WorldWideScience

Sample records for experimental nuclear physics

  1. Experimental nuclear physics in Vietnam - recent status

    International Nuclear Information System (INIS)

    Tran Thanh Minh

    1995-01-01

    Status of research works on experimental nuclear physics in Vietnam is reviewed. Vietnam institutions and main instruments for nuclear research are listed. The results on physics and technology of nuclear reactor, neutron physics, nuclear reactions, radiological safety are mentioned. (N.H.A). 6 tabs, 4 figs

  2. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    Tavernier, Stefaan

    2010-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  3. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  4. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  5. Perspectives of experimental nuclear physics research at RBI Croatia

    International Nuclear Information System (INIS)

    Soic, N.

    2009-01-01

    Experimental nuclear physics has been one of the top research activities at the Rudjer Boskovic Institute, the largest and leading Croatian research center in science and applications. The RBI nuclear physics group has strong link with the researchers at the University of Zagreb. RBI scientists perform experiments at the RBI Tandem accelerator facility and at the top European experimental facilities in collaboration with the prominent research groups in the field. Current status of the RBI experimental nuclear physics research and our recent activities aimed to strengthen our position at the RBI and to increase our international reputation and impact in collaborative projects will be presented. Part of these activities is focused on local accelerator facilities, at present mainly used for application research, and their increased usage for nuclear physics research and for development and testing of novel research equipment for large international facilities. Upgrade of the local research equipment is on the way through FP7 REGPOT project 'CLUNA: Clustering phenomena in nuclear physics: strengthening of the Zagreb-Catania-Birmingham partnership'. Recently, steps to exploit potential of the facility for nuclear astrophysics research have been initiated. Possible future actions for further strengthening of the RBI experimental nuclear physics research will be discussed.(author)

  6. Experimental nuclear physics in Vietnam - recent status

    International Nuclear Information System (INIS)

    Tran Thanh Minh

    1995-01-01

    It is really difficult to determine the exact date for the starting of nuclear physics research in Vietnam. Serious research on experimental nuclear physics began only since 1972 with the installation of such nuclear instrument like microtron accelerator, neutron generator, etc. During the past 20 years, hundred of research works have been published in local and foreign scientific journals. In the 5th national conference in Physics held in Hanoi in October 1993, at the Nuclear Physics section, 62 reports were presented reflecting the situation of nuclear physics research in the recent years, especially in the past five years. This review introduces its main results and formulates some perspectives of development in the late nineties in Vietnam. (K.A.). 27 refs., 4 figs., 6 tabs

  7. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Popkiewicz, M. [eds.

    1997-12-31

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` by NPD director prof. Ch. Droste.

  8. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M. [eds.

    1998-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  9. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1997

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Kirejczyk, M.; Popkiewicz, M.

    1998-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1997 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  10. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University Annual Report 1996

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Popkiewicz, M.

    1997-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Institute of Experimental Physics (Warsaw University) in year 1996 are described. The report is divided into three parts: Reaction mechanisms and nuclear structure; Experimental methods and instrumentation and the third part contains the list of personnel, seminars held at the Nuclear Physics Division and published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' by NPD director prof. Ch. Droste

  11. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2003

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Skwira, I.; Grodner, E.

    2004-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2003 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  12. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    International Nuclear Information System (INIS)

    Kirejczyk, M.; Szeflinski, Z.

    1999-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  13. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2004

    International Nuclear Information System (INIS)

    Kirejczyk, M.K.

    2005-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2004 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  14. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kirejczyk, M.; Szeflinski, Z. [eds.

    1999-08-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1998 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contains the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ``Preface`` written by NDP director prof. K. Siwek-Wilczynska

  15. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2000

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2000 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in 'Preface' written by NDP director prof. K. Siwek-Wilczynska

  16. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 2001

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2001-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 2001 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one which contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NPD director prof. K. Siwek-Wilczynska

  17. Nuclear Physics Division - Inst. of Experimental Physics - Warsaw University - Annual Report 1999

    International Nuclear Information System (INIS)

    Kirejczyk, M.

    2000-01-01

    In the presented report the research activities of Nuclear Physics Division (NPD) of the Warsaw University Institute of Experimental Physics in year of 1999 are described. The report is divided into three parts: Reaction Mechanisms and Nuclear Structure, Experimental Methods and Instrumentation and the third one contain the lists of personnel, seminars held at the Nuclear Physics Division and list of published papers. A summary of the (NPD) activities are briefly presented in ''Preface'' written by NDP director prof. K. Siwek-Wilczynska

  18. Experimental nuclear physics research challenges at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, E.; Morales G, L. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Murillo O, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-02-15

    Experimental research with low energy beams of ions (a few MeV) in nuclear physics has gone through a phase transition along its evolution in fifty years because of the increasing complexity (and cost) of the equipment required to conduct meaningful investigations. Many of the small cyclotrons and Van de Graaff (single ended and tandem) accelerators have been used for the last three decades mostly in applications related to the characterization and modification of materials. Specific experimental investigations in nuclear physics with low energy accelerators are proposed in this work. Specifically we discuss the topic of nuclear radii measurements of radioactive species produced via (d,n) reactions. Some emphasis is given to the instrumentation required. (Author)

  19. Experimental Nuclear Physics Activity in Italy

    Science.gov (United States)

    Chiavassa, E.; de Marco, N.

    2003-04-01

    The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.

  20. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1995-12-31

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: (i) Reaction Mechanism and Nuclear Structure (12 articles); (ii) Experimental Methods and Instrumentation (2 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  1. Nuclear Physics Division Institute of Experimental Physics Warsaw University annual report 1994

    International Nuclear Information System (INIS)

    Osuch, S.

    1995-01-01

    In the presented Annual Report the activities of the Nuclear Physics Division of the Institute of Experimental Physics of the Warsaw University in 1994 are described. The report consist of three sections: i) Reaction Mechanism and Nuclear Structure (12 articles); ii) Experimental Methods and Instrumentation (2 articles); iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers is also given. In the first, leading article of the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented

  2. Proceedings of the Jorge Andre Swieca Summer School; 4. Experimental Nuclear Physics Session

    International Nuclear Information System (INIS)

    1990-01-01

    These proceedings present works on experimental nuclear physics, activation analysis, nuclear interactions, neutron physics, nuclear moments, inelastic scattering, lattices and chemical analysis. (L.C.J.A.)

  3. Experimental physics 4. Nuclear, particle and astrophysics. 5. ed.; Experimentalphysik 4. Kern-, Teilchen- und Astrophysik

    Energy Technology Data Exchange (ETDEWEB)

    Demtroeder, Wolfgang

    2017-09-01

    The following topics are dealt with: Structure of atomic nuclei, unstable nuclei and radioactivity, experimental techniques in nuclear and high-energy physics, nuclear forces and nuclear models, nuclear reactions, physics of elementary particles, applications of nuclear and high-energy physics, foundations of experimental astronomy and astrophysics, our solar system, birth, life, and death of stars, the development and present structure of the universe. (HSI)

  4. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S [ed.

    1997-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  5. Nuclear Physics Division, Institute of Experimental Physics, Warsaw University annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S. [ed.

    1996-12-31

    In the presented Annual Report the activities of Nuclear Physics Division (NPD) of Warsaw University in 1995 are described. The report consists of three sections: (i) Reaction Mechanism and Nuclear Structure (11 articles); (ii) Instrumentation and Experimental Methods (9 articles); (iii) Other Research (1 article). Additionally the list of seminars held at the NPD, personnel list and list of published papers are also given. The first, leading article in the report written by head of NPD prof. Ch. Droste the general description of the Department activity is presented.

  6. Research at the Section of Experimental Nuclear Physics of ATOMKI

    International Nuclear Information System (INIS)

    Krasznahorkay, A.; Fenyes, T.; Dombradi, Zs.; Nyako, B.M.; Timar, J.; Algora, A.; Csatlos, M.; Csige, L.; Gacsi, Z.; Gulyas, J.

    2011-01-01

    Introduction. Nuclear physics research was started in Debrecen by Alexander Szalay (1909-1987) back in the 30's. He had been a postdoc of the Nobel-laureate biologist Albert Szent-Gyorgyi in Szeged and of Lord Rutherford in Cambridge. ATOMKI was founded in Debrecen later, in 1954. The Institute was meant to pursue scientific research in certain areas of experimental nuclear physics and to develop research instruments In the early years the country was pretty isolated, but the institute's state of isolation was gradually easing up from the mid-sixties. During the period 1962-1975 the research work was performed in collaboration with Joint Institute for Nuclear Research (Dubna), where up-to-date high-energy accelerators were available for the production of desired isotopes. After finishing the construction of a home-made 5 MV Van de Graaff accelerator (1972) and later on the installation of a K=20 light ion cyclotron (1985) the Institute has become the main centre of accelerator-based nuclear physics in Hungary. In the period 1975-1995 our group performed extensive nuclear structure studies in Debrecen by using γ and conversion electron spectroscopy. At the same time fruitful collaborations were initiated with Jyvaskyla (Finland), with University of Kentucky and University of Zagreb. In 1993 the former Nuclear Reaction Group (NRG) merged with our group. Parallel with this structural change, the main topics of our γ-spectroscopic work has also changed, which resulted that the location of our experiments were shifted from the home institute to foreign large-scale facilities. New topics were brought partly by the emerging NRG, partly by group members returning from postdoctoral fellowships. They also brought important non γ-spectroscopic topics, which enriched our research palette. These new topics have by now become joint endeavours involving more and more group members. The Nuclear Physics European Coordination Committee (NuPECC) has recently stated that the aim of

  7. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1994-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  8. Overview of experimental research on nuclear structure in department of modern applied physics

    International Nuclear Information System (INIS)

    Zhu Shengjiang

    1999-01-01

    The experimental research on nuclear structure in Department of Modern Applied Physics, Tsinghua University has been summarized. The main research results in high spin states of nuclear structure, as well as some low spin states, have been reported

  9. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  10. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  11. Nuclear physics

    International Nuclear Information System (INIS)

    Patel, S.B.

    1991-01-01

    This book is a simple and direct introduction to the tools of modern nuclear physics, both experimental and mathematical. Emphasizes physical intuition and illuminating analogies, rather than formal mathematics. Topics covered include particle accelerators, radioactive series, types of nuclear reactions, detection of the neutrino, nuclear isomerism, binding energy of nuclei, fission chain reactions, and predictions of the shell model. Each chapter contains problems and illustrative examples. Pre-requisites are calculus and elementary vector analysis

  12. Proceedings of the 9. Workshop on Nuclear Physics - Communications of basic nuclear physics

    International Nuclear Information System (INIS)

    1986-01-01

    The abstracts of researches on basic nuclear physics of 9. Workshop on Nuclear Physics in Brazil are presented. Mathematical models and experimental methods for nuclear phenomenon description, such as nuclear excitation and disintegration of several nuclei were discussed. (M.C.K.) [pt

  13. Nuclear physics

    International Nuclear Information System (INIS)

    Spicer, B.M.

    1981-01-01

    Major centres of experimental nuclear physics are at Melbourne University, A.N.U., the A.A.E.C., James Cook University and the University of Western Australia. Groups working in theoretical nuclear physics exist at Melbourne, A.N.U., the A.A.E.C., Flinders and Adelaide Universities and the University of Western Australia. The activities of these groups are summarised

  14. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  15. Activities report in nuclear physics

    NARCIS (Netherlands)

    Jansen, J. F. W.; Scholten, O.

    1987-01-01

    Experimental studies of giant resonances, nuclear structure, light mass systems, and heavy mass systems are summarized. Theoretical studies of nuclear structure, and dynamics are described. Electroweak interactions; atomic and surface physics; applied nuclear physics; and nuclear medicine are

  16. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1991-04-01

    The report summarizes the research and development activities of the Section for nuclear physics and energy physics at the University of Oslo in 1990. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. The experimental activities in nuclear physics have, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Using the CACTUS multidetector system, several experiments in collaboration with the nuclear physics group at the University of Bergen have been completed. Some results have been published and were also presented at the international conference in Oak Ridge, USA, while more data remains to be analyzed

  17. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  18. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  19. Training of personnel for nuclear power at Nuclear Physics Department of Faculty of Mathematics and Physics, Comenius University

    International Nuclear Information System (INIS)

    Povinec, P.; Florek, M.; Chudy, M.

    1983-01-01

    The Science Faculty of the Comenius University in Bratislava established the nuclear physics specialization in 1962. Students enrolled in the study course acquired basic knowledge in mathematics and physics, foundations of the microstructure of matter and experimental methods of nuclear physics and technics. Since 1976 nuclear physics has been a separate study field which from the fourth year of study has its narrow specializations, namely applied nuclear physics, experimental nuclear physics and physics of the atomic nucleus and elementary particles. A change has recently been made in the system of optional lectures with the aim of providing the students with a wider range of knowledge in the physics of nuclear reactors and the use of computer technology and microelectronics in nuclear physics and technology. In 1980 a postgraduate study course was opened oriented to nuclear power and the environment. (E.S.)

  20. Nuclear physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  1. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  2. [Experimental nuclear physics]. Final report

    International Nuclear Information System (INIS)

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs

  3. [Experimental nuclear physics]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  4. Nuclear physics and neutronics

    International Nuclear Information System (INIS)

    Paya, D.

    1997-01-01

    After a brief review of the beginnings of the nuclear reaction physics in France in the 40's and 50's, the experimentation neutronics and nuclear physics studies are related and their uses presented, which aims were to provide data for the study of the various reactor concepts and to study fundamental physics. Progressively, pure nuclear physics lost its links with neutronics, and its influence decreases more or less. Long life radioactive waste reprocessing is an important domain where it could regain its contribution

  5. Research in experimental nuclear physics

    International Nuclear Information System (INIS)

    Moore, C.F.

    1989-09-01

    Our program concentrates on pion physics experimental results obtained using the Energetic Pion Channel and Spectrometer (EPICS), Pion and Particle Physics channel (P 3 ), and the Low Energy Pion physics channel (LEP). These facilities are unique in the world in their intensity and resolution. Two classes of experiments can be done best with this equipment: scattering (elastic and inelastic) and double charge exchange (DCX). Several coincidence experiments are in progress and are discussed in this paper

  6. Methods of experimental physics

    CERN Document Server

    Williams, Dudley

    1962-01-01

    Methods of Experimental Physics, Volume 3: Molecular Physics focuses on molecular theory, spectroscopy, resonance, molecular beams, and electric and thermodynamic properties. The manuscript first considers the origins of molecular theory, molecular physics, and molecular spectroscopy, as well as microwave spectroscopy, electronic spectra, and Raman effect. The text then ponders on diffraction methods of molecular structure determination and resonance studies. Topics include techniques of electron, neutron, and x-ray diffraction and nuclear magnetic, nuclear quadropole, and electron spin reson

  7. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    1986-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  8. Nuclear Physics Laboratory. Annual report no.22

    International Nuclear Information System (INIS)

    1987-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  9. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  10. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    1979-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  11. Control systems for experimental physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    At an international conference last year at Villars-sur-Ollon (Switzerland), scientists from all over the world looked at the problems of controlling complex physics installations, including particle accelerators, nuclear reactors, large telescopes and high energy physics detectors. The meeting, organized by the European Physical Society's Interdivisional Group on Experimental Physics Control Systems, EPCS, brought together 180 scientists from the world's leading experimental physics research laboratories, universities and industries

  12. [Experimental nuclear physics]. Annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    This is the April 1989 annual report of the Nuclear Physics Labortaory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, computer systems, instrumentation, and the Laboratory`s booster linac work. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1988-1989 academic year, and publications. Refs., 23 figs., 3 tabs.

  13. Panorama of the nuclear physics

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1981-01-01

    A summary of the topics covered by the nuclear physics, as disciplinary basis of the nuclear engineering, is presented, including from the fundamentals of modern physics used in nuclear physics, to the methods and more important applications, with the nucleus structure as central topic of the nuclear physics. In addition to a survey of the essential historical development in the different areas, this survey summarizes the basic concepts, postulates, laws and processes, which are the starting points, as in every scientific discipline for the understanding, interpretation and prediction of the variety of nuclear phenomena observed by methods increasingly improved and more complex, although such experimental methods are not discussed. (author) [es

  14. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    International Nuclear Information System (INIS)

    1998-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  15. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    International Nuclear Information System (INIS)

    1997-05-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  16. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  17. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  18. Experimental overview and challenge in strangeness nuclear physics — strangeness in the past and coming decades

    International Nuclear Information System (INIS)

    Imai, Kenichi

    2010-01-01

    A great progress has been made in strangeness nuclear physics in the past decade. Examples are; 1) The "hyperfine" structure of hypernuclei were measured with the Hyperball, and ΛN spin dependent interactions in p-shell hypernuclei were determined. 2) The "complete measurements" of the weak decay of hypernuclei were made and the np ratio puzzle in the non-mesonic decay was solved. 3) The discovery of a clean event of "Lambpha" and determination of its binding energy concluded that the Λ-Λ interaction is weak attractive. However, we still have important questions to be answered in this field, especially in relation with QCD and nuclear physics. For the future strangeness nuclear physics, we have and will have facilities such as JLab, SPring-8, Daphne, J-PARC, FAIR. We discuss experimental challenges in the strangeness nuclear physics and related fields in the next decade. (author)

  19. Nuclear Physics studies at ELI-NP

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    The mission of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility is to use extreme electromagnetic fields for nuclear physics research. At ELI-NP, high-power lasers together with a very brilliant γ-ray beam are the main research tools. Their targeted operational parameters are described. The emerging experimental program of the facility in the field of nuclear physics is reported and the main directions of the research envisioned are presented. The experimental instrumentation, which will operate at ELI-NP for the realization of the research program, is discussed. The expected impact of ELI-NP on the future advance of the field is summarized

  20. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  1. 9. Biennial session of nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    As every two years the 9th biennial session of nuclear physics shall try to make a survey of the recent experimental developments as well as the evolution of the theoretical ideas in Nuclear Physics. Communications are indexed and analysed separately

  2. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  3. [Experimental and theoretical nuclear physics]: 1988 Annual report

    International Nuclear Information System (INIS)

    1988-05-01

    This paper describes the highlights of the past year of the Nuclear Physics Laboratory at the University of Washington. Particular topics discussed are: astrophysics, giant resonance, heavy ion induced reactions, fundamental symmetries, nuclear reactions, medium energy reactions, accelerator mass spectrometry, Van de Graaf and ion sources, the booster linac project, instrumentation and computer systems

  4. Student Scientific Conference - Nuclear Physics, 2008. Proceedings of contributions

    International Nuclear Information System (INIS)

    2008-01-01

    The conference included the following sections: (i) Biophysics and medicine physics; (ii) Experimental physics and theoretical physics; (iii) Nuclear physics; (iv) Informatics; (v) Mathematics; (vi) Theoretical graphics. Contributions of nuclear physics have been inputted to INIS.

  5. Foundations of nuclear and particle physics

    CERN Document Server

    Donnelly, T William; Holstein, Barry R; Milner, Richard G; Surrow, Bernd

    2017-01-01

    This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.

  6. Student Scientific Conference - Nuclear Physics, 2006. Proceedings of contributions

    International Nuclear Information System (INIS)

    2006-04-01

    The conference included the following sections: (i) Applied mathematics; (ii) Didactics; (iii) Experimental physics and biophysics; (iv) Nuclear physics; (v) Theoretical physics, astronomy, meteorology and Earth physics; (vi) Mathematics; (vii) Theoretical informatics. Contributions of nuclear physics have been inputted to INIS.

  7. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  8. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    1988-04-01

    The experimental activities have in 1987, as in the previous years, mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  9. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  10. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  11. Experimental studies of nuclear astrophysics

    International Nuclear Information System (INIS)

    He Jianjun; Zhou Xiaohong; Zhang Yuhu

    2013-01-01

    Nuclear astrophysics is an interdisciplinary subject combining micro-scale nuclear physics and macro-scale astrophysics. Its main aims are to understand the origin and evolution of the elements in the universe, the time scale of stellar evolution, the stellar environment and sites, the energy generation of stars from thermonuclear processes and its impact on stellar evolution and the mechanisms driving astrophysical phenomena, and the structure and property of compact stars. This paper presents the significance and current research status of nuclear astrophysics; we introduce some fundamental concepts, the nuclear physics input parameters required by certain astrophysics models, and some widely-used experimental approaches in nuclear astrophysics research. The potential and feasibility of research in this field using China’s current and planned large-scale scientific facilities are analyzed briefly. Finally, the prospects of the establishing a deep underground science and engineering laboratory in China are envisaged. (authors)

  12. Second Mexican School of Nuclear Physics: Notes

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Chavez L, E.R.; Hess, P.O.

    2001-01-01

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  13. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    International Nuclear Information System (INIS)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y.

    1998-01-01

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons

  14. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1984-01-01

    The experimental activities of the nuclear physics group at the University of Oslo have in 1983 as in the previous years mainly been centered around the SCANDITRONIX MC-35 cyclotron. The cyclotron has been in extensive use during the year for low-energy nuclear physics experiments. In addition it has been used for production of radionuclides for nuclear medicine, for experiments in nuclear chemistry and for corrosion and wear studies. After four years of operation, the cyclotron is still the newest nuclear accelerator in Scandinavia. The available beam energies (protons and alpha-particles up to 35 MeV and *sp3*He-particles up to 48 MeV, makes it a good tool for studies of highly excited low-spin states. The well developed on-line computer system has added to its usefulness. Most of the nuclear experiments during the year have been connected with the study of nuclear structure at high temperature. Experimens with the *sp3*He beam have given very interesting results. Theoretical studies have continued in the same field, and there has been a fruitful cooperation between experimental and theoretical physicists. Most of the experiments are performd as joint projects where physicists from two or three Nordic universities take part. (RF)

  15. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  16. Nuclear physics in Cuba: a historical outline

    International Nuclear Information System (INIS)

    Castro Díaz-Balart, Fidel

    2015-01-01

    The present article summarizes an historical perspective of the national experience in Nuclear Physics development, with particular emphasis on its relationship with the Cuban Nuclear Program, its scientific and technological achievements, and its social and economic impact. Multiple peaceful applications introduced in the country and specifically those related to the Nuclear Power Program are also included. In order to support nuclear energy as well as nuclear power plants, specialized institutions were created, in addition to the training of professionals and interdisciplinary research groups in theoretical and experimental nuclear physics, engineering and in other different specialties. (author)

  17. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  18. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1986-06-01

    The experimental activities have in 1985 as in the previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV have continued, and valuable information regarding the cooling process in highly excited nuclei has been obtained. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  19. Annual report of the Institute of Nuclear Physics of the Universite de Paris-Sud (Orsay)

    International Nuclear Information System (INIS)

    1988-01-01

    Experimental and theoretical research in nuclear physics is described. Experimental work includes ground states and low energy excited states; high excitation energy nuclear states; heavy ion collision phenomena; intermediate energy nuclear physics; radiochemistry; and interdisciplinary studies of atomic physics and ion interactions. Theoretical studies include few-nucleon systems; properties of nuclear matter; nuclear collisions; nuclear physics at intermediate energies; effective Lagrangians and quark models; high energy hadronic physics; superstrings; high spins, and gravity; astrophysics; statistical physics and chaotic systems; relativistic quantum mechanics; and mathematical physics [fr

  20. Trends in nuclear physics. 100 years later

    International Nuclear Information System (INIS)

    Nifenecker, H.; Blaizot, J.P.; Bertsch, G.F.; Weise, W.; David, F.

    1998-01-01

    In the first years after the discovery of radioactivity it became clear that nuclear physics was, by excellence, the science of small quantum systems. Between the fifties and the eighties nuclear physics and elementary particles physics lived their own lives, without much interaction. During this period the basic concepts were defined. Recently, contrary to the specialization law often observed in science, the overlap between nuclear and elementary particle physics has become somewhat blurred. This Les Houches Summer School was set up with the aim of fighting off the excessive specialization evident in many international meetings, and return to the roots. The twofold challenge of setting up a fruitful exchange between experimentalists and theorists in the first place, and between nuclear and hadronic matter physicists in the second place was successfully met. The volume presents high quality, up-to-date reviews starting with an account of the birth and first developments of nuclear physics. Further chapters discuss the description of the nuclear structure, the physics of nuclei at very high spin, the existence of super-heavy nuclei as a consequence of shell structure, liquid-gas transition, including both a description and a review of the experimental situation. Other topics dealt with include the interactions between moderately relativistic heavy ions, the concept of a nucleon dressed by a cloud of pions, the presence of pions in the nucleus, the subnucleonic phenomena in nuclei and quark-gluons deconfinement transition, both theoretical and experimental aspects. Nuclear physics continues to influence many other fields, such as astrophysics, and is also inspired by these same fields. This cross-fertilisation is illustrated by the treatment of neutron stars in one of the final chapters. The last chapter provides an overview of a recent development in which particle and nuclear physicists have cooperated to revitalize an alternative method for nuclear energy

  1. [Experimental nuclear physics

    International Nuclear Information System (INIS)

    1990-04-01

    This report contains brief discussion on the following tapes: giant resonances; nucleus-nucleus reactions; nuclear astrophysics; polarization; fundamental symmetries and interactions; accelerator mass spectrometry; instrumentation; accelerators and in sources; and computer systems

  2. National Nuclear Physics Summer School

    CERN Document Server

    2016-01-01

    The 2016 National Nuclear Physics Summer School (NNPSS) will be held from Monday July 18 through Friday July 29, 2016, at the Massachusetts Institute of Technology (MIT). The summer school is open to graduate students and postdocs within a few years of their PhD (on either side) with a strong interest in experimental and theoretical nuclear physics. The program will include the following speakers: Accelerators and Detectors - Elke-Caroline Aschenauer, Brookhaven National Laboratory Data Analysis - Michael Williams, MIT Double Beta Decay - Lindley Winslow, MIT Electron-Ion Collider - Abhay Deshpande, Stony Brook University Fundamental Symmetries - Vincenzo Cirigliano, Los Alamos National Laboratory Hadronic Spectroscopy - Matthew Shepherd, Indiana University Hadronic Structure - Jianwei Qiu, Brookhaven National Laboratory Hot Dense Nuclear Matter 1 - Jamie Nagle, Colorado University Hot Dense Nuclear Matter 2 - Wilke van der Schee, MIT Lattice QCD - Sinead Ryan, Trinity College Dublin Neutrino Theory - Cecil...

  3. Section for nuclear physics and energy physics - Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The experimental activities in nuclear physics have in 1989 mainly been centered around the cyclotron laboratory with the Scanditronic MC-35 cyclotron. The installation of the CACTUS multidetector system has been completed. With 8 particle telescopes, 28 NaI detectors and 2 Ge detectors, this experimental arrangement represents a major improvement compared to earlier set-ups in the laboratory. Theoretical studies of manybody problems, and nuclear structure and reactions have continued. The study of problems related to the foundations of quantum mechanics has also been persued

  4. Second Mexican School of Nuclear Physics: Notes; Segunda Escuela Mexicana de Fisica Nuclear: Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E F [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Chavez L, E R [Instituto de Fisica, UNAM, 04510 Mexico D.F. (Mexico); Hess, P O [Instituto de Ciencias Nucleares, UNAM, 04510 Mexico D.F. (Mexico)

    2001-07-01

    The II Mexican School of Nuclear Physics which is directed to those last semesters students of the Physics career or post-graduate was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at April 16-27, 2001 in the installations of the Institute of Physics and the Institute of Nuclear Sciences, both in the UNAM, and the National Institute of Nuclear Research (ININ). A first school of a similar level in Nuclear Physics, was carried out in Mexico at 1977 as Latin american School of Physics. This book treats about the following themes: Interactions of radiation with matter, Evaluation of uncertainty in experimental data, Particle accelerators, Notions of radiological protection and dosimetry, Cosmic rays, Basis radiation (environmental), Measurement of excitation functions with thick targets and inverse kinematics, Gamma ray technique for to measure the nuclear fusion, Neutron detection with Bonner spectrometer, Energy losses of alpha particles in nickel. It was held the practice Radiation detectors. (Author)

  5. KFA Institute of Nuclear Physics. Annual report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (orig.)

  6. KFA Institute of Nuclear Physics. Annual report 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (HSI)

  7. Contribution of scientists of Ukraine to nuclear physics and atomic technology

    International Nuclear Information System (INIS)

    Pasyichnik, M.V.

    1994-01-01

    The data on both origin and development of nuclear physics and atomic technology, scientific and research structures and establishment of scientific schools in this field is expounded in the article. All this is illustrated by examples of the Ukrainian scientists' contribution to the development of theoretical nuclear physics and experimental nuclear physics and atomic technology

  8. 4. Mexican School of Nuclear Physics

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.G. -mail: svp@nuclear.inin.mx

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, taken place from June 27 to July 8, 2005 in the Institute of Nuclear Sciences and the Institute of Physics of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided to the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the subject to whom we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University of Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to those 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Institute of Nuclear Sciences, UNAM, Institute of Physics, UNAM, Coordination of the Scientific Research, UNAM, National Institute of Nuclear Research, Nuclear

  9. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    1983-04-01

    Progress is described in the following areas: astrophysics and cosmology, nuclear structure and light ion reactions, giant resonances in radiative capture, heavy ion reations, nuclear tests of fundamental symmetries, parity violation in hydrogen, medium energy physics, accelerator mass spectrometry (C-14 and Be-10 radiochronology programs), accelerators and ion sources, magnetic spectrograph/momentum filter, instrumentation and experimental techniques, computers and computing, and the superconducting booster for the University of Washington tandem accelerator. Publications are listed

  10. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    1989-04-01

    The experimental activities in nuclear physics have in 1988 mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. The CACTUS multidetector system has been realised and will soon be operating. With 8 particle telescopes, 28 NaI detectors and 2 Ge detectors this experimental arrangement represents a major improvement compared to earlier set-ups in the laboratory. Theoretical studies of many-body problems, nuclear structure and reactions have continued. The study of problems related to the foundations of quantum mechanics has also been persued

  11. Section for nuclear physics annual report

    International Nuclear Information System (INIS)

    1987-04-01

    The experimental activities have in 1986 as in the previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. Most of the nuclear physics experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV have continued, and valuable information regarding the cooling process in highly excited nuclei has been obtained. Theoretical studies of highly excited nuclei have continued, and there has been a fruitful cooperation between experimental and theoretical physicists

  12. Particle physics using nuclear targets

    International Nuclear Information System (INIS)

    Ferbel, T.

    1978-01-01

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references

  13. Selected problems in experimental intermediate energy physics

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron

  14. Nuclear Physics Laboratory 1981 annual report

    International Nuclear Information System (INIS)

    1981-06-01

    Research progress is reported in the following areas: astrophysics and cosmology, nuclear tests of fundamental symmetries, parity mixing in the hydrogen atom, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, final design and construction of the magnetic momentum filter, instrumentation and experimental techniques, and computers and computing. Publications are listed

  15. Nuclear physics in India: a perspective and a peep into future

    International Nuclear Information System (INIS)

    Hans, H.S.

    1986-01-01

    Research in the field of nuclear physics in India began some 40 years ago. A brief account of the research activities in both experimental and theoretical nuclear physics is given. It is noted, that the research so far made and being conducted does not match the international standards. So far no new experimental or calculational techniques in accelerator technology has been developed in India. So also no new experiment based on an experimental or theoretical idea developed for the first time in India has been performed. Reasons for giving high priority to the development of nuclear physics as one of the most basic subjects of physics are discussed. Programmes for future must be formulated in such a way that the available funds are put to optimum use. For this purpose it is suggested that: (1) there should be a partnership between universities and the Department of Atomic Energy in setting up of the experimental facilities, (2) there should be corresponding change in the administrative procedures of the universities (3) collaborative programmes with foreign countries should be taken up with the aim of achieving self-sufficiency and to raise the level of research to that of international standards, (4) an attempt should be made to develop an Asian Centre of Nuclear Physics in India which should house a proton synchrotron and a high energy linear accelerator around which research activities in medium energy range can be developed, (5) the universities should be encouraged to develop strong theoretical nuclear physics centres, and (6) schools of theoretical nuclear physics around very good senior research scientists should be developed. (M.G.B.)

  16. The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles

    Science.gov (United States)

    Bednyakov, V. A.; Russakovich, N. A.

    2018-05-01

    The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.

  17. Main Achievements 2003-2004 - Nuclear Physics

    International Nuclear Information System (INIS)

    2005-01-01

    Two Departments of our Institute are engaged in nuclear studies, in the following areas: studies of the nuclear reaction mechanism at low, intermediate and high energies, studies of nuclear structure by means of gamma spectroscopy, and theoretical research concerning nuclear structure and reaction mechanisms. Most of these studies are carried out in the form of international collaborations with the world-leading nuclear physics experimental facilities. Our physicists usually play an important role in these collaborative projects and often lead them. Nuclear structure experiments were performed mainly within the following European Large Scale Facilities: ALPI-INFN-Legnaro, VIVITRONIReS-Strasbourg, UNILAC/SIS-GSI-Darmstadt, K100-Cyclotron-Jyvaeskylea with the use of the GASP, GARFIELD, EUROBALL, ICARE, RISING + FRS, RITU+JUROGAM systems and with the application of RFD, HECTOR, DIAMANT, EUCLIDES ancillary detectors. Experimental data were also obtained at the Argonne National Laboratory, USA, with the GAMMASPHERE array and the ATLAS accelerator. In addition, we are involved in planning the experiments for the project of international accelerator facility of the next generation FAIR (Facility for Antiproton and Ion Research) at GSI. The nuclear reaction experiments were performed at the Joint Institute of Nuclear Physics in Dubna (collaborations FASA and COMBAS), in GANIL in Caen, in the Forschungszentrum Juelich at the accelerator COSY in the framework of collaboration PISA, as well as at the Warsaw Laboratory of Heavy Ions. The hadronic nuclear physics experiments were carried out exclusively at the Forschungszentrum Juelich where we have participated in international collaborations COSY11, GEM and HIRES. Recently, we have joined international detector project WASA planned at Forschungszentrum Juelich and plan to participate in the project PANDA, being constructed in GSI Darmstadt. Both detectors will be devoted to low and intermediate hadronic physics. We also

  18. [Experimental nuclear physics

    International Nuclear Information System (INIS)

    1992-01-01

    An earlier study of unusual electromagnetic decays in 86 Zr was extended in order to make comparisons with its isotone 84 Sr and with 84 Zr. The K=14 (t 1/2 = 70 ns) high-spin isomer in 176 W was found to have a 13% branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for 14 O+α and 17 F+p reactions was completed and a coincidence experiment measuring the 19 F( 3 He,t) 19 Ne(α) 15 O and 19 F( 3 He,t) 19 Ne(p) 18 F reactions in order to determine the rates of the 18 F(p,α) 15 O and 18 F(p,γ) 19 Ne reactions was begun. Experimental measurements of βnα coincidences from the 15 N(d,p) 16 N(β - ν) 16 O(α) 12 C reaction have also been completed and are currently being analyzed to determine the rate of the 12 C(α,γ) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e + triggers by detecting their back-to-back annihilation quanta were completed. The HI at sign AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed

  19. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  20. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  1. PREFACE: XIV Conference on Theoretical Nuclear Physics in Italy

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2014-07-01

    This volume contains the invited and contributed papers presented at the 14th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 29-31 October, 2013. The meeting was held at the Palazzone, an elegant Renaissance Villa, commissioned by the Cardinal Silvio Passerini (1469-1529), Bishop of Cortona, and presently owned by the Scuola Normale Superiore di Pisa. The aim of this biennial Conference is to bring together Italian theorists working in various fields of nuclear physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to stimulate new ideas and promote collaborations between different research groups. The Conference was attended by 46 participants, coming from 13 Italian Universities and 11 Laboratories and Sezioni of the Istituto Nazionale di Fisica Nucleare - INFN. The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on the following main topics: Few-Nucleon Systems Nuclear Structure Nuclear Matter and Nuclear Dynamics Relativistic Heavy Ion Collisions and Quark-Gluon Plasma Nuclear Astrophysics Nuclear Physics with Electroweak Probes Structure of Hadrons and Hadronic Matter. In the last session of the Conference there were two invited review talks related to experimental activities of great current interest. Giacomo De Angelis from the Laboratori Nazionali di Legnaro spoke about the INFN SPES radioactive ion beam project. Sara Pirrone, INFN Sezione di Catania, gave a talk on the symmetry energy and isospin physics with the CHIMERA detector. Finally, Mauro Taiuti (Università di Genova), National Coordinator of the INFN-CSN3 (Nuclear Physics Experiments), reported on the present status and future challenges of experimental nuclear physics in Italy. We gratefully acknowledge the financial support of INFN who helped make the conference possible. I Bombaci, A Covello

  2. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  3. LXII International conference NUCLEUS 2012. Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies (LXII Meeting on nuclear spectroscopy and nuclear structure). Book of abstracts

    International Nuclear Information System (INIS)

    Vlasnikov, A.K.

    2012-01-01

    The scientific program of the conference covers almost all problems in nuclear physics and its applications. The recent results of experimental investigations of atomic nuclei properties and nuclear reaction mechanisms are presented. The theoretical problems of atomic nuclei and fundamental interactions as well as nuclear reactions are discussed. The new techniques and methods of nuclear physical experiments are considered. The particular attention is given to fundamental problems of nuclear power and qualitative training of russian and foreign specialist in field of nuclear physics and atomic power engineering [ru

  4. Main directions of Research Institute of Experimental and Theoretic Physics

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.

    1997-01-01

    The characteristic of main directions of the Research Institute of Experimental and Theoretic Physics (RIETF) activity is given in the paper. It is noted, that Institute is headquarters organisation in 4 following scientific programs of Ministry of Science - Academy of Science of Republic of Kazakhstan: Physics and mechanics of gases, plasma and liquid; Theoretical physics; Nonlinear processes and structural self-organization of substance; Research works Comet. Since 1994 RIETF is one of executors on interstate scientific program ITER. There are following priorities in activity of the institute: - actual problems of relativity theory, gravitation and quantum mechanics; - research on combustion problems and heat-mass-transfer; - physics of gases, plasma and liquid; physics non-equilibrium processes in plasma an in plasma-similar media; - solid state physics and material testing problems; modification of materials properties; electrophysical, optical and structural researches of substance; - interactions of nuclear, electromagnet radiation and accelerated particles with substance; - theoretical and experimental nuclear physics and physics of cosmic rays

  5. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  6. Rutherford, Radioactivity and the Origins of Nuclear Physics

    International Nuclear Information System (INIS)

    Hughes, J

    2012-01-01

    When Ernest Rutherford became Professor of Physics at Manchester University in 1907, he brought with him the research field in which he had played a leading role over the previous few years: radioactivity. Rutherford turned the Manchester physics lab over to studies of radioactivity and radiation, and through his own work and that of his many collaborators and students, established Manchester as a major international centre in atomic physics. It was out of this powerhouse that the nuclear theory of the atom emerged in 1911. In 1917, Rutherford 'disintegrated' the nitrogen nucleus using α-particles, opening up the possibility of nuclear structure. At Cambridge's Cavendish Laboratory from 1919, Rutherford and his co-workers began to explore the constitution of the nucleus. With Chadwick, Aston and others, Rutherford turned his research school to the emergent field of nuclear physics – a field he dominated (though not without controversy) until his death in 1937. Exploring the intellectual, material and institutional cultures of early twentieth century physics, this paper will outline the background to Rutherford's career and work, the experimental and theoretical origins of nuclear theory of the atom and the early development of nuclear physics. (rutherford centennial conference on nuclear physics university of manchester 8-12 august 2011)

  7. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  8. On modern needs in nuclear physics and nuclear safety education

    International Nuclear Information System (INIS)

    Tom Loennroth

    2005-01-01

    The teaching of nuclear physics has a long history, particularly after the second world war, and the present author has 20 years of experience of teaching in that field. The research in nuclear physics has made major advances over the years, and the experiments become increasingly sophisticated. However, very often the university literature lags the development, as is, indeed, the case in all physics education. As a remedy of to-day, the didactic aspects are emphasized, especially at a basic level, while the curriculum content is. still left without upgrade. A standard textbook in basic nuclear physics is, while represent more modern theoretical treatises. The latter two, as their headings indicate, do not treat experimental methods, whereas has a presentation that illustrates methods and results with figures and references. However, they are from the 60 s and 70 s, they are old, and therefore cannot attract modern students of today. Consequently, one has the inevitable feeling that modern university teaching in nuclear physics, and the related area of nuclear safety, must be upgraded. A recent report in Finland, concluded that there is not sufficient nuclear safety education, but that on the other hand, it does not necessarily have to be connected with nuclear physics education, although this is recommendable. Further, the present Finnish university law states that 'The mission of the university shall be to promote free research and scientific and artistic education, to provide higher education based on research, and. to educate students to serve their country and humanity. In carrying out their mission, the universities shall interact with the surrounding society and promote the societal impact o research finding and artistic activities'. This mismatch between the curricula and the required 'societal impact' will be discussed, and examples of implications, usually not implemented, will be given. For nuclear physics specifically, the (lack of) connection between

  9. Accelerator physics and nuclear energy education in INRNE-BAS

    International Nuclear Information System (INIS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2015-01-01

    Presently Bulgaria has no research nuclear facility, neither a research reactor, nor an accelerator. With the new cyclotron laboratory in Sofia the Institute for Nuclear Research and Nuclear Energy at the Bulgarian Academy of Sciences will restart the experimental research program not only in the fi eld of nuclear physics, but also in many interdisciplinary fields related to nuclear physics. The cornerstone of the cyclotron laboratory is a cyclotron TR24, which provides a proton beam with a variable energy between 15 and 24 MeV and current of up to 0.4 mA. The TR24 accelerator allows for the production of a large variety of radioisotopes for medical applications and development of radiopharmaceuticals. The new cyclotron facility will be used for research in radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including especially nuclear energy. Keywords: Cyclotron, PET/CT, radiopharmacy

  10. Nuclear Physics Division Biennial Report 1995-1996

    International Nuclear Information System (INIS)

    Kumar, K.; Nayak, B.K.; Jain, B.K.

    1997-01-01

    The report gives an overview of the scientific and technical activities of the Nuclear Physics Division (NPD) during the last two years. The physics report includes detailed experimental explorations carried out using heavy ion beams at the BARC-TIFR Pelletron facility located at Tata Institute of Fundamental Research (TIFR) and operated by NPD staff. The report also includes the experimental collaborations carried out at advanced accelerator facilities, like RHIC, COSY, etc., abroad for the quark gluon plasma studies and the η meson production in the intermediate energy nuclear reactions. The theoretical research reported includes that relevant to various experimental programs mentioned above and in general, the nuclear physics in non- and sub-nucleonic domains. In the field of accelerator development the division has the ongoing projects of the design, development, fabrication and installation of the 7 MV Folded Tandem Ion Accelerator (FOTIA) and Superconducting Linac Booster for the Pelletron Accelerator. The first stage of the linac project has been completed. It has successfully demonstrated the functioning of the indigenously developed resonator modules. On FOTIA project the installation has begun. The injector part for putting the beam in the vertical column is working. The Pelletron Accelerator, the main work horse for experimentalists, provided an excellent service to the users. A report on its running and maintenance is included. (author)

  11. Current status of nuclear physics research

    International Nuclear Information System (INIS)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-01-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4 He, 7 Li, 9 Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested

  12. Current status of nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Department of Physics and Astronomy, Texas A and M University-Commerce (United States); Hussein, Mahir S., E-mail: hussein@if.usp.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica

    2015-12-15

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as {sup 4}He, {sup 7}Li, {sup 9}Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate

  13. 4. Mexican School of Nuclear Physics. Papers

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Hernandez, E.; Hirsch, J.

    2005-01-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  14. Experimental nuclear physics

    Science.gov (United States)

    An earlier study of unusual electromagnetic decays in (sup 86)Zr was extended in order to make comparisons with its isotone (sup 84)Sr and with (sup 84)Zr. The K=14 (t(sub 1/2) = 70 ns) high-spin isomer in (sup 176)W was found to have a 13 percent branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for (sup 14)O+(alpha) and (sup 17)F+p reactions was completed and a coincidence experiment measuring the (sup 19)F ((sup 3)He,t) (sup 19)Ne(alpha) (sup 15)O and (sup 19)F ((sup 3)He,t) (sup 19)Ne(p) (sup 18)F reactions in order to determine the rates of the (sup 18)F(p,(alpha)) (sup 15)O and (sup 18)F(p,(gamma)) (sup 19)Ne reactions was begun. Experimental measurements of (beta)n(alpha) coincidences from the (sup 15)N(d,p) (sup 16)N((beta)- (nu)) (sup 16)O((alpha)) (sup 12)C reaction have also been completed and are currently being analyzed to determine the rate of the (sup 12)C((alpha),(gamma)) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e(sup +) triggers by detecting their back-to-back annihilation quanta were completed. The HI@AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed.

  15. Nuclear physics: the core of matter, the fuel of stars

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1999-01-01

    Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe

  16. Institute of Nuclear Physics of Orsay - IPNO. Activity report 2008/2009

    International Nuclear Information System (INIS)

    2010-01-01

    The Institute of Nuclear Physics of Orsay (IPN Orsay) is undertaking nuclear physics research that is centered on the nature of matter and its ultimate constituents. By the nature of its scientific activities, the IPN is at the heart of a wide range of international collaborations. IPN Orsay is a unit of both the CNRS (National Centre of Scientific Research) and of the Paris-Sud University. It plays a vital role in experiments being carried out by wide-ranging collaborations at major experimental facilities most notably in Europe, the United States and Japan. Its own facilities allows the IPN to carry out fundamental theoretical and experimental research studies in nuclear physics, astro-particle physics, radiochemistry but also in pluri-disciplinary activities. This document presents the activity of the Institute during the 2008-2009 years: 1 - Scientific activities: Nuclear structure; Hadronic physics and Astro-particles; Theoretical physics; Particle Matter Interactions; Nuclear dynamics and thermodynamics; Energy and Environment; 2 - Technical activities: Technical departments; Accelerators Division; Instrumentation division; 3 - Knowledge dissemination; 4 - General services; 5 - Appendixes: Publications, Proceedings, Conferences, workshops, collaboration meetings, Seminars, PhDs, accreditations to supervise research, Staff, Visitors, Work experiences

  17. 1988 activity report of the Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-06-01

    The 1988 activity report of the Nuclear Physics Institute (France) is presented. The report covers the scientific activities from the 1st October 1987 to the 30th September 1988 and the technical developments form the 1st October 1986 to the 30th September 1988. The main research fields include works on exotic nuclei, hot nuclei characteristics, physics of strangeness, nuclear structure studies by means of nuclear reactions, high spin states and radiochemistry. The project of an electron accelerator, delivering a 4 GeV beam (in a first step), is one of the Institute's priorities. The research works carried out in the Experimental Research and Theoretical Physics Divisions as well as technological projects are included [fr

  18. Data acquisition in nuclear and particle physics

    International Nuclear Information System (INIS)

    Renk, B.

    1993-01-01

    An introduction to the methodics of the measurement data acquisition in nuclear and particle physics for students of physics as well as experimental physicists and engineers in research and industry. The contents are: Obtaining of measurement data, digitizing and triggers, memories and microprocessors, bus systems, communication and networks, and examples for data acquisition systems

  19. Electron accelerators and nuclear physics

    International Nuclear Information System (INIS)

    Frois, B.

    1989-01-01

    The operating electron accelerators and their importance in the nuclear and in the particle physics developments, are underlined. The principles of probing the nucleus by applying electron scattering techniques and the main experimental results, are summarized. In order to understand hadron interactions and the dynamics of quark confinement in nuclei, the high energy electrons must provide quantitative data on the following topics: the structure of the nucleon, the role of non nucleonic components in nuclei, the nature of short-range nucleon correlations, the origin of the short-range part of nuclear forces and the effects of the nuclear medium on quark distributions. To progress in the nuclear structure knowledge it is necessary to build a coherent strategy of accelerator developments in Europe

  20. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  1. Nuclear Physics Laboratory 1980 annual report

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed

  2. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  3. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    Science.gov (United States)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  4. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  5. Nuclear Physics Division biennial report 1993-1994

    International Nuclear Information System (INIS)

    Kumar, K.; Kataria, S.K.

    1995-01-01

    The activities of the Nuclear Physics Division of Bhabha Atomic Research Centre for the two year period January 1993 to December 1994 are summarised. The experimental nuclear physics research activities are centred around the 14 UD Pelletron accelerator. Instrumentation development for the research utilization of the accelerator as well as accelerator development activities connected with the superconducting LINAC booster are included. During the period the conversion of the 5.5 MV single stage Van de Graaff Accelerator into a 7 MV folded tandem accelerator for light and heavy ions, for use not only in low energy nuclear physics but also in various inter-disciplinary areas was carried out. The research activity in the field of study of heavy ion reactions involving elastic scattering, transfer reactions, fusion-fission phenomena, heavy ion resonances, high energy photons in nuclear reactions and level density determination from charged particle spectra emitted in heavy ion reactions are given. (author). refs., figs., tabs

  6. Nuclear matter physics at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-08-15

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)

  7. Max-Planck-Institute for Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short communications and extended abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments on accelerators and ion sources, developments of detectors and experimental setups, electronics, data processing, target developments, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics, medium- and high-energy physics, statistical models of nuclei and nuclear reactions, nuclear reactions at high energies, many-particle theory, quantum chromodynamics, meteorites, comets, interstellar dust, planetary atmospheres, cosmic radiation, molecular collisions in the earth atmosphere, nuclear geology and geochemistry, as well as archaeology. See hints under the relevant topics. (HSI)

  8. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  9. Max-Planck Institute for Nuclear Physics. Annual report 1993

    International Nuclear Information System (INIS)

    Repnow, R.; Kiko, J.

    1994-01-01

    Research in the fields of nuclear physics and particle physics focusses on experimental investigations into the structure of hadrons, hadron interactions, and the relation between the hadronic properties and nuclearphysics phenomena. The experimental and theoretical cosmophysics studies investigate solar neutrinos, cosmic radiation, the interstellar and extragalactic media, C 60 , the atmosphere of the planetary system, extraterrestric solid matter, and archaeometry. (DG) [de

  10. Institute of Nuclear Physics of Orsay - IPNO. Activity report 2002-2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Institute of Nuclear Physics of Orsay (IPN Orsay) is undertaking nuclear physics research that is centered on the nature of matter and its ultimate constituents. By the nature of its scientific activities, the IPN is at the heart of a wide range of international collaborations. IPN Orsay is a unit of both the CNRS (National Centre of Scientific Research) and of the Paris-Sud University. It plays a vital role in experiments being carried out by wide-ranging collaborations at major experimental facilities most notably in Europe, the United States and Japan. Its own facilities allows the IPN to carry out fundamental theoretical and experimental research studies in nuclear physics, astro-particle physics, radiochemistry but also in pluri-disciplinary activities. This document presents the activity of the Institute during the 2002-2003 years: 1 - Scientific activities: Nuclear structure; Hadronic physics and matter; Astro-particles; Theoretical physics; Hot nuclei; Energy and Environment; Particle Matter Interactions; Physics-Biology-Medicine Interfaces in Neurobiology, Oncology and Genomic; Knowledge dissemination and communication; 2 - Technical activities: General and technical departments; Instrumentation/Detectors; Accelerators Division; 3 - Appendixes: Publications, meetings, seminars, workshops, PhDs, Staff

  11. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  12. Applications of nuclear physics

    International Nuclear Information System (INIS)

    Hayes-Sterbenz, Anna Catherine

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  13. Institute of Nuclear Physics of Orsay - IPNO. Activity report 2000-2001

    International Nuclear Information System (INIS)

    2002-01-01

    The Institute of Nuclear Physics of Orsay (IPN Orsay) is undertaking nuclear physics research that is centered on the nature of matter and its ultimate constituents. By the nature of its scientific activities, the IPN is at the heart of a wide range of international collaborations. IPN Orsay is a unit of both the CNRS (National Centre of Scientific Research) and of the Paris-Sud University. It plays a vital role in experiments being carried out by wide-ranging collaborations at major experimental facilities most notably in Europe, the United States and Japan. Its own facilities allows the IPN to carry out fundamental theoretical and experimental research studies in nuclear physics, astro-particle physics, radiochemistry but also in pluri-disciplinary activities. This document presents the activity of the Institute during the 2000-2001 years: 1 - Scientific activities: exotic and hot nuclei; nucleon sub-structure; Mesons, Quarks and Gluons; Astro-particles; Theoretical physics (nuclear structure and reactions - N-body systems, fields theory applied to particle physics and to condensed matter physics); Radiochemistry; Physics of Downstream Cycle and Spallation Reactions; Particle Matter Interactions; Physics-Biology-Medicine Interfaces in Neurobiology, Oncology and Genomic; Science, Education, History and Society; 2 - Technical activities: General and technical departments; Detectors and associated instrumentation; Accelerators; Scientific and technical activities

  14. Nuclear Physics Research Activity In Vietnam During Period From 2005 To 2007

    International Nuclear Information System (INIS)

    Tran Duc Thiep

    2008-01-01

    During the recent years though the difficult conditions as the limit in research budget, the lack in experimental facilities and in manpower, the Nuclear Physics Research in Vietnam still continues to develop and has achieved promising results. This expresses the efforts from the Government as well as from the nuclear physics scientists. In this report we would like to present the Nuclear Physics Research Activity and the achieved results in Vietnam during period from 2005 to 2007 in following directions: Nuclear Reaction and Structure, Nuclear Matter and Nuclear Data, Nuclear Reactor Physics, Nuclear Physics Research based on Accelerators, Physics of Cosmic Rays, Nuclear Physics Related Researches. The report also concerns the problems of manpower, the joining of research institutes in the Country and the expansion of international collaborations in the coming period of the Nuclear Physics Research Activity. The Report was prepared mainly on the basis of the reports that will be presented at the 7th National Conference on Nuclear Science and Technology, held from 30-31 August 2007 in Danang city. (author)

  15. Nuclear physics at Peking University

    International Nuclear Information System (INIS)

    Wang, Ruo Peng

    2009-01-01

    Full text: The teaching program of nuclear physics at Peking University started in 1955, in answer to the demand of China's nuclear program. In 1958, the Department of Atomic Energy was founded. The name of this department was changed to the Department of Technique Physics in 1961. Graduates in nuclear physics and technical physics had great contribution in China's nuclear program. The nuclear physics specialty from the Department of Technique Physics merged into the School of Physics in 2001. At present, nuclear physics is not any more a major for undergraduate students in the school of physics, but there are Master programs and Ph. D programs in nuclear physics, nuclear techniques and heavy ion physics. About 200 new students are admitted each year in the School of Physics at Peking University. About 20 graduates from the School of Physics work or continue to study in nuclear physics and related fields each year. (author)

  16. Strangeness nuclear physics

    International Nuclear Information System (INIS)

    Imai, Kenichi

    1999-01-01

    A simple review of strangeness nuclear physics is stated in the order of introduction, generation, structure and decay of hyper-nucleus and S=-2 nuclear physics. Strangeness nuclear physics investigate the structure and nuclear force of new created nucleus by introducing strangeness to the nuclear matter. The fundamental problems are hyperon-nucleon and hyperon-hyperon interaction. There are many methods to generate hyper nucleus. The stopped K - reaction is the best one. Λ and S hyper and S=-2 nucleus were generated by (K - , π) and (π + , K + ) reaction, (K - , π) reaction and (K - , K + ) reaction, respectively. The elementary decay process in the nucleus is Λ - > pπ (Q=38 MeV), nπ 0 and Λp - > np (Q=176 MeV), Λn- > nn. In emulsion, mass of light nucleus less than 160 were determined. Two measurement units are stated. One of them is a double focusing type K beam line in BNL to investigate H dibaryon by (K - , K + ) reaction. The other is KEK-SKS, which is superconducting kaon spectrometer to study hyper nucleus by (π + , K + ) reaction. The various kinds of binding energy of Λ single-particle states are displayed as a function of A -2/3 . These experimental data fit well with DWIA calculation using Woods-Saxon type one-body potential. A spectrum of 12C (π + , K + ) reaction showed small peak without main two peaks, which was a hyperfine structure between the exited state of 11 C core and couple of s 1/2 Λ. Although γ-ray was detected by three nucleuses such as 4 HΛ, 7 Li Λ and 9 Be Λ , γ-ray spectrometry of hyper nucleus remains unexplored. E hyper nucleus is detected by 4He(K-, t) and not by 4 He (K - , π + ). The binding energy of 4He Σ is 4.4 + 1 MeV and the width 7.0 + 0.7 MeV. Λ hyper nucleus decay is occurred by weak interaction. The elementary processes are a mesonic decay of Λ - > pπ - and Λ - > nπ 0 and a nonmesonic decay of Λn - > nn and Λp- > np. The lifetime of hyper nucleus is shorter than free Λ. Subject of S=-2 nuclear

  17. Proceedings of the 10. Workshop on Nuclear Physics in Brazil

    International Nuclear Information System (INIS)

    1987-01-01

    Theoretical and experimental studies on Nuclear Physics are presented. Nuclei structures, nuclear reaction cross sections, collision phenomena between particles at several energy ranges and radiation effects on solids and liquids are analysed. (M.C.K.) [pt

  18. University of Washington, Nuclear Physics Laboratory annual report, 1995

    International Nuclear Information System (INIS)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995

  19. Techniques for nuclear and particle physics experiments. 2. rev. ed.

    International Nuclear Information System (INIS)

    Leo, W.R.

    1992-01-01

    This book is an outgrowth of an advanced laboratory course in experimental nuclear and particle physics the author gave to physics majors at the University of Geneva during the years 1978- 1983. The course was offered to third and fourth year students, the latter of which had, at this point in their studies, chosen to specialize in experimental nuclear or particle physics. This implied that they would go on to do a 'diplome' thesis with one of the high- or intermediate-energy research groups in the physics department. The format of the course was such that the students were required to concentrate on only one experiment during the trimester, rather than perform a series of experiments as is more typical of a traditional course of this type. Their tasks thus included planning the experiment, learning the relevant techniques, setting up and troubleshooting the measuring apparatus, calibration, data-taking and analysis, as well as responsibility for maintaining their equipment, i.e., tasks resembling those in a real experiment. This more intensive involvement provided the students with a better understanding of the experimental problems encountered in a professional experiment and helped instill a certain independence and confidence which would prepare them for entry into a research group in the department. Teaching assistants were presented to help the students during the trimester and a series of weekly lectures was also given on various topics in experimental nuclear and particle physics. This included general information on detectors, nuclear electronics, statistics, the interaction of radiation in matter, etc., and a good deal of practical information for actually doing experiments. (orig.) With 254 figs

  20. Institute of Nuclear Physics of Orsay - IPNO. Activity report 2006/2007

    International Nuclear Information System (INIS)

    2008-01-01

    The Institute of Nuclear Physics of Orsay (IPN Orsay) is undertaking nuclear physics research that is centered on the nature of matter and its ultimate constituents. By the nature of its scientific activities, the IPN is at the heart of a wide range of international collaborations. IPN Orsay is a unit of both the CNRS (National Centre of Scientific Research) and of the Paris-Sud University. It plays a vital role in experiments being carried out by wide-ranging collaborations at major experimental facilities most notably in Europe, the United States and Japan. Its own facilities allows the IPN to carry out fundamental theoretical and experimental research studies in nuclear physics, astro-particle physics, radiochemistry but also in pluri-disciplinary activities. This document presents the activity of the Institute during the 2006-2007 years: 1 - Scientific activities: Nuclear structure; Hadronic physics and matter; Astro-particles; Theoretical physics; Hot nuclei; Energy and Environment; Particle Matter Interactions; Knowledge dissemination and communication; 2 - Administration; 3 - Technical activities: General and technical departments; Accelerators Division; 4 - Appendixes: Publications, Proceedings, Conferences, workshops, collaboration meetings, Seminars, Schools and lectures, PhDs, accreditations to supervise research, Books and works, Staff, Visitors

  1. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  2. Manchester nuclear physics report

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes the experimental research of the Manchester University Nuclear Physics Group for the period August 1987 - December 1988. The experiments have been performed at the Daresbury Nuclear Structure Facility, mostly using the gamma-ray arrays and the Recoil Separator. However, experiments using the Daresbury Isotope Separator, the Oxford Folded Tandem and the new charged particle detector array are also reported. Studies of gamma decaying states in 21 Ne and 23 Na are reported. The spectroscopy of medium mass nuclei includes the investigation of the Gamow-Tellar decay of 98 Cd. Fourteen studies of the spectroscopy of nuclei with A ≥ 100 are reported. Fission studies and instrumentation and computer developments are also included. (U.K.)

  3. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  4. Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking

    International Nuclear Information System (INIS)

    Bemis, C.; Erskine, J.; Franey, M.; Greiner, D.; Hoehn, M.; Kaletka, M.; LeVine, M.; Roberson, R.; Welch, L.

    1990-05-01

    This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office

  5. Research in experimental nuclear physics: Progress report, April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Moore, C.F.

    1988-11-01

    This report summarizes the work carried out by personnel from the University of Texas at Austin at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) during the calendar year 1987 under grant AS05-87ER40343 between The University of Texas at Austin and the United States Department of Energy. The research activities involved experiments done with the Energetic Pion Channel and Spectrometer (EPICS), the Low Energy Pion Channel (LEP), the Pion and Particle Physics Channel (P 3 ), and the High Resolution Spectrometer (HRS). A brief overview of work supported by this grant is given. This report contains a list of abstracts of papers reported at scientific meetings, a list of invited papers, and a list of published papers and preprints. These papers summarize experiments undertaken in this grant period and indicate the work accomplished by the participants in this program of medium energy nuclear physics research. Much of the experimental work that has been attempted during the period covered by this report has either been published or submitted for publication. Also included is a list of the recent proposals on which we have participation at LAMPF, and a list of personnel who have participated in this research program

  6. Nuclear physics workshop

    International Nuclear Information System (INIS)

    1988-01-01

    This Workshop in Nuclear Physics related to the TANDAR, took place in Buenos Aires in April from 23 to 26, 1987, with attendance of foreign scientists. There were presented four seminars and a lot of studies which deal with the following fields: Nuclear Physics at medium energies, Nuclear Structure, Nuclear Reactions, Nuclear Matter, Instrumentation and Methodology for Nuclear Spectroscopy, Classical Physics, Quantum Mechanics and Field Theory. It must be emphasized that the Electrostatic Accelerator TANDAR allows to work with heavy ions of high energy, that opens a new field of work in PIXE (particle induced X-ray emission). This powerful analytic technique makes it possiblethe analysis of nearly all the elements of the periodic table with the same accuracy. (M.E.L.) [es

  7. Photonics applied to nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    This was the second workshop held at the Council of Europe in the Nucleophot series. Its purpose was to bring together specialists from the fields of photonics and nuclear physics to discuss the application of modern optical techniques to current problems in experimental nuclear or particle physics research. Two techniques are particularly relevant and offer the possibility of major progress in the detection of extremely short-lived particles: holographic imaging of particle tracks and the development of scintillating-optical-fibre detectors. The discussions were mainly concerned with (a) the applications of holography to the large bubble chambers operating at Fermilab and (b) the development of high-resolution fibre-optic systems into high-rate microvertex detectors using scintillating core glass for both fixed-target and collider experiments in Europe and the USA. See hints under the relevant topics. (orig./HSI)

  8. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  9. Theoretical nuclear physics in France: overview and perspectives - 2004 and 2009

    International Nuclear Information System (INIS)

    2004-11-01

    A first report published in 2004 proposes an overview of the situation of research in theoretical nuclear physics in France per field of research: nucleus structure, nuclear reactions at low and medium energies (fusion, fission, multi fragmentation), hadron physics, state equation of nuclear matter and of neutron matter, and nuclear astrophysics, plasma of quarks and gluons, and nucleus-nucleus collisions at high energy, developments of the theory of the nuclear N-body problem and its impact on other disciplines. For each theme, the report indicates the involved research themes and their specific fields of research, comments the research themes, objectives and perspectives, discusses how the theoretical activity matches experimental programmes. The second report published in 2009 proposes the same kind of overview for the following themes: nucleus structure, state equation of nuclear and stellar matter, collisions and reactions at low and medium energy, hadron physics, quarks and gluons in nuclear physics, interdisciplinary applications of nuclear theory. Each report also provides some statistics about the researcher community

  10. Physics through the 1990s: Nuclear physics

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the report of the Panel on Nuclear Physics of the Physics Survey Committee, established by the National Research Council in 1983. The report presents many of the major advances in nuclear physics during the past decade, sketches the impacts of nuclear physics on other sciences and on society, and describes the current frontiers of the field. It concludes with a chapter on the recommended priorities for this discipline

  11. Ludvigs Pelekis and the development of the nuclear physics in Latvia

    International Nuclear Information System (INIS)

    Taure, I.; Ulmanis, U.

    2004-01-01

    It is given the life and activities of Latvian nuclear physicist Ludvigs Pelekis. His main tasks in the experimental nuclear physics and their applications - nuclear spectroscopy with scintillation spectrometers and coincidence cuircides, gamma-ray defectoscopy, neutron activation analysis methods and their use in different branches. (authors)

  12. Annual report of the Nuclear Physics Division [for] period ending December 31, 1976

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajitanand, N.N.; Kailas, S.

    1978-01-01

    The research and development (R and D) activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1976 are reported. The R and D activities of the Division cover the areas of nuclear physics, fission physics and solid state physics. Various experimental techniques and instruments developed are also briefly described. (M.G.B.)

  13. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  14. 4. Mexican School of Nuclear Physics. Papers; 4. Escuela Mexicana de Fisica Nuclear. Notas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, E F; Hernandez, E; Hirsch, J [eds.

    2005-07-01

    The IV Mexican School of Nuclear Physics, organized by the Nuclear Physics Division of the Mexican Physics Society, takes place from June 27 to July 8, 2005 in the Nuclear Sciences and of Physics Institutes of the UNAM and in the National Institute of Nuclear Research (ININ). This school, as the previous ones, it was guided the students of the last semesters of the career of Physics, of the Post grade of the same specialty, and of other adjacent careers. To give the students a current vision of some of the topics more important of the nuclear physics and their relationship with other near areas of the physics it was the objective of this School. The School covered a wide range of theoretical and experimental courses, imparted in its majority by Mexican expert professor-investigators in the matter to who we thank them the one effort and the quality of their presentations, reflected in the content of this document. The answer of the students to the convocation was excellent, 31 students presented application for admission coming from the following institutions: Meritorious Autonomous University de Puebla, National Institute of Nuclear Research, Technological Institute of Orizaba, National Polytechnic Institute, The University of Texas at Brownsville, Autonomous University of the State de Mexico, Autonomous University of the State of Morelos, Autonomous University of Baja California, Autonomous University of San Luis Potosi, University of Guadalajara, University of Guanajuato, National Autonomous University of Mexico, University of Texas, at El Paso and University Veracruzana. They were admitted to the 22 students with the higher averages qualifications of the list of applicants. The organizers of this school thank the financial support granted by the following sponsor institutions: Nuclear Sciences Institute, UNAM, Physics Institute of UNAM, Coordination of the Scientific Research UNAM, National Institute of Nuclear Research, Nuclear Physics Division of the Mexican

  15. Institute of Nuclear Physics of Orsay - IPNO. Activity report 2004-2005

    International Nuclear Information System (INIS)

    2006-01-01

    The Institute of Nuclear Physics of Orsay (IPN Orsay) is undertaking nuclear physics research that is centered on the nature of matter and its ultimate constituents. By the nature of its scientific activities, the IPN is at the heart of a wide range of international collaborations. IPN Orsay is a unit of both the CNRS (National Centre of Scientific Research) and of the Paris-Sud University. It plays a vital role in experiments being carried out by wide-ranging collaborations at major experimental facilities most notably in Europe, the United States and Japan. Its own facilities allows the IPN to carry out fundamental theoretical and experimental research studies in nuclear physics, astro-particle physics, radiochemistry but also in pluri-disciplinary activities. This document presents the activity of the Institute during the 2004-2005 years: 1 - Scientific activities: Nuclear structure; Hadronic physics and matter; Astro-particles; Theoretical physics; Hot nuclei; Energy and Environment; Particle Matter Interactions; Physics-Biology-Medicine Interfaces in Neurobiology, Oncology and Genomic; Knowledge dissemination and communication; 2 - Technical activities: General and technical departments; Accelerators Division; 3 - Appendixes: Publications, Proceedings, Conferences, workshops, collaboration meetings, Internal seminars, External seminars, Heavy ions seminars, Theoretical seminars, Radiochemistry seminars, Seminars of general interest, Scientific events, Schools and lectures, Thesis, accreditations to supervise research, Books and works, 'Journal club', Staff, Visitors

  16. Nuclear physics looks ahead

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-03-15

    A very wide-ranging report published by the Nuclear Physics European Collaboration Committee (NuPECC) looks at the future of nuclear physics in general, and in Europe in particular. However in view of the increasing interplay between nuclear and particle physics, many of the report's recommendations are of wider interest.

  17. From the atom to the nucleus. An historical approach of atomic physics and nuclear physics

    International Nuclear Information System (INIS)

    Fernandez, B.

    2006-01-01

    The author draws a detailed and complete history of nuclear physics from its very beginning: the questioning raised by the darkening of photographic plates by so-called 'uranic rays' to the status of nucleus structure in the fifties. The matter of this book is the fruit of an investigation based on a review of the articles published by the scientists themselves at the very moment when they were building nuclear physics. The reader becomes rapidly a witness of how the way toward today's knowledge of nuclear physics has been difficult and long: theories were very often challenged by unexpected experimental results. The author is a nuclear physicist but the public of this book goes from scientists to the layman. The book is divided into 7 parts: 1) radioactivity, first questioning; 2) the nucleus in the middle of the atom; 3) quantum mechanics sheds light; 4) a modest childhood for nuclear physics; 5) 1930-1940 an exponential development; 6) the war time and its consequences; and 7) maturity. (A.C.)

  18. Nuclear physics looks ahead

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A very wide-ranging report published by the Nuclear Physics European Collaboration Committee (NuPECC) looks at the future of nuclear physics in general, and in Europe in particular. However in view of the increasing interplay between nuclear and particle physics, many of the report's recommendations are of wider interest

  19. Section for nuclear physics and energy physics. Annual report January 1 to December 31, 1998

    International Nuclear Information System (INIS)

    1999-08-01

    The SCANDITRONIX MC-35 cyclotron laboratory, including the Oslo Cyclotron, has been in operation since 1980. The main auxiliary equipment consists of the multi-detector system CACTUS. During the last years, new, high efficiency Ge(HP) detectors were purchased and integrated in the CACTUS detector array. In connection with that, the electronical setup was revised and altered. Several drawbacks of the old setup could be pointed out and eliminated. A test of the performance of all detector array elements was made with high accuracy. The total beamtime used for experiments in 1998 was 1051 hours. 52 days were used by the Nuclear Physics section, 70 days by the University of Oslo Nuclear Chemistry section and the Norwegian Cancer Hospital used the cyclotron for 12 days. 42 days were spent on maintenance. In experimental nuclear physics, the section members are engaged within three main fields of research: Nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  20. Max-Planck-Institute for Nuclear Physics, Heidelberg. Annual report 1991

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Kiko, J.

    1992-01-01

    The Institute's activities cover basic research work in nuclear physics and particle physics and in cosmophysics. The nuclear physics department reports experimental and theoretical investigations of the structure of atomic nuclei and hadrons, including technical developments on accelerators and storage rings and work on highly charged ions, particle detectors, ion implantations, ionometry and proton-induced X-ray spectroscopy. The cosmophysics department reports studies into the formation of the planetary system, of the comets, the interstellar medium, the cosmic radiation, the extraterrestrial matter, solar neutrions, planetary atmosphere, the chemistry of the stratosphere, and archeometry. (DG) [de

  1. HMI Section of Nuclear and Radiation Physics - annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report contains extended abstracts of the scientific work performed at the named institute together with a list of publications and talks. The scientific work is concerned with the theory of nuclear and atomic processes with heavy ions, the experimental study of heavy ion reactions, nuclear structure studies, nuclear solid-state physics, atomic collisions, and the operation of VICKSI. (HSI)

  2. Proceedings of VII International Symposium on Nuclear and Related Techniques. XIII Workshop on Nuclear Physics. WONP-NURT 2011

    International Nuclear Information System (INIS)

    2011-02-01

    This year the XIII Workshop on Nuclear Physics (WONP) and the VII Symposium on Nuclear and Related Techniques (NURT) are organized jointly, by Instituto Superior de Tecnologias y Ciencias Aplicadas and Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear. Both events gather scientists from several countries with top research work on nuclear physics and its applications. WONP has been carried out since 1994 promoting an ever-exchanging exchange between professionals of various nuclear and applied physics fields, those related to environmental and health care. NURT is one of the key Cuban scientific meetings since 1997 dealing with the peaceful applications of nuclear techniques in several domains of the society. WONP and NURT provide an unique opportunity for the national and international scientific community to meet outstanding researchers and discuss current trends in several areas of theoretical, experimental and applied nuclear physics and related topics. The papers submitted to this event are presented in this CD-ROM

  3. Proceedings of VI International Symposium on Nuclear and Related Techniques. XII Workshop on Nuclear Physics. WONP-NURT 2009

    International Nuclear Information System (INIS)

    2009-02-01

    This year the XII Workshop on Nuclear Physics (WONP) and the VI Symposium on Nuclear and Related Techniques (NURT) are organized jointly, by Instituto Superior de Tecnologias y Ciencias Aplicadas and Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear. Both events gather scientists from several countries with top research work on nuclear physics and its applications. WONP has been carried out since 1994 promoting an ever-exchanging exchange between professionals of various nuclear and applied physics fields, those related to environmental and health care. NURT is one of the key Cuban scientific meetings since 1997 dealing with the peaceful applications of nuclear techniques in several domains of the society. WONP and NURT provide an unique opportunity for the national and international scientific community to meet outstanding researchers and discuss current trends in several areas of theoretical, experimental and applied nuclear physics and related topics. The papers submitted to this event are presented in this CD-ROM

  4. Annual report of Research Center for Nuclear Physics, Osaka University. 1997 (April 1, 1997-March 31, 1998)

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Sakai, Tsutomu; Hirata, Maiko

    1998-01-01

    Research Center for Nuclear Physics (RCNP) is the national center of nuclear physics in Japan, which is a laboratory complex of the cyclotron laboratory, the laser electron photon laboratory, and the Oto underground laboratory and aims at studies of nucleon meson nuclear physics and quark lepton nuclear physics. In the cyclotron laboratory, AVF/Ring cyclotron complex provides high quality beams of polarized protons and light ions in the medium energy region. Experimental studies have extensively been carried out on nucleon meson nuclear physics. The subjects studied include the nucleon mass and the nuclear interaction in nuclear medium, nuclear spin isospin motions and nuclear responses for neutrinos, pions and isobars interactions, medium energy nuclear reactions of light heavy ions, medical applications, and so on. The Oto Cosmo Observatory is the low background underground laboratory for lepton nuclear physics, and is used for applied science. The laser photon laboratory is used to study quark nuclear physics by means of the multi-GeV laser electron photon beam, and will be ready in the academic year of 1998 to be used for studying quark gluon structures and low-energy QCD. The accelerator researches and developments are being carried out for the new future plan of the multi-GeV electron proton collider. Theoretical works on nuclear particle physics have extensively been made by the RCNP theory groups and laser groups. Computer, network and DAQ systems, including the supercomputer system and the new generation network, have been developed. In this report, 25 reports of nuclear physics, 8 reports of lepton nuclear physics, 1 report of quark nuclear physics, and 2 reports of interdisciplinary physics are described in the experimental nuclear physics. And, 16 reports of quark nuclear physics, 9 reports of intermediate nuclear physics, 19 reports of nuclear physics, and 1 report of miscellaneous are described in the theoretical physics. (G.K.)

  5. Quarks and gluons in nuclear and particle physics

    International Nuclear Information System (INIS)

    Van Hove, L.

    1988-01-01

    This paper provides a broad overview of strong interactions, or nuclear forces, as ones understanding has expanded over the past 25 years. The major particles and models are briefly touched upon. The author expands upon the field theories which have evolved to explain the experimental work, and the present model of quarks and gluons which form the components of hadrons. The standard model has been very successful in explaining much of the newly acquired experimental data. But the property of confinement, where the partons, (quarks and gluons), are not observed seperately has precluded observation of these particles. He touches on the manifestation of these particles in high energy physics, where they model the observed particles and resonances, and are responsible for the production of hadronic jets. However in nuclear physics, one does not need to postulate the existance of these particles to explain the properties of nuclei, until one deals with interaction energies in the range of GeV. The author then touches on the area of ultra-relativistic nuclear physics, where the partons must play a role in the effects which are observed. In particular he discusses deep inelastic lepton scattering on nuclei, the Drell-Yan process in nuclei, and ultra-relativistic nuclear collisions. Finally he gives a brief discussion of the quark-gluon plasma, which is postulated to form during very high energy collisions, manifesting itself as a brief deconfinement of the partons into an equilibrium plasma

  6. Theoretical nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The theoretical physics program in the Physics Division at ORNL involves research in both nuclear and atomic physics. In nuclear physics there is extensive activity in the fields of direct nuclear reactions with light- and heavy-ion projectiles, the structure of nuclei far from stability and at elevated temperatures, and the microscopic and macroscopic description of heavy-ion dynamics, including the behavior of nuclear molecules and supernuclei. New research efforts in relativistic nuclear collisions and in the study of quark-gluon plasma have continued to grow this year. The atomic theory program deals with a variety of ionization, multiple-vacancy production, and charge-exchange processes. Many of the problems are selected because of their relevance to the magnetic fusion energy program. In addition, there is a joint atomic-nuclear theory effort to study positron production during the collision of two high-Z numbers, i.e., U+U. A new Distinguished Scientist program, sponsored jointly by the University of Tennessee and ORNL, has been initiated. Among the first appointments is G.F. Bertsch in theoretical physics. As a result of this appointment, Bertsch and an associated group of four theorists split their time between UT and ORNL. In addition, the State of Tennessee has established a significant budget to support the visits of outstanding scientists to the Joint Institute for Heavy Ion Research at ORNL. This budget should permit a significant improvement in the visitor program at ORNL. Finally, the Laboratory awarded a Wigner post-doctoral Appointment to a theorist who will work in the theory group of the Physics Division

  7. Experimental Physical Sciences Vistas Performance through Science Winter 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hockaday, Mary Yvonne P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lacerda, Alex Hugo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilburn, Wesley Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carnes, Jay Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeYoung, Anemarie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gray, III, George Thompson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hooks, Daniel Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martineau, Rick Lorne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Joseph Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Migliori, Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poling, Charles C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prestridge, Katherine Philomena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-23

    This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.

  8. Experimental nuclear physics. Progress report, August 1985-August 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The research activities of the experimental nuclear structure group at Vanderbilt University are reported here. Research continues in the areas of (1) in-beam γ-ray spectroscopy; (2) studies of nuclei far from stability at UNISOR and at the recoil mass spectrometer at the University of Rochester; (3) nucleon transfer reaction and fusion-fission studies; and (4) theoretical studies. In general, abstracts of papers published or submitted for publication in this period make up this report along with brief reports of work in process and complete copies of a few conference papers

  9. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  10. Yukawa Tomonaga and nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi

    2006-01-01

    Yukawa and Tomonaga made epoch-making contributions to the development of elementary particle physics; Yukawa proposed the meson theory of the nuclear force and Tomonaga developed renormalization theory in QED. The nuclear force is, of course, the basis of all nuclear physics. In this sense, Yukawa's work set the foundations for nuclear physics. Tomonaga worked in his late years on problems of collective motion appearing in many many-particle-systems, nuclear systems being one of the examples. Yukawa and Tomonaga were also deeply involved in founding the Institute of Fundamental Physics and Institute for Nuclear Study, through which they made invaluable contributions to the development of the field of nuclear physics. It is almost impossible to report in this short article on all of what they have achieved and thus I would like to discuss here their contributions to nuclear physics only in a limited scope, based on my personal reminiscence of them. (author)

  11. AGS experiments in nuclear/QCD physics at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  12. AGS experiments in nuclear/QCD physics at medium energies

    International Nuclear Information System (INIS)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments

  13. PREFACE: International Nuclear Physics Conference 2010 (INPC2010)

    Science.gov (United States)

    Dilling, Jens

    2011-09-01

    The International Nuclear Physics Conference 2010 (INPC 2010) was held from 4-9 July in Vancouver, Canada, hosted by TRIUMF, the Canadian National Laboratory for Particle and Nuclear Physics. The INPC is the main conference in the field of nuclear physics, endorsed and supported by IUPAP (International Union for Pure and Applied Physics) and held every three years. This year's conference was the 25th in the series and attracted over 750 delegates (150 graduate students) from 43 countries. The conference's hallmark is its breadth in nuclear physics; topics included structure, reactions, astrophysics, hadronic structure, hadrons in nuclei, hot and dense QCD, new accelerators and underground nuclear physics facilities, neutrinos and nuclei, and applications and interdisciplinary research. The conference started with a public lecture 'An Atom from Vancouver' by L Krauss (Arizona), who gave a broad perspective on how nuclear physics is key to a deeper understanding of how the Universe was formed and the birth, life, and death of stars. The conference opened its scientific plenary program with a talk by P Braun-Munzinger (GSI/EMMI Darmstadt) who highlighted the progress that has been made since the last conference in Tokyo 2007. The presentation showcased theoretical and experimental examples from around the world. All topics were well represented by plenary sessions and well attended afternoon parallel sessions where over 250 invited and contributed talks were presented, in addition to over 380 poster presentations. The poster sessions were among the liveliest, with high participation and animated discussions from graduate students and post-doctoral fellows. Many opportunities were found to connect to fellow nuclear physicists across the globe and, particularly for conferences like the INPC which span an entire field, many unexpected links exist, often leading to new discussions or collaborations. Among the scientific highlights were the presentations in the fields of

  14. Why should we study nuclear physics?

    International Nuclear Information System (INIS)

    Darriulat, Pierre

    2015-01-01

    After a brief look at the history of nuclear science and technology in the past hundred years, arguments are given for the study of Nuclear Physics, very different of course from what they were in the middle of the past century. Nuclear physics no longer appears as a good bet to study the strong force. Problems left open by QCD are better addressed by relativistic ion accelerators, RHIC and LHC/Alice. Radioactive Ion Beams have caused a renaissance of experimental nuclear physics. They explore the nuclear equation of state far from the stability valley, discovering new isotopes and new forms of dynamics, such as halo nuclei. They contribute essential data to nuclear astrophysics. They have new applications in medicine and industry. They enjoy strong support all around the world; in Asia, Japan is a leader and Korea and China are joining the club. Nuclear processes are ubiquitous in astrophysics: Big bang nucleosynthesis, Main Sequence stars, evolved stars (Asymptotic Giant Branch and Supernovae). Understanding what is going on requires knowledge from laboratory measurements; at the same time astrophysics gives nuclear physics a laboratory having no equivalent on Earth. Applications of nuclear physics pervade modern societies. Medicine and material sciences, make ample use of radioactive sources and ion beams, as do all branches of agriculture and industry. Accelerators are now commercially available and part of the industrial landscape. Implications on training competent scientists, technicians and engineers are enormous. Particularly crucial are matters of safety. Nuclear Power Plants are a major element of the Vietnamese energy policy in the decades to come. Their safe and efficient operation requires high level skills and competence that cover a broad spectrum of scientific and technical, but also socio-economic and geo-political issues. Nuclear physics must be taught to the young generation in a form that takes proper account of the current scientific

  15. Proceedings of the 7. Workshop on Nuclear Physics

    International Nuclear Information System (INIS)

    1984-01-01

    The courses, seminaries and contributions of the 7.Work Meeting on Nuclear Physics are presented. In the courses and seminaries parts, a method to solve nuclear systems, the present stage of development of heavy ions reactions at high energies, the project and experiences for accelerators, in addition to, some important topics on tokamaks are presented. In the part of contributions, the theoretical and experimental results of reactions with light and heavy ions involving high energies, the studies of nuclear phenomena and techniques for improving instruments of radiation detection are presented. (M.C.K.) [pt

  16. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed [ru

  17. Programs for low-energy nuclear physics data processing

    International Nuclear Information System (INIS)

    Antuf'ev, Yu.P.; Dejneko, A.S.; Ekhichev, O.I.; Kuz'menko, V.A.; Mashkarov, Yu.G.; Nemashkalo, B.A.; Skakun, E.A.; Storizhko, V.E.; Shlyakhov, N.A.

    1978-01-01

    Purpose of six computer programs developed in KhPTI of AN USSR for the processing of the experimental data on low energy nuclear physics ia friendly described. The programs are written in Algol-60 language. They are applied to some types of nuclear reactions and permit to process differential cross sections and γ spectra, to compute statistical tensors and excitation functions as well as to analyze some processes by means of theoretical models

  18. Nuclear and particle physics 1993

    International Nuclear Information System (INIS)

    MacGregor, I.J.D.; Doyle, A.T.

    1993-01-01

    This item documents the International Conference on Nuclear and Particle Physics held at the University of Glasgow, UK, from 30th March to 1st April 1993. It was organised by the Department of Physics and Astronomy at Glasgow University on behalf of the Nuclear and Particle Physics Division of the Institute of Physics. The scientific programme covered many areas of current interest in nuclear and particle physics. Particle physics topics included up to the minute reports on the physics currently coming from CERN'S Low Energy Antiproton Ring (LEAR), Hadron-Elektron-Ring Analage (HERA) and Large Electron-Positron Storage Rings (LEP), and reviews of quantum chromodynamics (QCD) lattice gauge theory. Looking to the future the programme covered the search for the Higgs boson and a review of physics experiments planned for the new generation of accelerators at Large Hadron Collider (LHC) and Superconducting Supercollider (SSC). The conference coincided with the final closure of the world class Nuclear Structure Facility at Daresbury and marked the transition of United Kingdom (UK) nuclear physics research into a new era of international collaboration. Several talks described new international collaborative research programmes in nuclear physics initiated by UK scientists. The conference also heard of new areas of nuclear physics which will in future be opened up by high energy continuous beam electron accelerators and by radioactive ion beam accelerators. (author)

  19. The role of nuclear emulsions in the institutionalization of research in experimental physics in Brazil

    International Nuclear Information System (INIS)

    Vieira, Cassio Leite; Videira, Antonio A.P.

    2011-01-01

    In this paper, we describe and analyze the introduction and the use of the nuclear emulsions technique in Brazil. Even though consistent researches in cosmic ray physics had been done since the forties of the last century in this country, physicists here only began using this technique after Cesar Lattes' works in Bristol (England) and Berkeley (US). Despite being the implantation of the technique in this country posterior to the origin of the method itself dated from late 1900s, Brazilian scientists were quickly familiarized with it and adopted it not only in cosmic rays, but also in particle physics and nuclear physics, employing it until recently. In our work, we will be concerned with the reasons of this longevity. In other words, why were the nuclear emulsions technique employed for so many years in Brazil, even after its vanishing in physics researches centers in the world? We advance here that the answer to this question involves the institutionalization of science in Brazil mainly physics and economical, social, and geographic reasons. (author)

  20. Nuclear Physics in High School: what are the previous knowledge?

    Science.gov (United States)

    Pombo, F. de O.

    2017-11-01

    Nuclear physics is a branch of physics that about a century occupies an important space in the theoretical, experimental and scientific fields. Currently, its relevance in application is concentrated in several areas such as energy production, diagnostic processes and medical treatment and nuclear bombs, high destructive power. Whereas, according to legal regulations, the teaching of physics must make the student competent in the understanding of the world and assuming the perspective of Paulo Freire (2011) that education is not done on the subject, but together with him, in dialogue with his point of departure, his prior knowledge, we established the general objective of raising students prior knowledge of the third year of high School at Nair Ferreira Neves school, in São Sebastião-SP, about nuclear physics. We concluded that the school has not fulfilled its role in relation to nuclear physics, because students have information from other means of information and these knowledge are stereotyped and mistaken, damaging the world's reading and exercising full citizenship.

  1. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    International Nuclear Information System (INIS)

    Jenkins, David

    2015-01-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such 'medium-resolution' spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen. (paper)

  2. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    the conference dinner banquet at the Dan hotel. An excursion to the 'Red Canyon' in the Eilat Mountains on Wednesday afternoon was one of the social highlights of the conference. A total number of 140 scientists attended NPA5 and about 30 accompanying persons; about 25% of these were young participants (less than 36 years old). 23 participants were from Israel, and 27 were from outside of Europe (including two from Africa). The subjects covered at the conference in Eilat concentrated mainly on the spirit of the original idea - to probe experimental and theoretical activity in nuclear structure and reactions that is directly related to the physics of the Universe. There were also sessions of general interest in astrophysics, as well as a poster session on Tuesday evening featuring 40 posters. The topics included: Nuclear Structure - Theory and Experiment Big-Bang Nucleosynthesis and Formation of First Stars Stellar Reactions and Solar Neutrinos Explosive Nucleosynthesis, Radioactive Beams and Exotic Nuclei-New Facilities and Future Possibilities for Astrophysics Neutrino Physics - the Low and High-Energy Frontiers Rare events, Dark Matter, Double beta-decay, Symmetries The conference started with an excellent exposé of the progress made in the discovery of super-heavy elements and the study of their properties. The progress in this field is enormous, and this subject should be communicated to more general audiences. The role of the nuclear equation of state and of the precise determination of nuclear masses in nucleosynthesis was emphasized in several talks. The role of neutrinos in astrophysics was discussed extensively in several sessions. One of the highlights of this was the presentation about the IceCube and DeepCore detectors operating deep in the Antarctic ice. These facilities are able to detect cosmogenic neutrinos in a wide energy range, from 10 GeV to 1010 GeV. The subject of solar neutrinos was discussed in a number of talks. Topics related to properties

  3. Nuclear physics: appendix to the Daresbury annual report 1990/91

    International Nuclear Information System (INIS)

    1991-01-01

    This nuclear physics chapter of the Annual Report of the Daresbury Laboratory of the United Kingdom Science and Engineering Research Council describes the work of the Nuclear Structure Facility. In the limited space available it necessarily provides only a broad outline of the facility, its development and a flavour of the research in a selection of a few highlighted topics. This appendix complements the first volume of the Report reproducing users' short camera ready scientific reports. These describe the progress and results of each experimental proposal. Reports are grouped in five sections: research into nuclear structure with contributions ordered in increasing Z number of the nuclei studies; investigations of nuclear reaction mechanisms; nuclear theory; atomic physics; and accelerator operations, developments and instrumentation. The appendix forms a compact record of the work of the Nuclear Structure Facility for the year 1990/91. (author)

  4. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  5. The Relevance of Nuclear Physics

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1969-01-01

    I am asked what nuclear physics is about, that is, nuclear physics as distinct from particle physics and other parts of physics. I see three trends in this science. One is the discovery of new phenomena, phenomena of nature which we have not seen or observed, of which we did not know anything before. The second trend, I would say, is towards the solution of fundamental problems, the answers to certain basic questions in physics; I shall give some details later on. The third is the construction of new concepts in physics necessary to deal with the problems not only in nuclear physics but also in the rest of physics. The order of these three items is unimportant. This meeting should be concerned not only with the factual questions of science, but also with the, let me say, philosophic and practical questions of nuclear physics. Why do we do nuclear physics, what is the sense of it, what is the meaning of it and, most importantly, how can we defend the support of nuclear physics, how can we convince the governments to spend money on such a thing, which to a certain extent is our pleasure? And so we will have to be quite clear among ourselves that this is a very important matter

  6. Lasers in nuclear physics

    International Nuclear Information System (INIS)

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  7. Exchange currents in nuclear physics

    International Nuclear Information System (INIS)

    Truglik, Eh.

    1980-01-01

    Starting from Adler's low-energy theorem for the soft pion production amplitudes the predictions of the meson exchange currents theory for the nuclear physics are discussed. The results are reformulated in terms of phenomenological lagrangians. This method allows one to pass naturally to the more realistic case of hard mesons. The predictions are critically compared with the existing experimental data. The main processes in which vector isovector exchange currents, vector isoscalar exchange currents and axial exchange currents take place are pointed out

  8. Nuclear Physics Laboratory technical progress report, [August 15, 1991--October 1, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes work carried out between August 15, 1991 and October 1, 1992 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG02-86ER-40269 and DE-FG02-87ER-40335 with the United States Department of Energy. These contracts support experimental and theoretical work in intermediate energy nuclear physics. The experimental program is very broadly based; it includes pion-nucleon and pion-nucleus studies at Los Alamos and TRIUMF inelastic pion scattering and charge exchange reactions at LAMPF, kaon-nucleus scattering at the AGS, and nucleon charge exchange at LAMPF/NTOF

  9. Analysis of LWR Full MOX Core Physics Experiments with Major Nuclear Data Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toru [Japan Nuclear Energy Safety Organization, Tokyo (Japan)

    2007-07-01

    Nuclear Power Engineering Corporation (NUPEC) studied high moderation full MOX cores as a part of advanced LWR core concept studies from 1994 to 2003 supported by the Ministry of Economy, Trade and Industry. In order to obtain the major physics characteristics of such advanced MOX cores, NUPEC carried out core physics experimental programs called MISTRAL and BASALA from 1996 to 2002 in the EOLE critical facility of the Cadarache Center in collaboration with CEA. NUPEC also obtained a part of experimental data of the EPICURE program that CEA had conducted for 30 % Pu recycling in French PWRs. Japan Nuclear Energy Safety Organization(JNES) established in 2003 as an incorporated administrative agency took over the NUPEC's projects for nuclear regulation and has been implementing FUBILA program that is for high burn up BWR full MOX cores. This paper presents an outline of the programs and a summary of the analysis results of the criticality of those experimental cores with major nuclear data libraries.

  10. Proceedings of XIV Workshop on Nuclear Physics. VIII International Symposium on Nuclear and Related Techniques. WONP-NURT 2013

    International Nuclear Information System (INIS)

    2013-02-01

    This year 2013, the XIV Workshop on Nuclear Physics and VIII International Symposium on Nuclear and Related Techniques, WONP-NURT 2013 organized by the Center of Technological Applications and Nuclear Development from 5 to 8 February at the National Museum of Fine Arts. NURT is one of the key Cuban scientific meetings since 1997 dealing with the peaceful applications of nuclear techniques in several domains of the society. WONP and NURT provide an unique opportunity for the national and international scientific community to meet outstanding researchers and discuss current trends in several areas of theoretical, experimental and applied nuclear physics and related topics. The papers submitted to this event are presented in this CD-ROM

  11. Proceedings of XV Workshop on Nuclear Physics. IX International Symposium on Nuclear and Related Techniques. WONP-NURT 2015

    International Nuclear Information System (INIS)

    2015-02-01

    This year 2015, the XV Workshop on Nuclear Physics and IX International Symposium on Nuclear and Related Techniques, WONP-NURT 2015 organized by the Center of Technological Applications and Nuclear Development from 9 to 13 February at the National Museum of Fine Arts. NURT is one of the key Cuban scientific meetings since 1997 dealing with the peaceful applications of nuclear techniques in several domains of the society. WONP and NURT provide an unique opportunity for the national and international scientific community to meet outstanding researchers and discuss current trends in several areas of theoretical, experimental and applied nuclear physics and related topics. The papers submitted to this event are presented in this CD-ROM.

  12. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1991-06-01

    This report contains abstracts of ongoing projects in the following areas: strong interaction physics; relativistic heavy ion physics; nuclear structure and nuclear many-body theory; and nuclear astrophysics

  13. Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion- nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p) reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse quenching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  14. Nuclear physics group report

    International Nuclear Information System (INIS)

    1982-04-01

    A brief description is given of the operation and maintenance of the cyclotron. The computors and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear reactions and nuclear structure which are in progress or soon to be reported are presented. Projects in theoretical nuclear physics and radiation physics are also described. Lists of seminars, lectures, visitors, conferences and publications are given. (RF)

  15. PREFACE: XXXV Symposium on Nuclear Physics

    Science.gov (United States)

    Padilla-Rodal, E.; Bijker, R.

    2012-09-01

    Conference logo The XXXV Symposium on Nuclear Physics was held at Hotel Hacienda Cocoyoc, Morelos, Mexico from January 3-6 2012. Conceived in 1978 as a small meeting, over the years and thanks to the efforts of various organizing committees, the symposium has become a well known international conference on nuclear physics. To the best of our knowledge, the Mexican Symposium on Nuclear Physics represents the conference series with longest tradition in Latin America and one of the longest-running annual nuclear physics conferences in the world. The Symposium brings together leading scientists from all around the world, working in the fields of nuclear structure, nuclear reactions, physics with radioactive ion beams, hadronic physics, nuclear astrophysics, neutron physics and relativistic heavy-ion physics. Its main goal is to provide a relaxed environment where the exchange of ideas, discussion of new results and consolidation of scientific collaboration are encouraged. To celebrate the 35th edition of the symposium 53 colleagues attended from diverse countries including: Argentina, Australia, Canada, Japan, Saudi Arabia and USA. We were happy to have the active participation of Eli F Aguilera, Eduardo Andrade, Octavio Castaños, Alfonso Mondragón, Stuart Pittel and Andrés Sandoval who also participated in the first edition of the Symposium back in 1978. We were joined by old friends of Cocoyoc (Stuart Pittel, Osvaldo Civitarese, Piet Van Isacker, Jerry Draayer and Alfredo Galindo-Uribarri) as well as several first time visitors that we hope will come back to this scientific meeting in the forthcoming years. The scientific program consisted of 33 invited talks, proposed by the international advisory committee, which nicely covered the topics of the Symposium giving a balanced perspective between the experimental and the theoretical work that is currently underway in each line of research. Fifteen posters complemented the scientific sessions giving the opportunity

  16. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    CERN Document Server

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  17. Max-Planck-Institute for Nuclear Physics. Annual report 1988

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1989-01-01

    This annual report contains short notes and abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments of accelerators and ion sources, experimental and theoretical studies on nuclear structure and reactions, high-energy physics, studies on meteorites and lunar rocks, comets, interplanetary and interstellar dust, interstellar dynamics, nuclear geology, and archaeometry. See hints under the relevant topics. (HSI)

  18. Experimental and calculational works on characteristics of the Dalat Nuclear Research Reactor. Second edition

    International Nuclear Information System (INIS)

    Pham Ngoc Khoi; Nguyen Kim Dung

    2016-03-01

    Recognizing the significant value and necessity of publishing the scientific document of experimental and calculational works on the Dalat Nuclear Research Reactor (DNRR) physics and engineering for research, operation, training activities as well as for international scientific exchange, Vietnam Atomic Energy Agency (VAEA) and Vietnam Atomic Energy Institute have completed editing to publish the “Experimental and Calculational Works on Characteristics of THE DALAT NUCLEAR RESEARCH REACTOR” which consists of 26 typical papers representing the most important experimental and calculational results of the DNRR physics and engineering obtained during 30 years of operation and exploitation with the contribution of Vietnamese and former USSR’s experts, especially scientists and engineers working at the Reactor Center of the NRI

  19. Annual report of the Nuclear Physics Division [for the] period ending December 31, 1977

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajtanand, N.N.; Kerekatte, S.S.

    1979-01-01

    The research and development activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1977 are reported. The Division is organised into three research sections, namely, solid state physics section, fission physics section and Van de Graaff Laboratory. Techniques of neutron scattering, light scattering, compton scattering and Moessbauer spectroscopy are used in the studies of solid state physics Solid State Physics section. In the Fission Physics Section, experimental studies are concentrated on fission phenomena accompanied by light charged particle emission and theoretical investigations deal with various aspects of fission process, heavy ion reactions and other related areas of nuclear reactions. Research activities of the Van de Graaff Laboratory include: (1) experimental studies of (p,n), (α,n) and (α,α) nuclear reactions; (2) theoretical studies of nuclear structure, pion reactions, (p,2p) and other knock-out phenomena, ion-ion potentials and heavy ion collisions and (3) use of ion beam techniques for production of surface alloys and blistering by helium ion bombardment. Progress in the fabrication of DUMAS mass separator and tandem accelerator is reported. A 100 keV ion implantation facility has been set up and commissioned. (M.G.B.)

  20. Nuclear Test-Experimental Science

    International Nuclear Information System (INIS)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program

  1. Nuclear physics aspects in the parton model of Feynman

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.

    1995-01-01

    The basic fact that pions couple strongly to nucleons has dominated various nuclear physics thinkings since the birth of the field more than sixty years ago. The parton model of Feynman, in which the structure of a nucleon (or a hadron) is characterized by a set of parton distributions, was proposed originally in late 1960's to treat high energy deep inelastic scattering, and later many other high energy physics experiments involving hadrons. Introduction of the concept of parton distributions signifies the departure of particle physics from nuclear physics. Following the suggestion that the sea quark distributions in a nucleon, at low and moderate Q 2 (at least up to a few GeV 2 ), can be attributed primarily to the probability of finding such quarks or antiquarks in the mesons (or recoiling baryons) associated with the nucleon, the author examines how nuclear physics aspects offer quantitative understanding of several recent experimental results, including the observed violation of the Gotfried sum rule and the so-called open-quotes proton spin crisisclose quotes. These results suggest that determination of parton distributions of a hadron at Q 2 of a few GeV 2 (and at small x) must in general take into account nuclear physics aspects. Implication of these results for other high-energy reactions, such as semi-inclusive hadron production in deep inelastic scattering, are also discussed

  2. Nuclear physics at the KAON factory

    International Nuclear Information System (INIS)

    Kitching, R.

    1989-05-01

    The author surveys the range of nuclear physics issues which can be addressed with a high intensity hadron facility such as the KAON factory. He discusses hadron spectroscopy, kaon scattering, hypernuclear physics, spin physics, and nuclear physics with neutrinos. Nuclear Physics is defined rather broadly, encompassing the study of strongly interacting systems, and including the structure of individual hadrons, hadron-hadron interactions, hadronic weak and electromagnetic currents (in nuclei too), conventional nuclear structure, and exotic nuclei. The basic theme is how the KAON Factory can shed light on non-perturbative QCD and its relation to conventional nuclear physics

  3. The development of the nuclear physics in Latvia II. The building of the Research Nuclear Reactor IRT

    International Nuclear Information System (INIS)

    Ulmanis, U.

    2004-01-01

    Nuclear research reactor IRT of the Academy of Sciences was built near Riga in Salaspils. IRT is pool aqueous - aqueous reactor with nuclear fuel U-235 contained elements, located in the core at a depth of ∼ 7 m under distilled water. Ten horizontal and 10-15 vertical experimental channels are employed in experimental research with the use of neutron fluxes. For the research with gamma rays is constructed radiation loop facility with liquid In-Ga-SN solid solution as intensive gamma-ray sources. Main activities of IRT are to conduct research in nuclear spectroscopy, neutron activation analysis, neutron diffraction and radiation physics, chemistry and biology. (authors)

  4. Experimental perspectives in low energy lepton physics

    International Nuclear Information System (INIS)

    Fiorini, E.

    1986-01-01

    Low energy nuclear physics has been and is going to be an essential tool for the study of weak interaction and neutrino physics. The use of the atomic nucleus as a ''microlaboratory'' with well defined quantum numbers is undoubtedly going to yield important and sometimes perhaps unexpected results on the symmetry laws governing the subnuclear world. These searches are however very hard experimentally and the bottleneck on obtaining more stringent results only rarely depends on the need of large and expensive apparatuses as those used in high energy physics: more limiting are technical difficulties. The author believes therefore that a real break-through to overcome the present experimental limitations can only be obtained with totally new and sometime ''non canonical'' technical approaches. This paper is an admittedly incomplete discussion of some of them. The author considers separately searches for rare decays, detection of low energy neutrinos and measurements of the neutrino mass, even if some of these new techniques are common to more than one of these subjects

  5. Nuclear physics with intermediate energy electrons

    International Nuclear Information System (INIS)

    Moniz, E.J.

    1988-01-01

    Nuclear physics is the study of strongly interacting matter and of the forces which govern its structure and dynamics. The goal of this paper is to give an understanding of nuclei as quantal many-body systems and of the nature of the strong force, ultimately in terms of the presumed underlying theory of quantum chromodynamics. The latter task will require a deeper understanding of hadron structure and of color confinement and, in turn, will provide the basis for exploring the structure of matter under extreme conditions, such as very high density or temperature. This program covers a very broad range of phenomena, theoretical concepts, and experimental tools and is reflected in the diverse degrees of freedom invoked in various contexts. This is indicated where degrees of freedom loosely identified with successively smaller distance scales are indicated. Very importantly, theoretical bridges have been built between the phenomenological descriptions associated with each set of degress of freedom. The mean field, determined self-consistently from the interactions of nucleons in quantum orbits, provides the basis for much of the authors microscopic understanding of nuclear structure and of our characterization of nuclear scattering processes. However, the authors are only beginning to address quantitatively the physics associated with short-range correlations, physics which takes us beyond the mean field description. The nuclear force has a very successful semi-phenomenological description in terms of hadronic degrees of freedom, both mesons and nucleon isobars. More problematic, of course, is our understanding of hadron structure and dynamics in terms of QCD

  6. X Latin American Symposium on Nuclear Physics and Applications. Book of Abstracts

    International Nuclear Information System (INIS)

    2013-12-01

    The 10th Latin American Symposium on Nuclear Physics and Applications will be held on December 1-6, 2013 in Montevideo, Uruguay. The symposium will be preceded by a School on Medical Physics, on November 29-30, 2013. The symposium is organized by the Universidad de la Repùblica, Montevideo, by the National Superconducting Cyclotron Laboratory, Michigan, USA, and by the Thomas Jefferson National Accelerator Facility, Virginia, USA. This is the tenth event in a series which were previously held in Venezuela, Colombia, Mexico, Brazil, Argentina, Peru, Chile and Ecuador. Traditionally, the purpose of these symposia is the dissemination of major theoretical and experimental advances in nuclear science, with emphasis on research topics carried out by Latin American groups or in collaborations involving institutions from Latin America. The topics of the symposium include: Nuclear and Hadron Structure and Interactions Nuclear Reactions and Phases of Nuclear Matter Nuclear and Particle Astrophysics Tests of Fundamental Symmetries and Properties of Neutrinos Nuclear Applications New Facilities and Instrumentation.The 10th Latin American Symposium on Nuclear Physics and Applications will be held on December 1-6, 2013 in Montevideo, Uruguay. The symposium will be preceded by a School on Medical Physics, on November 29-30, 2013. The symposium is organized by the Universidad de la República, Montevideo, by the National Superconducting Cyclotron Laboratory, Michigan, USA, and by the Thomas Jefferson National Accelerator Facility, Virginia, USA. This is the tenth event in a series which were previously held in Venezuela, Colombia, Mexico, Brazil, Argentina, Peru, Chile and Ecuador. Traditionally, the purpose of these symposia is the dissemination of major theoretical and experimental advances in nuclear science, with emphasis on research topics carried out by Latin American groups or in collaborations involving institutions from Latin America. The topics of the symposium include

  7. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  8. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  9. Atlas of atomic and nuclear physics

    International Nuclear Information System (INIS)

    Brocker, B.

    2002-01-01

    This book presents the main notions of nuclear physics in a very pedagogical way, many drawings and the use of colors make easier the understanding. The aim of this work is to give a general background in nuclear physics to all people interested in sciences. The text is divided into 14 themes: 1) first discoveries, 2) quantum physics, 3) the electronic cloud around atoms and molecules, 4) measurement methods, 5) nuclear physics, 6) nuclear models, 7) elementary particles, 8) interactions, 9) radiation detection, 10) radiation sources, 11) nuclear reactors, 12) atomic bombs, 13) radiation protection, 14) isotope table and physics constants. (A.C.)

  10. University of Colorado at Boulder Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1991-01-01

    This report summarizes experimental work carried out between October 1, 1990, the closing of our Progress Report, and August 14, 1991 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contract DE-FG02-ER40269 with the United States Department of Energy. This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion-nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p') reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse queching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  11. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1989-08-01

    This report discusses the following areas of investigation of the Stony Brook Nuclear Theory Group: the physics of hadrons; QCD and the nucleus; QCD at finite temperature and high density; nuclear astrophysics; nuclear structure and many-body theory; and heavy ion physics

  12. Institute of Nuclear physics of Lyon - IPNL, Activity Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 1996-1997 years: 1 - Forewords; 2 - Physics at LEP; 3 - Experiments preparation for the LHC; 4 - Hadronic and nuclear matter; 5 - Astro-particles; 6 - Theoretical physics; 7 - Ions/clusters-matter and physics-chemistry of ion-solids interaction; 8 - Technical services (electronics, Mechanics, Computers, Accelerators, experiments support, radiation protection, health and safety, administration, documentation); 9 - IPNL's scientific life (Training, PhDs, publications, conferences, reports, seminars, staff)

  13. Introduction to the nuclear physics at very high energy

    International Nuclear Information System (INIS)

    Kodama, T.

    1985-01-01

    An introduction to the nuclear physics at very high energies on the basis of relativistic nucleus-nucleus, hadron-nucleus and hadron-hadron collisions is made. Some theoretical models used nowadays to explain the experimental data, such as Quantum Chromodynamics, String Model, etc... are presented. (L.C.) [pt

  14. The role of nuclear emulsions in the institutionalization of research in experimental physics in Brazil; O papel das emulsoes nucleares na institucionalizacao da pesquisa em fisica experimental no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Cassio Leite [Instituto Ciencia Hoje, Rio de Janeiro, RJ (Brazil); Videira, Antonio A.P. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, DF (Brazil)

    2011-07-01

    In this paper, we describe and analyze the introduction and the use of the nuclear emulsions technique in Brazil. Even though consistent researches in cosmic ray physics had been done since the forties of the last century in this country, physicists here only began using this technique after Cesar Lattes' works in Bristol (England) and Berkeley (US). Despite being the implantation of the technique in this country posterior to the origin of the method itself dated from late 1900s, Brazilian scientists were quickly familiarized with it and adopted it not only in cosmic rays, but also in particle physics and nuclear physics, employing it until recently. In our work, we will be concerned with the reasons of this longevity. In other words, why were the nuclear emulsions technique employed for so many years in Brazil, even after its vanishing in physics researches centers in the world? We advance here that the answer to this question involves the institutionalization of science in Brazil mainly physics and economical, social, and geographic reasons. (author)

  15. Section for nuclear physics and energy physics. Annual report January 1 to December 31, 1998[Oslo Univ., Oslo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The SCANDITRONIX MC-35 cyclotron laboratory, including the Oslo Cyclotron, has been in operation since 1980. The main auxiliary equipment consists of the multi-detector system CACTUS. During the last years, new, high efficiency Ge(HP) detectors were purchased and integrated in the CACTUS detector array. In connection with that, the electronical setup was revised and altered. Several drawbacks of the old setup could be pointed out and eliminated. A test of the performance of all detector array elements was made with high accuracy. The total beamtime used for experiments in 1998 was 1051 hours. 52 days were used by the Nuclear Physics section, 70 days by the University of Oslo Nuclear Chemistry section and the Norwegian Cancer Hospital used the cyclotron for 12 days. 42 days were spent on maintenance. In experimental nuclear physics, the section members are engaged within three main fields of research: Nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  16. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  17. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Directory of Open Access Journals (Sweden)

    Destouches Christophe

    2016-01-01

    Full Text Available The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  18. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  19. Nuclear physics group annual report

    International Nuclear Information System (INIS)

    1985-04-01

    The experimental activities have in 1984 as in previous years mainly been centered around the cyclotron laboratory with the SCANDITRONIX MC-35 cyclotron. The available beam energies (protons and alpha-particles to 35 MeV and 3 He-particles up to 48 MeV) make it an excellent tool for studies of highly excited low-spin states, and also for other experiments with light ions in an intermediate energy range. During the year the accelerator has been in extensive use for low-energy nuclear physics experiments. Most of the experiments have been related to the study of nuclear structure at high temperature. Experiments with the 3 He-beam up to a particle energy of 45 MeV, have given some interesting results, which, it is hoped, will contribute to a better understanding of the cooling process in highly excited nuclei

  20. The uses of isospin in early nuclear and particle physics

    Science.gov (United States)

    Borrelli, Arianna

    2017-11-01

    This paper reconstructs the early history of isospin up to and including its employment in 1951sbnd 52 to conceptualize high-energy pion-proton scattering. Studying the history of isospin serves as an entry point for investigating the interplay of theoretical and experimental practices in early nuclear and particle physics, showing the complexity of processes of knowledge construction which have often been presented as straightforward both in physicists' recollections and in the historiography of science. The story of isospin has often been told in terms of the discovery of the first ;intrinsic property; of elementary particles, but I will argue that the isospin formalism emerged and was further developed because it proved to be a useful tool to match theory and experiment within the steadily broadening field of high-energy (nuclear) physics. Isospin was variously appropriated and adapted in the course of two decades, before eventually the physical-mathematical implications of its uses started being spelled out. The case study also highlights some interesting features of high-energy physics around 1950: the contribution to post-war research of theoretical methods developed before and during the war, the role of young theoretical post-docs in mediating between theorists and experimenters, and the importance of traditional formalisms such as those of spin and angular momentum as a template both for formalizing and conceptualizing experimental results.

  1. PREFACE: XXXVII Brazilian Meeting on Nuclear Physics

    Science.gov (United States)

    2015-07-01

    The XXXVII Brazilian Meeting on Nuclear Physics (or XXXVII RTFNB 2014) gave continuity to a long sequence of workshops held in Brazil, devoted to the study of the different aspects of nuclear physics. The meeting took place in the Maresias Beach Hotel, in the town of Maresias (state of São Paulo) from 8th to 12th September 2014. Offering gentle weather, a charming piece of green land of splendid natural beauty with beach and all amenities, the place had all the conditions for very pleasant and fruitful discussions. The meeting involved 162 participants and attracted undergraduate and graduate students, Brazilian and South American physicists and invited speakers from overseas (USA, Italy, Spain, France, England, Switzerland, Germany and South Corea). In the program we had plenary morning sessions with review talks on recent developments in theory, computational techniques, experimentation and applications of the many aspects of nuclear physics. In the parallel sessions we had a total of 58 seminars. This volume contains 60 written contributions based on these talks and on the poster sessions. Evening talks and poster sessions gave still more insight and enlarged the scope of the scientific program. The contributed papers, representing mainly the scientific activity of young physicists, were exhibited as posters and are included in the present volume. Additional information about the meeting can be found at our website: http://www.sbfisica.org.br/~rtfnb/xxxvii-en Support and sponsorship came from brazilian national agencies: Conselho Nacional de Desenvolvimento Científico e Tecnoógico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Fundação de Amparo á Pesquisa do Estado de São Paulo (FAPESP); Fundação de Amparo á Pesquisa do Estado do Rio de Janeiro (FAPERJ); Sociedade Brasileira de Física (SBF) and Instituto de Física da Universidade de São Paulo (IFUSP). We honored Professor Alejandro Szanto de Toledo, who completed

  2. Archival and Dissemination of the U.S. and Canadian Experimental Nuclear Reaction Data (EXFOR Project)

    Science.gov (United States)

    Pritychenko, Boris; Hlavac, Stanislav; Schwerer, Otto; Zerkin, Viktor

    2017-09-01

    The Exchange Format (EXFOR) or experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource includes numerical data sets and bibliographical information for more than 22,000 experiments since the beginning of nuclear science. Analysis of the experimental data sets, recovery and archiving will be discussed. Examples of the recent developments of the data renormalization, uploads and inverse reaction calculations for nuclear science and technology applications will be presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development and research activities. It is publicly available at the National Nuclear Data Center website http://www.nndc.bnl.gov/exfor and the International Atomic Energy Agency mirror site http://www-nds.iaea.org/exfor. This work was sponsored in part by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookha ven Science Associates, LLC.

  3. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Heeringa, W.; Voss, F.

    1988-02-01

    This report surveys the activities in basic research from July 1, 1986 to June 30, 1987 at the Institute for Nuclear Physics (IK) of the Nuclear Research Center Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.) [de

  4. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  5. Importance of basic research in nuclear physics

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.

    1976-01-01

    A brief survey is given of the significance of fundamental discoveries in nuclear physics. It is shown how theoretical and experimental discoveries transform our current views of the world around us and how in their practical implementation these discoveries bring revolutionary technical development. The latest progress in the field of elementary particles and their interactions and in the field of the atomic nucleus are briefly discussed. (I.W.)

  6. Some nuclear physics aspects of BBN

    Science.gov (United States)

    Coc, Alain

    2017-09-01

    Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.

  7. Proceedings of the 9. Workshop on Nuclear Physics - Communications of applied nuclear physics and instrumentation

    International Nuclear Information System (INIS)

    1986-01-01

    The communications of applied nuclear physics and intrumentation of 9. Workshop on Nuclear Physics in Brazil are presented. Several intruments for radiation measurements, such as detectors, dosemeters and spectrometers were developed. Techniques of environmental monitoring and instrument monitoring for nuclear medicine are evaluated. (M.C.K.) [pt

  8. Institute of Nuclear physics of Lyon - IPNL, Activity Report 2010-2011

    International Nuclear Information System (INIS)

    2012-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 2010-2011 years: 1 - Forewords; 2 - Research activities: Quarks and Leptons, Astro-particles, Hadronic and nuclear matter, Theoretical physics, trans-disciplinary activities, publications, communications, partnerships; 3 - Teaching and research training; 4 - Technical services: electronics, Computers, Mechanics, Instrumentation, Accelerators, LABRADOR metrology service; 5 - Laboratory administration; 6 - Communication and scientific mediation (seminars, conferences, exhibitions..)

  9. Institute of Nuclear physics of Lyon - IPNL, Activity Report 2008-2009

    International Nuclear Information System (INIS)

    2010-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 2008-2009 years: 1 - Forewords; 2 - Quarks and Leptons; 3 - Astro-particles; 4 - Hadronic and nuclear matter; 5 - Theoretical physics; 6 - Radiation sciences; 7 - Technical support to experiments (electronics, Computers, Mechanics, Instrumentation, Accelerators, LABRADOR metrology service); 8 - Laboratory administration; 9 - Scientific life (publications, seminars, conferences, exhibitions, PhDs..)

  10. Physical protection of nuclear material

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: An Advisory Group met to consider the up-dating and extension of the Recommendations for the Physical Protection of Nuclear Material, produced in 1972. Twenty-seven experts from 11 countries and EURATOM were present. Growing concern has been expressed in many countries that nuclear material may one day be used for acts of sabotage or terrorism. Serious attention is therefore being given to the need for States to develop national systems for the physical protection of nuclear materials during use, storage and transport throughout the nuclear fuel cycle which should minimize risks of sabotage or theft. The revised Recommendations formulated by the Advisory Group include new definitions of the objectives of national systems of physical protection and proposals for minimizing possibilities of unauthorized removal and sabotage to nuclear facilities. The Recommendations also describe administrative or organizational steps to be taken for this purpose and the essential technical requirements of physical protection for various types and locations of nuclear material, e.g., the setting up of protected areas, the use of physical barriers and alarms, the need for security survey, and the need of advance arrangements between the States concerned in case of international transportation, among others. (author)

  11. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  12. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  13. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  14. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  15. Physical Protection of Nuclear Safeguards Technology

    International Nuclear Information System (INIS)

    Hoskins, Richard

    2004-01-01

    IAEA's Nuclear Security Plan is established to assist Member States in implementing effective measures against nuclear terrorism. Four potential threats were identified: theft of nuclear weapon, nuclear explosive device, radiological dispersal device and an attack on radiation facility. In order to achieve effective protection of nuclear materials and facilities, the IAEA sponsored the Convention of the Physical Protection of Nuclear Materials which focuses on the protection of nuclear materials 'in international transport. The IAEA also promoted INFCIRC/255 entitled the Physical Protection of Nuclear Materials and Nuclear Facilities and published TECDOC/967 for the protection of nuclear materials and facilities against theft and sabotage and during transport. Assistance is available for the Member States through the International Physical Protection Advisory Service (IPPAS) and the International Nuclear Security Advisory Service (INSServ). (author)

  16. Current puzzles in nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    A meeting on ''Current puzzles in nuclear physics'' was held at Research Center for Nuclear Physics, Osaka University, on June 27 - 28, 1984. The meeting put emphasis on several puzzles which have not been solved for a long time in nuclear physics, and also on the puzzles. This collective report is composed of following eleven papers presented at the meeting. Almost all the papers are witten in English : (1) M1, GT excitations and configuration mixing (in Japanese). (2) Hadronic excitation of pionic states. (3) Microscopic analyses of 28 Si(α,α') 28 Si scattering and single particle strength in A = 29 nuclei. (4) Few-body physics and its incentives to nuclear physics. (5) Is it necessary to introduce three body interactions ? (in Japanese). (6) Puzzles in the neutron-deuteron elastic scattering. (7) Puzzles in NN, NΔ, πN and Nanti N interactions. (8) Problems in Hadron-Nucleus interaction. (9) Unified approach to the meson- and quark- theory of nuclear forces and currents. (10) Pion photoproduction in two Chiral bag models. (11) The dynamic bag model : The electromagnetic properties of nucleon. (Aoki, K.)

  17. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  18. Preface: 2nd Workshop on the State of the Art in Nuclear Cluster Physics

    International Nuclear Information System (INIS)

    Descouvemont, P.; Dufour, M.; Sparenberg, J.-M.

    2011-01-01

    The 2nd workshop on the "State of the Art in Nuclear Cluster Physics" (SOTANCP2) took place on May 25-28, 2010, at the Universite Libre de Bruxelles (Brussels, Belgium). The first workshop of this series was held in Strasbourg (France) in 2008. The purpose of SOTANCP2 was to promote the exchange of ideas and to discuss new developments in Clustering Phenomena in Nuclear Physics and Nuclear Astrophysics both from a theoretical and from an experimental point of view

  19. Nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing

  20. Nuclear physics and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  1. France: New horizons for nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The increasing realization that the underlying mechanisms of nuclear physics are controlled by the inner quark structure of nucleons rather than the nucleons themselves is blurring the once fairly distinct frontier between nuclear and particle physics. Thus nuclear physicists are awaiting new high energy machines, notably CEBAF, the US Continuous Electron Beam Accelerator Facility now under construction in Newport News, Virginia, while particle physics facilities such as the LEAR low energy antiproton ring and the high energy muon beams at CERN are gaining popularity with the nuclear physics community

  2. PREFACE: 12th Conference on ''Theoretical Nuclear Physics in Italy''

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2009-07-01

    These Proceedings contain the invited and contributed papers presented at the 12th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 8-10 October 2008. As usual, the meeting was held at il Palazzone, a 16th century castle owned by the Scuola Normale Superiore di Pisa. The aim of this biennal conference is to bring together Italian theorists working in various fields of Nuclear Physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to promote collaborations between different groups. There were about 50 participants at the conference, coming from 14 Italian Universities (Cagliari, Catania, Ferrara, Firenze, Genova, Lecce, Milano, Napoli, Padova, Pavia, Pisa, Roma, Trento, Trieste). The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on six main topics: Few-Nucleon Systems, Nuclear Matter and Nuclear Dynamics, Nuclear Astrophysics, Structure of Hadrons and Hadronic Matter, Nuclear Structure, Nuclear Physics with Electroweak Probes. Winfried Leidemann, Maria Colonna, Marcello Lissia, Elena Santopinto, Silvia Lenzi and Omar Benhar took the burden of giving general talks on these topics and reviewing the research activities of the various Italian groups. In addition, 19 contributed papers were presented, most of them by young participants. In the last session of the Conference there were two invited talks related to experimental activities of great current interest. Gianfranco Prete from the Laboratori Nazionali di Legnaro spoke about the Italian radioactive ion beam facility SPES and the status of the European project EURISOL, while Nicola Colonna from the INFN, Bari, gave an overview of the perspectives of development of fourth-generation nuclear reactors. We would like to thank the authors of the general reports for their hard work in reviewing the main achievements in

  3. Controlled nuclear fusion. Theoretical and technical-physical aspects

    International Nuclear Information System (INIS)

    Donne, T.; Oomens, N.

    1995-01-01

    It is stated that the realization of controlled fusion is not only a matter of solving technical problems. Also theoretical research in the field of plasma physics is required. A brief state-of-the-art is given of theoretical and technical-physical aspects of nuclear fusion. Attention is paid to magnetic confinement, the importance of theoretical research, plasma heating, plasma diagnostics, and the control of plasma transport. Throughout the article special attention is paid to the International Thermonuclear Experimental Reactor (ITER) project. 5 figs., 1 tab., 3 refs

  4. Nuclear physics in the UK

    International Nuclear Information System (INIS)

    1994-12-01

    Nuclear physics is the study of the heavy but tiny nucleus that lies at the centre of all atoms and makes up 99.9 per cent by weight of everything we see. There are many applications of nuclear physics including direct contributions to medicine and industry, such as the use of radioactive isotopes as diagnostic tracers, or of beams of nuclei for tailoring the properties of semiconductors. More indirectly, ideas and concepts of nuclear physics have influence in many corners of modern science and technology. Physicists in the UK have a long tradition in nuclear physics, and have developed a world-wide reputation for the excellence of their work. This booklet explains more about this rich field of study, its applications, its role in training, and its future directions. (author)

  5. PHYS 801 course notes. Introduction to nuclear physics

    International Nuclear Information System (INIS)

    Buskulic, Damir

    2013-01-01

    This document gathers notes taken during a course of nuclear physics given by Daniel Decamp in 2013. It addresses the nucleus general characteristics (nucleons), the issues of nucleus mass and of bound energy, the liquid drop model, and applications. The next part addresses the dimension of nuclei and nuclear density: Rutherford scattering (scattering of a charged particle by a nucleus, particle deflection angle), notion of cross section (probability of scattering at a given angle, experimental verifications, generalisation of the notion of cross section), and charge distribution within the nucleus (density of final states, differential cross section of elastic scattering, experimental results, nuclear density). The next part addresses radioactivity: generalities, energetic conditions, mass parabola, law of radioactivity (fundamental law, half-life, line width, decay products, natural radioactivity and radioactive families). The next parts address applications of radioactivity: carbon-14 dating, dating of rocks and meteorites), artificial radioactivity (notion of cross section, production of radioactive nuclei), the theoretical approach to radioactivity (semi-conventional BKW approach, other calculation method, Gramow's theory of radioactivity, Fermi's theory of radioactivity), and nuclear models with models based on independent particles (Fermi model, layer model and its applications) and collective models (rotational and vibrational models)

  6. 3. Mexican school of nuclear physics

    International Nuclear Information System (INIS)

    Chavez L, E.R.; Hess, P.O.; Martinez Q, E.

    2002-01-01

    The III Mexican School of Nuclear Physics which is directed to those post graduate in Sciences and those of last semesters students of the Physics career or some adjacent career was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at November 18-29, 2002 in the installations of the Institute of Physics and the Institute of Nuclear Sciences both in the UNAM, and the National Institute of Nuclear Research (ININ). In this as well as the last version its were offered 17 courses, 9 of them including laboratory practices and the rest were of theoretical character only. This book treats about the following themes: Nuclear physics, Electrostatic accelerators, Cyclotrons, Thermonuclear reactions, Surface barrier detectors, Radiation detection, Neutron detection, Bonner sphere spectrometers, Radiation protection, Biological radiation effects, Particle kinematics, Nucleosynthesis, Plastics, Muons, Quadrupoles, Harmonic oscillators, Quantum mechanics among many other matters. (Author)

  7. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Fueloep, Zs.

    2005-01-01

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  8. Nuclear data and integral experiments in reactor physics

    International Nuclear Information System (INIS)

    Farinelli, U.

    1980-01-01

    The material given here broadly covers the content of the 10 lectures delivered at the Winter Course on Reactor Theory and Power Reactors, ICTP, Trieste (13 February - 10 March 1978). However, the parts that could easily be found in the current literature have been omitted and replaced with the appropriate references. The needs for reactor physics calculations, particularly as applicable to commercial reactors, are reviewed in the introduction. The relative merits and shortcomings of fundamental and semi-empirical methods are discussed. The relative importance of different nuclear data, the ways in which they can be measured or calculated, and the sources of information on measured and evaluated data are briefly reviewed. The various approaches to the condensation of nuclear data to multigroup cross sections are described. After some consideration to the sensitivity calculations and the evaluation of errors, some of the most important type of integral experiments in reactor physics are introduced, with a view to showing the main difficulties in the interpretation and utilization of their results and the most recent trends in experimentation. The conclusions try to assign some priorities in the implementation of experimental and calculational capabilities, especially for a developing country. (author)

  9. 36th Brazilian Workshop on Nuclear Physics

    CERN Document Server

    Brandão de Oliveira, José Roberto; Barbosa Shorto, Julian Marco; Higa, Renato

    2014-01-01

    The Brazilian Workshop on Nuclear Physics (RTFNB, acronym in Portuguese) is organized annually by the Brazilian Physics Society since 1978, in order to: promote Nuclear Physics research in the country; stimulate and reinforce collaborations among nuclear physicists from around the country; disseminate advances in nuclear physics research and its applications; disseminate, disclose and evaluate the scientific production in this field.

  10. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  11. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  12. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1980-01-01

    The report summarizes the main activities of the linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission 2. Photonuclear reactions 3. Nuclear spectroscopy and positron annihilation 4. Dosimetry 5. Theoretical studies. (MDC)

  13. Highlights on experimental neutrino physics

    International Nuclear Information System (INIS)

    Kemp, Ernesto

    2013-01-01

    Full text: In the last years a remarkable progress was achieved in a deeper understanding of neutrino sector. Nowadays we know all mixing angles and mass splits which govern the neutrino oscillation phenomena. The parameters of neutrino mixing were measured by combining results of different experimental approaches including accelerator beams, nuclear reactors, radiative decays and astrophysical neutrinos. Nevertheless, there are open questions which can be viewed as key points to consolidate our knowledge on the intrinsic properties of neutrinos such as mass hierarchy and the existence of a CP violation in leptonic sector. To answer these questions and also to improve the precision of the already known mixing parameters, a series of huge experimental efforts are being set up, even in a world-wide scale in some cases. In this presentation I will review the current knowledge of the fundamental properties of neutrinos and the experimental scenario in which we expect, in a time frame of a decade, to find missing pieces in the leptonic sector. The findings can strengthen the foundations of the Standard Model as well as open very interesting paths for new physics. (author)

  14. Selected exercises in particle and nuclear physics

    CERN Document Server

    Bianchini, Lorenzo

    2018-01-01

    This book presents more than 300 exercises, with guided solutions, on topics that span both the experimental and the theoretical aspects of particle physics. The exercises are organized by subject, covering kinematics, interactions of particles with matter, particle detectors, hadrons and resonances, electroweak interactions and flavor physics, statistics and data analysis, and accelerators and beam dynamics. Some 200 of the exercises, including 50 in multiple-choice format, derive from exams set by the Italian National Institute for Nuclear Research (INFN) over the past decade to select its scientific staff of experimental researchers. The remainder comprise problems taken from the undergraduate classes at ETH Zurich or inspired by classic textbooks. Whenever appropriate, in-depth information is provided on the source of the problem, and readers will also benefit from the inclusion of bibliographic details and short dissertations on particular topics. This book is an ideal complement to textbooks on experime...

  15. The selection of embedded computer using in the nuclear physics instruments

    International Nuclear Information System (INIS)

    Zhang Jianchuan; Nan Gangyang; Wang Yanyu; Su Hong

    2010-01-01

    It introduces the requirement for embedded PC and the benefits of using it in the experimental nuclear physics instrument developing and improving project. A cording to the specific requirements in the project of improving laboratory instruments. several kinds of embedded computer are compared and specifically tested. Thus, a x86 architecture embedded computer, which have ultra-low-power consumption and a small in size, is selected to be the main component of the controller using in the nuclear physics instrument, and this will be used in the high-speed data acquisition and electronic control system. (authors)

  16. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1993-01-01

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm 3 . Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important is reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA

  17. New perspectives from nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-11-15

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications.

  18. New perspectives from nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications

  19. Theoretical nuclear and subnuclear physics

    CERN Document Server

    Walecka, John Dirk

    1995-01-01

    This comprehensive text expertly details the numerous theoretical techniques central to the discipline of nuclear physics. It is based on lecture notes from a three-lecture series given at CEBAF (the Continuous Electron Beam Accelerator Facility), where John Dirk Walecka at the time was Scientific Director: "Graduate Quantum Mechanics", "Advanced Quantum Mechanics and Field Theory" and "Special Topics in Nuclear Physics". The primary goal of this text is pedagogical; providing a clear, logical, in-depth, and unifying treatment of many diverse aspects of modern nuclear theory ranging from the non-relativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. Four key topics are emphasised in this text: basic nuclear structure, the relativistic nuclear many-body problem, strong-coupling QCD, and electroweak interactions with nuclei. The text is designed to provide graduate students with a basic level of understanding of modern nuclear physics so that they in turn can...

  20. Institute of Nuclear physics of Lyon - IPNL, Activity Report 2002-2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 2002-2003 years: 1 - Research topics: Quarks and Leptons; Astro-particles; Hadronic matter; Nuclear matter; Theoretical physics; trans-disciplinary activities; 2 - Technical support to experiments (electronics, Computers, Mechanics, Accelerators, Instrumentation, Radiation protection, LABRADOR metrology service, Administration); 3 - Transverse activities (Training, Science and society, Communication, Documentation); 4 - Scientific life (Scientific production, participation to scientific bodies); 5 - Manpower (Permanent training, Staff)

  1. Institute of Nuclear physics of Lyon - IPNL, Activity Report 2006-2007

    International Nuclear Information System (INIS)

    2008-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 2006-2007 years: 1 - Research topics: Quarks, Leptons and FUNDAMENTAL INTERACTIONS; Astro-particles; Hadronic and nuclear matter; Theoretical physics; trans-disciplinary activities; 2 - Technical support to experiments (electronics, Computers, Mechanics, Instrumentation, Accelerators, LABRADOR metrology service); 3 - Research support (administration, documentation, partnership and valorisation, quality assurance, permanent training, open university); 4 - Scientific life (publications, seminars, conferences, exhibitions, PhDs..)

  2. Institute of Nuclear physics of Lyon - IPNL, Activity Report 2004-2005

    International Nuclear Information System (INIS)

    2006-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 2004-2005 years: 1 - Research topics: Quarks and Leptons; Astro-particles; Hadronic and nuclear matter; Theoretical physics; trans-disciplinary activities; 2 - Technical support to experiments (electronics, Computers, Mechanics, Instrumentation, Radiation protection, Accelerators, LABRADOR metrology service, Administration); 3 - Transverse activities (Training, Science and society, Communication, Documentation); 4 - Scientific life (publications, seminars, conferences, exhibitions, PhDs..); 5 - Manpower (Permanent training, Staff)

  3. Institute of Nuclear physics of Lyon - IPNL, Activity Report 2000-2001

    International Nuclear Information System (INIS)

    Chartoire, M.; Flores, S.; Hernaus, Z.; Jarroux-Declais, D.; Kibler, M.; Martin, J.P.

    2002-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 2000-2001 years: 1 - Forewords; 2 - Quarks and Leptons; 3 - Astro-particles; 4 - High-density hadronic matter; 5 - Nuclear matter; 6 - Theoretical physics; 7 - pluri-disciplinary activities; 8 - Technical services (electronics, Computers, Mechanics, Instrumentation, Accelerators, experiments support, radiation protection, health and safety, administration); 9 - Training, communication, documentation; 10 - Scientific production (publications, seminars, conferences, exhibitions, PhDs..); 11 - Staff and visitors; 12 - Organigram

  4. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1990-06-01

    We shall organize the description of our many activities under following broad headings: Strong Interaction Physics: the physics of hadrons; QCD and the nucleus; and QCD at finite temperature and high density. Relativistic Heavy Ion Physics. Nuclear Structure and Many-body Theory. Nuclear Astrophysics. While these are the main areas of activity of the Stony Brood group, they do not cover all activities

  5. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  6. Theoretical studies in nuclear physics. Three year progress report and final report

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1996-01-01

    In 1995 the DOE grant in Nuclear theory with Professors Rubin H. Landau and Victor A. Madsen as co-principal investigators ended. Their research was carried out in collaboration with graduate students in Corvallis, and with scientists at LLNL-Livermore, Los Alamos, TRIUMF, KFA-Julich, Hamburg University, Melbourne University, The Thinking Machine Corporation and IBM Research. Activities in nuclear and particle physics at Oregon State University (OSU) were diverse and active. Madsen's work concentrated on the relation of reactions to the nuclear structure, and Landau's work concentrated on intermediate energy physics, few-body problems, and computational physics. The Landau group had a weekly meeting of students and visitors. There was a weekly nuclear seminar with experimental and theoretical colleagues, and a weekly departmental colloquium. The DOE support had permitted the group to run Unix workstations networked to other computers in the Physics Department and the University. Since 1990 OSU has been using IBM RISC System 6000/model 530 with console and four X-stations. The equipment was purchased and is maintained with yearly DOE funding of the group

  7. Nuclear physics

    International Nuclear Information System (INIS)

    Connell, K.A.; Warner, D.D.

    1990-01-01

    The first volume of the Annual Report for 1989/90 gives an overview of the Nuclear Structure Facility at Daresbury, its development and a selection of highlights of the year's programme. This volume is complementary, presenting brief specialist reports, submitted by the users, describing the progress and results of each individual proposal. The contents reflect the extremely successful year due in good measure to the performance of the tandem accelerator which provided a record number of hours with ''beam on target''. Reports are grouped in four sections: research into nuclear structure with contributions ordered in increasing Z numbers of the nuclei studied; investigations of nuclear reaction mechanisms; nuclear theory; accelerator operations and development plus experimental instrumentation and techniques. The appendix forms a concise summary of the work at the facility for the year. (author)

  8. Particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-01-01

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density ∼ 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams

  9. XXXIX Symposium on Nuclear Physics

    International Nuclear Information System (INIS)

    Acosta, Luis; Bijker, Roelof

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “XXXIX Symposium on Nuclear Physics”, that was held from January 5-8, 2016 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings consist of 20 contributions that were presented as plenary talks at the meeting. The abstracts of all contributions, invited talks and posters, were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. After the first meeting in Oaxtepec in 1978, the Symposium was organized every year without interruption which makes the present one the 39th in a row. The scientific program consisted of 29 invited talks and a poster session on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure and nuclear reactions to radioactive beams, nuclear astrophysics, hadronic physics, fundamental symmetries and relativistic heavy ions, as well as progress reports of large international projects like the HAWC Observatory in Puebla, Mexico, and the ATLAS and ALICE Collaborations of the LHC accelerator at CERN, Switzerland. In addition, there were several contributions highlighting interesting new results from foreign laboratories like Notre Dame, RIKEN, Jefferson Lab, Oak Ridge, INFN-Legnaro and INFN-LNS, as well as Mexican laboratories at ININ, LEMA and the Carlos Graef Laboratory at IF-UNAM. On the theoretical side there were talks on recent developments in nuclear structure, weakly bound nuclei, cluster models

  10. Vol. 2: Nuclear Physics

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to nuclear physics

  11. Institute of Nuclear physics of Lyon - IPNL, Activity Report 1992-1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Institute of Nuclear physics of Lyon (IPNL) is under the joint supervision of the Claude Bernard University of Lyon (UCBL) and the National Institute of Nuclear and particle physics (IN2P3) of the CNRS (National Centre for Scientific Research). The laboratory studies the properties and interactions of sub-atomic particles. Its activities are largely experimental, with groups involved in a wide range of national and international collaborations concerning particle and astro-particle physics, nuclear matter and the interactions of ions and cluster with matter. In addition, the Institute has important interdisciplinary and applied research activities related to: detectors R and D, confinement of radioactive waste, bio-medical imaging, measurement of environmental levels of radioactive elements. This document presents the activity of the Centre during the 1992-1993 years: 1 - Quarks and Leptons; 2 - Hadronic matter; 3 - Hadrons and Astro-particles; 4 - Theoretical physics; 5 - Ions/clusters-matter; 6 - Surface treatment/characterization; 7 - R and D, Instrumentation; 8 - Technical services (Accelerators, Computers, electronics, Mechanics); 9 - Training, communication; 10 - PhDs, publications, conferences, reports; 11 - Conference papers, lectures, seminars

  12. Experimental Nuclear Physics. Progress report, July 1981-July 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The research activities of the experimental nuclear structure group at Vanderbilt for the period July 1981 to July 1982 are reported. This includes continuing cooperative research in the areas of, (a) in-beam γ-ray spectroscopy with scientists at Oak Ridge and the University of Koeln; (b) studies of nuclei far from stability at UNISOR; (c) pre-equilibrium (massive transfer) emission processes in fusion reactions at ORNL; (d) nucleon transfer reaction studies with scientists at ORNL, Los Alamos and Brookhaven; (e) delta-electron spectroscopy at the Max Planck Institute in Heidelberg; (f) theoretical studies with scientists at Lawrence Berkeley Lab., Brookhaven National Lab., University of Frankfurt, and Vanderbilt; and (g) Coulomb excitation studies at GSI, Darmstadt, Germany. In general, abstracts of papers published or submitted for publication in this period make up this report along with brief reports of work in process and complete copies of a few reviews in press

  13. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  14. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Borie, E.; Doll, P.; Rebel, H.

    1982-11-01

    This report surveys the activities in fundamental research from July 1, 1981 to June 30, 1982 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.) [de

  15. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  16. Nuclear physics

    International Nuclear Information System (INIS)

    Dacre, J.

    1990-01-01

    This book fills a gap in current literature by covering the increasing nuclear physics content of various A-level syllabuses. In section 1 we outline the background and early development of the subject, in section 2 we deal with nuclear properties and theories at a level suitable for the pre-university student. The majority of topics have been treated with the limited use of mathematics, this necessitating some simplification which we hope to have accomplished without undue error. A few topics have been developed mathematically, to some extent, e.g. series decay. While it is the purpose of a book at this level to introduce the reader to the facts and theories of nuclear physics, we have to recognise that any teacher of science, at any level, must attempt to instill in the young scientist a sense of responsibility and an understanding of the problems attendant on the technological applications are important. These problems have been touched on in the text but we hope the student will be persuaded to read further; for this purpose we have added a short list of suggested additional reading. A selection of A-level past paper questions has been included. (author)

  17. PREFACE: XXXIV Symposium on Nuclear Physics

    Science.gov (United States)

    Barrón-Palos, Libertad; Bijker, Roelof

    2011-10-01

    In the present volume of the Journal of Physics: Conference Series we publish the proceedings of the 'XXXIV Symposium on Nuclear Physics', which was held from 4-7 January 2011 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings consist of 19 contributions that were presented as invited talks at the meeting. The abstracts of all contributions, plenary talks and posters were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. From the first meeting in Oaxtepec in 1978, the Symposium has been organized every year without interruption, which makes the present Symposium the 34th in a row. The scientific program consisted of 27 invited talks and 17 posters on a wide variety of hot topics in contemporary nuclear physics, ranging from the traditional fields of nuclear structure (Draayer, Pittel, Van Isacker, Fraser, Lerma, Cejnar, Hirsch, Stránský and Rath) and nuclear reactions (Aguilera, Gómez-Camacho, Scheid, Navrátil and Yennello) to radioactive beams (Padilla-Rodal and Galindo-Uribarri), nuclear astrophysics (Aprahamian, Civitarese and Escher), hadronic physics (Bijker, Valcarce and Hess), fundamental symmetries (Liu, Barrón-Palos and Baessler) and LHC physics (Menchaca-Rocha and Paic). The high quality of the talks, the prestige of the speakers and the broad spectrum of subjects covered in the meeting, shows that nuclear physics is a very active area at the frontier of scientific research which establishes bridges between many different disciplines. Libertad Barr

  18. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  19. WORKSHOP: Nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Sheepard, Jim; Van Dyck, Olin

    1985-06-15

    A workshop 'Dirac Approaches t o Nuclear Physics' was held at Los Alamos from 31 January to 2 February, the first meeting ever on relativistic models of nuclear phenomena. The objective was to cover historical background as well as the most recent developments in the field, and communication between theorists and experimentalists was given a high priority.

  20. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  1. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  2. Forschungszentrum Rossendorf, Institute of Nuclear and Hadronic Physics. Annual report 1993

    International Nuclear Information System (INIS)

    Doenau, F.; Prade, H.

    1994-03-01

    The theoretical investigations performed in 1993 dealt with the study of nuclear and subnuclear degrees of freedom, high-spin phenomena and the dynamics of open quantum systems. The results of the research and developments are presented in numerous publications, conference contributions and talks. Experimental data are obtained from in-beam spectroscopic studies, medium energy physics and heavy ion physics. The participation in national or international research projects has been continued. (orig.)

  3. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  4. Nuclear physics

    International Nuclear Information System (INIS)

    1990-01-01

    This work describes the actual situation of nuclear physics in Brazil as well as its perspectives of developments and real needs in the next decade. It discusses the main projects and the financing of brazilian research groups and Universities. (A.C.A.S.)

  5. Nuclear physics I

    International Nuclear Information System (INIS)

    Elze, T.

    1988-01-01

    This script consisting of two parts contains the matter of the courses Nuclear Physics I and II, as they were presented in the winter term 1987/88 and summer term 1988 for students of physics at Frankfurt University. In the present part I the matter of the winter term is summarized. (orig.) [de

  6. Fundamental aspects of nuclear physics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1987-01-01

    I am pleased to be able to attend this symposium in honor of D. Allan Bromley and to see the new accelerator of the Yale University Nuclear Structure Laboratory. My talk on symmetry tests seems appropriate for this occasion: so much of the progress in this field depends on detailed knowledge of nuclear structure. The nuclear ''tricks'' that are played to filter and amplify interactions are possible because the nuclear spectroscopists have cataloged nuclear levels and determined their properties. I will describe how such nuclear structure studies may help to provide a window on physics beyond the standard model. My talk is not a summary of this subfield of nuclear physics. There is simply too much happening today to make a summary talk feasible. Instead, I have chosen four topics that I hope are representative of the field as a whole: parity mixing of nuclear states, time-reversal-odd nuclear moments, the Mikheyev-Smirnov enhancement of solar neutrino oscillations, and a nuclear experiment to monitor the long-term rate of stellar collapse in the galaxy. 39 refs., 5 figs., 1 tab

  7. Experimental nuclear physics. Progress report, September 1980-June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Continuing cooperative research is reported in the areas of, a) In-beam γ-ray spectroscopy with scientists at Oak Ridge and the University of Koeln; b) Coulomb excitation studies at Lawrence Berkeley Laboratory and at GSI, Darmstadt, Germany; c) Maxsive transfer and preequilibrium emission processes in fusion reactions at ORNL; d) Nucleon transfer reaction studies with scientists at ORNL, Los Alamos and Brookhaven; e) delta-electron spectroscopy at the Mas Planck Institute in Heidelberg; f) Heavy ion atomic physics at the ORNL En tandem; g) Studies of nuclei far from stability at UNISOR; and h) Theoretical studies of high spin phenomena with scientists at Lawrence Berkeley, Brookhaven Lab., Univ. of Tubingen, and Copenhagen and of nuclear molecules and their decay processes in very heavy ion collisions with the University of Frankfurt and Vanderbilt theorists. Abstracts of papers published or submitted for publication are presented, and brief reports of work in process are given

  8. Nuclear and atomic physics at one gigaflop

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, J.B.

    1989-01-01

    A three-day workshop on problems in atomic and nuclear physics which depend on and are, at present, severely limited by access to supercomputing at effective rates of one gigaflop or more, was held at Oak Ridge, Tennessee, April 14-16, 1988. The participants comprised researchers from universities, industries and laboratories in the United States and Europe. In this volume are presented talks from that meeting on atomic and nuclear physics topics and on modern parallel processing concepts and hardware. The physics topics included strong fields in atomic and nuclear physics, the role of quarks in nuclear physics, the nuclear few-body problem, relativistic descriptions of heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques for many-body problems, precision calculation of atomic QED effects, classical simulation of atomic processes, atomic structure, atomic many-body perturbation theory, quantal studies of small and large molecular systems, and multi-photon atomic and molecular problems

  9. The physical protection of nuclear material

    International Nuclear Information System (INIS)

    1989-12-01

    A Technical Committee on Physical Protection of Nuclear Material met in April-May 1989 to advise on the need to update the recommendations contained in document INFCIRC/225/Rev.1 and on any changes considered to be necessary. The Technical Committee indicated a number of such changes, reflecting mainly: the international consensus established in respect of the Convention on the Physical Protection of Nuclear Material; the experience gained since 1977; and a wish to give equal treatment to protection against the theft of nuclear material and protection against the sabotage of nuclear facilities. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. 1 tab

  10. Physical bases of nuclear medicine

    International Nuclear Information System (INIS)

    Isabelle, D.B.; Ducassou, D.

    1975-01-01

    The physical bases of nuclear medicine are outlined in several chapters devoted successively to: atomic and nuclear structures; nuclear reactions; radioactiity laws; a study of different types of disintegration; the interactions of radiations with matter [fr

  11. The r-process nucleosynthesis: Nuclear physics challenges

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  12. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  13. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  14. Experimental Aspects of Nuclear Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Slaus, I. [Institute ' ' Rudjer Boskovic' ' , Zagreb, Yugoslavia (Croatia)

    1970-07-15

    1. Introduction; 2. Basic features of nuclear interaction; 3. How accurate is our present knowledge of phase parameters? 4. Experimental problems in N-N scattering studies; 5. N-N potential models; 6. Some open problems in nuclear interaction studies. (author)

  15. Proceedings of the nuclear and particle physics on the light cone workshop

    International Nuclear Information System (INIS)

    Johnson, M.B.; Kisslinger, L.

    1988-01-01

    This book deals with phenomena in nuclear and particle physics that occur at high energy and at high momentum transfer. At high energy, particles move near the light cone, and the topics covered deal with the physics from this perspective. The light-cone description is familiar in particle physics, but until recently it has not been used in nuclear physics. In view of the fact that nuclear physicists are increasingly looking to questions that can be answered only by experiments in the range of energy where the light-cone description seems to be of advantage, and that the ideas involved are new to many people in the nuclear physics community, efforts were made to ensure that each main speaker would give an introduction to the subject as well as present recent developments. The book should, therefore, be valuable to those who want to learn about light-cone approaches, in particular experimentalists and students, as well as to specialists. The volume is divided into eight chapters. The first chapter is an overview of the meeting and an introduction to the subject of light-cone physics. The remaining chapters encompass various applications and current topics in nuclear and particle physics where use of light-cone methods leads to understanding of high-energy phenomena and their connection to the quark and mesonic substructure of the nucleus. These include the main talks containing the introductory material, as well as shorter papers on the more specialized topics of current interest in both experimental and theoretical aspects of the subject. 38 papers have been cataloged separately

  16. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  17. A long range plan for nuclear physics

    International Nuclear Information System (INIS)

    Morrison, G.C.

    1983-01-01

    The report is in two parts. The first part reviews the current understanding of nuclear physics and indicates areas of significant interest for future work. It briefly discusses the special contributions of nuclear physics in other sciences. The second part considers new facilities which would be particularly relevant to the future development of nuclear physics in the UK. The present position of UK nuclear physics with respect to the wider nuclear community is considered. In conclusion the report establishes priorities for UK nuclear physics and makes recommendations for future action for the provision of facilities and also for future funding and manpower levels. The working party seeks to build on the valuable base provided by the NSF and Oxford accelerators. The principal recommendation of the Working Party is that a new 600MeV continuous beam electron accelerator should be built at the Daresbury Laboratory. For higher energy heavy ion beams the Working Party suggests these should be sought at overseas laboratories. (author)

  18. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  19. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  20. Serber says: About nuclear physics

    International Nuclear Information System (INIS)

    Serber, R.

    1986-01-01

    This book is a distillation of a set of lecture notes used by the author at Columbia. Written with a pedagogical aim it emphasizes topics of current interest not only in nuclear physics but also in other branches of physics such as atomic physics and solid state physics. Contents: Some Arguments Concerning Nuclear Forces; The Neutron-Proton Force; Low Energy Neutron-Proton Scattering Experiments; Photo-Effect of the Deuteron; The Slowing Down and Diffusion of Neutrons; Nucleon Magnetic Moments and Quadrupole Moment of the Deuteron; Proton-Proton and Neutron-Neutron Interactions; Isotopic Spin Invariance; High Energy Reactions; Resonance Levels

  1. Laboratory portrait: the Saclay nuclear physics division

    International Nuclear Information System (INIS)

    Alamanos, N.; Auger, F.

    2005-01-01

    The research activities of the nuclear physics division (SPHN) of DAPNIA (Cea) take place within strong national and international collaborations. Its programs cover a broad range of topics in nuclear physics from low to high energies, they include the structure and dynamics of the nucleus, the structure of the nucleon, the search for phase transitions in nuclear matter, and contribution to the development of nuclear energy. Concerning the structure of the nucleus, SPHN is involved in the study of the structure of light exotic nuclei such as He 6-8 , C 10-11 , Ne 27 and in the study of shape coexistence in Kr isotopes. The experiments are performed at GANIL. SPHN is also involved in the study of the structure of Md 251 through experiments made in Finland. Near-barrier and sub-barrier fusion of light unstable nuclei and their respective stable isotopes with U 238 targets are studied in Louvain-la-Neuve (Belgium). Concerning nuclear phase transitions, the purpose of our activities is twofold: the study of the liquid-gas phase transition in nuclei at relatively low incident energies and the search for the quark-gluon plasma (QGP) at very high energies. We look for QGP signatures in 2 experiments: Phenix with the accelerator RHIC at Bnl and Alice at the LHC (CERN). Concerning the structure of the nucleon, SPHN is involved in 2 experimental programs both using electromagnetic probes, one to obtain information on the spin carried by the gluons in the proton (Compass at CERN) and the other to extract information on generalized parton distributions by means of deeply virtual Compton scattering (Clas at Jlab). Concerning nuclear energy, the activities are focused along 3 main lines: spallation studies, neutron cross-section measurements and application oriented modeling. (A.C.)

  2. Nuclear physics

    International Nuclear Information System (INIS)

    Guzman B, O.; Vallejo M, J.I.; Cardenas C, H.F.

    1989-01-01

    A historical review of the evolution of the Nuclear Physics Section at the IAN is presented along the 30 years of existence of the Institute. Objectives, structure, programs and goal are historically examined. Present status of the section and its projection on national development is also analyzed

  3. Nuclear physics

    International Nuclear Information System (INIS)

    Warner, D.D.; Aitken, T.W.; Rowley, N.

    1989-01-01

    The many diverse programmes of fundamental research and technical development at the Daresbury Nuclear Structure Facility (NSF) have continued at their usual hectic pace throughout the period 1988/89. An overview of the overall programme and of the Facility has been presented in the first volume of this report, along with an expanded discussion of some of the highlights of the year's work. This second volume presents the more technical and detailed reports on the progress and results of individuals proposals and hence will be of most interest to the more expert reader. The reports are grouped in terms of experimental studies aimed at probing the structure of individual nuclei or series of nuclei, studies devoted to probing the primary nuclear reaction mechanism itself, theoretical work and research devoted to the development of the accelerator, and experimental equipment/techniques. Overall, they provide a concise summary of the year's work at the NSF. (author)

  4. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Bertrand, P.

    1987-01-01

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology [fr

  5. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  6. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  7. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  8. 3. Mexican school of nuclear physics; 3. Escuela Mexicana de Fisica Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Chavez L, E R [Instituto de Fisica, UNAM, 04510 Mexico D.F. (Mexico); Hess, P O [Instituto de Ciencias Nucleares, UNAM, 04510 Mexico D.F. (Mexico); Martinez Q, E [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The III Mexican School of Nuclear Physics which is directed to those post graduate in Sciences and those of last semesters students of the Physics career or some adjacent career was organized by the Nuclear Physics Division of the Mexican Physics Society, carrying out at November 18-29, 2002 in the installations of the Institute of Physics and the Institute of Nuclear Sciences both in the UNAM, and the National Institute of Nuclear Research (ININ). In this as well as the last version its were offered 17 courses, 9 of them including laboratory practices and the rest were of theoretical character only. This book treats about the following themes: Nuclear physics, Electrostatic accelerators, Cyclotrons, Thermonuclear reactions, Surface barrier detectors, Radiation detection, Neutron detection, Bonner sphere spectrometers, Radiation protection, Biological radiation effects, Particle kinematics, Nucleosynthesis, Plastics, Muons, Quadrupoles, Harmonic oscillators, Quantum mechanics among many other matters. (Author)

  9. Application of electrostatic accelerators for nuclear physics studies

    International Nuclear Information System (INIS)

    Kuz'minov, B.D.; Romanov, V.A.; Usachev, L.N.

    1983-01-01

    The data are reviewed on dynamics of the development of single- and two-stage electrostatic accelerators (ESA) used as a tool or nuclear physics studies in the range of low and medium energies. The ESA wide possibilities are shown on examples of the most specific studies in the field of nuclear physics, work on measurement of nuclear constants to safisfy the nuclear power needs and applied studies on nuclear microanalysis. It is concluded that the contribution of studies performed using ESA to the development of nowadays concepts on nuclear structure and nuclear reaction kinetics is immeasurably higher than of any other nuclear-physics tool. ESA turned out to be also exceptionally useful for solving applied problems and investigations in different fields of knowledge. Carrying over the technique of investigations using ESA and nuclear physics concepts to atomic and molecular problems has found its application in optical spectroscopy in Lamb shift investigations in strongly ionized heavy ions, in various experiments on atom-atom and atom-molecular scattering, in stUdies of collisions and charge exchange. ESA contributed to the progress in such scientific fields as astraphysics, nuclear physics, solid-state physics, material science and biophysics

  10. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [es

  11. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [fr

  12. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-01-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  13. The Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1993-09-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers

  14. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  15. Fundamentals in nuclear physics

    International Nuclear Information System (INIS)

    Diserbo, Michel

    2014-01-01

    The author proposes an overview of the main notions related to nuclear physics. He first addresses the atom and the nucleus: brief history, their constituents, energetic aspects for electrons and nucleus. The second part deals with radioactivity: definitions, time law and conservation law, natural and artificial radio-elements, α, β and γ radiations. Nuclear reactions (fission and fusion) are then presented as well as their application to nuclear reactor operation. The next part concerns interactions between radiations and matter, more precisely between charged particles and matter, neutrons and matter, X rays or γ rays and matter. The last chapter presents the various quantities used to characterise a source, the radiation field and the physical action, and quantities and units used in radiobiology and in radiation protection

  16. Nuclear Physics in Poland 1996-2006

    International Nuclear Information System (INIS)

    Broda, R.; Dobaczewski, J.; Jastrzebski, J.; Palacz, M.; Styczen, J.

    2007-12-01

    This Report is a result of the Polish Nuclear Physics Network (PNPN) action having as objective the mapping study of the basic and applied research in this domain in Poland. In the often employed slang it constitutes one of the '' deliverables '' of the EWON (East-West Outreach) Network, operating within the I3- (Integrated Infrastructure Initiative) EURONS, one of the Nuclear Physics projects in the Six Framework Programme (FP6). However, although prepared within the nuclear structure EURONS framework, this mapping study also reports on the activities in the hadron physics in Poland (organized in the FP6 within a second Nuclear Physics project I3-Hadron Physics) as well as in Nuclear Theory and Applications of Nuclear Physics. The Report contains references to activities and published papers from the last ten years: 1996 - 2006. In some cases also slightly older data are included, if necessary, for the completeness of the reported subjects. The Report is organized as follows. After the information on Polish Nuclear Physics Network (a part of the EWON Network), a few overview papers describe the main domains of the PNPN scientific activity. The contents of these papers were previously presented during the NuPECC meeting, held in Krakow June 9, 2006. A number (89) of more detailed contributions (together with appropriate references) emanating from various research groups follows the review articles. Some of the contributions provide concise summaries of wide research activities. Other authors preferred to report separately or individually on narrower topics. Most of the presented activities were conducted within the international collaborations. However, the adopted policy was that only Polish researchers are indicated as authors of the contributions, whereas the international collaborations are reflected by (all) authors of cited publications. The Polish Nuclear Physics Long-Range Plan prepared recently by the Nuclear Physics Committee of the National Atomic Energy

  17. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1988-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron physics and nuclear data measurements. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out. Refs, figs and tabs

  18. Experimental nuclear explosions and the arms race

    International Nuclear Information System (INIS)

    Lenci, F.

    1989-01-01

    This paper discusses how experimental nuclear explosions have basically three aims: a study of the effects of nuclear weapons; the development of new nuclear weapons; and control of the efficiency and security of nuclear weapons

  19. Nuclear medical physics

    International Nuclear Information System (INIS)

    Williams, L.E.

    1987-01-01

    This three-volume set covers the physical basis of nuclear medicine, and is intended as a source of data for practicing scientists and physicians as well as those beginning their careers or simply studying nuclear medical physics. It leads the reader from quantum theory to the production and attenuation of ionizing radiation; considers dosimetry and the most recent assessment of biological effects of such particles; describes in detail detector materials, signal analysis, and gamma cameras; includes extensive discussions of bone mineral measurement as well as magnetic resonance imaging; covers limited angle, rotating camera, and positron tomography; presents quality assurance and statistical theory with an eye toward enhanced departmental operations; and features descriptions of functional imaging and the psychophysical basis of diagnosis

  20. Nuclear physics group report

    International Nuclear Information System (INIS)

    A brief description is given of the new cyclotron tested and inaugurated during the period under review, and its main specifications are presented. Preliminary beam measurements are reported. The computers and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear structure and nuclear reactions which are in progress, or soon to be reported are presented. Projects in theoretical nuclear physics are also described. Lists of seminars and lectures and of publications are given. (JIW)

  1. PREFACE: XVIII International School on Nuclear Physics, Neutron Physics and Applications

    Science.gov (United States)

    Stoyanov, Chavdar; Janeva, Natalia

    2010-11-01

    This volume contains the lectures and short talks given at the XVIII International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 21 to 27 September 2009 in Hotel 'Lilia' located on 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was Bulgarian Nuclear Regulatory Agency. The event was sponsored by National Science Fund of Bulgaria. According to the long-standing tradition the School has taken place every second year since 1973. The School content has been restructured according to our new enlarged international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts a lot of young scientists and students from many countries. This year - 2009, we had the pleasure to welcome more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to present a short contribution. The program ranges from recent achievements in nuclear structure and reactions to the hot problems of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and the pleasant evenings. The main topics were the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues contributed to the organization of the School. We would like to thank to them and especially to the Scientific Secretary of the School Dr

  2. 1932: ''annus mirabilis'' for nuclear physics

    International Nuclear Information System (INIS)

    Hughes, J.

    1998-01-01

    1932 was an extraordinary year for nuclear physics: J. Chadwick discovered the neutron, C.D.Anderson identified the positron and the first artificial disintegration was realised with a particle accelerator by J.Cockcroft and E.Walton. These 3 discoveries transformed nuclear physics by providing basis on which any new research could be led. The neutron allowed the discovery of artificial radioactivity by Joliot-Curie in 1934 and later the discovery of nuclear fission by O. Hahn, F. Strassman and L. Meitner. The positron brought new concepts about cosmic radiation and drew the way to the discovery of new particles. Artificial disintegration paved the way to the ever-bigger machines. It was the beginning of the era of breaking nuclei. 1932 deserves its title of ''annus mirabilis'' of physics. This article presents the quick evolution of ideas, concepts in nuclear physics in the thirties. (A.C.)

  3. Initiation of a Nuclear Research Program at Fisk University in Cooperation with the Nuclear Physics Group at Vanderbilt University, August 15, 1997 - January 14, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W.E.; Hamilton, J.H.

    2002-10-01

    Carrying a spirit of a long history of cooperation in physics education and research between Fisk University and Vanderbilt University, the Nuclear Research Program in the Department of Physics at Fisk University was proposed in 1996 in cooperation with the Nuclear Physics Group at Vanderbilt University. An initial NRP program was commissioned in 1997 with the financial support from DOE. The program offers a great opportunity for students and faculty at Fisk University to directly access experimental nuclear data and analyzing facilities within the Nuclear Physics Group at Vanderbilt University for a quick start. During the program Fisk Faculty and students (along with the colleagues at Vanderbilt University) have achieved progress in a few areas. We have (a) established an in-house nuclear data processing and analysis program at Fisk University, (b) conducted hands-on nuclear physics experiments for a Fisk undergraduate student at Vanderbilt University, (c) participated in the UNIRIB research with radioactive ion beam and Recoil Mass Spectrometer at Oak Ridge National Laboratory, and (d) studied {sup 252}Cf spontaneous fission and in-beam nuclear reactions for exotic nuclei. Additionally, this work has produced publication in conference proceedings as well as referred journals. [2-7].

  4. Dibaryonic degrees of freedom in Hadronic and nuclear physics

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Shikhalev, M.A.

    2005-01-01

    The basic aim of the talk is to show that the dibaryons (independently upon the fact of existence or nonexistence of narrow dibaryons) may become one of the main ingredients and degrees of freedom in hadronic and nuclear physics. It follows straightforwardly from the new model for nuclear force, in which the intermediate-state dibaryons play the role of main carriers of strong interaction of nucleons at intermediate and short ranges in 2N, 3N and other nuclear systems. These intermediate-state dibaryons, or dressed six-quark bags in NN-scattering are strongly coupled to the initial and final NN-channels and thus they have large widths which prevent their direct experimental evidence. However the new model predicts a lot of new effects of dibaryons, which should be seen experimentally in hadronic and nuclear processes. Some of these new predictions have been already confirmed in numerous calculations made jointly in Moscow and Tuebingen university groups. We enumerate shortly here only the most interesting effects of dibaryons in hadronic and nuclear physics: (i) partial restoration of chiral symmetry in multiquark (i.e. 6q, 9q etc.) systems with the respective reduction of the scalar sigma-meson mass; (ii) enhancement of the near-threshold π 0 and π + π − , π 0 π 0 – production in pp, pd etc. collisions; explanation of the long-term ABC-puzzle; (iii) enhancement of the vector-meson and (e + e − ) production in the GeV region in pp, pd etc. collisions; (iv) large yield of cumulative mesons and other hadrons (studied experimentally by Baldin with coworkers) in p-A, d-A etc. high-energy collisions; (v) new electro-magnetic currents related intimately to the dibaryon degrees of freedom, which contribute to the all deuteron e.-m. observables, like deuteron magnetic and quadrupole moments, cross sections of photo-disintegration etc.; (vi) some novel contribution to the Coulomb energies of all nuclei (∼ 15%), which is able to explain the long-standing Nollen

  5. Recommended numerical nuclear physics data for cutting-edge nuclear technology applications

    International Nuclear Information System (INIS)

    Ganesan, S.; Srivenkatesan, R.; Anek Kumar; Murthy, C.S.R.C.; Dhekne, P.S.

    2005-01-01

    This paper introduces some aspects of online nuclear data services at Mumbai as part of today's technology of sharing knowledge of the recommended numerical nuclear physics data for nuclear applications. The physics foundation for cutting-edge technology applications is significantly strengthened by such knowledge generation and sharing techniques. A BARC server is presently mirroring the nuclear data services of the IAEA, Vienna. The users can get all the nuclear data information much faster from the BARC nuclear data mirror website that is now fully operational. The nuclear community is encouraged to develop the habit of accessing the website for recommended values of nuclear data for use in research and applications. The URL is: www-nds.indcentre.org.in (author)

  6. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  7. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  8. Experimental nuclear physics: Progress report, September 1986-July 1987

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1987-08-01

    The research activities of the experimental nuclear structure group at Vanderbilt University carried out under Contract AS05-76ER05034 with the Department of Energy for the period September 1986 to July 1987 are reported here. Research continues in the areas of (1) in-beam γ-ray spectroscopy including cooperations with scientists at Oak Ridge, Univ. of Rochester, Univ. of Koeln, Louisiana State Univ., Univ. of Florida, Idaho Falls, and Univ. of Notre Dame; (2) studies of nuclei far from stability at UNISOR and at the recoil mass spectrometer at the University of Rochester; (3) nucleon transfer reaction and fusion-fission studies with scientists at ORNL, Argonne National Laboratory, Univ. of Michigan, and University of Kansas; (4) theoretical studies with scientists at Univ. Frankfurt, Univ. Tuebingen, Univ. Lund, Brookhaven, Lawrence Berkeley, and ORNL; (5) other studies. In general, abstracts of papers published or submitted for publication in this period make up this report along with brief reports of work in process and complete copies of a few conference papers

  9. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  10. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  11. Nuclear physics--at the frontiers of knowledge

    International Nuclear Information System (INIS)

    Feshbach, H.

    1995-01-01

    Nuclear physics has been and will be a major factor in science and technology. The researches in nuclear physics leads to results which can be characterized as universal in that will suitable modifications they apply to small systems generally. It is introduced on the study of nucleon heavy ions and the quark-gluon plasma radioactive nuclei weak interactions and nuclear theory in this paper. The contributions to medicine, industry and other sciences is reviewed. The activity of nuclear physics as frontier research is emphasized. The importance of its applications is pointed out. (Su)

  12. Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5): Recommendations

    International Nuclear Information System (INIS)

    2011-01-01

    This publication, Revision 5 of Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225), is intended to provide guidance to States and their competent authorities on how to develop or enhance, implement and maintain a physical protection regime for nuclear material and nuclear facilities, through the establishment or improvement of their capabilities to implement legislative and regulatory programmes. The recommendations presented in this publication reflect a broad consensus among IAEA Member States on the requirements which should be met for the physical protection of nuclear materials and nuclear facilities.

  13. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  14. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1991-10-01

    The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas

  15. XVI International symposium on nuclear electronics and VI International school on automation and computing in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Churin, I.N.

    1995-01-01

    Reports and papers of the 16- International Symposium on nuclear electronics and the 6- International school on automation and computing in nuclear physics and astrophysics are presented. The latest achievements in the field of development of fact - response electronic circuits designed for detecting and spectrometric facilities are studied. The peculiar attention is paid to the systems for acquisition, processing and storage of experimental data. The modern equipment designed for data communication in the computer networks is studied

  16. Elementary particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1990-01-01

    We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of 32 S and 16 O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron 500 GeV muon beam and the other exploring the >TeV regime. We are participants in Fermilab experiment E665 employing a comprehensive counter/streamer chamber detector system. During the past year we joined the DUMAND Collaboration, and have been assigned responsibility for development and construction of critical components for the deep undersea neutrino detector facility, to be deployed in 1991. In addition, we are making significant contributions to the design of the triggering system to be used

  17. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  18. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  19. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  20. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  1. Development of the Nuclear Ship Database. 1. Outline of the Nuclear Ship Experimental Database

    Energy Technology Data Exchange (ETDEWEB)

    Kyouya, Masahiko; Ochiai, Masa-aki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hashidate, Kouji

    1995-03-01

    We obtained the experimental data on the effects of the ship motions and the change in load and caused by the ship operations, the waves, the winds etc., to the nuclear power plant behavior, through the Power-up Tests and Experimental Voyages of the Nuclear Ship MUTSU. Moreover, we accumulated the techniques, the knowledge and others on the Nuclear Ship development at the each stage of the N.S. MUTSU Research and Development program, such as the design stage, the construction stage, the operation stage and others. These data, techniques, knowledge and others are the assembly of the experimental data and the experiences through the design, the construction and the operation of the first nuclear ship in JAPAN. It is important to keep and pigeonhole these products of the N.S. MUTSU program in order to utilize them effectively in the research and development of the advanced marine reactor, since there is no construction plan of the nuclear ship for the present in JAPAN. We have been carrying out the development of the Nuclear Ship Database System since 1991 for the purpose of effective utilization of the N.S. MUTSU products in the design study of the advanced marine reactors. The part of the Nuclear Ship Database System on the experimental data, called Nuclear Ship Experimental Database, was already accomplished and utilized since 1993. This report describes the outline and the use of the Nuclear Ship Experimental Database.The remaining part of the database system on the documentary data, called Nuclear Ship Documentary Database, are now under development. (author).

  2. Development of the Nuclear Ship Database. 1. Outline of the Nuclear Ship Experimental Database

    International Nuclear Information System (INIS)

    Kyouya, Masahiko; Ochiai, Masa-aki; Hashidate, Kouji.

    1995-03-01

    We obtained the experimental data on the effects of the ship motions and the change in load and caused by the ship operations, the waves, the winds etc., to the nuclear power plant behavior, through the Power-up Tests and Experimental Voyages of the Nuclear Ship MUTSU. Moreover, we accumulated the techniques, the knowledge and others on the Nuclear Ship development at the each stage of the N.S. MUTSU Research and Development program, such as the design stage, the construction stage, the operation stage and others. These data, techniques, knowledge and others are the assembly of the experimental data and the experiences through the design, the construction and the operation of the first nuclear ship in JAPAN. It is important to keep and pigeonhole these products of the N.S. MUTSU program in order to utilize them effectively in the research and development of the advanced marine reactor, since there is no construction plan of the nuclear ship for the present in JAPAN. We have been carrying out the development of the Nuclear Ship Database System since 1991 for the purpose of effective utilization of the N.S. MUTSU products in the design study of the advanced marine reactors. The part of the Nuclear Ship Database System on the experimental data, called Nuclear Ship Experimental Database, was already accomplished and utilized since 1993. This report describes the outline and the use of the Nuclear Ship Experimental Database.The remaining part of the database system on the documentary data, called Nuclear Ship Documentary Database, are now under development. (author)

  3. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  4. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Beck, R.; Bueche, G.; Fluegge, G.

    1982-02-01

    This report surveys the activities in fundamental research from July 1, 1980 to June 30, 1981 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions and physics at medium and higher energies. (orig.) [de

  5. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  6. Physics and technology of nuclear materials

    International Nuclear Information System (INIS)

    Ursu, I.

    1985-01-01

    The subject is covered in chapters, entitled; elements of nuclear reactor physics; structure and properties of materials (including radiation effects); fuel materials (uranium, plutonium, thorium); structural materials (including - aluminium, zirconium, stainless steels, ferritic steels, magnesium alloys, neutron irradiation induced changes in the mechanical properties of structural materials); moderator materials (including - nuclear graphite, natural (light) water, heavy water, beryllium, metal hydrides); materials for reactor reactivity control; coolant materials; shielding materials; nuclear fuel elements; nuclear material recovery from irradiated fuel and recycling; quality control of nuclear materials; materials for fusion reactors (thermonuclear fusion reaction, physical processes in fusion reactors, fuel materials, materials for blanket and cooling system, structural materials, materials for magnetic devices, specific problems of material irradiation). (U.K.)

  7. Nuclear Physics Laboratory 1976 annual report. [Nuclear Physics Laboratory, Univ. of Washington

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    Laboratory activities for the period spring, 1975 to spring, 1976 are described. The emphasis of the work can be discerned from the chapter headings: accelerator development; ion source development; instrumentation, detectors, research techniques; computer and computing; atomic physics; nuclear astrophysics; fundamental symmetries in nuclei; nuclear structure; radiative capture measurements and calculations; scattering and reactions; reactions with polarized protons and deuterons; heavy-ion elastic and inelastic scattering; heavy-ion deeply inelastic and fusion reactions; heavy ion transfer and intermediate structure reactions; medium-energy physics; and energy studies. Research by users and visitors is also described; and laboratory personnel, degrees granted, and publications are listed. Those summaries having significant amounts of information are indexed individually. (RWR)

  8. Proceedings of the X. international school on nuclear physics, neutron physics and nuclear energy

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1992-01-01

    The history of the International School on Nuclear Physics, Neutron physics and nuclear Energy ('Varna School') goes back to the year 1973. Since that time it has been carried out in the fall of every other year in the Conference Center of the Bulgarian Academy of Sciences at the Black Sea coast near Varna. This volume contains the full texts of the lectures delivered by distinguished scientists from different countries on the Tenth Varna School, 1991. 14 of them are included in INIS separately

  9. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  10. Theses of reports 'V Conference of high energy physics, nuclear physics and accelerators'

    International Nuclear Information System (INIS)

    Dovbnya, A.N.

    2007-01-01

    Nucleus structure study in the reactions on the charged particles; application of the nuclear and physical methods in the adjacent science fields; study and development of accelerators and accumulators of charged particles; basic research in an effort to develop the nuclear and physical methods for the nuclear power needs, medicine and industry; computed engineering in the physical studies; basic research of interaction processes of ultrarelativistic particles with monocrystals and substance; physics of detectors are submitted in proceedings of V Conference on High Energy Physics

  11. Experimental Physical Sciences Vitae 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patterson, Eileen Frances [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kramer, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Genevieve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Richard Cecil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Carlos Genaro [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valdez, Sandra M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-18

    Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.

  12. Nuclear engineering experiments at experimental facilities of JNC in graduate course of Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hayashizaki, Noriyosu; Takahashi, Minoru; Aoyama, Takafumi; Onose, Shoji

    2005-01-01

    Nuclear engineering experiments using outside facilities of the campus have been offered for graduate students in the nuclear engineering course in Tokyo Institute of Technology (Tokyo Tech.). The experiments are managed with the collaboration of Japan Nuclear Cycle Development Institute (JNC), Japan Atomic Energy Research Institute (JAERI) and Research Reactor Institute, Kyoto University (KUR). This report presents the new curriculum of the nuclear engineering experiments at JNC since 2002. The change is due to the shutdown of Deuterium Criticality Assembly Facility (DCA) that was used as an experimental facility until 2001. Reactor physics experiment using the training simulator of the experimental fast reactor JOYO is continued from the previous curriculum with the addition of the criticality approach experiment and control rods calibration. A new experimental subject is an irradiated material experiment at the Material Monitoring Facility (MMF). As a result, both are acceptable as the student experiments on the fast reactor. (author)

  13. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Miller, G.A.

    1983-01-01

    A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references

  14. Nuclear Physics from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  15. The Nuclear Physics Programme at CERN (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This lecture series will focus on the two major facilities at CERN for nuclear physics: ISOLDE and nToF. ISOLDE is one of the world's leading radioactive beam facilities which can produce intense beams of unstable nuclei. Some of these beams can also be re-acclerated to energies around the Coulomb barrier and undergo nuclear reactions in turn. ISOLDE can address a wide range of Physics from nuclear structure to nuclear astrophysics (the origin of the chemical elements) and fundamental physics. The second major facility is nToF which is a neutron time-of-flight facility. Intense neutron beams are used to study nuclear reactions important both for nuclear astrophysics and for present and future reactor cycles. An overview will be given of these two facilities including highlights of their Physics programmes and the perspectives for the future.

  16. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi.

    1990-10-01

    The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas

  17. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  18. Nuclear physics: Macroscopic aspects

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1993-12-01

    A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions ℎ → 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case of statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses

  19. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1992-01-01

    This report contains papers on High Energy Physics and Nuclear Physics research. Some of areas covered are: antiproton physics; detectors and instrumentation; accelerator facilities; hadron physics; mesons and lepton decays; physics with electrons and muons; physics with relativistic heavy ions; physics with spin; neutrinos and nonaccelerator physics. The individual paper have been indexed separately elsewhere

  20. A lecture on nuclear physics in primary school

    International Nuclear Information System (INIS)

    Arh, S.

    2004-01-01

    I am going to propose the contents of a lecture on nuclear physics and radioactivity in primary school. Contemporary technology, medicine and science exploit intensively the discovered knowledge about processes in atoms and in a nucleus. Mankind has gained huge profit from peaceful applications of nuclear reactions and ionizing radiation. We use the products of nuclear industry every day. But about half of the school population never hears a professional explanation about what is going on in nuclear power plants. Only on some secondary schools students learn about nuclear physics. The lack of knowledge about nuclear processes is the main reason why people show great fear when hearing the words: radiation, radioactivity, nuclear, etc. At last it is now time to give some fundamental lessons on nuclear physics and radioactivity also to pupils in primary school. From my four-year teaching experience in primary school I am suggesting a programme of lectures on nuclear physics and radioactivity. At the end of the lessons we would visit the Krsko Nuclear Power Plant or the Nuclear Training Centre Milan Copic. This could be included in the so called natural science day. Pupils come from the eight class (14 years old) of primary school and have no problems following the explanation. (author)

  1. Growth points in nuclear physics

    CERN Document Server

    Hodgson, Peter Edward

    1980-01-01

    Growth Points in Nuclear Physics, Volume 2 covers the progress in the fields of nuclear structure and nuclear reactions. This book is composed of three chapters. The first chapter is devoted to nuclear forces and potentials, in particular the optical model potential that enables the elastic scattering of many particles by nuclei to be calculated in a very simple manner. This chapter also deals with the three-body forces and the spin dependence of the nuclear potential. The second chapter describes higher order processes involving two or more stages, specifically their intrinsic interest and th

  2. Experimental nuclear level densities and γ-ray strength functions in Sc and V isotopes

    International Nuclear Information System (INIS)

    Larsen, A. C.; Guttormsen, M.; Ingebretsen, F.; Messelt, S.; Rekstad, J.; Siem, S.; Syed, N. U. H.; Chankova, R.; Loennroth, T.; Schiller, A.; Voinov, A.

    2008-01-01

    The nuclear physics group at the Oslo Cyclotron Laboratory has developed a method to extract nuclear level density and γ-ray strength function from first-generation γ-ray spectra. This method is applied on the nuclei 44,45 Sc and 50,51 V in this work. The experimental level densities of 44,45 Sc are compared to calculated level densities using a microscopic model based on BCS quasiparticles within the Nilsson level scheme. The γ-ray strength functions are also compared to theoretical expectations, showing an unexpected enhancement of the γ-ray strength for low γ energies (E γ ≤3 MeV) in all the isotopes studied here. The physical origin of this enhancement is not yet understood

  3. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  4. Proceedings of the 5. International Conference on Nuclear Physics at Storage Rings

    International Nuclear Information System (INIS)

    Calen, H.; Ekstroem, C.

    2003-01-01

    The 5th International Conference on Nuclear Physics at Storage Rings, STORI '02, was organized jointly by The Svedberg Laboratory and the Department of Radiation Sciences, Uppsala University. The STORI '02 conference brought together physicists from a diverse international research community connected by the common technology of storage rings reviewing the topics of current interest in nuclear physics research with stored, cooled ion beams and electron beams. Specifically, the scientific programme of STORI '02 focused on new results from a wide variety of experimental projects at existing stored-beam facilities, on progress in associated theoretical issues, and on discussions of new facilities and experimental techniques. The STORI '02 conference also included a number of review talks on physics in neighbouring fields, e.g., atomic physics at storage rings, physics with stored particles in ion traps, crystalline ion beams. The conference programme was composed of six plenary sessions and a poster session. The meeting was attended by 77 registered participants from 11 countries. The presentations included 12 invited review talks, 27 oral contributions and seven posters. These proceedings contain the written versions of most of the presented talks and posters. They have been slightly regrouped as compared to the order of presentation in the conference program in order to group together the papers according to subject, e.g., the poster papers have been placed within the corresponding subject block. All have been separately indexed

  5. 3.International conference 'Nuclear and Radiation Physics'

    International Nuclear Information System (INIS)

    2001-01-01

    The 3-rd International Conference 'Nuclear and Radiation Physics' was held in Almaty (Kazakhstan) 4-7 June 2001. The primary purpose of the conference is consolidation of the scientists efforts in the area of fundamental and applied investigations on nuclear physics, radiation physics of solids and radioecology. In the conference more than 350 papers were presented by participants from 17 countries

  6. On the metaphysics of experimental physics

    CERN Document Server

    Rogers, K

    2005-01-01

    This provocative and critical work addresses the question of why scientific realists and positivists consider experimental physics to be a natural and empirical science. Taking insights from contemporary science studies, continental philosophy, and the history of physics, this book describes and analyses the metaphysical presuppositions that underwrite the technological use of experimental apparatus and instruments to explore, model, and understand nature. By revealing this metaphysical foundation, the author questions whether experimental physics is a natural and empirical science at all.

  7. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  8. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  9. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  10. PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)

    Science.gov (United States)

    Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique

    2014-03-01

    logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF

  11. Advances in nuclear physics

    CERN Document Server

    Vogt, Erich

    1975-01-01

    Review articles on three topics of considerable current interest make up the present volume. The first, on A-hypernuclei, was solicited by the editors in order to provide nuclear physicists with a general description of the most recent developments in a field which this audience has largely neglected or, perhaps, viewed as a novelty in which a bizarre nuclear system gave some information about the lambda-nuclear intersection. That view was never valid. The very recent developments reviewed here-particularly those pertaining to hypernuclear excitations and the strangeness exchange reactions-emphasize that this field provides important information about the models and central ideas of nuclear physics. The off-shell behavior of the nucleon-nucleon interaction is a topic which was at first received with some embarrassment, abuse, and neglect, but it has recently gained proper attention in many nuclear problems. Interest was first focused on it in nuclear many-body theory, but it threatened nuclear physicists'comf...

  12. Computational atomic and nuclear physics

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.; McGrory, J.B.

    1990-01-01

    The evolution of parallel processor supercomputers in recent years provides opportunities to investigate in detail many complex problems, in many branches of physics, which were considered to be intractable only a few years ago. But to take advantage of these new machines, one must have a better understanding of how the computers organize their work than was necessary with previous single processor machines. Equally important, the scientist must have this understanding as well as a good understanding of the structure of the physics problem under study. In brief, a new field of computational physics is evolving, which will be led by investigators who are highly literate both computationally and physically. A Center for Computationally Intensive Problems has been established with the collaboration of the University of Tennessee Science Alliance, Vanderbilt University, and the Oak Ridge National Laboratory. The objective of this Center is to carry out forefront research in computationally intensive areas of atomic, nuclear, particle, and condensed matter physics. An important part of this effort is the appropriate training of students. An early effort of this Center was to conduct a Summer School of Computational Atomic and Nuclear Physics. A distinguished faculty of scientists in atomic, nuclear, and particle physics gave lectures on the status of present understanding of a number of topics at the leading edge in these fields, and emphasized those areas where computational physics was in a position to make a major contribution. In addition, there were lectures on numerical techniques which are particularly appropriate for implementation on parallel processor computers and which are of wide applicability in many branches of science

  13. Research in theoretical nuclear physics, Nuclear Theory Group. Progress report

    International Nuclear Information System (INIS)

    Brown, G.E.; Jackson, A.D.; Kuo, T.T.S.

    1984-01-01

    Primary emphasis is placed on understanding the nature of nucleon-nucleon and meson-nucleon interactions and on determining the consequences of such microscopic interactions in nuclear systems. We have constructed models of baryons which smoothly interpolate between currently popular bag and Skyrme models of hadrons and provide a vehicle for introducing the notions of quantum chromodynamics to low energy nuclear physics without violating the constraints of chiral invariance. Such models have been used to study the nucleon-nucleon interaction, the spectrum of baryons, and the important question of the radius of the quark bag. We have used many-body techniques to consider a variety of problems in finite nuclei and infinite many-body systems. New light has been shed on the nuclear coexistence of spherical and deformed states in the A = 18 region as well as the role of genuine three-body forces in this region. Phenomenological studies of infinite systems have led to a number of predictions particularly regarding the spin-polarized quantum liquids of current experimental interest. Microscopic many-body theories, based on the parquet diagrams, have been improved to a fully quantitative level for the ground state properties of infinite many-body systems. Finite temperature theories of nuclear matter, important in the study of heavy ion reactions, have been constructed. An expanded program in heavy ion theory has led to major advances in the multi-dimensional barrier penetration problem. Activities in nuclear astrophysics have provided a far more reliable description of the role of electron capture processes in stellar collapse. As a consequence, we have been able to perform legitimate calculations of the unshocked mass in Type II supernovae

  14. PREFACE: XIX International School on Nuclear Physics, Neutron Physics and Applications (VARNA 2011)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina; Voronov, Victor

    2012-05-01

    This volume contains the lectures and short talks given at the XIX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 19-25 September 2011 in 'Club Hotel Bolero' located in the 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research - Dubna. According to long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year - 2011, we had the pleasure of welcoming more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to each present a short contribution. The program ranged from recent achievements in areas such as nuclear structure and reactions to the hot topics of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The main topics were as follows: Nuclear excitations at various energies Nuclei at high angular moments and temperature Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues helped with the organization of the School. We would like

  15. Theoretical and experimental studies of elementary physics

    International Nuclear Information System (INIS)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

    1992-05-01

    The experimental high energy physics program is directed toward the execution of experiments that probe the basic constituents of matter and the forces between them. These experiments are carried out at national and international accelerator facilities. At the current time, we are primarily concentrating on the following projects: Direct photon production in hadronic reactions; production of hybrid mesons in the nuclear Coulomb field; the D-Zero experiment at the Tevatron collider; deep inelastic neutrino- and electron-nucleon scattering at FNAL and SLAC; nonlinear QED at critical field strengths at SLAC; the experiments at KEK (AMY, 17keV neutrino); the CDF experiment at the Tevatron collider; and SSC-related detector R ampersand D on scintillating tile- and diamond-based calorimetry and microstrip tracking detectors

  16. Theoretical and experimental studies of elementary physics

    International Nuclear Information System (INIS)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

    1992-01-01

    The experimental high energy physics program is directed toward the execution of experiments that probe the basic constituents of matter and the forces between them. These experiments are carried out at national and international accelerator facilities. At the current time, we are primarily concentrating on the following projects: Direct photon production in hadronic reactions (Fermilab E706); Production of hybrid mesons in the nuclear Coulomb field; The D-Zero experiment at the Tevatron collider; Deep inelastic neutrino- and electron-nucleon scattering at FNAL and SLAC; Nonlinear QED at critical field strengths at SLAC; The Experiments at KEK (AMY, 17keV neutrino); The CDF experiment at the Tevatron collider; and SSC-related detector R ampersand D on scintillating tile- and diamond-based calorimetry and microstrip tracking detectors

  17. The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system

    Science.gov (United States)

    Zerkin, V. V.; Pritychenko, B.

    2018-04-01

    The EXchange FORmat (EXFOR) experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource is based on numerical data sets and bibliographical information of ∼22,000 experiments since the beginning of nuclear science. The principles of the computer database organization, its extended contents and Web applications development are described. New capabilities for the data sets uploads, renormalization, covariance matrix, and inverse reaction calculations are presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development, and research activities. It is publicly available at the websites of the International Atomic Energy Agency Nuclear Data Section, http://www-nds.iaea.org/exfor, the U.S. National Nuclear Data Center, http://www.nndc.bnl.gov/exfor, and the mirror sites in China, India and Russian Federation.

  18. Application of AdS/CFT in Nuclear Physics

    Directory of Open Access Journals (Sweden)

    M. R. Pahlavani

    2014-01-01

    Full Text Available We review some recent progress in studying the nuclear physics especially nucleon-nucleon (NN force within the gauge-gravity duality, in context of noncritical string theory. Our main focus is on the holographic QCD model based on the AdS6 background. We explain the noncritical holography model and obtain the vector-meson spectrum and pion decay constant. Also, we study the NN interaction in this frame and calculate the nucleonmeson coupling constants. A further topic covered is a toy model for calculating the light nuclei potential. In particular, we calculate the light nuclei binding energies and also excited energies of some available excited states. We compare our results with the results of other nuclear models and also with the experimental data. Moreover, we describe some other issues which are studied using the gauge-gravity duality.

  19. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  20. Existing experimental criticality data applicable to nuclear-fuel-transportation systems

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1983-02-01

    Analytical techniques are generally relied upon in making criticality evaluations involving nuclear material outside reactors. For these evaluations to be accepted the calculations must be validated by comparison with experimental data for a known set of conditions having physical and neutronic characteristics similar to those conditions being evaluated analytically. The purpose of this report is to identify those existing experimental data that are suitable for use in verifying criticality calculations on nuclear fuel transportation systems. In addition, near term needs for additional data in this area are identified. Of the considerable amount of criticality data currently existing, that are applicable to non-reactor systems, those particularly suitable for use in support of nuclear material transportation systems have been identified and catalogued into the following groups: (1) critical assemblies of fuel rods in water; (2) critical assemblies of fuel rods in water containing soluble neutron absorbers; (3) critical assemblies containing solid neutron absorber; (4) critical assemblies of fuel rods in water with heavy metal reflectors; and (5) critical assemblies of fuel rods in water with irregular features. A listing of the current near term needs for additional data in each of the groups has been developed for future use in planning criticality research in support of nuclear fuel transportation systems. The criticality experiments needed to provide these data are briefly described and identified according to priority and relative cost of performing the experiments

  1. Prof. Ikeda’s important contributions to nuclear physics

    CERN Document Server

    Brink, D M

    2010-01-01

    Professor Ikeda has made many fundamental contributions to nuclear physics, especially to the theory of Gamow-Teller giant resonances, to nuclear cluster physics, to hypernuclear physics, and to the physics of neutron-rich nuclei. He also has played an important role in the education of young researchers in Japan and on the contacts between theoreticians and experimentalists.

  2. Intersections between particle and nuclear physics

    International Nuclear Information System (INIS)

    Bunce, G.M.

    1988-01-01

    This report contains papers from an AIP conference on the intersections between particle and nuclear physics. Some of the general topics covered are: Accelerator physics; Antiproton physics; Electron and muon physics; Hadron scattering; Hadron spectroscopy; Meson and lepton decays; Neutrino physics; Nonaccelerator and astrophysics; Relativistic heavy-ion physics; and Spin physics. There are 166 papers that will be processed separately

  3. Nuclear physics at Ganil. A compilation 1989-1991

    International Nuclear Information System (INIS)

    1991-01-01

    This compilation deals with experimental and theoretical work performed at GANIL for the 1989-1991 years about the nuclear structure and nuclear reactions. During this period, the accelerator performances have been strongly increased, as well for the delivered energies and intensities as for the span of accelerated ions. In the experimental areas, a totally new data acquisition system has been set up, and the adding of a Wien filter to the Lise spectrometer results now in a versatile and efficient isotope separator, called LISE III. The time structure and the large intensity of the beam were decisive in identifying, for the first time, kaon production in heavy ions collisions at the GANIL subthreshold energies. Nucleons have to undergo several collisions before inducing such a process, and the strange particle emission should be very sensitive to the physical conditions of the hot and compressed interacting zone. Lead and Uranium beams now available at the Fermi energy, have been used to study the nuclear disassembly of very large and heavy systems. New results have been obtained on the collective flow in heavy ion reactions, giving new insights on the Equation of State problematics. In the field of nuclear structure, the magnetic spectrometer SPEG, coupled with large particle or gamma detectors shed light on new aspects of the giant resonance excitations. Exotic nuclei are extensively studied, with a particular emphasis on the 11Li nucleus. A new method of mass measurement, using the CSS2 as a mass separator, has been successfully tested; it will greatly improve the accuracy achieved on intermediate and heavy nuclei. Last but not least, the theory group is actively working to include fluctuations in the description of the nuclear dynamics and to characterise the onset of the multifragmentation process in heavy ion collisions. Author index and publication list are added

  4. Quarklei: nuclear physics from QCD

    International Nuclear Information System (INIS)

    Goldman, T.

    1985-01-01

    The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei

  5. Annual report of the Nuclear Physics Division [for] the period ending December 1975

    International Nuclear Information System (INIS)

    Jain, B.K.; Nadkarni, D.M.; Rao, K.R.P.M.

    1976-01-01

    The R and D activities of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during 1975, are described. The following are the significant areas of research activities of the Division : resonance reactions, nuclear spectra, fast fission, ternary and quaternary fission, neutron diffraction studies of magnetic materials, neutron inelastic scattering and dynamics of condensed media. The progress of development work on various experimental techniques and facilities including ion implantation facility and terminal tandem accelerator has been reported. (M.G.B.)

  6. Learning to Embrace Nuclear Physics through Education

    International Nuclear Information System (INIS)

    Avadanei, Camelia

    2010-01-01

    Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ('Radiation protection') defining norms and requirements for 'assuring the radiological safety of the workers, population and environment', and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of

  7. Learning to Embrace Nuclear Physics through Education

    Science.gov (United States)

    Avadanei, Camelia

    2010-01-01

    Due to its achievements, nuclear physics is more and more present in life of every member of the society. Its applications in the medical field and in nuclear energy, as well as the advanced research, always pushing the limits of science towards micro cosmos and macro cosmos, are subjects frequently presented in the media. In addition to their invaluable benefits, these achievements involve also particular rules to prevent potential risks. These risks are also underlined by the media, often being presented in an unfriendly manner. Specialists in nuclear physics are familiar with these problems complying with the specific rules in order to reduce risks at insignificant levels. The development of a specific field ("Radiation protection") defining norms and requirements for "assuring the radiological safety of the workers, population and environment," and its dynamics represent a proof of a responsible attitude regarding nuclear safety. Dedicated international bodies and experts analyze and rigorously evaluate risks in order to draw the right ways of managing activity in the field. The improvement of the formal and informal education of public regarding the real risks of nuclear applications is very important in order to understand and better assimilate some general rules concerning the use of these techniques, as well as for their correct perception, leading to an increase of interest towards nuclear physics. This educational update can be started even from elementary school and continued in each stage of formal education in adapted forms. The task of informing general public is to be carried out mainly by specialists who, unlike 30-40 years ago, can rely on a much more efficient generation of communications' mean. Taking into account the lack of interest for nuclear, an attractive way of presenting the achievements and future possibilities of nuclear physics would contribute to youth orientation towards specific universities in order to become next generation of

  8. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  9. Proceedings of the symposium on frontier nuclear physics (FRONP99)

    International Nuclear Information System (INIS)

    Chiba, Satoshi

    2000-01-01

    The symposium on Frontier Nuclear Physics (FRONP99), organized by the Research Group for Hadron Science, Advanced Science Research Center, under close cooperation with the Research Center for Nuclear Physics, Osaka University and High Energy Accelerator Research Organization, was held at Tokai Research Establishment of JAERI on August 2 to 4, 1999. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as hyper nuclear physics, lepton nuclear physics, quark nuclear physics, unstable nuclear physics, superheavy elements and heavy-ion physics. Three talks on the joint project between JAERI (Neutron Science Research Center) and KEK (JHF) were presented in a public session. Thirty three talks on these topics presented at the symposium aroused lively discussions among approximately 70 participants. This report contains 26 papers submitted from the lecturers. (author)

  10. Nuclear physics program plan

    International Nuclear Information System (INIS)

    1985-11-01

    The nuclear physics program objectives, resources, applications and implications of scientific opportunities are presented. The scope of projected research is discussed in conjunction with accelerator facilities and manpower. 25 figs., 2 tabs

  11. Nuclear detectors. Physical principles of operation

    International Nuclear Information System (INIS)

    Pochet, Th.

    2005-01-01

    Nuclear detection is used in several domains of activity from the physics research, the nuclear industry, the medical and industrial sectors, the security etc. The particles of interest are the α, β, X, γ and neutrons. This article treats of the basic physical properties of radiation detection, the general characteristics of the different classes of existing detectors and the particle/matter interactions: 1 - general considerations; 2 - measurement types and definitions: pulse mode, current mode, definitions; 3 - physical principles of direct detection: introduction and general problem, materials used in detection, simple device, junction semiconductor device, charges generation and transport inside matter, signal generation; 4 - physical principles of indirect detection: introduction, scintillation mechanisms, definition and properties of scintillators. (J.S.)

  12. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-02-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1983. Commissioning of the EN-tandem electrostatic accelerator continued, with the first proton beam produced in June. Many improvements were made to the vacuum pumping and control systems. Applications of the nuclear microprobe on the 3MV accelerator continued at a good pace, with applications in archaeometry, dental research, studies of glass and metallurgy

  13. National practices in physical protection of nuclear materials. Regulatory basis

    International Nuclear Information System (INIS)

    Goltsov, V.Y.

    2002-01-01

    Full text: The Federal law 'On The Use Of Atomic Energy' containing the section on physical protection of nuclear materials and nuclear facilities was issued in 1995 in Russian Federation. This document became the first federal level document regulating the general requirements to physical protection (PP). The federal PP rules developed on the base of this law by Minatom of Russia and other federal bodies of the Russian Federation were put in force by the government of Russia in 1997. The requirements of the convention on physical protection of nuclear materials (INFCIRC 274) and the modern IAEA recommendations (INFCIRC/225/Rev.4) are taken into account in the PP rules. Besides, while developing the PP rules the other countries' experience in this sphere has been studied and taken into account. The PP rules are action-obligatory for all juridical persons dealing with nuclear activity and also for those who are coordinating and monitoring this activity. Nuclear activity without physical protection ensured in accordance with PP rules requirements is prohibited. The requirements of PP Rules are stronger than the IAEA recommendations. The PP rules are establishing: physical protection objectives; federal executive bodies and organizations functions an implementation of physical protection; categorization of nuclear materials; requirements for nuclear materials physical protection as during use and storage as during transportation; main goals of state supervision and ministry level control for physical protection; notification order about the facts of unauthorized actions regarding nuclear materials and facilities. Besides the above mentioned documents, there were put in force president decrees, federal laws and regulations in the field of: counteraction to nuclear terrorism; interactions in physical protection systems; military and ministerial on-site guard activities; information protection. By the initiative of Minatom of Russia the corrections were put into the

  14. General meeting. Technical reunion: the numerical and experimental simulation applied to the Reactor Physics

    International Nuclear Information System (INIS)

    2001-10-01

    The SFEN (French Society on Nuclear Energy), organized the 18 october 2001 at Paris, a technical day on the numerical and experimental simulation, applied to the reactor Physics. Nine aspects were discussed, giving a state of the art in the domain:the french nuclear park; the future technology; the controlled thermonuclear fusion; the new organizations and their implications on the research and development programs; Framatome-ANP markets and industrial code packages; reactor core simulation at high temperature; software architecture; SALOME; DESCARTES. (A.L.B.)

  15. Report of the Nuclear Physics Division, January 1, 1978 -December 31, 1979

    International Nuclear Information System (INIS)

    Thaper, C.L.; Ajitanand, N.N.; Kerekatte, S.S.

    1980-01-01

    The research activities, with an individual summary of each, of the Nuclear Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar years 1978 and 1979 are reported. The Division is organised into three sections, namely, the Solid State physics Section, the Fission Physics Section and the Van de Graaff Laboratory. The supporting facilities of the Division include a workshop, and facilities for electronic design and development, neutron radiography and accelerator maintenance. Techniques of neutron scattering, light scattering and Moessbauer spectroscopy are used for studies in solid state physics. Major activities of the Fission Physics Section relate to theoretical studies of the fission process, heavy ion reactions and nuclear level densities. The activities of this Section during the report period deserving a special mention are studies on the mass division in fission based on the nuclear exchange process and deduction of heavy ion fusion cross sections from fission fragment angular distribution. Experimental work for multiparameter studies of the light charged particles emitted in the thermal induced fission of 235 U and for search of superheavy elements by K X-ray technique is continued. Van de Graaff accelerator is used to study nuclear reactions, nuclear structure and cross sections. Ion beam techniques including ion implantation are used for blistering studies. During the period of the report, 2 MW tandem accelerator was commissioned and DUMAS heavy duty mass separator was tested for performance. A linear, position sensitive X-ray detector has been developed. The report also includes lists of staff members, articles published in journals, papers presented at conferences, symposia etc., reports issued, theses presented, seminars, workshops etc., lecturers delivered by the staff members at other institutions and training courses. (M.G.B.)

  16. Romanian knowledge transfer network in nuclear physics and engineering - REFIN

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2007-01-01

    According to the requirements of the Romanian Nuclear Programme regarding the education and training of the skilled personnel for the nuclear facilities, a knowledge transfer network named REFIN (in Romanian: Retea Educationala in Fizica si Ingineria Nucleara) was developed since 2005. The knowledge target field is nuclear physics and engineering. The main objective of this network is to develop an effective, flexible and modern educational system in the nuclear physics and engineering area which could meet the requirements of all known types of nuclear facilities and therewith be redundant with the perspectives of the European Research Area (FP7, EURATOM). A global strategy was proposed in order to harmonize the curricula between the network facilities to implement pilot modern teaching programs (courses/modules), to introduce advanced learning methods (as Systematic Approach to Training, e-learning and distance-learning), to strengthen and better use the existing research infrastructures of the research institutes in network. The education and training strategy is divided into several topics: university engineering , master, post-graduate, Ph.D. degree, post-doctoral activity, training for industry, improvement. For the first time in our country, a modular scheme is used allowing staff with different technical background to participate at different levels. In this respect, the European system with transferable credits (ECTS) is used. Based on this strategy, courses in 'Radioactive Waste Management' and 'Numerical and Experimental Methods in Reactor Physics' for both MS students and for industry. This way the training activity which a student attends will allow him or her to be involved, depending on specific professional needs, into a flexible educational scheme. This scheme will ensure competence and enhancement and also the possibility of qualification development and a better mobility on labour market. This kind of activity is already in progress in the

  17. Physical security in multinational nuclear-fuel-cycle operations

    International Nuclear Information System (INIS)

    Willrich, M.

    1977-01-01

    Whether or not multinationalization will reduce or increase risks of theft or sabotage will depend on the form and location of the enterprise, the precise nature of the physical security arrangements applied to the enterprise, and the future course of crime and terrorism in the nuclear age. If nuclear operations are multinationalized, the host government is likely to insist on physical security measures that are at least as stringent as those for a national or private enterprise subject to its jurisdiction. At the same time, the other participants will want to be sure the host government, as well as criminal groups, do not steal nuclear material from the facility. If designed to be reasonably effective, the physical security arrangements at a multinational nuclear enterprise seem likely to reduce the risk that any participating government will seek to divert material from the facility for use in a nuclear weapons program. Hence, multinationalization and physical security will both contribute to reducing the risks of nuclear weapons proliferation to additional governments. If economic considerations dominate the timing, scale and location of fuel-cycle facilities, the worldwide nuclear power industry is likely to develop along lines where the problems of physical security will be manageable. If, however, nuclear nationalism prevails, and numerous small-scale facilities become widely dispersed, the problem of security against theft and sabotage may prove to be unmanageable. It is ironic, although true, that in attempting to strengthen its security by pursuing self-sufficiency in nuclear power, a nation may be reducing its internal security against criminal terrorists

  18. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D.; Balabanski, D.L.; Constantin, P.; Gales, S.; Tesileanu, O.; Ur, C.A.; Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); Anzalone, A.; La Cognata, M.; Spitaleri, C. [INFN-LNS, Catania (Italy); Belyshev, S.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Camera, F. [Departement of Physics, University of Milano, Milano (Italy); INFN section of Milano, Milano (Italy); Csige, L.; Krasznahorkay, A. [Hungarian Academy of Sciences (MTA Atomki), Institute of Nuclear Research, Post Office Box 51, Debrecen (Hungary); Cuong, P.V. [Vietnam Academy of Science and Technology, Centre of Nuclear Physics, Institute of Physics, Hanoi (Viet Nam); Cwiok, M.; Dominik, W.; Mazzocchi, C. [University of Warsaw, Warszawa (Poland); Derya, V.; Zilges, A. [University of Cologne, Institute for Nuclear Physics, Cologne (Germany); Gai, M. [University of Connecticut, LNS at Avery Point, Connecticut, Groton (United States); Gheorghe, I. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Kuznetsov, A.A.; Orlin, V.N.; Stopani, K.A.; Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Pietralla, N. [Technische Universitat Darmstadt, Institut fur Kernphysik, Darmstadt (Germany); Sin, M. [University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Utsunomiya, H. [Konan University, Department of Physics, Kobe (Japan); University of Tokyo, Center for Nuclear Study, Saitama (Japan); Weller, H.R. [Triangle Universities Nuclear Laboratory, North Carolina, Durham (United States); Duke University, Department of Physics, North Carolina, Durham (United States)

    2015-12-15

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed. (orig.)

  19. Towards a conceptual diagnostic survey in nuclear physics

    International Nuclear Information System (INIS)

    Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa

    2011-01-01

    Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at two institutions in a pre- and post-test design. The pre-test was given in a free-text entry format, with responses being used to develop a multiple-choice version that was given as a post-test. We performed statistical tests to evaluate the reliability and discriminatory power. Students' reasoning comments and rated certainties in their responses were used to determine students' misconceptions. We give details of misconceptions in the areas of radioactive decay, binding energy and nuclear density, and discuss possible underlying reasons for these misconceptions.

  20. High energy-density physics: From nuclear testing to the superlasers

    International Nuclear Information System (INIS)

    Teller, E.; Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.

    1995-01-01

    The authors describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, the authors focus on three important areas of physics that have unresolved issues which must be addressed by experiment: equations of state, turbulent hydrodynamics, and the transport of radiation. They describe the advantages the large lasers will have in a comprehensive experimental program

  1. High energy-density physics: From nuclear testing to the superlasers

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E.; Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.

    1995-08-14

    The authors describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, the authors focus on three important areas of physics that have unresolved issues which must be addressed by experiment: equations of state, turbulent hydrodynamics, and the transport of radiation. They describe the advantages the large lasers will have in a comprehensive experimental program.

  2. High energy-density physics: From nuclear testing to the superlasers

    International Nuclear Information System (INIS)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-01-01

    We describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program

  3. High energy-density physics: From nuclear testing to the superlasers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  4. Nuclear physics II

    International Nuclear Information System (INIS)

    Elze, T.

    1988-01-01

    This script consisting of two parts contains the matter of the courses Nuclear Pyhsics I and II, as they were presented in the winter term 1987/88 and summer term 1988 for students of physics at Frankfurt University. In the present part II the matter of the summer term is summarized. (orig.) [de

  5. SNAP: a tool for nuclear physical protection system modeling

    International Nuclear Information System (INIS)

    Engi, D.; Grant, F.H. III.

    1979-10-01

    Nuclear safeguards systems are concerned, in part, with the physical protection of nuclear materials. The function of a physical protection system is to define the facility against adversary activities which could lead to theft of nuclear material or sabotage resulting in a radiological release. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system analysis. This paper describes a detailed application of SNAP to a hypothetical nuclear facility

  6. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  7. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  8. Nuclear physics and ideas of quantum chaos

    International Nuclear Information System (INIS)

    Zelevinsky, V.G.

    2002-01-01

    The field nowadays called 'many-body quantum chaos' was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented

  9. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  10. Experimental heavy quarkonium physics

    International Nuclear Information System (INIS)

    Bugge, L.

    1986-08-01

    Following some brief arguments on why heavy quarkonium spectroscopy is an important field of particle physics, some points on experimental techniques are discussed. Parts of the basic quarkonium phenomenology, including discussions of various items related to potensial models, are then presented. An up-to-date presentation is given of the state-of-the-art of experimental charmonium and bottomonium spectroscopy below open flavour threshold, including the confrontation of experimental results to representative theoretical predictions

  11. VI European Summer School on Experimental Nuclear Astrophysics

    Science.gov (United States)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  12. Determination of half life of tellurium isotopes: a proposal for the teaching of nuclear physics

    International Nuclear Information System (INIS)

    Ruivo, Julio C.; Zamboni, Cibele B.; Batista, Wagner F.

    2013-01-01

    This work aimed at the development of courseware for teaching nuclear physics, using experimental data of half-life measurement (T1/2) of Tellurium isotopes (A=127 and 131). The choice of Tellurium was established for providing nuclear data, which are fundamental in related investigations of nuclear structure and its use in various areas such as geochemistry, chemical and pharmaceutical industries, astrophysics etc. For evaluation of the proposal performance, the material was made available, bringing a lot of information about nuclear safety, production and storage of radioactive material and concepts of radioactive decay, subatomic particles, emission of gamma radiation, half-life, etc.

  13. Determination of half life of tellurium isotopes: a proposal for the teaching of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Ruivo, Julio C.; Zamboni, Cibele B.; Batista, Wagner F., E-mail: julio.ruivo.costa@usp.br, E-mail: czamboni@ipen.br, E-mail: fisicawagner@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This work aimed at the development of courseware for teaching nuclear physics, using experimental data of half-life measurement (T1/2) of Tellurium isotopes (A=127 and 131). The choice of Tellurium was established for providing nuclear data, which are fundamental in related investigations of nuclear structure and its use in various areas such as geochemistry, chemical and pharmaceutical industries, astrophysics etc. For evaluation of the proposal performance, the material was made available, bringing a lot of information about nuclear safety, production and storage of radioactive material and concepts of radioactive decay, subatomic particles, emission of gamma radiation, half-life, etc.

  14. Applied nuclear physics group - activities report. 1977-1997

    International Nuclear Information System (INIS)

    Appoloni, Carlos Roberto

    1998-06-01

    This report presents the activities conducted by the Applied Nuclear Physics group of the Londrina State University - Applied Nuclear Physics Laboratory - Brazil, from the activities beginning (1977) up to the end of the year 1997

  15. PREFACE: XXXIII Symposium on Nuclear Physics

    Science.gov (United States)

    Barrón-Palos, Libertad; Bijker, Roelof; Fossion, Ruben; Lizcano, David

    2010-04-01

    The attached PDF gives a full listing of contributors and organisation members. In the present volume of Journal of Physics: Conference Series we publish the proceedings of the "XXXIII Symposium on Nuclear Physics", that was held from January 5-8, 2010 at the Hacienda Cocoyoc, Morelos, Mexico. The proceedings contain the plenary talks that were presented during the conference. The abstracts of all contributions, plenary talks and posters, were published in the Conference Handbook. The Symposium on Nuclear Physics has a long and distinguished history. From the beginning it was intended to be a relatively small meeting designed to bring together some of the leading nuclear scientists in the field. Its most distinctive feature is to provide a forum for specialists in different areas of nuclear physics, both theorists and experimentalists, students, postdocs and senior scientists, in a relaxed and informal environment providing them with a unique opportunity to exchange ideas. After the first meeting in Oaxtepec in 1978, the Symposium was organized every year without interruption which makes the present one the 33rd in a row. This year's meeting was dedicated to the memory of Marcos Moshinsky, who passed away on April 1, 2009. Dr. Moshinsky was the most distinguished pioneer and promoter of nuclear physics in Mexico and Latin America and holds the record of 31 (out of 32) participations at the Symposium. In the inaugural session, Alejandro Frank (ICN-UNAM), Peter Hess (ICN-UNAM) and Jorge Flores (IF-UNAM) spoke in his honor and recalled the virtues that characterized him as a teacher, scientist, founder of schools and academic institutions, colleague and friend. His generosity, excellence and honesty were emphasized as the personal qualities that characterized both his personal and academic life. moshinksky_photo "Marcos Moshinsky (1921-2009)" The scientific program consisted of 26 invited talks and 20 posters on a wide variety of hot topics in contemporary nuclear

  16. Polymer physics of nuclear organization and function

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, A. [Department of Chemical Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Holcman, D., E-mail: david.holcman@ens.fr [Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Churchill College, CB30DS, Cambridge (United Kingdom); Ecole Normale Superieure, Paris (France)

    2017-03-23

    We review here recent progress to link the nuclear organization to its function, based on elementary physical processes such as diffusion, polymer dynamics of DNA, chromatin and the search mechanism for a small target by double-stranded DNA (dsDNA) break. These physical models and their analysis make it possible to compute critical rates involved in cell reorganization timing, which depend on many parameters. In the framework of polymer models, various empirical observations are interpreted as anomalous diffusion of chromatin at various time scales. The reviewed theoretical approaches offer a framework for extracting features, biophysical parameters, predictions, and so on, based on a large variety of experimental data, such as chromosomal capture data, single particle trajectories, and more. Combining theoretical approaches with live cell microscopy data should unveil some of the still unexplained behavior of the nucleus in carrying out some of its key function involved in survival, DNA repair or gene activation.

  17. PREFACE: 11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure - achievements of the past two decades

    Science.gov (United States)

    2015-02-01

    The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the

  18. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  19. Experimental Physical Sciences Vistas: MaRIE (draft)

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack [Los Alamos National Laboratory

    2010-09-08

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materials science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national

  20. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  1. Theoretical study of nuclear physics with strangeness at Nankai University

    International Nuclear Information System (INIS)

    Ning Pingzhi

    2007-01-01

    Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)

  2. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  3. Students' views about the nature of experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-12-01

    The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.

  4. Material Control and Accounting (MC and A) System Upgrades and Performance Testing at the Russian Federal Nuclear Center-All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)

    International Nuclear Information System (INIS)

    Bushmelev, Vadim; Viktorov, Vladimir; Zhikharev, Stanislav; Yuferev, Vladimir; Singh, Surinder Paul; Kuzminski, Jozef; Hogan, Kevin; McKisson, Jacquelin

    2008-01-01

    The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF), founded in 1946 at the historic village of Sarov, in Nizhniy Novgorod Oblast, is the largest nuclear research center in the Rosatom complex. In the framework of international collaboration, the United States (US) Department of Energy/National Nuclear Security Agency, in cooperation with US national laboratories, on the one hand, Rosatom and VNIIEF on the other hand, have focused their cooperative efforts to upgrade the existing material protection control and accountability system to prevent unauthorized access to the nuclear material. In this paper we will discuss the present status of material control and accounting (MC and A) system upgrades and the preliminary results from a pilot program on the MC and A system performance testing that was recently conducted at one technical area.

  5. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  6. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  7. (μ-,e-) conversion: a symbiosis of particle and nuclear physics

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Vergados, J.D.

    1996-01-01

    (μ - ,e - ) conversion is the experimentally most interesting lepton flavor violating process. From a theoretical point of view it is an interesting interplay of particle and nuclear physics. The effective transition operator, depending on the gauge model, is in general described in terms of a combination of four terms (isoscalar and isovector, Fermi-like as well as axial vector-like). The experimentally most interesting ground state to ground state transition is adequately described in terms of the usual proton and neutron form factors. These were computed in both the shell model and RPA. Since it is of interest to know the portion of the strength exhausted by the coherent (ground state to ground state) transition, the total transition rate to all final states must also be computed. This was done (i) in RPA by explicitly summing over all final states (ii) in the context of the closure approximation (using shell model and RPA for constructing the initial state), and (iii) in the context of nuclear matter mapped into nuclei via a local density approximation.We found that, apart from small local oscillations, the conversion rate keeps increasing from light to heavy nuclear elements. We also find that the coherent mode is dominant (it exhausts more than 90% of the sum rule). Various gauge models are discussed. In general the predicted branching ratio is much smaller compared to the present experimental limit. (orig.)

  8. Nuclear Physics in Poland

    International Nuclear Information System (INIS)

    Wroblewski, A.K.

    2004-01-01

    Full text: This will be a short presentation of low and high energy nuclear physics in Poland, its history, essential results, and the present status. Nuclear physics in Poland has a tradition of hundred years. Research started just after the discovery of radium and polonium by Polish-born Maria Sklodowska-Curie and her husband Pierre Curie. Maria Sklodowska-Curie employed numerous Polish assistants in her Paris laboratory and supported radioactivity studies in Warsaw, her birth place, then under the occupation of tsarist Russia. In the first decades of the XXth century Poland was one of the leading countries in radioactivity studies. In the late 1930-ies a cyclotron was constructed in Warsaw and an ambitious 'Star of Poland' project was launched to study the cosmic rays. Unfortunately, the Second World War stopped all scientific activity in Poland. A large fraction of Polish physicists perished in the period 1939-1945. After the World War nuclear physics of low and high energy was rebuilt in Warsaw and Krakow. Already in 1952 Marian Danysz and Jerzy Pniewski discovered the first hypernucleus. This important discovery was essential to understand the properties of numerous new particles found in cosmic rays. Polish physicists entered intensive collaboration with both CERN and Dubna and took part also in research at other centers in Europe (DESY, GSI, GANIL, Julich, SACLAY) and the United States (Fermilab). At present the research is concentrated in Warsaw and Krakow (the two largest centers), and smaller teams, mostly theorists, are also in Bialystok, Katowice, Kielce, Lublin, Lodz and Wroclaw. Several years ago a heavy ion cyclotron was built in Warsaw. Among the important discoveries made by Polish nuclear physicists one may mention the theoretical works on superheavy elements and the recent discovery of the two-proton radioactivity

  9. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in

  10. Proceedings of the Third Nuclear and Particle Physics Conference (NUPPAC-2001)

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N.H.; Hanna, K M [Egyptian Nuclear Physics Association, Cairo (Egypt)

    2002-09-15

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) computer codes; (6) selected topics; (7) radiation sciences.

  11. Proceedings of the Third Nuclear and Particle Physics Conference (NUPPAC-2001)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2002-09-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) applied nuclear physics; (5) computer codes; (6) selected topics; (7) radiation sciences

  12. MPC and A upgrades at the Institute of Theoretical and Experimental Physics (ITEP)

    International Nuclear Information System (INIS)

    Haase, M.; Smarto, C.; Baumann, M.

    1998-01-01

    Materials Protection, Control and Accounting (MPC and A) equipment upgrades are complete at the Institute of Theoretical and Experimental Physics (ITEP), a site that has significant quantities of weapons-potential nuclear materials. Cooperative work was initiated at this Moscow facility as a part of the US-Russian program to upgrade MPC and A systems. An initial site visit and assessment were conducted in September 1996 to establish communication between ITEP, the US Department of Energy (DOE), and participating US National Laboratories. Subsequently, an agreement was reached to develop two master plans for MPC and A upgrades. Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) assisted in developing a plan for Material Control and Accounting (MC and A) upgrades, and Sandia National Laboratories (SNL) assisted in developing a plan for Physical Protection System (PPS) upgrades. The MC and A plan included MC and A training, a mass measurement program, nondestructive assay instrumentation, item identification (bar coding), physical inventory taking, portal and hand-held nuclear material monitors, and a nuclear materials accounting system. The PPS plan included basic PPS design training, Central Alarm Station (CAS) relocation and equipment upgrades, a site and critical-building access control system, intrusion detection, alarm assessment, and guard force communications

  13. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo [KINAC, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012.

  14. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo

    2013-01-01

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012

  15. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  16. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  17. Nuclear Physics Laboratory, University of Washington annual report

    International Nuclear Information System (INIS)

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters

  18. Studies in nuclear structure relevant to Astrophysics: theoretical and experimental efforts

    International Nuclear Information System (INIS)

    Saha Sarkar, Maitreyee

    2016-01-01

    Experimental and theoretical investigations in the region around doubly magic neutron rich 132 Sn nucleus have recently revealed many intriguing issues concerning some newer aspects of nuclear structure in such exotic environments. These nuclei lie on or close to the path of the astrophysical r-process flow. A glimpse of the implication of these studies on the r-process nucleosynthesis will be discussed. Presently, the Nuclear Physics group in Saha Institute of Nuclear Physics is working for installation of a high-current, low energy Accelerator as the primary component of the Facility for Research in low Energy Nuclear Astrophysics (FRENA), a national facility, at Kolkata. Planning for future experiments has been undertaken for successful utilization of this facility. Implantation technique has been found to be one of the most effective methods to produce isotopically pure targets. We have prepared a few isotopically pure targets using this technique. Being the slowest process of the CNO cycle, study of the 14 N(p, γ) 15 O(Q = 7297 keV) capture reaction is of high astrophysical interest. From an experiment utilizing one of the newly prepared 14 N implanted targets, a preliminary estimate of the lifetime of 6792 keV state in 15 O has been obtained, using Doppler shift attenuation method (DSAM). The sensitivity of the results with respect to the uncertainties in various input quantities has been tested. This endeavour will be helpful to design a better experiment to extract more precise lifetime for this important state

  19. Nuclear physics on the lattice?

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1985-01-01

    The goal of the paper is to try to adapt lattice gauge theory to build in some biases in order for being applicable to nuclear physics. In so doing the calculations are made more precise, and the author can address questions like the size of the nucleon, the nucleon-nucleon potential, the modifications of the nucleon in the nuclear medium, etc. (Auth.)

  20. Nuclear physics with electroweak probes

    International Nuclear Information System (INIS)

    Benhar, Omar

    2009-01-01

    In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects

  1. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  2. Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1993--June 30, 1994

    International Nuclear Information System (INIS)

    Cohen, T.D.; Banerjee, M.K.

    1994-07-01

    Under Hadrons in Nuclei and Nuclear Matter the authors research the ways in which the properties of nucleons and mesons are modified in the nuclear medium. Research progress is reported on a number of topics in this general area, including studies of the role of chiral symmetry for finite density or temperature nuclear matter, the use of QCD sum rules to describe baryons in nuclear matter, and color transparency. In the general field of Hadron Physics broad progress included studies of perturbative QCD, heavy quark physics, QCD sum rules, and QCD-based models. Notable progress was also achieved in Relativistic Dynamics in Quark, Hadron, and Nuclear Physics, where an explicit model of composite particles shows how the z-graph physics (which is an essential part of Dirac phenomenology) comes about. In addition, calculations of elastic electron-deuteron scattering based on two-body relativistic dynamics and meson exchange currents were completed, as were studies of quark-anti-quark bound states based on a relativistic quark model. Progress is also reported on the relativistic few-body problem. In the area of Heavy Ion Dynamics and Sharp Lepton Pairs, work continues on the Composite Particle Scenario for the 'Sharp Lepton Problem'. In particular, the scenario can now encompass the anomalous sharp leptons reported from positron irradiation of heavy neutral atoms, establishing such irradiations as an alternative experimental window to the heavy ion experiments

  3. The Physical Protection of Nuclear Material; Proteccion Fisica Delos Materiales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-15

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international cooperation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and materials, particularly when such materials are transported across national frontiers [French] La proteccion fisica contra el robo o la desviacion no autorizada de materiales nucleares y contra el sabotaje de las instalaciones nucleares por parte de individuos o de grupos ha sido durante largo tiempo motivo de preocupacion nacional e internacional. Aunque la obligacion de crear y hacer funcionar un sistema completo de proteccion fisica para las instalaciones y materiales nucleares en el territorio de un Estado determinado incumbe enteramente al Gobierno de dicho Estado, el que esa obligacion se cumpla o no, y si se cumple, en que medida o hasta que punto, es cosa que no deja indiferentes a los demas Estados. De aqui que la proteccion fisica se haya convertido en motivo de interes y cooperacion internacional. La necesidad de cooperacion internacional se hace evidente en los casos en que la eficacia de la proteccion fisica en el territorio de un Estado depende de que otros Estados tomen tambien medidas apropiadas para evitar o hacer fracasar los actos hostiles dirigidos contra instalaciones y

  4. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  5. Nuclear physics in the cosmos

    International Nuclear Information System (INIS)

    Bertulani, Carlos

    2011-01-01

    Nuclear astrophysics studies the physics of atomic nuclei, gravity, and thermodynamics in the early universe, stars and stellar explosions. Seventy years of nuclear science has allowed us to infer the origin of the chemical elements out of which our bodies and the Earth are made. We now believe that the lightest elements were created in nuclear reactions in the first three minutes after the big bang, and all the rest were made in nuclear reactions inside the stars and distributed throughout interstellar space via stellar winds and giant stellar explosions. I will show how a new generation of theoretical developments and experiments can shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. (author)

  6. Aspects of experimental particle physics

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1986-11-01

    The paper contains three lectures on Experimental Particle Physics which were given at the 16th British Universities Summer School for Theoretical and Elementary Particle Physics, Durham, 1986. The first lecture briefly reviews the physics which underpins all particle detectors, and the second lecture describes how this physics influences a modern detector. The last lecture is concerned with the topics of beams and computers, and includes the physics of stochastic cooling and the Halting theorem. (U.K.)

  7. Panel report: nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

    2010-01-01

    Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that

  8. Proceeding of the seventh Nuclear and Particle Physics Conference (NUPPAC-2009)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-11-01

    The publication has been set up as proceedings of the Nuclear and Particle physics conference. the conference consists Nuclear Scattering and Reactions; High Energy Physics; Nuclear Structure and Spectroscopy; Neutron and Reactor Physics; Relativistic and Quantum Physics; Modeling, Codes and Simulation; Nuclear Analytical Techniques; Accelerator and Reactor Utilization; Detectors and Instrumentation; Radiation and Radioactivity. This conference consists of 662 p., figs., tabs., refs.

  9. Proceeding of the Sixth Nuclear and Particle Physics Conference (NUPPAC-2007)

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as proceedings of the Nuclear and Particle Physics conference, the conference contains of the following subjects: High Energy Physics; Nuclear Scattering and Reactions; Nuclear Structure and Spectroscopy; Nuclear and Reactor Physics; Relativistic and Quantum Physics; Plasma and magneto hydro Dynamics; Computation and Simulation and Radiation Measurement and Dosimetry. This conference consists of 642 pages., figs., tabs., refs

  10. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  11. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arcones, Almudena; Bardayan, Dan W.

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.

  12. Proceedings of the topical conference on nuclear physics, high energy physics and astrophysics (NPHEAP-2010)

    International Nuclear Information System (INIS)

    Vo Van Thuan; Tran Duc Thiep; Le Hong Khiem

    2011-01-01

    There were roughly 80 scientists gathering for the NPHEAP-2010 and there 61 oral talks and posters have been presented. The audience has been introduced to the status of long term nuclear power program of Vietnam up to 2030. One of the highlights for near future activity of Vietnamese nuclear sector should be the manpower training and education for this huge master plan. Most of invited and contributed papers have devoted to both basic nuclear physics at world radioactive beams and applied nuclear instrumentation. In addition to some traditional astronomical papers, there were more contributions on advanced cosmic ray physics and related nuclear astrophysics. A few of papers on high energy and particle physics jointly showed a high interest in flavor physics at LHC, KEK and J-PARC. (NHA)

  13. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-07-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1984. Commissioning of the EN-tandem accelerator was completed. The first applications included the production of 13 N from a water target and the measurement of hydrogen depth profiles with a 19 F beam. Further equipment was built for tandem accelerator mass spectrometry but the full facility will not be ready until 1985. The nuclear microprobe on the 3 MV accelerator was used for many studies in archaeometry, metallurgy, biology and materials analysis

  14. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  15. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    Science.gov (United States)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  16. Proceedings of the 3. Workshop on Nuclear Physics in Brazil

    International Nuclear Information System (INIS)

    1980-01-01

    This publication is the final report of the III Workshop on Nuclear Physics in Brazil. Many works were presented on the fields related to Nuclear Physics. It was organized some work groups which discussed the following topics: Perspectivas of Nuclear Physics in Brazil, Personnel Formation and Related Instrumentation. (A.C.A.S.) [pt

  17. Abstracts of the sixth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    Yuldashev, B.; Fazylov, M.; Ibragimova, E.; Salikhbaev, U.

    2006-09-01

    The Sixth International Conference on modern problems of nuclear physics was held on 19-22 September, 2006 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. About 275 talks were presented in the meetingof on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; radiation physics of condenced matter; nuclear applications in industry, medicine, biology and agriculture; nuclear and radiation safety, non prolifaration issues. (K.M.)

  18. Abstracts of the sixth international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Yuldashev, B; Fazylov, M; Ibragimova, E; Salikhbaev, U [eds.

    2006-09-15

    The Sixth International Conference on modern problems of nuclear physics was held on 19-22 September, 2006 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. About 275 talks were presented in the meetingof on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; radiation physics of condenced matter; nuclear applications in industry, medicine, biology and agriculture; nuclear and radiation safety, non prolifaration issues. (K.M.)

  19. Nuclear Physics Department: Progress report from the 1st October 1988 to the 30th September 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The work performed at the Nuclear Physics Department, from the 1st October 1988 to the 30th September 1990, are summarized. The investigations are carried out in the fields of heavy ion physics, intermediate energy physics and accelerators using superconducting cavities. Theoretical and experimental studies accomplished in the following fields are included: hot nuclei, exotic nuclei, giant resonances, fission, inelastic scattering, electroproduction of pions, polarization of deuterons, central collisions [fr

  20. Intriguing Trends in Nuclear Physics Articles Authorship

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-11-06

    A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.

  1. Abstracts of the fourth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    2001-09-01

    The Fourth International Conference on modern problems of nuclear physics was held on 25-29 September, 2001 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; applied nuclear physics; radiation solid state physics, condensed matter physics; activation analysis, radiochemistry, isotopes. (M.K.)

  2. Joliot-Curie nuclear physics school 1983

    International Nuclear Information System (INIS)

    The 1983 Joliot-Curie school was aimed at reviewing some outstanding aspects of current research in nuclear spectroscopy. The recent developments of high and very high spin states study are presented. The most important experimental methods and explaining concepts concerning the ground states and the first excited levels of nuclei far from beta stability are reviewed. Spin-isospin excitations are dealt with from a theoretical point of view and also for the most outstanding experimental results. At last, basic concepts and limits of the shell model nuclear description are outlined and illustrated [fr

  3. New nuclear physics at Berkeley Conference

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    One of the highlights of the summer was the International Conference on Nuclear Physics, held at Berkeley in August. These big meetings provide a periodic focus for the nuclear physics community. Overall, the Conference paid a lot of attention to topics and phenomna which only a few years ago would have been considered exotic. With many novel ideas being put forward and with new projects afoot, a lot of fresh ground could have been covered by the time of the next meeting, scheduled to be held in Florence in a few years

  4. International conference on nuclear physics. Nuclear shells - 50 years. Summaries of reports

    International Nuclear Information System (INIS)

    Khazov, Yu.A.

    1999-01-01

    Abstracts of reports made at the 49 meeting on nuclear spectroscopy and nuclear structure are presented. This meeting took place in April 21-24, 1999, at Dubna, Russia. The International Conference Nuclear Shells - 50 years took place in the framework of the 49 meeting. Results of experimental investigations of nuclear properties and nuclear reaction mechanisms are given. Problems of the theoretical description of nuclear structures and nuclear reactions are discussed. The particular attention is given to nuclear spectroscopy technique and its using for applied researches

  5. Nuclear solid-state physics. Nuclear-physics measureing methods and their applications. 4. upd. ed.; Nukleare Festkoerperphysik. Kernphysikalische Messmethoden und ihre Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, Guenter; Weidinger, Alois; Deicher, Manfred

    2010-07-01

    This book is thought as accompanying textbook for a course about nuclear solid-state physics, as book for the preparation of experiments in the physical graduate practicum, and as introducing book in one of the treated fields of research. At each theme theory and measurement technique are presented, measurement results shown, detectors explained, and experimental slopes explained. The text was for the 4th edition completely modernized and revised. Newly included were sections about the radiotracer methods (trace diffusion, photoluminescence, and capacitance-transient spectroscopy with radioactive probes), which were hitherto not presented. In the neutron diffraction the for the application especially important field of the small-angle scattering and the reflectometry were newly included in the book, in the Moessbauer effect the application of the synchrotron radiation for Moessbauer studies is described. Important applications like the magnetic-resonance tomography and the positron-emission tomography are also treated in the new edition.

  6. Nuclear test-experimental science annual report, Fiscal year 1990

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Cherniak, J.; Donohue, M.L.; Francke, A.; Hedman, I.; Kirvel, R.D.

    1991-01-01

    Fiscal year 1990 was another year of outstanding accomplishments for the Nuclear Test-Experimental Science (NTES) Program at Lawrence Livermore National Laboratory (LLNL). We continued to make progress to enhance the experimental science in the Weapons Program and to improve the operational efficiency and productivity of the Nuclear Test Program

  7. Abstracts of the fifth international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Fifth Uzbekistan Conference on modern problems of nuclear physics was held on 12-15 August, 2003 in Samarkand, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics.

  8. Abstracts of the fifth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    2003-08-01

    The Fifth Uzbekistan Conference on modern problems of nuclear physics was held on 12-15 August, 2003 in Samarkand, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics

  9. The convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1980-05-01

    This document contains the full text of a convention to facilitate the safe transfer of nuclear material, and to insure the physical protection of nuclear material in domestic use, storage, and transport. Two annexes are included, which establish categories of nuclear materials and levels of physical protection to be applied in international transport

  10. HIRFL-CSR physics program

    International Nuclear Information System (INIS)

    Xu, Hushan

    2009-01-01

    The research activities at HIRFL-CSR cover the fields of the radio-biology, material science, atomic physics, and nuclear physics. This talk will mainly concentrate on the program on nuclear physics with the existing and planned experimental setups at HIRFL-CSR. (author)

  11. Proceedings of the Second Conference on Nuclear and Particle Physics (NUPPAC-99)

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N.H.; Hanna, K M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    2000-11-15

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) plasma and fusion physics; (5) applied nuclear physics; (6) related topics.

  12. Proceedings of the Second Conference on Nuclear and Particle Physics (NUPPAC-99)

    International Nuclear Information System (INIS)

    Comsan, M.N.H.; Hanna, K.M.

    2000-11-01

    The publication's has been set up as a book of the conference of nuclear and particle physics, it consists of the following chapters (1) high energy physics; (2) nuclear scattering and reaction; (3) nuclear models and spectroscopy; (3) neutron and reactor physics; (4) plasma and fusion physics; (5) applied nuclear physics; (6) related topics

  13. Low-energy nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    The 1985 annual report of the Schuster Laboratory, Manchester University, England, on low-energy nuclear physics, is presented. The report includes experiments involving: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects. Technical developments are also described. (U.K.)

  14. Strengthened implementation of physical protection of nuclear material and nuclear facilities in the Republic of Korea

    International Nuclear Information System (INIS)

    Shim, H.-W.; Lee, J.-U.

    2005-01-01

    Full text: Since the 9.11 terror, strengthening physical protection has been an accelerated trend internationally. IAEA has been requesting that member states implement a strengthened physical protection of nuclear facilities on the basis of threat assessments. In order to cope with this demand, the Korean government promulgated the 'Law for Physical Protection and Radiological Emergency Preparedness (LPPRE)' as a substantial countermeasure against possible threats. Pursuant to LPPRE, which entered into force on February 16, 2004, nuclear enterprisers are obliged to implement an effective physical protection of nuclear materials, get approval for its physical protection system, and be constantly inspected on. The Ministry of Science and Technology (MOST) approved physical protection regulations of 24 domestic facilities operated by 14 enterprisers. National Nuclear management and Control Agency (NNCA) is entrusted with physical protection related duty and has been conducting physical protection inspection on nuclear materials in use, storage and transport. In addition, NNCA has established the methodology of threat assessment that entails organizing the threat assessment working group to develop a design basis threat (DBT). Korea is putting its best efforts to construct the threat assessment system and strengthen domestic physical protection regime in cooperation with competent authorities. (author)

  15. Nuclear physics with polarized heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Grawert, G.; Turkiewicz, I.M.

    1992-01-01

    Polarized heavy ion beams ( 6 Li, 7 Li, 23 Na) have been in use as tools for the investigation of nuclear scattering and nuclear reactions for almost two decades. This review attempts to survey the research activities in this field with reference to nuclear structure, nuclear dynamics and reaction mechanisms. Besides reviewing the results from full quantum mechanical coupled channels analyses of data, special attention is paid to handwaving arguments and semiclassical pictures as a complementary way of obtaining a better understanding of the relevant physics. (orig.)

  16. Abstracts of the third international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The Third Uzbekistan Conference on modern problems of nuclear physics was held on 23-27 August, 1999 in Bukhara, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics. (A.A.D.)

  17. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2006-2007

    International Nuclear Information System (INIS)

    Debu, Pascal; Ben-Haim, Eli; Hardin, Delphine; Laporte, Didier; Maurin, David; Cossin, Isabelle; Mathy, Jean-Yves

    2008-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2006-2007: 1 - Forewords; 2 - Scientific activities: Physics with accelerators (LHC, Tevatron, CP Violation, ILC, Neutrino Physics); Physics without accelerators (Cosmology, high-energy gamma astronomy, extreme energy cosmic radiation, theoretical physics, physics-biology interface); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, internships and PhDs); 5 - Internal activities (seminars, meetings..); 6 - External activities (Public information, relations with the industry, valorisation..)

  18. Revised experimental program on the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Mori, Yuichi

    1985-01-01

    The experimental program on the nuclear ship ''Mutsu'' has been revised by the Government. And, the responsible organization for n. s. Mutsu was turned to Japan Atomic Energy Research Institute (JAERI) from Japan Nuclear-ship Development Agency. The revised, new experimental program is as follows. (1) Experimental navigation of n. s. Mutsu is made with the already loaded 1st reactor core for about one year. (2) The mooring port for n. s. Mutsu is in a minimum scale. (3) Upon termination of the experimental navigation, n. s. Mutsu is immediately decommissioned. (4) Power-up test and experimental navigation of n. s. Mutsu are made in fiscal 1989 to 1990. The policy of research and development with n. s. Mutsu and the works assigned to JAERI with n. s. Mutsu are described. (Mori, K.)

  19. Can Experimental Scientists, Data Evaluators and Compilers, and Nuclear Data Users Understand One Another?

    Energy Technology Data Exchange (ETDEWEB)

    Usachev, L. N. [Institute of Physics and Energetics, Obninsk, USSR (Russian Federation)

    1966-07-01

    The International Atomic Energy Agency organizes conferences on a wide variety of scientific subjects, all of which are of fundamental importance for the development of nuclear power. These include the technology of fuel elements, their stability in neutron fields, and chemical reprocessing as well as reactor physics, mathematical computational methods and the problems of protection and dosimetry. The problem of microscopic nuclear data, an essential aspect of reactor work, is just one of these many subjects. On the other hand, it should be remembered that the possibility of releasing nuclear energy was established in the first place by obtaining nuclear data on the fission process occurring in the uranium nucleus following the capture of a neutron and on the escape of the 2-3 secondary fission neutrons. In early nuclear power work the information provided by nuclear data was of considerable, even of decisive, importance. For example, the information available on the neutron balance in fast reactors showed that such reactors could operate as breeders and thus that it was worth while developing them. Strictly speaking, it is of course difficult to speak of a knowledge of nuclear data at this early period. It is perhaps more accurate to speak of the understanding of and the feeling for such data which grew up on the basis of the existing physical ideas on the fission of the nucleus, radiative capture and neutron scattering. Experimental data were very scanty but for that reason they were particularly valuable.

  20. Can Experimental Scientists, Data Evaluators and Compilers, and Nuclear Data Users Understand One Another?

    International Nuclear Information System (INIS)

    Usachev, L.N.

    1966-01-01

    The International Atomic Energy Agency organizes conferences on a wide variety of scientific subjects, all of which are of fundamental importance for the development of nuclear power. These include the technology of fuel elements, their stability in neutron fields, and chemical reprocessing as well as reactor physics, mathematical computational methods and the problems of protection and dosimetry. The problem of microscopic nuclear data, an essential aspect of reactor work, is just one of these many subjects. On the other hand, it should be remembered that the possibility of releasing nuclear energy was established in the first place by obtaining nuclear data on the fission process occurring in the uranium nucleus following the capture of a neutron and on the escape of the 2-3 secondary fission neutrons. In early nuclear power work the information provided by nuclear data was of considerable, even of decisive, importance. For example, the information available on the neutron balance in fast reactors showed that such reactors could operate as breeders and thus that it was worth while developing them. Strictly speaking, it is of course difficult to speak of a knowledge of nuclear data at this early period. It is perhaps more accurate to speak of the understanding of and the feeling for such data which grew up on the basis of the existing physical ideas on the fission of the nucleus, radiative capture and neutron scattering. Experimental data were very scanty but for that reason they were particularly valuable

  1. Experimental Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Carl [Univ of South Carolina; Mishra, Sanjib R. [Univ of South Carolina; Petti, Roberto [Univ of South Carolina; Purohit, Milind V. [Univ of South Carolina

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the Ba

  2. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research)

  3. Physical Protection of Nuclear Material and Nuclear Facilities (Implementation of INFCIRC/225/Revision 5). Implementing Guide

    International Nuclear Information System (INIS)

    2018-01-01

    This publication is the lead Implementing Guide in a suite of guidance on implementing the Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5), IAEA Nuclear Security Series No. 13. It provides guidance and suggestions to assist States and their competent authorities in establishing, strengthening and sustaining their national physical protection regime and implementing the associated systems and measures, including operators’ physical protection systems. The structure of this publication is as follows. After this introduction, Section 2 describes the objectives of physical protection and the overall approach to managing the risks of the unauthorized removal of nuclear material and the sabotage of nuclear facilities. Section 3 provides guidance for the State and its competent authorities on the physical protection elements of the nuclear security regime; this guidance is based on the fundamental principles set out in the Recommendations publication. Section 4 provides guidance on the operator’s physical protection system and describes a systematic, integrated approach. Appendix I gives an annotated outline of the typical contents of an operator’s security plan. Appendix II provides similar guidance for the contingency plan. Appendix III provides a description of nuclear material aggregation that can be used to categorize nuclear material and determine the appropriate level of protection against unauthorized removal. Appendix IV presents a table of paragraph cross-references between the Recommendations publication and this Implementing Guide.

  4. Experimental Seminar on Nuclear Energy for Teachers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    `Experimental Seminar on Nuclear Energy for Teachers` was conducted and sponsored by the Science and Technology Agency. And in order to understand nuclear energy properly through lectures and experiments with good results inclass, the seminar carried out for teachers of high schools and junior high schools by the Nuclear Technology and Education Center (NuTEC), Japan Atomic Energy Research Institute in 1990 FY to 1997 FY. In this report, details of the seminars in the above period are described and No.1 to 17 of Communication Letters of Experimental Seminar on Nuclear Energy` started at 1992 FY are described also. These letters were prepared for attendant follow-up program. And programs of recent seminars, future`s seminars, impressions and comments from attendants, reports from actual classes and others are described in these letters and they are very useful for educational classes on nuclear energy by other teachers. Therefore contents of the letters are listed and easy to refer. A part of this educational task was transferred to the Radiation Application Development Association in 1997 FY and other parts were transferred in 1998 FY. (author)

  5. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Macfarlane, M.H.; Matsui, T.; Serot, B.D.

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  6. Physical protection and its role in nuclear non-proliferation

    International Nuclear Information System (INIS)

    Nilsson, A.

    1999-01-01

    Non-proliferation of nuclear weapons has been one of the main concerns of the international community since the first nuclear weapons were developed. To prevent the proliferation of nuclear weapons has been on the agenda for individual States, groups of States and the international organizations. A number of treaties, conventions and agreements, the most important being the Non-Proliferation Treaty, have been negotiated to prevent the horizontal proliferation of nuclear weapons. States have concluded safeguards agreements with the IAEA to fulfill their obligations according to Article III.1 of the NPT. Other agreements relate to the prevention of vertical proliferation and also to the disarmament of nuclear weapons. It has also been recognized that sub-national, terrorist, or criminal activities may pose a proliferation risk. Illicit trafficking of nuclear material, particularly highly enriched uranium or plutonium, is a non-proliferation concern. States have recognized the need to prevent, as far as possible, the use of nuclear material in unlawful activities. The Convention of Physical Protection of Nuclear Materials, obligates the State Parties to protect nuclear material from theft during international transport, and to make unlawful possession, use, etc., of nuclear material a criminal offense, subject to punishment under national law. Although the physical protection convention recognizes the importance of the physical protection of nuclear material in domestic use, storage and transport, it does not obligate the State party to establish the necessary systems for this purpose. It is this limitation which led many States to believe that the international physical protection regime needs to be strengthened. Although not legally binding per se, the recommendations documented in INFCIRC/225/Rev. 4, The Physical Protection of Nuclear Material and Nuclear Facilities, has obtained wide recognition. There is recognition among States that protecting nuclear material

  7. KfK, Institute for Nuclear Solid-State Physics. Report of results on research and development work 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The Institute for Nuclear Solid-State Physics pursues at time mainly basis-oriented work in the fields of superconductivity and the boundary-surface and microstructure research. The experimental and theoretical works aim to a better understanding of the microscopical and macroscopical properties of certain solids. At time superconductors with high transition point, highly correlated electron systems, conducting polymers, and amorphous substances are studied especially intensively. Technologically relevant materials have in the comparative case preference. Beside the experimental methods of nuclear solid-state physics (neutron scattering, Moessbauer spectroscopy, ion-implantation technology, irradiation and analysis with fast ions) the institute disposes of further highly specificated techniques, like electron-energy-loss-spectroscopy, special material preparation, X-ray diffractometry, and two UHV facilities for the study of the first surface respectively near-surface regions with thermal helium atoms as well as with fast ions. (orig./HSI) [de

  8. Physical protection of nuclear operational units

    International Nuclear Information System (INIS)

    1981-07-01

    The general principles of and basic requirements for the physical protection of operational units in the nuclear field are established. They concern the operational units whose activities are related with production, utilization, processing, reprocessing, handling, transport or storage of materials of interest for the Brazilian Nuclear Program. (I.C.R.) [pt

  9. Introduction to Nuclear Physics (4/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  10. Introduction to Nuclear Physics (1/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  11. Introduction to Nuclear Physics (3/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  12. Introduction to Nuclear Physics (2/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    This lecture will be an introduction to the open questions and key issues on the properties and structure of atomic nuclei and nuclear matter. No particular prerequisite. It might be interesting to give a look to an introduction to nuclear physics. A look at the web might give the students an ...

  13. Annual report of the nuclear physics section of the institute of applied nuclear physics (July 1, 1976 - June 30, 1977)

    International Nuclear Information System (INIS)

    Bechtold, V.; Ottmar, H.

    1977-10-01

    The activities of the Nuclear Physics Section of the Institute of Applied Nuclear Physics from mid 1976 to mid 1977 are surveyed. The research program comprises both contributions to fundamental and applied nuclear research. The activities on the application of nuclear methods mainly concentrate on the measurements of cross sections of neutron-induced nuclear reactions for the fast breeder project, the application of gamma-ray spectrometry to nuclear fuel assay problems, the development of a proton microbeam for elemental analysis, and the production of 123 J for medical application. The study of nuclear reactions induced by α particles, 6 Li ions and fast neutrons, and the measurement of optical hyperfine structure using high-resolution laser spectroscopy form the major part of the fundamental research work. In addition, the operation of the two accelerators of the institute, an isochronous cyclotron and a 3 MV Van de Graaff accelerator, are briefly reviewed. (orig.) [de

  14. The ELI–NP facility for nuclear physics

    International Nuclear Information System (INIS)

    Ur, C.A.; Balabanski, D.; Cata-Danil, G.; Gales, S.; Morjan, I.; Tesileanu, O.; Ursescu, D.; Ursu, I.; Zamfir, N.V.

    2015-01-01

    Extreme Light Infrastructure–Nuclear Physics (ELI–NP) is aiming to use extreme electromagnetic fields for nuclear physics research. The facility, currently under construction at Magurele–Bucharest, will comprise a high power laser system and a very brilliant gamma beam system. The technology involved in the construction of both systems is at the limits of the present-day’s technological capabilities. The high power laser system will consist of two 10 PW lasers and it will produce intensities of up to 10 23 –10 24 W/cm 2 . The gamma beam, produced via Compton backscattering of a laser beam on a relativistic electron beam, will be characterized by a narrow bandwidth (<0.5%) and tunable energy of up to almost 20 MeV. The research program of the facility covers a broad range of key topics in frontier fundamental physics and new nuclear physics. A particular attention is given to the development of innovative applications. In the present paper an overview of the project status and the overall performance characteristics of the main research equipment will be given. The main fundamental physics and applied research topics proposed to be studied at ELI–NP will also be briefly reviewed

  15. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1991-01-01

    This report discusses: Imaginary Optical Potential; Isospin Effects; Scattering and Charge Exchange Reactions; Pairing Effects; bar K Interactions; Momentum Space Proton Scattering; Computational Nuclear Physics; Pion-Nucleus Interactions; and Antiproton Interactions

  16. Nuclear and particle physics with inverse compton γ-ray beam

    International Nuclear Information System (INIS)

    Fujiwara, Mamoru

    2004-01-01

    A new facility for GeV γ-ray beams in the energy range of 1.5 - 2.4 GeV is now used to develop hadron physics, and lead to an important finding of ''Penta-quark'' hadron, Θ + particle at 1540 MeV. The experimental results to observe φ and K + mesons guide us to a new look of quark dynamics with strangeness quarks. A beam line for MeV γ-rays is discussed in view of the observation of the parity violation due to the weak-strong coupling in nuclear medium. (author)

  17. Peculiarities of physical protection assurance of the nuclear materials at nuclear installation decommissioning stage

    International Nuclear Information System (INIS)

    Pinchuk, M.G.

    2001-01-01

    On December 15, 2000 Unit 3 of Chernobyl NPP, which is the last one in Ukraine having RBMK-type reactor, was permanently shutdown before the end of its lifetime. A number of projects related to establishing infrastructure for the plant decommissioning are being implemented in compliance with the Ukraine's commitments. Decommissioning stage includes activities on fuel unloading from the cores of Unit I and Unit 3, fuel cooling in the ponds followed by the fuel transportation to the spent fuel dry storage facility (currently under construction) for its safe long-term storage. Special facilities are being created for liquid and solid radioactive waste treatment. Besides, it is planned to implement a number of projects to convert Shelter Object in environmentally safe structure. Physical protection work being an essential part of the nuclear material management is organized in line with the recommendations of the IAEA, and the Laws of Ukraine 'On Nuclear Energy Utilization and Radiation Safety', 'On Physical Protection of Nuclear Installations and Materials', 'Regulations on Physical Protection of Nuclear Materials and Installations', other codes and standards. While organizing physical protection on ChNPP decommissioning stage we have to deal with some specific features, namely: Significant amount of fuel assemblies, which are continuously transferred between various storage and operation facilities; Big amount of odd nuclear material at Shelter Object; 'Theft of new fuel fragments from the central hall of the Shelter Object in 1995 with the intention of their further sale. The thieves were detained and sentenced. The stolen material was withdrawn, that prevented its possible proliferation and illicit trafficking. At present physical protection of ChNPP does not fully satisfy the needs of the decommissioning stage and Ukraine's commitments on non-admission of illicit trafficking. Work is carried out, aimed to improve nuclear material physical protection, whose main

  18. Proceedings of the Summer School Jorge Andre Swieca. 4. Session of Experimental Physics

    International Nuclear Information System (INIS)

    1990-01-01

    The works present in this course include experiences realized with the use of nuclear reactor as neutron source. The topies consist in works about nuclear physic, neutron physic, nuclear techniques on materials analysis and solid state physic using nuclear techniques. (C.G.C.)

  19. Physical protection nuclear facilities against sabotage

    International Nuclear Information System (INIS)

    Hagemann, A.

    2001-01-01

    Full text: INFCIRC 225 Rev. 4 has introduced the Design Basis Threat, DBT, as a key element of the states physical protection system. The DBT is a definition which determines the level of physical protection of nuclear material during use, storage, transport and of nuclear facilities. It the basis for physical protection concepts and for the design of measures the operator or licensee has to provide. By this means it is also a definition of the responsibility for the physical protection which the operator accepts with the license. The new chapter designated to the physical protection against sabotage which has resulted also in the amendment of the title in INFCIRC 225 demonstrates the grown international concern about the potential consequences of sabotage. More than the physical protection against unauthorized removal the physical protection against sabotage has interfaces with the nuclear safety field. The basis of protection against sabotage therefore is much more based on the facility design-the safety design of the facility. Using the DBT the competent authority is in the position to determine the level of protection against sabotage and the remaining risk which has to be accepted. This risk of course depends on the real threat which is not known in advance. The acceptance of the remaining risk depends on both the assessment of the threat, its credibility and the potential consequences. There has been no serious act of sabotage in the past nor an attempt of. Despite of this the Harnun attack of the Japanese underground and some other recent terrorist activities could have given reasons to reconsider what threat might be credible. The German physical protection system has been developed since the increasing terrorist activities in the 1970s. From the beginning the protection against sabotage played an important role in the German system of physical protection. The requirements for the physical protection against unauthorized removal and against sabotage were

  20. Electro and gamma nuclear physics in Geant4

    CERN Document Server

    Wellisch, J P; Degtyarenko, P V

    2003-01-01

    Adequate description of electro and gamma nuclear physics is of utmost importance in studies of electron beam-dumps and intense electron beam accelerators. I also is mandatory to describe neutron backgrounds and activation in linear colliders. This physics was elaborated in Geant4 over the last year, and now entered into the stage of practical application. In the {\\sc Geant4} Photo-nuclear data base there are at present about 50 nuclei for which the Photo-nuclear absorption cross sections have been measured. Of these, data on 14 nuclei are used to parametrize the gamma nuclear reaction cross-section The resulting cross section is a complex, factorized function of $A$ and $e = log(E_\\gamma)$, where $E_\\gamma$ is the energy of the incident photon. Electro-nuclear reactions are so closely connected with Photo-nuclear reactions that sometimes they are often called ``Photo-nuclear''. The one-photon exchange mechanism dominates in Electro-nuclear reactions, and the electron can be substituted by a flux of photons. ...