rokkasho, (2) to develop the remote experiment system and verify the functions required for the remote experiment by using the Satellite Tokamak (JT-60SA) facilities in order to make the future experiments of ITER and JT-60SA effectively and efficiently implemented, and (3) to test the functions of REC and demonstrate the total system by using JT-60SA and existing other facilities in EU. Preliminary identified items to be developed are (1) Functions of the remote experiment system, such as setting of experiment parameters, shot scheduling, real time data streaming, communication by video-conference between the remote-site and on-site, (2) Effective data transfer system that is capable of fast transfer of the huge amount of data between on-site and off-site and the network connecting the REC system, (3) Storage system that can store/access the huge amount of data, including database management, (4) Data analysis software for the data viewing of the diagnostic data on the storage system, (5) Numerical simulation for preparation and estimation of the shot performance and the analysis of the plasma shot. Detailed specifications of the above items will be discussed and the system will be made in these four years in collaboration with tokamak facilities of JT-60SA and EU tokamak, experts of informatics, activities of plasma simulation and ITER. Finally, the function of REC will be tested and the total system will be demonstrated by the middle of 2017.

  2. The International Thermonuclear Experimental Reactor configuration evolution

    International Nuclear Information System (INIS)

    Lousteau, D.C.; Nelson, B.E.; Lee, V.D.; Thomson, S.L.; Miller, J.M.; Lindquist, W.B.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) conceptual design activities consist of two phases: a definition phase, completed in September 1988, and a design phase, now in progress. The definition phase was successful in identifying a consistent set of technical characteristics and the broad definition of the required reactor configuration and hardware. Scheduled for completion in November 1990, the design phase is producing a more detailed definition of the required components, a first cost estimate, and a description of site requirements. A major activity in the ITER design phase is the period of joint work conducted at the Max Planck Institute for Plasma Physics, Garching, Federal Republic of Germany, from June through October 1989. An official report of the findings and conclusions of this activity will be submitted to and published by the International Atomic Energy Agency (IAEA). This paper highlights the evolution of the reactor mechanical configuration since the conclusion of the definition phase. 8 figs., 2 tabs

  3. Progress on ITER remote experimentation centre

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Takahisa, E-mail: ozeki.takahisa@jaea.go.jp [Japan Atomic Energy Agency, 2-166 Obuchi Rokkasho, Kitakami-gun, Aomori 039-3212 (Japan); Clement-Lorenzo, Susana [Fusion for Energy, Torres Diagonal Litoral, B3, 13/03, Barcelona 08019 (Spain); Nakajima, Noriyoshi [National institute for Fusion Science and Project leader of IFERC, 2-166 Obuchi, Rokkasho, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-15

    Construction of ITER remote experimentation centre (REC) based on the broader approach (BA) activity of the joint program of Japan and Europe (EU) is progressing. In order to make the future experiments of ITER and JT-60SA effectively and efficiently implemented, development of a remote experiment system by using the Satellite Tokamak (JT-60SA) facilities was planned and the development of software for the remote experiment is ongoing, including the systems for the remote connection and the communication between the remote site and the on-site facility. The network system from REC in Rokkasho-site of Japan to the network in EU was established in collaboration with the National Institute of Informatics (NII). Effective data transfer method that is capable of fast transfer speeds in the gigabit range is investigated. Data transfer at the rate of several Gbps was successfully obtained between the institutes in Japan. The preliminary versions of the software for data analysis are developed, such as for visualization of time dependent experimental data and transport simulations, visualization of plasma boundary/equilibrium and spatial profiles of diagnostic data. The remote data access program and an integrated platform for Documentation and Experiment Management are also being developed. A remote experiment room in the Rokkasho-site in Japan was designed and the construction started. The function of REC will be tested and the total system will be demonstrated by the middle of 2017.

  4. Progress on ITER remote experimentation centre

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Clement-Lorenzo, Susana; Nakajima, Noriyoshi

    2016-01-01

    Construction of ITER remote experimentation centre (REC) based on the broader approach (BA) activity of the joint program of Japan and Europe (EU) is progressing. In order to make the future experiments of ITER and JT-60SA effectively and efficiently implemented, development of a remote experiment system by using the Satellite Tokamak (JT-60SA) facilities was planned and the development of software for the remote experiment is ongoing, including the systems for the remote connection and the communication between the remote site and the on-site facility. The network system from REC in Rokkasho-site of Japan to the network in EU was established in collaboration with the National Institute of Informatics (NII). Effective data transfer method that is capable of fast transfer speeds in the gigabit range is investigated. Data transfer at the rate of several Gbps was successfully obtained between the institutes in Japan. The preliminary versions of the software for data analysis are developed, such as for visualization of time dependent experimental data and transport simulations, visualization of plasma boundary/equilibrium and spatial profiles of diagnostic data. The remote data access program and an integrated platform for Documentation and Experiment Management are also being developed. A remote experiment room in the Rokkasho-site in Japan was designed and the construction started. The function of REC will be tested and the total system will be demonstrated by the middle of 2017.

  5. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  6. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  7. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  8. Remote maintenance for fusion experimental reactor

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Takeda, Nobukazu

    2000-01-01

    Here was introduced on maintenance of reactor core portion operated by remote control among maintenance of the International Thermonuclear Experimental Reactor (ITER) begun on its design since 1988 under international cooperation of U.S.A., Europe, Russia and Japan. Every appliances constructing the reactor core portion is necessary to carry out all of their inspection and maintenance by using remote controlled apparatus because of their radiation due to neutron generated by DT combustion of plasma. For engineering design activity (EDA) in ITER, not only design and development of the remote control appliances but also design under consideration of remote maintenance for from structural design of maintained objective appliances to access method to appliances, transportation and preservation method of radiated matters, and out-reactor maintenance in a hot cell, is now under progress. Here were also reported on basic concept on maintenance and conservation of ITER, maintenance design of diverter and blanket with high maintenance frequency and present state on development of maintenance appliances. (G.K.)

  9. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1978-01-01

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  10. Engineering improvements for the ITER fusion reactor

    International Nuclear Information System (INIS)

    Moreno villar, A.; Albisu, F.

    1996-01-01

    The engineering and design phase (EDA) of the ITER project is being carried out jointly by the European Union, United States, Japan and the Russian Federation. the EU Home Team has contracted the European consortium, EFET, to undertake studies, design tasks and other services relating to the industry's contribution to the overall design of the project. The industry's contribution materializes through work orders within the framework of the contract. This paper summarises the tasks in which EFET participates, especially the ones on which IBERTEF AIE- a company formed by Empresarios Agrupados and SE NER-, collaborates. Up to June 1995, IBERTEF has carried out or is carrying out engineering works in the following tasks: TaskD/: Conceptual design and calculation of the vacuum chamber. Task D8: Structural design of the shielding blanket support. Task D21: Tokamak building crane. Task D51: Power supply schemes. Task CTA T4: Divertor region test platform: Task S22 TD 05: Heavy lifting transporter. Task D71 A-04: Safety design guidelines support. Task G16 TD 17: Design and development of the shielding blanket. Task S74 TD 05: Remote maintenance manual. Task D230: Design of buildings. Task D231: Cost estimate and construction plan for buildings. (Author)

  11. Experimental developments towards an ITER thermography diagnostic

    International Nuclear Information System (INIS)

    Reichle, R.; Brichard, B.; Escourbiac, F.; Gardarein, J.L.; Hernandez, D.; Le Niliot, C.; Rigollet, F.; Serra, J.J.; Badie, J.M.; van Ierschot, S.; Jouve, M.; Martinez, S.; Ooms, H.; Pocheau, C.; Rauber, X.; Sans, J.L.; Scheer, E.; Berghmans, F.; Decreton, M.

    2007-01-01

    In the course of the development of a concept for a spectrally resolving thermography diagnostic for the ITER divertor using optical fibres experimental development work has been carried out in three different areas. Firstly ZrF 4 fibres and hollow fibres (silica capillaries with internal AG/AgJ coating) were tested in a Co 60 irradiation facility under γ irradiation up to doses of 5 kGy and 27 kGy, respectively. The ZrF 4 fibres suffered more radiation induced degradation (>1 db/m) then the hollow fibres (0-0.4 db/m). Secondly multi-colour pyroreflectometry is being developed towards tokamak applicability. The emissivity and temperature of tungsten samples were measured in the range of 700-1500 o C. The angular working range for off normal observation of the method was 20-30 o . The working distance of the method has been be increased from cm to the m range. Finally, encouraging preliminary results have been obtained concerning the application of pulsed and modulated active thermography

  12. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bertoncini, P.J.

    1976-01-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 yr. The EPR operates in a pulsed mode at a frequency of approximately 1/min, with approximately 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2 cm thick stainless steel, and has 2 cm thick detachable, beryllium-coated coolant panels mounted on the interior. A 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic heating and equilibrium field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam injectors which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-convertors

  13. The ITER fusion reactor and its role in the development of a fusion power plant

    International Nuclear Information System (INIS)

    McLean, A.

    2002-01-01

    Energy from nuclear fusion is the future source of sustained, full life-cycle environmentally benign, intrinsically safe, base-load power production. The nuclear fusion process powers our sun, innumerable other stars in the sky, and some day, it will power the Earth, its cities and our homes. The International Thermonuclear Experimental Reactor, ITER, represents the next step toward fulfilling that promise. ITER will be a test bed for key steppingstones toward engineering feasibility of a demonstration fusion power plant (DEMO) in a single experimental step. It will establish the physics basis for steady state Tokamak magnetic containment fusion reactors to follow it, exploring ion temperature, plasma density and containment time regimes beyond the breakeven power condition, and culminating in experimental fusion self-ignition. (author)

  14. Transport simulation of ITER [International Thermonuclear Engineering Reactor] startup

    International Nuclear Information System (INIS)

    Attenberger, S.E.; Houlberg, W.A.

    1989-01-01

    The present International Thermonuclear Engineering Reactor (ITER) reference configurations are the ''Technology Phase,'' in which the plasma current is maintained noninductively at a subignition density, and the ''Physics Phase,'' which is ignited but requires inductive maintenance of the current. The WHIST 1.5-D transport code is used to evaluate the volt-second requirements of both configurations. A slow current ramp (60-80's) is required for fixed-radius startup in ITER to avoid hollow current density profiles. To reach the operating point requires about 203 V·s for the Technology Phase (18 MA) and about 270 V·s for the Physics Phase (22 MA). The resistive losses can be reduced with expanding-radius startup. 5 refs., 4 figs

  15. The experimental nuclear reactor: AQUILON

    International Nuclear Information System (INIS)

    Girard, Y.; Koechlin, J.C.; Moreau, J.M.

    1958-01-01

    'Aquilon' is an experimental reactor specially designed for the neutronic study of heterogeneous multiplying media with solid fuel and liquid moderator. Since this study is in general incompatible with energy production, the power of the reactor has been limited to a minimum so as to be able to obtain a simple and compact structure, easy access, good handling and great flexibility of operation and utilisation. (author) [fr

  16. Japanese contributions to containment structure, assembly and maintenance and reactor building for ITER

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Honda, Tsutomu; Kanamori, Naokazu

    1991-06-01

    Joint design work on Conceptual Design Activity of International Thermonuclear Experimental Reactor (ITER) with four parties, Japan, the United States, the Soviet Union and the European Community began in April 1988 and was successfully completed in December 1990. In Japan, the home team was established in wide range of collaboration between JAERI and national institute, universities and heavy industries. The Fusion Experimental Reactor (FER) Team at JAERI is assigned as a core of the Japanese home team to support the joint Team activity and mainly conducted the design and R and D in the area of containment structure, remote handling and plant system. This report mainly describes the Japanese contribution on the ITER containment structure, remote handling and reactor building design. Main areas of contributions are vacuum vessel, attaching locks, electromagnetic analysis, cryostat, port and service line layout for containment structure, in-vessel handling equipment design and analysis, blanket handling equipment design and related short term R and D for assembly and maintenance, and finally reactor building design and analysis based on the equipment and service line layout and components flow during assembly and maintenance. (author)

  17. ITER...ation

    International Nuclear Information System (INIS)

    Troyon, F.

    1997-01-01

    Recurrent attacks against ITER, the new generation of tokamak are a mix of political and scientific arguments. This short article draws a historical review of the European fusion program. This program has allowed to build and manage several installations in the aim of getting experimental results necessary to lead the program forwards. ITER will bring together a fusion reactor core with technologies such as materials, superconductive coils, heating devices and instrumentation in order to validate and delimit the operating range. ITER will be a logical and decisive step towards the use of controlled fusion. (A.C.)

  18. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    International Nuclear Information System (INIS)

    Villar Colome, J.

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  19. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  20. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  1. JET ITER-like wall—overview and experimental programme

    International Nuclear Information System (INIS)

    Matthews, G F; Beurskens, M; Loving, A; Kear, M; Mayoral, M-L; Prior, P; Riccardo, V; Watkins, M L; Brezinsek, S; Groth, M; Joffrin, E; Villedieu, E; Neu, R; Rimini, F; Sips, G; Rubel, M; De Vries, P

    2011-01-01

    This paper reports the successful installation of the JET ITER-like wall and the realization of its technical objectives. It also presents an overview of the planned experimental programme which has been optimized to exploit the new wall and other JET enhancements in 2011/12.

  2. A review of the US joining technologies for plasma facing components in the ITER fusion reactor

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.; Watson, R.D.; Slattery, K.T.

    1998-02-01

    This paper is a review of the current joining technologies for plasma facing components in the US for the International Thermonuclear Experimental Reactor (ITER) project. Many facilities are involved in this project. Many unique and innovative joining techniques are being considered in the quest to join two candidate armor plate materials (beryllium and tungsten) to a copper base alloy heat sink (CuNiBe, OD copper, CuCrZr). These techniques include brazing and diffusion bonding, compliant layers at the bond interface, and the use of diffusion barrier coatings and diffusion enhancing coatings at the bond interfaces. The development and status of these joining techniques will be detailed in this report

  3. Experimental test campaign on an ITER divertor mock-up

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Malavasi, A.; Merola, M.; Polazzi, G.; Simoncini, M.; Zito, D.

    2002-01-01

    In 1998, in the frame of the European R and D on ITER high heat flux components, the fabrication of a full scale ITER Divertor Outboard mock-up was launched. It comprised a Cassette Body (CB), designed with some mechanical and hydraulic simplifications with respect to the reference body and its actively cooled Dummy Armour Prototype (DAP). This DAP consists of a Vertical Target (VT), a Wing (WI) and a Dump Target (DT), manufactured by European industries, which are integrated to the Gas Box Liner (GBL) supplied by the Russian Federation ITER Home Team. In 1999, in parallel with the manufacturing activity, the ITER European Home Team decided to assign to ENEA a Task for checking the component integration and performing the thermal-hydraulic and thermal mechanical testing of the DAP and CB. In 1999-2000, ENEA performed the experimental campaign at Brasimone Labs. The present work presents the experimental results of the component integration and the thermal-hydraulic and thermo-mechanical fatigue tests

  4. Experimental test campaign on an ITER divertor mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Orco, G. E-mail: giovanni.dellorco@brasimone.enea.it; Malavasi, A.; Merola, M.; Polazzi, G.; Simoncini, M.; Zito, D

    2002-11-01

    In 1998, in the frame of the European R and D on ITER high heat flux components, the fabrication of a full scale ITER Divertor Outboard mock-up was launched. It comprised a Cassette Body (CB), designed with some mechanical and hydraulic simplifications with respect to the reference body and its actively cooled Dummy Armour Prototype (DAP). This DAP consists of a Vertical Target (VT), a Wing (WI) and a Dump Target (DT), manufactured by European industries, which are integrated to the Gas Box Liner (GBL) supplied by the Russian Federation ITER Home Team. In 1999, in parallel with the manufacturing activity, the ITER European Home Team decided to assign to ENEA a Task for checking the component integration and performing the thermal-hydraulic and thermal mechanical testing of the DAP and CB. In 1999-2000, ENEA performed the experimental campaign at Brasimone Labs. The present work presents the experimental results of the component integration and the thermal-hydraulic and thermo-mechanical fatigue tests.

  5. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  6. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    International Nuclear Information System (INIS)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A; Constans, S; Merola, M; Riccardi, B

    2009-01-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  7. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Science.gov (United States)

    Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.

    2009-12-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  8. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  9. Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

    Science.gov (United States)

    Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.

    2017-12-01

    Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor

  10. Status of the Design Tool Development for ITER TBM and Fusion Reactor System in Korea

    International Nuclear Information System (INIS)

    Jin, H. G.; Lee, D. W.; Shin, K. I.; Lee, E. H.; Yoon, J. S.; Kim, S. K.; Ahn, M. Y.; Cho, S.

    2013-01-01

    Korea has developed a Helium Cooled Molten Lithium (HCML) Test Blanket Module (TBM) and Helium Cooled Ceramic Reflector (HCCR) TBM to be tested in the ITER. The main purpose for developing the TBM is to develop the design technology for the DEMO and fusion reactor, and it should be proved experimentally in the ITER. Therefore, we have developed the design scheme and codes including the safety analysis capability for obtaining the license for testing in the ITER. In this study, the current status of the design tool development is summarized. For developing the design scheme and system codes of the ITER TBM program in Korea, the developed system codes such as MARS and GAMMA+ from Gen. IV projects were modified and verified considering the fusion application. For He coolant, 3D analysis and a McEligot correlation as the heat transfer model were proposed and validated considering the high heat from the plasma side and extreme temperature difference between the wall and fluid. For tritium behavior in the He coolant, the TBEC+GAMMA code was developed, and the oxidation layer growth and its permeation rate change were considered in this development. For a liquid metal breeder such as PbLi and Li, GAMMA-FR was developed including physical properties of the generation model and basic heat transfer model in them. For MHD simulation, the Miyazaki model was implemented in GAMMA, and it was validated successfully with the experimental data. Extending the capability of GAMMA-FR, a fusion system design code (SUPERCODE) is going to be coupled with a 3D neutronics code (MCNP)

  11. ITER and the fusion reactor: status and challenge to technology

    International Nuclear Information System (INIS)

    Lackner, K.

    2001-01-01

    Fusion has a high potential, but requires an integrated physics and technology effort without precedence in non-military R and D, the basic physics feasibility demonstration will be concluded with ITER, although R and D for efficiency improvement will continue. The essential technological issues remaining at the start of ITER operation concern materials questions: first wall components and radiation tolerant (low activation materials). This paper comprised just the copy of the slides presentation with the following subjects: magnetic confinement fusion, the Tokamak, progress in Tokamak performance, ITER: its geneology, physics basis-critical issues, cutaway of ITER-FEAT, R and D - divertor cassette (L-5), differences power plant-ITER, challenges for ITER and fusion plants, main technological problems (plasma facing materials), structural and functional materials for fusion power plants, ferritic steels, EUROFER development, improvements beyond ferritic steels, costing among others. (nevyjel)

  12. New technology and neo-science on the nuclear fusion reactor engineering. ITER and super high speed phenomena

    International Nuclear Information System (INIS)

    1996-12-01

    This research meeting has been held under cooperation of the ''nuclear fusion reactor engineering research group'' and ''nuclear fusion reactor materials research group'' of the Yayoi Research Group. This meeting was planned and conducted for 2 days under the following predominant thema: Present status of research on thermo-nuclear fusion experimental reactor engineering design (ITER/EDA) and its promoting method in Japan, and a new scientific side in the research and development of nuclear fusion reactor materials or the super high speed phenomena. In the former item, the following reports were published: Creative period of R and D on the nuclear fusion reactor, present statue and future development of ITER/EDA, meanings of ITER under realization of the nuclear fusion energy, and others. And in the latter item, the following reports were published: Nuclear fusion materials engineering and system quantum engineering, dynamic imagination of atom and molecule using pulse snap shot method, laser wake field acceleration and ultra short x-ray pulse generation, development of T-cube laser in JAERI, and others. (G.K.)

  13. The experimental and technological developments reactor

    International Nuclear Information System (INIS)

    Carbonnier, J.L.

    2003-01-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  14. Introduction of the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  15. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  16. Experimental use of iteratively designed rotation invariant correlation filters

    International Nuclear Information System (INIS)

    Sweeney, D.W.; Ochoa, E.; Schils, G.F.

    1987-01-01

    Iteratively designed filters are incorporated into an optical correlator for position, rotation, and intensity invariant recognition of target images. The filters exhibit excellent discrimination because they are designed to contain full information about the target image. Numerical simulations and experiments demonstrate detection of targets that are corrupted with random noise (SNR≅0.5) and also partially obscured by other objects. The complex valued filters are encoded in a computer generated hologram and fabricated directly using an electron-beam system. Experimental results using a liquid crystal spatial light modulator for real-time input show excellent agreement with analytical and numerical computations

  17. The Canadian initiative to bring the international thermonuclear experimental reactor to Canada

    International Nuclear Information System (INIS)

    James, R.A.

    1996-01-01

    The International Thermonuclear Experimental Reactor (ITER) is the next step in fusion research. It is expected to be the last major experimental facility, before the construction of a prototype commercial reactor. The Engineering Design Activities (EDA) of ITER are being funded by the USA, Japan, the Russian Federation, and the European Union, with each of the major parties contributing about 25% of the cost. Canada participates as part of the European coalition. The EDA is due to be completed in 1998, and the major funding partners are preparing for the decision on the siting and construction of ITER. The Canadian Fusion Fuels Technology Project (CFFTP) formed a Canadian ITER Siting Task Group to study siting ITER in Canada. The study indicated that hosting ITER would provide significant benefits, both technological and economic, to Canada. We have also confirmed that there would be substantial benefits to the ITER Project. CFFTP then formed a Canadian ITER Siting Board, with representation from a broad range of stakeholders, to champion, 'Canada as Host'. This paper briefly outlines the ITER Project, and the benefits to both Canada and the Project of a Canadian site. With this as background, the paper discusses the international scene and assesses Canada's prospects of being chosen to host ITER. (author)

  18. Experimental confirmation of the ITER cryopump high temperature regeneration scheme

    International Nuclear Information System (INIS)

    Day, C.; Haas, H.

    2007-01-01

    therefore essential for tritium inventory control. In the TIMO test bed at FZK, a half scale pump model of the torus exhaust cryopump with fully ITER relevant cryosorbent coating has been under detailed investigation over the last years, in order to determine the required high temperature regeneration conditions (times, pressures, temperatures). To replicate the ITER conditions most neatly, multi-cycle tests have been performed, aiming to identify any poisoning effects on cryopumping that may arise in the region of high accumulated gas loads of water-likes. Furthermore, the regeneration behaviour of representative water-likes has been investigated by high resolution gas analysis. The regeneration efficiency has been assessed by comparing pumping speeds before and after the contamination of the pump with the high molecular species. This paper summarizes the experimental results and draws conclusions with respect to ITER and the regeneration frequency to be considered for the ITER operational plan. (orig.)

  19. Non-iterative method to calculate the periodical distribution of temperature in reactors with thermal regeneration

    International Nuclear Information System (INIS)

    Sanchez de Alsina, O.L.; Scaricabarozzi, R.A.

    1982-01-01

    A matrix non-iterative method to calculate the periodical distribution in reactors with thermal regeneration is presented. In case of exothermic reaction, a source term will be included. A computer code was developed to calculate the final temperature distribution in solids and in the outlet temperatures of the gases. The results obtained from ethane oxidation calculation in air, using the Dietrich kinetic data are presented. This method is more advantageous than iterative methods. (E.G.) [pt

  20. Development of tritium fuel processing system using electrolytic reactor for ITER

    International Nuclear Information System (INIS)

    Yamanishi, T.; Kawamura, Y.; Iwai, Y.

    2001-01-01

    The system composed of a palladium diffuser and an electrolytic reactor was proposed, and was developed for a Fuel Cleanup system of ITER. The performance of the system was studied in a stand-alone test in detail. A fuel simulation loop of ITER was constructed by connecting the developed Fuel Cleanup and Hydrogen Isotope Separation systems; and the function of each system in the loop was demonstrated. For the tritium recovery from the exhaust gas at He glow discharge cleaning of vacuum chamber of ITER, a cryogenic molecular sieve bed system was proposed and demonstrated. (author)

  1. Development of tritium fuel processing system using electrolytic reactor for ITER

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Kawamura, Y.; Iwai, Y.

    1999-01-01

    The system composed of a palladium diffuser and an electrolytic reactor was proposed, and was developed for a Fuel Cleanup system of ITER. The performance of the system was studied in a stand-alone test in detail. A fuel simulation loop of ITER was constructed by connecting the developed Fuel Cleanup and Hydrogen Isotope Separation systems; and the function of each system in the loop was demonstrated. For the tritium recovery from the exhaust gas at He glow discharge cleaning of vacuum chamber of ITER, a cryogenic molecular sieve bed system was proposed and demonstrated. (author)

  2. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  3. Radiation environment of fusion experimental reactor

    International Nuclear Information System (INIS)

    Mori, Seiji; Seki, Yasushi

    1988-01-01

    Next step device (experimental reactor), which is planned to succeed the large plasma experimental devices such as JT-60, JET and TFTR, generates radiation (neutron + gamma ray) during its operation. Radiation (neutronic) properties of the material are basis for the study on neutron utilization (energy recovery and tritium breeding), material selection (irradiation damage and lifetime evaluation) and radiation safety (personnel exposure and radiation waste). It is necessary, therefore, to predict radiation behaviour in the reactor correctly for the engineering design of the reactor. This report describes the outline of the radiation environment of the reactor based on the information obtained by the neutronic and shielding design calculation of the fusion experimental reactor (FER). (author)

  4. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  5. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  6. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  7. International Thermonuclear Experimental Reactor: Physics issues, capabilities and physics program plans

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1997-01-01

    Present status and understanding of the principal plasma-performance determining physics issues that affect the physics design and operational capabilities of the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2 (International Atomic Energy Agency, Vienna, 1994)] are presented. Emphasis is placed on the five major physics-basis issues emdash energy confinement, beta limit, density limit, impurity dilution and radiation loss, and the feasibility of obtaining partial-detached divertor operation emdash that directly affect projections of ITER fusion power and burn duration performance. A summary of these projections is presented and the effect of uncertainties in the physics-basis issues is examined. ITER capabilities for experimental flexibility and plasma-performance optimization are also described, and how these capabilities may enter into the ITER physics program plan is discussed. copyright 1997 American Institute of Physics

  8. Wall conditioning for ITER: Current experimental and modeling activities

    Energy Technology Data Exchange (ETDEWEB)

    Douai, D., E-mail: david.douai@cea.fr [CEA, IRFM, Association Euratom-CEA, 13108 St. Paul lez Durance (France); Kogut, D. [CEA, IRFM, Association Euratom-CEA, 13108 St. Paul lez Durance (France); Wauters, T. [LPP-ERM/KMS, Association Belgian State, 1000 Brussels (Belgium); Brezinsek, S. [FZJ, Institut für Energie- und Klimaforschung Plasmaphysik, 52441 Jülich (Germany); Hagelaar, G.J.M. [Laboratoire Plasma et Conversion d’Energie, UMR5213, Toulouse (France); Hong, S.H. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lomas, P.J. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Lyssoivan, A. [LPP-ERM/KMS, Association Belgian State, 1000 Brussels (Belgium); Nunes, I. [Associação EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, 1049-001 Lisboa (Portugal); Pitts, R.A. [ITER International Organization, F-13067 St. Paul lez Durance (France); Rohde, V. [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Vries, P.C. de [ITER International Organization, F-13067 St. Paul lez Durance (France)

    2015-08-15

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET–CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  9. Magnet systems for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The definition phase for the International Thermonuclear Experimental Reactor (ITER) has been nearly completed, thus beginning a three-year design effort by teams from the European Community (EC), Japan, US, and USSR. Preliminary parameters for the superconducting magnet system have been established to guide more detailed design work. Radiation tolerance of the superconductors and insulators has been important because it sets requirements for the neutron-shield dimension and sensitively influences reactor size. Major levels of mechanical stress appear in the structural cases of the inboard legs of the toroidal-field (TF) coils. The winding packs of the TF coils include significant fractions of steel that provide support against in-plane separating loads, but they offer little support against out-of-plane loads unless shear-bonding of the conductors can be maintained. Heat removal from nuclear and ac loads has not limited the fundamental design, but it has nonnegligible economic consequences. 3 refs., 3 figs., 5 tabs

  10. Opportunities for reactor scale experimental physics

    International Nuclear Information System (INIS)

    1999-01-01

    A reactor scale tokamak plasma will exhibit three areas of physics phenomenology not accessible by contemporary experimental facilities. These are: (1) instabilities generated by energetic alpha particles; (2) self-heating phenomena; and (3) reactor scale physics, which includes integration of diverse physics phenomena, each with its own scaling properties. In each area, selected examples are presented that demonstrate the importance and uniqueness of physics results from reactor scale facilities for both inductive and steady state reactor options. It is concluded that the physics learned in such investigations will be original physics not attainable with contemporary facilities. In principle, a reactor scale facility could have a good measure of flexibility to optimize the tokamak approach to magnetic fusion energy. (author)

  11. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  12. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Neubauer, O.; Wolters, J. [Forschungszentrum Juelich GmbH (Germany)

    2009-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  13. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H.; Knauff, R. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany); Neubauer, O.; Wolters, J.; Offermanns, G.; Biel, W. [Forschungszentrum Juelich GmbH (Germany)

    2011-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  14. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko

    2009-01-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  15. Approaches to safety, environment and regulatory approval for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Saji, G.; Bartels, H.W.; Chuyanov, V.; Holland, D.; Kashirski, A.V.; Morozov, S.I.; Piet, S.J.; Poucet, A.; Raeder, J.; Rebut, P.H.; Topilski, L.N.

    1995-01-01

    International Thermonuclear Experimental Reactor (ITER) Engineering Design Activities (EDA) in safety and environment are approaching the point where conceptual safety design, topic studies and research will give way to project oriented engineering design activities. The Joint Central Team (JCT) is promoting safety design and analysis necessary for siting and regulatory approval. Scoping studies are underway at the general level, in terms of laying out the safety and environmental design framework for ITER. ITER must follow the nuclear regulations of the host country as the future construction site of ITER. That is, regulatory approval is required before construction of ITER. Thus, during the EDA, some preparations are necessary for the future application for regulatory approval. Notwithstanding the future host country's jurisdictional framework of nuclear regulations, the primary responsibility for safety and reliability of ITER rests with the legally responsible body which will operate ITER. Since scientific utilization of ITER and protection of the large investment depends on safe and reliable operation of ITER, we are highly motivated to achieve maximum levels of operability, maintainability, and safety. ITER will be the first fusion facility in which overall 'nuclear safety' provisions need to be integrated into the facility. For example, it will be the first fusion facility with significant decay heat and structural radiational damage. Since ITER is an experimental facility, it is also important that necessary experiments can be performed within some safety design limits without requiring extensive regulatory procedures. ITER will be designed with such a robust safety envelope compatible with the fusion power and the energy inventories. The basic approach to safety will be realized by 'defense-in-depth'. (orig.)

  16. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  17. Experimental evaluation of tritium permeation through stainless steel tubes of heat exchanger from primary to secondary water in ITER

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2004-01-01

    Tritium permeation through heat exchanger from primary cooling water to secondary cooling water has been investigated experimentally with SS316L heat exchanger under simulated ITER (international thermonuclear experimental reactor) operation condition in order to establish the tritium permeation evaluation method through the heat exchanger. As the result, the permeation rate of aqueous tritium was found to be about three orders smaller than that of the gaseous tritium. Tritium permeation through the heat exchanger in ITER was then evaluated, and it was revealed that total tritium permeation amount based on obtained aqueous permeability was about one order less than that with the former method with the gaseous permeability and putting the permeation reduction factor as 1000. Evaluated tritium permeation amount into secondary water during 20 years was quite small, which could be considered as negligible from the safety viewpoint

  18. Numerical evaluation of experimental models to investigate the dynamic behavior of the ITER tokamak assembly

    International Nuclear Information System (INIS)

    Onozuka, M.; Takeda, N.; Nakahira, M.; Shimizu, K.; Nakamura, T.

    2003-01-01

    The most recent assessment method to evaluate the dynamic behavior of the International Thermonuclear Experimental Reactor (ITER) tokamak assembly is outlined. Three experimental models, including a 1/5.8-scale tokamak model, have been considered to validate the numerical analysis methods for dynamic events, particularly seismic ones. The experimental model has been evaluated by numerical calculations and the results are presented. In the calculations, equivalent linearization has been applied for the non-linear characteristics of the support flange connection, caused by the effects of the bolt-fastening and the friction between the flanges. The detailed connecting conditions for the support flanges have been developed and validated for the analysis. Using the conditions, the eigen-mode analysis has shown that the first and second eigen-mode are horizontal vibration modes with the natural frequency of 39 Hz, while the vertical vibration mode is the fourth mode with the natural frequency of 86 Hz. Dynamic analysis for seismic events has shown the maximum acceleration of approximately twofold larger than that of the applied acceleration, and the maximum stress of 104 MPa found in the flange connecting bolt. These values will be examined comparing with experimental results in order to validate the analysis methods

  19. Numerical evaluation of experimental models to investigate the dynamic behavior of the ITER tokamak assembly

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail: masanori_onozuka@mhi.co.jp; Takeda, N.; Nakahira, M.; Shimizu, K.; Nakamura, T

    2003-09-01

    The most recent assessment method to evaluate the dynamic behavior of the International Thermonuclear Experimental Reactor (ITER) tokamak assembly is outlined. Three experimental models, including a 1/5.8-scale tokamak model, have been considered to validate the numerical analysis methods for dynamic events, particularly seismic ones. The experimental model has been evaluated by numerical calculations and the results are presented. In the calculations, equivalent linearization has been applied for the non-linear characteristics of the support flange connection, caused by the effects of the bolt-fastening and the friction between the flanges. The detailed connecting conditions for the support flanges have been developed and validated for the analysis. Using the conditions, the eigen-mode analysis has shown that the first and second eigen-mode are horizontal vibration modes with the natural frequency of 39 Hz, while the vertical vibration mode is the fourth mode with the natural frequency of 86 Hz. Dynamic analysis for seismic events has shown the maximum acceleration of approximately twofold larger than that of the applied acceleration, and the maximum stress of 104 MPa found in the flange connecting bolt. These values will be examined comparing with experimental results in order to validate the analysis methods.

  20. EL-3 dismantling of an experimental reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The EL3 experimental reactor has been definitively stopped in march 1979. Its decommissioning has been pronounced in the end of 1982. This article is consecrated at decontamination and dismantling works necessited by its passage at the dismantling level 2 [fr

  1. Nuclear analysis for ITER

    International Nuclear Information System (INIS)

    Santoro, R.T.; Iida, H.; Khripunov, V.; Petrizzi, L.; Sato, S.; Sawan, M.; Shatalov, G.; Schipakin, O.

    2001-01-01

    This paper summarizes the main results of nuclear analysis calculations performed during the International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA). Major efforts were devoted to fulfilling the General Design Requirements to minimize the nuclear heating rate in the superconducting magnets and ensuring that radiation conditions at the cryostat are suitable for hands-on-maintenance after reactor shut-down. (author)

  2. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  3. Experimental development of power reactor intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Lee, K.Y.

    1992-01-01

    The US nuclear utility industry initiated an ambitious program to modernize the control systems at a minimum of ten existing nuclear power plants by the year 2000. That program addresses urgent needs to replace obsolete instrumentation and analog controls with highly reliable state-of-the-art computer-based digital systems. Large increases in functionality that could theoretically be achieved in a distributed digital control system are not an initial priority in the industry program but could be logically considered in later phases. This paper discusses the initial development of an experimental sequence for developing, testing, and verifying intelligent fault-accommodating control for commercial nuclear power plant application. The sequence includes an ultra-safe university research reactor (TRIGA) and a passively safe experimental power plant (Experimental Breeder Reactor 2)

  4. Liquid metal cooled experimental fast reactor simulator

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine; Braz Filho, Francisco; Borges, Eduardo M.; Rosa, Mauricio A.P.; Rocamora, Francisco; Hirdes, Viviane R.

    1997-01-01

    This paper is a continuation of the work that has been done in the area of fast reactor component dynamic analysis, as part of the REARA project at the IEAv/CTA-Brazil. A couple of preceding papers, presented in other meetings, introduced major concept design components of the REARA reactor. The components are set together in order to represent a full model of the power plant. Full model transient results will be presented, together with several parameters to help us to better establish the REARA experimental plant concept. (author). 8 refs., 6 figs., 3 tabs

  5. PARALLEL ITERATIVE RECONSTRUCTION OF PHANTOM CATPHAN ON EXPERIMENTAL DATA

    Directory of Open Access Journals (Sweden)

    M. A. Mirzavand

    2016-01-01

    Full Text Available The principles of fast parallel iterative algorithms based on the use of graphics accelerators and OpenGL library are considered in the paper. The proposed approach provides simultaneous minimization of the residuals of the desired solution and total variation of the reconstructed three- dimensional image. The number of necessary input data, i. e. conical X-ray projections, can be reduced several times. It means in a corresponding number of times the possibility to reduce radiation exposure to the patient. At the same time maintain the necessary contrast and spatial resolution of threedimensional image of the patient. Heuristic iterative algorithm can be used as an alternative to the well-known three-dimensional Feldkamp algorithm.

  6. ITER concept definition. V.2

    International Nuclear Information System (INIS)

    1989-01-01

    Volume II of the two volumes describing the concept definition of the International Thermonuclear Experimental Reactor deals with the ITER concept in technical depth, and covers all areas of design of the ITER tokamak. Included are an assessment of the current database for design, scoping studies, rationale for concepts selection, performance flexibility, the ITER concept, the operations and experimental/testing program, ITER parameters and design phase schedule, and research and development specific to ITER. This latter includes a definition of specific research and development tasks, a division of tasks among members, specific milestones, required results, and schedules. Figs and tabs

  7. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R.

    1996-08-01

    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively

  8. Economic impacts on the United States of siting decisions for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Wolsko, T.D.; Hanson, M.E.

    1997-01-01

    This paper presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively

  9. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R. [and others

    1996-08-01

    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively.

  10. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  11. Validation of the inspections with ultrasound of the welds of the reactor of ITER vacuum vessel; Validacion de las inspecciones con ultrasonidos de las soldaduras de la Vasija de Vacio del reactor del ITER

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F.; Perez, C.; Sillero, J. A.

    2013-07-01

    The ITER fusion reactor vacuum vessel has thousands of welding austenitic with shapes and different manufacturing processes. The RCC-MR code, which is that applied to the manufacture of the fusion reactor, requires a volumetric test all of them. This test should be mainly by x-rays and welds where it was not possible to use this method, ultrasonic.09-06.

  12. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  13. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  14. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  15. Audit of United States portion of the International Thermonuclear Experimental Reactor project

    International Nuclear Information System (INIS)

    1993-01-01

    Worldwide efforts in fusion energy research are designed to develop fusion power as a safe, environmentally sound, and economically competitive source of energy. The International Thermonuclear Experimental Reactor (ITER) project is a worldwide effort to demonstrate the scientific and technological feasibility of fusion power. The European Community, Japan, the Russian Federation, and the United States are collaborating on ITER, with each of the four parties expected to equally share costs and benefits. Shared costs for the current engineering design phase of the project are estimated at $1 billion in 1989 dollars, excluding certain management and support costs to be absorbed by each partner, with an early estimate of $6 billion, also in 1989 dollars, for construction of the reactor. Engineering design formally began in July 1992, and this phase is in its formative stages. The US had already spent about $100 million since 1987 on ITER conceptual design activities and other preparatory activities in advance of the engineering design phase. Because of its cost significance, the importance of ITER to the US fusion energy program, and the project's unique aspects which may provide a framework for future international endeavors, we initiated an audit of the ITER project. The purpose of the audit was to evaluate management controls over the US portion of the ITER project. Our objectives was to determine whether key front-end controls were in place to ensure that the project could be managed in an efficient and effective manner

  16. The experimental nuclear reactor: AQUILON; Le reacteur nucleaire experimental: AQUILON

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Y; Koechlin, J C; Moreau, J M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    'Aquilon' is an experimental reactor specially designed for the neutronic study of heterogeneous multiplying media with solid fuel and liquid moderator. Since this study is in general incompatible with energy production, the power of the reactor has been limited to a minimum so as to be able to obtain a simple and compact structure, easy access, good handling and great flexibility of operation and utilisation. (author) [French] 'Aquilon' est un reacteur experimental specialement concu pour l'etude neutronique de milieux multiplicateurs heterogenes a combustible solide et ralentisseur liquide. Cette etude etant en general incompatible avec la production d'energie, on a limite au minimum la puissance du reacteur pour pouvoir obtenir une structure simple et peu encombrante, un acces facile, une bonne maniabilite et une grande souplesse de fonctionnement et d'utilisation. (auteur)

  17. Modeling a nuclear reactor for experimental purposes

    International Nuclear Information System (INIS)

    Berta, V.T.

    1980-01-01

    The Loss-of-Fluid Test (LOFT) Facility is a scale model of a commercial PWR and is as fully functional and operational as the generic commercial counterpart. LOFT was designed and built for experimental purposes as part of the overall NRC reactor safety research program. The purpose of LOFT is to assess the capability of reactor safety systems to perform their intended functions during occurrences of off-normal conditions in a commercial nuclear reactor. Off-normal conditions arising from large and small break loss-of-coolant accidents (LOCA), operational transients, and anticipated transients without scram (ATWS) were to be investigated. This paper describes the LOFT model of the generic PWR and summarizes the experiments that have been conducted in the context of the significant findings involving the complex transient thermal-hydraulics and the consequent effects on the commercial reactor analytical licensing techniques. Through these techniques the validity of the LOFT model as a scaled counterpart of the generic PWR is shown

  18. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  19. Experimental modelling of plasma-graphite surface interaction in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, Yu.V.; Guseva, M.I.; Gureev, V.M.; Danelyan, L.S.; Neumoin, V.E.; Petrov, V.B.; Khripunov, B.I.; Sokolov, Yu.A.; Stativkina, O.V.; Stolyarova, V.G. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation); Vasiliev, V.I.; Strunnikov, V.M. [TRINITI, Troizk (Russian Federation)

    1998-10-01

    The investigation of graphite erosion under normal operation ITER regime and disruption was performed by means of exposure of RGT graphite samples in a stationary deuterium plasma to a dose of 10{sup 22} cm{sup -2} and subsequent irradiation by power (250 MW/cm{sup 2}) pulse deuterium plasma flow imitating disruption. The stationary plasma exposure was carried out in the installation LENTA with the energy of deuterium ions being 200 eV at target temperatures of 770 C and 1150 C. The preliminary exposure in stationary plasma at temperature of physical sputtering does not essentially change the erosion due to a disruption, whereas exposure at the temperature of radiation enhanced sublimation dramatically increases the erosion due to disruption. In the latter case, the depth of erosion due to a disruption is determined by the depth of a layer with decreased strength. (orig.) 9 refs.

  20. ITER power electrical networks

    International Nuclear Information System (INIS)

    Sejas Portela, S.

    2011-01-01

    The ITER project (International Thermonuclear Experimental Reactor) is an international effort to research and development to design, build and operate an experimental facility to demonstrate the scientific and technological possibility of obtaining useful energy from the physical phenomenon known as nuclear fusion.

  1. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  2. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor

    International Nuclear Information System (INIS)

    Rimminen, H.; Kyynäräinen, J.

    2013-01-01

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  3. ITER at Cadarache; ITER a Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  4. RCC-MRx: Design and construction rules for mechanical components in high-temperature structures, experimental reactors and fusion reactors

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-MRx code was developed for sodium-cooled fast reactors (SFR), research reactors (RR) and fusion reactors (FR-ITER). It provides the rules for designing and building mechanical components involved in areas subject to significant creep and/or significant irradiation. In particular, it incorporates an extensive range of materials (aluminum and zirconium alloys in response to the need for transparency to neutrons), sizing rules for thin shells and box structures, and new modern welding processes: electron beam, laser beam, diffusion and brazing. The RCC-MR code was used to design and build the prototype Fast Breeder Reactor (PFBR) developed by IGCAR in India and the ITER Vacuum Vessel. The RCC-Mx code is being used in the current construction of the RJH experimental reactor (Jules Horowitz reactor). The RCC-MRx code is serving as a reference for the design of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), for the design of the primary circuit in MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) and the design of the target station of the ESS project (European Spallation Source). Contents of the 2015 edition of the RCC-MRx code: Section I General provisions; Section II Additional requirements and special provisions; Section III Rules for nuclear installation mechanical components: Volume I: Design and construction rules: Volume A (RA): General provisions and entrance keys, Volume B (RB): Class 1 components and supports, Volume C (RC): Class 2 components and supports, Volume D (RD): Class 3 components and supports, Volume K (RK): Examination, handling or drive mechanisms, Volume L (RL): Irradiation devices, Volume Z (Ai): Technical appendices; Volume II: Materials; Volume III: Examinations methods; Volume IV: Welding; Volume V: Manufacturing operations; Volume VI: Probationary phase rules

  5. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  6. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  7. Device for rearranging control rods of experimental reactors

    International Nuclear Information System (INIS)

    Louda, J.

    1975-01-01

    The invention claims a means for the adjustment of control rods in experimental reactors with a continuously variable pitch of the fuel element spacer. The proposed device permits obtaining maximum variability in the physical modelling of nuclear power reactor cores in experimental reactors. (F.M.)

  8. ITER convertible blanket evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.

    1995-01-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  9. ITER EDA and technology

    International Nuclear Information System (INIS)

    Baker, C.C.

    2001-01-01

    The year 1998 was the culmination of the six-year Engineering Design Activities (EDA) of the International Thermonuclear Experimental Reactor (ITER) Project. The EDA results in design and validating technology R and D, plus the associated effort in voluntary physics research, is a significant achievement and major milestone in the history of magnetic fusion energy development. Consequently, the ITER EDA was a major theme at this Conference, contributing almost 40 papers

  10. Comprehensive safety analysis code system for nuclear fusion reactors II: Thermal analysis during plasma disruptions for international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Honda, T.; Maki, K.; Okazaki, T.

    1994-01-01

    Thermal characteristics of a fusion reactor [International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity] during plasma disruptions have been analyzed by using a comprehensive safety analysis code for nuclear fusion reactors. The erosion depth due to disruptions for the armor of the first wall depends on the current quench time of disruptions occurring in normal operation. If it is possible to extend the time up to ∼50 ms, the erosion depth is considerably reduced. On the other hand, the erosion depth of the divertor is ∼570 μm for only one disruption, which is determined only by the thermal flux during the thermal quench. This means that the divertor plate should be exchanged after about nine disruptions. Counter-measures are necessary for the divertor to relieve disruption influences. As other scenarios of disruptions, beta-limit disruptions and vertical displacement events were also investigated quantitatively. 13 refs., 5 figs

  11. Installation of the ITER committee industry. Participants guide; Installation du Comite industrie ITER. Dossier des participants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    ITER is an international project to design and build an experimental fusion reactor based on the tokamak concept. This guide presents the ITER project and objectives and the associated organizations in France, the recommendations and actions for ITER, the industrial mobilization, the industrial committee and its members, technological sheets for the enterprises and the statistical document of the SESSI. (A.L.B.)

  12. RA research reactor - properties and experimental capabilities

    International Nuclear Information System (INIS)

    Milosevic, M.; Martinc, R.

    1978-01-01

    The brief survey of the Reactor RA exploitation experience, as well as the reactor equipment state, after 18 years of operation is presented. The results of efforts spent on reactor characteristics improvement in order to ensure safe and reliable reactor operation for next 15-20 years, are described [sr

  13. Plant experience of experimental fast reactor 'Joyo'

    International Nuclear Information System (INIS)

    1982-01-01

    The experimental fast reactor ''JOYO'' installed in Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan completed its operation using the first core (called MK-I core) in December, 1981, and the works to transfer to MK-2 core have been performed since January, 1982. In this report, the experiences obtained through the construction, test and operation of ''JOYO'' over 12 years from the start of erection in 1970 to the termination of operation in 1981 are described. The contents of the report are divided into design, construction, the outline of facilities, testing, operating and maintenance experiences, and the topics on MK-I operation. As for the construction, the design changes performed before the start of manufacture or construction and the improvement and trouble restoring works implemented at the start of overall functional tests are reported. As for testing, overall functional tests, criticality test, low power test and power increasing test are described in detail. The number of test items of overall functional testing reached 266. The rated output operation of the reactor at 75 MW was performed six times in 1980 and 1981 until the termination of operation. No fuel failure was detected in MK-I operation, and the stable operation performance of the FBR was proved through MK-I operation. The topics on the MK-I operation includes natural circulation test, the measurement of total leakage rate for the containment vessel, and wear-marks which are the trace of wear due to the contact of fuel pins with the wires wound around the adjacent fuel pins, found in the post irradiation examination of fuel. (Wakatsuki, Y.)

  14. Status of experimental data related to Be in ITER materials R and D data bank

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shigeru [ITER Joint Central Team, Muenchen (Germany)

    1998-01-01

    To keep traceability of many valuable raw data that were experimentally obtained in the ITER Technology R and D Tasks related to materials for In-Vessel components (divertor, first wall, blanket, vacuum vessel, etc.) and to easily make the best use of these data in the ITER design activities, the `ITER Materials R and D Data Bank` has been built up, with the use of Excel{sup TM} spread sheets. The paper describes status of experimental data collected in this data bank on thermo-mechanical properties of unirradiated and neutron irradiated Be, on plasma-material interactions of Be, on mechanical properties of various kinds of Be/Cu joints (including plasma sprayed Be), and on thermal fatigue tests of Be/Cu mock-ups. (author)

  15. R&D on high-power dc reactor prototype for ITER poloidal field converter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Song, Zhiquan; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Zhang, Ming, E-mail: zhangming@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Kexun [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Qin, Xiuqi [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China)

    2015-10-15

    Highlights: • A new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented. • Theoretical analysis, finite-element simulation and prototype test verification are applied on the design. • The results of temperature rise and transient fault current test of prototypes are introduced and analyzed. • The success of tests demonstrates that the proposed structure is of high reliability and availability. - Abstract: This paper mainly introduces the research and development (R&D) of the high-power dc reactor prototype, whose functions are to limit the circulating current and ripple current in the ITER poloidal field (PF) converter. It needs to operate at rated large direct current 27.5 kA and withstand peak fault current up to 175 kA. Therefore, in order to meet the special requirements of the dynamic and thermal stability, a new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented, which is based on the theoretical analysis, finite-element simulation calculation and small prototype test verification. Now the full prototype has been fabricated by China industry, and the dynamic and thermal stability tests of the prototype have also been accomplished successfully. The test results are in compliance with the design and it shows the availability and feasibility of the proposed design, which may be a reference for relevant applications.

  16. Conceptual design of Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tone, T.; Fujisawa, N.

    1983-01-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been performed. The FER has an objective of achieving selfignition and demonstrating engineering feasibility as a next generation tokamak to JT-60. Various concepts of the FER have been considered. The reference design is based on a double-null divertor. Optional design studies with some attractive features based on advanced concepts such as pumped limiter and RF current drive have been carried out. Key design parameters are; fusion power of 440 MW, average neutron wall loading of 1MW/m 2 , major radius of 5.5m, plasma minor radius of 1.1m, plasma elongation of 1.5, plasma current of 5.3MA, toroidal beta of 4%, toroidal field on plasma axis of 5.7T and tritium breeding ratio of above unity

  17. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  18. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    International Nuclear Information System (INIS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-01-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2x10 22 m -2 (E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite

  19. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    Science.gov (United States)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-12-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.

  20. Radioactive waste produced by DEMO and commerical fusion reactors extrapolated from ITER and advanced data bases

    International Nuclear Information System (INIS)

    Stacey, W.M.; Hertel, N.E.; Hoffman, E.A.

    1994-01-01

    The potential for providing energy with minimal environmental impact is a powerful motivation for the development of fusion and is the long-term objective of most fusion programs. However, the societal acceptability of magnetic fusion may well be decided in the near-term when decisions are taken on the construction of DEMO to follow ITER (if not when the construction decision is taken on ITER). Component wastes were calculated for DEMOs based on each data base by first calculating reactor sizes needed to satisfy the physics, stress and radiation attenuation requirements, and then calculating component replacement rates based on radiation damage and erosion limits. Then, radioactive inventories were calculated and compared to a number of international criteria for open-quote near-surface close-quote burial. None of the components in either type of design would meet the Japanese LLW criterion ( 3 ) within 10 years of shutdown, although the advanced (V/Li) blanket would do so soon afterwards. The vanadium first wall, divertor and blanket would satisfy the IAEA LLW criterion (<2 mSv/h contact dose) within about 10 years after shutdown, but none of the stainless steel or copper components would. All the components in the advanced data base designs except the stainless steel vacuum vessel and shield readily satisfy the US extended 10CFR61 intruder dose criterion, but none of the components in the open-quotes ITER data baseclose quotes designs do so. It seems unlikely that a stainless steel first wall or a copper divertor plate could satisfy the US (class C) criterion for near surface burial, much less the more stringent international, criteria. On the other hand, the first wall, divertor and blanket of the V/Li system would still satisfy the intruder dose concentration limits even if the dose criterion was reduced by two orders of magnitude

  1. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    International Nuclear Information System (INIS)

    Bisio, M.; Branca, V.; Marco, M. Di; Federici, A.; Grattarola, M.; Gualco, G.; Guarnone, P.; Luconi, U.; Merola, M.; Ozzano, C.; Pasquale, G.; Poggi, P.; Rizzo, S.; Varone, F.

    2005-01-01

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions

  2. ITER conceptual design report

    International Nuclear Information System (INIS)

    1991-01-01

    Results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity (CDA) are reported. This report covers the Terms of Reference for the project: defining the technical specifications, defining future research needs, define site requirements, and carrying out a coordinated research effort coincident with the CDA. Refs, figs and tabs

  3. ITER at Cadarache

    International Nuclear Information System (INIS)

    2005-06-01

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  4. ITER neutral beam system

    International Nuclear Information System (INIS)

    Mondino, P.L.; Di Pietro, E.; Bayetti, P.

    1999-01-01

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  5. Experimental investigation on streaming due to a gap between blanket modules in ITER

    International Nuclear Information System (INIS)

    Konno, Chikara; Maekawa, Fujio; Oyama, Yukio; Uno, Yoshitomo; Kasugai, Yoshimi; Maekawa, Hiroshi; Ikeda, Yujiro; Wada, Masayuki

    2000-01-01

    A gap streaming experiment was performed by using a D-T neutron source at FNS/JAERI as the ITER/EDA R and D Task T-218, in order to examine the streaming effects due to gap between shield blanket modules in ITER. The experiment had three phases. The first one defined neutron source characteristics (Source Characterization Experiment), the second (Experiment-l ) aimed at shield for welding part between shield blanket and back plate and the third (Experiment-2) focused on the influence that the gap between shield blanket modules would have on superconducting magnet. The effects of gap streaming were examined in detail experimentally. (author)

  6. The ITER activity

    International Nuclear Information System (INIS)

    Glass, A.J.

    1991-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a collaboration among four parties, the United States, the Soviet Union, Japan, and the European Communities, to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes. ITER will demonstrate this through the construction of a tokamak fusion reactor capable of generating 1000 megawatts of fusion power. The ITER project has three missions, as follows: (1) Physics mission -- to demonstrate ignition and controlled burn, with pulse durations from 200 to 1000 S; (2) Technology mission -- to demonstrate the technologies essential to a reactor in an integrated system, operating with high reliability and availability in pulsed operation, with steady-state operation as the ultimate goal; and (3) Testing mission -- to test nuclear and high-heat-flux components at flux levels for 1 mw/m 2 , and fluences of order 1 mw-yr/m 2

  7. TRIGA reactor as an experimental tool

    Energy Technology Data Exchange (ETDEWEB)

    Nahrul Khair bin Alang Mohammad Rashid (PUSPATI, Selangor (Malaysia))

    1981-01-01

    Article reviewed on the general features, operation and capabilities, and utilization of a research reactor, PUSPATI TRIGA MARK II. The paper also described the arrangements for the use of the PUSPATI reactor.

  8. Triga reactor as an experimental tool

    International Nuclear Information System (INIS)

    Nahrul Khair bin Alang Mohammad Rashid

    1981-01-01

    Article reviewed on the general features, operation and capabilities, and utilization of a research reactor, PUSPATI TRIGA MARK II. The paper also described the arrangements for the use of the PUSPATI reactor

  9. Experimental techniques applied at the RB reactor

    International Nuclear Information System (INIS)

    Markovic, H.; Takac, S.; Sotic, O.; Dimitrijevic, Z.

    1979-12-01

    This paper contains a brief description of research and operations at the RB reactor which are concerned with experiments and results of measuring typical reactor parameters, neutron characteristics as well as parameters related to reactor operation and utilization. Annex contains a list of relevant original papers and publications [sr

  10. Current status of the European contribution to the Remote Data Access System of the ITER Remote Experimentation Centre

    International Nuclear Information System (INIS)

    De Tommasi, G.; Manduchi, G.; Muir, D.G.; Ide, S.; Naito, O.; Urano, H.; Clement-Lorenzo, S.; Nakajima, N.; Ozeki, T.; Sartori, F.

    2015-01-01

    The ITER Remote Experimentation Centre (REC) is one of the projects under implementation within the BA agreement. The final objective of the REC is to allow researchers to take part in the experimentation on ITER from a remote location. Before ITER first operations, the REC will be used to evaluate ITER-relevant technologies for remote participation. Among the different software tools needed for remote participation, an important one is the Remote Data Access System (RDA), which provides a single software infrastructure to access data stored at the remotely participating experiment, regardless of the geographical location of the users. This paper introduces the European contribution to the RDA system for the REC.

  11. Transient Behaviour of Superconducting Magnet Systems of Fusion Reactor ITER during Safety Discharge

    Directory of Open Access Journals (Sweden)

    A. M. Miri

    2008-01-01

    Full Text Available To investigate the transient behaviour of the toroidal and poloidal field coils magnet systems of the International Thermonuclear Experimental Reactor during safety discharge, network models with lumped elements are established. Frequency-dependant values of the network elements, that is, inductances and resistances are calculated with the finite element method. That way, overvoltages can be determined. According to these overvoltages, the insulation coordination of coils has to be selected.

  12. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  13. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  14. installation of the ITER committee industry. Participants guide

    International Nuclear Information System (INIS)

    2006-01-01

    ITER is an international project to design and build an experimental fusion reactor based on the tokamak concept. This guide presents the ITER project and objectives and the associated organizations in France, the recommendations and actions for ITER, the industrial mobilization, the industrial committee and its members, technological sheets for the enterprises and the statistical document of the SESSI. (A.L.B.)

  15. US power outage won't dim ITER

    International Nuclear Information System (INIS)

    Lawler, A.

    1996-01-01

    The $8 billion International Thermonuclear Experimental Reactor (ITER) is moving ahead, without definite support of the USA. However, still undecided are where it will be built and how much each partner will pay. This article discusses the international political aspects of building the ITER, with a particular emphasis on the Japanese approach to landing the ITER. Also discussed are possible cost-saving solutions

  16. ITER JCT presentation at the International Conference on Fusion Reactor Materials (ICFRM-9)

    International Nuclear Information System (INIS)

    Kalinin, G.; Barabash, V.; Ioki, K.

    1999-01-01

    During this conference four invited papers and one poster paper were presented on behalf of the ITER Joint Central Team with the review of latest achievements. The results of the comprehensive materials R and D program in support of the ITER design were extensively reported the ITER Home Teams

  17. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    Science.gov (United States)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.

  18. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column: it is avoided to withdraw side streams as products or feeds of down stream columns: and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns. (author)

  19. Dielectric properties of the ITER TFMC insulation after low temperature reactor irradiation

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Hastik, R.; Hauser, H.; Gerstenberg, H.

    2001-01-01

    The insulation system for the Toroidal Field Model Coil of ITER is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk shaped laminates, disk shaped FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 (E>0.1MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5x10 21 m -2 and by 9% at 1x10 22 m -2 . The weight loss of the FRP is 2% at 1x10 22 m -2 . The dielectric strength remained unchanged over the whole dose range. (author)

  20. Experimental Simulation of Beryllium Armour Damage Under ITER-like Intense Transient Plasma Loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.; Basaleev, E.; Nikolaev, G.; Kurbatova, L., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Material, Moscow (Russian Federation); Podkovyrov, V.; Zhitlukhin, A. [SRC RF TRINITI, Troitsk (Russian Federation); Khimchenko, L. L. [Project Centre of ITER, Moscow (Russian Federation)

    2012-09-15

    Full text: Beryllium will be used as a plasma facing material in the next generation of tokamaks such as ITER. During plasma operation in ITER, the plasma facing materials and components will be suffered by different kinds of loading which may affect their surface or their joint to the heat sink. In addition to quasi-stationary loadings which are caused by the normal cycling operation, the plasma facing components and materials may also be exposed to the intense short transient loads like disruptions, ELMs. All these events may lead to beryllium surface melting, cracking, evaporation and erosion. It is expected that the erosion of beryllium under transient plasma loads such as ELMs and disruptions will mainly determine a lifetime of ITER first wall. To obtain the experimental data for the evaluation of the beryllium armor lifetime and dust production under ITER-relevant transient loads, the advanced plasma gun QSPA-Be facility has been constructed in Bochvar Institute. This paper presents recent results of the experiments with Russian beryllium of TGP-56FW ITER grade. The mock-ups of a special design armored with two beryllium targets (80 x 80 x 10 mm{sup 3}) were tested by hydrogen plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat load of 0.5 and 1.0 MJ/m{sup 2}. Experiments were performed at RT temperature. The evolution of surface microstructure and profile, cracks morphology and mass loss/gain under erosion process on the beryllium surface exposed to up to 250 shots will be presented and discussed. (author)

  1. Experimental results and validation of a method to reconstruct forces on the ITER test blanket modules

    International Nuclear Information System (INIS)

    Zeile, Christian; Maione, Ivan A.

    2015-01-01

    Highlights: • An in operation force measurement system for the ITER EU HCPB TBM has been developed. • The force reconstruction methods are based on strain measurements on the attachment system. • An experimental setup and a corresponding mock-up have been built. • A set of test cases representing ITER relevant excitations has been used for validation. • The influence of modeling errors on the force reconstruction has been investigated. - Abstract: In order to reconstruct forces on the test blanket modules in ITER, two force reconstruction methods, the augmented Kalman filter and a model predictive controller, have been selected and developed to estimate the forces based on strain measurements on the attachment system. A dedicated experimental setup with a corresponding mock-up has been designed and built to validate these methods. A set of test cases has been defined to represent possible excitation of the system. It has been shown that the errors in the estimated forces mainly depend on the accuracy of the identified model used by the algorithms. Furthermore, it has been found that a minimum of 10 strain gauges is necessary to allow for a low error in the reconstructed forces.

  2. Calculation of neutron spectra in the reactor cell of the RA experimental reactor in Vinca

    International Nuclear Information System (INIS)

    Bosevski, T.; Altiparmakov, D.; Marinkovic, N.

    1974-01-01

    In the frame of neutron properties of RA experimental reactor the study of energy neutron spectra in the reactor cell are planned. Complex reactor cell geometry, nine cylindrical regions causes high space-energy variations of neutron flux with a significant gradient both in energy and space variables. Treatment of such a complex problem needs adequate methodology which ensures reliable results and control of accuracy. This paper describes in detail the method for calculating group constants based on lattice cell calculation for the need of calculation of reactor core parameters. In 26 group approximation for the energy region from 0 - 10.5 MeV, values of neutron spectra are obtained in 18 space points chosen to describe, with high accuracy, integral reactor cell parameters of primary importance for the reactor core calculation. Obtained space-energy distribution of neutron flux in the reactor cell is up to now unique in the study of neutron properties of Ra reactor [sr

  3. ITER definition phase

    International Nuclear Information System (INIS)

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned as a fusion device which would demonstrate the scientific and technological feasibility of fusion power. As a first step towards achieving this goal, the European Community, Japan, the Soviet Union, and the United States of America have entered into joint conceptual design activities under the auspices of the International Atomic Energy Agency. A brief summary of the Definition Phase of ITER activities is contained in this report. Included in this report are the background, objectives, organization, definition phase activities, and research and development plan of this endeavor in international scientific collaboration. A more extended technical summary is contained in the two-volume report, ''ITER Concept Definition,'' IAEA/ITER/DS/3. 2 figs, 2 tabs

  4. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  5. Application of Iterative Robust Model-based Optimal Experimental Design for the Calibration of Biocatalytic Models

    DEFF Research Database (Denmark)

    Van Daele, Timothy; Gernaey, Krist V.; Ringborg, Rolf Hoffmeyer

    2017-01-01

    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during...... experimentation is not actively used to optimise the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω......-transaminase catalysed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is a more accurate, but also a computationally more expensive method. As a result, an important deviation between both approaches...

  6. Experimental Equipment for Physics Studies in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G; Blomberg, P E; Dubois, P O

    1967-03-15

    Comprehensive physics measurements were carried out in connection with the start up of the Agesta reactor. For this purpose special experimental equipment was constructed and installed in the reactor. Parts of this were indispensable and/or time-saving for the reactivity control during the core build-up period and during the first criticality studies. This report gives mainly a detailed description of the experimental equipment used, but also the relevant physics background and the experience gained during the performance.

  7. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  8. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  9. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  10. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    Science.gov (United States)

    Vdovin, V.

    2014-02-01

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20-40) IC frequency harmonics) at frequencies of 500-1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure βN > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D - Kurchatov Institute experiment on helicons CD [1].

  11. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V. [NRC Kurchatov Institute Tokamak Physics Institute, Moscow (Russian Federation)

    2014-02-12

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20–40) IC frequency harmonics) at frequencies of 500–1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β{sub N} > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D – Kurchatov Institute experiment on helicons CD [1].

  12. Source term evaluation for accident transients in the experimental fusion facility ITER

    Energy Technology Data Exchange (ETDEWEB)

    Virot, F.; Barrachin, M.; Cousin, F. [IRSN, BP3-13115, Saint Paul lez Durance (France)

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  13. Conceptual design of SC magnet system for ITER, (6)

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Sugimoto, Makoto; Tsuji, Hiroshi

    1991-08-01

    The International Thermonuclear Experimental Reactor (ITER) is an experimental thermonuclear tokamak reactor in order to test the basic physics performance and technologies. The conceptual design activity (CDA) of ITER required the joint work at a technical site at the Max Plank Institute for Plasma Physics in the Garching, Germany from 1988 to 1990. The technical proposals from Japan were summarized by the Fusion Experimental Reactor (FER) Team and the Superconducting Magnet Laboratory of the Japan Atomic Energy Research Institute (JAERI). This paper describes the Japanese contributions of the R and D proposals to the magnet system for the ITER. These proposals were discussed in ITER CDA design team and summarized in ITER Technical report No. 20. The development program of Toroidal Field Coil is basically proposed from Japan with the design and analysis reports. The Japanese proposals are almost adopted in the ITER Long-Term R and D program. (author)

  14. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    OpenAIRE

    G. Fubiani; H. P. L. de Esch; A. Simonin; R. S. Hemsworth

    2008-01-01

    The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER) is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses). The resulting seco...

  15. An experimental investigation of the post-CHF enhancement factor for a prototypical ITER divertor plate with water coolant

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.D. [Rensselaer Polytechnic Institute, Troy, NY (United States); Watson, R.D.; McDonald, J.M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-09-01

    In an off-normal event, water-cooled copper divertor plates in the International Thermonuclear Experimental Reactor (ITER) may either experience heat loads beyond their design basis, or the normal heat loads may be accompanied by low coolant pressure and velocity. The purpose of this experiment was to illustrate that during one-sided heating, as in ITER, a copper divertor plate with the proper side wall thickness, at low system pressure and velocity can absorb without failing an incident heat flux, q{sub i}, that significantly exceed the value, q{sub i}{sup CHF}, which is associated with local CHF at the wall of the coolant channel. The experiment was performed using a 30 kW electron beam test system for heating of a square cross-section divertor heat sink with a smooth circular channel of 7.63 mm diameter. The heated width, length, and wall thickness were 16, 40, and 3 mm, respectively. Stable surface temperatures were observed at incident heat fluxes greater than the local CHF point, presumably due to circumferential conduction around the thick tube walls when q{sub i}{sup CHF} was exceeded. The Post-CHF enhancement factor, {eta}, is defined as the ratio of the incident burnout heat flux, q{sub i}{sup BO}, to q{sub i}{sup CHF}. For this experiment with water at inlet conditions of 70{degrees}C, 1 m/s, and 1 MPa, q{sub i}{sup CHF} and q{sub i}{sup BO} were 600 and 1100 W/cm{sup 2}, respectively, which gave an {eta} of 1.8.

  16. Zero energy reactor RB technical characteristics and experimental possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S; Takac, S; Raisic, N; Lolic, B; Markovic, H [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1963-04-15

    The zero energy reactor RB was constructed in 1958 in accordance with the nuclear reactor development programme of the Boris Kidric Institute of Nuclear Sciences. The reactor was in operation until the middle of 1959 when the heavy water, serving as the moderator, was transported to the high flux reactor RA, built at the same time at the Boris Kidric Institute. Owing to the fact that the purchase of new quantities of heavy water was planned for 1961 it was decided to reconstruct the RB reactor in order to improve the safety of the system and to obtain better flexibility in performing the experiments. New control, safety and radiation monitoring systems were constructed. Some changes were also made on the reactor tank, water circulation system and the water level monitoring equipment. The reconstruction was completed in 1961. and the heavy water was delivered early in 1962. The reconstructed reactor was critical for the first time in summer 1962, and from that time was in continuous operation. This report presents an outline of the design and construction characteristics of the reactor. The main intention is to inform potential users of the reactor about experimental possibilities, advantages and disadvantages of such a critical facility.

  17. Zero energy reactor RB technical characteristics and experimental possibilities

    International Nuclear Information System (INIS)

    Jovanovic, S.; Takac, S.; Raisic, N.; Lolic, B.; Markovic, H.

    1963-04-01

    The zero energy reactor RB was constructed in 1958 in accordance with the nuclear reactor development programme of the Boris Kidric Institute of Nuclear Sciences. The reactor was in operation until the middle of 1959 when the heavy water, serving as the moderator, was transported to the high flux reactor RA, built at the same time at the Boris Kidric Institute. Owing to the fact that the purchase of new quantities of heavy water was planned for 1961 it was decided to reconstruct the RB reactor in order to improve the safety of the system and to obtain better flexibility in performing the experiments. New control, safety and radiation monitoring systems were constructed. Some changes were also made on the reactor tank, water circulation system and the water level monitoring equipment. The reconstruction was completed in 1961. and the heavy water was delivered early in 1962. The reconstructed reactor was critical for the first time in summer 1962, and from that time was in continuous operation. This report presents an outline of the design and construction characteristics of the reactor. The main intention is to inform potential users of the reactor about experimental possibilities, advantages and disadvantages of such a critical facility

  18. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    International Nuclear Information System (INIS)

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  19. The 'Reacteur Jules Horowitz': a new experimental reactor project

    International Nuclear Information System (INIS)

    Frachet, S.; Ballagny, A.

    1999-01-01

    The Jules Horowitz Reactor (RJH) is a new research reactor project dedicated to materials and nuclear fuel testing, the location of which is foreseen at the CEA-CADARACHE site, and the start-up in 2006. The launching of this project originated from a double finding: The development of nuclear power plants aimed at satisfying the energy needs of the next century, cannot be envisaged without experimental reactors which are unrivaled for the validation of new concepts of nuclear fuels, materials, and components as well as for their qualification under irradiation. The existing experimental reactors are 30 to 40 years old and it is advisable to examine henceforth the necessity for and the nature of a new reactor to take over and replace, at the beginning of next century, the reactors shut-down in the mean time or at the very end of their lives. Within this framework, the CEA has undertaken, in the last years, a study on the mid and long term irradiation needs, to determine the main features and performances of this new reactor. The concept of the reactor will have to fulfill the thermal neutron irradiation requirements as well as the fast neutron experimental needs, with a great potential versatility for any new irradiation programs. The reactor project selected among several different concepts, is finally a light water pool concept, with 100 MW thermal power. It could reach neutronic fluxes twice those of present French reactors, and allows for many irradiations in and around the core, under high neutron fluxes. The reactor will satisfy the highest level of safety in full accordance with international safety recommendations and the French safety approach for this kind of nuclear facility, thus giving an added safety margin keeping in mind the versatility of research reactors. The feasibility studies have been focused on the following most important items: neutronic and thermalhydraulic studies on alternative core designs, with or without added pressurization

  20. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  1. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  2. The experimental program of neutronphysics for advanced water reactors

    International Nuclear Information System (INIS)

    Martin-Deider, L.; Cathalu, S.; Santamarina, A.; Gomit, M.

    1985-11-01

    The C.E.A. and E.D.F. has jointly undertaken a program of experimental studies on under-moderated water lattices, with mixed oxide fuel UO 2 -PuO 2 . Undermoderated lattices offer high conversion ratios. This type of lattice could limit in the future the natural uranium consumption of pressurized water reactors. This experimental program is aimed at qualifying neutron transport calculations in a large range of moderating ratio (between 0.5 and 1.5). It includes three experiments: ERASME, a critical experiment of large size in the EOLE reactor at Cadarache; ICARE, an irradiation experiment in the MELUSINE reactor at Grenoble; and an experiment to measure the reactivity effects by oscillations in the MINERVE reactor at Cadarache [fr

  3. ITER and world chaos; Iter ou le bouleversement du monde

    Energy Technology Data Exchange (ETDEWEB)

    Pourcel, Eric

    2012-02-15

    ITER is the International Thermonuclear Experimental Reactor: the author here develops three scenarios linked to the control of nuclear fusion as a method of producing electrical energy that could take over from fossil fuels in the twenty-First century. His expose shows the likely strategic disarray that might result

  4. ITER review team takes bullish stance

    International Nuclear Information System (INIS)

    Lawler, A.

    1997-01-01

    A large team of U.S. fusion researchers last week began poring over the latest blueprints for a massive international machine designed to demonstrate fusion power and provide plasma physicists with an exciting new facility. The review of the $10 billion International Thermonuclear Experimental Reactor (ITER) was prompted by controversy over the reactor's design and the shrinking U.S. fusion budget

  5. Construction schedule management of China Experimental Fast Reactor

    International Nuclear Information System (INIS)

    Wang Yue

    2012-01-01

    China Experimental Fast Reactor (CEFR) in the first Fast Reactor in China, which is one of large project of the National High Technology Research and Development Program ('863' Program). On 21 st July 2011, CEFR had succeeded to connect to power grid, the target of construction had come true. To a large item, schedule management is one of the most important management, this paper a overall discussion about CEFR item. It has proved that the management of CEFR project is scientific, normative and high-efficiency, it will be valuable for lager Fast Reactor item and designers in interrelated field. (author)

  6. Experimental utilization of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Bitelli, U. d'Utra; Santos, A. dos; Jerez, R.; Diniz, R.; Fanaro, L.C.C.B.; Abe, A.Y.; Moreira, J.M.L.; Fer, N.; Giada, M.R.; Fuga, R.

    2003-01-01

    This paper aims to show the experimental utilization of the IPEN/MB-01 nuclear reactor during the last fourteen years. The IPEN/MB-01 is a zero-power critical assembly specially designed to measure integral and differential reactor physics parameters to validate calculational methodologies and related nuclear data libraries. Experiments involving determination of spectral indices, critical mass, relative abundance of delayed neutrons, the inversion point of the isothermal reactivity coefficient and burnable poison are considered the most important experiments. Current experiments at IPEN/MB-01 reactor are also commented. (author)

  7. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  8. Upgrading program of the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Yoshida, A.; Yogo, S.

    2001-01-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  9. Research reactor RB, technical characteristics and experimental possibilities

    International Nuclear Information System (INIS)

    Sotic, O.; Vranic, S.

    1978-01-01

    Nuclear research reactor RB tn the Nuclear Engineering Laboratory at the Institute of Nuclear Sciences 'Boris Kidric' in Vinca is the first reactor system built in Yugoslavia in 1958. In this report, the basic technical characteristics of this reactor are described, as well as the experimental possibilities it offers to the users. Its relatively simple construction and flexibility enables direct measurements of a series of physical parameters, and the absence of the biological protection shield makes it very useful for Various biological and other irradiations and dosimetric measurements Where strong neutron source is required. (author) [sr

  10. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R S [ITER Joint Central Team, Naka, Ibaraki (Japan)

    1997-03-01

    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  11. Reactor physical experimental program EROS in the frame of the molten salt applying reactor concepts development

    International Nuclear Information System (INIS)

    Hron, Miloslav; Kyncl, Jan; Mikisek, Miroslav

    2009-01-01

    After the relatively broad program of experimental activities, which have been involved in the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic, there has been a next stage (namely large-scale experimental verification of design inputs by use of MSR-type inserted zones into the existing light water moderated experimental reactor LR-0 called EROS project) started, which will be focused to the experimental verification of the rector physical or neutronic properties of other types of reactor concepts applying molten salts in the role of liquid fuel and/or coolant. This tendency is based on the recently accepted decision of the MSR SSC of GIF to consider for further period of its activity two baseline concepts- fast neutron molten salt reactor non-moderated (FMSR-NM) as a long-term alternative to solid fuelled fast neutron reactors and simultaneously, advanced high temperature reactor (AHTR) with pebble bed type solid fuel cooled by liquid salts. There will be a brief description of the prepared and performed experimental programs in these directions (as well as the preliminary results obtained so far) introduced in the paper. (author)

  12. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, I.; Linke, J.; Nickel, H.; Kny, E.; Reheis, N.; Kneringer, G.; Bolt, H.

    1995-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr, 90Ni-10Ti, 90Cu- 10Ti, and 70Ag-27Cu-3Ti (compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  13. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, Ivica; Linke, Jochen; Nickel, Hubertus; Kny, Erich; Reheis, Nikolaus; Kneringer, Guenther; Bolt, Harald

    1990-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr,90Ni-10Ti,90Cu-10Ti, and 70Ag-27Cu-3Ti(compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  14. ITER tokamak device

    International Nuclear Information System (INIS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-01-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER; and a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fuelling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (i) magnet systems (toroidal and poloidal field coils and cryogenic systems), (ii) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (iii) first wall, (iv) divertor plate (design and materials, performance and lifetime, a.o.), (v) blanket/shield system, (vi) maintenance equipment, (vii) current drive and heating, (viii) fuel cycle system, and (ix) diagnostics. 11 refs, figs and tabs

  15. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  16. Experimental determination of neutron temperature distribution in reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1965-12-01

    This paper describes theoretical preparation of the experiment for measuring neutron temperature distribution at the RB reactor by activation foils. Due to rather low neutron flux Cu and Lu foil were irradiated for 4 days. Special natural uranium fuel element was prepared to enable easy removal of foils after irradiation. Experimental device was placed in the reactor core at half height in order to measure directly the mean neutron density. Experimental data of neutron temperature distribution for square lattice pitch 16 cm are presented with mean values of neutron temperature in the moderator, in the fuel and on the fuel element surface

  17. The SCARABEE experimental fast reactor safety programme already completed

    International Nuclear Information System (INIS)

    Schmitt, A.P.; Teague, H.; Heusener, G.

    1979-08-01

    The SCARABEE in-pile experimental programme comprised a series of tests on unirradiated fuel pins, either single or in seven-pin clusters. The main objective was to obtain information on the mode and consequences of fast reactor fuel pin failure in conditions representative of loss of cooling in a LMFBR. The application of such programmes in full scale reactors leads to the great importance of the interpretation of experimental observations. The interpretation of that programme was carried out jointly by CEA, KFK and UKAEA; this international collaboration led to a sharper focusing on essential features to be modelled in experiments and computer codes and to a valuable convergence of views

  18. Experimental measurement of zero power reactor transfer function

    International Nuclear Information System (INIS)

    Liang Shuhong

    2011-01-01

    In order to study the zero power reactor (ZPR) transfer function, the ZPR transfer function expression was deduced with the point reactor kinetics equation, which was disturbed by reactivity input response. Based on the Fourier analysis for the input of triangular wave, the relation between the transfer function and reactivity was got. Validating research experiment was made on the DF-VI fast ZPR. After the disturbed reactivity was measured, the experimental value of the transfer function was got. According to the experimental value and the calculated value, the expression of the ZPR transfer function is proved, whereas the disturbed reactivity is got from the transfer function. (authors)

  19. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    Science.gov (United States)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  20. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the reactor configuration/structure design for the fusion experimental reactor (FER) performed in FY 1986. The design was intended to meet the physical and engineering mission of the next step device which was decided by the subcommittee on the next step device of the nuclear fusion council. The objectives of the design study in FY 1986 are to advance and optimize the design concept of the last year because the recommendation of the subcommittee was basically the same as the design philosophy of the last year. Six candidate reactor configurations which correspond to options C ∼ D presented by the subcommittee were extensively examined. Consequently, ACS reactor (Advanced Option-C with Single Null Divertor) was selected as the reference configuration from viewpoints of technical risks and cost performance. Regarding the reactor structure, the following items were investigated intensively: minimization of reactor size, protection of first wall against plasma disruption, simplification of shield structure, reactor configuration which enables optimum arrangement of poloidal field coils. (author)

  1. Experimental neutronic science and instrumentation: from hybrid reactors to fourth generation reactors

    International Nuclear Information System (INIS)

    Jammes, Ch.

    2010-07-01

    After an overview of his academic career and scientific and research activities, the author proposes a rather detailed synthesis and overview of his scientific activities in the fields of cross sections and Doppler effect (development and validation of a code), on the MUSE-4 hybrid reactor (experiments, static and dynamic measurements), on the TRADE hybrid reactor (experimental means, sub-critical reactivity measurement), on the RACE hybrid reactor (experimental results, modelling and interpretation), and on neutron detection (design and modelling of fission chamber, on-line measurement of the fast flow). The next part gives an overview of some research programs (neutron monitoring in sodium-cool fast reactors, research and development on fission chambers, improvement of effective delayed neutron measurements)

  2. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)

  3. Experimental research of reactor core flooding

    International Nuclear Information System (INIS)

    Blaha, V.; Kotrnoch, J.; Krett, V.

    1978-01-01

    The results are presented of experiments performed with the aim of finding the influence of the method of fixing the thermocouples for measuring the distribution of temperature to the wall of fuel pin simulator. This influence was found for the purpose of emergency core flooding. First experimental results on the effect of nitrogen dissolved in the water on the velocity of the cooling wave are given. These experiments were carried out under the following conditions: initial temperature in pin centre 300 to 600 degC, velocity of water at the inlet into the measuring section 3.5 to 20 cm/s, and atmospheric pressure in the model. (author)

  4. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  5. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    International Nuclear Information System (INIS)

    Wang, Jinguo; Zhao, Zhiqin; Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-01-01

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity

  6. Revised design for the Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1977-03-01

    A new, preliminary design has been identified for the tokamak experimental power reactor (EPR). The revised EPR design is simpler, more compact, less expensive and has somewhat better performance characteristics than the previous design, yet retains many of the previously developed design concepts. This report summarizes the principle features of the new EPR design, including performance and cost

  7. Neutronic scoping studies for the tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Santoro, R.T.; Bettis, E.S.; McAlees, D.G.; Watts, H.L.; Williams, M.L.

    1976-02-01

    One-dimensional neutron and photon radiation transport methods have been used to investigate candidate blanket configurations and compositions for use in the Tokamak Experimental Power Reactor. Seven blanket designs are compared in terms of energy recovery, radiation attenuation, potential radiation damage, and, where applicable, tritium breeding

  8. An experimental study of hypervapotron structure in external reactor vessel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yufeng; Zhang, Ming [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei, E-mail: chenpeipei@snptc.com.cn [State Power Investment Group Corporation, Beijing (China)

    2016-07-15

    Highlights: • Experiments are performed to study the application of hypervapotron in ERVC design. • CHF experiments on two surfaces are conducted under different flow conditions. • Hypervapotron improves CHF performance by 40–60% compared with smooth surface. • Visualization shows fin structure removes vapor mushroom for better liquid supply. - Abstract: In vessel retention (IVR) is one of the key strategies for many advanced LWR designs to mitigate postulated severe accidents. The success of IVR substantially relies on external reactor vessel cooling (ERVC) by which the decay heat is removed from the melt core in the reactor vessel lower head. The main challenge of IVR is to provide an adequate safety margin of ERVC against critical heat flux (CHF) of subcooled flow boiling in the reactor lower head flow channel. Due to uncertainties in corium melt pool configuration, large CHF margin of ERVC is usually required by regulatory authorities to demonstrate reliability of severe accident mitigation methods. Various CHF enhancement designs have been proposed and studied in literature. In this paper, an experimental study of hypervapotron structure as a novel design to improve CHF performance of ERVC is conducted. Hypervapotron is chosen as one of the potential engineering options for International Thermonuclear Experimental Reactor (ITER) program as a divertor structure to remove highly intense heat from fusion chamber. This study is to conduct CHF experiments at typical PWR ERVC working conditions. The CHF experiments are performed in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. Both smooth and hypervapotron surface are tested at various inclination angles of the test section to simulate various positions of the reactor lower head. The hypervapotron is found to have a 40–60% CHF improvement compared with the smooth surface. The high speed visualization indicates that hypervapotron is able to

  9. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II [Experimental Breeder Reactor

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs

  10. Enhanced probabilistic decision analysis for radiological confinement barriers of the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Golinescu, R.P.; Kazimi, M.S.

    1998-01-01

    To ensure a defence-in-depth approach, several radiological confinement barriers surrounding a tokamak plant can be employed. A methodology using probabilistic risk assessment (PRA) techniques is a useful tool for evaluating the performance of each confinement barrier within the context of a limited allowable risk of accidental radioactivity releases. Such a methodology was developed and applied to the confinement strategy for the International Thermonuclear Experimental Reactor (ITER). Accident sequence models were constructed for each of the confinement barriers to evaluate the probabilities of events leading to radioactive releases from the corresponding confinement barrier. The current ITER design requirements set radioactive release and dose limits for individual event sequences grouped in categories by frequency. To limit the plant's overall risk and account for event uncertainties in both frequency and consequence, an analytical form for a limit line is derived here as a complementary cumulative frequency (CCF) of radioactive releases to the environment. By comparing the releases from each confinement barrier against the limit line, a decision can be made about the number of barriers required to comply with the design requirements. The first barrier is the vacuum vessel (VV) and the primary heat transfer systems. The second confinement barrier consists of the cryostat vessel (CV) and the heat transfer system vaults. In case the outer building is needed to act as a third barrier for ITER, a decision model using the multi-attribute utility theory was constructed to help the designer choose the best type of tokamak building. The decision model allows for performing sensitivity analysis on relevant parameters and for design features of new options for the ITER tokamak building. (orig.)

  11. Convergence problems associated with the iteration of adjoint equations in nuclear reactor theory

    International Nuclear Information System (INIS)

    Ngcobo, E.

    2003-01-01

    Convergence problems associated with the iteration of adjoint equations based on two-group neutron diffusion theory approximations in slab geometry are considered. For this purpose first-order variational techniques are adopted to minimise numerical errors involved. The importance of deriving the adjoint source from a breeding ratio is illustrated. The results obtained are consistent with the expected improvement in accuracy

  12. Physics fundamentals for ITER

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.

    1999-01-01

    The design of an experimental thermonuclear reactor requires both cutting-edge technology and physics predictions precise enough to carry forward the design. The past few years of worldwide physics studies have seen great progress in understanding, innovation and integration. We will discuss this progress and the remaining issues in several key physics areas. (1) Transport and plasma confinement. A worldwide database has led to an 'empirical scaling law' for tokamaks which predicts adequate confinement for the ITER fusion mission, albeit with considerable but acceptable uncertainty. The ongoing revolution in computer capabilities has given rise to new gyrofluid and gyrokinetic simulations of microphysics which may be expected in the near future to attain predictive accuracy. Important databases on H-mode characteristics and helium retention have also been assembled. (2) Divertors, heat removal and fuelling. A novel concept for heat removal - the radiative, baffled, partially detached divertor - has been designed for ITER. Extensive two-dimensional (2D) calculations have been performed and agree qualitatively with recent experiments. Preliminary studies of the interaction of this configuration with core confinement are encouraging and the success of inside pellet launch provides an attractive alternative fuelling method. (3) Macrostability. The ITER mission can be accomplished well within ideal magnetohydrodynamic (MHD) stability limits, except for internal kink modes. Comparisons with JET, as well as a theoretical model including kinetic effects, predict such sawteeth will be benign in ITER. Alternative scenarios involving delayed current penetration or off-axis current drive may be employed if required. The recent discovery of neoclassical beta limits well below ideal MHD limits poses a threat to performance. Extrapolation to reactor scale is as yet unclear. In theory such modes are controllable by current drive profile control or feedback and experiments should

  13. Simplified simulation of an experimental fast reactor plant

    International Nuclear Information System (INIS)

    Fujii, Masaaki; Fujita, Minoru.

    1978-01-01

    Purposes of the simulation are to study the dynamic behavior of a liquid metal-cooled experimental fast breeder reactor plant and to design the control system of the reactor plant by modified-RAPID (Reactor and Plant Integrated Dynamics) computer program. As for the plant model, the Japan Experimental Fast Reactor ''Joyo'' was referred to approximately. This computer program is designed for the calculation of steady-state and transient temperatures in a FBR plant; which is described by a model consisting of the core, upper and lower plenums, an intermediate heat exchanger, an air dump heat exchanger, primary-secondary and tertiary coolant systems and connecting pipes. The basic equations are solved numerically by finite difference approximation. The mathematical model for an experimental FBR plant is useful for the design of the control system of FBR plants. The results of numerical simulation showed that the proportional change in the flow rates of the primary and secondary coolant loops provides good performance in relation to the stepped change in the power level. (J.P.N.)

  14. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  15. Experimental and numerical study of the pressure drop for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Min-Su; Kim, Sawoong; Jung, Hun-Chea; Shim, Hee-Jin; Ahn, Hee-Jae

    2016-11-01

    Highlights: • The results of the experiment and the numerical analysis are compared. • The numerical analysis results are lower than the experimental results. • The margin of the pressure drop is suggested. - Abstract: The blanket shield block (SB) is located inside the ITER vacuum chamber, and the main function is to provide the thermal and nuclear shielding to the vacuum vessel and external components. The SB is foreseen to undergo a significant heat load which is a body load throughout the whole thickness of the SB under normal operation conditions. Therefore, the cooling configuration in SB should be designed very carefully based on the various experiences. The pressure drop in the cooling design is one of the most important factors to balance a water distribution of overall blanket cooling system. In order to verify the pressure drop characteristic and validate the design methodology of SB, experiment and numerical analysis are performed and compared their results. These results would be a benchmarking of the numerical results with experimental results to assess the gap between calculations and experiments.

  16. International Thermonuclear Experimental Reactor U.S. Home Team Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Sowder, W. K.

    1998-10-01

    The International Thermonuclear Experimental Reactor (ITER) project is unique in that the work is divided among an international Joint Central Team and four Home Teams, with the overall responsibility for the quality of activities performed during the project residing with the ITER Director. The ultimate responsibility for the adequacy of work performed on tasks assigned to the U.S. Home Team resides with the U.S. Home Team Leader and the U.S. Department of Energy Office of Fusion Energy (DOE-OFE). This document constitutes the quality assurance plan for the ITER U.S. Home Team. This plan describes the controls exercised by U.S. Home Team management and the Performing Institutions to ensure the quality of tasks performed and the data developed for the Engineering Design Activities assigned to the U.S. Home Team and, in particular, the Research and Development Large Projects (7). This plan addresses the DOE quality assurance requirements of 10 CFR 830.120, "Quality Assurance." The plan also describes U.S. Home Team quality commitments to the ITER Quality Assurance Program. The ITER Quality Assurance Program is based on the principles described in the International Atomic Energy Agency Standard No. 50-C-QA, "Quality Assurance for Safety in Nuclear Power Plants and Other Nuclear Facilities." Each commitment is supported with preferred implementation methodology that will be used in evaluating the task quality plans to be submitted by the Performing Institutions. The implementing provisions of the program are based on guidance provided in American National Standards Institute/American Society of Mechanical Engineers NQA-1 1994, "Quality Assurance." The individual Performing Institutions will implement the appropriate quality program provisions through their own established quality plans that have been reviewed and found to comply with U.S. Home Team quality assurance plan commitments to the ITER Quality Assurance Program. The extent of quality program provisions

  17. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kashihara, Shin-ichiro; Itoh, Shin-ichi

    1987-08-01

    This report describes the results of conceptual design study on plant systems for the Fusion Experimental Reactor (FY86 FER). Design studies for FER plant systems have been continued from FY85, especially for design modifications made in accordance with revisions of plasma scaling parameters and system improvements. This report describes 1) system construction, 2) site and reactor building plan, 3) repaire and maintenance system, 4) tritium circulation system, 5) heating, ventilation and air conditioning system, 6) tritium clean-up system, 7) cooling and baking system, 8) waste treatment and storage system, 9) control system, 10) electric power system, 11) site factory plan, all of which are a part of FY86 design work. The plant systems described in this report generally have been based on the FY86 FER (ACS Reactor) which is an one of the six candidates for FER. (author)

  18. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    1988-05-01

    The design study of Fusion Experimental Reactor(FER) which has been proposed to be the next step fusion device has been conducted by JAERI Reactor System Laboratory since 1982 and by FER design team since 1984. This is the final report of the FER design team program and describes the results obtained in FY1987 (partially in FY1986) activities. The contents of this report consist of the reference design which is based on the guideline in FY1986 by the Subcomitees set up in Nuclear Fusion Council of Atomic Energy Commission of Japan, the Low-Physics-Risk reactor design for achieving physics mission more reliably and the system study of FER design candidates including above two designs. (author)

  19. EBR-2 [Experimental Breeder Reactor-2] test programs

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.; Hill, D.J.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  20. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas

    Science.gov (United States)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group

    2017-08-01

    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  1. Conceptual design studies of experimental and demonstration fusion reactors

    International Nuclear Information System (INIS)

    1978-01-01

    Since 1973 the FINTOR Group has been involved in conceptual design studies of TOKAMAK-type fusion reactors to precede the construction of a prototype power reactor plant. FINTOR-1 was the first conceptual design aimed at investigating the main physics and engineering constraints on a minimum-size (both dimensions and thermal power) tokamak experimental reactor. The required plasma energy confinement time as evaluated by various power balance models was compared with the values resulting from different transport models. For the reference design, an energy confinement time ten times smaller than neoclassical was assumed. This also implied a rather high (thermally stable) working temperature (above 20 keV) for the reactor. Other relevant points of the design were: circular plasma cross section, single-null axisymmetric divertor; lithium breeder, stainless steel structures, helium coolant; modular blanket and shield structure; copper-stabilized, superconducting Nb-Ti toroidal field and divertor coils; vertical field and transformer coils inside the toroidal coils; vacuum-tight containment vessel. Solutions involving air and iron transformer cores were compared. These assumptions led to a minimum size reactor with a thermal power of about 100MW and rather large dimensions (major radius of about 9m) similar to those of full-scale power reactors considered in other conceptual studies. The FINTOR-1 analysis was completed by the end of 1976. In 1977 a conceptual design of a Demonstration Power Reactor Plant (FINTOR-D) was started. In this study the main working assumptions differing from those of FINTOR-1 are: non-circular plasma cross section; plasma confinement compatible with trapped ion instabilities; cold (gas) blanket sufficient for wall protection (no divertor); wall loading between 1-3MW/m 2 and thermal power of a few GW. (author)

  2. Remote maintenance design for Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tachikawa, K.; Iida, H.; Nishio, S.; Tone, T.; Aota, T.; Iwamoto, T.; Niikura, S.; Nishizawa, H.

    1984-01-01

    Design of Fusion Experimental Reactor, FER, has been conducted by Japan Atomic Energy Research Institute (JAERI) since 1981. Two typical reactors can be classified in general from the viewpoints of remote maintenance among four design concepts of FER. In the case of the type 1 FER, the torus module consists of shield structure and blanket, and the connective joints between toruses provided at the outer region of the reactor. As for the type 2 FER, the shield structure is joined with the vacuum cryostat, and only the blanket module is allowed to move, but connection between toruses are located in the inner region of the reactor. Comparing type 1 with type 2 FER, this paper describes on the remote maintenance of FER including reactor configurations, work procedures, remote systems/equipments, repairing facility and future R and D problems. Reviewing design studies and investigation for the existing robotics technologies, R and D for FER remote maintenance technology should be performed under the reasonable long-term program. The main items of remote technology required to start urgently are multi-purpose manipulator system with performance of dextrousity, tele-viewing system which reduces operator fatigue and remote tests for commercially available components

  3. The strategy of experimental power reactor licensing in Indonesia

    International Nuclear Information System (INIS)

    Moch Djoko Birmano

    2015-01-01

    Currently, BATAN has being planned to develop Experimental Power Reactor (EPR), that is the research nuclear reactor that can generate power (electricity or heat). The EPR is planned will be built in the National Center for Research of Science and Technology (Puspiptek) area at Serpong, South Tangerang, Banten Province, with the choice of reactor types is HTGR with the power size of 10 MWth. As stated in the Act No. 10 year 1997 on Nuclear Power, that every construction and operation of nuclear reactors and other nuclear installations and decommissioning of nuclear reactors required to have a permit. Furthermore, the its implementation arrangements is regulated in Government Regulation (GR) No. 2 year 2014 on Licensing of Nuclear Installations and Nuclear Material Utilization, which contains the requirements and procedures for the licensing process since site, construction, commissioning, operation, and decommissioning, it means licensing is implemented during the activity of construction, operation and decommissioning of NPPs.While, for the more detailed licensing arrangements available in the guidelines of BAPETEN Chairman Regulation (BCR). This study was conducted to understand the legal and institutional aspects, types and stages, and the licensing process of RDE, and identify licensing strategy so that timely as planned. Methodologies used include the literature study, consultation with experts in BAPETEN, discussions in the national seminar including FGD. (author)

  4. Experimental evaluation of an expert system for nuclear reactor operators

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1984-10-01

    The United States Nuclear Regulatory Commission (USNRC) is supporting a program for the experimental evaluation of an expert system for nuclear reactor operators. A prototype expert system, called the Response Tree System, has been developed and implemented at INEL. The Response Tree System is designed to assess the status of a reactor system following an accident and recommend corrective actions to reactor operators. The system is implemented using color graphic displays and is driven by a computer simulation of the reactor system. Control of the system is accomplished using a transparent touch panel. Controlled experiments are being conducted to measure performance differences between operators using the Response Tree System and those not using it to respond to simulated accident situations. This paper summarizes the methodology and results of the evaluation of the Response Tree System, including the quantitative results obtained in the experiments thus far. Design features of the Response Tree System are discussed, and general conclusions regarding the applicability of expert systems in reactor control rooms are presented

  5. Remote maintenance challenges presented in the ITER engineering design

    International Nuclear Information System (INIS)

    Burgess, T.W.; Herndon, J.N.; Schrock, S.L.; Lousteau, D.C.

    1995-01-01

    Leading fusion energy research institutions are currently engaged in the Engineering Design Activity for the International Thermonuclear Experimental Reactor (ITER). A tokamak reactor design is evolving which emphasizes high system performance in a minimum overall reactor and building size. The resulting high component density dictates careful attention to ITER remote maintenance considerations in the development of the configuration. The complexity and scale of ITER remote maintenance tasks are well beyond the scope of today's experience and technology. This paper discusses the remote maintenance philosophy, describes the basic configuration as it relates to maintenance, and describes the basic procedures and equipment required. Key enabling technology research and development needs are also addressed

  6. Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri

    2005-09-27

    The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

  7. Experimental Investigation of Creep Behavior of Reactor Vessel Lower Head

    International Nuclear Information System (INIS)

    Chu, T.Y.; Pilch, M.; Bentz, J.H.; Behbahani, A.

    1999-01-01

    The authors report a study which aimed at experimentally and numerically investigating and characterizing the failure of a reactor pressure vessel (RPV) lower head due to thermal and pressure loads generated by a severe accident. They present the experimental apparatus which is based on a scaled version of the lower part of a TMI-like reactor pressure vessel without vessel skirt. They report and comment the results obtained during the first five experiments: uniform heating and non penetrations, centre-peaked heat flux and no penetrations, edge-peaked heat flux and no penetrations, uniform heating with penetrations, edge-peaked heat flux with penetrations. They compare the third and fifth experience (those with edge-peaked heat flux)

  8. Experimental fuel channel for samples irradiation at the RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Markovic, H.; Sokcic-Kostic, M.; Miric, I.; Prokic, M.; Strugar, P.

    1984-12-01

    An 80% enriched UO 2 fuel channel at the RB nuclear reactor in the 'Boris Kidric' Institute of Nuclear Sciences is modified for samples irradiation by fast neutrons. Maximum sample diameter is 25 mm and length up to 1000 mm. Characteristics of neutron and gamma radiation fields of this new experimental channel are investigated. In the centre of the channel, the main contribution to the total neutron absorbed dose, i.e. 0.29 Gy/Wh of reactor operation, is due to the fast neutron spectrum component. Only 0.05 Gy and 0.07 Gy in the total neutron absorbed dose are due to intermediate and thermal neutrons, respectively. At the same time the gamma absorbed dose is 0.35 Gy. The developed experimental fuel channel, EFC, has wide possibilities for utilization, from fast neutron spectrum studies, electronic component irradiations, dosemeters testing, up to cross-section measurements. (author)

  9. WWER reactor fuel performance, modelling and experimental support. Proceedings

    International Nuclear Information System (INIS)

    Stefanova, S.; Chantoin, P.; Kolev, I.

    1994-01-01

    This publication is a compilation of 36 papers presented at the International Seminar on WWER Reactor Fuel Performance, Modelling and Experimental Support, organised by the Institute for Nuclear Research and Nuclear Energy (BG), in cooperation with the International Atomic Energy Agency. The Seminar was attended by 76 participants from 16 countries, including representatives of all major Russian plants and institutions responsible for WWER reactor fuel manufacturing, design and research. The reports are grouped in four chapters: 1) WWER Fuel Performance and Economics: Status and Improvement Prospects: 2) WWER Fuel Behaviour Modelling and Experimental Support; 3) Licensing of WWER Fuel and Fuel Analysis Codes; 4) Spent Fuel of WWER Plants. The reports from the corresponding four panel discussion sessions are also included. All individual papers are recorded in INIS as separate items

  10. WWER reactor fuel performance, modelling and experimental support. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Chantoin, P; Kolev, I [eds.

    1994-12-31

    This publication is a compilation of 36 papers presented at the International Seminar on WWER Reactor Fuel Performance, Modelling and Experimental Support, organised by the Institute for Nuclear Research and Nuclear Energy (BG), in cooperation with the International Atomic Energy Agency. The Seminar was attended by 76 participants from 16 countries, including representatives of all major Russian plants and institutions responsible for WWER reactor fuel manufacturing, design and research. The reports are grouped in four chapters: (1) WWER Fuel Performance and Economics: Status and Improvement Prospects: (2) WWER Fuel Behaviour Modelling and Experimental Support; (3) Licensing of WWER Fuel and Fuel Analysis Codes; (4) Spent Fuel of WWER Plants. The reports from the corresponding four panel discussion sessions are also included. All individual papers are recorded in INIS as separate items.

  11. The Orphee reactor current status and proposed enhancement of experimental capabilities

    International Nuclear Information System (INIS)

    Breant, P.

    1990-01-01

    This report provides a description of the Orphee reactor, together with a rapid assessment of its experimental and research capabilities. The plans for enhancing the reactor's experimental capabilities are also presented. (author)

  12. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huguet, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.R.; Shimada, M.; Aymar, R.; Chuyanov, V.A.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties. (author)

  13. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1990-01-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to >15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel

  14. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  15. Experimental Facilities for Performance Evaluation of Fast Reactor Components

    International Nuclear Information System (INIS)

    Chandramouli, S.; Kumar, V.A. Suresh; Shanmugavel, M.; Vijayakumar, G.; Vinod, V.; Noushad, I.B.; Babu, B.; Kumar, G. Padma; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Brief details about various experimental facilities catering to the testing and performance evaluation requirements of fast reactor components have been brought out. These facilities have been found to be immensely useful to continue research and development activities in the areas of component development and testing, sodium technology, thermal hydraulics and sodium instrumentation for the SFR’s. In addition new facilities which have been planned will be of great importance for the developmental activities related to future SFR’s

  16. ITER Conceptual design: Interim report

    International Nuclear Information System (INIS)

    1990-01-01

    This interim report describes the results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activities after the first year of design following the selection of the ITER concept in the autumn of 1988. Using the concept definition as the basis for conceptual design, the Design Phase has been underway since October 1988, and will be completed at the end of 1990, at which time a final report will be issued. This interim report includes an executive summary of ITER activities, a description of the ITER device and facility, an operation and research program summary, and a description of the physics and engineering design bases. Included are preliminary cost estimates and schedule for completion of the project

  17. ITER must make its case

    International Nuclear Information System (INIS)

    1998-01-01

    Last month, as expected, the four partners in the International Thermonuclear Experimental Reactor (ITER) project announced a three-year extension of the ITER engineering design activity. Detailed design work on the next-generation fusion-energy device started in 1992 and has cost about $1 bn so far. A decision to build the device, once scheduled to be taken this year, will now be made in 2001 at the earliest. The ITER council said that the extension would ''provide the framework for undertaking jointly site(s)-specific and other activities with the aim of enabling future decision on construction and operation of ITER''. What the project is really doing is buying time as it tries to find a cheaper option that the partners will find acceptable. The US is keen to cut the project's cost by two-thirds. (author)

  18. ITER TASK T26/28 (1995): Solubility, diffusion and absorption of hydrogen isotopes in potential fusion reactor ceramics

    International Nuclear Information System (INIS)

    Thompson, D.A.; Macauley-Newcombe, R.G.

    1996-04-01

    Ceramic insulators are integral parts of numerous components essential for the heating control and diagnostic measurement of fusion plasmas. For safe and reliable reactor operations it is necessary to be able to predict the resultant tritium inventories and permeation fluxes through these materials. Some materials being considered are Al 2 O 3 (both as single crystal sapphire and polycrystalline alumina) and BeO. This report contains results of ion-implantation, thermal absorption (diffusion loading) and ion-beam analysis experiments performed in 1994 and 1995 for ITER task T26/28. The combination of implantation and thermal absorption capabilities enable us to load samples with hydrogen isotopes under differing conditions. 13 figs., 1 tab., 11 refs

  19. Experimental assessment of the effects of ELMs and disruptions on ITER divertor armour materials

    International Nuclear Information System (INIS)

    Zhitlukhin, A.; Federici, G.; Giniyatulin, R.; Landman, I.; Linke, J.; Loarte, A.; Merola, M.; Podkovyrov, V.; Safronov, V.

    2005-01-01

    The response of plasma protection materials to thermal energy deposited during simulated Type I Edge Localised Modes (ELMs) and disruptions was studied. The paper describes the design and manufacture of special CFC and tungsten macrobrush targets, the experimental conditions achievable at simulating facilities and results of selected experiments. Experiments are conducted primarily under an EU/RF research collaboration in two plasma guns (QSPA and MK-200UG) located in TRINITI, Troitsk, Russia. The targets were exposed to a large number of repetitive pulses in QSPA plasma gun with heat loads varying in a range of 1-2 MJ/m 2 lasting 0.1-0.5 ms, with the purpose to determine the total expected erosion rate in ITER. MK-200UG experiments were focused on studying mainly vapour plasma production and impurity transport during ELMs. Moderate tungsten erosion less than 0.3 microns per shot was demonstrated for 1.5 MJ/m 2 energy densities. Energy density increasing up to 1.8 MJ/m 2 resulted in sharp growth of tungsten erosion, caused by intensive droplet ejection from irradiated tungsten surface. The program of further experiments is discussed. (author)

  20. Experimental activity on the definition of acceptance criteria for the ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Escourbiac, F.; Constans, S.; Vignal, N.; Cantone, V.; Richou, M.; Durocher, A.; Riccardi, B.; Bobin, I.; Jouvelot, J.L.; Merola, M.

    2009-01-01

    Tens of thousands of armor/heat sink joints will be produced by the industry during the manufacturing of ITER divertor PFC, statistically, there is a probability that joints with defects be delivered. The purpose of this paper is to study the detection and evolution during operation of calibrated defects artificially implemented on samples, as an experimental basis for the definition of acceptance criteria for the bond armor/heat sink in the frame of industrial manufacturing conditions.It was found that current CFC monoblock design option was compatible with the heat loads specified at the lower part of the vertical target (up to 20 MW/m 2 ), including the presence of armor/heat sink defects (up to 50 deg. extension for a location at 0 deg. or 45 deg.) detectable with NDE techniques developed in Europe (US, SATIR). The current W monoblock design appeared suitable for the upper part of the vertical target with defects extension up to 50 deg. but is not adapted for heat flux of 20 MW/m 2 . The studied W flat tile design proved to be compatible with fluxes of 5 MW/m 2 but unable to sustain cycling fluxes of 10 MW/m 2 .

  1. Preliminary study of a flux converter for experimental reactor

    International Nuclear Information System (INIS)

    Malouch, M.F.

    1998-01-01

    The purpose of this project is to define the characteristics of a flux converter dedicated to increase the fast neutron flux in irradiation devices placed in the core of Osiris experimental reactor. This preliminary work has dealt with the neutronic and thermal-hydraulic aspects of this problem. The synthesis of the results produced by the codes APOLLO2, DAIXY, MERCURE5.3 and FLICA-3M shows that a cylindrical converter equipped with 5 fissile rings can enhance the fast flux by a 35% factor in an experimental device set in its center. (A.C.)

  2. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  3. Compilation of reactor-physical data of the AVR experimental reactor for 1982

    International Nuclear Information System (INIS)

    Werner, H.; Wawrzik, U.; Grotkamp, T.; Buettgen, I.

    1983-12-01

    Since the end of 1981 the calculation model AVR-80 has been taken as a basis for compiling reactor-physical data of the AVR experimental reactor. A brief outline of the operation history of 1982 is given, including the beginning of a large-scale experiment dealing with change-over from high enriched uranium to low enriched uranium. Calculations relative to spectral shift, diffusion, temperature, burnup, and recirculation of the fuel elements are described in brief. The essential results of neutron-physical and thermodynamic calculations and the characteristical data of the various types of fuel used are shown in tables and illustrations. (RF) [de

  4. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H; Enoeda, M [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  5. Iterative solution to the optimal control of depletion problem in pressurized water reactors

    International Nuclear Information System (INIS)

    Colletti, J.P.

    1981-01-01

    A method is described for determining the optimal time and spatial dependence of control absorbers in the core of a pressurized water reactor over a single refueling cycle. The reactor is modeled in two dimensions with many regions using two-group diffusion theory. The problem is formulated as an optimal control problem with the cycle length fixed and the initial reactor state known. Constraints are placed on the regionwise normalized powers, control absorber concentrations, and the critical soluble boron concentration of the core. The cost functional contains two terms which may be used individually or together. One term maximizes the end-of-cycle (EOC) critical soluble boron concentration, and the other minimizes the norm of the distance between the actual and a target EOC burnup distribution. Results are given for several test problems which are based on a three-region model of the Three Mile Island Unit 1 reactor. The resulting optimal control strategies are bang-bang and lead to EOC states with the power peaking at its maximum and no control absorbers remaining in the core. Throughout the cycle the core soluble boron concentration is zero

  6. A conceptual design of the International Thermonuclear Experimental Reactor for the Central Solenoid

    International Nuclear Information System (INIS)

    Heim, J.R.; Parker, J.M.

    1990-01-01

    Conceptual design of the International Thermonuclear Experimental Reactor (ITER) superconducting magnet system is nearing completion by the ITER Design Team, and one of the Central Solenoid (CS) designs is presented. The CS part of this magnet system will be a vertical stack of eight modules, approximately 16 m high, each having a approximate dimensions of: 4.1-m o.d., 2.8-m i.d., 1.9-m h. The peak field at the bore is approximately 13.5 T. Cable-in-conduit conductor with Nb 3 Sn composite wire will be used to wind the coils. The overall coil fabrication will use the insulate-wind-react-impregnate method. Coil modules will be fabricated using double-pancake coils with all splice joints located in the low-field region on the outside of the coils. All coils will be structurally graded with high-strength steel reinforcement which is co-wound with the conductor. We describe details of the CS coil design and analysis

  7. ITER EDA technical activities

    International Nuclear Information System (INIS)

    Aymar, R.

    1998-01-01

    Six years of technical work under the ITER EDA Agreement have resulted in a design which constitutes a complete description of the ITER device and of its auxiliary systems and facilities. The ITER Council commented that the Final Design Report provides the first comprehensive design of a fusion reactor based on well established physics and technology

  8. A study of reactor neutrino monitoring at the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Furuta, H.; Fukuda, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Ishitsuka, M.; Ito, C.; Katsumata, M.; Kawasaki, T.; Konno, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Miyata, H.; Nagasaka, Y.; Nitta, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.

    2012-01-01

    We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3 m from the JOYO reactor core of 140 MW thermal power. The measured neutrino event rate from reactor on-off comparison was 1.11±1.24(stat.)±0.46(syst.) events/day. Although the statistical significance of the measurement was not enough, backgrounds in such a compact detector at the ground level were studied in detail and MC simulations were found to describe the data well. A study for improvement of the detector for future such experiments is also shown.

  9. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  10. Conceptual design study of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1986-11-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. During two years from 1984 to 1985 FER concept was reviewed and redesigned. This report is the summary of the results obtained in the review and redesign activities in 1984 and 85. In the first year FER concept was discussed again and its frame work was reestablished. According to the new frame work the major reactor components of FER were designed. In the second year the whole plant system design including plant layout plan was conducted as well as the more detailed design analysis of the reactor conponents. The newly established frame for FER design is as follows: 1) Plasma : Self-ignition. 2) Operation scenario : Quasi-steady state operation with long burn pulse. 3) Neutron fluence on the first wall : 0.3 MWY/M 2 . 4) Blanket : Non-tritium breeding blanket with test modules for breeding blanket development. 5) Magnets : Superconducting Magnets. (author)

  11. Real-time numerical simulation with high efficiency for an experimental reactor system

    International Nuclear Information System (INIS)

    Ding Shuling; Li Fu; Li Sifeng; Chu Xinyuan

    2006-01-01

    The paper presents a systematic and efficient method for numerical real-time simulation of an experimental reactor. The reactor models were built based on the physical characteristics of the experimental reactor, and several real-time simulation approaches were discussed and compared in the paper. How to implement the real-time reactor simulation system in Windows platform for the sake of hardware-in-loop experiment for the reactor power control system was discussed. (authors)

  12. Research in nuclear reactor theory and experimental reactors; Istrazivanja u teoriji nuklearnih reaktora i ekspeimentalni reaktori

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Elektrotehnicki fakultet, Beograd (Yugoslavia)

    1978-05-15

    The paper is devoted to the possibilities of using experimental reactors for scientific research in nuclear power with a stress on problems in nuclear reactor theory. The stationary and nonstationary neutron fields, burnup prediction and analyses as well as fuel element development and the corresponding role of test-reactors were dealt with. It was shown that the investigations in nuclear reactor theory in Yugoslavia were developing continuously and in a useful interaction with experiments on research reactors. The needs for continuing the work on fundamental problems in neutron transport theory and on improving the calculation methods for thermal power reactors, together with the improvement of performances of existing research systems, were pointed out. A new quality in scientific work could be obtained dealing with the problems connected to a possible introduction of test-reactors, and fast systems later on. It was also pleaded for the corresponding orientations in fundamental sciences. (author) Rad je posvecen mogucnostima koriscenja eksperimentalnih reaktora za naucna istrazivanja u nuklearnoj energetici, sa akcentom na probleme teorije nuklearnih reaktora. Obradjena su stacionarna i nestacionarna neutronska polja, predikcija i analize sagorevanja, kao i razvoj gorivnih elemenata te uloga test-reaktora u osvajanju njihove tehnologije. Pokazano je da su se istrazivanja u teoriji nuklearnih reaktora u nas odvijala kontinualno i u korisnoj interakciji sa eksperimentima na istrazivackim reaktorima. Istaknuta je potreba nastavljanja rada na fundamentalnim problemima transportne teorije neutrona i na usavrsavanju metoda proracuna termalnih enerrgetskih reaktora, uz poboljsanje performansi postojecih istrazivackih sistema. Novi kvalitet u naucnom radu bi predstavljala orijentacija na probleme vezane sa eventualnim uvodjenjem test-reaktora, a zatim i brzih sistema. Pledirano je i za odgovarajuca usmeravanja u fundamentalnim naukama. (author)

  13. ITER power electrical networks; Sistemas electricos de alimentacion a los consumidores del ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sejas Portela, S.

    2011-07-01

    The ITER project (International Thermonuclear Experimental Reactor) is an international effort to research and development to design, build and operate an experimental facility to demonstrate the scientific and technological possibility of obtaining useful energy from the physical phenomenon known as nuclear fusion.

  14. Iterative solution to the optimal poison management problem in pressurized water reactors

    International Nuclear Information System (INIS)

    Colletti, J.P.; Levine, S.H.; Lewis, J.B.

    1983-01-01

    A new method for solving the optimal poison management problem for a multiregion pressurized water reactor has been developed. The optimization objective is to maximize the end-of-cycle core excess reactivity for any given beginning-of-cycle fuel loading. The problem is treated as an optimal control problem with the region burnup and control absorber concentrations acting as the state and control variables, respectively. Constraints are placed on the power peaking, soluble boron concentration, and control absorber concentrations. The solution method consists of successive relinearizations of the system equations resulting in a sequence of nonlinear programming problems whose solutions converge to the desired optimal control solution. Application of the method to several test problems based on a simplified three-region reactor suggests a bang-bang optimal control strategy with the peak power location switching between the inner and outer regions of the core and the critical soluble boron concentration as low as possible throughout the cycle

  15. Project and characteristics of a 5MW experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1986-05-01

    Characteristics of a 5 MW experimental fast reactor are reported. The reactor is designed with emphasis on fuel and materials irradiation and uses fuel assemblies of a standard structure. The reference core consist of 37 fuel assemblies, each of which contains 19 pins of metallic Pu/Zr fuel. With a core height of 17.6 cm the core volume is 11.4 liter and the central fast (E >=100 KeV) flux is 0.9 x 10 15 n/cm 2 sec. In addition to twelve control rod assemblies with a total reactivity worth of 5.5% Δk, 42 assemblies for reactivity compensation are placed in the two rings outside the core. Replacing these assemblies with driver, blanket, or refletor-shield assemblies, large reactivities can be added to make the central assembly position available for test irradiations and to assure high levels of burnup of driver assemblies. (Author) [pt

  16. Manipulator system for remote maintenance of fusion experimental reactor

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Munakata, Tadashi; Murakami, Shin; Kondoh, Mitsunori.

    1991-01-01

    We have completed the conceptual design for a rail-mounted vehicle type remote maintenance system for the fusion experimental reactor (FER), which will be the first D-T burning reactor in Japan. We have fabricated a 1/5-scale model and confirmed the feasibility of the design. In this system, a rail is deployed into the vessel and supported at four horizontal ports. A vehicle then moves along the rail and handles in-vessel components with manipulators. The advantages of this concept are the high stiffness and high reliability of the rail, and the high mobility of the vehicle for efficient maintenance operations. In the FER, this concept is considered to be the first option for in-vessel maintenance. This paper describes the conceptual design of the system and the feasibility study using the 1/5-scale model. (author)

  17. ITER structural design criteria and their extension to advanced reactor blankets

    International Nuclear Information System (INIS)

    Majumdar, S.; Kalinin, G.

    2000-01-01

    Applications of the recent ITER structural design criteria (ISDC) are illustrated by two components. First, the low-temperature-design rules are applied to copper alloys that are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures. Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. Next, the high-temperature-design rules of ISDC are applied to evaporation of lithium and vapor extraction (EVOLVE), a blanket design concept currently being investigated under the US Advanced Power Extraction (APEX) program. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method

  18. Present activities for the preparation of a Japanese draft of structural design guidelines for the experimental fusion reactor

    International Nuclear Information System (INIS)

    Miya, K.; Muto, Y.; Takatsu, H.; Hada, K.; Koizumi, K.; Jitsukawa, S.; Arai, T.; Ohkawa, Y.; Shimakawa, T.; Aoto, K.; Shiraishi, H.; Takagi, T.; Miki, N.; Takahashi, S.; Sato, K.; Takemasa, F.; Kasaba, M.; Kudough, F.; Fujita, J.; Kajiura, S.; Kinoshita, S.

    1996-01-01

    Since November 1990, systematic research has been carried out in preparation for a Japanese draft of structural design guidelines for the experimental fusion reactor. This report summarizes the major results of the work and the status of these efforts. A classification of components and definition of operating conditions are proposed on the basis of the ITER-CDA design, in the light of the safety characteristics of the fusion reactor and relevant conventions for the existing fission reactor design code. Specific issues regarding the structural design of the experimental fusion reactor are discussed based on the experimental and analytical work. The validity of the existing structural design method is confirmed for the use of irradiated 316 SS, irrespective of the significant reduction in uniform elongation capability caused by heavy neutron irradiation. Further important phenomena are treated such as magnetic damping, magnetic stiffness and fracture due to electromagnetic forces. Finally, the issues concerned with welding and non-destructive examinations are discussed with relevance to component classification. (orig.)

  19. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1992-01-01

    This paper reports on results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits, but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. Much research and development (R ampersand D) and design analysis is needed to establish that ITER meets regulatory requirements. There is a further oportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, three programmatic challenges and three technical challenges must be overcome. The first step is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of three key technical challenges is plasma engineering - burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost

  20. Experimental investigation of the MSFR molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2014-11-15

    In the paper experimental modelling and investigation of the MSFR concept will be presented. MSFR is a homogeneous, single region liquid fuelled fast reactor concept. In case of molten salt reactors the core neutron flux and fission distribution is determined by the flow field through distribution and transport of fissile material and delayed neutron precursors. Since the MSFR core is a single region homogeneous volume without internal structures, it is a difficult task to ensure stable flow field, which is strongly coupled to the volumetric heat generation. These considerations suggest that experimental modelling would greatly help to understand the flow phenomena in such geometry. A scaled and segmented experimental mock-up of MSFR was designed and built in order to carry out particle image velocimetry measurements. Basic flow behaviour inside the core region can be investigated and the measurement data can also provide resource for the validation of computational fluid dynamics models. Measurement results of steady state conditions will be presented and discussed.

  1. Remote welding and cutting techniques for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ishide, T.; Oda, Y.; Nagaoka, E.; Ue, K.; Kamei, H.

    1995-01-01

    Experimental investigation of the YAG laser cutting/welding and plasma gouging techniques has been conducted to examine their suitability for remote maintenance systems in future fusion experimental reactors. Using a hybrid beam coupling system, two laser beams of 500W and 740W powers were successfully combined to provide a 1,240W beam power. The combined laser was transmitted through the optical fiber for cutting and welding. The transmission loss for the beams is in the range of 13% to 14%, which is low. As for plasma gouging, the shallow gouging made a groove measuring 10 mm in width and 4 mm in depth on the stainless steel plates at a traversing speed of 75 cm/min, while the deep gouging made a groove of 12 mm in width and 7.5 mm in depth at a traversing speed of 50 cm/min. In addition, it was found that the shallow gouging did not leave byproducts from the material, providing a clean surface. Based on the findings, it is shown that the YAG laser cutting/welding and plasma gouging techniques can be us3ed for remote welding and cutting in future fusion experimental reactors

  2. Remote welding and cutting techniques for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ishide, T.; Oda, Y.; Nagaoka, E.; Ue, K.; Kamei, H. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan)

    1995-12-31

    Experimental investigation of the YAG laser cutting/welding and plasma gouging techniques has been conducted to examine their suitability for remote maintenance systems in future fusion experimental reactors. Using a hybrid beam coupling system, two laser beams of 500W and 740W powers were successfully combined to provide a 1,240W beam power. The combined laser was transmitted through the optical fiber for cutting and welding. The transmission loss for the beams is in the range of 13% to 14%, which is low. As for plasma gouging, the shallow gouging made a groove measuring 10 mm in width and 4 mm in depth on the stainless steel plates at a traversing speed of 75 cm/min, while the deep gouging made a groove of 12 mm in width and 7.5 mm in depth at a traversing speed of 50 cm/min. In addition, it was found that the shallow gouging did not leave byproducts from the material, providing a clean surface. Based on the findings, it is shown that the YAG laser cutting/welding and plasma gouging techniques can be us3ed for remote welding and cutting in future fusion experimental reactors.

  3. Oscillation experiments techniques in CEA Minerve experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.; Di-Salvo, J.; Pepino, A.; Bosq, J. C.; Bernard, D.; Leconte, P.; Hudelot, J. P.; Lyoussi, A. [CEA CADARACHE, DEN/DER/SPEx, 13108 Saint Paul-lez-Durance (France)

    2009-07-01

    This paper deals with experiments in the Minerve pool Zero Power Reactor. Minerve is mainly devoted to neutronics studies, in view to improve the calculation routes by reducing the uncertainties of the experimental databases for nuclides arising in plutonium and wastes management. Minerve experimental measurement programs are performed by using the oscillation technique. This experimental technique consists in a periodic insertion and extraction of samples containing the nuclide of interest in a well characterized neutron spectrum. The reactivity variation of the sample is compensated by a calibrated rotary automatic pilot using cadmium sectors. The normal accuracy for measurements of small-worth samples in Minerve by using such a technique is about 3% for absolute reactivity worth, including the uncertainties on the material balance and on the calibration step. Reactivity effects of less than 1.5 cent can be measured. The OSMOSE and the OCEAN programs have been carried out since 2005 and will last until 2011. These programs aim at improving, in different neutron spectra, the absorption cross sections of respectively a majority of the separated heavy nuclides from {sup 232}Th to {sup 245}Cm appearing during the reactor and the fuel cycle physics, and of current and future types of absorbers as Gd, Hf, Er, Dy and Eu. (authors)

  4. Experimental simulation and numerical modeling of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhtin, V.P.; Konkashbaev, I.; Landman, I.; Safronov, V.M.; Toporkov, D.A.; Zhitlukhin, A.M.

    1995-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and are experimentally analyzed at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. ((orig.))

  5. ITER safety and operational scenario

    International Nuclear Information System (INIS)

    Shimomura, Y.; Saji, G.

    1998-01-01

    The safety and environmental characteristics of ITER and its operational scenario are described. Fusion has built-in safety characteristics without depending on layers of safety protection systems. Safety considerations are integrated in the design by making use of the intrinsic safety characteristics of fusion adequate to the moderate hazard inventories. In addition to this, a systematic nuclear safety approach has been applied to the design of ITER. The safety assessment of the design shows how ITER will safely accommodate uncertainties, flexibility of plasma operations, and experimental components, which is fundamental in ITER, the first experimental fusion reactor. The operation of ITER will progress step by step from hydrogen plasma operation with low plasma current, low magnetic field, short pulse and low duty factor without fusion power to deuterium-tritium plasma operation with full plasma current, full magnetic field, long pulse and high duty factor with full fusion power. In each step, characteristics of plasma and optimization of plasma operation will be studied which will significantly reduce uncertainties and frequency/severity of plasma transient events in the next step. This approach enhances reliability of ITER operation. (orig.)

  6. Radiation protection monitoring at the JOYO experimental fast reactor

    International Nuclear Information System (INIS)

    Ouchi, S.; Endo, K.; Susaki, T.

    1979-01-01

    This paper describes the radiation protection monitoring programme for the JOYO experimental fast reactor and some of the health physics problems experienced during the low-power nuclear tests. These include: a detailed description of the centralized radiation monitoring system; the methods and results of the individual monitoring systems; the results of operational monitoring for the handling of new plutonium fuel subassemblies; the evaluation of the external radiation dose rate around the primary coolant system; and the results of an experiment on the thermal dependence of some personnel dose meters. (author)

  7. Experience with EBR-II [Experimental Breeder Reactor] driver fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Porter, D.L.; Walters, L.C.; Hofman, G.L.

    1986-01-01

    The exceptional performance of Experimental Breeder Reactor-II (EBR-II) metallic driver fuel has been demonstrated by the irradiation of a large number of elements under steady-state, transient overpower, and loss-of-flow conditions. High burnup with high reliability has been achieved by a close coupling of element design and materials selection. Quantification of reliability has allowed full utilization of element lifetime. Improved design and duct materials currently under test are expected to increase the burnup from 8 to 14 at.%

  8. Experimental power reactor dc generator energy storage study

    International Nuclear Information System (INIS)

    Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

    1978-01-01

    This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection

  9. Theoretical and experimental analysis of fast reactor fuel performance

    International Nuclear Information System (INIS)

    Kummerer, K.R.; Freund, D.; Steiner, H.

    1982-09-01

    In order to predict behavior, performance, and capability of prototypic fuel pins a standard operational scheme for the SNR-300 fast breeder reactor is established considering besides normal operation unscheduled power changes and shutdowns. The behavior during the whole lifetime is calculated using the updated SATURN codes and - for special conditions as power transients and skewed fuel rod power - the new TRANSIENT and TEXDIF codes. The results of these calculations are compared to experimental findings. It is demonstrated that the level of modeling and the knowledge of material properties under irradiation are sufficient for a quantitative description of the fuel pin performance under the above mentioned conditions. (orig.) [de

  10. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  11. The ITER reduced cost design

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    Six years of joint work under the international thermonuclear experimental reactor (ITER) EDA agreement yielded a mature design for ITER which met the objectives set for it (ITER final design report (FDR)), together with a corpus of scientific and technological data, large/full scale models or prototypes of key components/systems and progress in understanding which both validated the specific design and are generally applicable to a next step, reactor-oriented tokamak on the road to the development of fusion as an energy source. In response to requests from the parties to explore the scope for addressing ITER's programmatic objective at reduced cost, the study of options for cost reduction has been the main feature of ITER work since summer 1998, using the advances in physics and technology databases, understandings, and tools arising out of the ITER collaboration to date. A joint concept improvement task force drawn from the joint central team and home teams has overseen and co-ordinated studies of the key issues in physics and technology which control the possibility of reducing the overall investment and simultaneously achieving the required objectives. The aim of this task force is to achieve common understandings of these issues and their consequences so as to inform and to influence the best cost-benefit choice, which will attract consensus between the ITER partners. A report to be submitted to the parties by the end of 1999 will present key elements of a specific design of minimum capital investment, with a target cost saving of about 50% the cost of the ITER FDR design, and a restricted number of design variants. Outline conclusions from the work of the task force are presented in terms of physics, operations, and design of the main tokamak systems. Possible implications for the way forward are discussed

  12. Tasks related to increase of RA reactor exploitation and experimental potential, 03. Crane for handling the vertical experimental channels of the RA reactor - design project

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    Within the work related to improvement of experimental potential of the RA reactor, this document describes the design project of the new crane for handling the vertical experimental channels of the RA reactor, engineering drawings of the crane main elements, mechanical part, design project of the electrical part of the crane and cost estimation

  13. Experimental studies of tritium barrier concepts for fusion reactors

    International Nuclear Information System (INIS)

    Maroni, V.A.; Van Deventer, E.H.; Renner, T.A.; Pelto, R.H.; Wierdak, C.J.

    1976-01-01

    Ongoing experimental studies at ANL aimed at the development of methods to reduce tritium migration in fusion reactor systems currently include (1) work on the development of multilayered metal composites and impurity-coated refractory metals as barriers to tritium permeation in elevated temperature (greater than 300 0 C) structures and (2) investigations of the kinetics of tritium trapping reactions in inert gas purge streams under conditions that emulate fusion reactor environments. Significant results obtained thus far are (1) demonstration of greater than 50-fold reductions in the hydrogen permeability of stainless steel structures by using stainless steel-clad composites containing an intermediate layer of a selected copper alloy and (2) verification that surface-oxide coatings lead to greater than 100-fold reductions in the hydrogen permeability of vanadium, but that severe oxygen penetration and embrittlement of the vanadium occur at temperatures in the range from 300 to 800 0 C and under conditions of extremely low oxygen potential. Other considerations pertaining to the large-scale use of metal composites in fusion reactors are discussed, and progress in efforts to demonstrate the fabricability of metal composites is reviewed. Also presented are results of studies of the efficiencies of (1) CuO and CuO--MnO 2 beds in converting HT to HTO and (2) magnesium metal beds in converting HTO to HT

  14. Conceptual design study of fusion experimental reactor (FY86FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Yamamoto, Shin; Ohara, Yoshihiro; Watanabe, Kazuhiro; Mizuno, Makoto; Araki, Masanori; Uede, Taisei; Okano, Kunihiko.

    1987-09-01

    This report describes the results of applicability studies for the negative ion-based neutral beam injector to the Fusion Experimental Reactor (FER). The operation scenario of FER has been proposed to adopt the neutral injection method as one of candidates, which has three functions of heating, current drive and profile control. One of the fundamental requirements is the tangential injection of the neutral beam. For neutral beam injectors, three port sections are available. Supposing to adopt the beam line with the straight long neutralizer which has been designed in JAERI, the geometrical arrangement was determined so as to avoid any trouble to the reactor structure. The conceptual study for major components which compose the beam line system was carried out including the estimation of the neutron streaming. The power supply system was studied also and the work was concentrated on the acceleration power supply which requires the output voltage of 500 kV and fast cut-off time. A basic concept, in which a inverter with a AC switch is used and the frequency of the supplied AC line is increased was proposed. In these works, the configuration of the neutral beam injection system was detailed and it was shown that the beam line seems to be well implemented with the geometrical constraints related to the reactor configuration. (author)

  15. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  16. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  17. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-01-01

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF

  18. US ITER limiter module design

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology

  19. ITER merges energies in Provence

    International Nuclear Information System (INIS)

    Barla, J.Ch.

    2009-01-01

    The works around the Cadarache site where the experimental nuclear fusion reactor ITER is to be built have already generated about 366 million euros of contracts and provisions with French companies by September 30, 2009. The advance of the project should bring 3000 to 4000 persons more around the site but the Provence region suffers from the lack of a real projected management of employment and skills. (J.S.)

  20. Japan: The Experimental Fast Reactor JOYO. Profile 12

    International Nuclear Information System (INIS)

    2017-01-01

    The experimental fast reactor JOYO of the Japan Atomic Energy Agency (JAEA) is the first sodium-cooled fast reactor (SFR) in Japan. JOYO attained its initial criticality as a breeder core (MK-I core) in 1977. During the MK-I operation, which consisted of two 50 MWt and six 75 MWt duty cycles, the basic characteristics of plutonium (Pu) and uranium (U) mixed oxide (MOX) fuel core and sodium cooling system were investigated and the breeding performance was verified. In 1983, the reactor increased its thermal output up to 100 MWt in order to start the irradiation tests of fuels and materials to be used mainly for other SFRs. Thirty-five duty cycle operations and many irradiation tests were successfully carried out using the MK-II core by 2000. The core was then modified to the MK-III core in 2003. In order to obtain higher fast neutron flux, the core was modified from one region core to two region core with different Pu fissile contents. Accordingly, the reactor power increased up to 140 MWt together with a renewal of intermediate heat exchangers (IHXs) and dump heat exchangers (DHXs). The rated power operation of the MK-III core started in 2004. The MK-III core has been used for the irradiation tests of fuels and materials for future SFRs and other R&D fields like innovative nuclear energy systems and technologies as well. This powerful neutron irradiation flux has an advantage especially for high burn-up fuel irradiation and material irradiation with high neutron dose. This paper shows the outline of the irradiation irradiation irradiation irradiation irradiation capabilities and capacities to develop capabilities and capacities to develop capabilities and capacities to develop capabilities and capacities to develop innovative nuclear energy systems and technologies.

  1. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  2. ITER conceptual design

    International Nuclear Information System (INIS)

    Tomabechi, K.; Gilleland, J.R.; Sokolov, Yu.A.; Toschi, R.

    1991-01-01

    The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut fuer Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities. (author). Refs, figs and tabs

  3. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huget, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.; Shimada, M.; Aymar, R.; Chuyanov, V.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first 10 years' operation will be devoted primarily to physics issues at low neutron fluence and the following 10 years' operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes such as inductive high Q modes, long pulse hybrid modes, non-inductive steady-state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours per day but also in involving the world-wide fusion communities and in promoting scientific competition among the Parties. (author)

  4. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  5. Experimental investigation of creep behavior of reactor vessel lower head

    International Nuclear Information System (INIS)

    Chu, T.Y.; Pilch, M.; Bentz, J.H.; Behbahani, A.

    1998-03-01

    The objective of the USNRC supported Lower Head Failure (LHF) Experiment Program at Sandia National Laboratories is to experimentally investigate and characterize the failure of the reactor pressure vessel (RPV) lower head due to the thermal and pressure loads of a severe accident. The experimental program is complemented by a modeling program focused on the development of a constitutive formulation for use in standard finite element structure mechanics codes. The problem is of importance because: lower head failure defines the initial conditions of all ex-vessel events; the inability of state-of-the-art models to simulate the result of the TMI-II accident (Stickler, et al. 1993); and TMI-II results suggest the possibility of in-vessel cooling, and creep deformation may be a precursor to water ingression leading to in-vessel cooling

  6. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    Directory of Open Access Journals (Sweden)

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  7. The human factors and the safety of experimentation reactors

    International Nuclear Information System (INIS)

    Jeffroy, F.; Delaporte-Normier, M.L.

    2007-01-01

    Inside IRSN (Institute for Radiological protection and Nuclear Safety), the mission of the Human Factors Group is to assess the way operators of nuclear installations take into account the risks related to human activities. In the last few years, IRSN has been involved in the safety analysis of different installations where Cea develops research programs, in particular experimental reactors. The first part of this article presents the methodology used by IRSN to evaluate how operators take into account risks related to human activities. This methodology is made up of 4 steps: 1) the identification of the human activities that convey a risk for the installation nuclear safety (safety-sensitive activities), for instance in the case of the Masurca reactor, it has been shown that errors made during the manufacturing of fuel tubes can lead to a criticality accident; 2) listing all the dispositions or arrangements taken to make human safety-sensitive activities more reliable; 3) checking the efficiency of such dispositions or arrangements; and 4) assessing the ability of the operators to generate the adequate dispositions or arrangements. The second part highlights the necessity to develop inside these research installations an organisation that facilitates cooperation between experimenters and operators

  8. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Seokho H.; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  9. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  10. Primary system thermal-hydraulic simulation of a experimental pool type research fast reactor

    International Nuclear Information System (INIS)

    Borges, E.M.; Braz Filho, F.A.

    1993-01-01

    The first step of the Fast Reactor Program (REARA) is the design of an experimental reactor. To this end a 5 MW t pool type reactor was adapted. The objective of this work is to evaluate the reactor behaviour at the on set protected accidents. The program NALAP was used in this study and the results showed the outstanding safety margins that this reactor type presents inherently. (author)

  11. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    International Nuclear Information System (INIS)

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  12. ITER concept definition. V.1

    International Nuclear Information System (INIS)

    1989-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA), an agreement among the four parties representing the world's major fusion programs resulted in a program for conceptual design of the next logical step in the fusion program, the International Thermonuclear Experimental Reactor (ITER). The definition phase, which ended in November, 1989, is summarized in two reports: a brief summary is contained in the ITER Definition Phase Report (IAEA/ITER/DS/2); the extended technical summary and technical details of ITER are contained in this two-volume report. The first volume of this report contains the Introduction and Summary, and the remainder will appear in Volume II. In the Conceptual Design Activities phase, ITER has been defined as being a tokamak device. The basic performance parameters of ITER are given in Volume I of this report. In addition, the rationale for selection of this concept, the performance flexibility, technical issues, operations, safety, reliability, cost, and research and development needed to proceed with the design are discussed. Figs and tabs

  13. Experimental measurements in the BYU controlled profile reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.; Black, D.l.; Rigby, J.R.; McQuay, M.Q.; Webb, B.W. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

    1998-09-01

    Over the past decade the Controlled Profile Reactor (CPR) has been used to obtain extensive combustion data sets. CPR is a small scale (0.2-0.4 MW) combustion facility that has been used to obtain data for model validation, the testing of new combustion concepts, and the development of new combustion instruments. This review of the past ten years of research completed in the CPR includes a description of the reactor and instrumentation used, a summary of three experimental data sets which have been obtained in the reactor, and a description of novel tests and instrumentation. Measurements obtained include gas species, gas temperature, particle velocity, particle size, particle number density, particle-cloud temperature profiles, radiation and total heat flux to the wall, and wall temperatures. Species data include the measurement of CO, CO{sub 2}, NO, NO{sub x}, O{sub 2}, NH{sub 3} and HCN. The three combustion studies included one with natural gas combustion in a swirling flow, and two pulverized-coal combustion studies involving Utah Blind Canyon and Pittsburgh No. 8 coals. Most, but not all of the above measurements were obtained in each study. The second coal study involving the Pittsburgh No. 8 coal contained the most complete set of data and is described in detail. Novel combustion instrumentation includes the use of Coherent Anti-Stokes Raman Spectroscopy (CARS) to measure gas temperature. Novel combustion experiments include the measurement of NO{sub x} and burnout with coal-char blends. The measurements have led to an improved understanding of the combustion process and an understanding of the strengths and weaknesses associated with different aspects of comprehensive combustion models. 67 refs., 26 figs., 9 tabs.

  14. Construction Safety Forecast for ITER

    Energy Technology Data Exchange (ETDEWEB)

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  15. Establishment of ITER: Relevant documents

    International Nuclear Information System (INIS)

    1988-01-01

    At the Geneva Summit Meeting in November, 1985, a proposal was made by the Soviet Union to build a next-generation tokamak experiment on a collaborative basis involving the world's four major fusion blocks. In October, 1986, after consulting with Japan and the European Community, the United States responded with a proposal on how to implement such an activity. Ensuing diplomatic and technical discussions resulted in the establishment, under the auspices of the IAEA, of the International Thermonuclear Experimental Reactor Conceptual Design Activities. This tome represents a collection of all documents relating to the establishment of ITER, beginning with the initial meeting of the ITER Quadripartite Initiative Committee in Vienna on 15-16 March, 1987, through the meeting of the Provisional ITER Council, also in Vienna, on 8-9 February, 1988

  16. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Okano, Kunihiko; Miyamoto, Kazuhiro.

    1987-09-01

    This report describes the results of a conceptual study on the RF system in the typical candidates for the Fusion Experimental Reactor (FER), which were picked out through the '86FER scoping studies. According to the FER operation scenario, three RF systems, that is, ICRF (heating), LHRF (current drive and heating), ECRF (auxiliary heating) were studied. Main concern in these RF systems is the launcher, which may be so designed that required power match the geometrical constraints of the reactor. Then studies were concentrated on the launcher configuration. A prug-in concept of the launcher was adopted in each system and vacancies except transmission space were filled with water. The ICRF launcher had the 2 x 2 loop arrays antenna and the faraday shield area of 1.5 m x 1 m to provide a power of 20 MW. The LHRF launcher had the grillantenna with 28 x 8 open waveguides, and included multi junction-type power splitters which were connected to 56 transmission wave guides. The grild was designed to have two functions of current drive and heating, and provide a power of 20 MW each. The ECRF launcher had a boundle of open wave guides which a reflection mirror each, and three plain mirrors. Assuming a oscillator unit size of 200 kW, it had 40 oversized wave guides to provide a power of 3 MW. (author)

  17. Oak Ridge Tokamak experimental power reactor study scoping report

    International Nuclear Information System (INIS)

    Roberts, M.

    1977-03-01

    This report presents the scoping studies performed as the initial part of the program to produce a conceptual design for a Tokamak Experimental Power Reactor (EPR). The EPR as considered in this study is to employ all systems necessary for significant electric power production at continuous high duty cycle operation; it is presently scheduled to be the final technological step before a Demonstration Reactor Plant (Demo). The scoping study tasks begin with an exploration and identification of principal problem areas and then concentrate on consideration and evaluation of alternate design choices for each of the following major systems: Plasma Engineering and Physics, Nuclear, Electromagnetics, Neutral Beam Injection, and Tritium Handling. In addition, consideration has been given to the integration of these systems and requirements arising out of their incorporation into an EPR. One intent of this study is to document the paths explored in search of the appropriate EPR characteristics. To satisfy this intent, the explorations are presented in chart form outlining possible options in key areas with extensive supporting footnotes. An important result of the scoping study has been the development and definition of an EPR reference design to serve as (1) a common focus for the continuing design study and (2) a guide for associated development programs. In addition, the study has identified research and development requirements essential to facilitate the successful conceptual design, construction, and operation of an EPR

  18. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Tang, Jie [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial

  19. Main activities in Kazakhstan aimed to substantiate ITER and demo reactors safety

    International Nuclear Information System (INIS)

    Shestakov, V.; Chikhray, Y.; Tazhibayeva, I.; Kenzhin, Ye.; Dzhakishev, M.; Goryaev, G.; Gagarin, A.; Shakhvorostov, Yr.; Savchuk, V.

    2004-01-01

    The first stage of such activity is examinations of physicochemical properties of compact beryllium. This work is carrying out Ulba Plant - worl known beryllium producer. Quality control of compact beryllium products includes step-by-step operational control and attestation control of final products for compliancy with customer's requirements. Step-by-step control is carried out along the whole production process and includes the control of the following: temperature, pressure, duration of the process and other process parameter, listed in the in-plant documentation; quality of intermediate semi products (chemical, physical and mechanical properties, defects, appearance, dimension, etc). The process control is carried out by personnel and by an independent inspection service. The attestation control of final products is carried out for compliancy of products with requirement of consumers and includes the following: chemical analysis, mechanical testing, radiographic testing, ultrasonic testing, appearance inspection, dimension inspection, density testing, and metallographic inspection. The attestation control is carried out by a special service independent of technologists. This is the service that makes a final report on the compliancy of the product with requirements of customers and gives permission for shipping the products. The process and attestation control is carried out with the use of equipment, apparatuses and devices, which are checked regularly by special instrumentation service. If they do not meet the requirements in precision, reliability and stability they are removed from service and not approved for measurements. Methods of control of specific values and characteristics, the apparatuses used and allowed classes of accuracy are specified in state standards, tensile specifications of products and in-plant standards or in agreements between a producer and a customer. The next stage will be manufacturing of mock-ups of reactor's first wall elements

  20. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu.

    1987-08-01

    This report describes the study on safety for FER(Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. This report consists of two chapters. The first chapter of this report summaries the FER system and describes FMEA(Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including the purification, isotope separation system and storage system. Here, probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA. (author)

  1. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  2. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m 2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  3. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  4. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  5. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  6. Thermo-mechanical analysis of an acceleration grid for the international thermonuclear experimental reactor-neutral beam injection system

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Hanada, Masaya; Okumura, Yoshikazu; Suzuki, Satoshi; Watanabe, Kazuhiro

    2001-01-01

    In the engineering design of a negative-ion beam source for a high-power neutral beam injection (NBI) system, one of the most important issues is thermo-mechanical design of acceleration grids for producing several tens of MW ion beams. An acceleration grid for the international thermonuclear experimental reactor-neutral beam injection (ITER-NBI) system will be subjected to the heat loading as high as 1.5 MW. In the present paper, thermo-mechanical characteristics of the acceleration grid for the ITER-NBI system were analyzed. Numerical simulation indicated that maximum aperture-axis displacement of the acceleration grid due to thermal expansion would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens theory of beam optics, beamlet deflection angle by the aperture-axis displacement was estimated to be about 2 mrad, which is within the requirement of the engineering design of the ITER-NBI system. Numerical simulation also indicated that no melting on the acceleration grid would occur for a heat loading of 1.5 MW, while local plastic deformation would happen. To avoid the plastic deformation, it is necessary to reduce the heat loading onto the acceleration grid to less than 1 MW

  7. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  8. Experimental assessment of computer codes used for safety analysis of integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Falkov, A.A.; Kuul, V.S.; Samoilov, O.B. [OKB Mechanical Engineering, Nizhny Novgorod (Russian Federation)

    1995-09-01

    Peculiarities of integral reactor thermohydraulics in accidents are associated with presence of noncondensable gas in built-in pressurizer, absence of pumped ECCS, use of guard vessel for LOCAs localisation and passive RHRS through in-reactor HX`s. These features defined the main trends in experimental investigations and verification efforts for computer codes applied. The paper reviews briefly the performed experimental investigation of thermohydraulics of AST-500, VPBER600-type integral reactors. The characteristic of UROVEN/MB-3 code for LOCAs analysis in integral reactors and results of its verification are given. The assessment of RELAP5/mod3 applicability for accident analysis in integral reactor is presented.

  9. Feasibility studies on plasma vertical position control by ex-vessel coils in ITER-like tokamak fusion reactors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sugihara, Masayoshi; Shimomura, Yasuo

    1993-01-01

    Feasibility of the plasma vertical position control by control coils installed outside the vacuum vessel (ex-vessel) in a tokamak fusion reactor is examined for an ITER-like device. When a pair of ex-vessel control coils is made of normal conductor material and located near the outmost superconducting (SC) poloidal field (PF) coils, the applied voltage of several hundred volts on the control coils is the maximum allowable value which is limited by the maximum allowable induced voltage and eddy current heating on the SC PF coils, under the conditions that the SC PF coils are connected in series and a partitioning connection is employed for each of these PF coils. A proportional and derivative (PD) controller with and without voltage limitation has been employed to examine the feasibility. Indices of settling time and overshoot are introduced to measure the controllability of the control system. Based on these control schemes and indices, higher elongation (κ=2) and moderate elongation (κ=1.6) plasmas are examined for normal and deteriorated (low beta value and peaked current profile) plasma conditions within the restriction of applied voltage and current of control coils. The effect of the time constant of the passive stabilizer is also examined. The major results are: (1) A plasma with an elongation of 2.0 inevitably requires a passive stabilizer close to the plasma surface, (2) in case of a higher elongation than κ=2, even the ex-vessel control coil system is marginally controllable under normal plasma conditions, while it is difficult to control the deteriorated plasma conditions, (3) the time constant of the passive stabilizer is not an essential parameter for the controllability, (4) when the elongation is reduced down to 1.6, the ex-vessel control coil system can control the plasma even under deteriorated plasma conditions. (orig.)

  10. On the hydraulic behaviour of ITER Shield Blocks #14 and #08. Computational analysis and comparison with experimental tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul, Lez Durance (France); Vallone, E., E-mail: eug.vallone@gmail.com [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128, Palermo (Italy)

    2016-11-01

    Highlights: • A benchmarking activity has been carried out focusing the attention on the cooling circuits of ITER Shield Blocks #08 and #14. • A theoretical-computational fluid-dynamic approach based on the Finite Volume Method has been followed, adopting a commercial code. • Hydraulic characteristic functions and spatial distributions of coolant mass flow rate, velocity and pressure drop have been assessed. • Results obtained have allowed code benchmarking for Blanket modules and the numerical predictions have been found to be generally lower than but quite close to the experimental results (lower than 10%). - Abstract: As a consequence of its position and functions, the ITER blanket system will be subjected to significant heat loads under nominal reference conditions. Therefore, the design of its cooling system is particularly demanding. Coolant water is distributed individually to the 440 blanket modules (BMs) through manifold piping, which makes it a highly parallelized system. The mass flow rate distribution is finely tuned to meet all operation constraints: adequate margin to burn out in the plasma facing components, even distribution of water flow among the so-called plasma-facing “fingers” of the Blanket First Wall panels, high enough water flow rate to avoid excessive water temperature in the outlet pipes, maximum allowable water velocity lower than 7 m/s in manifold pipes. Furthermore the overall pressure drop and flow rate in each BM shall be within the fixed specified design limit to avoid an unduly unbalance of cooling among the 440 modules. Analyses have to be carried out following a computational fluid-dynamic (CFD) approach based on the finite volume method and adopting a CFD commercial code to assess the thermal-hydraulic behaviour of each single circuit of the ITER blanket cooling system. This paper describes the code benchmarking needed to determine the best method to get reliable and timely results. Since experimental tests are

  11. Investigation on bonding defects in ITER first wall beryllium armour components by combining analytical and experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Germán, E-mail: german.perez.pichel@gmail.com; Mitteau, Raphaël; Eaton, Russell; Raffray, René

    2015-12-15

    Highlights: • Bonding defects at the ITER first wall beryllium armour are studied. • Experimental and analytical methods are combined. • Models supporting test results interpretation are proposed. • Guidelines for new experimental protocols are suggested. • Contribution to the definition of defects acceptance criteria. - Abstract: The reliability of the plasma facing components (PFCs) is essential for the efficient plasma operation in a fusion machine. This concerns especially the bond between the armour tiles facing the plasma and the heat sink material (copper alloy). The different thermal expansions of the bonded materials cause a stress distribution in the bond, which peaks at the bond edge. Under cyclic heat flux and accounting for the possible presence of bonding defects, this stress could reach a level where the component might be jeopardised. Because of the complexity of describing realistically by analyses and models the stress evolution in the bond, “design by experiments” is the main procedure for defining and qualifying the armour joint. Most of the existing plasma operation know-how on actively cooled PFCs has been obtained with carbon composite armour tiles. In ITER, the tiles of the first wall are made out of beryllium, which means that the know-how is progressively adapted to this specific bimetallic pair. Nonetheless, analyses are still performed for supporting the R&D experimental programme. This paper: explores methods for combining experimental results with finite element and statistical analyses; benchmarks test results; proposes hypothesis and rationales consistent with test results interpretations; suggests guidelines for defining possible further experimental protocols; and contributes to the definition of defects acceptance criteria.

  12. Investigation on bonding defects in ITER first wall beryllium armour components by combining analytical and experimental methods

    International Nuclear Information System (INIS)

    Pérez, Germán; Mitteau, Raphaël; Eaton, Russell; Raffray, René

    2015-01-01

    Highlights: • Bonding defects at the ITER first wall beryllium armour are studied. • Experimental and analytical methods are combined. • Models supporting test results interpretation are proposed. • Guidelines for new experimental protocols are suggested. • Contribution to the definition of defects acceptance criteria. - Abstract: The reliability of the plasma facing components (PFCs) is essential for the efficient plasma operation in a fusion machine. This concerns especially the bond between the armour tiles facing the plasma and the heat sink material (copper alloy). The different thermal expansions of the bonded materials cause a stress distribution in the bond, which peaks at the bond edge. Under cyclic heat flux and accounting for the possible presence of bonding defects, this stress could reach a level where the component might be jeopardised. Because of the complexity of describing realistically by analyses and models the stress evolution in the bond, “design by experiments” is the main procedure for defining and qualifying the armour joint. Most of the existing plasma operation know-how on actively cooled PFCs has been obtained with carbon composite armour tiles. In ITER, the tiles of the first wall are made out of beryllium, which means that the know-how is progressively adapted to this specific bimetallic pair. Nonetheless, analyses are still performed for supporting the R&D experimental programme. This paper: explores methods for combining experimental results with finite element and statistical analyses; benchmarks test results; proposes hypothesis and rationales consistent with test results interpretations; suggests guidelines for defining possible further experimental protocols; and contributes to the definition of defects acceptance criteria.

  13. Experimental analysis of flowrates distribution features in double-loop reactor channels

    International Nuclear Information System (INIS)

    Avdeev, E.F.; Chusov, I.A.

    2013-01-01

    Experimental data on the flowrate distribution in working channels dummies of a research reactor model with double-loop configuration are presented in the paper. The procedures of experiments and received experimental data processing are provided in details [ru

  14. Regulation for installation and operation of experimental-research reactor

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is stipulated under the Law for regulation of nuclear raw materials, nuclear fuel materials and reactors and the provisions for installation and operation of reactor in the order for execution of the law. Basic concepts and terms are defined, such as, radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; preserved area; inspected surrounding area and employee. An application for permission of installation of reactor shall list such matters as: the maximum continuous thermal output of reactor; location and general construction of reactor facilities; construction and equipment of the main reactor and other facilities for nuclear fuel materials; cooling and controlling system and radioactive waste, etc. An operation plan of reactor for three years shall be filed till January 31 of the fiscal year preceding that one the operation begins. Records shall be made and kept for specified periods respectively on inspection of reactor facilities, operation, fuel assembly, radiation control, maintenance, accidents of reactor equipment and weather. Detailed rules are settled for entrance limitation to controlled area, exposure dose, inspection, check up and regular independent examination of reactor facilities, operation of reactor, transportation of substances contaminated by nuclear fuel materials within the works and storage, etc. (Okada, K.)

  15. JET contributions to ITER R and D programme

    International Nuclear Information System (INIS)

    Gambier, D.J.; Tubbing, B.J.D.

    1992-08-01

    This report contains the Joint European Torus Project (JET) contributions to the International Thermonuclear Experimental Reactor (ITER) related research and development programme 1991-1992. The contributions, from many JET authors, were gathered in May/June 1992, so that the results of the 1991/92 experimental campaign could be fully incorporated. The contributions are ordered according to the description of tasks of the ITER-related Physics Research and Development programme, described in document ITER-TN-PH-0-7, issued April 30, 1991. (Author)

  16. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.; Marcinkowska, Z.; Boettcher, A.; Prokopowicz, R. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Sireta, P.; Gonnier, C.; Bignan, G. [CEA, DEN, Reactor Studies Department, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Fourmentel, D.; Barbot, L.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C.; Brun, J. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Jagielski, J. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland); Luks, A. [Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland)

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to the qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from

  17. Engineering Design Activities (EDA) of the International Thermonuclear Experimental Reactor (ITER) Project: January 1993 progress report

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1994-01-01

    The task of selecting and assembling the Joint Central Team (JCT) is the authors top priority, and he has instructed the Deputy Directors and Division Heads to diligently pursue the selection of qualified team members. Several steps are involved in assembling the JCT: specification of posts, nomination of candidates, selection of team members, arrival and startup of work, and completion of secondment procedures. Only after these steps have been completed are staff able to take up their full responsibilities within the management structure of the JCT. Even then, a period of some months of acclimatization and adjustment may be required before the staff can be expected to work fully effectively

  18. Structural analysis of vacuum vessel and blanket support system for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Kitamura, Kazunori; Koizumi, Kouichi; Takatsu, Hideyuki; Tada, Eisuke; Shimane, Hideo.

    1996-11-01

    Structural analyses of vacuum vessel and blanket support system have been performed to examine their integrated structural behavior under the design loads and to assess their structural feasibility, with two kinds of three-dimensional (3-D) FEM models; a detailed model with 18deg sector region to investigate the detailed mechanical behaviors of the blanket and vessel components under the several symmetric loads, and a 180deg torus model with relatively coarser meshes to assess the structural responses under the asymmetric VDE load. The analytical results obtained by both models were also compared for the several symmetric loads to check the equivalent mechanical stiffness of the 180deg torus model. As the results, most of the vessel and blanket components have sufficient mechanical integrities with the stress level below the allowable limit of the materials, while the lower parts of inboard/outboard back plate need to be reinforced by increasing the thickness and/or mounting a toroidal ring support at the lower edge of the back plate. Two types of eigenvalue analyses were also conducted with the 180deg torus model to investigate natural frequencies of the vessel torus support system and to assess the mechanical integrity of the elastic stability under the asymmetric VDE load. Analytical results show that the mechanical stiffness of the vessel gravity support should be higher in the view point of a seismic response, and that those of the blanket support structures should also be increased for the buckling strength against the VDE vertical force. (author)

  19. Divertor impurity monitor for the International Thermonuclear Experimental Reactor

    Science.gov (United States)

    Sugie, T.; Ogawa, H.; Nishitani, T.; Kasai, S.; Katsunuma, J.; Maruo, M.; Ebisawa, K.; Ando, T.; Kita, Y.

    1999-01-01

    The divertor impurity monitoring system of the International Thermonuclear Experimental Reactor has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200-1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms, and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λthe transmission loss in fiber and in the diagnostic room (for λ⩾450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor.

  20. Design study of toroidal magnets for tokamak experimental power reactors

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.; Lucas, E.J.

    1976-12-01

    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed

  1. Conceptual design study of fusion experimental reactor (FY86FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Ishigaki, Yukio; Ozaki, Akira; Yamane, Minoru.

    1987-09-01

    This report describes the results of the capacity estimation for the electrical power system on the typical two candidates for the FER (Fusion Experimental Reactor) which were picked out through the process of '86 FER scoping studies. Main concern in the electrical systems is coil power supplies which have a capacity of about 1 GW, and this is dominated by poloidal coil power supplies. Then, studies to reduce the converter capacity are concentrated on the poloidal coil power system in relation to the sypplying poloidal flux at the initial phase of plasma ramp-up. A quench protection circuit was proposed on the toroidal coil power supply. On the position control power supply, a circuit with reasonable functions was proposed. Under these system studies, general specifications were determined and the capacity of each power supply unit was estimated. On the poloidal coil power supply system, the accumulated capacity of converters amounted to 885 MW for the one candidate and 782 MW for another. (author)

  2. Upgrade of the experimental facilities of the ORPHEE reactor

    International Nuclear Information System (INIS)

    Farnoux, B.; Breant, P.

    1993-01-01

    At the time of the design, the ORPHEE reactor has been equipped with a set of up-to-date experimental facilities such as nine tangential and horizontal beam holes, one hot source, two hydrogen cold sources and six neutron guides. After more than ten years of operations, all the neutron beams are now used by about twenty five spectrometers. A modernisation program is under progress with a two fold aim: upgrade of the existing facilities and creation of new beams. Some details of the six following points will be described: 1) replacement of the flat cold source cell by an hollow cylinder in order first to increase the cold neutron flux and secondly to facilitate the extraction of new cold neutron beams. 2) replacement of the old neutron guide elements coated with natural nickel by new elements with isotopic nickel or super mirror coating. 3) modification of the curvature of some existing neutron guides in order to increase the wavelength band transmission. 4) creation of new cold neutron beams by installation of benders on the existing neutron guides. 5) design of new cold neutron guides and a new guide hall. 6) design of a thermal neutron guide. The two last points will made extensive use of super mirrors allowed by new technical developments done at the Laboratoire LEON BRILLOUIN in connection with industry. (author)

  3. Beam heating requirements for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Bertoncini, P.J.; Brooks, J.N.; Fasolo, J.A.; Stacey, W.M. Jr.

    1976-01-01

    Typical beam heating requirements for effective tokamak experimental power reactor (TEPR) operation have been studied in connection with the Argonne preliminary conceptual TEPR design. For an ignition level plasma (approximately 100 MWt fusion power) for the nominal case envisioned, the neutral beam is only used to heat the plasma to ignition. This typically requires a beam power output of 40 MW at 180 keV for about 3 sec with a total energy of 114 MJ supplied to the plasma. The beam requirements for an ignition device are not very sensitive to changes in wall-sputtered impurity levels or plasma resistivity. For a plasma that must be driven due to poor confinement, the beam must remain on for most of the burn cycle. For representative cases, beam powers of approximately 23 MW are required for a total on-time of 20 to 50 sec. Reqirements on power level, beam energy, on-time, and beam-generation efficiency all represent considerable advances over present technology. For the Argonne TEPR design, a total of 16 to 32 beam injectors is envisioned. For a 40-MW, 180-keV, one-component beam, each injector supplies about 7 to 14 A of neutrals to the plasma. For positive ion sources, about 50 to 100 A of ions are required per injector and some form of particle and/or energy recycling appears to be essential in order to meet the power and efficiency requirements

  4. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  5. Tokamak experimental power reactor conceptual design. Volume I

    International Nuclear Information System (INIS)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters

  6. Materials challenges for ITER - Current status and future activities

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, V. [ITER International Team, Boltsmannstrasse 2, 85748 Garching (Germany)]. E-mail: valdimir.barabash@iter.org; Peacock, A. [EFDA Close Support Unit, 85748 Garching (Germany); Fabritsiev, S. [D.V. Efremov Scientific Research Institute, 196641 St. Petersburg (Russian Federation); Kalinin, G. [ENES, P.O. Box 788, 101000 Moscow (Russian Federation); Zinkle, S. [Metals and Ceramics Division, ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6138 (United States); Rowcliffe, A. [Metals and Ceramics Division, ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6138 (United States); Rensman, J.-W. [NRG, P.O. Box 25, 1755 ZG Petten (Netherlands); Tavassoli, A.A. [Commissariat a l' Energie Atomique, CEA/Saclay, 91191 Gif sur Yvette cedex (France); Marmy, P. [CRPP, EPFL, Association EURATOM-Confederation Suisse, 5232, Villigen PSI (Switzerland); Karditsas, P.J. [EURATOM/UKAEA Fusion Association, Abingdon, Oxon OX14 3DB (United Kingdom); Gillemot, F. [AEKI Atomic Research Institute, 1121 Budapest, (Hungary); Akiba, M. [JAEA, Naka-machi, Naka-gun, Ibaraki-ken 311-0193 (Japan)

    2007-08-01

    ITER will be the first experimental fusion facility, which brings together the key physical, material and technological issues related to development of fusion reactors. The design of ITER is complete and the construction will start soon. This paper discusses the main directions of the project oriented materials activity and main challenges related to selection of materials for the ITER components. For each application in ITER the main materials issues were identified and these issues were addressed in the dedicated ITER R and D program. The justification of materials performance was fully documented, which allows traceability and reliability of design data. Several examples are given to illustrate the main achievements and recommendations from the recently updated ITER Materials Properties Handbook. The main ongoing and future materials activities are described.

  7. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  8. Outline and status of ITER program

    International Nuclear Information System (INIS)

    Kishimoto, Hiroshi; Shimomura, Yasuo

    2002-01-01

    ITER is an international joint program for the next-step fusion experimental reactor which aims to demonstrate extended/steady-state fusion burn of deuterium-tritium plasmas and to demonstrate the fusion technologies in an integrated manner as well as to perform integrated testing of components required to utilize fusion energy for practical purposes. On the basis of the recent scientific and engineering achievements in the world-wide tokamak research, the Engineering Design Activities for nine years were fully completed in July 2001. The so-called compact ITER with a finite Q≥10 was proposed and its detailed engineering design was developed along the line of world fusion research. Large scale engineering research and development were completed for superconducting coils, remote-maintenance technology, etc.. The four ITER Parties (Japan, the European Union, the Soviet Federation, and Canada) have initiated the governmental negotiations for the joint implementation of ITER. (author)

  9. The Canadian initiative to host the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Dautovich, D.P.; James, R.A.

    1995-01-01

    At the time of the conference, the Canadian Nuclear Fuels Technology Project was making an innovative proposal whereby Ontario Hydro would provide space at its Darlington or Bruce sites as potential sites for the ITER project. An economic impact analysis, conducted by Ernst and Young, showed the potential economic benefits to Canada; other benefits could rather be considered to be scientific and technological benefits. A stable electrical supply grid, existing waste management infrastructure, an abundance of cheap power, and a skilled workforce, made Canada an attractive prospect. ITER, whatever its location, would require all of Ontario Hydro's tritium. Canada was attractive as a neutral siting alternative, and had gained early Russian support

  10. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions in the LVR-15 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, Jan [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Entler, Slavomir, E-mail: slavomir.entler@cvrez.cz [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Vsolak, Rudolf; Klabik, Tomas [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Zlamal, Ondrej [CEZ, Duhova 2/1444, 140 53 Praha 4 (Czech Republic); Bellin, Boris; Zacchia, Francesco [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Irradiated thermal fatigue testing of the ITER primary first wall mock-ups. • Cyclic heat flux of 0.5 MW/m{sup 2} in the neutron field of the nuclear reactor core. • 17,040 thermal cycles. • Radiation damage in the range of 0.41–1.17 dpa depending on the material. - Abstract: The TW3 in-pile rig enabled the thermal fatigue testing of ITER primary first wall mock-ups in the core of the nuclear reactor. This experiment investigated the neutron irradiation influence on the design performance under high heat flux testing. A thermal flux of 0.5 MW/m{sup 2} in the neutron field of the core of the LVR-15 nuclear reactor was applied. Within the scope of the tests with simultaneous neutron irradiation, the TW3 rig reached a record of 17,040 thermal cycles with the radiation damage in the range of 0.41–1.17 dpa depending on the material. Even after a high number of thermal cycles, while being irradiated by neutrons, no damage of the tested mock-ups was visually observed. Further testing and analysis will follow in the Forschungszentrum Juelich.

  11. Development and experimental study of beryllium window for ITER radial X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Guangxu [Materion Brush (United States); Chen, Kaiyun; Chen, Yebin; Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Liqun, E-mail: lqhu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Niu, Luying; Sheng, Xiuli; Cheng, Yong; Lu, Kun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-12-15

    Highlights: • The thickness of the beryllium foil is chosen as 80 μm to guarantee its safety under high pressure differential in accident events. • Using low purity of beryllium as the transition material, the effect of thermal stress caused by diffusion bonding process can be reduced. • Sealing ring and honeycomb-like supports are designed and used in the mechanical clamped beryllium window to enhance its sealing and safety performance. • The beryllium windows have good performance under severe working conditions like high temperature baking, vibration or impact load. -- Abstract: Radial X-ray camera (RXC) is a diagnostic device planned to be installed in the ITER Equatorial Port no. 12. Beryllium window will be installed between the inner and outer camera of RXC, which severs as the transmission photocathode substrate and also the vacuum isolation component. In this paper the design and manufacture process of two types of beryllium windows were introduced. Although 50 μm thickness of beryllium foil is the best choice, the 80 μm one with X-ray threshold of 1.34 keV was selected for safety consideration. Using the intermediate layer (low purity of beryllium) between the beryllium foil and the stainless steel base flange is an effective strategy to limit the welding thermal deformation and thermal stress of the thin foil caused by bonding between different materials. By using ANSYS software, the feasibility of the aperture design was analyzed and validated. Metal sealing ring was applied in the mechanical clamped beryllium window for its good stability under high temperature and neutron radiation. Although both of the hollow metal sealing ring with 0.03 mm silver coating and the pure silver sealing ring can satisfy the sealing requirement, the later one was chosen to produce the final product. Two hours 240 °C high temperature baking test, two hours 3.3 Hz vibration test and fatigue test were performed on the two types of beryllium windows. Based on the

  12. Safety analysis of the experimental multi-purpose high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Mitake, Susumu; Ezaki, Masahiro; Suzuki, Katsuo; Takaya, Junichi; Shimazu, Akira

    1976-02-01

    Safety features of the experimental multi-purpose high-temperature gas-cooled reactor being developed in JAERI were studied or the basis of its preliminary conceptual design of the reactor plant. Covered are control of the plant in transients, plant behaviour in accidents, and functions of engineered safeguards, and also dynamics of the uprant and frequencies of the accidents. These studies have shown, (i) the reactor plant can be operated both in plant slave to reactor and reactor slave to plant control, (ii) stable control of

  13. Overview of experimental preparation for the ITER-Like Wall at JET

    Energy Technology Data Exchange (ETDEWEB)

    Brezinsek, S., E-mail: s.brezinsek@fz-juelich.de [Institut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ, 52425 Juelich (Germany); Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Fundamenski, W. [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Eich, T. [Association EURATOM-Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Coad, J.P.; Giroud, C.; Huber, A. [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Jachmich, S. [LPP-ERM/KMS, Association EURATOM-Belgian State (Belgium); Joffrin, E. [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Krieger, K.; McCormick, K. [Association EURATOM-Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Lehnen, M. [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Loarer, T. [Association EURATOM-CEA, CEA Cadarache, 13108 Saint Paul lez Durance (France); Luna, E. de la [Laboratorio Nacional de Fusion, Asociacion EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G.; Matthews, G.F.; Mertens, Ph. [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Nunes, I. [Instituto de Plasmas e Fusao Nuclear, Associaccao EURATOM-IST, Lisboa (Portugal); Philipps, V.; Riccardo, V. [Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB (United Kingdom); Rubel, M. [Alfven Laboratory, Royal Institute of Technology, Association EURATOM-VR, Stockholm (Sweden)

    2011-08-01

    Experiments in JET with carbon-based plasma-facing components have been carried out in preparation of the ITER-Like Wall with beryllium main chamber and full tungsten divertor. The preparatory work was twofold: (i) development of techniques, which ensure safe operation with the new wall and (ii) provision of reference plasmas, which allow a comparison of operation with carbon and metallic wall. (i) Compatibility with the W divertor with respect to energy loads could be achieved in N{sub 2} seeded plasmas at high densities and low temperatures, finally approaching partial detachment, with only moderate confinement reduction of 10%. Strike-point sweeping increases the operational space further by re-distributing the load over several components. (ii) Be and C migration to the divertor has been documented with spectroscopy and QMBs under different plasma conditions providing a database which will allow a comparison of the material transport to remote areas with metallic walls. Fuel retention rates of 1.0-2.0 x 10{sup 21} D s{sup -1} were obtained as references in accompanied gas balance studies.

  14. Experimental proof of a load resilient external matching solution for the ITER ICRH system

    International Nuclear Information System (INIS)

    Vervier, M.; Messiaen, A.; Dumortier, P.; Lamalle, P.

    2005-01-01

    A reliable load resilient external matching scheme for the ITER ICRH system has been successfully tested on the mock-up of the external matching system with variable plasma load simulation. To avoid the deleterious mutual coupling effects the power has been passively distributed among the upper half and the bottom half of the 24 radiating straps of the antenna plug. In this plug the straps are grouped in 8 triplets by 4-ports junctions. The 4 top and 4 bottom triplets are respectively put in parallel outside the antenna plug near a voltage anti-node by means of T junctions. The load resilient matching is then obtained by a 4 parameters single 'conjugate T' (CT) configuration. For an antenna loading variation of about 1 to 8 Ω/m the VSWR at the power source remains below 1.3. The maximum voltage along the line remains equal to the one in the antenna plug and there is a fair power share between the straps. A π0π0 toroidal phasing is easily obtained. The poloidal phasing between the top and bottom triplets is determined by the loading. A straightforward matching procedure is described. Good load resilience is also obtained by replacing the CT by one hybrid

  15. MAP: an iterative experimental design methodology for the optimization of catalytic search space structure modeling.

    Science.gov (United States)

    Baumes, Laurent A

    2006-01-01

    One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.

  16. ITER safety challenges and opportunities

    International Nuclear Information System (INIS)

    Piet, S.J.

    1991-01-01

    Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ''ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R ampersand D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R ampersand D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop

  17. Repair/maintenance design for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1978-10-01

    Repair and maintenance design for JXFR has been studied. The reactor is in eight modules so that a damaged module alone can be separated from the other modules and transferred from the reactor room to a repair shop. Design work covers overhaul procedure, dismounting equipments (overhead cranes, auto welder/cutter and remote handling equipments), transport system of a module (module mounting carriages and rotating carriage), repair equipment for blanket, earthquake-proof analysis of the reactor, reactor room structure, repair shop layout, management of radioactive wastes, time and the number of persons required for overhaul etc. Though the repair and maintenance system is almost complete, there still remain problems for further study in joints of blanket cooling piping, auto welder/cutter and earthquake-proof strength in reactor disassemblage. More detailed studies and R and D are necessary for engineering perfection. (author)

  18. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  19. Tritium supply assessment for ITER and DEMOnstration power plant

    International Nuclear Information System (INIS)

    Ni, Muyi; Wang, Yongliang; Yuan, Baoxin; Jiang, Jieqiong; Wu, Yican

    2013-01-01

    Highlights: • The tritium production rate in CANDU reactor was simulated and estimated. • Possible routes, including APT, CLWR and tritium production schemes of ADS, were evaluated in feasibility and economy. • The possible tritium consumption of ITER and initial supply for DEMO was assessed. • Result of supply and demand showed that after ITER retired in 2038, the tritium production in CANDU reactor might not be enough for a FDS-II scale DEMO reactor startup if without additional tritium resource. -- Abstract: The International Thermonuclear Experimental Reactor (ITER) and next generation DEMOnstration fusion reactor need amounts of tritium for test/initial startup and will consume kilograms tritium for operation per year. The available supply of tritium for fusion reactor is man-made sources. Now most of commercial tritium resource is extracted from moderator and coolant of CANada Deuterium Uranium (CANDU) type Heavy Water Reactor (HWR), in the Ontario Hydro Darlington facility of Canada and Wolsong facility of Korea. In this study, the tritium production rate in CANDU reactor was simulated and estimated. And other possible routes, including Accelerator Production of Tritium (APT), tritium production in Commercial Light Water Reactor (CLWR) and Accelerator Driven Subcritical system (ADS), were also evaluated in feasibility and economy. Based on the tritium requirement investigated according to ITER test schedule and startup inventory required for a FDS-II-scale DEMO calculated by TAS1.0, the assessment results showed that after ITER retired in 2038, the tritium inventory of CANDU reactor could not afford DEMO reactor startup without extra resource

  20. Tritium supply assessment for ITER and DEMOnstration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Muyi, E-mail: muyi.ni@fds.org.cn; Wang, Yongliang; Yuan, Baoxin; Jiang, Jieqiong; Wu, Yican

    2013-10-15

    Highlights: • The tritium production rate in CANDU reactor was simulated and estimated. • Possible routes, including APT, CLWR and tritium production schemes of ADS, were evaluated in feasibility and economy. • The possible tritium consumption of ITER and initial supply for DEMO was assessed. • Result of supply and demand showed that after ITER retired in 2038, the tritium production in CANDU reactor might not be enough for a FDS-II scale DEMO reactor startup if without additional tritium resource. -- Abstract: The International Thermonuclear Experimental Reactor (ITER) and next generation DEMOnstration fusion reactor need amounts of tritium for test/initial startup and will consume kilograms tritium for operation per year. The available supply of tritium for fusion reactor is man-made sources. Now most of commercial tritium resource is extracted from moderator and coolant of CANada Deuterium Uranium (CANDU) type Heavy Water Reactor (HWR), in the Ontario Hydro Darlington facility of Canada and Wolsong facility of Korea. In this study, the tritium production rate in CANDU reactor was simulated and estimated. And other possible routes, including Accelerator Production of Tritium (APT), tritium production in Commercial Light Water Reactor (CLWR) and Accelerator Driven Subcritical system (ADS), were also evaluated in feasibility and economy. Based on the tritium requirement investigated according to ITER test schedule and startup inventory required for a FDS-II-scale DEMO calculated by TAS1.0, the assessment results showed that after ITER retired in 2038, the tritium inventory of CANDU reactor could not afford DEMO reactor startup without extra resource.

  1. MSR - SPHINX concept program Eros (Experimental zero power Salt reactor SR-0) - The proposed experimental program as a basis for validation of reactor physics methods

    Energy Technology Data Exchange (ETDEWEB)

    Hron, M.; Juricek, V.; Kyncl, J.; Mikisek, M.; Rypar, V. [Nuclear Research Institute Rez plc, Rez (Czech Republic)

    2007-07-01

    The Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept solves this principal problem of spent fuel treatment by means of so-called nuclear incineration. It means the burning of fissionable part of its inventory and transmutation of other problematic radionuclides by use of nuclear reactions with neutrons in a MSR-SPHINX system. This reactor system is an actinide burner (most in resonance neutron spectrum) and a radionuclide transmuter in a well-thermalized neutron spectrum. In the frame of the physical part, there are computational analyses and experimental activities. The experimental program has been focused, in its first stage, on a short-term irradiation of small size samples of molten-salt systems as well as structural materials proposed for the MSR blanket in the field of high neutron flux of research reactors. The proposed next stage of the program will focus on a large-scale experimental verification of design inputs by use of MSR-type inserting zones into the existing light water moderated experimental reactor LR-0, which may allow us to modify it into the experimental zero power salt reactor SR-0. There will be a detail description of the proposed program given in the paper together with the so far performed experiments and their first results. These realized experiments help us also to verify computational codes used, and to recognize some anomalies related to molten fluorides utilization. (authors)

  2. Experimental validation of an analytical kinetic model for edge-localized modes in JET-ITER-like wall

    Science.gov (United States)

    Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET

    2018-06-01

    The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.

  3. Oak Ridge Tokamak experimental power reactor study reference design

    International Nuclear Information System (INIS)

    Roberts, M.; Bettis, E.S.

    1975-11-01

    A Tokamak EPR Reference Design is presented as a basis for further design study leading to a Conceptual Design. The set of basic plasma parameters selected--minor radius of 2.25 m, major radius of 6.75 m, magnetic field on axis of 4.8 T and plasma current of 7.2 MA--should produce a reactor-grade plasma with a significant neutron flux, even with the great uncertainty in plasma physics scaling from present experience to large sizes. Neutronics and heat transfer calculations coupled with mechanical design and materials considerations were used to develop a blanket and shield capable of operating at high temperature, protecting the surrounding coils, being maintained remotely and, in a few experimental modules, breeding tritium. Nb 3 Sn and NbTi superconductors are used in the toroidal field coil design. The coil system was developed for a maximum field of 11 T at the winding (to give a field on axis of 4.8 T), and combines multifilamentary superconducting cable with forced flow of supercritical helium enclosed in a steel conduit. The structural system uses a stainless steel center bucking ring and intercoil box beam bracing to provide rigid support for coils against the centering force, overturning moments from poloidal fields and faults, other external forces, and thermal stresses. The poloidal magnetics system is specially designed both to reduce the total volt-second energy requirements and to reduce the magnitude of the rate of field change at the toroidal field coils. The rate of field change imposed upon the toroidal field coils is reduced by at least a factor of 3.3 compared to that due to the plasma alone. Tritium processing, tritium containment and vacuum systems employ double containment and atmospheric cleanup to minimize releases. The document also contains discussions of systems integration and assembly, key research and development needs, and schedule considerations

  4. The ITER CODAC conceptual design

    International Nuclear Information System (INIS)

    Lister, J.B.; Farthing, J.W.; Greenwald, M.; Yonekawa, I.

    2007-01-01

    CODAC orchestrates the activity of 60-90 Plant Systems in normal ITER operation. Interlock Systems protect ITER from potentially damaging operating off-normal conditions. Safety Systems protect the personnel and the environment and will be subject to licensing. The principal challenges to be met in the design and implementation of CODAC include: complexity, reliability, transparent access respecting security, a high experiment data rate and data volume since ITER is an experimental reactor, scientific exploitation from multiple Participant Team Experiment Sites and the long 35-year period for construction and operation. Complexity is addressed by prescribing the communication interfaces to the Plant Systems and prescribing the technical implementation within the Plant Systems. Plant Systems export to CODAC all the information on their construction and operation as 'self-description'. Complexity is also addressed by automating the operation of ITER and of the plasma, using a structured data description of 'Operation Schedules' which encompass all non-manual control, including Plasma Control. Reliability is addressed by maximising code reuse and maximising the use of existing products thereby minimising in-house development. The design is hierarchical and modular in both hardware and software. The latter facilitates evolution of methods during the project lifetime. Guaranteeing security while maximising access is addressed by flow separation. Out-flowing data, including experimental signals and the status of ITER plant is risk-free. In-flowing commands and data originate from Experiment Sites. The Cadarache Experiment Site is equated with the Remote Experiment Sites and a rigorous 'Operation Request Gatekeeper' is provided. The high data rates and data volumes are handled with high performance networks. Global Area Networks allow Participant Teams to access all CODAC data and applications. Scientific exploitation of ITER will remain a human as well as technical

  5. Modelling of the edge of a fusion plasma towards ITER and experimental validation on JET

    International Nuclear Information System (INIS)

    Guillemaut, Christophe

    2013-01-01

    The conditions required for fusion can be obtained in tokamaks. In most of these machines, the plasma wall-interaction and the exhaust of heating power are handled in a cavity called divertor. However, the high heat flux involved and the limitations of the materials of the plasma facing components (PFC) are problematic. Many researches are done this field in the context of ITER which should demonstrate 500 MW of DT fusion power during ∼ 400 s. Such operations could bring the heat flux on the PFC too high to be handled. Its reduction to manageable levels relies on the divertor detachment involving the reduction of the particle and heat fluxes on the PFC. Unfortunately, this phenomenon is still difficult to model. The aim of this PhD is to use the modelling of JET experiments with EDGE2D-EIRENE to make some progress in the understanding of the detachment. The simulations reproduce the observed detachment in C and Be/W environments. The distribution of the radiation is well reproduced by the code for C but with some discrepancies in Be/W. The comparison between different sets of atomic physics processes shows that ion-molecule elastic collisions are responsible for the detachment seen in EDGE2D-EIRENE. This process provides good neutral confinement in the divertor and significant momentum losses at low temperature, when the plasma is recombining. Comparison between EDGE2D-EIRENE and SOLPS4.3 shows similar detachment trends but the importance of the ion-molecule elastic collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of improving the neutral confinement in the divertor should help to improve the modelling of the detachment. (author) [fr

  6. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jay Jayakumar, R.; Tsuji, H.; Ohsaki, O.

    2001-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  7. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Tsuji, H.; Ohsaki, O.

    1999-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  8. Experimental and numerical investigation of bubble column reactors

    NARCIS (Netherlands)

    Bai, W.

    2010-01-01

    Due to various advantages, such as simple geometry, ease of operation, low operating and maintenance costs, excellent heat and mass transfer characteristics, bubble column reactors are frequently used in chemical, petrochemical, biochemical, pharmaceutical, metallurgical industries for a variety of

  9. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  10. Experimental study of the passive flooding system in the WWER-1000 reactor

    International Nuclear Information System (INIS)

    Malyshev, A.B.; Efanov, A.D.; Kalyakin, S.G.

    2002-01-01

    The design solution of the passive flooding system in the WWER-1000 reactor core with the V-392 reactor facility and the scheme of the GE-2 large-scale thermohydraulic stand for substantiation of its functions are presented. The proposals, improving the efficiency of the system are developed on the basis of the experimental studies on the equipment input-output operational characteristics and the recommendations on the substantiation of the function of the reactor core flooding system are given [ru

  11. The Canadian initiative to host the international thermonuclear experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dautovich, D P; James, R A [Canadian Fusion Fuels Technology Project, Mississauga, ON (Canada)

    1996-12-31

    At the time of the conference, the Canadian Nuclear Fuels Technology Project was making an innovative proposal whereby Ontario Hydro would provide space at its Darlington or Bruce sites as potential sites for the ITER project. An economic impact analysis, conducted by Ernst and Young, showed the potential economic benefits to Canada; other benefits could rather be considered to be scientific and technological benefits. A stable electrical supply grid, existing waste management infrastructure, an abundance of cheap power, and a skilled workforce, made Canada an attractive prospect. ITER, whatever its location, would require all of Ontario Hydro`s tritium. Canada was attractive as a neutral siting alternative, and had gained early Russian support.

  12. Review of accident analyses of RB experimental reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2003-01-01

    The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VINCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62; yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin) consisting of 2% enriched uranium metal and 80% enriched U0 2 , dispersed in aluminum matrix, have been available since 1962 and 1976, respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements, as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINCA Institute, an independent regulator)' body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety' Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed) to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given. (author)

  13. Review of accident analyses of RB experimental reactor

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2003-01-01

    Full Text Available The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VTNCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62 yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin consisting of 2% enriched uranium metal and 80% enriched UO2 dispersed in aluminum matrix, have been available since 1962 and 1976 respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINĆA Institute, an independent regulatory body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given.

  14. Study on the seismic verification test program on the experimental multi-purpose high-temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Taketani, K.; Aochi, T.; Yasuno, T.; Ikushima, T.; Shiraki, K.; Honma, T.; Kawamura, N.

    1978-01-01

    The paper describes a program of experimental research necessary for qualitative and quantitative determination of vibration characteristics and aseismic safety on structure of reactor core in the multipurpose high temperature gas-cooled experimental reactor (VHTR Experimental Reactor) by the Japan Atomic Energy Research Institute

  15. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani

    2008-01-01

    Full Text Available The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses. The resulting secondary particles (positive ions, neutrals, and electrons are accelerated and deflected by the electric and magnetic fields inside the accelerator and may induce more secondaries after a likely impact with the accelerator grids. This chain of reactions is responsible for a non-negligible heat load on the grids and must be understood in detail. In this paper, we will provide a comprehensive summary of the physics involved in the process of secondary emission in a typical ITER-like negative ion electrostatic accelerator together with a precise description of the numerical method and approximations involved. As an example, the multiaperture-multigrid accelerator concept will be discussed.

  16. Few-Group Transport Analysis of the Core-Reflector Problem in Fast Reactor Cores via Equivalent Group Condensation and Local/Global Iteration

    International Nuclear Information System (INIS)

    Won, Jong Hyuck; Cho, Nam Zin

    2011-01-01

    In deterministic neutron transport methods, a process called fine-group to few-group condensation is used to reduce the computational burden. However, recent results on the core-reflector problem in fast reactor cores show that use of a small number of energy groups has limitation to describe neutron flux around core reflector interface. Therefore, researches are still ongoing to overcome this limitation. Recently, the authors proposed I) direct application of equivalently condensed angle-dependent total cross section to discrete ordinates method to overcome the limitation of conventional multi-group approximations, and II) local/global iteration framework in which fine-group discrete ordinates calculation is used in local problems while few-group transport calculation is used in the global problem iteratively. In this paper, an analysis of the core-reflector problem is performed in few-group structure using equivalent angle-dependent total cross section with local/global iteration. Numerical results are obtained under S 12 discrete ordinates-like transport method with scattering cross section up to P1 Legendre expansion

  17. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors

  18. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential

  19. A dense Pd/Ag membrane reactor for methanol steam reforming: Experimental study

    NARCIS (Netherlands)

    Basile, A.; Gallucci, F.; Paturzo, L.

    2005-01-01

    This paper focuses on an experimental study of the methanol steam reforming (MSR) reaction. A dense Pd/Ag membrane reactor (MR) has been used, and its behaviour has been compared to the performance of a traditional reactor (TR) packed with the same catalyst type and amount. The parameters

  20. Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores

  1. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV

  2. Remote handling maintenance of ITER

    International Nuclear Information System (INIS)

    Haange, R.

    1999-01-01

    The remote maintenance strategy and the associated component design of the International Thermonuclear Experimental Reactor (ITER) have reached a high degree of completeness, especially with respect to those components that are expected to require frequent or occasional remote maintenance. Large-scale test stands, to demonstrate the principle feasibility of the remote maintenance procedures and to develop the required equipment and tools, were operational at the end of the Engineering Design Activities (EDA) phase. The initial results are highly encouraging: major remote equipment deployment and component replacement operations have been successfully demonstrated. (author)

  3. Investigation on welding and cutting methods for blanket support legs of fusion experimental reactors

    International Nuclear Information System (INIS)

    Tokami, Ikuhide; Nakahira, Masataka; Kurasawa, Toshimasa; Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1996-07-01

    A toroidally-and poloidally-divided modular blanket has been proposed for a fusion experimental reactor, such as ITER, to enhance its maintainability as well as improve its fabricability. The blanket module, typically the size of 1 m wide, 1-2 m high and 0.4 m deep and the weight of 4 ton, will be supported by support legs which are extruded from back of the module and connected to a 70-100 mm thick strong back plate. The support leg has to withstand large electromagnetic force during plasma disruption and provide the way for in-situ module replacement by remote handling. For the connection method of the support leg to the back plate, a welding approach has been investigated here in terms of its high reliability against the large electromagnetic loads. For the welding approach, the support leg needs to be 70 mm thick, and the working space for welding/cutting heads are limited to 100 mm x 150 mm adjacent to the support leg. Based on a comparison of several welding methods, e.g. NGTIG, NGMIG and laser, NGTIG has been selected as a reference due to its well-established technology and the least R and D required. As for the cutting method, a plasma cutting has been given the highest priority to be pursued because of its compactness and high speed. Through preliminary design studies, the possibility of small welding/cutting heads that will work in the limited space has been shown, and maintenance route for in-situ module replacement with pre-and postfixture of the module has been investigated. Also preliminary R and Ds have resulted in; 1)the welding distortion is predictable according to the shape of weld groove and adjustable to meet the placement requirement of the module first wall, 2)the plasma cut surface can be rewelded without machining, 3)the welding/cutting time will meet the requirement of maintenance time. (author)

  4. Experimental Study of Plasma-Surface Interaction and Material Damage Relevant to ITER Type I Elms

    International Nuclear Information System (INIS)

    Makhlai, V.A.; Bandura, A.N.; Byrka, O.V. and others; Landman, I.; Neklyudov, I.M.

    2006-01-01

    The paper presents experimental investigations of main features of plasma surface interaction and energy transfer to the material surface in dependence on plasma heat loads. The experiments were performed with QSPA repetitive plasma pulses of the duration of 0.25 ms and the energy density up to 2.5 MJ/m 2 . Surface morphology of the targets exposed to QSPA plasma screams is analyzed. Relative contribution of the Lorentz force and plasma pressure gradient to the resulting surface profile is discussed. development of cracking on the tungsten surface and swelling of the surface are found to be in strong dependence on initial temperature of the target

  5. Neoclassical tearing mode stabilization by ECCD in ITER

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.

    2001-01-01

    A dynamic model, based on a 3-D Fokker-Planck code coupled to the island evolution equations, is used to evaluate the feasibility of active control of Neoclassical Tearing modes by Electron Cyclotron Current Drive (ECCD) in International Thermonuclear Experimental Reactor (ITER). The parameters of the present version of ITER, i.e., RTO/RC ITER (IAM option) are used. Both m=3, n=2 and m=2, n=1 modes are considered. It is shown that an Electron Cyclotron wave system at 140 GHz, with toroidally steerable antennas, can stabilize both modes simultaneously if a power ≥30 MW is available

  6. A Li-particulate blanket concept for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.

    1989-01-01

    The Li-particulate blanket design concept the authors proposed for the International Thermonuclear Experimental Reactor (ITER) uses a dilute suspension of fine solid breeder particles in a carrier gas as the combined coolant and lithium breeder stream. This blanket concept has a simple mechanical and hydraulic configuration, low inventory of bred tritium, and simple tritium extraction system. Existing technology can be used to implement the design for ITER. The concept has the potential to be a highly reliable shield and blanket design for ITER with relatively low development and capital costs

  7. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    KAUST Repository

    Wang, Jui-Yang

    2017-01-01

    levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental

  8. Chemical looping reforming in packed-bed reactors : modelling, experimental validation and large-scale reactor design

    NARCIS (Netherlands)

    Spallina, V.; Marinello, B.; Gallucci, F.; Romano, M.C.; van Sint Annaland, M.

    This paper addresses the experimental demonstration and model validation of chemical looping reforming in dynamically operated packed-bed reactors for the production of H2 or CH3OH with integrated CO2 capture. This process is a combination of auto-thermal and steam methane reforming and is carried

  9. Experimental results and recent developments on the EU 2 MW 170 GHz coaxial cavity gyrotron for ITER

    Directory of Open Access Journals (Sweden)

    Thumm M. K.

    2012-09-01

    Full Text Available The European Gyrotron Consortium (EGYC is responsible for developing one set of 170 GHz mm-wave sources, in support of Europe’s contribution to ITER. The original plan of targeting a 2 MW coaxial gyrotron is currently under discussion, in view of essential delays and damages. This paper reports on the latest results and plans with regard to the two 2 MW gyrotron prototypes, the industrial prototype at CRPP’s CW test stand and a modular pre-prototype at KIT. The industrial prototype was delivered to CRPP end of September 2011 and reached an output power of 2 MW at an efficiency of 45 % and with good RF beam pattern, in only four days of short pulse RF test. These results validated all design changes made in reaction to the results of the experiments in 2008. On the fifth experimental day, an internal absorber broke, terminating any further experiment with this tube. In parallel, design and experimental activities at KIT went on, in particular featuring reduced stray radiation down to 4% of the RF power. Next years’ plans for the 2 MW modular pre-prototype foresee a stepwise increase of pulse length.

  10. Conceptual design study of quasi-steady state fusion experimental reactor (FEQ-Q), part 1

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 JER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included; core plasma, reactor structure, reactor core components, magnets. (author)

  11. Disruptions, loads, and dynamic response of ITER

    International Nuclear Information System (INIS)

    Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D.; Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures

  12. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    Miki, Nobuharu; Iida, Fumio; Wachi, Yoshihiro; Toyoda, Katsuyoshi; Hashizume, Takashi; Konno, Masayuki.

    1988-06-01

    This report describes the FER magnet design which was conducted last year (1987). Based on a large uncertainty of the physics assumption, two sets of FER concepts have been developed. One is based on the best existing physics data bases and another is based on rather conservative physics bases. In the magnet design, the improvements of superconducting magnet design were investigated to reduce the reactor size and to realize higher reactor-core performance. In addition, we studied several critical technical issues that affect the magnet design specification. (author)

  13. Using harmonical analysis for experimental verification of reactor dynamics

    International Nuclear Information System (INIS)

    Hrstka, V.

    1974-01-01

    The questions are discussed of the accuracy of the method of static programming when applied to digital harmonic analysis, with regard to the variation of the mean value of the analyzed signals, and to the use of symmetrical trapezoidal periodical signals. The evaluation is made of the suitability of the above-mentioned method in determining the frequency characteristic of the SR-OA reactor. The results obtained were applied to planning the start-up experiments of the KS-150 reactor at the A-1 nuclear power station. (author)

  14. Conceptual design study of fusion experimental reactor (FY 86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the investigation on critical issues of FY 86 FER reactor configuration/structure design. Accuracy evaluation of shielding calculation and crack growth prediction of first wall and divertor based on the elastic-plastic fracture mechanics were performed. Further, optimization of shield configuration, graphite first wall armor and flexifility of reactor were investigated to support future design work. Feasibilities of innovative ideas were also examined, such as the ripple insert effect and the application of shape memory alloys. (author)

  15. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  16. TIBER II: an upgraded tokamak igntion/burn experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Perkins, L.J.

    1986-01-01

    We are disIgning a minimum-size Tokamak ignition/Burn Reactor (TIBER II). This design incorporates physics requirements, neutron wall loading and fluence parameters that will make it compatible with a nuclear testing mission. Reactor relevant physics will be tested by using current drive and steady-state operation. Although the design accommodates several current drive options, including neutral beams, the base case uses a combination of lower hybrid and electron-cyclotron radio frequency power. Minimum neutron shielding, compact structures, high magnet-current densities, and remotely maintainable vacuum seals, all contribute to the compact size

  17. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Tanaka, Shigeru; Akiba, Masato

    1991-03-01

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  18. General description of preliminary design of an experimental fusion reactor and the future problems

    International Nuclear Information System (INIS)

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  19. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  20. Simulation test of PIUS-type reactor with large scale experimental apparatus

    International Nuclear Information System (INIS)

    Tamaki, M.; Tsuji, Y.; Ito, T.; Tasaka, K.; Kukita, Yutaka

    1995-01-01

    A large scale experimental apparatus for simulating the PIUS-type reactor has been constructed keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were performed. Experimental results were compared with those obtained by the small scale apparatus in JAERI. We have already reported the effectiveness of the feedback control for the primary loop pump speed (PI control) for the stable operation. In this paper this feedback system is modified and the PID control is introduced. This new system worked well for the operation of the PIUS-type reactor even in a rapid transient condition. (author)

  1. European community light water reactor safety research projects. Experimental issue

    International Nuclear Information System (INIS)

    1975-01-01

    Research programs on light water reactor safety currently carried out in the European Community are presented. They cover: accident conditions (LOCA, ECCS, core meltdown, external influences, etc...), fault and accident prevention and means of mitigation, normal operation conditions, on and off site implications and equipment under severe accident conditions, and miscellaneous subjects

  2. Some particular problems put by operating experimental reactors

    International Nuclear Information System (INIS)

    Candiotti, C.; Mabeix, R.; Uguen, R.

    1960-01-01

    On basis of a six years experience in operating research reactors, the authors explain, first, the difference in their utilization between these piles and another similar ones and, after, in consequence, they set off corresponding servitudes. These servitudes put very particular problems in operating itself, maintenance, modifications or additions on these apparatus. (author) [fr

  3. Linear and nonlinear stability analysis, associated to experimental fast reactors

    International Nuclear Information System (INIS)

    Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.

    1980-07-01

    Phenomena associated to the physics of fast neutrons were analysed by linear and nonlinear Kinetics with arbitrary feedback. The theoretical foundations of linear kinetics and transfer functions aiming at the analysis of fast reactors stability, are established. These stability conditions were analitically proposed and investigated by digital and analogic programs. (E.G.) [pt

  4. Engineering safety features for high power experimental reactors

    International Nuclear Information System (INIS)

    Doval, A.; Villarino, E.; Vertullo, A.

    2000-01-01

    In the present analysis we will focus our attention in the way engineering safety features are designed in order to prevent fuel damage in case of abnormal or accidental situations. To prevent fuel damage two main facts must be considered, the shutdown of the reactor and the adequate core cooling capacity, it means that both, neutronic and thermohydraulic aspects must be analysed. Some neutronic safety features are common to all power ranges like negative feedback reactivity coefficients and the required number of control rods containing the proper absorber material to shutdown the reactor. From the thermohydraulic point of view common features are siphon-breaker devices and flap valves for those powers requiring cooling in the forced convection regime. For the high power reactor group, the engineering safety features specially designed for a generic reactor of 20 MW, will be presented here. From the neutronic point of view besides the common features, and to comply with our National Regulatory Authority, a Second Shutdown System was designed as a redundant shutdown system in case the control plates fail. Concerning thermohydraulic aspects besides the pump flywheels and the flap valves providing the natural convection loop, a metallic Chimney and a Chimney Water Injection System were supplied. (author)

  5. Outlines of revised regulation standards for experimental research reactors

    International Nuclear Information System (INIS)

    Hohara, Shinya

    2015-01-01

    In response to the accident of TEPCO Fukushima Daiichi Nuclear Power Station, the government took actions through the revision of regulatory standards as well as the complete separation of regulation administrative department from promotion administrative department. The Nuclear and Industrial Safety Agency of the Ministry of Economy, Trade and Industry, which has been in charge of the regulations of commercial reactors, and the Office of Nuclear Regulations of the Ministry of Education, Culture, Sports, Science and Technology, which has been in charge of the regulations of reactors for experiment and research, were separated from both ministries, and integrated into the Nuclear Regulation Authority, which was newly established as the affiliated agency of the Ministry of the Environment. As for the revision of regulations and standards, the Nuclear Safety Commission was dismantled, and regulation enacting authority was given to the new Nuclear Regulation Authority, and the regulations that stipulated new regulatory standards were enacted. This paper outlines the contents of regulations related mainly to the reactors for experiment and research, and explains the following: (1) retroactive application of the new regulatory standards to existing reactor facilities, (2) examinations at the Nuclear Regulatory Agency, (3) procedures to confirm the compliance to the new standards, (4) seismic design classification, and (5) importance classification of safety function. (A.O.)

  6. The physics role of ITER

    International Nuclear Information System (INIS)

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  7. ITER EDA newsletter. V. 7, no. 1

    International Nuclear Information System (INIS)

    1998-01-01

    This issue of the ITER Newsletter contains a summary report on the Thirteenth meeting of the ITER Management Advisory Committee (MAC), a report on ITER at the International Conference on Fusion Reactor Materials and a report of a Russian scientist working at ITER Garching JWS

  8. Design activity of IHI on the experimental multipurpose high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    1978-01-01

    With conspicuous interest and attention paid by iron and steel manufacturing industries, the development of the multipurpose high temperature gas-cooled reactor, namely the process heat reactor has been energetically discussed in Japan. The experimental multipurpose high temperature gas-cooled reactor, planned by JAERI (the Japan Atomic Energy Research Institute), is now at the end of the adjustment design stage and about to enter the system synthesizing design stage. The design of the JAERI reactor as a pilot plant for process heat reactors that make possible the direct use of the heat, produced in the reactor, for other industrial uses was started in 1969, and has undergone several revisions up to now. The criticality of the JAERI reactor is expected to be realized before 1985 according to the presently published program. IHI has engaged in the developing work of HTGR (high temperature gas-cooled reactor) including VHTR (very high temperature gas-cooled reactor) for over seven years, producing several achievements. IHI has also participated in the JAERI project since 1973 with some other companies concerned in this field. The design activity of IHI in the development of the JAERI reactor is briefly presented in this paper. (auth.)

  9. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  10. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  11. Development and testing of TraumaGameplay: an iterative experimental approach using the trauma film paradigm.

    Science.gov (United States)

    Asselbergs, Joost; Sijbrandij, Marit; Hoogendoorn, Evert; Cuijpers, Pim; Olie, Lara; Oved, Kfir; Merkies, Job; Plooijer, Tessa; Eltink, Simone; Riper, Heleen

    2018-01-01

    Background : Vivid trauma-related intrusions are a hallmark symptom of posttraumatic stress disorder (PTSD), and may be involved in its onset. Effective interventions to reduce intrusions and to potentially prevent the onset of subsequent PTSD are scarce. Studies suggest that playing the videogame Tetris, shortly after watching aversive film clips, reduces subsequent intrusions. Other studies have shown that taxing working memory (WM) while retrieving an emotional memory reduces the memory's vividness and emotionality. Objective : We developed TraumaGameplay (TGP), a gaming app designed to reduce intrusions. This paper describes two successive experiments to determine whether playing TGP without memory retrieval (regular TGP) or TGP with memory retrieval (dual-task TGP) reduces intrusion frequency at one week compared to a no-game control. Method : For both experiments, healthy university students were recruited. Experiment 1: 92 participants were exposed to a trauma film and randomized to (1) regular TGP1 ( n =  31), (2) dual-task TGP1 ( n =  31) or (3) control ( n =  30). In experiment 2, 120 healthy students were exposed to a trauma film and randomized to (1) regular TGP2 ( n =  30), (2) dual-task TGP2 ( n =  29), (3) recall only ( n =  31) or (4) control ( n =  30). Results : We found no significant difference between conditions on the number of intrusions for either playing regular TGP or dual-task TGP in both experiment 1 and experiment 2. Conclusion : Our results could not replicate earlier promising findings from preceding experimental research. Several reasons may underpin this difference ranging from the visuospatial videogame used in our experiments to the method of the experiment to the difficulties of replicability in general.

  12. The experimental reactor Osiris and the nuclear fuel technology for the P.W.R. reactors

    International Nuclear Information System (INIS)

    Lestiboudois, G.; Contenson, G. de; Genthon, J.P.; Molvault, M.; Roche, M.

    1977-01-01

    The possibility of employing research reactors to study and to improve the nuclear fuel of the power reactors is presented. Measurements of temperature, pressure, stresses, thermal balance, gamma spectrometry and neutron radiography, allow the study of fuel densification, the influence of the initial filling pressure on the fission gas release and the gadolinium efficiency evolution. The solutions of the problems of failed element detection, power increase, remote handling, are presented [fr

  13. Summary of the experimental multi-purpose very high temperature gas cooled reactor design

    International Nuclear Information System (INIS)

    1984-12-01

    The report presents the design of Multi-purpose Very High Temperature Gas Cooled Reactor (the Experimental VHTR) based on the second stage of detailed design which was completed on March 1984, in the from of ''An application of reactor construction permit Appendix 8''. The Experimental VHTR is designed to satisfy with the design specification for the reactor thermal output 50 MW and reactor outlet temperature 950 0 C. The adequacy of the design is also checked by the safety analysis. The planning of plant system and safety is summarized such as safety design requirements and conformance with them, seismic design and plant arrangement. Concerning with the system of the Experimental VHTR the design basis, design data and components are described in the order. (author)

  14. Iteration of Aitken's Δ2 Process as an alternative to Pade approximants and the problem of using rational fractions to parameterize experimental data

    International Nuclear Information System (INIS)

    McRae, G.A.

    1992-01-01

    It is shown that iterating Aitken's Δ 2 process, or equivalently Shanks' ε algorithm on the partial sums of a Taylor series can lead to a dramatic convergence of the series. This method is compared to the standard technique of accelerating the convergence of series by constructing Pade Approximants. Also, the problem of determining Taylor expansion coefficients from experimental data fitted to Pade Approximants is reviewed, and it is suggested that a method based on this iteration scheme may be better. (author). 6 refs., 1 fig

  15. ITER Council proceedings: April 1988 - August 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The ITER documentation series, of which this is the sixth report, began with a concise record of the decisions and actions taken in establishing ITER. The contents of that first report include the Terms of Reference Concerning Conceptual Design Activities for an International Thermonuclear Experimental Reactor. The Terms of Reference, which were part of the IAEA's invitation to the prospective parties, formally describe how the co-operative work of the four Parties in the specified activities is directed and managed. The first report in the series also covered activities from the initial meeting of the ITER Quadripartite Initiative Committee in March 1987 through March 1988. The present report is intended to make available in convenient form the essential information on ''landmark'' events in the direction of the ITER activities from the first meeting of the ITER Council (IC), in April 1988, through the letter report by the Council following their fourth meeting in July 1989. This report therefore covers approximately the first half of the Conceptual Design Activities, which are to be concluded in December 1990. THe next section of this report provides, for convenient reference, an overview of the organization and schedule that were adopted for the ITER activities through 1990. The sections that follow contain, for each of the four IC meetings during the period covered by this report, a copy of the official record of the transactions. The written reports of the ITER Management Committee (IMC) and the ITER Scientific and Technical Advisory Committee (ISTAC) to the IC in connection with the meetings are represented by summaries, prepared by the ITER Secretariat. These summaries include direct quotations of especially significant statements in the reports. In general, other supporting material is included only if it is of more than transitory significance. 1 fig and tabs

  16. Potential for Australian involvement in ITER

    International Nuclear Information System (INIS)

    O'Connor, D. J.; Collins, G. A.; Hole, M. J.

    2006-01-01

    Full text: Full text: Fusion, the process that powers the sun and stars, offers a solution to the world's long-term energy needs: providing large scale energy production with zero greenhouse gas emissions, short-lived radio-active waste compared to conventional nuclear fission cycles, and a virtually limitless supply of fuel. Almost three decades of fusion research has produced spectacular progress. Present-day experiments have a power gain ratio of approximately 1 (ratio of power out to power in), with a power output in the 10's of megawatts. The world's next major fusion experiment, the International Thermonuclear Experimental Reactor (ITER), will be a pre-prototype power plant. Since announcement of the ITER site in June 2005, the ITER project, has gained momentum and political support. Despite Australia's foundation role in the field of fusion science, through the pioneering work of Sir Mark Oliphant, and significant contributions to the international fusion program over the succeeding years, Australia is not involved in the ITER project. In this talk, the activities of a recently formed consortium of scientists and engineers, the Australian ITER Forum will be outlined. The Forum is drawn from five Universities, ANSTO (the Australian Nuclear Science and Technology Organisation) and AINSE (the Australian Institute for Nuclear Science and Engineering), and seeks to promote fusion energy in the Australian community and negotiate a role for Australia in the ITER project. As part of this activity, the Australian government recently funded a workshop that discussed the ways and means of engaging Australia in ITER. The workshop brought the research, industrial, government and general public communities, together with the ITER partners, and forged an opportunity for ITER engagement; with scientific, industrial, and energy security rewards for Australia. We will report on the emerging scope for Australian involvement

  17. EXPERIMENTAL EVALUATION OF THE FULLY LOADED ELK RIVER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, J. R.; Diaz, A.

    1963-06-15

    The loading and testing program of the Elk River Reactor confirmed the predicted values. The measured cold, clean excess reactivity agrees to 2% and the control rod worths to 1% of the calculated values. The reactivity for various core loadings and rod positions is tabulated. The effects of spiked elements on the reactivity and radial peak-toaverage power ratio were studied. (D.L.C.)

  18. Storage of plugs and experimental devices from reactors

    International Nuclear Information System (INIS)

    Cerre, P.; Mestre, E.

    1961-01-01

    - Within the general programme of storage and treatment of radioactive waste produced by the various operations carried out in an atomic center, it is useful to consider separately the problem of certain waste from reactors, which, because of its size and physical nature, has to be stored with a view to being later treated and finally evacuated. The solution which we propose for this storage problem is presented in this paper. (authors) [fr

  19. Numerical modeling and experimental simulation of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhin, V.P.; Goel, B.; Hoebel, W.; Konkashbaev, I.; Landman, I.; Piazza, G.; Safronov, V.M.; Sherbakov, A.R.; Toporkov, D.A.; Zhitlukhin, A.M.

    1994-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and experimentally investigated at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. In the optical wavelength range C II, C III, C IV emission lines for graphite, Cu I, Cu II lines for copper and continuum radiation for tungsten samples are observed in the target plasma. The plasma expands along the magnetic field lines with velocities of (4±1)x10 6 cm/s for graphite and 10 5 cm/s for copper. Modeling was done with a radiation hydrodynamics code in one-dimensional planar geometry. The multifrequency radiation transport is treated in flux limited diffusion and in forward reverse transport approximation. In these first modeling studies the overall shielding efficiency for carbon and tungsten defined as ratio of the incident energy and the vaporization energy for power densities of 10 MW/cm 2 exceeds a factor of 30. The vapor shield is established within 2 μs, the power fraction to the target after 10 μs is below 3% and reaches in the stationary state after about 20 μs a value of around 1.5%. ((orig.))

  20. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, Pekka; Wu, Huapeng; Handroos, Heikki; Jones, Lawrence

    2007-01-01

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  1. A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, Pekka [Lappeenranta University of Technology, Lappeenranta (Finland)], E-mail: pessi@lut.fi; Wu, Huapeng; Handroos, Heikki [Lappeenranta University of Technology, Lappeenranta (Finland); Jones, Lawrence [EFDA Close Support Unit, Boltzmannstrasse 2, Garching D-85748 (Germany)

    2007-10-15

    The present paper introduces a mobile parallel robot developed for International Thermonuclear Experimental Reactor (ITER). The task of the robot is to carry out welding and machining processes inside the ITER vacuum vessel. The kinematic design of the robot has been optimized for the ITER access. The kinematic analysis is given in the paper. A virtual prototype of the parallel robot is built. A dynamic behavior of the whole robot is studied by the multi-body system simulation (MBS)

  2. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    Science.gov (United States)

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. ITER site selection studies in Spain

    International Nuclear Information System (INIS)

    Medrano, M.; Alejaldre, C.; Doncel, J.; Garcia, A.; Ibarra, A.; Jimenez, J.A.; Sanchez de Mora, M.A.; Alcala, F.; Diez, J.E.; Dominguez, M.; Albisu, F.

    2003-01-01

    The studies carried out to evaluate and select a candidate site for International Thermonuclear Experimental Reactor (ITER) construction in Spain are presented in this paper. The ITER design, completed in July 2001, considered a number of technical requirements that must be fulfilled by the selected site. Several assumptions concerning the ITER site were made in order to carry on the design before final site selection. In the studies undertaken for ITER site selection in Spain, the referred technical requirements and assumptions were applied across the whole of Spain and two areas were identified as being preferential. These areas are on the Mediterranean coast and are situated in the Catalan and Valencian regions. A comparative evaluation based on technical characteristics for the concrete plots, proposed within the preferential areas, has been done. The result of these studies was the selection of a site that was deemed to be the most competitive--Vandellos (Tarragona)--and it was proposed to the European Commission for detailed studies in order to be considered as a possible European site for ITER construction. Another key factor for hosting ITER in Spain, is the licensing process. The present status is summarised in this paper

  4. Status and plans for US ITER studies

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1992-01-01

    The United States' participation in the International Thermonuclear Experimental Reactor (ITER) began in later 1987 when the initiative to start a cooperative program among the four Parties -- the Soviet Union, Japan, the European Community, and the United States -- was initiated. Participation then continued through the start of Joint Work in May 1988 until the conclusion of the Conceptual Design Activities (CDA) in December 1990. In the period between the conclusion of the CDA and the agreement to execute the Engineering Design Activities (EDA), the US ITER Home Team continued to do work on the design, executed additional research and development, and participated in the preparations for the EDA. Activities included one major design study on a High-Aspect-Ratio Design and input to the National ITER Technical Review, the ITER Steering Committee -- US, Special Working Group 1, and the Fusion Energy Advisory Committee's Panel 1. Research and development was continued in areas of work that were identified as critical-path elements by an international panel chartered by the four ITER Parties near the end of the CDA. I will describe the conclusion of the CDA and the interim US ITER activities and will give an indication of our involvement in the EDA

  5. Development of pellet injection systems for ITER

    International Nuclear Information System (INIS)

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application

  6. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  7. Experimental study of the temperature distribution in the TRIGA IPR-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias

    2005-01-01

    The TRIGA-IPR-R1 Research Nuclear Reactor has completed 44 years in operation in November 2004. Its initial nominal thermal power was 30 kW. In 1979 its power was increased to 100 kW by adding new fuel elements to the reactor. Recently some more fuel elements were added to the core increasing the power to 250 kW. The TRIGA-IPR-R1 is a pool type reactor with a natural circulation core cooling system. Although the large number of experiments had been carried out with this reactor, mainly on neutron activation analysis, there is not many data on its thermal-hydraulics processes, whether experimental or theoretical. So a number of experiments were carried out with the measurement of the temperature inside the fuel element, in the reactor core and along the reactor pool. During these experiments the reactor was set in many different power levels. These experiments are part of the CDTN/CNEN research program, and have the main objective of commissioning the TRIGA-IPR-R1 reactor for routine operation at 250 kW. This work presents the experimental and theoretical analyses to determine the temperature distribution in the reactor. A methodology for the calibration and monitoring the reactor thermal power was also developed. This methodology allowed adding others power measuring channels to the reactor by using thermal processes. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were also experimentally valued. lt was also presented a correlation for the gap conductance between the fuel and the cladding. The experimental results were compared with theoretical calculations and with data obtained from technical literature. A data acquisition and processing system and a software were developed to help the investigation. This system allows on line monitoring and registration of the main reactor operational parameters. The experiments have given better comprehension of the reactor thermal-fluid dynamics and helped to develop numerical

  8. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    International Nuclear Information System (INIS)

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included

  9. Experimental researches of nuclear reactor neutron and gamma radiation scattering into the atmosphere

    International Nuclear Information System (INIS)

    Istomin, Yu.L.; Zelensky, D.I.; Cherepnin, Yu.S.; Orlov, Yu.V.; Netecha, M.E.; Avaev, V.N.; Vasel'ev, G.A.; Sakamoto, H.; Nomura, Y.; Naito, Y.

    1998-01-01

    In the report there are results of measuring radiation distribution on the caps of the RA and IWG.1M research reactors. Comparative analysis of the results is also in the report. There are neutron spectra in the interval of energies from 10 -9 to 13 MeV above RA and IWG.1M reactors. The spectra were measured with a set of activation detectors. Measurements were calculated to a nominal rate: for RA reactor - 300 kw, for IWG.1M - 7 MW. Thus, in the course of the experiment, vast experimental information relating to distribution of the RA and IWG.1M reactor gamma and neutron radiation scattered in the air for distances varying from 50 to 1000 m from the reactors has become available. The data obtained are to be used to verify the calculation codes and to validate the group nuclear constants

  10. Predictions on an HTR coolant composition after operational experience with experimental reactors

    International Nuclear Information System (INIS)

    Nieder, R.

    1981-01-01

    Long-term operational experience of the HTR experimental reactors Dragon (1966 - 1975), Peach Bottom (1967 - 1974) and AVR (since 1967) has yielded a large number of common quantitative and qualitative results about the sources and behaviour of helium impurities in the primary circuits. Additional information has also been obtained from experiments made at the three reactors. The results at the AVR are particularly interesting because the gas outlet temperature can be varied from 770 0 C to 950 0 C when the reactor power is kept constant. Hence they can be studied according to the temperature dependence of all chemical reactions. It should be possible to apply the results from the operating measurements and experiments made at the reactors, in particular the interrelation of the impurity concentrations, to future reactors. The absolute values of these impurity concentrations are obtained first and foremost by the corresponding helium purification constants

  11. EBR-II [Experimental Breeder Reactor-II] system surveillance using pattern recognition software

    International Nuclear Information System (INIS)

    Mott, J.E.; Radtke, W.H.; King, R.W.

    1986-02-01

    The problem of most accurately determining the Experimental Breeder Reactor-II (EBR-II) reactor outlet temperature from currently available plant signals is investigated. Historically, the reactor outlet pipe was originally instrumented with 8 temperature sensors but, during 22 years of operation, all these instruments have failed except for one remaining thermocouple, and its output had recently become suspect. Using pattern recognition methods to compare values of 129 plant signals for similarities over a 7 month period spanning reconfiguration of the core and recalibration of many plant signals, it was determined that the remaining reactor outlet pipe thermocouple is still useful as an indicator of true mixed mean reactor outlet temperature. Application of this methodology to investigate one specific signal has automatically validated the vast majority of the 129 signals used for pattern recognition and also highlighted a few inconsistent signals for further investigation

  12. Aspects of 238Pu production in the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Koyama, Shin-ichi; Tanaka, Kenya; Itoh, Masahiko; Saito, Masaki

    2005-01-01

    Experimental determination of 238 Pu in 237 Np samples irradiated in the experimental fast reactor JOYO was done as part of the demonstration of 238 Pu production from 237 Np in fast reactors within the framework of the protected Pu production project, which aims at reinforcement of proliferation resistance of Pu by increasing the 238 Pu isotopic ratio. 238 Pu production amount in the irradiated 237 Np samples was determined by a radioanalytical technique. Aspects of 238 Pu production were examined on the basis of the present radioanalysis. The 238 Pu production amount depends on the neutron spectrum which can range from that of a typical fast reactor to a nearly epi-thermal spectrum. It is concluded that the fast reactor has not only high potential for use in protected Pu production, but also as an incinerator for excess Pu

  13. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  14. Experimental Irradiations of Materials and Fuels in the BR2 Reactor: An Overview of Current Programmes

    International Nuclear Information System (INIS)

    Van Dyck, S.; Koonen, E.; Verwerft, M.; Wéber, M.

    2013-01-01

    The BR2 material test reactor offers a variety of experimental irradiation possibilities for testing of materials, fuels and instruments. The current paper gives an overview of the recent and ongoing programmes in order to illustrate the experimental potential of the reactor. Three domains of applications are reviewed: Irradiation of materials and fuels for pressurised water reactors (PWR); irradiation of materials for accelerator driven systems (ADS), cooled by liquid lead alloys; and irradiation of fuel for Material Test Reactors (MTR). For PWR relevant tests, a dedicated loop is available, providing a full simulation of the thermo hydraulic conditions of a PWR. ADS related tests require particular control of the irradiation environment and the necessary safety precautions in order to avoid 210 Po contamination. In-core mechanical testing of materials is done in comparison and complimentarily to post-irradiation examinations in order to assess flux related effects on the deformation behaviour of materials. (author)

  15. ITER plasma facing components

    International Nuclear Information System (INIS)

    Kuroda, T.; Vieider, G.; Akiba, M.

    1991-01-01

    This document summarizes results of the Conceptual Design Activities (1988-1990) for the International Thermonuclear Experimental Reactor (ITER) project, namely those that pertain to the plasma facing components of the reactor vessel, of which the main components are the first wall and the divertor plates. After an introduction and an executive summary, the principal functions of the plasma-facing components are delineated, i.e., (i) define the low-impurity region within which the plasma is produced, (ii) absorb the electromagnetic radiation and charged-particle flux from the plasma, and (iii) protect the blanket/shield components from the plasma. A list of critical design issues for the divertor plates and the first wall is given, followed by discussions of the divertor plate design (including the issues of material selection, erosion lifetime, design concepts, thermal and mechanical analysis, operating limits and overall lifetime, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, and advanced divertor concepts) and the first wall design (armor material and design, erosion lifetime, overall design concepts, thermal and mechanical analysis, lifetime and operating limits, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, an alternative first wall design, and the limiters used instead of the divertor plates during start-up). Refs, figs and tabs

  16. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  17. Fuel requirements for experimental devices in MTR reactors. A perturbation model for reactor core analysis

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1991-01-01

    Irradiation in neutron absorbing devices, requiring high fast neutron fluxes in the core or high thermal fluxes in the reflector and flux traps, lead to higher density fuel and larger core dimensions. A perturbation model of the reactor core helps to estimate the fuel requirements. (orig.)

  18. Linear and nonlinear stability analysis, associated to experimental fast reactors. Part 2

    International Nuclear Information System (INIS)

    Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.

    1980-07-01

    The nonlinear effects in fast reactors kinetics and their stability are studied. The Lyapunov criteria and the Lurie-Letov functions for nonlinear systems were established and simulated. Small oscillations were studied by a Fourier analysis to clarify particular aspects of feedback and load functions in fast reactor at zero power, or/and in normal power level. The results were in agreement with the experimental data existing in the literature. (E.G.) [pt

  19. Analytical prediction and experimental verification of reactor safety system injection transient

    International Nuclear Information System (INIS)

    Roy, B.N.; Nomm, E.

    1991-01-01

    This paper describes the computer code that was developed for thermal hydraulic transient analysis of mixed phase fluid system and the flow tests that were carried out to validate the Code. A full scale test facility was designed to duplicate the Supplementary Shutdown System (SSS) of Savannah River Production Reactors. Several steady state and dynamic flow tests were conducted simulating the actual reactor injection transients. A dynamic multiphase fluid flow code was developed and validated with experimental results and utilized for system performance predictions and development of technical specifications for reactors. 3 refs

  20. Scram reliability under seismic conditions at the Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Roglans, J.; Wang, C.Y.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment of the Experimental Breeder Reactor II has recently been completed. Seismic events are among the external initiating events included in the assessment. As part of the seismic PRA a detailed study has been performed of the ability to shutdown the reactor under seismic conditions. A comprehensive finite element model of the EBR-II control rod drive system has been used to analyze the control rod system response when subjected to input seismic accelerators. The results indicate the control rod drive system has a high seismic capacity. The estimated seismic fragility for the overall reactor shutdown system is dominated by the primary tank failure

  1. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  2. Study of iterative synthesis method by deflation in the resolution of neutron diffusion equation applied to fast reactors calculation

    International Nuclear Information System (INIS)

    Reis Filho, P.E.G. dos

    1982-01-01

    A new synthesis method to substitute for the classical method of finite diferences for XYZ geometry (geometry of critical experiments in fast reactors), is developed. The new method allows a fine energy group division, that is, finer than the 6 groups division used in calculations of power core specification. (E.G.) [pt

  3. ITER ITA newsletter. No. 11, December 2003

    International Nuclear Information System (INIS)

    2003-12-01

    This issue of the ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER including information from the editor about ITER update, about progress in ITER magnet design and preparation of procurement packages and about 25th anniversary of the First Steering Committee Meeting of the International Tokamak Reactor (INTOR) Workshop, organized under the auspices of the IAEA, took place at the IAEA Headquarters in Vienna

  4. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Hiruta, Mie; Johnson, Gannon [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Rostamian, Maziar, E-mail: mrostamian@asme.org [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States); Ougouag, Abderrafi M. [Idaho National Laboratory, 2525 N Fremont Avenue, Idaho Falls, ID 83401 (United States); Bertino, Massimo; Franzel, Louis [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States); Tokuhiro, Akira [Department of Mechanical Engineering, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83401 (United States)

    2013-10-15

    Highlights: • Custom-built high temperature, high pressure tribometer is designed. • Two different wear phenomena at high temperatures are observed. • Experimental wear results for graphite are presented. • The graphite wear dust production in a typical Pebble Bed Reactor is predicted. -- Abstract: This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  5. Design of the ITER Tokamak Assembly Tools

    International Nuclear Information System (INIS)

    Park, Hyunki; Her, Namil; Kim, Byungchul; Im, Kihak; Jung, Kijung; Lee, Jaehyuk; Im, Kisuk

    2006-01-01

    ITER (International Thermonuclear Experimental Reactor) Procurement allocation among the seven Parties, EU, JA, CN, IN , KO, RF and US had been decided in Dec. 2005. ITER Tokamak assembly tools is one of the nine components allocated to Korea for the construction of the ITER. Assembly tools except measurement and common tools are supplied to assemble the ITER Tokamak and classified into 9 groups according to components to be assembled. Among the 9 groups of assembly tools, large-sized Sector Sub-assembly Tools and Sector Assembly Tools are used at the first stage of ITER Tokamak construction and need to be designed faster than seven other assembly tools. ITER IT (International Team) proposed Korea to accomplish ITA (ITER Transitional Arrangements) Task on detailed design, manufacturing feasibility and contract specification of specific, large sized tools such as Upending Tool, Lifting Tool, Sector Sub-assembly Tool and Sector Assembly Tool in Oct. 2004. Based on the concept design by ITER IT, Korea carried out ITA Task on detailed design of large-sized and specific Sector Sub-assembly and Sector Assembly Tools until Mar. 2006. The Sector Sub-assembly Tools mainly consist of the Upending, Lifting, Vacuum Vessel Support and Bracing, and Sector Sub-assembly Tool, among which the design of three tools are herein. The Sector Assembly Tools mainly consist of the Toroidal Field (TF) Gravity Support Assembly, Sector In-pit Assembly, TF Coil Assembly, Vacuum Vessel (VV) Welding and Vacuum Vessel Thermal Shield (TS) Assembly Tool, among which the design of Sector In-pit Assembly Tool is described herein

  6. The Jules Horowitz Reactor (JHR), a European Material Testing Reactor (MTR), with extended experimental capabilities

    International Nuclear Information System (INIS)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P.

    2003-01-01

    The Jules Horowitz Reactor (JHR) is the European MTR (Material Testing Reactor) designed to provide, after 2010, the necessary knowledge for keeping the existing power plants in operation and to design innovative reactors types with new objectives such as: minimizing the radioactive waste production, taking into account additional safety requirements, preventing risks of nuclear proliferation. To achieve such an ambitious objective. The JHR is designed with a high flexibility in order to satisfy the current demand from European industry, research and to be able to accommodate future requirements. The JHR will offer a wide range of performances and services in gathering, in a single site at Cadarache, all the necessary functionalities and facilities for an effective production of results: e.g. fuel fabrication laboratories, preparation of the instrumented devices, interpretation of the experiments, modelling. The JHR must rely on a top level scientific environment based on experts teams from CEA and EC and local universities. With a thermal flux of 7,4.10 14 ncm -2 s -1 and a fast flux of 6,4.10 14 ncm -2 s -1 , it is possible to carry out irradiation experiments on materials and fuels whatever the reactor type considered. It will also be possible to carry out locally, fast neutron irradiation to achieve damage effect up to 25 dpa/year. (dpa = deplacement per atom). The study of the fuels behavior under accidental conditions, from analytical experiments, on a limited amount of irradiated fuel, is a major objective of the project. These oriented safety tests are possible by taking into account specific requirements in the design of the facility such as the tightness level of the containment building, the addition of an alpha hot cell and a laboratory for on line fission products measurement. (author)

  7. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  8. Stress analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1990-02-01

    The International Thermonuclear Experimental Reactor (ITER) is intended as an experimental thermonuclear tokamak reactor for testing the basic physics, performance and technologies essential to future fusion reactors. The ITER design will be based on extensive new design work, supported by new physical and technological results, and on the great body of experience built up over several years from previous national and international reactor studies. Conversely, the ITER design process should provide the fusion community with valuable insights into what key areas need further development or clarification as we move forward towards practical fusion power. As part of the design process of the ITER toroidal field coils the mechanical behaviour of the magnetic system under fault conditions has to be analysed in more detail. This paper describes the work carried out to create a detailed finite element model of two toroidal field coils as well as some results of linear elastic analyses with fault conditions. The analyses have been performed with the finite element code ANSYS. (author). 5 refs.; 8 figs.; 2 tabs

  9. The reactor safety study of experimental multi-purpose VHTR design

    International Nuclear Information System (INIS)

    Yasuno, T.; Mitake, S.; Ezaki, M.; Suzuki, K.

    1981-01-01

    Over the past years, the design works of the Experimental Very High Temperature Reactor (VHTR) plant have been conducted at Japan Atomic Energy Research Institute. The conceptual design has been completed and the more detailed design works and the safety analysis of the experimental VHTR plant are continued. The purposes of design studies are to show the feasibility of the experimental VHTR program, to specify the characteristics and functions of the plant components, to point out the R and D items necessary for the experimental VHTR plant construction, and to analyze the feature of the plant safety. In this paper the summary of system design and safety features of the experimental reactor are indicated. Main issues are the safety philosophy for the design basis accident, the accidents assumed and the engineered safety systems adopted in the design works

  10. Experimental data available for radiation damage modelling in reactor materials

    International Nuclear Information System (INIS)

    Wollenberger, H.

    Radiation damage modelling requires rate constants for production, annihilation and trapping of defects. The literature is reviewed with respect to experimental determination of such constants. Useful quantitative information exists only for Cu and Al. Special emphasis is given to the temperature dependence of the rate constants

  11. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    OpenAIRE

    Zheng, Bin; Liu, Yongqi; Liu, Ruixiang; Meng, Jian; Mao, Mingming

    2015-01-01

    This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h) and catalytic oxidation bed average temperature (20°C to 560°C) within the preheated catalytic oxidation reactor. The pressure drop and res...

  12. Inverse kinetics technique for reactor shutdown measurement: an experimental assessment. [AGR

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T. A.; McDonald, D.

    1975-09-15

    It is proposed to use the Inverse Kinetics Technique to measure the subcritical reactivity as a function of time during the testing of the nitrogen injection systems on AGRs. A description is given of an experimental assessment of the technique by investigating known transients created by control rod movements on a small experimental reactor, (2m high, 1m radius). Spatial effects were observed close to the moving rods but otherwise derived reactivities were independent of detector position and agreed well with the existing calibrations. This prompted the suggestion that data from installed reactor instrumentation could be used to calibrate CAGR control rods.

  13. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    Science.gov (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  14. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Miki, Nobuharu; Iida, Fumio; Suzuki, Shohei; Wachi, Yoshihiro; Toyoda, Katsuyoshi; Hashizume, Takashi; Konno, Masayuki.

    1987-09-01

    This report summarizes the FER magnet design which was conducted last year (1986). Main objective of the new FER design is to have better cost performance of the machine. The physics assumptions are reviewed to reduce risks. Optimization of the physics design and improvements of the engineering design have been done without changing missions of the device. After a preliminary investigation for the optimization and improvements, six FER concepts have been developed to establish the improved design point, and have been studied in more detail. In the magnet design, the improvements of superconducting magnet design were mainly investigated to reduce the reactor size. A normal conductor was studied as an alternative option for appling to the special poloidal field coils that were located on the interior to the toroidal field coils. Some improvements were made on the superconducting magnet design. Based on the preliminary investigation, the magnet design specifications have been modified somewhat. The conceptual design of the magnet system components have been done for the candidate FER concepts. (author)

  15. Experimental study of defect power reactor fuel. Final report

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Jonsson, T.

    1982-01-01

    Two BWR fuel rods, one intact and one defect, with the same manufacturing and irradiation data have been examined in a comparative study. The defect rod has been irradiated in a defect condition during approximately one reactor cycle and has consequently some secondary defects. The defect rod has two penetrating defects at a distance of about 1.5 meters from each other. Comparison with the intact rod shows a large Cs loss from the defect rod, especially between the cladding defects, where the loss is measured to about 30 %. The leachibility in deionized water is higher for Cs, U and Cm for fuel from the defect rod. The leaching results are more complex for Sr-90, Pu and Am. The fuel in the defect rod has undergone a change of structure with gain growth and formation of oriented fuel structure. The cladding of the defect rod is hydrided locally in some parts of the lower part of the rod and furthermore over a more extended region near the end of the rod. (Authors)

  16. Experimental evidence for the suitability of ELMing H-mode operation in ITER with regard to core transport of helium

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Burrell, K.H.

    1996-09-01

    Studies have been conducted in DIII-D to assess the viability of the ITER design with regard to helium ash removal, including both global helium exhaust studies and detailed helium transport studies. With respect to helium ash accumulation, the results are encouraging for successful operation of ITER in ELMing H-mode plasmas with conventional high-recycling divertor operation. Helium can be removed from the plasma core with a characteristic time constant of ∼ 8 energy confinement times, even with a central source of helium. Furthermore, the exhaust rate is limited by the pumping efficiency of the system and not by transport of helium within the plasma core. Helium transport studies have shown that D He /X eff ∼ 1 in all confinement regimes studied to date and there is little dependence of D He /X eff on normalized gyroradius in dimensionless scaling studies, suggesting that D He /X eff will be ∼ 1 in ITER. These observations suggest that helium transport within the plasma core should be sufficient to prevent unacceptable fuel dilution in ITER. However, helium exhaust is also strongly dependent on many factors (e.g., divertor plasma conditions, plasma and baffling geometry, flux amplification, pumping speed, etc.) that are difficult to extrapolate. Studies have revealed the helium diffusivity decreases as the plasma density increases, which is unfavorable to ITER's extremely high density operation

  17. Design considerations for ITER magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The authors present here preliminary ITER magnet systems design parameters taken from trade studies, design, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit

  18. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2014-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the suing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer is implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer is produced an inverse buoyant force make the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow - open pool research reactor (with a power greater than 20 M watt) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against Gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability

  19. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2015-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the swing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer produced an inverse buoyant force making the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow-open pool research reactor (with a power greater than 20 Mw) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability conditions from

  20. An option for the Brazilian nuclear project: necessity of fast breeder reactors and core design for an experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.

    1983-01-01

    In order to assure the continued utilization of fission energy, development of fast breeder reactors (FBRs) is a necessity. Binary fueled LMFBRs are proposed as the best type for future Brazilian nuclear systems. The inherent safety characteristics are superior to current FBRs and an efficient utilization of the abundant thorium is possible. A first step and a basic tool for the development of FBR technologies is the construction and operation of an experimental fast reactor (EFR). A series of core designs for a 90 MW EFR is studied and possible options and the magnitudes of principal parameters are identified. Flexible modifications of the core and sufficiently high fast fluxes for fuel and materials irradiations appear possible. (Author) [pt

  1. Experimental research on pressurized water reactor(PWR) safety

    International Nuclear Information System (INIS)

    Kim, Dong Su; Chae, Sung Ki; Chang, Won Pyo

    1991-12-01

    The objective of this research is to analyze the experimental results already performed in BETHSY facility of CEA France and to establish essential technologies for the future implementation of both such an experiment and computer code assessment, which are not undergoing in Korea so far. The contents of the present study are divided into 2 categories; namely, analysis of the BETHSY experimental data received from CEA, and CATHARE computer code simulation for the selected experiments, i.e. 'Natural Circulation(Test 4.3a)' and '2 Cold Leg Break'. The later studies are performed under the aims of CATHARE assessment as well as qualification of KOSAC code developing at KAERI, which is the subject in the next year and will concern an adequacy of KOSAC for the prediction of low flow natural circulation and a small break transients. (Author)

  2. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    Energy Technology Data Exchange (ETDEWEB)

    Welte, S., E-mail: stefan.welte@kit.edu [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany); Demange, D.; Wagner, R. [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany)

    2010-12-15

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H{sub 2}O and D{sub 2} to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  3. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    International Nuclear Information System (INIS)

    Welte, S.; Demange, D.; Wagner, R.

    2010-01-01

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H 2 O and D 2 to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  4. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  5. Experimental and theoretical studies on hydrogenation of olefins in multiphase fixed bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Battsengel, B.; Datsevitch, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2003-07-01

    Multi phase reactors like trickle bed systems are frequently used for gas-liquid reactions. In general, they have complex mass and heat transfer characteristics; scale-up is therefore difficult. The present work focuses on the role of mass transfer on the effective reaction rate, taking catalytic octene hydrogenation as a model reaction. The reaction rate in a trickle bed reactor is by a factor of about 20 smaller than (theoretically) in the absence of any mass transfer limitations. Based on the experimental results, the so-called pre-saturation concept is presented, where only the liquid saturated with hydrogen is fed into the reactor. The effective reaction rate in this two phase system (liquid and solid cat.) is equal or even higher than in a trickle bed reactor. Scale-up problems do not occur, and the pre-saturation concept has also other advantages (lower energy consumption), as discussed in detail in this paper. (orig.)

  6. Radiological characteristics of light-water reactor spent fuel: A literature survey of experimental data

    International Nuclear Information System (INIS)

    Roddy, J.W.; Mailen, J.C.

    1987-12-01

    This survey brings together the experimentally determined light-water reactor spent fuel data comprising radionuclide composition, decay heat, and photon and neutron generation rates as identified in a literature survey. Many citations compare these data with values calculated using a radionuclide generation and depletion computer code, ORIGEN, and these comparisons have been included. ORIGEN is a widely recognized method for estimating the actinide, fission product, and activation product contents of irradiated reactor fuel, as well as the resulting heat generation and radiation levels. These estimates are used as source terms in safety evaluations of operating reactors, for evaluation of fuel behavior and regulation of the at-reactor storage, for transportation studies, and for evaluation of the ultimate geologic storage of spent fuel. 82 refs., 4 figs., 17 tabs

  7. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sinev, V. V., E-mail: vsinev@pcbai10.inr.ruhep.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  8. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  9. Spirit and prospects of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Velikhov, E.P. [Kurchatov Institute of Atomic Energy, Moscow (Russian Federation)

    2002-10-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  10. Spirit and prospects of ITER

    International Nuclear Information System (INIS)

    Velikhov, E.P.

    2002-01-01

    ITER is the unique and the most straightforward way to study the burning plasma science in the nearest future. ITER has a firm physics ground based on the results from the world tokamaks in terms of confinement, stability, heating, current drive, divertor, energetic particle confinement to an extend required in ITER. The flexibility of ITER will allow the exploration of broad operation space of fusion power, beta, pulse length and Q values in various operational scenarios. Success of the engineering R and D programs has demonstrated that all party has an enough capability to produce all the necessary equipment in agreement with the specifications of ITER. The acquired knowledge and technologies in ITER project allow us to demonstrate the scientific and technical feasibility of a fusion reactor. It can be concluded that ITER must be constructed in the nearest future. (author)

  11. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  12. Calculation of three-dimensional mass flow and temperature distributions of nuclear reactors using the hardy cross iterative global solution

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Alvim, A.C.M.

    1989-01-01

    This work describes the thermalhydraulics code CROSS, designed for micro-computer calculation of heat and mass flow distributions in LWR nuclear reactor cores using the Hardy Cross method. Equations to calculate the pressure variations in the coolant channels are presented, along with derivation of a linear system of equations to calculate the energy balance. This system is solved through the Benachievicz method. A case study is presented, showing that the methodology developed in this work can be used in place of the forward marching multi-channel codes. (author) [pt

  13. Acquisition of reactor experimental data; Akviziter reaktorskih eksperimentalnih podataka

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Tasic, A [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    This paper include the analysis of possible experiments and relevant experimental devices for detection, registering and analysis of inducing and response signals. It contains a concept of our system for detection and registering of data, which i appropriate for our research program. Non-typical details of certain acquisition systems are described as well. U ovom radu se analiziraju moguci eksperimenti i odgovarajuci eksperimentalni uredjaji za detekciju, registraciju i analizu signala pobude i odziva. Dalje se iznosi koncepcija naseg sistema za detekciju i registraciju podataka pogodnog za nas program istrazivanja. Netipicni detalji pojedinih kola akvizitera takodje se iznose u radu (author)

  14. Data handling at EBR-II [Experimental Breeder Reactor II] for advanced diagnostics and control work

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Schorzman, L.W.

    1988-01-01

    Improved control and diagnostics systems are being developed for nuclear and other applications. The Experimental Breeder Reactor II (EBR-II) Division of Argonne National Laboratory has embarked on a project to upgrade the EBR-II control and data handling systems. The nature of the work at EBR-II requires that reactor plant data be readily available for experimenters, and that the plant control systems be flexible to accommodate testing and development needs. In addition, operational concerns require that improved operator interfaces and computerized diagnostics be included in the reactor plant control system. The EBR-II systems have been upgraded to incorporate new data handling computers, new digital plant process controllers, and new displays and diagnostics are being developed and tested for permanent use. In addition, improved engineering surveillance will be possible with the new systems

  15. Experimental estimations of the kinetics parameters of the IBR-2M reactor by stochastic noises

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tajybov, L.A.; Garibov, A.A.; Mekhtieva, R.N.

    2012-01-01

    Experimental investigations of stochastic fluctuations of pulse energy of the IBR-2M reactor have been carried out which allowed us to obtain some of the parameters of the reactor kinetics. At different levels of average power a sequence of values of pulse energy was recorded with the calculation of the distribution parameters. An ionization chamber with boron installed near the active zone was used as a neutron detector. The research results allowed us to estimate the average lifetime of prompt neutrons τ = (6.53±0.2)·10 -8 s, absolute power of the reactor and intensity of the source of spontaneous neutrons S sp ≤(6.72±0.12)·10 6 s -1 . It was shown that the experimental results are close to the calculated ones

  16. Further optimization studies of experimental dynamic responses measured on the HTGC Dragon reactor

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1968-04-01

    This report considers some measurements made of the dynamics of the HTGC Dragon reactor and the optimization of a mathematical model which represents the reactor, by altering the parameters until a least squares fit between the experimental responses and the mathematical model is obtained. The experimental information was processed in various ways. The experimental response to an impulse, step or periodic sine wave change in reactivity was processed as an impulse, step or periodic sine wave response respectively and compared with a similar response from the model. In other studies the result of a binary cross correlation experiment (effectively an impulse response input) was processed as a frequency response and this experimental frequency response was compared with the frequency response from the mathematical model. It was possible therefore to compare the optimum values of parameters, obtained for different forms of perturbing signal and for different methods of processing and to relate the optima obtained to the problem of parameter estimation. (author)

  17. ITER status, design and material objectives

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    During the ITER Engineering Design Activities (EDA), completed in July 2001, the Joint Central Team and Home Teams developed a robust design of ITER, summarised in this paper, with parameters which fully meet the required scientific and technological objectives, construction costs and safety requirements, with appropriate margins. The design is backed by R and D to qualify the technology, including materials R and D. Materials for ITER components have been selected largely because of their availability and well-established manufacturing technologies, taking account of the low fluence experienced during neutron irradiation, and the experimental nature of the device. Nevertheless, for specific needs relevant to a future fusion reactor, improved materials, in particular for magnet structures, in-vessel components, and joints between the different materials needed for plasma facing components, have been successfully developed. Now, with the technical readiness to decide on ITER construction, negotiations, supported by coordinated technical activities of an international team and teams from participant countries, are underway on joint construction of ITER with a view to the signature/ratification of an agreement in 2003

  18. Development of observation techniques in reactor vessel of experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Takamatsu, Misao; Imaizumi, Kazuyuki; Nagai, Akinori; Sekine, Takashi; Maeda, Yukimoto

    2010-01-01

    In-Vessel Observations (IVO) techniques for Sodium cooled Fast Reactors (SFRs) are important in confirming its safety and integrity. And several IVO equipments for an SFR are developed. However, in order to secure the reliability of IVO techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. During the investigation of an incident that occurred with Joyo, IVO using a standard Video Camera (VC) and a Radiation-Resistant Fiberscope (RRF) took place at (1) the top of the Sub-Assemblies (S/As) and the In-Vessel Storage rack (IVS), (2) the bottom face of the Upper Core Structure (UCS). A simple 6 m overhead view of each S/A, through the fuel handling or inspection holes etc, was photographed using a VC for making observations of the top of S/As and IVS. About 650 photographs were required to create a composite photograph of the top of the entire S/As and IVS, and a resolution was estimated to be approximately 1 mm. In order to observe the bottom face of the UCS, a Remote Handling Device (RHD) equipped with RRFs (approximately 13 m long) was specifically developed for Joyo with a tip that could be inserted into the 70 mm gap between the top of the S/As and the bottom of the UCS. A total of about 35,000 photographs were needed for the full investigation. Regarding the resolution, the sodium flow regulating grid of 0.8 mm in thickness could be discriminated. The performance of IVO equipments under the actual reactor environment was successfully confirmed. And the results provided useful information on incident investigations. In addition, fundamental findings and the experience gained during this study, which included the design of equipment, operating procedures, resolution, lighting adjustments, photograph composition and the durability of the RRF under radiation exposure, provided valuable insights into further improvements and verifications for IVO techniques to

  19. Pre-design stage of the intermediate heat exchanger for experimental fast reactor

    International Nuclear Information System (INIS)

    Luz, M.; Borges, E.M.; Braz Filho, F.A.; Hirdes, V.R.

    1986-09-01

    This report presents the outlines of a thermal-hydraulic calculation procedure for the pre-design stage of the Intermediate Heat Exchanger for a 5 MW Experimental Fast Reactor (EFR), which can be used in other similar projects, at the same stage of evolution. Heat transfer and heat loss computations for the preliminary design of the heat exchanger are presented. (author) [pt

  20. Experimental determination of neutron lifetimes through macroscopic neutron noise in the IPEN/MB-01 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gonnelli, Eduardo; Diniz, Ricardo [Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP Travessa R-400, 05508-900, Cidade Universitaria, Sao Paulo (Brazil)

    2013-05-06

    The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.

  1. Membrane assisted fluidized bed reactor: experimental demonstration for partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.

    2004-01-01

    In this thesis the reactor concept has been developed on the basis of an experimental study on the effect of fluidization conditions on the membrane permeation rate in a MAFBR, the extent of gas back mixing and the tube-to-bed heat transfer rates in the presence of membrane bundles with and without

  2. Experimental determination of lattice parameters for 2% enriched uranium heavy water reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Takac, S; Markovic, H; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1963-04-15

    Systematic measurements of the buckling, infinite multiplication factor and the thermal utilization factor were made on a series of lattices for 2% enriched uranium tubular fuel elements in heavy water. This work represents the first phase of experimental verification of standard theoretical methods used for the determination of reactor parameters.

  3. Final Report on ITER Task Agreement 81-18

    Energy Technology Data Exchange (ETDEWEB)

    Brad J. Merrill

    2008-02-01

    During 2007, the US International Thermonuclear Experimental Reactor (ITER) Project Office (USIPO) entered into a Task Agreement (TA) with the ITER International Organization (IO) to conduct Research and Development activity and/or Design activity in the area of Safety Analyses. There were four tasks within this TA, which were to provide the ITER IO with: 1) Quality Assurance (QA) documentation for the MELCOR 1.8.2 Fusion code, 2) a pedigreed version of MELCOR 1.8.2, 3) assistance in MELCOR input deck development and accident analyses, and 4) support and assistance in the operation of the MELCOR 1.8.2. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-18.

  4. Experimental verification of creep analyses for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Abe, H.; Ohnuma, H.

    1977-01-01

    The authors proposed a new method of creep analysis based on the theory of strain hardening, which assumes that accumulated creep at a given time influences the creep after that. This method was applied to calculate step-by-step the behaviors of uniaxial creep of concrete under variable temperatures and stresses, creep in reinforced concrete specimens and the behaviors of prestressed concrete beams under themal gradients. The experimental and calculated results agreed fairly well. Further, this method was incorporated in the finite element creep analysis for the prestressed concrete hollow cylinder and the full scale model. The calculated strain changes with time pursued closely those obtained by experiments. The above led to the conclusion that from the viewpoint of both accuracy and computation time the strain hardening method proposed by the authors may be judged advantageous for practical usages

  5. Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET

    NARCIS (Netherlands)

    Lerche, E.; Van Eester, D.; Johnson, T. J.; Hellsten, T.; Ongena, J.; Mayoral, M. L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sergienko, G.; Stamp, M.; Studholme, W.; Tardocchi, M.; Vdovin, V.; Versloot, T.; Voitsekhovitch, I.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; JET-EFDA Contributors,

    2012-01-01

    Two ion cyclotron range of frequencies (ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas—fundamental H majority and second harmonic 3 He ICRF heating—were recently investigated in JET. Although the same magnetic field and RF frequencies ( f ≈ 42 MHz and f

  6. Welding and cutting characteristics of blanket/first wall module to back plate for fusion experimental reactor

    International Nuclear Information System (INIS)

    Sato, Shinichi; Osaki, Toshio; Koga, Shinji

    1996-01-01

    The first wall and the blanket of the International Thermonuclear Experimental Reactor (ITER) are used under severe conditions such as the neutron irradiation by plasma, surface thermal load, the electromagnetic force at the time of plasma disruption and others. Consequently, from the viewpoint of the necessity for disassembling and maintenance, those are divided into modules in toroidal and poloidal directions. In this study, as to the welding of the back plate and the legs supporting blanket modules, which are installed in a vacuum vessel, the characteristic test paying attention to the deformation at the time of welding was carried out, and the optimal welding conditions and the characteristics of welding deformation and others were clarified. Moreover, when water jet method was used for cutting the welded parts of the supporting legs, the properties of the cut parts, the time for cutting and others were examined. The performance required for the welded parts of blanket modules with back plate is shown. The basic test of welding conditions using plate models, partial model test and whole model test are reported. The test of water jet cutting for the maintenance of shielding blanket modules is described. (K.I.)

  7. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.D.

    1994-01-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  8. The High Aspect Ratio Design (HARD): A candidate ITER concept with improved technology phase performance

    International Nuclear Information System (INIS)

    Nevins, W.M.; Perkins, L.J.; Wesley, J.C.

    1992-10-01

    The High Aspect Ratio Design (HARD) International Thermonuclear Experimental Reactor (ITER) concept developed by the US ITER team is an alternate to the low-aspect-ratio ITER design developed by the ITER participants during the Conceptual Design Activity (CDA). The CDA design, referred to hereafter as ITER CDA, has an aspect ratio, A, of 2.79, a toroidal magnetic field, B T , of 4.85 T, and a plasma current, I p , of 22 MA for operation with an ignited plasma. In contrast, HARD employs higher aspect ratio, A = 4.0, higher toroidal field, B T = 7.11 T, and lower plasma current, I p = 14.8 MA for ignition operation. The cross sections of the two designs are compared in. The parameters and performance of HARD and ITER CDA for inductively driven ignition operation are compared in. The HARD parameters provide the same ignition performance (ignition margin evaluated against ITER-89P confinement scaling) as ITER CDA in a device with comparable size and cost. However, the reason for advancing HARD rather than ITER CDA as the ITER design concept is not inductively driven ignition performance but HARD's significantly enhanced potential to achieve the technology testing and steady-state operation goals of the ITER objectives with non-inductive current drive

  9. Poloidal field system for the ITER hard design option

    International Nuclear Information System (INIS)

    Schultz, J.H.; Pillsbury, R.D.

    1992-01-01

    This paper reports on ITER, the International Thermonuclear Experimental Reactor, a collaborative design by the US, EC, Japan, and the USSR of a tokamak fusion reactor that will demonstrate the physics and test the technology needed for commercial fusion reactors. In 1990, the ITER team completed a Conceptual Design Activity (CDA) in which a candidate design was shown to meet the specified goals of the ITER activity at a conceptual level. The four parties have agreed to an Engineering Design Activity (EDA) that includes the necessary additional design and analysis, along with the R and D needed to construct ITER with confidence. The CDA design includes a toroidal field (TF) magnet system that provides the main containment field and a poloidal field (PF) system used to control plasma current and position. The PF system is also used as transformer primary to induce and sustain current in the plasma. Since the volt-seconds available for full-current plasma burn are less than 10% of the total available volt-seconds from the PF system, an area of concern in the CDA design is that unfavorable plasma conditions could compromise the ability of the physics base case design to achieve long pulse burns. A High Aspect Ratio Design (HARD) was conceived as an alternative design option with a much larger bore in the central solenoid to enhance ITER's capabilities for long-burn operation

  10. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  11. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  12. Study of the Van Cittert and Gold iterative methods of deconvolution and their application in the deconvolution of experimental spectra of positron annihilation

    International Nuclear Information System (INIS)

    Bandzuch, P.; Morhac, M.; Kristiak, J.

    1997-01-01

    The study of deconvolution by Van Cittert and Gold iterative algorithms and their use in the processing of experimental spectra of Doppler broadening of the annihilation line in positron annihilation measurement is described. By comparing results from both algorithms it was observed that the Gold algorithm was able to eliminate linear instability of the measuring equipment if one uses the 1274 keV 22 Na peak, that was measured simultaneously with the annihilation peak, for deconvolution of annihilation peak 511 keV. This permitted the measurement of small changes of the annihilation peak (e.g. S-parameter) with high confidence. The dependence of γ-ray-like peak parameters on the number of iterations and the ability of these algorithms to distinguish a γ-ray doublet with different intensities and positions were also studied. (orig.)

  13. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    International Nuclear Information System (INIS)

    Wang Yongbo; Pessi, Pekka; Wu Huapeng; Handroos, Heikki

    2009-01-01

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  14. Accuracy analysis of hybrid parallel robot for the assembling of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongbo [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); The State Key Laboratory of Mechanical Transmission, Chongqing University (China); Pessi, Pekka [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Wu Huapeng [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)], E-mail: huapeng@lut.fi; Handroos, Heikki [Institute of Mechatronics and Virtual Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2009-06-15

    This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kinematics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results are presented.

  15. Qualification of the US Made Conductors for ITER TF Magnet System

    International Nuclear Information System (INIS)

    Martovetsky, Nicolai N.; Hatfield, Daniel R.; Miller, John R.; Bruzzone, P.; Stepanov, B.; Seber, B.

    2010-01-01

    The US Domestic Agency (USDA) is one of the six suppliers of the Toroidal Field (TF) conductor for the International Thermonuclear Experimental Reactor (ITER). In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  16. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C.

    2017-01-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO_2 fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D_2O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α"M_T(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  17. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C., E-mail: rubensrcs@usp.br, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Universidade de Sao Paulo (PNV/POLI/USP), SP (Brazil). Arquitetura Naval e Departamento de Engenharia Oceanica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO{sub 2} fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D{sub 2}O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α{sup M}{sub T}(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  18. Experimental study on reactivity measurement in thermal reactor by polarity correlation method

    International Nuclear Information System (INIS)

    Yasuda, Hideshi

    1977-11-01

    Experimental study on the polarity correlation method for measuring the reactivity of a thermal reactor, especially the one possessing long prompt neutron lifetime such as graphite on heavy water moderated core, is reported. The techniques of reactor kinetics experiment are briefly reviewed, which are classified in two groups, one characterized by artificial disturbance to a reactor and the other by natural fluctuation inherent in a reactor. The fluctuation phenomena of neutron count rate are explained using F. de Hoffman's stochastic method, and correlation functions for the neutron count rate fluctuation are shown. The experimental results by polarity correlation method applied to the β/l measurements in both graphite-moderated SHE core and light water-moderated JMTRC and JRR-4 cores, and also to the measurement of SHE shut down reactivity margin are presented. The measured values were in good agreement with those by a pulsed neutron method in the reactivity range from critical to -12 dollars. The conditional polarity correlation experiments in SHE at -20 cent and -100 cent are demonstrated. The prompt neutron decay constants agreed with those obtained by the polarity correlation experiments. The results of experiments measuring large negative reactivity of -52 dollars of SHE by pulsed neutron, rod drop and source multiplication methods are given. Also it is concluded that the polarity and conditional polarity correlation methods are sufficiently applicable to noise analysis of a low power thermal reactor with long prompt neutron lifetime. (Nakai, Y.)

  19. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    International Nuclear Information System (INIS)

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-01-01

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad

  20. Design of a management information system for the Shielding Experimental Reactor ageing management

    International Nuclear Information System (INIS)

    He Jie; Xu Xianhong

    2010-01-01

    The problem of nuclear reactor ageing is a topic of increasing importance in nuclear safety recent years. Ageing management is usually implemented for reactors maintenance. In the practice, a large number of data and records need to be processed. However, there are few professional software applications that aid reactor ageing management, especially for research reactors. This paper introduces the design of a new web-based management information system (MIS), named the Shielding Experimental Reactor Ageing Management Information System (SERAMIS). It is an auxiliary means that helps to collect data, keep records, and retrieve information for a research reactor ageing management. The Java2 Enterprise Edition (J2EE) and network database techniques, such as three-tiered model, Model-View-Controller architecture, transaction-oriented operations, and JavaScript techniques, are used in the development of this system. The functionalities of the application cover periodic safety review (PSR), regulatory references, data inspection, and SSCs classification according to ageing management methodology. Data and examples are presented to demonstrate the functionalities. For future work, techniques of data mining will be employed to support decision-making.